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Abstract 

Lateral Movement is a pervasive threat that exists because modern networked systems that 
provide access to multiple users are far more efficient than their non-networked counterparts. It 
is a well-known attack methodology with extensive research completed into preventing lateral 
movement in enterprise systems. However, attackers are using more sophisticated methods to 
move laterally that bypass typical detection systems. This research comprehensively reviews 
the problems in lateral movement detection and outlines common defenses to protect modern 
systems from lateral movement attacks. A literature review is conducted, outlining new 
techniques for automatic detection of malicious lateral movement, explaining common attack 
methods utilized by Advanced Persistent Threats, and components built into the Windows 
operating system that can assist with discovering malicious lateral movement. Finally, a novel 
method for moving laterally is introduced and studied, and an original method for detecting this 
method of lateral movement is proposed.  
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Chapter I: Introduction 

Introduction 

Lateral movement is a technique outlined in the MITRE ATT&CK framework and is a 

major problem in enterprise networks during cyber-attacks (Matrix - Enterprise | MITRE 

ATT&CK®, 2020). Lateral movement takes place after attackers gain a foothold in a network. 

Attackers use a combination of built-in programs, malware, remote procedure calls, and user-

agent manipulation to move between workstations and servers to attempt to move closer to the 

target system containing the data they wish to manipulate for financial benefit.  

Many researchers focus on earlier phases of the attack chain because once lateral 

movement has begun, the attackers have already breached the perimeter and it becomes 

extremely difficult to contain the damage. Phishing, however, plays a key role in explaining why 

detecting and preventing lateral movement is important. According to phishlabs.com and the 

2019 DBIR by Verizon, Phishing attacks were a key component in 32% of all successful data 

breaches (Shelley, 2019; Verizon, 2020). Typically, when a phishing attack is successful, there 

is a loss in confidentiality of the user account and password, or malware is downloaded into the 

network giving attackers remote access to the Windows environment. A successful phish can 

bypass multiple steps on the ATT&CK framework (Matrix - Enterprise | MITRE ATT&CK®, 

2020) if a high-level administrator reveals their username and password information. Likewise, 

even compromising the integrity of a standard user could bypass a few steps on the ATT&CK 

framework and allow access to attackers to systems allowing them to build persistence within 

the network from which to launch privilege escalation attacks against internal vulnerabilities. 

Since users are typically one of the weakest links in network security and a successful 

phish can bypass numerous defensive measures, research into detecting and preventing lateral 

movement is important in the field of cyber-security and threat intelligence. Lateral movement 

has been difficult to detect in the past since the ability to move laterally between systems is a 
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key component in networked Windows environments. Many technical users need access to 

multiple systems throughout the day and protocols like remote desktop protocol (RDP) and SSH 

are important business tools to help companies achieve their goals. However, the same tools 

and methods that users need also allow attackers to move between computers and get into 

critical systems from which they can exfiltrate their target data.  

A key example of how lateral movement is an issue for businesses took place in 2013 

when Target experienced one of the largest data breaches of the decade. Target contracted an 

HVAC company to run HVAC units that could be remote controlled to save on heating and 

cooling costs during off-hours. These HVAC systems had remote capabilities so managers 

could adjust store temperatures and control costs. The attacker’s first point-of-entry into Target’s 

computer systems was through weak security protocols on these remote HVAC systems. 

Attackers then used lateral movement techniques to move into the point-of-sale terminal 

systems and exfiltrate nearly 40 million customer’s credit card information which cost Target 

nearly $300 million (Lynch, 2017; Weiner, 2018). 

Problem Statement 

 Lateral movement is a pervasive threat during cyber-attacks and often closely resembles 

legitimate traffic. Attackers take advantage of the difficult nature of detection to move laterally 

through systems unnoticed. Modern detection currently relies on tried-and-true methods that 

detect standard lateral movement techniques, but new attack vectors are being developed and 

modern systems need a refresh to keep up with novel attack patterns. 

Nature and Significance of the Problem   

Lateral Movement is a major problem in security breaches. 

 As previously stated, lateral movement is executed during almost every cyber-attack. In 

a large production environment, it is extremely improbable that a server hosting sensitive data 

like credit card information, medical records, or banking information would be open to the public 
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internet. Therefore, if attackers want access to the sensitive information, the initial point-of-

compromise will be any public-facing machine they can find. Once attackers gain access to a 

machine, they will use the tools at their disposal to move from system-to-system until they get to 

the data, they are attempting to exfiltrate. Since lateral movement takes place in every large 

data breach, it is an important problem to study. Some researchers have created research 

papers outlining the nature of the problem and exposing the pervasiveness of the threat (Powell, 

2019). 

Lateral Movement is Preventable: 

 Lateral movement is entirely preventable. By creating a series of systems that have no 

interconnectivity by locking down firewall rules and disabling protocols, lateral movement 

attacks would be impossible to execute. However, preventing attackers from moving laterally 

also prevents legitimate users from moving laterally. Networked computers, networked systems, 

and a series of machines working in tandem with shared access makes a business more 

profitable and efficient. It is understood that a computer connected to the internet is vastly 

superior in its capabilities than a computer without an internet connection. Likewise, in business 

environments, a non-networked workstation is going to be significantly less powerful and 

productive than a workstation connected to the business network with access to all the business 

data.  

 Due to the complexity of business systems in a networked world, shutting down methods 

to move laterally is impossible. Businesses rely on the use of networked machines and servers 

to carry out business goals. MITRE supplies a list of controls that can be used to prevent some 

of the main types of lateral movement techniques. When implementing controls there is a 

balance between system usability and security. Administrators must decide where this balance 

is between secure and useful.  
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Since networked systems are the key to many business practices, differentiating 

between normal user movement through a networked system and malicious movement in an 

enterprise network is extremely important in supporting the security of data systems. Since 

remote access to networked computers is vital to business function, detection and prevention of 

unauthorized access are as important as the business functions themselves.  

Lateral Movement is difficult to detect: 

Attackers use numerous methods for moving laterally through networks (Lateral 

Movement, Tactic TA0008 - Enterprise | MITRE ATT&CK®, 2018). Many of these methods 

require the attackers to capture password hashes and user credentials to move onto the next 

system. When attackers move in this way, it simply appears as though a named user is moving 

from one system to the next. This, in turn, means that attackers typically masquerade as many 

different users during a campaign and all the lateral movement is masked to appear as though 

authenticated and authorized users are conducting legitimate business. There are indicators of 

lateral movement that can show that illegitimate lateral movement is taking place rather than 

authorized remote work. Researchers have zeroed in on some of these digital artifacts created 

during a malicious lateral movement campaign and have designed their methodologies for 

detection around these slight differences.  

Objective of the Study 

The goal of the study is to supply a broad overview of lateral movement techniques, 

defenses. Online sources and libraries like MITRE have troves of information concerning the 

practical application of lateral movement prevention as well as the methods protected against. 

Second, a literature review will be provided covering proposed methods for improved detection 

of lateral movement in enterprise systems. Finally, this study will demonstrate a novel method 

proposed in one of the research papers, demonstrate how it functions to bypass detection, and 
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create a detection method to detect this stealthy lateral movement—a feat which has not yet 

been completed.  

Study Questions/Hypotheses 

Traffic Differentiation 

 With standard attack methodologies, how can an analyst differentiate between legitimate 

and non-legitimate traffic when legitimate traffic looks just like malicious traffic? 

Network Complexity 

 With the increase in network complexity and ever-increasing scope of networks, what 

sort of defense measures have been proposed to assist analysts with detecting and preventing 

malicious traffic? 

Novel Techniques 

 With the increasing complexity in detection evasion employed by attackers, is it possible 

to detect novel lateral movement techniques that have not yet been detected yet?  

Limitations of the Study 

 Since lateral movement is a well-known and well-documented attack methodology, there 

is a significant amount of documentation outlining the methods and defenses found in research 

papers, blogs, and software vendor websites. However, one of the key features of lateral 

movement that makes it so difficult to detect is that for every individual malicious authentication 

that indicates malicious lateral movement, there are likely thousands of non-malicious 

authentications that indicate normal network traffic. Therefore, the process of log management 

and filtering out millions of unimportant events is as important a feature of lateral movement 

detection as is knowing the threat vectors available to attackers. Since this research was not 

conducted in an enterprise environment and simulating such an environment is costly, this 

element of the research was simulated to a small extent and would benefit from being run in an 

enterprise environment to prove its efficacy in production environments.  



13 
 
Definition of Terms 

• Dynamic Link Library: A DLL is a library that contains code and data that can be used 

by more than one program at the same time (Deland-Han, 2020). 

• Server Message Block: Server Message Block is a network communication transfer 

protocol to provide shared access to files, printers, ports between the networks 

(Pedemakar, 2020). 

• Remote Desktop Protocol: The Microsoft Remote Desktop Protocol (RDP) provides 

remote display and input capabilities over network connections for Windows-based 

applications running on a server. RDP is designed to support different types of network 

topologies and multiple LAN protocols (Schofield et al., 2018). 

• Windows Driver Development Kit: The Windows Driver Kit (WDK) provides a set of 

tools that you can use to develop, analyze, build, install, and test your driver (Marshall et 

al., 2018). 

• ShadowMove: ShadowMove is a modern stealthy lateral movement technique designed 

by students and faculty at the University of Illinois at Springfield, The University of North 

Carolina at Charlotte, and Louisiana State University. The code utilizes dynamic link 

libraries to execute lateral movement without being detected by traditional antivirus and 

without creating new authenticated sessions. The proof-of-concept code provided for this 

research was built as PoC.exe and this executable name will be used synonymously 

with ShadowMove throughout the remainder of the research paper.  

Summary 

 Lateral movement is a major problem that cannot be completely solved without vastly 

reducing business functionality. Methods used by attackers to move laterally are well 

documented and prevention methods are readily available and accessible. However, lateral 
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movement is also extremely difficult to detect as it typically appears as legitimate user 

authentications. The objective of this study is to provide a literature review on research that 

outlines methods for differentiating between legitimate and malicious movement between 

computer systems, to highlight methods that have been proposed to prevent malicious lateral 

movement methodologies as well as the methodologies these prevention techniques aim to 

solve, and finally, to study a novel intrusion detection method and provide an original solution to 

detecting the method.  
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Chapter II: Background and Review of Literature 

Introduction 

 The purpose of this literature review is to provide the reader with a deeper 

understanding of the work conducted in the field of lateral movement detection attempting to 

solve some of the major problems that exist in differentiating malicious traffic from regular traffic. 

This chapter will be broken up into four sections; the first, another short outline of the nature of 

the problem, second, a review of literature related to the problem, third, a review of literature 

related to the methodology, and finally, a summary of the research done in preparation for the 

original research.  

Background Related to the Problem 

 When approaching the problem of lateral movement, there are two main questions that 

are posited; how do we differentiate between malicious and benign traffic, and how do we stop 

malicious lateral movement? Differentiation and prevention of known techniques are the two 

areas the background portion of this literature review focus on. Since methods for lateral 

movement are well known and documented, this literature review begins with a review of the 

MITRE ATT&CK Framework. An overview of each method used for malicious lateral movement 

is covered as well as proposed defenses. A diagram outlining common tactics to prevent lateral 

movement is provided in Appendix A for engineers looking for easy solutions to cover the most 

attack methods. A review of literature proposing new types of detection for more precise 

differentiation and remediation will be provided following the MITRE review.  

Literature Related to the Problem 

MITRE ATT&CK Framework TA008 -- Lateral Movement 

 MITRE outlines numerous attack methodologies for lateral movement in their ATT&CK 

framework. In this section all methods described and their recommended mitigation methods for 

fixing the vulnerabilities will be discussed. The purpose for this section is to highlight common 
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methodologies employed by attackers when moving through a Windows environment. The 

methodologies covered by MITRE are common exploits with well-known mitigations. In writing 

this section, this research aims to highlight the fact that while extremely common in cyber-

attacks, common mitigations using built-in protocols exist for every modern-day security 

practitioner.  

Exploitation of Remote Services. Attackers use the exploitation of remote services to 

gain an initial foothold in the network but can also be used once inside the network to move 

between systems. A common example of remote service exploitation is outlined in CVE-2017-

0143 or “Eternal Blue”. Eternal Blue is a vulnerability that was known by the NSA and released 

to the public once the NSA discovered that attackers were using the exploit maliciously in other 

environments around the world. Eternal blue uses a vulnerability found inside Windows Server 

Message Block (SMB) and allows for a remote attacker with no credentials to gain SYSTEM 

level privileges on the target machine. (“CVE-2017-0143: The SMBv1 Server in Microsoft 

Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; 

Windows”, 2017). 

 Common mitigation techniques outlined for this type of attack include sandboxing 

applications to discover vulnerabilities, uninstalling unneeded or unused services from all 

systems, installing exploit protection software that can stop an exploit when discovered, 

implementing a strong network segmentation policy, minimizing the permissions and access of 

all accounts through a privileged access management project, improving employee knowledge 

of threats and attacks through training, update all software to the latest and most secure 

versions, and frequently scanning the network for vulnerabilities with updated databases to 

ensure all vulnerabilities are patched as they become known.  

Internal Spearphishing. Internal spearphishing is when an attacker compromises an 

internal email address and uses it to gain the trust of other internal users in order to trick them 
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into sharing passwords or other sensitive data. Attackers may create phishing campaigns with 

credential harvester pages or phish for information by emailing colleagues using a trusted 

address to gain information.  

 Mitigating internal spearphishing attacks is extremely difficult as an initial breach has 

already occurred, and all attack traffic looks like standard email traffic. Employee awareness 

programs and employee training will help reveal internal spearphishing campaigns, but fully 

mitigating them is impossible without interrupting business systems.  

Lateral Tool Transfer. Once inside a system, attackers will transfer tools from one 

system to another by exploiting administrative accounts, open SMB file servers, network drives, 

or removeable media. By transferring attack tools to other systems, attackers can connect to 

and create a backdoor on whatever system it they place it on giving them deeper persistence in 

the network.  

 Some of the common mitigations for this type of attack include filtering network traffic to 

ensure only known devices and addresses are communicating with secure channels like SMB 

or SSH. Another method for preventing lateral tool transfer is to implement a network intrusion 

prevention system. By implementing a signature-based or anomaly-based intrusion-prevention 

system irregular traffic or file transfers may be detected and prevented.  

Remote Service Hijacking. Attackers sometimes have the capability to hijack pre-

existing network connections using services like SSH and RDP. Attackers may commandeer 

these sessions to act against remote systems like transferring files or executing commands.  

 Detecting service hijacking is difficult since the authorized user creates the initial 

session, and a new session is not created by the malicious actor. Likewise, mitigation is difficult 

as it relies on disabling features and services when unneeded, implementing a strongly 

segmented network, managing privileged accounts, and managing user accounts. Ensuring that 
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only accounts with the need to access the service can access the service will reduce the remote 

connection footprint and make it more difficult for the attacker to hijack a connection.  

 ShadowMove uses a novel method for hijacking unencrypted sessions between 

computers on any port. This will be covered more extensively in section five. 

Remote Services. Attackers will use compromised accounts to use services like RDP, 

SMB, SSH, and VNC to connect to remote computers. There are numerous ways for attackers 

to gain valid credentials to use on remote connection applications including hash dumps, 

passwords left on files, brute force guessing, and many others.  

 Mitigation of this threat vector includes implementing multi-factor authentication where 

possible and managing user accounts to ensure only the users that need access to the remote 

services are allowed to access the remote services. 

Replication through Remote Services. To bypass airgaps, or to increase the likelihood 

of reaching difficult-to-reach machines, attackers may copy malware to removeable media in the 

hopes that it is inserted into another machine where they will have access to more sensitive 

data.  

 Mitigations include disabling autorun as attackers have used the autorun feature to 

automatically execute malware when a user inserts the removable media device into a new 

computer. Likewise, limiting the use of USB storage devices on networked computers will make 

it nearly impossible for removable media to be used as an attack vector. 

Software Deployment Tools. Attackers may gain persistence on any number of 

machines by gaining access to applications that deploy software across a network. By 

compromising an account on Microsoft’s System Center Configuration Manager or McAfee E-

Policy Orchestrator, attackers can gain the ability to deploy any software to any system within 

the network. Depending on how the software deployment tool is configured, it may be possible 
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for standard network accounts to have sufficient permissions to deploy applications anywhere in 

the network.  

 Mitigating this attack vector is accomplished by ensuring systems are isolated correctly 

in active directory, ensuring multi-factor authentication is in place for critical systems, 

segmenting the network to keep critical systems isolated from less secure systems, enforcing a 

strong password policy, managing privileged accounts with a Privileged Account Management 

procedure or tool, ensure that tools with the ability to deploy software are configured so that only 

signed binaries or specific binaries are able to be deployed, update systems to ensure patches 

are installed when they are needed, manage user accounts to ensure over-permissioned 

accounts are not present in the environment, and ensure that users are trained in the policy and 

procedures for deploying software to remote systems. Each company and environment will have 

a different level of access needed to remotely install applications on systems, so mitigating a 

threat like this can be difficult. Some companies will also have custom software that they may 

want to push, and it may be unsigned. Companies should ensure, that if they are going to use a 

remote deployment tool, that the tool fits all the needs for the types of software they will be 

distributing.   

Taint Shared Content. Attackers may be able to move laterally by adding malicious files 

to shared locations on the network. These tainted items will typically contain instructions that 

allow the attacker to move laterally once an unknowing user executes them. Attackers often 

design these files such that the intended action of the user is still executed so as not to raise 

suspicion. However, the malicious script will run and allow for deeper access to the network. 

 Mitigating shared content tainting includes using an exploit prevention system, file and 

directory permissions for users that have access, and to identify potentially malicious software 

with detection systems and auditing/blocking the execution of such files with tools like Microsoft 

AppLocker or Software Restriction Policies.  
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Use Alternate Authentication Material. Attackers also attempt to gain access to 

alternative authentication materials like Kerberos Tickets, Application Access Tokens, 

Authentication Tickets, or Web Session Cookies to bypass the password requirement to access 

the service. Using meterpreter shells or programs like Mimi Katz to dump credentials or active 

tickets and sessions, attackers can gain the ability to craft a token or ticket that the system will 

take in lieu of a password.  

 Mitigating these types of attacks include privileged access management to reduce the 

likelihood of lateral movement between systems and implementing a principle of least privilege 

within the network to mitigate the number of administrative accounts present on the network. 

Latte: Large-Scale Lateral Movement Detection 

This research team discusses the problem inherent in Lateral Movement detection by 

outlining two key issues when differentiating lateral movement from normal use behaviors: 

detecting the path after discovering an infected computer and discovering an infected computer. 

“Latte analyzes large-scale event logs collected from operational networks” (Liu et al., 2018). 

Their system analyzes Kerberos service ticket requests to construct a graph outlining a general 

connection structure between networked machines. For general detection purposes Latte uses 

this connection graph and data from Windows Event Logs to correlate rare connections in 

conjunction with Remote File Execution to detect possible lateral movement within an 

environment. To prevent log tampering, Windows system file logs are sent to the Windows 

Event Forwarding server and fed to MapReduce to create a complete historical map of remote 

file executions and Kerberos service ticket requests. The work done by this team stands out 

from other graph-based models in that it can be deployed to stock Windows installations as it 

only utilizes logs gathered from standard installations of Windows and requires no kernel level 

privileges to operate as intended.  
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 Latte truly shines when trying to forensically analyze the path an attacker took to and 

from an infected node and highlights useful information for future analysts investigating potential 

lateral movement attacks. By analyzing the known compromised node and filtering out the 

rarest of results, analysts are only required to make a limited number of manual investigations to 

find paths taken by the attacker. In their experimentation, the forensic analysis module was able 

to successfully float the malicious paths taken by the attacker to the top eleven results out of a 

possible 447,828 paths (Liu et al., 2018). Given their method, analysts need to manually 

analyze the eleven paths discovered by the forensic analysis module: a far more manageable 

task than the 447,828 paths in the first dataset. Since the malicious paths taken between 

workstations were discovered by analysts in the eleven top results, the researchers determined 

their forensic analysis module to be a success. 

The authors admit that for general detection, relying solely on the rare node connections 

generates far too many false positives to be considered a practical source for actionable insight 

in an environment. In each ninety-day period over 44 Million connections were tied as the most 

suspicious to generate fewer false positives, the authors recommend first determining where 

remote file execution occurs within a network and then correlating the rare connection paths 

inbound and outbound from the system wherein remote file execution took place. This research, 

however, does propose a method to how analysts can differentiate between malicious and non-

malicious traffic. By correlating Kerberos Service Tickets with remote execution and analyzing 

rare paths using a map of the network, it is possible to narrow down the possible malicious 

lateral movement events to a level where an analyst can manually analyze each in a given 

workday.    
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Deep Autoencoder Neural Networks for Detecting Lateral Movement in Computer 

Networks 

 This research team researched the use of Deep Autoencoder Neural Networks in 

detecting lateral movement in networked computers. They begin by outlining the fact that many 

other researchers have researched using neural networks to aid in detecting intrusions in 

computer networks. However, this team differentiate their research from past research 

endeavors by setting out to solve the problem of lateral movement rather than general intrusion 

detection.  

 The team, led by R. Holt, used the Los Alamos National Laboratory dataset to train and 

test their neural network. The Los Alamos National Laboratory dataset covers a period of 58 

days and is over 73 gigabytes in size. Therefore, the team used two subsets of data from the 

Los Alamos National Laboratory dataset: a developmental dataset for use in training and proof-

of-concept work and a test dataset to evaluate the accuracy of their created models (Holt et al., 

2019). The developmental dataset included all the red team data from the Los Alamos Dataset 

as well as all normal traffic from the computers compromised by the red team. Researchers 

added a random sampling of data to make the developmental set more varied and to avoid 

overfitting of the data. Researchers created the test dataset in the same manner with the 

addition of all users from all compromised computers to add more variance to the dataset.  

 After describing how unsupervised autoencoders learn the authors describe four models 

they designed for testing. The first was a shallow model designed 6-2-6, the second was a deep 

model designed 6-3-2-3-6, the third was a deep model designed 6-3-2-3-4-5-6, and the fourth 

was a model designed 6-5-4-3-2-3-6 (Holt et al., 2019). After feeding data to the neural network 

for testing, the results were mixed. The first three models performed well with low false positive 

rates--.55%, .85%, and .95%--with good recall, however, performed inaccurately in the precision 
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metric. The fourth model had a false-positive rate of over 20% and no measurable precision nor 

recall.  

 The three models proposed by the team performed worse than the semi-supervised 

model they reference in their related works section. However, the semi supervised model 

proposed by another research group covered in this paper (Sidati et al., 2016), requires a 

human analyst to aid in the detection of anomalies and is not fully automatic like the model 

proposed by R. Holt and his team. Furthermore, the model proposed by Holt and his team was 

more accurate than the model proposed by Bohara and their research group (Bohara et al., 

2017). While the results show positive progress towards the goal of automating intrusion 

detection and lateral movement detection using autoencoders, further research must be made 

to improve the detection rates and reduce the volume of data necessary to train an autoencoder 

to perform intrusion detection.  

 Intrusion detection using machine learning is a critical area of research and numerous 

researchers have investigated the use of unsupervised and semi-supervised machine learning 

approaches to aid in the filtering of data to a manageable level or to work as IDS/IPS in the 

network (Liu et al., 2018; Chandrasekhar & Raghuveer, 2013; Chen & Jiang, 2019; Yu et al., 

2017; Liu & Lang, 2019). Many semi-supervised models perform extremely well when pairing 

the judgement of a human with the pattern recognition of a computer (Gogoi et al., 2013). 

Methods researched by teams like Holt’s team show promise in automating tasks and reducing 

the amount of noise while more accurately predicting abnormal user behavior as is presented 

during a malicious lateral movement event. 

Practical Approach for Securing Windows Environment: Attack Vectors and 

Countermeasures 

 Abdurrahman Pektaş and Ertugrul Basaranoglu introduce a new method for conducting 

penetration tests within a Windows Environment. They make the claim that there has not been a 
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structured attack method for Windows penetration tests and set out to construct a new method 

that focuses specifically on attacking Windows environments (Pektaş & Basaranoglu, 2017). 

 The authors begin their article by outlining the basics behind other penetration testing 

methodologies introduced by companies like OWASP and the CE-Council but quickly begin 

work on demonstrating why their Microsoft Domain Environment Penetration Test Methodology 

(MSDEPTM) is superior for testing Windows environments. The authors introduce a ten-step 

systematic process for attacking Windows environments and explain methodologies used 

throughout the penetration test within each step to gain access, attain persistence, and 

compromise more systems.  

 Section three of the paper introduces numerous methods for attacking Windows 

environments and explains methodologies that attackers use to successfully breach a Windows 

environment. The authors break down their methodologies in the ten-step penetration test 

method.  

 Section four covers mitigation techniques for preventing unauthorized access of systems 

as laid out within section three. While comprehensive in scope, the amount of detail in 

preventing certain methodologies is lacking. While this is a paper that introduces a new 

structure for attacking Windows environments and the mitigation is a minor portion of this attack 

framework, a more comprehensive list of mitigation techniques for the numerous specific attack 

techniques would have been helpful.  

 The authors’ concluding section outlines that since they provide more steps, specific 

tools for attack and mitigation, as well as offering different techniques that their method 

competes with other attack methodologies for conducing penetration tests. It is true that system 

administrators and security professionals could use this framework to aid in penetration tests 

and securing their Windows environments. However, for the purposes of this starred paper, this 

resource is helpful in outlining novel methods for exploiting Windows environments for lateral 
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movement as well as potential measures to prevent against lateral movement. Many of these 

activities are also outlined in the MITRE ATT&CK Framework and will be covered in future 

sections. This research is helpful in developing a broader understanding of tools and techniques 

available to network defenders and how malicious lateral movement may be defended against.  

A Machine Learning Approach for RDP-based Lateral Movement Detection 

 Some researchers propose a new method for classifying remote desktop protocol (RDP) 

sessions in Windows environments. Using datasets from the Los Alamos National Laboratory 

and supervised machine learning algorithms, the authors propose a new method for detecting 

and sorting through RDP sessions to better classify malicious lateral movement within a 

Windows environment. The research team concludes their research by comparing their 

developed method to state-of-the-art methods and gauge their effectiveness based off another 

model’s performance (Bai et al., 2019). 

 The authors begin their research with a literature review of other authors that have tried 

to classify malicious RDP sessions using machine learning algorithms the Los Alamos National 

Laboratory Dataset (LANL). The team critiques the method proposed by the team led by Martin 

Ussath (Ussath et al., 2016) for being unwieldy in production environments, although the 

learning algorithm was efficient at detecting malicious RDP sessions. Furthermore, the authors 

critique Kaiafas’ team (Kaiafas et al., 2018) for their proposed use of the LANL dataset and 

posture that the LANL dataset is only useful for machine learning training when combining the 

two available datasets rather than solely utilizing the comprehensive events dataset.  

 The team levels criticism at the LANL dataset for its fractured nature. The 

comprehensive events dataset holds diverse red-team activities, however, the ratio of red team 

activities compared to normal activities is extremely small. Furthermore, the red team activities 

are launched from four different machines and take place during specific timeframes. For this 

reason, they conclude that using the comprehensive dataset alone for training machine learning 
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algorithms will lead to overfitting or training the machine learning algorithm to detect specific 

timeframes and machine ID’s rather than generalized patterns in the malicious RDP activities 

(Bai et al., 2019). To solve this problem of overfitting the training data to specific activities 

generated by specific machines at specific time intervals, the research team proposes 

combining two datasets from LANL to create a comprehensive dataset that combines more user 

events from the Windows event log with the malicious red team data from the comprehensive 

dataset to make a more generalized dataset to train machine learning algorithms and bypass 

the issue of overfitting by using only one data source (Bai et al., 2019). 

 Using their new combined dataset, they test their training data on five different machine 

learning algorithm classifiers and determine their performance by measuring their accuracy, 

precision, recall and F-Score: the “harmonic mean of precision and recall” (Bai et al., 2019). The 

authors then compare their model to another top performing model proposed by Kaiafas et al 

(Kaiafas et al., 2018). Using their dataset, the researchers were able to reduce the number of 

inputs and abstract the data more completely than Kaiafas’s team and were able to return 

higher detection rates. In doing so, the team posits that their model is more useful in a 

production environment as it requires less data to run and is as effective as the more complex 

model (Bai et al., 2019). This model is useful in highlighting what Windows Event Log events 

can be used in automated systems to detect malicious lateral movement in an environment and 

highlight the fact that this task can be automated with sufficient training-data. 

 Understanding that Windows Event Logs can be used in automated systems to assist 

with detecting malicious lateral movement is a critical point of this research. Oftentimes, 

Windows Event Logs are overlooked as being clunky or not verbose enough. This research 

proves that Windows Event Logs can be utilized effectively for intrusion detection purposes 

when the correct filters are applied, and careful logic is utilized. The machine learning algorithm 
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proposed by the team demonstrates novel methods for detecting and preventing lateral 

movement using common tools accessible to most security analysts and engineers. 

Detecting Structurally Anomalous Logins Within Enterprise Networks 

 Hossein Siadati and Nasir Memon introduce a method for detecting anomalous logins 

and lateral movement within an enterprise network by creating a “network login structure” that 

outlines typical sign ins for users and then employ an anomaly detection system to detect out-

of-character logins for users within the network (Siadati & Memon, 2017). 

 Siadati and Memon focus on credential based lateral movement during which the 

attackers steal valid user credentials through tactics like pass the hash and authenticate as valid 

users. These types of attacks are some of the most difficult to detect because they so closely 

resemble normal account authentications during an average workday. Siadati and Memon 

created a system that simply looks for odd login behavior from users rather than specific attack 

methodologies. By focusing on a broader scope, their method should be able to watch for a 

wider range of attack vectors.  

 Siadati and Memon employ a pattern miner and login classifier to collect as much data 

as possible about typical user behavior in the network and classify whether the logins are 

thought to be benign or malicious given the data mined by the pattern miner.  

 Siadati and Memon created an algorithm to classify typical user behavior based on the 

login pattern, occurrence, orientation, patterns, and scores generated by all previously stated 

inputs (Siadati & Memon, 2017). Once researchers completed their system, they evaluated their 

detection system against a dataset holding five months of data from a global financial company. 

Once the test was run against the system, the data was handed to a group of analysts from the 

company and each flagged instance was investigated to determine whether it was a true 

positive or not. The analysts, after analyzing the flagged sign ins discovered that the system 

only had an 11% accuracy rating. The reason for this was that administrative logins tend to look 
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abnormal in many cases as administrators constantly access new machines for the first time 

causing the pattern miner to flag them as malicious given their infrequency.  

 While the idea of monitoring standard behavior for users and flagging anomalous logins 

is a good theory, in practice, more information needs to be considered before flagging 

anomalous logins as malicious. For instance, taking process history from the user before the 

connection was made or observing spawned processes after the connection was completed 

could help in narrowing the scope and improving the overall accuracy of the system. While 

some sign-in based anomaly detection system could be helpful in detecting novel lateral 

movement techniques, further studies into this subject will need to be done before this type of 

detection can be relied on solely for malicious lateral movement detection.  

 While not the most effective solution, the method of detecting lateral movement by 

tracing anomalous logins is a worthwhile endeavor in a defense-in-depth structure. It is another 

method by which analysts and engineers may detect lateral movement taking place within the 

infrastructure.  

Detecting Malicious Authentication Events Trustfully 

 The research team led by Kaiafas aim to solve the problem with anomaly detection 

outlined in the paper by Siadati and Memon: false-positive detections. The team tried to solve 

this issue by providing more contextual data surrounding the authentication to the classifiers 

(Kaiafas et al., 2018). By including more contextual data, they aim to reduce the number of false 

positives by classifying more accurately what normal behavior looks like.  

 The team used four different supervised anomaly detection systems in their research 

and tested their accuracy using the Los Alamos National Laboratory Dataset. Since the Los 

Alamos National Laboratory Dataset has so few malicious activities—less than .00033% of total 

authentication logs (Kaiafas et al., 2018)—filtering the anomalous/malicious traffic from standard 

user traffic is extremely difficult.  
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 To assist their supervised learning algorithms with sorting malicious events from non-

malicious events, the authors identified several features and included tangible pieces of data to 

improve malicious anomaly detection.   

 The first feature is the “distribution of time difference of events between systems and 

from user to system” (Kaiafas et al., 2018). This feature captures the spread of user activity over 

time, allowing the detection engine to estimate a relative pattern to user activity.  

 The second feature is “user activity and connection frequency” (Kaiafas et al., 2018). 

The authors use this to estimate a general pattern of typical user behavior on a given day. By 

observing the frequency of network activities, the pattern recognition system can better find 

whether actions taken by a specific user account are outside the normal range. 

 The third feature is the “distribution of malicious events if we see every event as a trial” 

(Kaiafas et al., 2018). In their experimentation the team supplied a probability to the anomaly 

detection engine which outlines how likely a malicious event is. While this is helpful in an 

experimental system, when moving to an enterprise network, this number will not always be 

known.  

 The fourth feature is “user variance” (Kaiafas et al., 2018). This feature outlines the 

significance of a user during a given period and is designed to tell the system how often a 

specific user should be expected to authenticate. It creates a distribution of both the number of 

users authenticating during a period and also expected spread of user activity meaning the 

more popular users should be expected to authenticate more frequently during a given period of 

time.  

 After running the dataset through these classifiers, the authors fed the data to four 

different “ensemble learning techniques” (Kaiafas et al., 2018) for final classification. These 

ensemble learning techniques use multiple machine learning algorithms to classify and sort 

data. The ensembles they used were LogitBoost, Random Forest, Logistic Regression, and 
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Majority Voting. After training their systems with a subset of data from the Los Alamos National 

Laboratory Dataset, the research team measured the success of their systems by computing 

the false positive rate, false negative rate, balanced accuracy which is “the arithmetic mean of 

True Positive Rate and True Negative Rate” (Kaiafas et al., 2018),  Positive Predictive Value: a 

ratio of known malicious activities vs predicted malicious activities, the F1-measure, and the 

Prevalence: or the ratio of True Positive and False Negative over the sample size.  

 After conducting their tests, most models performed well with low false positive rates 

with the Majority Voting system outperforming the others by a small margin. The systems 

achieved a 0% false positive rate for 68% of the data and a .0019% false positive rate for the 

remaining 32% of the data. The authors conclude that completely avoiding false positives is a 

fool’s errand, however, minimizing the number of investigations made by human analysts is the 

goal of most semi-automated systems. The team prove that their sorting methods are effective 

at reducing noise generated for the administrator.  

 This research is fundamental in feature choice for reducing the noise generated by 

network logs. The researchers supply many features that seem to truly reduce the false positive 

rate generated by network logs. The downside to this method is that the ratio of benign 

authentications to malicious authentications is known. It would be interesting to see how a 

system such as this would perform in a black-box environment.  

Advanced Persistent Threats: Behind the Scenes 

The research team led by Martin Ussath investigated 22 different APT attacks to gather 

the best practices used by many of the APT’s to attack networks. In doing so, Ussath and the 

team proposed to highlight better detection methods for commonly used attack structures 

(Ussath et al., 2016). To simplify the complexity of APT attacks, the researchers view three 

main categorizations of activities taken during an APT campaign: initial compromise, lateral 

movement, and command and control (Ussath et al., 2016).  
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 After first compromise, the authors explain the importance of lateral movement in 

computer systems for all the APT groups. The most common method for moving laterally 

through systems found by the authors is to use preinstalled Windows tools like remote desktop 

protocol, windows management instrumentation, PowerShell, and PS Exec (Ussath et al., 

2016).  

 Attackers often collected passwords from memory using tools like Mimi Katz or Windows 

Credential Editor. Attackers rarely brute-force passwords as brute force attacks are noisy and 

are typically prevented by administrators. The final method outlined for lateral movement by the 

researchers is to exploit known vulnerabilities to elevate privileges. The authors propose that 

attackers exploited vulnerabilities because access to passwords and password hashes required 

administrative credentials (Ussath et al., 2016). 

 To detect malicious lateral movement, the team proposes detecting known malicious 

processes like Mimi Katz for password and hash dumping activities as well as monitoring the 

Local Security Authority Subsystem Service process which has direct access to the memory of 

other processes and is a vector of attack for dumping credentials (Ussath et al., 2016). 

 Viewing the chart of 22 different APT groups created by the researchers gives a good 

snapshot into the processes and attack methodologies used by APT groups. Understanding the 

methods used by APT groups and common defenses against them helps with understanding 

how to detect and prevent attacks. The table created by the team is provided in Appendix A and 

outlines the most common methods used by APT groups and gives a good overview of attacks 

to focus on defending against.  

Literature Related to the Methodology 

ShadowMove: A Stealthy Lateral Movement Strategy 

 The research team led by A. Niakanlahiji proposes a novel lateral movement strategy 

that takes advantages of built-in Windows features to jump between systems using existing 
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connections while bypassing all modern AV detection (Niakanlahiji et al., 2020). The system 

works by duplicating socket connections and hijacking established FTP, TDS, and WinRM 

connections.  

 The system proposed by uses three main steps: Duplicate a socket used by a legitimate 

client, inject packets into the TCP stream using the duplicated socket, and spawn a new session 

of ShadowMove on the server handling the packets by tricking the server into executing the 

injected packets. This novel method for lateral movement can avoid detection because it only 

reuses pre-established connections and never spawns a new connection with the server, 

thereby not generating a new TGT or TGS request as is typical in standard lateral movement 

attacks.  

 The initial breach requires that a piece of malware be installed on the initially infected 

vector. However, given the stage at which lateral movement takes place during a cyber-attack, it 

is believable to assume that the attackers would have created a layer of persistence on the 

systems and had a way to deliver a malicious payload to the client.  

 The ShadowMove software has six modules: Connection Detector, Socket Duplicator, 

Peer Handler, Network View Manager, Lateral Movement Planner, and Plan Actuator. Each 

module has a specific purpose during the lateral movement phase of a cyber-attack, and each 

serves a unique purpose in helping ShadowMove function as intended.  

 The Connection Detector is a listener that waits for a change in status from non-

established to established and recording when a certain TCP port is being used. This system 

constantly queries the TCP table on the Windows machine to find when a vulnerable port has 

an established connection.  

 The peer handler is used to share data between instances of ShadowMove within a 

network. Using duplicated sockets, process suspension, and previously compromised sockets, 
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the peer handler can communicate with other ShadowMove instances to share knowledge 

about the architecture of the network. 

 The network view manager is a dashboard from which the attacker can view the status 

of the network that has been compromised thus far. The attacker can view hosts, sockets that 

have been duplicated, IP addresses, ports, service types, and other essential information the 

attacker may want to know when engaging in lateral movement as part of a cyber-attack.  

 The Socket duplicator duplicates sockets. On a windows system this is done by using 

open process to enumerate all open handles. Then using “GetPeerName” it enumerates the 

socket from the AFD handle. Finally, it uses “WSADuplicateSocket” to duplicate the socket, 

giving the attacker a tunnel from which to inject packets into the data-stream. Since these 

packets are injected into a data stream where the benign application is running and transferring 

data, ShadowMove uses “SuspendThread” to pause the execution of the benign service in order 

to ensure its own code is injected and executed.  

 The lateral movement planner gives the attacker the capability to view an exploit map 

and plan for the most efficient lateral movement attack. Since permissions between systems 

vary in a Windows environment, not every connection will have permissions to read, write, and 

execute on other systems. The lateral movement planner shows the attacker the best route 

possible to a given target and can plan the most efficient route to reach the desired system.  

 Finally, the lateral movement actuator contains many modules responsible for crafting 

and reading from packets midstream and is responsible for crafting packets that can hijack FTP, 

MS SQL, and WinRM connection streams.  

 This team created a stealthy lateral movement technique that bypassed all traditional 

antivirus, endpoint detection and response tools, and IDS/IPS tools that were leveraged against 

the ShadowMove software. The authors do, however, outline a few key issues with their design. 

First, enabling protected processes would stop ShadowMove from duplicating the process 
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handle. Second, the ShadowMove architecture only works on unencrypted channels: thereby 

limiting attack vectors to specific protocols in a network. However, the novel method by which 

ShadowMove jumps from system to system proves to be effective in bypassing antivirus and 

endpoint detection and response systems. This makes it a prime candidate for attackers to 

improve on and make lateral movement attacks in less distinguishable ways. This method will 

be expanded upon in chapters III, IV, and V as the goal of this research is to invent a novel 

method for detecting this ShadowMove attack.  

Detecting Adversary using Windows Digital Artifacts 

 In this paper, the Seng Pei Liew and Satoshi Ikeda propose a method for detecting 

advanced persistent threat adversaries in a Windows environment using nothing but native 

Windows artifacts (Pei Liew & Ikeda, 2019). The authors begin by outlining two key issues with 

detecting persistent adversaries in a Windows environment. The first issue is that attackers use 

benign file names or files to conduct their attacks to prevent signature detection and the second 

is that there are disparate configurations within Windows environments and the lack of 

conformity to a standard makes tracing paths difficult. To overcome these issues the authors, 

propose a machine learning based approach that observes digital artifacts left in all Windows 

systems. To do this, the authors also propose a new algorithm to learn the execution time of a 

process from the shipmate (Pei Liew & Ikeda, 2019). Using the data gathered from the 

Shimcache and the output of the machine learning algorithm, the authors propose an adversary 

detection system that, given a period of time, will return a score representative of how malicious 

the behavior taken during the given time-period was.  

 The authors outline their approach to detecting APT’s within an environment. By 

breaking down the attack pattern of APT’s to component parts, the authors outline the Windows 

commands that are be run during an attack. Assuming a breach has occurred, the authors 

outline commands typically run during the persistence, discovery, privilege escalation, lateral 
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movement, defense evasion, and exfiltration phases of an attack. Given some of the most 

common commands used during an attack, the authors explain the digital artifacts that are 

created by running the tools in the Master File Table, Shimcache, Prefetch, and Windows Event 

Log during execution. The authors explain their methodology for tracing an attack using these 

event artifacts and outline their algorithm for determining the execution duration of a file using 

artifacts found in the Shimcache: a proxy between Windows versions that ensures backwards 

compatibility of executables (Pei Liew & Ikeda, 2019). 

 After explaining the details of the timing algorithm, the authors explain how their 

machine-learning based scoring algorithm can aid in detecting malicious behavior in Windows 

environments. Using inputs from the Shimcache, Prefetch and Windows Event Logs, the 

machine learning algorithm computes the data and scores the timeframe accordingly. The 

scoring module takes a list of commands commonly used by attackers to execute distinct 

phases of an advanced persistent threat attack as outlined above (Pei Liew & Ikeda, 2019). The 

algorithm used for training is a Random Forest algorithm which is a black-box method of 

training. This means that the researchers know the data they put in, but the computations that 

take place on the data inside the algorithm are unknown to researchers. They found that 

implementing the model in this manner gave them a precision of 86.7% and a recall score of 

75.6% (Pei Liew & Ikeda, 2019). The results are not fantastic, and researchers were upset that 

certain applications like PowerShell were flagged as malicious even when other processes were 

not spawned from the parent process.  

 Part of the issue with the method is that the researchers are only focusing on a small 

slice of application execution. By only focusing on a small number of applications, processes, 

and indicators of compromise. Furthermore, researchers only supply the machine learning 

algorithm a narrow slice of time and decide on malicious behaviors that took place during a 

distinct amount of time. As a research piece, it is interesting to note how a machine-learning 
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based model with basic Windows events can have some success at detecting malicious 

behavior in a Windows environment. However, universally applying these rules to a networked 

environment would not give sufficient data to analysts looking to protect a production network. 

The most helpful research conducted in this study is the use of default artifacts inherent in all 

Windows systems to assist in the detection of malicious behavior in an environment and could 

be used in numerous other approaches to reduce the need for specialized endpoint monitoring 

systems to be installed on user workstations. What is important to note, however, about this 

research is that the Windows operating system creates enough logs and artifacts to successfully 

identify malicious behavior without the use of third-party applications. A similar methodology will 

be employed in chapters III, IV, and V as this research attempts to detect ShadowMove.  

Detecting Abuse of Domain Administrator privilege using Windows Event Log 

 Fujimoto’s research team set out to compare methods for detecting the abuse of domain 

administrator credentials proposed by other researchers. Since many detection methods are 

interested in detecting specific CVE’s and attack methodologies like “Mimi Katz” or 

“Kerberoasting”, the researchers are interested in combining the eclectic methodologies into a 

central repository of detection methods that can be used to detect abuse of domain 

administrator credentials into a single tool (Fujimoto et al., 2018). 

 The researchers outline useful methods proposed by other researchers to detect abuse 

of domain administrator credentials. A detection method proposed by Shingo Abe outlines using 

Windows Event Logs to detect abnormal administrative access to resources by correlating 

historical data with daily use of administrative credentials (Abe, 2016). The researchers include 

research done by Shusei Tomonaga at JPCERT/CC into common commands executed by 

attackers during an APT campaign (Tomonaga, 2016). This team, however, focused solely on 

correlating Windows Event Log 4688—A New System Process Has Been Created—to detect 

abuse of domain administrator privileges. They use research conducted by Junghoon Oh at 
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AhnLab to detect APT lateral movement using administrative shares to spread access (Oh, 

2016.). The researchers also use the event log 5140—A network share object was accessed—

to determine if an administrative account has wrongfully accessed a network share: a common 

tactic used by attackers to spread malware across the domain. Finally, the team includes 

research done by Idan Plotnik and Andrey Dulkin to detect golden ticket creation by logging 

Kerberos Service Ticket requests that have no prior Ticket-Granting-Ticket (TGT) associated 

with them (Plotnik et al., 2017; Dulkin et al., 2017).  

This research team takes all these known methodologies for detecting abuse of domain 

administrator accounts and develop their own method with a high detection rate. Their method 

focuses on watching the domain controller for the creation of golden tickets or credential theft 

and does not detect abuse of all machines in the domain. This method, therefore, is not usable 

to detect lateral movement wherein the attacker does not contact the domain controller for 

escalated privileges: e.g., in the case of spear-phishing an escalated account. 

What Fujimoto and the rest of the team proposes is a sophisticated signature detection 

system that utilizes built-in Windows Command-Line-Interface (CLI) tools and known privilege 

escalation methodologies to detect APT privilege escalation and Domain Administrator account 

abuse in a Windows Active Directory environment. Their results are subpar as they have a high 

rate of false negatives across all categories of detection. Furthermore, not detecting abuse of a 

domain administrator account typically means that the attackers have compromised the entire 

domain and quick and exact remediation needs to take place at once. While novel in its scope, 

and thorough in its investigation of methodologies used to compromise domain administrator 

accounts, different methodologies must be used to detect and prevent against privilege 

escalation attacks in a more exact manner. The important artifact to take away from this 

research is that only Windows event logs were used to detect malicious movement in a system. 

It is possible to garner valuable information from intrinsic logging sources.  
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Summary 

Whether proposing new methods for detection or presenting methods for preventing 

known attacks like the MITRE Group, this literature review was designed to give the reader a 

flavor of a wide swath of research that is ongoing in the field of lateral movement detection. It 

covers new methodologies for improving detection rate, reducing false positives, and increasing 

lateral movement defenses by using graphs and machine learning as well as new frameworks of 

thought. Finally, by outlining ShadowMove and using Windows event logs and digital artifacts to 

detect lateral movement, the concluding section of the literature review was designed to give the 

reader a sturdy base of knowledge from which to draw when reading about the original 

methodology and tactics utilized in this research to detect ShadowMove, a feat which has not yet 

been completed.  
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Chapter III: Methodology 

Introduction 

Lateral movement is a well-documented strategy employed by attackers going after 

enterprise systems. In recent years, defense and detection methods implemented by defenders 

have gotten more sophisticated. Enterprise toolsets from companies like Stealthbits, Arctic Wolf, 

Rapid 7, Palo Alto, and others have the capability and built-in parameters to detect traditional 

lateral movement techniques like Kerberoasting, Pass the Hash, and Pass the Ticket. Likewise, 

many of these toolsets also include anomaly detection capabilities that monitor user activity, 

create a baseline for typical use, and alert when the user strays outside the normal boundaries 

of daily activity. For traditional lateral movement techniques, these detection methods are more 

than enough to determine whether a compromised user, or an attacker created user is 

bypassing security protocol and moving abnormally through enterprise systems.  

Once attackers gain a foothold during an attack, the traditional methods for expanding 

influence within the network include remote service exploitation, tool transfer, session hijacking 

exploiting remote services like SMB or RDP, replication through removable media, software 

deployment tools, shared-content poisoning, or alternative authentication material usage like 

pass-the-hash or pass-the-ticket.  

Many of the toolkits and methods for dumping credentials or copying hashes like Mimi 

Katz or LSASS dumps are detected by traditional antimalware companies. In many cases, an 

inexperienced attacker using standard toolsets like Mimi Katz will be caught by traditional 

endpoint detection since many of these programs are picked up and deleted based on signature 

or behavior. 
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Design of the Study 

Virtual Machine Setup 

VM Configuration. The test environment was created in VMWare Workstation Pro on a 

host machine running Windows 10 Pro. The virtual machine was given 8 Gigabytes of RAM, two 

processor cores with two threads each giving it four logical processors, a 120 Gigabyte hard disk, 

a network card using NAT, and two monitors using 3D acceleration. There was also a folder 

shared between the host and the guest operating system to move files between systems for an 

easier research experience.  

Software Used to Build the Binaries. Windows 10 was installed in the virtual machine 

and updated to version 10.0.18363 with all required and recommended patches applied. To 

build the ShadowMove code for testing, Microsoft Visual Studio 2019 Community Edition—

version 16.9.2—was installed along with all the C, C#, and C++ packages for Windows 

development.  

Figure 1  

Packages installed to build C, C#, and C++ code in Windows 10 

 

Finally, the Windows Driver Development Kit (WDK) (Hudek et al., 2020) to access the 

ntdll.lib and Ws32_32.Lib files for the ShadowMove build.  
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Software used for monitoring, diagnosis, and alerting. To monitor the software and 

Dynamic Link Library (DLL) function calls at runtime the software API Monitor v2 was utilized 

(“API Monitor - Spy and Display Win32 API Calls Made by Applications”, 2013). This program 

monitors the application stack and detects which functions are called from a specific DLL during 

a software’s runtime. To monitor Windows Event Logs generated at runtime, a free trial of 

DataDog—a cloud-based SIEM tool that can handle a wide variety of logs—was used to 

monitor, filter, and search the logs generated on the virtual machine (Datadog, 2019). 

ShadowMove Essentials and Socket Duplication 

A group of faculty and students from the University of Illinois Springfield, University of 

North Carolina at Charlotte, and Louisiana State University developed an attack methodology 

that utilizes Windows Dynamic Link Libraries and API functions to move laterally between 

Windows systems without the need to steal credentials or generate new authenticated sessions. 

The team named this stealthy movement technique ShadowMove.  

The code functions by exploiting normally trusted connections between any two 

networked Windows devices with running unencrypted connections like FTP, WinRM, and MS 

SQL. The team released their research in August 2020. Typical signature and anomaly-based 

malware detection software looks for custom executable code that either has patterns that are 

known to be malicious or has a signature of a known malicious file. By using code that calls 

internal Windows functions the team was able to bypass standard antivirus programs because 

the operations done by the executable are standard functions that the Windows operating 

system depends on for normal use. Likewise, by using trusted Windows dynamic link libraries, it 

ensures that the attacker will be able to run the malware on any modern Windows system so 

long as the libraries are updated sufficiently. Finally, when security analysts search for lateral 

movement, one of the key giveaways in traditional methods is the creation of new authenticated 

session using legitimate credentials, or the dumping/stealing of password hashes from Kerberos 
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or LSASS. Once an initial foothold is gained on the system by the attacker, no credentials need 

be stolen from any location, nor do any new authenticated sessions need be created between 

systems. Since the attack takes place on authentically generated sessions by the authorized 

user and the ShadowMove code only latches onto established sessions, it makes it extremely 

difficult for an analyst to discover the lateral movement when following traditional attack 

patterns.  

To understand how ShadowMove hijacks a typical socket duplication event in the 

Windows operating system, we must first understand how a typical socket duplication event is 

established by the system to share a socket with a remote program. First a local or host process 

will call the WSASocket API from the WS2_32 DLL. This, in turn, calls NTCreateFile, creates a 

new SOCKET_INFORMATION object, and calls NtDeviceIoControlFile which creates kernel 

level information about the handle. Second, the host process will call WSADuplicateSocket from 

the WS2_32 DLL to duplicate the socket and share it with the guest process.  

WSADuplicateSocket will copy the data stored in handle 1 and create a copy called 

handle 2. Finally, the guest process will call WSASocket to extract handle 2 and uses the 

information contained therein to call NtDeviceIoControlFile to retrieve the same kernel level 

information placed by the host program in step 1. Once this is complete, both handles share a 

duplicated socket, and the host and guest process can communicate using the same socket.  

ShadowMove, alternatively, interrupts this process by injecting itself into this workflow by 

copying handle 1 from the host process into a new handle 2, and using the copied object to 

connect to the socket in a similar fashion as a normal guest process would. However, 

ShadowMove differentiates itself from the standard guest process as it uses the ntdll DLL for 

querying system information and duplicating the system object.  

ShadowMove, in its most basic form, takes place in five steps. First, it calls 

NtQuerySystemInformation from the ntdll DLL to query system information and find a handle 
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that it can copy. When it finds a handle to copy, the program determines whether the object it is 

attempting to copy is an ancillary function driver (AFD). Second, if the object it finds is an AFD 

handle, ShadowMove calls NTDuplicateObject from the ntdll DLL and creates a copy of the 

original handle. Third, ShadowMove queries the peer name passing the handle as a parameter. 

The handle duplication is bypassed until a peer name is found matching the name in the handle. 

This is to ensure that the connection that is hijacked is the one between the two desired peers. 

Fourth, when the correct connection is discovered, ShadowMove calls WSADuplicateSocketW 

from the WS2_32 DLL passing the copied handle as the parameter. This creates an expected 

protocol structure that the kernel system on the host machine will expect. Finally, ShadowMove 

calls the WSASocketW API from the WS2_32 DLL passing the WSAProtocol that was created 

in the previous step as the parameter. This step opens a duplicated—or shared—socket with 

the host machine and creates an injectable tunnel is wherein ShadowMove has the ability to 

inject any data between the host and the guest without ever generating a new authenticated 

session.   

Design of the Study 

The ShadowMove proof-of-concept code was provided to by Md Rabbi Alam and Dr. 

Jinpeng Wei at the University of North Carolina at Charlotte. The proof-of-concept code comes 

in three parts. The first is a TCP Echo Server application written in C#. It is a simple TCP Echo 

Server that receives a string of text from a TCP Echo Client and returns the same text to the 

Client as was received by the Server. The second portion is a TCP echo Client that sends a 

message to a TCP Echo Server and receives the TCP echo reply from the server. The final 

portion included with the package is the ShadowMove proof-of-concept code which is written in 

C++. This proof-of-concept code works as described above, with the main caveat being that the 

ntdll DLL and WS2_32 DLL are packaged into the C++ executable using the C++ linker 

functionality in Visual Studio 2019, the ntdll.lib and the WS2_32.lib files found in the Windows 
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Driver Development Kit (WDDK) (Hudek et al., 2020). The fact that the dynamic link library files 

are linked internally with the binary after the software is built makes auditing specific Windows 

files significantly more difficult. After some basic troubleshooting, the ShadowMove code was 

compiled on the research lab virtual machine and was able to successfully duplicate the handle 

during runtime of the TCPEchoClient and TCPEchoServer.  

To detect specific API calls from within an executable at runtime, a process called 

hooking is required. One of the most well-documented and trusted free API hooking software 

available is API Monitor. Using API Monitor I was able to monitor all API calls from the PoC.exe 

ShadowMove code and find all instances of ShadowMove functioning as intended and 

duplicating a process handle. This is a crucial step, because dynamic link libraries contain 

numerous functions and determining exactly which function is called from the library is essential 

in determining if ShadowMove took place or another benign process was accessing similar 

libraries.  

There are native options in the Windows operating system to monitor DLL files. The 

Windows Security Auditing suite in conjunction with the Windows Event Viewer can give a 

security analyst or systems administrator the ability to view access to specific dynamic link 

libraries like WS2_32 or ntdll. However, the DLL files include numerous functions that the 

Windows operating system needs to function. Therefore, monitoring the DLL file that contains 

the functions used for ShadowMove and alerting when the DLL files are called in a specific 

order is a way to give an alert that ShadowMove occurred, however, there is the possibility that 

this will generate many false positives as the operating system uses these files for standard 

procedures.  

Therefore, one of the greatest difficulties in alerting on the possibility of a ShadowMove 

taking place inside the operating system is monitoring the DLLs for specific function calls. In my 

research, I did not find a Security Information and Event Management (SIEM) solution that had 
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the ability to monitor specific API calls from DLL files. Furthermore, since the C++ code links the 

ntdll.lib and WS2_32.lib files with the executable, the DLL files used for ShadowMove are called 

directly from the executable. This makes detection of the ShadowMove even more difficult.  

However, there are Windows Security Events that are logged by the Operating System 

that take place when ShadowMove occurs. Likewise, some events around the execution of 

ShadowMove also generate Windows Security Events. Since monitoring the DLL files is not 

always possible as they are linked, monitoring the Windows Events is the first line of defense in 

detecting ShadowMove.  

The methodology of this study includes compiling a functioning version of ShadowMove, 

running the attack against the TCP Echo Server and TCP Echo Client running on the same 

machine, monitoring the API Monitor Software to determine whether a successful ShadowMove 

socket duplication occurred, customizing the Windows event logs so that pertinent data is sent 

to the DataDog Cloud SIEM, monitoring the logs and creating customized views in DataDog to 

remove unimportant log files, and exporting a comma separated values file so an analyst can 

manually determine whether a ShadowMove may have occurred. 

Data Collection and Tools and Techniques 

 To collect pertinent data to detect and predict when ShadowMove may have occurred 

some Windows 10 settings were adjusted to increase visibility into operating system events and 

additional software was installed to collect the Windows Event Logs and parse the data once it 

was collected.  

 Because ShadowMove utilizes Windows DLLs as part of its core functionality, auditing 

and monitoring the DLLs used by the malicious code is vital in determining when a 

ShadowMove may have occurred. For this, the local security policy was adjusted in Windows 10 

to log file access and process tracking events in the Windows Event Viewer. To activate the 

necessary local security policies: first open the Local Security Policy application by search 
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“Local Security Policy” in the Windows 10 search box and open the program. In the navigation 

menu on the left panel, expand “Local Policies” and open the “Audit Policy” subfolder. Within the 

audit policy subfolder, there are two important auditing policies that must be activated. The first 

is “Audit Object Access” which creates an event when a user accesses an item like a file, folder 

registry key, printer, or other types of items (Simpson et al., 2017a). This policy is important 

because it registers events related to the closing of object handles. The second policy that must 

be activated in the local security policy is “Audit Process Tracking”. This security auditing policy 

detects when a handle to an object is duplicated, and when processes are started or terminated 

(Simpson et al., 2017b).  

 ShadowMove utilizes ntdll.dll and WS2_32.dll and to duplicate and inject into non-

encrypted network transmissions. To detect software that is accessing these specific DLLs to 

alert on potentially malicious handle duplication, auditing the access to the files is a function 

built into the Windows operating system. To activate the auditing feature on these specific DLLs, 

navigate to the files in the C:\Windows\System32\ folder, right click on the file to be monitored, 

click properties, click on the “Security” tab, click on the button labeled “Advanced”, click on the 

“Auditing” tab, click “Continue” to provide administrative privileges, click “Add”, click “Select a 

principal”, type “Everyone” into the box, click “Check Spelling”, click “ok”, select the check box 

next to the “Full Control” label, click “ok”, click “Apply”, click “ok”, and click “ok”. Once this set of 

steps is completed, anytime the file is executed, read, written to, or changed, an audit log will be 

sent to the Windows Event Viewer. This process should be repeated on ntdll.dll, mswsock.dll, 

and WS2_32.dll. The logs will contain timestamps, the user that accessed the file, as well as the 

process that called the file. If ShadowMove is utilizing the DLLs packaged with the Windows 

operating system, then when it touches a file during execution, the access will be logged and 

searchable by the SIEM tool, or in the Windows Event Viewer. 
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There is one final DLL worth mentioning that should be monitored for access. Since the 

version of ShadowMove that was run linked the ntdll.lib file and the WS2_32.lib into the 

executable using a linker function in Microsoft Visual Studio. The ntdll.dll and WS2_32.dll on the 

operating system were not touched during the execution of ShadowMove because it had them 

packaged into the executable. There is a file in the C:\Windows\SysWOW64\ folder called 

wshqos.dll. This DLL is called whenever an executable looks to access a function from a linked 

library. Since the more advanced version of ShadowMove uses linked libraries to better hide its 

execution and intentions, monitoring the wshqos.dll for access will alert an administrator 

whenever a file using linked library files is executed.  

 To monitor DLL access and function calls during runtime to understand exactly how it 

functions, a program called API Monitor was installed to hook the DLL calls and monitor which 

APIs were accessed during the application runtime. Screenshots of the API Monitor software 

detecting the four main stages of ShadowMove described in section IV.  

 Finally, to aggregate logs and implement a better search function, DataDog Cloud SIEM 

was utilized to collect all Windows Security and Application Logs from the Windows endpoint 

using the DataDog agent. The agent installation is document on the website, but simply requires 

the executable to be run by an administrator, the API key provided for the specific DataDog 

instance is inserted during the installation, and the log handler is installed directly from the 

DataDog Client Management Console using a few clicks. (Datadog, 2021a; Datadog, 2021b). 

Summary 

 Just as most of the application code required to run ShadowMove is built into the 

Windows operating system, all the software required to detect ShadowMove is also included 

with the Windows operating system. Log exports and searches can be done with the Windows 

Event Viewer, however, for convenience, a free trial of DataDog Cloud SIEM was used as the 

functionality and filtering capabilities of the SIEM far exceed those of the Windows Event 
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Viewer. Since this is a research project intent on discovering vulnerabilities in a malicious piece 

of code, utilizing an API hooking tool like API Monitor was extremely beneficial to take a closer 

look at API calls for research purposes, however, in a production environment, an API hooking 

tool is not necessary for detecting ShadowMove. 
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Chapter IV: Data Presentation and Analysis 

Introduction 

To simulate a more realistic breach scenario, the virtual lab machine was left running 

throughout the day with light web browsing and other tasks being completed on it to generate 

logs. During this time, the TCPEchoClient.exe, TCPEchoServer.exe, and PoC.exe commands 

were executed, and the socket was duplicated. During the attack, the APIs from PoC.exe were 

hooked to prove that the socket duplication successfully occurred and to demonstrate that all 

DLLs and library files were being called successfully. Windows 10 forwarded all Windows 

Security logs to DataDog Cloud SIEM during this timeframe and a four-hour timeframe within 

which the attack occurred was selected to investigate as this would be a realistic window within 

which an analyst may need to search for the execution of potentially malicious software.  

 This section will begin with an explanation as to why analysts must find meaningful 

methods for narrowing the data collected from Windows systems to pertinent timeframes and 

log types. Following will be a presentation of the data, an explanation of the logs collected over 

a four-hour period, API calls of interest from the API Monitor software showing how 

ShadowMove successfully executed and duplicated a handle, and the pertinent data gathered 

from the Windows Security logs and how that data was filtered out of the other four hours of 

data.  

Data Presentation 

Log File Size Reduction for Manual Inspection Simplification 

As explained in chapter III, collecting logs, and forwarding them to a SIEM solution is 

fairly straightforward, however, the number of logs generated by a sole source can be 

astronomical. The logs were generated on a mostly idle virtual machine running very few 

executables or services. If the time of the malicious executable execution is known, narrowing 

the timeframe to a shorter period, or filtering out logs that are unneeded for detection is vital for 
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detection purposes. Most enterprise systems will have hundreds or thousands of endpoints 

generating more logs than the virtual machine used for testing, so knowing the indicators of 

compromise is vital in detecting a ShadowMove. Screenshot 4.1 demonstrates this by 

displaying a four-hour period within which over 38,584 Security events were logged and sent to 

the SIEM tool.  

Figure 2  

A screenshot from DataDog SIEM displaying the number of logs generated in a mostly idle four-

hour period. Before applying any filters there were 38,554 log files to parse 

 

To narrow the scope of logs, filters were implemented on the DataDog SIEM to only 

include the Windows Security Event ID’s that are related to ShadowMove. These event IDs are 

4663 “An attempt was made to access an object”, 4688 “A new process was created”, 4689 “A 

process has exited”, and 4690 “An attempt was made to duplicate a handle to an object”. This 

filter is displayed in screenshot four. Furthermore, once the filter was applied, the number of 

events listed was reduced to 3,238. Once the filter was applied to the target data, a comma 
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separated values file was exported and downloaded for filtering, searching, and manual 

inspection using Microsoft Excel.  

Figure 3  

Screenshot taken from DataDog SIEM showing the number of filtered logs during a four-hour 

period containing an instance of ShadowMove 
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Figure 4 

Screenshot of DataDog SIEM Log View with the ShadowMove Hunting filter applied. Notice the 

substantial reduction in log volume by applying a simple filter based on Event ID 

 

API Monitor and Static Analysis of API Calls. 

Manual inspection of the API Monitor output shows the ingenuity behind the 

ShadowMove attack. Each stage of the attack as outlined in Section III is caught during the 

execution of ShadowMove by API Monitor. This section contains screenshots of the API calls 

made during runtime and shows that successful socket duplication occurs and demonstrates 

that the packaged libraries are one of ShadowMove’s greatest strengths and its biggest 

weakness. Something to note in screenshots four through seven is that all API calls are pulled 

directly from PoC.exe, therefore Log ID 4663 will not trigger on ntdll.dll nor WS2_32.dll when 

PoC.exe is executed.  

 In Figure 5, the ShadowMove program (PoC.exe) is executing the first step of 

ShadowMove. Using the ntdll.dll packaged in the ntdll.lib file, PoC.exe is calling the API 
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NtQuerySystemInformation to search for the AFD handle that it can inject into. On line 1028 the 

injectable handle is found as noted by “Return Value: STATUS_SUCCESS”. 

Figure 5  

PoC.exe calls ntdll.dll from the linked library file to query system information to find an injectable 

AFD handle 

 

 In Figure 6, PoC.exe uses ntdll.dll to attempt and create a new object handle by 

duplicating the object handle of the discovered AFD handle discovered in stage one. Again, 

note that the API call is originating from PoC.exe and not ntdll.dll—this is due to the linked 

library files.    
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Figure 6  

PoC.exe calling NTDuplicateObject to duplicate the AFD handle to use in a socket connection 

attempt 

 

 Once ShadowMove successfully duplicates the object, PoC.exe calls 

WSADuplicateSocketW from WS2_32.dll to create the special protocol structure for the final 

stage of the attack.  
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Figure 7  

PoC.exe calls WSADuplicateSocketW to create the special protocol structure that will be used 

to connect to the socket in the final stage of ShadowMove 

 

 Finally, once the special protocol structure is created in the third stage of the attack, 

PoC.exe calls WSASocketW from WS2_32.dll and provides the information provided by 

WSADuplicateSocketW to connect to the duplicated socket. The socket connection takes place 

on line 4547 and the data send request can be seen on line 4557 while the reception of data 

can be seen on line 4560.  
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Figure 8 

PoC.exe calls WSADuplicateSocketW to duplicate the socket and connect 

 

  When an attempt to duplicate a handle is made, a Windows Security event 4690 is 

generated. These events are not rare, and within the four-hour window within which 

ShadowMove took place, there were over 1,850 handle duplication events logged. If a 

suspicious program name or location is found to be duplicating handles, then it may raise red 

flags for an analyst, however, finding the process name in the sea of logs is extremely difficult.  

Image nine displays the number of logs generated during the four-hour timeframe that are 

relevant to the investigation.  
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Figure 9  

A large number of handle duplication events takes place every hour on a Windows system 

 

 The final screenshot displays an important log generated during ShadowMove. This log 

is an auditing log for item access and is generated on C:\Windows\SysWOW64\wshqos.dll. This 

DLL is responsible for loading library files from executables. This event, in my research, rarely 

takes place and will be the key for finding an instance of ShadowMove taking place among the 

numerous log files generated by a system.  

Figure 10  

Access to wshqos.dll is made to load library files into the ShadowMove process. This is one of 

the few areas where ShadowMove directly interacts with the operating system 
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Data Analysis 

 Because ShadowMove touches so little of the core operating system, handle duplication 

events are so common, and DLLs used during the attack are innately trusted by Windows, 

automated detection of the malicious software is difficult. In analyzing the data, I aim to propose 

a method by which analysts can narrow down whether ShadowMove may have occurred. 

Manual analysis of the API calls will always be necessary to prove beyond the shadow of a 

doubt that ShadowMove occurred, however, this methodology that I propose will allow the 

analyst to narrow down the list of suspect processes to a level where manual analysis is 

possible.  

 The method for analyzing the data is done in Microsoft Excel by manipulating the filter 

options on the csv downloaded from DataDog Cloud SIEM. Since wshqos.dll is the one file on 

the operating system that ShadowMove directly interacts with, the first filter is set on the 

message column searching for any cells that contain the string wshqos.dll. This significantly 

narrows the field as only eight cells contain the string wshqos.dll. 

Figure 11  

Setting the filter query to only list cells where the string wshqos.dll exists in the message column 

 

 These log messages provide detailed information on the process name that called the 

API from the wshqos.dll file. In both cases, the process name is PoC.exe, and the process id is 

either 0x970 or 0x283c. The second step to manually analyzing whether a ShadowMove 

occurred is to search the message column for the discovered process ids. Doing so returns 32 
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results and begins to build a process flow for the execution of both processes. An analyst, at 

this point, would note that the process was created, attempted to duplicate objects and access 

objects that are being audited, and then exit. This follows the operating procedure of 

ShadowMove and upon closer inspection if the process name is unknown or it is running from a 

strange directory, it is likely that an unwanted program is executing within the environment. 

Figure 12  

The ShadowMove Process ids are filtered, and an analyst is able to view most steps of the 

ShadowMove process by filtering down Windows Event Logs 

 

 Once the process name and location are discovered, an analyst should sandbox the 

unknown application and determine its purpose and whether it is malicious. 

Summary 

 ShadowMove is a sophisticated piece of malware and due to its programming requires a 

high level of manual analysis to determine what it is doing. An analyst can use the data 

processing techniques outlined in this section to apply Windows auditing to specific DLLs, 

collect the pertinent log files, filter the logs, and determine whether it is possible that a 

ShadowMove has occurred. By filtering in this manner, an analyst would be able to find file 

names and process ids to further investigate, however, without statically or dynamically 
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analyzing the code, it would be impossible to determine with complete certainty that 

ShadowMove occurred.  
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Chapter V: Results, Conclusion, and Recommendations 

Introduction 

In this paper, I introduced traditional methods for lateral movement in Windows systems 

as well as well-known defenses for protecting systems from malicious lateral movement. 

Likewise, I explain why lateral movement is such a persistent issue and postulate on the fact 

that the most secure systems are non-networked systems which is the only surefire way to stop 

lateral movement. However, this solution will also significantly impede standard business 

practices. I took the time to research new methods proposed for lateral movement detection 

including graph-based and machine learning-based models. Finally, I presented ShadowMove, 

how it functions, and a new method for detecting ShadowMove which has not been detectable 

to my knowledge. 

Results 

 If an analyst is armed with the knowledge of socket duplication and how it can be used 

to duplicate network handles and inject anything into preexisting TCP streams, the method I 

propose will lead an analyst to an executable file for manual or dynamic code analysis.  

 I confirmed that ShadowMove is a legitimate threat and is excellent at evading detection 

as it hardly touches the host operating system. I was able to monitor API calls during runtime, 

confirm that socket duplication is feasible and possible without setting off many alerts, and 

determine a method for detecting ShadowMove as it touches the host operating system. 

Likewise, I was able to develop a manual filtering process using nothing but Windows Auditing 

and Event Logs to find a process name and process ID that may be conducting a ShadowMove. 

While not the most elegant solution, it functions as intended and will detect ShadowMove if the 

analyst knows what to look for.  
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Conclusion 

 The key to ensuring success in detecting a ShadowMove lies in auditing the correct files. 

Administrators should ensure they are monitoring for program access to specific DLLs related to 

socket duplication, library loading, and network communications. While these may be noisy and 

generate numerous logs, if a ShadowMove is thought to be present in the environment, the log 

generation may be the lynchpin in a system that either detects this novel lateral movement or 

does not.  

Future Work 

Creating a custom alert based on the wshqos.dll file access and subsequent handle 

manipulation events generated by the same host process would be a method for automating 

some of the detection process. This is a ruleset that I plan to implement in a SIEM solution in 

the future. If the DLL access closely mirrors the access outlined in this research, it is likely that 

some method of ShadowMove is being commit.  

Another area I did not focus on in this research is comparing the log generation with 

numerous other programs to determine how many false positives may exist in an enterprise 

level system. Since my research lab was only a single virtual machine running extraordinarily 

little software, it is possible that this method may generate more false positives than I anticipate. 

I would like to spend more time studying in more feature rich environments to determine 

whether my method will function as intended or generate multiple false positives.  

One of the major drawbacks of detecting ShadowMove is that it requires the analyst to 

determine exactly which API calls were made from specific DLLs. Since the attack uses specific 

functions from specific DLLs, the attack has a unique signature. However, since the signature is 

also based on standard Windows protocols that are used daily, differentiating a malicious 

ShadowMove from benign processes can be extremely tedious and difficult. Once ShadowMove 
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is suspected, an analyst should manually observe the file during runtime to determine whether 

socket duplication took place using specific function calls from dynamic link libraries.  

Solutions to investigate API calls exist but are typically manual processes. As malware 

becomes more sophisticated and attackers increasingly are using built-in operating system 

functions to execute attacks and bypass traditional Antivirus solutions, I believe it will be 

important in the future to always monitor specific function calls from dynamic link libraries. 

Traditional SIEM tools can monitor logs, but a solution that could hook DLL calls at runtime and 

log API calls from those DLLs would speed up analysis of potentially malicious software that is 

currently not alerted on. Furthermore, incorporating some version of deep-process analysis with 

a machine learning architecture like the one proposed by R. Holt and his team could lead to 

significantly more secure systems (Holt et al., 2019). 
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Appendix A 

 

(Ussath, Martin, et al. “Advanced Persistent Threats: Behind the Scenes.” 2016 Annual 

Conference on Information Science and Systems (CISS), Page 4, IEEE, 2016.) 
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Appendix B 

 

 

(MITRE ATT&CK Framework Recommended Remediations for Common Lateral Movement Attack Methods.) 
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