
St. Cloud State University St. Cloud State University

theRepository at St. Cloud State theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2021

Lateral Movement in Windows Systems and Detecting the Lateral Movement in Windows Systems and Detecting the

Undetected ShadowMove Undetected ShadowMove

Kyle Rozendaal
kyle.rozendaal@protonmail.ch

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation Recommended Citation
Rozendaal, Kyle, "Lateral Movement in Windows Systems and Detecting the Undetected ShadowMove"
(2021). Culminating Projects in Information Assurance. 114.
https://repository.stcloudstate.edu/msia_etds/114

This Starred Paper is brought to you for free and open access by the Department of Information Systems at
theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information
Assurance by an authorized administrator of theRepository at St. Cloud State. For more information, please contact
tdsteman@stcloudstate.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/442617778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/114?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Lateral Movement in Windows Systems and Detecting the Undetected ShadowMove

by

Kyle Thomas Rozendaal

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Information Assurance

 May, 2021

Starred Paper Committee:
Mailewa Akalanka, Chairperson

Mark B. Schmidt
Erich Rice

2

Abstract

Lateral Movement is a pervasive threat that exists because modern networked systems that
provide access to multiple users are far more efficient than their non-networked counterparts. It
is a well-known attack methodology with extensive research completed into preventing lateral
movement in enterprise systems. However, attackers are using more sophisticated methods to
move laterally that bypass typical detection systems. This research comprehensively reviews
the problems in lateral movement detection and outlines common defenses to protect modern
systems from lateral movement attacks. A literature review is conducted, outlining new
techniques for automatic detection of malicious lateral movement, explaining common attack
methods utilized by Advanced Persistent Threats, and components built into the Windows
operating system that can assist with discovering malicious lateral movement. Finally, a novel
method for moving laterally is introduced and studied, and an original method for detecting this
method of lateral movement is proposed.

3

Acknowledgements

A big thank you to Dr. Amirreza Niakanlahiji, Dr. Jinpeng Wei, Md Rabbi Alam, Qingyang Wang,

and Bei-Tseng Chu for inspiring this research with their research into novel lateral movement

techniques and for developing ShadowMove. Especially to Md Rabbi Alam and Jinpeng Wei for

their patience and assistance sharing their proof-of-concept code and helping this C++ novice

troubleshoot errors in execution.

A thank you to my wife and family for putting up with my long hours hiding in the basement

completing this research.

4

Table of Contents

 Page

List of Figures ... 7

Chapter

I. Introduction ... 8

Introduction ... 8

Problem Statement .. 9

Nature and Significance of the problem ... 9

Lateral movement is a major problem in security breaches 9

Lateral movement is preventable ... 10

Lateral movement is difficult to detect .. 11

Objective of the Study ... 11

Study Questions/Hypothesis .. 12

Traffic Differentiation .. 12

Network Complexity ... 12

Novel Techniques .. 12

Limitations of the Study ... 12

Definition of Terms .. 13

Summary ... 13

II. Background and Review of Literature .. 15

Introduction ... 15

Background Related to the Problem .. 15

Literature Related to the Problem .. 15

MITRE ATT&CK Framework TA008 – Lateral Movement 15

Latte: Large-Scale Lateral Movement Detection ... 20

5

Chapter Page

Deep Autoencoder Neural Networks for Detecting Lateral Movement in Computer

Networks .. 22

Practical Approach for Securing Windows Environment: Attack Vectors and

Countermeasures ... 23

A Machine Learning Approach for RDP-based Lateral Movement Detection 25

Detecting Structurally Anomalous Logins Within Enterprise Networks 27

Detecting Malicious Authentication Events Trustfully .. 28

Advanced Persistent Threats: Behind the Scenes .. 30

Literature Related to the Methodology ... 31

ShadowMove: A Stealthy Lateral Movement Strategy .. 31

Detecting Adversary using Windows Digital Artifacts .. 34

Detecting Abuse of Domain Administrator Privilege using Windows Event Log 36

Summary ... 38

III. Methodology ... 39

Introduction ... 39

Design of the Study ... 40

Virtual Machine Setup .. 40

ShadowMove Essentials and Socket Duplication ... 41

Design of the Study .. 43

Data Collection and Tools and Techniques ... 45

Summary ... 47

IV. Data Presentation and Analysis ... 49

Introduction ... 49

6

Chapter Page

Data Presentation .. 49

Log File Size Reduction for Manual Inspection Simplification 49

API Monitor and Static Analysis of API Calls .. 52

Data Analysis .. 58

Summary ... 59

V. Results, Conclusion, and Recommendations .. 61

Introduction ... 61

Results .. 61

Conclusion .. 62

Future Work... 62

References ... 64

Appendix A ... 69

Appendix B ... 70

7

List of Figures

Figure Page

1. Packages installed to build C, C#, and C++ code in Windows 10 40

2. A screenshot from DataDog SIEM displaying the number of logs generated in a mostly

idle four-hour period. Before applying any filters there were 38,554 log files to parse 50

3. Screenshot taken from DataDog SIEM showing the number of filtered logs during a four-

hour period containing an instance of ShadowMove. ... 51

4. Screenshot of DataDog SIEM Log View with the ShadowMove Hunting filter applied.

Notice the substantial reduction in log volume by applying a simple filter based

on Event ID. .. 52

5. PoC.exe calls ntdll.dll from the linked library file to query system information to find an

injectable AFD handle. ... 53

6. PoC.exe calling NTDuplicateObject to duplicate the AFD handle to use in a socket

connection attempt. .. 54

7. PoC.exe calls WSADuplicateSocketW to create the special protocol structure that will

be used to connect to the socket in the final stage of ShadowMove. 55

8. PoC.exe calls WSADuplicateSocketW to duplicate the socket and connect. 56

9. A large number of handle duplication events takes place every hour on a Windows

system ... 57

10. Access to wshqos.dll is made to load library files into the ShadowMove process. This is

one of the few areas where ShadowMove directly interacts with the operating system .. 57

11. Setting the filter query to only list cells where the string wshqos.dll exists in the

message column. ... 58

12. The ShadowMove Process ids are filtered, and an analyst is able to view most steps of

the ShadowMove process by filtering down Windows Event Logs 59

8

Chapter I: Introduction

Introduction

Lateral movement is a technique outlined in the MITRE ATT&CK framework and is a

major problem in enterprise networks during cyber-attacks (Matrix - Enterprise | MITRE

ATT&CK®, 2020). Lateral movement takes place after attackers gain a foothold in a network.

Attackers use a combination of built-in programs, malware, remote procedure calls, and user-

agent manipulation to move between workstations and servers to attempt to move closer to the

target system containing the data they wish to manipulate for financial benefit.

Many researchers focus on earlier phases of the attack chain because once lateral

movement has begun, the attackers have already breached the perimeter and it becomes

extremely difficult to contain the damage. Phishing, however, plays a key role in explaining why

detecting and preventing lateral movement is important. According to phishlabs.com and the

2019 DBIR by Verizon, Phishing attacks were a key component in 32% of all successful data

breaches (Shelley, 2019; Verizon, 2020). Typically, when a phishing attack is successful, there

is a loss in confidentiality of the user account and password, or malware is downloaded into the

network giving attackers remote access to the Windows environment. A successful phish can

bypass multiple steps on the ATT&CK framework (Matrix - Enterprise | MITRE ATT&CK®,

2020) if a high-level administrator reveals their username and password information. Likewise,

even compromising the integrity of a standard user could bypass a few steps on the ATT&CK

framework and allow access to attackers to systems allowing them to build persistence within

the network from which to launch privilege escalation attacks against internal vulnerabilities.

Since users are typically one of the weakest links in network security and a successful

phish can bypass numerous defensive measures, research into detecting and preventing lateral

movement is important in the field of cyber-security and threat intelligence. Lateral movement

has been difficult to detect in the past since the ability to move laterally between systems is a

9

key component in networked Windows environments. Many technical users need access to

multiple systems throughout the day and protocols like remote desktop protocol (RDP) and SSH

are important business tools to help companies achieve their goals. However, the same tools

and methods that users need also allow attackers to move between computers and get into

critical systems from which they can exfiltrate their target data.

A key example of how lateral movement is an issue for businesses took place in 2013

when Target experienced one of the largest data breaches of the decade. Target contracted an

HVAC company to run HVAC units that could be remote controlled to save on heating and

cooling costs during off-hours. These HVAC systems had remote capabilities so managers

could adjust store temperatures and control costs. The attacker’s first point-of-entry into Target’s

computer systems was through weak security protocols on these remote HVAC systems.

Attackers then used lateral movement techniques to move into the point-of-sale terminal

systems and exfiltrate nearly 40 million customer’s credit card information which cost Target

nearly $300 million (Lynch, 2017; Weiner, 2018).

Problem Statement

 Lateral movement is a pervasive threat during cyber-attacks and often closely resembles

legitimate traffic. Attackers take advantage of the difficult nature of detection to move laterally

through systems unnoticed. Modern detection currently relies on tried-and-true methods that

detect standard lateral movement techniques, but new attack vectors are being developed and

modern systems need a refresh to keep up with novel attack patterns.

Nature and Significance of the Problem

Lateral Movement is a major problem in security breaches.

 As previously stated, lateral movement is executed during almost every cyber-attack. In

a large production environment, it is extremely improbable that a server hosting sensitive data

like credit card information, medical records, or banking information would be open to the public

10

internet. Therefore, if attackers want access to the sensitive information, the initial point-of-

compromise will be any public-facing machine they can find. Once attackers gain access to a

machine, they will use the tools at their disposal to move from system-to-system until they get to

the data, they are attempting to exfiltrate. Since lateral movement takes place in every large

data breach, it is an important problem to study. Some researchers have created research

papers outlining the nature of the problem and exposing the pervasiveness of the threat (Powell,

2019).

Lateral Movement is Preventable:

 Lateral movement is entirely preventable. By creating a series of systems that have no

interconnectivity by locking down firewall rules and disabling protocols, lateral movement

attacks would be impossible to execute. However, preventing attackers from moving laterally

also prevents legitimate users from moving laterally. Networked computers, networked systems,

and a series of machines working in tandem with shared access makes a business more

profitable and efficient. It is understood that a computer connected to the internet is vastly

superior in its capabilities than a computer without an internet connection. Likewise, in business

environments, a non-networked workstation is going to be significantly less powerful and

productive than a workstation connected to the business network with access to all the business

data.

 Due to the complexity of business systems in a networked world, shutting down methods

to move laterally is impossible. Businesses rely on the use of networked machines and servers

to carry out business goals. MITRE supplies a list of controls that can be used to prevent some

of the main types of lateral movement techniques. When implementing controls there is a

balance between system usability and security. Administrators must decide where this balance

is between secure and useful.

11

Since networked systems are the key to many business practices, differentiating

between normal user movement through a networked system and malicious movement in an

enterprise network is extremely important in supporting the security of data systems. Since

remote access to networked computers is vital to business function, detection and prevention of

unauthorized access are as important as the business functions themselves.

Lateral Movement is difficult to detect:

Attackers use numerous methods for moving laterally through networks (Lateral

Movement, Tactic TA0008 - Enterprise | MITRE ATT&CK®, 2018). Many of these methods

require the attackers to capture password hashes and user credentials to move onto the next

system. When attackers move in this way, it simply appears as though a named user is moving

from one system to the next. This, in turn, means that attackers typically masquerade as many

different users during a campaign and all the lateral movement is masked to appear as though

authenticated and authorized users are conducting legitimate business. There are indicators of

lateral movement that can show that illegitimate lateral movement is taking place rather than

authorized remote work. Researchers have zeroed in on some of these digital artifacts created

during a malicious lateral movement campaign and have designed their methodologies for

detection around these slight differences.

Objective of the Study

The goal of the study is to supply a broad overview of lateral movement techniques,

defenses. Online sources and libraries like MITRE have troves of information concerning the

practical application of lateral movement prevention as well as the methods protected against.

Second, a literature review will be provided covering proposed methods for improved detection

of lateral movement in enterprise systems. Finally, this study will demonstrate a novel method

proposed in one of the research papers, demonstrate how it functions to bypass detection, and

12

create a detection method to detect this stealthy lateral movement—a feat which has not yet

been completed.

Study Questions/Hypotheses

Traffic Differentiation

 With standard attack methodologies, how can an analyst differentiate between legitimate

and non-legitimate traffic when legitimate traffic looks just like malicious traffic?

Network Complexity

 With the increase in network complexity and ever-increasing scope of networks, what

sort of defense measures have been proposed to assist analysts with detecting and preventing

malicious traffic?

Novel Techniques

 With the increasing complexity in detection evasion employed by attackers, is it possible

to detect novel lateral movement techniques that have not yet been detected yet?

Limitations of the Study

 Since lateral movement is a well-known and well-documented attack methodology, there

is a significant amount of documentation outlining the methods and defenses found in research

papers, blogs, and software vendor websites. However, one of the key features of lateral

movement that makes it so difficult to detect is that for every individual malicious authentication

that indicates malicious lateral movement, there are likely thousands of non-malicious

authentications that indicate normal network traffic. Therefore, the process of log management

and filtering out millions of unimportant events is as important a feature of lateral movement

detection as is knowing the threat vectors available to attackers. Since this research was not

conducted in an enterprise environment and simulating such an environment is costly, this

element of the research was simulated to a small extent and would benefit from being run in an

enterprise environment to prove its efficacy in production environments.

13

Definition of Terms

• Dynamic Link Library: A DLL is a library that contains code and data that can be used

by more than one program at the same time (Deland-Han, 2020).

• Server Message Block: Server Message Block is a network communication transfer

protocol to provide shared access to files, printers, ports between the networks

(Pedemakar, 2020).

• Remote Desktop Protocol: The Microsoft Remote Desktop Protocol (RDP) provides

remote display and input capabilities over network connections for Windows-based

applications running on a server. RDP is designed to support different types of network

topologies and multiple LAN protocols (Schofield et al., 2018).

• Windows Driver Development Kit: The Windows Driver Kit (WDK) provides a set of

tools that you can use to develop, analyze, build, install, and test your driver (Marshall et

al., 2018).

• ShadowMove: ShadowMove is a modern stealthy lateral movement technique designed

by students and faculty at the University of Illinois at Springfield, The University of North

Carolina at Charlotte, and Louisiana State University. The code utilizes dynamic link

libraries to execute lateral movement without being detected by traditional antivirus and

without creating new authenticated sessions. The proof-of-concept code provided for this

research was built as PoC.exe and this executable name will be used synonymously

with ShadowMove throughout the remainder of the research paper.

Summary

 Lateral movement is a major problem that cannot be completely solved without vastly

reducing business functionality. Methods used by attackers to move laterally are well

documented and prevention methods are readily available and accessible. However, lateral

14

movement is also extremely difficult to detect as it typically appears as legitimate user

authentications. The objective of this study is to provide a literature review on research that

outlines methods for differentiating between legitimate and malicious movement between

computer systems, to highlight methods that have been proposed to prevent malicious lateral

movement methodologies as well as the methodologies these prevention techniques aim to

solve, and finally, to study a novel intrusion detection method and provide an original solution to

detecting the method.

15

Chapter II: Background and Review of Literature

Introduction

 The purpose of this literature review is to provide the reader with a deeper

understanding of the work conducted in the field of lateral movement detection attempting to

solve some of the major problems that exist in differentiating malicious traffic from regular traffic.

This chapter will be broken up into four sections; the first, another short outline of the nature of

the problem, second, a review of literature related to the problem, third, a review of literature

related to the methodology, and finally, a summary of the research done in preparation for the

original research.

Background Related to the Problem

 When approaching the problem of lateral movement, there are two main questions that

are posited; how do we differentiate between malicious and benign traffic, and how do we stop

malicious lateral movement? Differentiation and prevention of known techniques are the two

areas the background portion of this literature review focus on. Since methods for lateral

movement are well known and documented, this literature review begins with a review of the

MITRE ATT&CK Framework. An overview of each method used for malicious lateral movement

is covered as well as proposed defenses. A diagram outlining common tactics to prevent lateral

movement is provided in Appendix A for engineers looking for easy solutions to cover the most

attack methods. A review of literature proposing new types of detection for more precise

differentiation and remediation will be provided following the MITRE review.

Literature Related to the Problem

MITRE ATT&CK Framework TA008 -- Lateral Movement

 MITRE outlines numerous attack methodologies for lateral movement in their ATT&CK

framework. In this section all methods described and their recommended mitigation methods for

fixing the vulnerabilities will be discussed. The purpose for this section is to highlight common

16

methodologies employed by attackers when moving through a Windows environment. The

methodologies covered by MITRE are common exploits with well-known mitigations. In writing

this section, this research aims to highlight the fact that while extremely common in cyber-

attacks, common mitigations using built-in protocols exist for every modern-day security

practitioner.

Exploitation of Remote Services. Attackers use the exploitation of remote services to

gain an initial foothold in the network but can also be used once inside the network to move

between systems. A common example of remote service exploitation is outlined in CVE-2017-

0143 or “Eternal Blue”. Eternal Blue is a vulnerability that was known by the NSA and released

to the public once the NSA discovered that attackers were using the exploit maliciously in other

environments around the world. Eternal blue uses a vulnerability found inside Windows Server

Message Block (SMB) and allows for a remote attacker with no credentials to gain SYSTEM

level privileges on the target machine. (“CVE-2017-0143: The SMBv1 Server in Microsoft

Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1;

Windows”, 2017).

 Common mitigation techniques outlined for this type of attack include sandboxing

applications to discover vulnerabilities, uninstalling unneeded or unused services from all

systems, installing exploit protection software that can stop an exploit when discovered,

implementing a strong network segmentation policy, minimizing the permissions and access of

all accounts through a privileged access management project, improving employee knowledge

of threats and attacks through training, update all software to the latest and most secure

versions, and frequently scanning the network for vulnerabilities with updated databases to

ensure all vulnerabilities are patched as they become known.

Internal Spearphishing. Internal spearphishing is when an attacker compromises an

internal email address and uses it to gain the trust of other internal users in order to trick them

17

into sharing passwords or other sensitive data. Attackers may create phishing campaigns with

credential harvester pages or phish for information by emailing colleagues using a trusted

address to gain information.

 Mitigating internal spearphishing attacks is extremely difficult as an initial breach has

already occurred, and all attack traffic looks like standard email traffic. Employee awareness

programs and employee training will help reveal internal spearphishing campaigns, but fully

mitigating them is impossible without interrupting business systems.

Lateral Tool Transfer. Once inside a system, attackers will transfer tools from one

system to another by exploiting administrative accounts, open SMB file servers, network drives,

or removeable media. By transferring attack tools to other systems, attackers can connect to

and create a backdoor on whatever system it they place it on giving them deeper persistence in

the network.

 Some of the common mitigations for this type of attack include filtering network traffic to

ensure only known devices and addresses are communicating with secure channels like SMB

or SSH. Another method for preventing lateral tool transfer is to implement a network intrusion

prevention system. By implementing a signature-based or anomaly-based intrusion-prevention

system irregular traffic or file transfers may be detected and prevented.

Remote Service Hijacking. Attackers sometimes have the capability to hijack pre-

existing network connections using services like SSH and RDP. Attackers may commandeer

these sessions to act against remote systems like transferring files or executing commands.

 Detecting service hijacking is difficult since the authorized user creates the initial

session, and a new session is not created by the malicious actor. Likewise, mitigation is difficult

as it relies on disabling features and services when unneeded, implementing a strongly

segmented network, managing privileged accounts, and managing user accounts. Ensuring that

18

only accounts with the need to access the service can access the service will reduce the remote

connection footprint and make it more difficult for the attacker to hijack a connection.

 ShadowMove uses a novel method for hijacking unencrypted sessions between

computers on any port. This will be covered more extensively in section five.

Remote Services. Attackers will use compromised accounts to use services like RDP,

SMB, SSH, and VNC to connect to remote computers. There are numerous ways for attackers

to gain valid credentials to use on remote connection applications including hash dumps,

passwords left on files, brute force guessing, and many others.

 Mitigation of this threat vector includes implementing multi-factor authentication where

possible and managing user accounts to ensure only the users that need access to the remote

services are allowed to access the remote services.

Replication through Remote Services. To bypass airgaps, or to increase the likelihood

of reaching difficult-to-reach machines, attackers may copy malware to removeable media in the

hopes that it is inserted into another machine where they will have access to more sensitive

data.

 Mitigations include disabling autorun as attackers have used the autorun feature to

automatically execute malware when a user inserts the removable media device into a new

computer. Likewise, limiting the use of USB storage devices on networked computers will make

it nearly impossible for removable media to be used as an attack vector.

Software Deployment Tools. Attackers may gain persistence on any number of

machines by gaining access to applications that deploy software across a network. By

compromising an account on Microsoft’s System Center Configuration Manager or McAfee E-

Policy Orchestrator, attackers can gain the ability to deploy any software to any system within

the network. Depending on how the software deployment tool is configured, it may be possible

19

for standard network accounts to have sufficient permissions to deploy applications anywhere in

the network.

 Mitigating this attack vector is accomplished by ensuring systems are isolated correctly

in active directory, ensuring multi-factor authentication is in place for critical systems,

segmenting the network to keep critical systems isolated from less secure systems, enforcing a

strong password policy, managing privileged accounts with a Privileged Account Management

procedure or tool, ensure that tools with the ability to deploy software are configured so that only

signed binaries or specific binaries are able to be deployed, update systems to ensure patches

are installed when they are needed, manage user accounts to ensure over-permissioned

accounts are not present in the environment, and ensure that users are trained in the policy and

procedures for deploying software to remote systems. Each company and environment will have

a different level of access needed to remotely install applications on systems, so mitigating a

threat like this can be difficult. Some companies will also have custom software that they may

want to push, and it may be unsigned. Companies should ensure, that if they are going to use a

remote deployment tool, that the tool fits all the needs for the types of software they will be

distributing.

Taint Shared Content. Attackers may be able to move laterally by adding malicious files

to shared locations on the network. These tainted items will typically contain instructions that

allow the attacker to move laterally once an unknowing user executes them. Attackers often

design these files such that the intended action of the user is still executed so as not to raise

suspicion. However, the malicious script will run and allow for deeper access to the network.

 Mitigating shared content tainting includes using an exploit prevention system, file and

directory permissions for users that have access, and to identify potentially malicious software

with detection systems and auditing/blocking the execution of such files with tools like Microsoft

AppLocker or Software Restriction Policies.

20

Use Alternate Authentication Material. Attackers also attempt to gain access to

alternative authentication materials like Kerberos Tickets, Application Access Tokens,

Authentication Tickets, or Web Session Cookies to bypass the password requirement to access

the service. Using meterpreter shells or programs like Mimi Katz to dump credentials or active

tickets and sessions, attackers can gain the ability to craft a token or ticket that the system will

take in lieu of a password.

 Mitigating these types of attacks include privileged access management to reduce the

likelihood of lateral movement between systems and implementing a principle of least privilege

within the network to mitigate the number of administrative accounts present on the network.

Latte: Large-Scale Lateral Movement Detection

This research team discusses the problem inherent in Lateral Movement detection by

outlining two key issues when differentiating lateral movement from normal use behaviors:

detecting the path after discovering an infected computer and discovering an infected computer.

“Latte analyzes large-scale event logs collected from operational networks” (Liu et al., 2018).

Their system analyzes Kerberos service ticket requests to construct a graph outlining a general

connection structure between networked machines. For general detection purposes Latte uses

this connection graph and data from Windows Event Logs to correlate rare connections in

conjunction with Remote File Execution to detect possible lateral movement within an

environment. To prevent log tampering, Windows system file logs are sent to the Windows

Event Forwarding server and fed to MapReduce to create a complete historical map of remote

file executions and Kerberos service ticket requests. The work done by this team stands out

from other graph-based models in that it can be deployed to stock Windows installations as it

only utilizes logs gathered from standard installations of Windows and requires no kernel level

privileges to operate as intended.

21

 Latte truly shines when trying to forensically analyze the path an attacker took to and

from an infected node and highlights useful information for future analysts investigating potential

lateral movement attacks. By analyzing the known compromised node and filtering out the

rarest of results, analysts are only required to make a limited number of manual investigations to

find paths taken by the attacker. In their experimentation, the forensic analysis module was able

to successfully float the malicious paths taken by the attacker to the top eleven results out of a

possible 447,828 paths (Liu et al., 2018). Given their method, analysts need to manually

analyze the eleven paths discovered by the forensic analysis module: a far more manageable

task than the 447,828 paths in the first dataset. Since the malicious paths taken between

workstations were discovered by analysts in the eleven top results, the researchers determined

their forensic analysis module to be a success.

The authors admit that for general detection, relying solely on the rare node connections

generates far too many false positives to be considered a practical source for actionable insight

in an environment. In each ninety-day period over 44 Million connections were tied as the most

suspicious to generate fewer false positives, the authors recommend first determining where

remote file execution occurs within a network and then correlating the rare connection paths

inbound and outbound from the system wherein remote file execution took place. This research,

however, does propose a method to how analysts can differentiate between malicious and non-

malicious traffic. By correlating Kerberos Service Tickets with remote execution and analyzing

rare paths using a map of the network, it is possible to narrow down the possible malicious

lateral movement events to a level where an analyst can manually analyze each in a given

workday.

22

Deep Autoencoder Neural Networks for Detecting Lateral Movement in Computer

Networks

 This research team researched the use of Deep Autoencoder Neural Networks in

detecting lateral movement in networked computers. They begin by outlining the fact that many

other researchers have researched using neural networks to aid in detecting intrusions in

computer networks. However, this team differentiate their research from past research

endeavors by setting out to solve the problem of lateral movement rather than general intrusion

detection.

 The team, led by R. Holt, used the Los Alamos National Laboratory dataset to train and

test their neural network. The Los Alamos National Laboratory dataset covers a period of 58

days and is over 73 gigabytes in size. Therefore, the team used two subsets of data from the

Los Alamos National Laboratory dataset: a developmental dataset for use in training and proof-

of-concept work and a test dataset to evaluate the accuracy of their created models (Holt et al.,

2019). The developmental dataset included all the red team data from the Los Alamos Dataset

as well as all normal traffic from the computers compromised by the red team. Researchers

added a random sampling of data to make the developmental set more varied and to avoid

overfitting of the data. Researchers created the test dataset in the same manner with the

addition of all users from all compromised computers to add more variance to the dataset.

 After describing how unsupervised autoencoders learn the authors describe four models

they designed for testing. The first was a shallow model designed 6-2-6, the second was a deep

model designed 6-3-2-3-6, the third was a deep model designed 6-3-2-3-4-5-6, and the fourth

was a model designed 6-5-4-3-2-3-6 (Holt et al., 2019). After feeding data to the neural network

for testing, the results were mixed. The first three models performed well with low false positive

rates--.55%, .85%, and .95%--with good recall, however, performed inaccurately in the precision

23

metric. The fourth model had a false-positive rate of over 20% and no measurable precision nor

recall.

 The three models proposed by the team performed worse than the semi-supervised

model they reference in their related works section. However, the semi supervised model

proposed by another research group covered in this paper (Sidati et al., 2016), requires a

human analyst to aid in the detection of anomalies and is not fully automatic like the model

proposed by R. Holt and his team. Furthermore, the model proposed by Holt and his team was

more accurate than the model proposed by Bohara and their research group (Bohara et al.,

2017). While the results show positive progress towards the goal of automating intrusion

detection and lateral movement detection using autoencoders, further research must be made

to improve the detection rates and reduce the volume of data necessary to train an autoencoder

to perform intrusion detection.

 Intrusion detection using machine learning is a critical area of research and numerous

researchers have investigated the use of unsupervised and semi-supervised machine learning

approaches to aid in the filtering of data to a manageable level or to work as IDS/IPS in the

network (Liu et al., 2018; Chandrasekhar & Raghuveer, 2013; Chen & Jiang, 2019; Yu et al.,

2017; Liu & Lang, 2019). Many semi-supervised models perform extremely well when pairing

the judgement of a human with the pattern recognition of a computer (Gogoi et al., 2013).

Methods researched by teams like Holt’s team show promise in automating tasks and reducing

the amount of noise while more accurately predicting abnormal user behavior as is presented

during a malicious lateral movement event.

Practical Approach for Securing Windows Environment: Attack Vectors and

Countermeasures

 Abdurrahman Pektaş and Ertugrul Basaranoglu introduce a new method for conducting

penetration tests within a Windows Environment. They make the claim that there has not been a

24

structured attack method for Windows penetration tests and set out to construct a new method

that focuses specifically on attacking Windows environments (Pektaş & Basaranoglu, 2017).

 The authors begin their article by outlining the basics behind other penetration testing

methodologies introduced by companies like OWASP and the CE-Council but quickly begin

work on demonstrating why their Microsoft Domain Environment Penetration Test Methodology

(MSDEPTM) is superior for testing Windows environments. The authors introduce a ten-step

systematic process for attacking Windows environments and explain methodologies used

throughout the penetration test within each step to gain access, attain persistence, and

compromise more systems.

 Section three of the paper introduces numerous methods for attacking Windows

environments and explains methodologies that attackers use to successfully breach a Windows

environment. The authors break down their methodologies in the ten-step penetration test

method.

 Section four covers mitigation techniques for preventing unauthorized access of systems

as laid out within section three. While comprehensive in scope, the amount of detail in

preventing certain methodologies is lacking. While this is a paper that introduces a new

structure for attacking Windows environments and the mitigation is a minor portion of this attack

framework, a more comprehensive list of mitigation techniques for the numerous specific attack

techniques would have been helpful.

 The authors’ concluding section outlines that since they provide more steps, specific

tools for attack and mitigation, as well as offering different techniques that their method

competes with other attack methodologies for conducing penetration tests. It is true that system

administrators and security professionals could use this framework to aid in penetration tests

and securing their Windows environments. However, for the purposes of this starred paper, this

resource is helpful in outlining novel methods for exploiting Windows environments for lateral

25

movement as well as potential measures to prevent against lateral movement. Many of these

activities are also outlined in the MITRE ATT&CK Framework and will be covered in future

sections. This research is helpful in developing a broader understanding of tools and techniques

available to network defenders and how malicious lateral movement may be defended against.

A Machine Learning Approach for RDP-based Lateral Movement Detection

 Some researchers propose a new method for classifying remote desktop protocol (RDP)

sessions in Windows environments. Using datasets from the Los Alamos National Laboratory

and supervised machine learning algorithms, the authors propose a new method for detecting

and sorting through RDP sessions to better classify malicious lateral movement within a

Windows environment. The research team concludes their research by comparing their

developed method to state-of-the-art methods and gauge their effectiveness based off another

model’s performance (Bai et al., 2019).

 The authors begin their research with a literature review of other authors that have tried

to classify malicious RDP sessions using machine learning algorithms the Los Alamos National

Laboratory Dataset (LANL). The team critiques the method proposed by the team led by Martin

Ussath (Ussath et al., 2016) for being unwieldy in production environments, although the

learning algorithm was efficient at detecting malicious RDP sessions. Furthermore, the authors

critique Kaiafas’ team (Kaiafas et al., 2018) for their proposed use of the LANL dataset and

posture that the LANL dataset is only useful for machine learning training when combining the

two available datasets rather than solely utilizing the comprehensive events dataset.

 The team levels criticism at the LANL dataset for its fractured nature. The

comprehensive events dataset holds diverse red-team activities, however, the ratio of red team

activities compared to normal activities is extremely small. Furthermore, the red team activities

are launched from four different machines and take place during specific timeframes. For this

reason, they conclude that using the comprehensive dataset alone for training machine learning

26

algorithms will lead to overfitting or training the machine learning algorithm to detect specific

timeframes and machine ID’s rather than generalized patterns in the malicious RDP activities

(Bai et al., 2019). To solve this problem of overfitting the training data to specific activities

generated by specific machines at specific time intervals, the research team proposes

combining two datasets from LANL to create a comprehensive dataset that combines more user

events from the Windows event log with the malicious red team data from the comprehensive

dataset to make a more generalized dataset to train machine learning algorithms and bypass

the issue of overfitting by using only one data source (Bai et al., 2019).

 Using their new combined dataset, they test their training data on five different machine

learning algorithm classifiers and determine their performance by measuring their accuracy,

precision, recall and F-Score: the “harmonic mean of precision and recall” (Bai et al., 2019). The

authors then compare their model to another top performing model proposed by Kaiafas et al

(Kaiafas et al., 2018). Using their dataset, the researchers were able to reduce the number of

inputs and abstract the data more completely than Kaiafas’s team and were able to return

higher detection rates. In doing so, the team posits that their model is more useful in a

production environment as it requires less data to run and is as effective as the more complex

model (Bai et al., 2019). This model is useful in highlighting what Windows Event Log events

can be used in automated systems to detect malicious lateral movement in an environment and

highlight the fact that this task can be automated with sufficient training-data.

 Understanding that Windows Event Logs can be used in automated systems to assist

with detecting malicious lateral movement is a critical point of this research. Oftentimes,

Windows Event Logs are overlooked as being clunky or not verbose enough. This research

proves that Windows Event Logs can be utilized effectively for intrusion detection purposes

when the correct filters are applied, and careful logic is utilized. The machine learning algorithm

27

proposed by the team demonstrates novel methods for detecting and preventing lateral

movement using common tools accessible to most security analysts and engineers.

Detecting Structurally Anomalous Logins Within Enterprise Networks

 Hossein Siadati and Nasir Memon introduce a method for detecting anomalous logins

and lateral movement within an enterprise network by creating a “network login structure” that

outlines typical sign ins for users and then employ an anomaly detection system to detect out-

of-character logins for users within the network (Siadati & Memon, 2017).

 Siadati and Memon focus on credential based lateral movement during which the

attackers steal valid user credentials through tactics like pass the hash and authenticate as valid

users. These types of attacks are some of the most difficult to detect because they so closely

resemble normal account authentications during an average workday. Siadati and Memon

created a system that simply looks for odd login behavior from users rather than specific attack

methodologies. By focusing on a broader scope, their method should be able to watch for a

wider range of attack vectors.

 Siadati and Memon employ a pattern miner and login classifier to collect as much data

as possible about typical user behavior in the network and classify whether the logins are

thought to be benign or malicious given the data mined by the pattern miner.

 Siadati and Memon created an algorithm to classify typical user behavior based on the

login pattern, occurrence, orientation, patterns, and scores generated by all previously stated

inputs (Siadati & Memon, 2017). Once researchers completed their system, they evaluated their

detection system against a dataset holding five months of data from a global financial company.

Once the test was run against the system, the data was handed to a group of analysts from the

company and each flagged instance was investigated to determine whether it was a true

positive or not. The analysts, after analyzing the flagged sign ins discovered that the system

only had an 11% accuracy rating. The reason for this was that administrative logins tend to look

28

abnormal in many cases as administrators constantly access new machines for the first time

causing the pattern miner to flag them as malicious given their infrequency.

 While the idea of monitoring standard behavior for users and flagging anomalous logins

is a good theory, in practice, more information needs to be considered before flagging

anomalous logins as malicious. For instance, taking process history from the user before the

connection was made or observing spawned processes after the connection was completed

could help in narrowing the scope and improving the overall accuracy of the system. While

some sign-in based anomaly detection system could be helpful in detecting novel lateral

movement techniques, further studies into this subject will need to be done before this type of

detection can be relied on solely for malicious lateral movement detection.

 While not the most effective solution, the method of detecting lateral movement by

tracing anomalous logins is a worthwhile endeavor in a defense-in-depth structure. It is another

method by which analysts and engineers may detect lateral movement taking place within the

infrastructure.

Detecting Malicious Authentication Events Trustfully

 The research team led by Kaiafas aim to solve the problem with anomaly detection

outlined in the paper by Siadati and Memon: false-positive detections. The team tried to solve

this issue by providing more contextual data surrounding the authentication to the classifiers

(Kaiafas et al., 2018). By including more contextual data, they aim to reduce the number of false

positives by classifying more accurately what normal behavior looks like.

 The team used four different supervised anomaly detection systems in their research

and tested their accuracy using the Los Alamos National Laboratory Dataset. Since the Los

Alamos National Laboratory Dataset has so few malicious activities—less than .00033% of total

authentication logs (Kaiafas et al., 2018)—filtering the anomalous/malicious traffic from standard

user traffic is extremely difficult.

29

 To assist their supervised learning algorithms with sorting malicious events from non-

malicious events, the authors identified several features and included tangible pieces of data to

improve malicious anomaly detection.

 The first feature is the “distribution of time difference of events between systems and

from user to system” (Kaiafas et al., 2018). This feature captures the spread of user activity over

time, allowing the detection engine to estimate a relative pattern to user activity.

 The second feature is “user activity and connection frequency” (Kaiafas et al., 2018).

The authors use this to estimate a general pattern of typical user behavior on a given day. By

observing the frequency of network activities, the pattern recognition system can better find

whether actions taken by a specific user account are outside the normal range.

 The third feature is the “distribution of malicious events if we see every event as a trial”

(Kaiafas et al., 2018). In their experimentation the team supplied a probability to the anomaly

detection engine which outlines how likely a malicious event is. While this is helpful in an

experimental system, when moving to an enterprise network, this number will not always be

known.

 The fourth feature is “user variance” (Kaiafas et al., 2018). This feature outlines the

significance of a user during a given period and is designed to tell the system how often a

specific user should be expected to authenticate. It creates a distribution of both the number of

users authenticating during a period and also expected spread of user activity meaning the

more popular users should be expected to authenticate more frequently during a given period of

time.

 After running the dataset through these classifiers, the authors fed the data to four

different “ensemble learning techniques” (Kaiafas et al., 2018) for final classification. These

ensemble learning techniques use multiple machine learning algorithms to classify and sort

data. The ensembles they used were LogitBoost, Random Forest, Logistic Regression, and

30

Majority Voting. After training their systems with a subset of data from the Los Alamos National

Laboratory Dataset, the research team measured the success of their systems by computing

the false positive rate, false negative rate, balanced accuracy which is “the arithmetic mean of

True Positive Rate and True Negative Rate” (Kaiafas et al., 2018), Positive Predictive Value: a

ratio of known malicious activities vs predicted malicious activities, the F1-measure, and the

Prevalence: or the ratio of True Positive and False Negative over the sample size.

 After conducting their tests, most models performed well with low false positive rates

with the Majority Voting system outperforming the others by a small margin. The systems

achieved a 0% false positive rate for 68% of the data and a .0019% false positive rate for the

remaining 32% of the data. The authors conclude that completely avoiding false positives is a

fool’s errand, however, minimizing the number of investigations made by human analysts is the

goal of most semi-automated systems. The team prove that their sorting methods are effective

at reducing noise generated for the administrator.

 This research is fundamental in feature choice for reducing the noise generated by

network logs. The researchers supply many features that seem to truly reduce the false positive

rate generated by network logs. The downside to this method is that the ratio of benign

authentications to malicious authentications is known. It would be interesting to see how a

system such as this would perform in a black-box environment.

Advanced Persistent Threats: Behind the Scenes

The research team led by Martin Ussath investigated 22 different APT attacks to gather

the best practices used by many of the APT’s to attack networks. In doing so, Ussath and the

team proposed to highlight better detection methods for commonly used attack structures

(Ussath et al., 2016). To simplify the complexity of APT attacks, the researchers view three

main categorizations of activities taken during an APT campaign: initial compromise, lateral

movement, and command and control (Ussath et al., 2016).

31

 After first compromise, the authors explain the importance of lateral movement in

computer systems for all the APT groups. The most common method for moving laterally

through systems found by the authors is to use preinstalled Windows tools like remote desktop

protocol, windows management instrumentation, PowerShell, and PS Exec (Ussath et al.,

2016).

 Attackers often collected passwords from memory using tools like Mimi Katz or Windows

Credential Editor. Attackers rarely brute-force passwords as brute force attacks are noisy and

are typically prevented by administrators. The final method outlined for lateral movement by the

researchers is to exploit known vulnerabilities to elevate privileges. The authors propose that

attackers exploited vulnerabilities because access to passwords and password hashes required

administrative credentials (Ussath et al., 2016).

 To detect malicious lateral movement, the team proposes detecting known malicious

processes like Mimi Katz for password and hash dumping activities as well as monitoring the

Local Security Authority Subsystem Service process which has direct access to the memory of

other processes and is a vector of attack for dumping credentials (Ussath et al., 2016).

 Viewing the chart of 22 different APT groups created by the researchers gives a good

snapshot into the processes and attack methodologies used by APT groups. Understanding the

methods used by APT groups and common defenses against them helps with understanding

how to detect and prevent attacks. The table created by the team is provided in Appendix A and

outlines the most common methods used by APT groups and gives a good overview of attacks

to focus on defending against.

Literature Related to the Methodology

ShadowMove: A Stealthy Lateral Movement Strategy

 The research team led by A. Niakanlahiji proposes a novel lateral movement strategy

that takes advantages of built-in Windows features to jump between systems using existing

32

connections while bypassing all modern AV detection (Niakanlahiji et al., 2020). The system

works by duplicating socket connections and hijacking established FTP, TDS, and WinRM

connections.

 The system proposed by uses three main steps: Duplicate a socket used by a legitimate

client, inject packets into the TCP stream using the duplicated socket, and spawn a new session

of ShadowMove on the server handling the packets by tricking the server into executing the

injected packets. This novel method for lateral movement can avoid detection because it only

reuses pre-established connections and never spawns a new connection with the server,

thereby not generating a new TGT or TGS request as is typical in standard lateral movement

attacks.

 The initial breach requires that a piece of malware be installed on the initially infected

vector. However, given the stage at which lateral movement takes place during a cyber-attack, it

is believable to assume that the attackers would have created a layer of persistence on the

systems and had a way to deliver a malicious payload to the client.

 The ShadowMove software has six modules: Connection Detector, Socket Duplicator,

Peer Handler, Network View Manager, Lateral Movement Planner, and Plan Actuator. Each

module has a specific purpose during the lateral movement phase of a cyber-attack, and each

serves a unique purpose in helping ShadowMove function as intended.

 The Connection Detector is a listener that waits for a change in status from non-

established to established and recording when a certain TCP port is being used. This system

constantly queries the TCP table on the Windows machine to find when a vulnerable port has

an established connection.

 The peer handler is used to share data between instances of ShadowMove within a

network. Using duplicated sockets, process suspension, and previously compromised sockets,

33

the peer handler can communicate with other ShadowMove instances to share knowledge

about the architecture of the network.

 The network view manager is a dashboard from which the attacker can view the status

of the network that has been compromised thus far. The attacker can view hosts, sockets that

have been duplicated, IP addresses, ports, service types, and other essential information the

attacker may want to know when engaging in lateral movement as part of a cyber-attack.

 The Socket duplicator duplicates sockets. On a windows system this is done by using

open process to enumerate all open handles. Then using “GetPeerName” it enumerates the

socket from the AFD handle. Finally, it uses “WSADuplicateSocket” to duplicate the socket,

giving the attacker a tunnel from which to inject packets into the data-stream. Since these

packets are injected into a data stream where the benign application is running and transferring

data, ShadowMove uses “SuspendThread” to pause the execution of the benign service in order

to ensure its own code is injected and executed.

 The lateral movement planner gives the attacker the capability to view an exploit map

and plan for the most efficient lateral movement attack. Since permissions between systems

vary in a Windows environment, not every connection will have permissions to read, write, and

execute on other systems. The lateral movement planner shows the attacker the best route

possible to a given target and can plan the most efficient route to reach the desired system.

 Finally, the lateral movement actuator contains many modules responsible for crafting

and reading from packets midstream and is responsible for crafting packets that can hijack FTP,

MS SQL, and WinRM connection streams.

 This team created a stealthy lateral movement technique that bypassed all traditional

antivirus, endpoint detection and response tools, and IDS/IPS tools that were leveraged against

the ShadowMove software. The authors do, however, outline a few key issues with their design.

First, enabling protected processes would stop ShadowMove from duplicating the process

34

handle. Second, the ShadowMove architecture only works on unencrypted channels: thereby

limiting attack vectors to specific protocols in a network. However, the novel method by which

ShadowMove jumps from system to system proves to be effective in bypassing antivirus and

endpoint detection and response systems. This makes it a prime candidate for attackers to

improve on and make lateral movement attacks in less distinguishable ways. This method will

be expanded upon in chapters III, IV, and V as the goal of this research is to invent a novel

method for detecting this ShadowMove attack.

Detecting Adversary using Windows Digital Artifacts

 In this paper, the Seng Pei Liew and Satoshi Ikeda propose a method for detecting

advanced persistent threat adversaries in a Windows environment using nothing but native

Windows artifacts (Pei Liew & Ikeda, 2019). The authors begin by outlining two key issues with

detecting persistent adversaries in a Windows environment. The first issue is that attackers use

benign file names or files to conduct their attacks to prevent signature detection and the second

is that there are disparate configurations within Windows environments and the lack of

conformity to a standard makes tracing paths difficult. To overcome these issues the authors,

propose a machine learning based approach that observes digital artifacts left in all Windows

systems. To do this, the authors also propose a new algorithm to learn the execution time of a

process from the shipmate (Pei Liew & Ikeda, 2019). Using the data gathered from the

Shimcache and the output of the machine learning algorithm, the authors propose an adversary

detection system that, given a period of time, will return a score representative of how malicious

the behavior taken during the given time-period was.

 The authors outline their approach to detecting APT’s within an environment. By

breaking down the attack pattern of APT’s to component parts, the authors outline the Windows

commands that are be run during an attack. Assuming a breach has occurred, the authors

outline commands typically run during the persistence, discovery, privilege escalation, lateral

35

movement, defense evasion, and exfiltration phases of an attack. Given some of the most

common commands used during an attack, the authors explain the digital artifacts that are

created by running the tools in the Master File Table, Shimcache, Prefetch, and Windows Event

Log during execution. The authors explain their methodology for tracing an attack using these

event artifacts and outline their algorithm for determining the execution duration of a file using

artifacts found in the Shimcache: a proxy between Windows versions that ensures backwards

compatibility of executables (Pei Liew & Ikeda, 2019).

 After explaining the details of the timing algorithm, the authors explain how their

machine-learning based scoring algorithm can aid in detecting malicious behavior in Windows

environments. Using inputs from the Shimcache, Prefetch and Windows Event Logs, the

machine learning algorithm computes the data and scores the timeframe accordingly. The

scoring module takes a list of commands commonly used by attackers to execute distinct

phases of an advanced persistent threat attack as outlined above (Pei Liew & Ikeda, 2019). The

algorithm used for training is a Random Forest algorithm which is a black-box method of

training. This means that the researchers know the data they put in, but the computations that

take place on the data inside the algorithm are unknown to researchers. They found that

implementing the model in this manner gave them a precision of 86.7% and a recall score of

75.6% (Pei Liew & Ikeda, 2019). The results are not fantastic, and researchers were upset that

certain applications like PowerShell were flagged as malicious even when other processes were

not spawned from the parent process.

 Part of the issue with the method is that the researchers are only focusing on a small

slice of application execution. By only focusing on a small number of applications, processes,

and indicators of compromise. Furthermore, researchers only supply the machine learning

algorithm a narrow slice of time and decide on malicious behaviors that took place during a

distinct amount of time. As a research piece, it is interesting to note how a machine-learning

36

based model with basic Windows events can have some success at detecting malicious

behavior in a Windows environment. However, universally applying these rules to a networked

environment would not give sufficient data to analysts looking to protect a production network.

The most helpful research conducted in this study is the use of default artifacts inherent in all

Windows systems to assist in the detection of malicious behavior in an environment and could

be used in numerous other approaches to reduce the need for specialized endpoint monitoring

systems to be installed on user workstations. What is important to note, however, about this

research is that the Windows operating system creates enough logs and artifacts to successfully

identify malicious behavior without the use of third-party applications. A similar methodology will

be employed in chapters III, IV, and V as this research attempts to detect ShadowMove.

Detecting Abuse of Domain Administrator privilege using Windows Event Log

 Fujimoto’s research team set out to compare methods for detecting the abuse of domain

administrator credentials proposed by other researchers. Since many detection methods are

interested in detecting specific CVE’s and attack methodologies like “Mimi Katz” or

“Kerberoasting”, the researchers are interested in combining the eclectic methodologies into a

central repository of detection methods that can be used to detect abuse of domain

administrator credentials into a single tool (Fujimoto et al., 2018).

 The researchers outline useful methods proposed by other researchers to detect abuse

of domain administrator credentials. A detection method proposed by Shingo Abe outlines using

Windows Event Logs to detect abnormal administrative access to resources by correlating

historical data with daily use of administrative credentials (Abe, 2016). The researchers include

research done by Shusei Tomonaga at JPCERT/CC into common commands executed by

attackers during an APT campaign (Tomonaga, 2016). This team, however, focused solely on

correlating Windows Event Log 4688—A New System Process Has Been Created—to detect

abuse of domain administrator privileges. They use research conducted by Junghoon Oh at

37

AhnLab to detect APT lateral movement using administrative shares to spread access (Oh,

2016.). The researchers also use the event log 5140—A network share object was accessed—

to determine if an administrative account has wrongfully accessed a network share: a common

tactic used by attackers to spread malware across the domain. Finally, the team includes

research done by Idan Plotnik and Andrey Dulkin to detect golden ticket creation by logging

Kerberos Service Ticket requests that have no prior Ticket-Granting-Ticket (TGT) associated

with them (Plotnik et al., 2017; Dulkin et al., 2017).

This research team takes all these known methodologies for detecting abuse of domain

administrator accounts and develop their own method with a high detection rate. Their method

focuses on watching the domain controller for the creation of golden tickets or credential theft

and does not detect abuse of all machines in the domain. This method, therefore, is not usable

to detect lateral movement wherein the attacker does not contact the domain controller for

escalated privileges: e.g., in the case of spear-phishing an escalated account.

What Fujimoto and the rest of the team proposes is a sophisticated signature detection

system that utilizes built-in Windows Command-Line-Interface (CLI) tools and known privilege

escalation methodologies to detect APT privilege escalation and Domain Administrator account

abuse in a Windows Active Directory environment. Their results are subpar as they have a high

rate of false negatives across all categories of detection. Furthermore, not detecting abuse of a

domain administrator account typically means that the attackers have compromised the entire

domain and quick and exact remediation needs to take place at once. While novel in its scope,

and thorough in its investigation of methodologies used to compromise domain administrator

accounts, different methodologies must be used to detect and prevent against privilege

escalation attacks in a more exact manner. The important artifact to take away from this

research is that only Windows event logs were used to detect malicious movement in a system.

It is possible to garner valuable information from intrinsic logging sources.

38

Summary

Whether proposing new methods for detection or presenting methods for preventing

known attacks like the MITRE Group, this literature review was designed to give the reader a

flavor of a wide swath of research that is ongoing in the field of lateral movement detection. It

covers new methodologies for improving detection rate, reducing false positives, and increasing

lateral movement defenses by using graphs and machine learning as well as new frameworks of

thought. Finally, by outlining ShadowMove and using Windows event logs and digital artifacts to

detect lateral movement, the concluding section of the literature review was designed to give the

reader a sturdy base of knowledge from which to draw when reading about the original

methodology and tactics utilized in this research to detect ShadowMove, a feat which has not yet

been completed.

39

Chapter III: Methodology

Introduction

Lateral movement is a well-documented strategy employed by attackers going after

enterprise systems. In recent years, defense and detection methods implemented by defenders

have gotten more sophisticated. Enterprise toolsets from companies like Stealthbits, Arctic Wolf,

Rapid 7, Palo Alto, and others have the capability and built-in parameters to detect traditional

lateral movement techniques like Kerberoasting, Pass the Hash, and Pass the Ticket. Likewise,

many of these toolsets also include anomaly detection capabilities that monitor user activity,

create a baseline for typical use, and alert when the user strays outside the normal boundaries

of daily activity. For traditional lateral movement techniques, these detection methods are more

than enough to determine whether a compromised user, or an attacker created user is

bypassing security protocol and moving abnormally through enterprise systems.

Once attackers gain a foothold during an attack, the traditional methods for expanding

influence within the network include remote service exploitation, tool transfer, session hijacking

exploiting remote services like SMB or RDP, replication through removable media, software

deployment tools, shared-content poisoning, or alternative authentication material usage like

pass-the-hash or pass-the-ticket.

Many of the toolkits and methods for dumping credentials or copying hashes like Mimi

Katz or LSASS dumps are detected by traditional antimalware companies. In many cases, an

inexperienced attacker using standard toolsets like Mimi Katz will be caught by traditional

endpoint detection since many of these programs are picked up and deleted based on signature

or behavior.

40

Design of the Study

Virtual Machine Setup

VM Configuration. The test environment was created in VMWare Workstation Pro on a

host machine running Windows 10 Pro. The virtual machine was given 8 Gigabytes of RAM, two

processor cores with two threads each giving it four logical processors, a 120 Gigabyte hard disk,

a network card using NAT, and two monitors using 3D acceleration. There was also a folder

shared between the host and the guest operating system to move files between systems for an

easier research experience.

Software Used to Build the Binaries. Windows 10 was installed in the virtual machine

and updated to version 10.0.18363 with all required and recommended patches applied. To

build the ShadowMove code for testing, Microsoft Visual Studio 2019 Community Edition—

version 16.9.2—was installed along with all the C, C#, and C++ packages for Windows

development.

Figure 1

Packages installed to build C, C#, and C++ code in Windows 10

Finally, the Windows Driver Development Kit (WDK) (Hudek et al., 2020) to access the

ntdll.lib and Ws32_32.Lib files for the ShadowMove build.

41

Software used for monitoring, diagnosis, and alerting. To monitor the software and

Dynamic Link Library (DLL) function calls at runtime the software API Monitor v2 was utilized

(“API Monitor - Spy and Display Win32 API Calls Made by Applications”, 2013). This program

monitors the application stack and detects which functions are called from a specific DLL during

a software’s runtime. To monitor Windows Event Logs generated at runtime, a free trial of

DataDog—a cloud-based SIEM tool that can handle a wide variety of logs—was used to

monitor, filter, and search the logs generated on the virtual machine (Datadog, 2019).

ShadowMove Essentials and Socket Duplication

A group of faculty and students from the University of Illinois Springfield, University of

North Carolina at Charlotte, and Louisiana State University developed an attack methodology

that utilizes Windows Dynamic Link Libraries and API functions to move laterally between

Windows systems without the need to steal credentials or generate new authenticated sessions.

The team named this stealthy movement technique ShadowMove.

The code functions by exploiting normally trusted connections between any two

networked Windows devices with running unencrypted connections like FTP, WinRM, and MS

SQL. The team released their research in August 2020. Typical signature and anomaly-based

malware detection software looks for custom executable code that either has patterns that are

known to be malicious or has a signature of a known malicious file. By using code that calls

internal Windows functions the team was able to bypass standard antivirus programs because

the operations done by the executable are standard functions that the Windows operating

system depends on for normal use. Likewise, by using trusted Windows dynamic link libraries, it

ensures that the attacker will be able to run the malware on any modern Windows system so

long as the libraries are updated sufficiently. Finally, when security analysts search for lateral

movement, one of the key giveaways in traditional methods is the creation of new authenticated

session using legitimate credentials, or the dumping/stealing of password hashes from Kerberos

42

or LSASS. Once an initial foothold is gained on the system by the attacker, no credentials need

be stolen from any location, nor do any new authenticated sessions need be created between

systems. Since the attack takes place on authentically generated sessions by the authorized

user and the ShadowMove code only latches onto established sessions, it makes it extremely

difficult for an analyst to discover the lateral movement when following traditional attack

patterns.

To understand how ShadowMove hijacks a typical socket duplication event in the

Windows operating system, we must first understand how a typical socket duplication event is

established by the system to share a socket with a remote program. First a local or host process

will call the WSASocket API from the WS2_32 DLL. This, in turn, calls NTCreateFile, creates a

new SOCKET_INFORMATION object, and calls NtDeviceIoControlFile which creates kernel

level information about the handle. Second, the host process will call WSADuplicateSocket from

the WS2_32 DLL to duplicate the socket and share it with the guest process.

WSADuplicateSocket will copy the data stored in handle 1 and create a copy called

handle 2. Finally, the guest process will call WSASocket to extract handle 2 and uses the

information contained therein to call NtDeviceIoControlFile to retrieve the same kernel level

information placed by the host program in step 1. Once this is complete, both handles share a

duplicated socket, and the host and guest process can communicate using the same socket.

ShadowMove, alternatively, interrupts this process by injecting itself into this workflow by

copying handle 1 from the host process into a new handle 2, and using the copied object to

connect to the socket in a similar fashion as a normal guest process would. However,

ShadowMove differentiates itself from the standard guest process as it uses the ntdll DLL for

querying system information and duplicating the system object.

ShadowMove, in its most basic form, takes place in five steps. First, it calls

NtQuerySystemInformation from the ntdll DLL to query system information and find a handle

43

that it can copy. When it finds a handle to copy, the program determines whether the object it is

attempting to copy is an ancillary function driver (AFD). Second, if the object it finds is an AFD

handle, ShadowMove calls NTDuplicateObject from the ntdll DLL and creates a copy of the

original handle. Third, ShadowMove queries the peer name passing the handle as a parameter.

The handle duplication is bypassed until a peer name is found matching the name in the handle.

This is to ensure that the connection that is hijacked is the one between the two desired peers.

Fourth, when the correct connection is discovered, ShadowMove calls WSADuplicateSocketW

from the WS2_32 DLL passing the copied handle as the parameter. This creates an expected

protocol structure that the kernel system on the host machine will expect. Finally, ShadowMove

calls the WSASocketW API from the WS2_32 DLL passing the WSAProtocol that was created

in the previous step as the parameter. This step opens a duplicated—or shared—socket with

the host machine and creates an injectable tunnel is wherein ShadowMove has the ability to

inject any data between the host and the guest without ever generating a new authenticated

session.

Design of the Study

The ShadowMove proof-of-concept code was provided to by Md Rabbi Alam and Dr.

Jinpeng Wei at the University of North Carolina at Charlotte. The proof-of-concept code comes

in three parts. The first is a TCP Echo Server application written in C#. It is a simple TCP Echo

Server that receives a string of text from a TCP Echo Client and returns the same text to the

Client as was received by the Server. The second portion is a TCP echo Client that sends a

message to a TCP Echo Server and receives the TCP echo reply from the server. The final

portion included with the package is the ShadowMove proof-of-concept code which is written in

C++. This proof-of-concept code works as described above, with the main caveat being that the

ntdll DLL and WS2_32 DLL are packaged into the C++ executable using the C++ linker

functionality in Visual Studio 2019, the ntdll.lib and the WS2_32.lib files found in the Windows

44

Driver Development Kit (WDDK) (Hudek et al., 2020). The fact that the dynamic link library files

are linked internally with the binary after the software is built makes auditing specific Windows

files significantly more difficult. After some basic troubleshooting, the ShadowMove code was

compiled on the research lab virtual machine and was able to successfully duplicate the handle

during runtime of the TCPEchoClient and TCPEchoServer.

To detect specific API calls from within an executable at runtime, a process called

hooking is required. One of the most well-documented and trusted free API hooking software

available is API Monitor. Using API Monitor I was able to monitor all API calls from the PoC.exe

ShadowMove code and find all instances of ShadowMove functioning as intended and

duplicating a process handle. This is a crucial step, because dynamic link libraries contain

numerous functions and determining exactly which function is called from the library is essential

in determining if ShadowMove took place or another benign process was accessing similar

libraries.

There are native options in the Windows operating system to monitor DLL files. The

Windows Security Auditing suite in conjunction with the Windows Event Viewer can give a

security analyst or systems administrator the ability to view access to specific dynamic link

libraries like WS2_32 or ntdll. However, the DLL files include numerous functions that the

Windows operating system needs to function. Therefore, monitoring the DLL file that contains

the functions used for ShadowMove and alerting when the DLL files are called in a specific

order is a way to give an alert that ShadowMove occurred, however, there is the possibility that

this will generate many false positives as the operating system uses these files for standard

procedures.

Therefore, one of the greatest difficulties in alerting on the possibility of a ShadowMove

taking place inside the operating system is monitoring the DLLs for specific function calls. In my

research, I did not find a Security Information and Event Management (SIEM) solution that had

45

the ability to monitor specific API calls from DLL files. Furthermore, since the C++ code links the

ntdll.lib and WS2_32.lib files with the executable, the DLL files used for ShadowMove are called

directly from the executable. This makes detection of the ShadowMove even more difficult.

However, there are Windows Security Events that are logged by the Operating System

that take place when ShadowMove occurs. Likewise, some events around the execution of

ShadowMove also generate Windows Security Events. Since monitoring the DLL files is not

always possible as they are linked, monitoring the Windows Events is the first line of defense in

detecting ShadowMove.

The methodology of this study includes compiling a functioning version of ShadowMove,

running the attack against the TCP Echo Server and TCP Echo Client running on the same

machine, monitoring the API Monitor Software to determine whether a successful ShadowMove

socket duplication occurred, customizing the Windows event logs so that pertinent data is sent

to the DataDog Cloud SIEM, monitoring the logs and creating customized views in DataDog to

remove unimportant log files, and exporting a comma separated values file so an analyst can

manually determine whether a ShadowMove may have occurred.

Data Collection and Tools and Techniques

 To collect pertinent data to detect and predict when ShadowMove may have occurred

some Windows 10 settings were adjusted to increase visibility into operating system events and

additional software was installed to collect the Windows Event Logs and parse the data once it

was collected.

 Because ShadowMove utilizes Windows DLLs as part of its core functionality, auditing

and monitoring the DLLs used by the malicious code is vital in determining when a

ShadowMove may have occurred. For this, the local security policy was adjusted in Windows 10

to log file access and process tracking events in the Windows Event Viewer. To activate the

necessary local security policies: first open the Local Security Policy application by search

46

“Local Security Policy” in the Windows 10 search box and open the program. In the navigation

menu on the left panel, expand “Local Policies” and open the “Audit Policy” subfolder. Within the

audit policy subfolder, there are two important auditing policies that must be activated. The first

is “Audit Object Access” which creates an event when a user accesses an item like a file, folder

registry key, printer, or other types of items (Simpson et al., 2017a). This policy is important

because it registers events related to the closing of object handles. The second policy that must

be activated in the local security policy is “Audit Process Tracking”. This security auditing policy

detects when a handle to an object is duplicated, and when processes are started or terminated

(Simpson et al., 2017b).

 ShadowMove utilizes ntdll.dll and WS2_32.dll and to duplicate and inject into non-

encrypted network transmissions. To detect software that is accessing these specific DLLs to

alert on potentially malicious handle duplication, auditing the access to the files is a function

built into the Windows operating system. To activate the auditing feature on these specific DLLs,

navigate to the files in the C:\Windows\System32\ folder, right click on the file to be monitored,

click properties, click on the “Security” tab, click on the button labeled “Advanced”, click on the

“Auditing” tab, click “Continue” to provide administrative privileges, click “Add”, click “Select a

principal”, type “Everyone” into the box, click “Check Spelling”, click “ok”, select the check box

next to the “Full Control” label, click “ok”, click “Apply”, click “ok”, and click “ok”. Once this set of

steps is completed, anytime the file is executed, read, written to, or changed, an audit log will be

sent to the Windows Event Viewer. This process should be repeated on ntdll.dll, mswsock.dll,

and WS2_32.dll. The logs will contain timestamps, the user that accessed the file, as well as the

process that called the file. If ShadowMove is utilizing the DLLs packaged with the Windows

operating system, then when it touches a file during execution, the access will be logged and

searchable by the SIEM tool, or in the Windows Event Viewer.

47

There is one final DLL worth mentioning that should be monitored for access. Since the

version of ShadowMove that was run linked the ntdll.lib file and the WS2_32.lib into the

executable using a linker function in Microsoft Visual Studio. The ntdll.dll and WS2_32.dll on the

operating system were not touched during the execution of ShadowMove because it had them

packaged into the executable. There is a file in the C:\Windows\SysWOW64\ folder called

wshqos.dll. This DLL is called whenever an executable looks to access a function from a linked

library. Since the more advanced version of ShadowMove uses linked libraries to better hide its

execution and intentions, monitoring the wshqos.dll for access will alert an administrator

whenever a file using linked library files is executed.

 To monitor DLL access and function calls during runtime to understand exactly how it

functions, a program called API Monitor was installed to hook the DLL calls and monitor which

APIs were accessed during the application runtime. Screenshots of the API Monitor software

detecting the four main stages of ShadowMove described in section IV.

 Finally, to aggregate logs and implement a better search function, DataDog Cloud SIEM

was utilized to collect all Windows Security and Application Logs from the Windows endpoint

using the DataDog agent. The agent installation is document on the website, but simply requires

the executable to be run by an administrator, the API key provided for the specific DataDog

instance is inserted during the installation, and the log handler is installed directly from the

DataDog Client Management Console using a few clicks. (Datadog, 2021a; Datadog, 2021b).

Summary

 Just as most of the application code required to run ShadowMove is built into the

Windows operating system, all the software required to detect ShadowMove is also included

with the Windows operating system. Log exports and searches can be done with the Windows

Event Viewer, however, for convenience, a free trial of DataDog Cloud SIEM was used as the

functionality and filtering capabilities of the SIEM far exceed those of the Windows Event

48

Viewer. Since this is a research project intent on discovering vulnerabilities in a malicious piece

of code, utilizing an API hooking tool like API Monitor was extremely beneficial to take a closer

look at API calls for research purposes, however, in a production environment, an API hooking

tool is not necessary for detecting ShadowMove.

49

Chapter IV: Data Presentation and Analysis

Introduction

To simulate a more realistic breach scenario, the virtual lab machine was left running

throughout the day with light web browsing and other tasks being completed on it to generate

logs. During this time, the TCPEchoClient.exe, TCPEchoServer.exe, and PoC.exe commands

were executed, and the socket was duplicated. During the attack, the APIs from PoC.exe were

hooked to prove that the socket duplication successfully occurred and to demonstrate that all

DLLs and library files were being called successfully. Windows 10 forwarded all Windows

Security logs to DataDog Cloud SIEM during this timeframe and a four-hour timeframe within

which the attack occurred was selected to investigate as this would be a realistic window within

which an analyst may need to search for the execution of potentially malicious software.

 This section will begin with an explanation as to why analysts must find meaningful

methods for narrowing the data collected from Windows systems to pertinent timeframes and

log types. Following will be a presentation of the data, an explanation of the logs collected over

a four-hour period, API calls of interest from the API Monitor software showing how

ShadowMove successfully executed and duplicated a handle, and the pertinent data gathered

from the Windows Security logs and how that data was filtered out of the other four hours of

data.

Data Presentation

Log File Size Reduction for Manual Inspection Simplification

As explained in chapter III, collecting logs, and forwarding them to a SIEM solution is

fairly straightforward, however, the number of logs generated by a sole source can be

astronomical. The logs were generated on a mostly idle virtual machine running very few

executables or services. If the time of the malicious executable execution is known, narrowing

the timeframe to a shorter period, or filtering out logs that are unneeded for detection is vital for

50

detection purposes. Most enterprise systems will have hundreds or thousands of endpoints

generating more logs than the virtual machine used for testing, so knowing the indicators of

compromise is vital in detecting a ShadowMove. Screenshot 4.1 demonstrates this by

displaying a four-hour period within which over 38,584 Security events were logged and sent to

the SIEM tool.

Figure 2

A screenshot from DataDog SIEM displaying the number of logs generated in a mostly idle four-

hour period. Before applying any filters there were 38,554 log files to parse

To narrow the scope of logs, filters were implemented on the DataDog SIEM to only

include the Windows Security Event ID’s that are related to ShadowMove. These event IDs are

4663 “An attempt was made to access an object”, 4688 “A new process was created”, 4689 “A

process has exited”, and 4690 “An attempt was made to duplicate a handle to an object”. This

filter is displayed in screenshot four. Furthermore, once the filter was applied, the number of

events listed was reduced to 3,238. Once the filter was applied to the target data, a comma

51

separated values file was exported and downloaded for filtering, searching, and manual

inspection using Microsoft Excel.

Figure 3

Screenshot taken from DataDog SIEM showing the number of filtered logs during a four-hour

period containing an instance of ShadowMove

52

Figure 4

Screenshot of DataDog SIEM Log View with the ShadowMove Hunting filter applied. Notice the

substantial reduction in log volume by applying a simple filter based on Event ID

API Monitor and Static Analysis of API Calls.

Manual inspection of the API Monitor output shows the ingenuity behind the

ShadowMove attack. Each stage of the attack as outlined in Section III is caught during the

execution of ShadowMove by API Monitor. This section contains screenshots of the API calls

made during runtime and shows that successful socket duplication occurs and demonstrates

that the packaged libraries are one of ShadowMove’s greatest strengths and its biggest

weakness. Something to note in screenshots four through seven is that all API calls are pulled

directly from PoC.exe, therefore Log ID 4663 will not trigger on ntdll.dll nor WS2_32.dll when

PoC.exe is executed.

 In Figure 5, the ShadowMove program (PoC.exe) is executing the first step of

ShadowMove. Using the ntdll.dll packaged in the ntdll.lib file, PoC.exe is calling the API

53

NtQuerySystemInformation to search for the AFD handle that it can inject into. On line 1028 the

injectable handle is found as noted by “Return Value: STATUS_SUCCESS”.

Figure 5

PoC.exe calls ntdll.dll from the linked library file to query system information to find an injectable

AFD handle

 In Figure 6, PoC.exe uses ntdll.dll to attempt and create a new object handle by

duplicating the object handle of the discovered AFD handle discovered in stage one. Again,

note that the API call is originating from PoC.exe and not ntdll.dll—this is due to the linked

library files.

54

Figure 6

PoC.exe calling NTDuplicateObject to duplicate the AFD handle to use in a socket connection

attempt

 Once ShadowMove successfully duplicates the object, PoC.exe calls

WSADuplicateSocketW from WS2_32.dll to create the special protocol structure for the final

stage of the attack.

55

Figure 7

PoC.exe calls WSADuplicateSocketW to create the special protocol structure that will be used

to connect to the socket in the final stage of ShadowMove

 Finally, once the special protocol structure is created in the third stage of the attack,

PoC.exe calls WSASocketW from WS2_32.dll and provides the information provided by

WSADuplicateSocketW to connect to the duplicated socket. The socket connection takes place

on line 4547 and the data send request can be seen on line 4557 while the reception of data

can be seen on line 4560.

56

Figure 8

PoC.exe calls WSADuplicateSocketW to duplicate the socket and connect

 When an attempt to duplicate a handle is made, a Windows Security event 4690 is

generated. These events are not rare, and within the four-hour window within which

ShadowMove took place, there were over 1,850 handle duplication events logged. If a

suspicious program name or location is found to be duplicating handles, then it may raise red

flags for an analyst, however, finding the process name in the sea of logs is extremely difficult.

Image nine displays the number of logs generated during the four-hour timeframe that are

relevant to the investigation.

57

Figure 9

A large number of handle duplication events takes place every hour on a Windows system

 The final screenshot displays an important log generated during ShadowMove. This log

is an auditing log for item access and is generated on C:\Windows\SysWOW64\wshqos.dll. This

DLL is responsible for loading library files from executables. This event, in my research, rarely

takes place and will be the key for finding an instance of ShadowMove taking place among the

numerous log files generated by a system.

Figure 10

Access to wshqos.dll is made to load library files into the ShadowMove process. This is one of

the few areas where ShadowMove directly interacts with the operating system

58

Data Analysis

 Because ShadowMove touches so little of the core operating system, handle duplication

events are so common, and DLLs used during the attack are innately trusted by Windows,

automated detection of the malicious software is difficult. In analyzing the data, I aim to propose

a method by which analysts can narrow down whether ShadowMove may have occurred.

Manual analysis of the API calls will always be necessary to prove beyond the shadow of a

doubt that ShadowMove occurred, however, this methodology that I propose will allow the

analyst to narrow down the list of suspect processes to a level where manual analysis is

possible.

 The method for analyzing the data is done in Microsoft Excel by manipulating the filter

options on the csv downloaded from DataDog Cloud SIEM. Since wshqos.dll is the one file on

the operating system that ShadowMove directly interacts with, the first filter is set on the

message column searching for any cells that contain the string wshqos.dll. This significantly

narrows the field as only eight cells contain the string wshqos.dll.

Figure 11

Setting the filter query to only list cells where the string wshqos.dll exists in the message column

 These log messages provide detailed information on the process name that called the

API from the wshqos.dll file. In both cases, the process name is PoC.exe, and the process id is

either 0x970 or 0x283c. The second step to manually analyzing whether a ShadowMove

occurred is to search the message column for the discovered process ids. Doing so returns 32

59

results and begins to build a process flow for the execution of both processes. An analyst, at

this point, would note that the process was created, attempted to duplicate objects and access

objects that are being audited, and then exit. This follows the operating procedure of

ShadowMove and upon closer inspection if the process name is unknown or it is running from a

strange directory, it is likely that an unwanted program is executing within the environment.

Figure 12

The ShadowMove Process ids are filtered, and an analyst is able to view most steps of the

ShadowMove process by filtering down Windows Event Logs

 Once the process name and location are discovered, an analyst should sandbox the

unknown application and determine its purpose and whether it is malicious.

Summary

 ShadowMove is a sophisticated piece of malware and due to its programming requires a

high level of manual analysis to determine what it is doing. An analyst can use the data

processing techniques outlined in this section to apply Windows auditing to specific DLLs,

collect the pertinent log files, filter the logs, and determine whether it is possible that a

ShadowMove has occurred. By filtering in this manner, an analyst would be able to find file

names and process ids to further investigate, however, without statically or dynamically

60

analyzing the code, it would be impossible to determine with complete certainty that

ShadowMove occurred.

61

Chapter V: Results, Conclusion, and Recommendations

Introduction

In this paper, I introduced traditional methods for lateral movement in Windows systems

as well as well-known defenses for protecting systems from malicious lateral movement.

Likewise, I explain why lateral movement is such a persistent issue and postulate on the fact

that the most secure systems are non-networked systems which is the only surefire way to stop

lateral movement. However, this solution will also significantly impede standard business

practices. I took the time to research new methods proposed for lateral movement detection

including graph-based and machine learning-based models. Finally, I presented ShadowMove,

how it functions, and a new method for detecting ShadowMove which has not been detectable

to my knowledge.

Results

 If an analyst is armed with the knowledge of socket duplication and how it can be used

to duplicate network handles and inject anything into preexisting TCP streams, the method I

propose will lead an analyst to an executable file for manual or dynamic code analysis.

 I confirmed that ShadowMove is a legitimate threat and is excellent at evading detection

as it hardly touches the host operating system. I was able to monitor API calls during runtime,

confirm that socket duplication is feasible and possible without setting off many alerts, and

determine a method for detecting ShadowMove as it touches the host operating system.

Likewise, I was able to develop a manual filtering process using nothing but Windows Auditing

and Event Logs to find a process name and process ID that may be conducting a ShadowMove.

While not the most elegant solution, it functions as intended and will detect ShadowMove if the

analyst knows what to look for.

62

Conclusion

 The key to ensuring success in detecting a ShadowMove lies in auditing the correct files.

Administrators should ensure they are monitoring for program access to specific DLLs related to

socket duplication, library loading, and network communications. While these may be noisy and

generate numerous logs, if a ShadowMove is thought to be present in the environment, the log

generation may be the lynchpin in a system that either detects this novel lateral movement or

does not.

Future Work

Creating a custom alert based on the wshqos.dll file access and subsequent handle

manipulation events generated by the same host process would be a method for automating

some of the detection process. This is a ruleset that I plan to implement in a SIEM solution in

the future. If the DLL access closely mirrors the access outlined in this research, it is likely that

some method of ShadowMove is being commit.

Another area I did not focus on in this research is comparing the log generation with

numerous other programs to determine how many false positives may exist in an enterprise

level system. Since my research lab was only a single virtual machine running extraordinarily

little software, it is possible that this method may generate more false positives than I anticipate.

I would like to spend more time studying in more feature rich environments to determine

whether my method will function as intended or generate multiple false positives.

One of the major drawbacks of detecting ShadowMove is that it requires the analyst to

determine exactly which API calls were made from specific DLLs. Since the attack uses specific

functions from specific DLLs, the attack has a unique signature. However, since the signature is

also based on standard Windows protocols that are used daily, differentiating a malicious

ShadowMove from benign processes can be extremely tedious and difficult. Once ShadowMove

63

is suspected, an analyst should manually observe the file during runtime to determine whether

socket duplication took place using specific function calls from dynamic link libraries.

Solutions to investigate API calls exist but are typically manual processes. As malware

becomes more sophisticated and attackers increasingly are using built-in operating system

functions to execute attacks and bypass traditional Antivirus solutions, I believe it will be

important in the future to always monitor specific function calls from dynamic link libraries.

Traditional SIEM tools can monitor logs, but a solution that could hook DLL calls at runtime and

log API calls from those DLLs would speed up analysis of potentially malicious software that is

currently not alerted on. Furthermore, incorporating some version of deep-process analysis with

a machine learning architecture like the one proposed by R. Holt and his team could lead to

significantly more secure systems (Holt et al., 2019).

64

References

Abe, S. (2016). Detecting Lateral Movement in APTs~Analysis Approach on Windows Event

Logs~. JPCERT/CC.

API Monitor - Spy and display Win32 API calls made by applications. (2013). Apimonitor.com.

https://apimonitor.com/

Bai, T., Bian, H., Abou Daya, A., Salahuddin, M., Limam, N., & Boutaba, R. (2019). A Machine

Learning Approach for RDP-based Lateral Movement Detection. 242–245.

Bohara, A., Noureddine, M., Fawaz, A., & Sanders, W. (2017). An Unsupervised Multi-Detector

Approach for Identifying Malicious Lateral Movement. 2017 IEEE 36th Symposium on

Reliable Distributed Systems.

Chandrasekhar, A. M., & Raghuveer, K. (2013). Intrusion Detection Technique by using K-

means, Fuzzy Neural Network and SVM classifiers.

Chen, H., & Jiang, L. (2019). Efficient GAN-based method for cyber-intrusion detection. Cs.LG.

CVE-2017-0143: The SMBv1 server in Microsoft Windows Vista SP2; Windows Server 2008

SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows. (n.d.). Www.cvedetails.com.

Retrieved March 31, 2021, from https://www.cvedetails.com/cve/CVE-2017-0143

Datadog. (2019). Modern monitoring & analytics | Datadog. Modern Monitoring & Analytics.

https://www.datadoghq.com/

Datadog. (2021a). Agent. Datadog Infrastructure and Application Monitoring.

https://docs.datadoghq.com/agent

Datadog. (2021b). Getting Started with Datadog. Datadog Infrastructure and Application

Monitoring. https://docs.datadoghq.com/integrations/active_directory/

Dulkin, A., Sade, Y., Benedict, O., Stanford, J., & Lazarovitz, L. (2017). SYSTEMS AND

METHODS FOR DETECTING AND REACTING TO MALICIOUS ACTIVITY IN

COMPUTER NETWORKS (United States Patent and Trademark Office. Patent).

https://apimonitor.com/
https://www.cvedetails.com/cve/CVE-2017-0143
https://www.datadoghq.com/
https://docs.datadoghq.com/agent
https://docs.datadoghq.com/integrations/active_directory/

65

https://patentimages.storage.googleapis.com/df/ee/0c/f6ea400c88751f/US20170257376

A1.pdf

Fujimoto, M., Matsuda, W., & Mitsunaga, T. (2018). Detecting Abuse of Domain Administrator

privilege using Windows Event Logs. 2018 IEEE Conference on Applications,

Information and Network Security (AINS).

Gogoi, P., Bhattacharyya, D. K., Borah, B., & Kalita, J. K. (2013). MLH-IDS: A Multi-Level Hybrid

Intrusion Detection Method. The Computer Journal, 57(4), 602–

623.https://doi.org/10.1093/comjnl/bxt044

Holt, R., Aubrey, S., DeVille, A., Haight, W., Gary, T., & Wang, Q. (2019). Deep Autoencoder

Neural Networks for Detecting Lateral Movement in Computer Networks. International

Conference on Artificial Intelligence.

Hudek, T., Varadharajan, K., Viviano, A., Graf, E., Cymoki, Komsorg, Prashantchahar, Resnik,

S., Jacobs, M., Iudezgit, & MacMichael, D. (2020, August 17). Download the Windows

Driver Kit (WDK) - Windows drivers. Docs.microsoft.com. https://docs.microsoft.com/en-

us/windows-hardware/drivers/download-the-wdk

Kaiafas, G., Varisteas, G., Lagraa, S., State, R., Nguyen, C. D., Ries, T., & Ourdane, M. (2018).

Detecting Malicious Authentication Events Trustfully. IEEE. IEEE.

Lateral Movement, Tactic TA0008 - Enterprise | MITRE ATT&CK®. (2018, October 17).

Attack.mitre.org. https://attack.mitre.org/tactics/TA0008/

Liang, H., Rugerio, D., Chen, L., & Xu, S. (2020, September 22). Dynamic link library (DLL) -

Windows Client. Docs.microsoft.com. https://docs.microsoft.com/en-

us/troubleshoot/windows-client/deployment/dynamic-link-library

Liu, H., & Lang, B. (2019). Machine Learning and Deep Learning Methods for Intrusion

Detection Systems: A Survey. Applied Sciences, 9(20),4396.

https://doi.org/10.3390/app9204396

https://patentimages.storage.googleapis.com/df/ee/0c/f6ea400c88751f/US20170257376A1.pdf
https://patentimages.storage.googleapis.com/df/ee/0c/f6ea400c88751f/US20170257376A1.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://attack.mitre.org/tactics/TA0008/
https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/dynamic-link-library
https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/dynamic-link-library

66

Liu, Q., Stokes, J., Mead, R., Burrell, T., Hellen, I., Lambert, J., Marochko, A., & Cui, W. (2018).

Latte: Large-Scale Lateral Movement Detection. Milcom 2018 Track 3 - Cyber Security

and Trusted Computing, IEEE.

Lynch, V. (2017, May 26). Cost of 2013 Target Data Breach Nears $300 Million. Hashed out by

the SSL StoreTM. https://www.thesslstore.com/blog/2013-target-data-breach-settled/

Marshall, D., Coulter, D., Bazan, N., & Graff, E. (2018, June 28). Driver Development Tools -

Windows drivers. Docs.microsoft.com. https://docs.microsoft.com/en-us/windows-

hardware/drivers/devtest

Matrix - Enterprise | MITRE ATT&CK®. (2020, October 27). Attack.mitre.org; MITRE.

https://attack.mitre.org/matrices/enterprise/windows/

Niakanlahiji, A., Wei, J., Alam, R., Wang, Q., & Chu, B.-T. (2020). ShadowMove: A Stealthy

Lateral Movement Strategy. The 29th USENIX Security Symposium.

Oh, J. (2016.). A Forensic Analysis of APT Lateral Movement in Windows Environment.

AhnLab.

Pedemakar, P. (2020, February 2). What is SMB? | How it Works | Features & authentication

protocol of SMB. EDUCBA. https://www.educba.com/what-is-smb/

Pei Liew, S., & Ikeda, S. (2019). Detecting Adversary using Windows Digital Artifacts. 2019

IEEE International Conference on Big Data (Big Data). 2019 IEEE International

Conference on Big Data (Big Data).

Pektaş, A., & Basaranoglu, E. (2017). Practical Approach for Securing Windows Environment:

Attack Vectors and Countermeasures. SSRN Electronic Journal, 9(6).

https://doi.org/10.2139/ssrn.3649907

https://www.thesslstore.com/blog/2013-target-data-breach-settled/
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest
https://attack.mitre.org/matrices/enterprise/windows/
https://www.educba.com/what-is-smb/
file:///C:/Users/kyler/Desktop/Paper-Fixes/10.2139/ssrn.3649907

67

Plotnik, I., Be’ery, T. A., Dolinsky, M., Plotnik, O., Messerman, G., & Krigsman, S. (2017).

System, method, and process for detecting advanced and targeted attacks with the

recoupling of Kerberos authentication and authorization (The United States Patent and

Trademark Office Patent).

https://patentimages.storage.googleapis.com/63/64/de/37cfff6ee6daf8/US9729538.pdf

Powell, B. A. (2019). The epidemiology of lateral movement: exposures and countermeasures

with network contagion models. Journal of Cyber Security Technology, 1–39.

https://doi.org/10.1080/23742917.2019.1627702

Schofield, M., Coulter, D., & Satran, M. (2018, May 31). Remote Desktop Protocol - Win32

apps. Microsoft.com. https://docs.microsoft.com/en-us/windows/win32/termserv/remote-

desktop-protocol

Shelley, S. (2019, June 27). Phishing Number One Cause of Data Breaches: Lessons from

Verizon DBIR. Info.phishlabs.com. https://info.phishlabs.com/blog/phishing-number-1-

data-breaches-lessons-verizon

Siadati, H., & Memon, N. (2017). Detecting Structurally Anomalous Logins Within Enterprise

Networks. Insights from Log(In)S, 1273–1284. CCS’17.

Sidati, H., Saket, B., & Memon, N. (2016). Detecting Malicious Logins in Enterprise Networks

Using Visualization. IEEE. IEEE.

Simpson, D., Yoshioka, H., Avedon, M. H., Hall, J., Gorzelany, A. M., & Bischel, A. (2017a, April

19). Audit object access (Windows 10) - Windows security. Docs.microsoft.com.

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/basic-audit-

object-access

https://patentimages.storage.googleapis.com/63/64/de/37cfff6ee6daf8/US9729538.pdf
file:///C:/Users/kyler/Desktop/Paper-Fixes/10.1080/23742917.2019.1627702
https://docs.microsoft.com/en-us/windows/win32/termserv/remote-desktop-protocol
https://docs.microsoft.com/en-us/windows/win32/termserv/remote-desktop-protocol
https://info.phishlabs.com/blog/phishing-number-1-data-breaches-lessons-verizon
https://info.phishlabs.com/blog/phishing-number-1-data-breaches-lessons-verizon
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/basic-audit-object-access
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/basic-audit-object-access

68

Simpson, D., Onur, Hall, J., Gorzelany, A. M., & Schonning, N. (2017b, April 19). Audit process

tracking (Windows 10) - Windows security. Docs.microsoft.com.

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/basic-audit-

process-tracking

Tomonaga, S. (2016, January 26). Windows Commands Abused by Attackers. JPCERT/CC

Eyes; JPCERT/CC. https://blogs.jpcert.or.jp/en/2016/01/windows-commands-abused-by-

attackers.html

Ussath, M., Jaeger, D., Cheng, F., Meinel, C., & Institute, H. P. (2016). Advanced Persistent

Threats: Behind the Scenes. 2016 Annual Conference on Information Science and

Systems (CISS). 2016 Annual Conference on Information Science and Systems (CISS).

Verizon. (2020). 2020 Data Breach Investigation Report. Verizon.

https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-

report.pdf?mkt_tok=eyJpIjoiTlRjNE1ETTBZamN3WVRZMSIsInQiOiI4TEFaVXRHWm1k

NmVhYnUrSkNCem90cjlKdnZURmI5QTM0N3c3c1RZUE5hcGRtbHhuakJkWFlzeWtjY1

hqXC9wOVo1NXZEYkxoSENvWktuMmxEMTRKRlljNiswbmxNZWF1SmxVTFc4eEtsa1

RQNTRnWEpkRVBpN05JQmpIQVB6bEYifQ%3D%3D

Weiner, R. (2018, September 21). Hacker linked to Target data breach gets 14 years in prison.

The Washington Post. https://www.washingtonpost.com/local/public-safety/hacker-

linked-to-target-data-breach-gets-14-years-in-prison/2018/09/21/839fd6b0-bd17-11e8-

b7d2-0773aa1e33da_story.html

Yu, Y., Long, J., & Cai, Z. (2017). Network Intrusion Detection through Stacking Dilated

Convolutional Auto encoders. Security and Communication Networks, 2017, 1–

10.https://doi.org/10.1155/2017/4184196

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/basic-audit-process-tracking
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/basic-audit-process-tracking
https://blogs.jpcert.or.jp/en/2016/01/windows-commands-abused-by-attackers.html
https://blogs.jpcert.or.jp/en/2016/01/windows-commands-abused-by-attackers.html
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf?mkt_tok=eyJpIjoiTlRjNE1ETTBZamN3WVRZMSIsInQiOiI4TEFaVXRHWm1kNmVhYnUrSkNCem90cjlKdnZURmI5QTM0N3c3c1RZUE5hcGRtbHhuakJkWFlzeWtjY1hqXC9wOVo1NXZEYkxoSENvWktuMmxEMTRKRlljNiswbmxNZWF1SmxVTFc4eEtsa1RQNTRnWEpkRVBpN05JQmpIQVB6bEYifQ%3D%3D
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf?mkt_tok=eyJpIjoiTlRjNE1ETTBZamN3WVRZMSIsInQiOiI4TEFaVXRHWm1kNmVhYnUrSkNCem90cjlKdnZURmI5QTM0N3c3c1RZUE5hcGRtbHhuakJkWFlzeWtjY1hqXC9wOVo1NXZEYkxoSENvWktuMmxEMTRKRlljNiswbmxNZWF1SmxVTFc4eEtsa1RQNTRnWEpkRVBpN05JQmpIQVB6bEYifQ%3D%3D
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf?mkt_tok=eyJpIjoiTlRjNE1ETTBZamN3WVRZMSIsInQiOiI4TEFaVXRHWm1kNmVhYnUrSkNCem90cjlKdnZURmI5QTM0N3c3c1RZUE5hcGRtbHhuakJkWFlzeWtjY1hqXC9wOVo1NXZEYkxoSENvWktuMmxEMTRKRlljNiswbmxNZWF1SmxVTFc4eEtsa1RQNTRnWEpkRVBpN05JQmpIQVB6bEYifQ%3D%3D
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf?mkt_tok=eyJpIjoiTlRjNE1ETTBZamN3WVRZMSIsInQiOiI4TEFaVXRHWm1kNmVhYnUrSkNCem90cjlKdnZURmI5QTM0N3c3c1RZUE5hcGRtbHhuakJkWFlzeWtjY1hqXC9wOVo1NXZEYkxoSENvWktuMmxEMTRKRlljNiswbmxNZWF1SmxVTFc4eEtsa1RQNTRnWEpkRVBpN05JQmpIQVB6bEYifQ%3D%3D
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf?mkt_tok=eyJpIjoiTlRjNE1ETTBZamN3WVRZMSIsInQiOiI4TEFaVXRHWm1kNmVhYnUrSkNCem90cjlKdnZURmI5QTM0N3c3c1RZUE5hcGRtbHhuakJkWFlzeWtjY1hqXC9wOVo1NXZEYkxoSENvWktuMmxEMTRKRlljNiswbmxNZWF1SmxVTFc4eEtsa1RQNTRnWEpkRVBpN05JQmpIQVB6bEYifQ%3D%3D
https://www.washingtonpost.com/local/public-safety/hacker-linked-to-target-data-breach-gets-14-years-in-prison/2018/09/21/839fd6b0-bd17-11e8-b7d2-0773aa1e33da_story.html
https://www.washingtonpost.com/local/public-safety/hacker-linked-to-target-data-breach-gets-14-years-in-prison/2018/09/21/839fd6b0-bd17-11e8-b7d2-0773aa1e33da_story.html
https://www.washingtonpost.com/local/public-safety/hacker-linked-to-target-data-breach-gets-14-years-in-prison/2018/09/21/839fd6b0-bd17-11e8-b7d2-0773aa1e33da_story.html

69

Appendix A

(Ussath, Martin, et al. “Advanced Persistent Threats: Behind the Scenes.” 2016 Annual

Conference on Information Science and Systems (CISS), Page 4, IEEE, 2016.)

70

Appendix B

(MITRE ATT&CK Framework Recommended Remediations for Common Lateral Movement Attack Methods.)

	Lateral Movement in Windows Systems and Detecting the Undetected ShadowMove
	Recommended Citation

	tmp.1622072514.pdf.OoRzH

