
St. Cloud State University St. Cloud State University

theRepository at St. Cloud State theRepository at St. Cloud State

Culminating Projects in Electrical Engineering Department of Electrical and Computer
Engineering

5-2021

Very Low Frequency Electrical Impedance Tomography Image Very Low Frequency Electrical Impedance Tomography Image

Reconstruction System Using FPGA Software-Hardware Co-Reconstruction System Using FPGA Software-Hardware Co-

design design

Monali Sinare

Follow this and additional works at: https://repository.stcloudstate.edu/ece_etds

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Sinare, Monali, "Very Low Frequency Electrical Impedance Tomography Image Reconstruction System
Using FPGA Software-Hardware Co-design" (2021). Culminating Projects in Electrical Engineering. 5.
https://repository.stcloudstate.edu/ece_etds/5

This Thesis is brought to you for free and open access by the Department of Electrical and Computer Engineering
at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Electrical
Engineering by an authorized administrator of theRepository at St. Cloud State. For more information, please
contact tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/ece_etds
https://repository.stcloudstate.edu/ece
https://repository.stcloudstate.edu/ece
https://repository.stcloudstate.edu/ece_etds?utm_source=repository.stcloudstate.edu%2Fece_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.stcloudstate.edu%2Fece_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/ece_etds/5?utm_source=repository.stcloudstate.edu%2Fece_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Very Low Frequency Electrical Impedance Tomography Image Reconstruction System

Using FPGA Software-Hardware Co-design

by

Monali Sinare

A Thesis

Submitted to the Graduate Faculty of

 St. Cloud State University

in Partial Fulfilment of the Requirements

for the Degree of

Master of Science

in Electrical Engineering

May, 2021

Thesis Committee:

Yi Zheng, Chairperson

Mahbub Hossain

Shensheng Tang

2

Abstract

 Electrical Impedance Tomography (EIT) is an imaging technique which is noninvasive

and uses the internal conductivity distribution of the object of interest to form a tomographic

image. It is performed by applying electrodes to the surface of the object. An alternating current

up to frequency 10kHz is applied through a pair of electrodes, and the induced voltage is

measured on other electrodes. These current and voltage values are used to reconstruct the

internal conductivity distribution. The EIT imaging is increasingly getting used in clinical

applications, as it is safer, portable, and low cost if compared with available imaging

technologies used in clinical settings.

 The goal of this project is to develop a low frequency Zynq SoC-based EIT system. A

Zynq 7020 device-based development board, Zedboard, interfaced with a customized hardware

circuit, is used to develop a complete EIT system. A graphical user interface is developed using

C# Graphic User Interface (GUI) application to control the hardware and visualize the results. It

is a twelve-electrode system, and current injection and voltage measurement is performed

through Zynq SoC. There are two image reconstruction algorithms developed, Gauss Newton

One Step and Total variation. The algorithms are implemented in Zynq SoC using software-

hardware co-design. The algorithms are also implemented in C#. The image reconstruction

performance between the two algorithms is compared. The computation performance between

Zynq SoC implementation and C# implementation is also compared to understand the feasibility

of FPGA implementation of EIT image reconstruction algorithms.

3

Acknowledgements

 I would like to thank Dr. Yi Zheng, my advisor, and mentor for this thesis. I am grateful

to Dr. Zheng for allowing me to work on this project. He has provided valuable insights

throughout the development of this project. I would like to especially thank Dr. Zheng for his

continuous support and encouragement throughout my entire study time at St. Cloud State

University.

 I would like to thank Dr. Mahbub Hossain and Dr. Shensheng Tang for being on the thesis

committee. I would also like to thank Robert Dubois for helping me during the initial phase of

this project.

 Finally, I would like to thank my family, especially my son, for their patience and support.

4

Table of Contents

Page

List of Table .. 7

List of Figures ..8

Chapter

1. Introduction .. 11

1.1 EIT in Biomedical Applications .. 11

1.2 FPGA for EIT Image reconstruction System ... 13

1.3 Objectives .. 13

1.4 Thesis Organization ... 16

2. Electrical Impedance Tomography .. 18

2.1 Electrical Impedance Tomography Background ... 18

2.2 Mathematical Background ... 25

2.3 Finite Element Method .. 30

2.4 Jacobian Matrix .. 35

2.5 EIT Algorithms .. 36

2.6 Prior Techniques .. 40

3. Previous Work Study .. 42

3.1 Study on human brain Activity and electrical impedance tomography 42

3.2 Image Reconstruction and EIT .. 45

5

Chapter Page

3.3 Real-Time Electrical Impedance Tomography .. 48

4. EIT MATLAB Implementation .. 59

4.1 About EIDORS .. 59

4.2 Design Description... 60

4.3 Test Results .. 62

5. XILINX Development Hardware and Software ... 64

5.1 Device Architecture ... 64

5.2 Development Board ... 67

5.3 Development Software... 69

6. EIT System Architecture .. 71

6.1 System Architecture ... 71

6.2 Algorithm Implementation... 76

7. Analog Front End Design Study and Modifications .. 82

7.1 Design Analysis ... 82

7.2 Modifications to Operate on Low Frequency .. 88

8. FPGA Design Development ... 97

8.1 Zynq SoC Design Description ..97

8.2 VIVADO Design ... 98

8.3 SDK Design ..126

9. Graphical User Interface Design and Development ..154

6

Chapter Page

9.1 Design Description..154

10. Experiments and Results ...173

10.1 Analog measurements ...173

10.2 Image Reconstruction results ..175

10.3 System Implementation and Performance Analysis ...183

11. Discussion and Conclusion ...189

Bibliography ..193

Appendix ..200

A. MATLAB EIDORS Code ..200

B. VIVADO Design Flowcharts ...204

C. SDK Code Flowcharts ...205

D. C# Implementation Functional Flowchart ...210

7

List of Tables

Table Page

1. 1 Typical Tissue Resistivity [4], [5] ..12

7. 1 Electrode stimulation and measurement pattern ...83

7. 2 Measurement for Channel 0 ..94

8. 1 DDR Mapping ...134

8. 2 ADC SPI EMIO Pin Assignment ..140

10. 1 Acquisition time at low frequency ..183

10. 2 Algorithm computation time ...183

8

List of Figures

Figure Page

2. 1 Typical EIT System Block Diagram ...22

2. 2 Stimulation Pattern for Electrode Pair ..24

2. 3 Typical Triangular Element in 2D problem ..31

3. 1 C# Implementation Flowchart (Chen) ..44

3. 2 Image for 16 rings and Tikhonov Prior (Chen) ..45

3. 3 C# Implementation Flowchart (Rabi) ...47

3. 4 Conjugate Gradient Image result with 24 rings, Laplace Prior (Rabi)48

3. 5 Block Diagram of Analog Front End Hardware ...49

3. 6 FPGA Block Level Implementation (Senior Design Team) ...53

3. 7 Timing Summary of FPGA design (Senior Design Team) ...54

3. 8 Device Utilization Report (Senior Design Team) ...55

3. 9 Flowchart for GUI Implementation (Senior Design Team) ..57

4. 1 EIDORS Code Flowchart ...60

4. 2 Image with Gauss Newton One Step, 16 rings and Tikhonov Prior61

4. 3 Image with Total Variation, 12 rings and Noser Prior..61

5. 1 Zynq FPGA SoC Architecture [38] ..63

5. 2 Zedboard Block Diagram [40] ..66

6. 1 Block Diagram of EIT System Implementation ...69

8. 1 VIVADO Functional block diagram ...97

8. 2 Complete VIVADO Block Diagram ...98

9

Figure Page

8. 3 Processor IP ..99

8. 4 DAC data generation IP core ..100

8. 5 Simulation waveform for 100Hz ..103

8. 6 Digital Pot control IP core ..104

8. 7 Write Timing Diagram AD5293 [47] ...106

8. 8 AXI-lite register usage for digital pot programming ..107

8. 9 ADC interface timing diagram[48] ...109

8. 10 ADC channel and shift register IP block ..109

8. 11 Sampling frequency setting logic blocks ..111

8. 12 sampling frequency division logic ..111

8. 13 Number of samples control IP block ..112

8. 14 FIFO IP Core...114

8. 15 Combinational Logic for FIFO write enable ..115

8. 16 FIFO Read enable signal IP core ..115

8. 17 generate FIFO read enable logic ...116

8. 18 AXI DMA IP Core block in the design ..118

8. 19 AXIS multiplier IP core block ..119

8. 20 AXIS multiplier data load logic ..121

8. 21 ADC SPI communication format [48] ..139

8. 22 DMA transfer ..144

8. 23 Wb computation code (SDK)..146

10

Figure Page

8. 24 TV Denominator computation code (SDK) ..147

8. 25 Matrix Inversion logic flowchart (SDK)...149

9. 1 GUI Design for EIT System ...153

9. 2 Port settings form ..156

10. 1 EIT System Hardware Setup ...171

10. 2 Voltage measurement at 8 ADC channels for different frequencies172

10. 3 Tissue phantom used for the testing ..173

10. 4 Gauss Newton One Step Low Impedance Image at 30Hz ..174

10. 5 Gauss Newton One Step Low Impedance Image at 2Hz ..175

10. 6 Total Variation Low Impedance Image at 30Hz...176

10. 7 Total Variation Low Impedance Image at 2Hz...177

10. 8 Impedance change at two locations, with Gauss Newton One Step179

10. 9 Impedance change at two locations, with Total Variation ..180

10. 10 FPGA Design Device Utilization Report ..181

10. 11 FPGA Design Timing Summary ...182

10. 12 Phantom holes measurements ...185

10. 13 Low Impedance Anomaly detection ...186

11

Chapter 1: Introduction

 Electrical Impedance Tomography (EIT) is the imaging technique that uses internal

conductivity distribution to form an image of the medium. The EIT technology is being studied

and improved for the last four decades[1]. In EIT, internal conductivity is estimated with the help

of electrodes attached to the surface of the subject. A specific current is injected through one pair

of the electrodes, and induced voltages are measured through the remaining electrodes. These

current and voltage measurements are used to calculate the conductivity distribution over the

internal area, which then can be used to form a tomographic image.

 Electrical Impedance Tomography has various applications in the fields such as

biomedical, geophysical, and industrial. EIT application is also being studied for semiconductor

manufacturing, nanotechnology, and chemical engineering [2]. In the biotechnology field, the

EIT is used for biological cell imaging.

1.1 EIT in Biomedical Applications

 Electrical Impedance Tomography imaging usage in healthcare is due to the fact that

biological tissues have electrical properties. In EIT imaging, the tissue conductivity property is

studied. A simple electrical model of a tissue constitutes a resistance and a capacitance; thus, the

tissue conductivity varies with the frequency at lower range (<100kHz). Moreover, tissue

conductivity depends on fluid content and ion concentration [3], hence different tissues show

different conductivity. This makes it feasible to form the tomographic image of the internal of

the body part of interest.

12

Table 1.1 shows typical resistivity of some of the body tissues measured at different frequencies

[4], [5].

Table 1. 1 Typical Tissue Resistivity [4], [5]

Tissue Resistivity (Ω-m) Frequency

Muscle 2-4 10kHz

Fat 20 10kHz

Lungs 10 10kHz

Blood 1.6 10kHz

Bone >40 10kHz

Cerebrospinal Fluid 0.80 50kHz

Gray Matter 3.51 50kHz

White Matter 3.91 50kHz

Moreover, the EIT imaging is performed non-invasively and uses low alternating

currents. If compared to the available imaging techniques such as CT or PET scan which uses

ionizing radiation, or MRI which uses strong magnetic fields, EIT is much safer for the patient.

EIT, unlike CT or MRI, can be used at the bedside of the patient. The instrumentation required to

perform EIT makes it feasible to apply it to the patient on the bed and hence the visualization of

tomographic image of the body part can be performed continuously. This advantage makes long

term monitoring of the condition possible [4]. The most studied application of EIT is lung

ventilation monitoring [3], [6]. The impedance change within lungs during the ventilation cycle

is used to monitor the lung functioning. Another important application is brain imaging. The

conditions such as cerebral ischemia , brain hemorrhage can be monitored using EIT, since the

change in blood flow changes the conductivity[7]. Other notable applications of EIT which are

under research are breast imaging, pediatric lung and cranial imaging[2]. During recent years,

applications of EIT are also being explored in wearable healthcare systems[8].

13

 Despite the potential benefits of EIT imaging in biomedical applications, it does not

provide the spatial resolution as provided by more popular imaging techniques such as CT or

MRI. There is an intensive research work being performed continuously in this area since last

few decades. There are multiple algorithms proposed and implemented for improving the quality

of reconstrued image. Moreover, there are various medical equipment manufacturers who are

providing commercial EIT imaging systems [3], for instance, PulmoVista 500 by Drager or

LuMon by Sentec.

1.2 FPGA for EIT Image reconstruction System

 FPGAs are increasingly being used for implementing computationally complex designs.

FPGAs provide high speed programmable logic arrays which can be used for parallel processing

logic implementations. The Xilinx provided Zynq SoCs includes a single or dual core high

performance ARM Cortex A9 based processor (PS) and high-performance programmable logic.

It allows users to combine the computational power of processor and FPGA to develop efficient

designs. Additionally, the SoCs provide a cost-effective solution as compared to fast processors

and DSPs.

 The SoC based EIT image reconstruction system[9] may provide a cost-effective solution

for the parallel processing required by a EIT system.

1.3 Objectives

 In this project, the feasibility of implementing EIT image reconstruction algorithms using

parallel processing provided by FPGA is explored. A standalone and efficient EIT system for

14

biomedical applications can be developed. A phantom made using animal skin gelatin is used as

a body of interest, for the test purpose. A custom designed Analog Front End, designed by one of

the senior design teams in Department of Electrical Engineering, St. Cloud State University is

used. A Xilinx Zynq SoC development board, Zedboard is used as a controller and the image

data processor. A graphical user interface (GUI) is designed using C# windows form application.

For image reconstruction, two algorithms, Gauss Newton One Step and Total Variation are

developed. The complete work can be divided as follows

1) Study EIT Image Reconstruction Methods: It includes the study of Electrical Impedance

Tomography methods and algorithms. It also includes the study of finite element method and

its application in EIT. Two image reconstruction algorithms, Gauss Newton One Step and

Total Variation are studied.

2) Study and Modify the Available Analog Front End Board: The AFE board designed by a

senior design team, is designed to work with a frequency range of 100Hz to 100kHz. The

AFE is modified to be able to work at lower frequency range from 1Hz to 30Hz. The EIT

imaging at lower frequencies can be helpful in the cases like tissue edema.

3) Implement the Signal Generation and Acquisition Logic in FPGA: The AFE board includes a

DAC to transmit the driving signal to the phantom and ADC to read the induced potential on

the surface potential. The FPGA design for sinusoidal signal generation at various

frequencies and data acquisition at different sampling rates is designed.

4) Develop a Communication Protocol for Serial Communication: The FPGA design requires

few parameter settings transferred from GUI as well as the resulting image data is to be sent

15

to GUI for display. There is a serial communication link between Zynq SoC and GUI. A

communication protocol is designed to transfer the data between GUI and Zynq SoC.

5) Implement the Gauss Newton One Step Algorithm: The one step image reconstruction

algorithm, Gauss Newton One Step is developed in FPGA. The design is PS/PL co-design.

The reconstruction algorithm is stored in PS DDR and transferred to PL for computation as

per requirement.

6) Implement the Total Variation Algorithm: An iterative algorithm, Total Variation is

developed in Zynq PS and PL. It is also a PS/PL co-design. Some part of the computation is

developed in PS and some part of the computation is performed in PL.

7) Design a C# Graphical User Interface: A GUI is developed using C# windows form

application. The GUI can communicate with FPGA over serial port for transferring data to

and from FPGA. It also includes the display of image data using finite element mesh.

8) Implement the Gauss Newton One Step and Total Variation Algorithms in C# Software: The

Gauss Newton One Step and Total Variation algorithms are developed in software. This way,

the FPGA can only be used for data acquisition. Also, further computationally complicated

reconstruction algorithms can be developed in software.

9) Test the Complete System for Different settings: Experiments using different parameters

such as different frequencies, number of samples, type of algorithms etc. are performed and

results are analyzed.

16

1.4 Thesis Organization

 Chapter 1, Introduction, includes a brief introduction of EIT imaging technique and its

applications in biomedical. It also includes the project objectives description.

 Chapter 2, Electrical Impedance Tomography, includes mathematical background for an

EIT image reconstruction problem. It includes the finite element model, Jacobian Matrix, Prior

techniques, and the image reconstruction algorithms. Two algorithms, Gauss Newton One Step

and Total Variation algorithm are introduced.

 Chapter 3, Previous work study, includes the review of the EIT projects performed by

previous St. Cloud State University students. Two of the projects are software implementation

using C# and one of the projects is an FPGA based standalone EIT system development.

 Chapter 4, EIT EIDORS Implementation, includes a design description of a MATLAB

code designed to study the EIT image reconstruction.

 Chapter 5, Xilinx Development Hardware and Software includes the details of the FPGA

development board used in this project. The Xilinx Zynq SoC based Zedboard is used. The Zynq

SoC architecture and the Xilinx provided development software, VIVADO IDE is also

discussed.

 Chapter 6, EIT System Architecture, includes a block wise description of the complete

EIT system developed in this project.

 Chapter 7, Analog Front End, includes the description of the analog front-end hardware

design developed by a senior design team. It also includes the design upgrade implementation

done for the AFE to work at lower frequencies.

17

 Chapter 8, FPGA Design Development, includes a detailed design report of the FPGA

design. The Zynq SoC constitutes of FPGA and processor, this chapter covers the FPGA design

as well as processor design developed in this project.

 Chapter 9, Graphical User Interface Design and Development includes the detailed GUI

front end design. The software design and communication protocol are discussed.

 Chapter 10, Experiments and Results, includes the tests performed for validation of the

various design aspects of the project.

 Chapter 11, Discussion and Conclusion includes the discussion about the complete

project work and the results obtained.

 At the end, the SDK code and C# GUI code flowcharts are given in the appendix. It also

includes a MATLAB code which was designed for a study during the preliminary work

18

Chapter 2: Electrical Impedance Tomography

 In this chapter Electrical Impedance Tomography (EIT) technique is introduced with a

typical EIT system and the mathematical description. The finite element method, Gauss Newton

One Step and Total Variation algorithms are also introduced.

2.1 Electrical Impedance Tomography Background

 In Electrical Impedance Tomography imaging technique, number of electrodes are placed

around the body part of interest, an alternating current of less than ten milliamperes [10] at a

frequency of up to 100kHz is applied through a pair of electrodes and resulting potential is

recorded on the remaining electrodes. This process is repeated by using all electrodes one pair at

a time as a current source. The recorded data is then passed through a mathematical algorithm to

reconstruct an image of the internal impedance distribution of the body part of interest. The

alternating current level used in EIT should follow the “patient auxiliary current” limit decided

by the International Electrotechnical Commission (IEC) [10]. According to this standard, for

frequency range from 0.1 Hz to 1 kHz, the current should be limited to 100 µA, from 1kHz to

100kHz it should be 100f µA, where f is the frequency in kHz and from 100kHz and above it

should be 10mA [4], [10].

 The challenge in EIT image reconstruction problem is that the electric current passed

through one electrode pair travels three dimensionally along the path of least resistivity [11]. This

may affect the resulting voltage measurements at the other electrodes. In most available literatures,

even though the data is collected from a three-dimensional body, an EIT image was reconstructed

with an assumption that the body was two dimensional [11]. Thus, the reconstructed image does

19

not really represent the true distribution of the conductivities of the body. In addition, the algorithm

solved an inverse problem, thus solution is not unique. Calculating the conductivity distribution of

the interior of the body of interest with known applied current and measured voltages at the

boundary, makes the image reconstruction as inverse problem[11]. However, if the applied current

and impedance distribution are known, the voltage can be calculated, it is called as the forward

problem. In EIT image reconstruction, at first, an internal impedance distribution is assumed, and

a forward model is generated, which can estimate the boundary voltages with given applied current

and impedance distribution. The calculated voltages are compared to the measured voltages.

Depending upon the difference between measured voltages and calculated voltage the impedance

distribution is adjusted, and the process is repeated until the difference between actual and

calculated voltages reduces to the acceptable level.

 The forward problem is governed by partial differential equation. Hence, to solve the

forward problem, numerical techniques such as finite element method (FEM), finite difference

method (FDM) or boundary element method (BEM) can be used [12] [13]. The FEM divides a

large system into smaller parts called as finite elements which can be polygons, whereas, the BEM

requires for the object under investigation to have homogeneous conductivity distribution and the

FDM uses the rectangular geometry. Hence, in clinical EIT, finite element method is preferred as

it can model irregular and nonhomogeneous geometries more precisely.

 With the help of forward model, a regularized non-linear solver can be used to obtain a

unique and stable inverse solution. In last few decades various image reconstruction techniques

and algorithms for EIT image reconstruction have been proposed and implemented. Those

algorithms include modified newton Raphson [13], back projection, Gauss-Newton one step

20

algorithm, Graz consensus Reconstruction algorithm for EIT (GREIT), conjugate gradient method,

Total Variation etc. Artificial Neural Networks and Deep Learning are also getting studied for EIT

image reconstruction in order to improve image quality [14]. There is an open source software

EIDORS (Electrical Impedance and Diffused Optical Reconstruction Software) developed using

MATLAB which can be used for forward and inverse modelling for EIT image reconstruction

[15].

 There are two imaging techniques in EIT, difference imaging and static imaging [4], [13].

In difference imaging, there are two subcategories, time difference and frequency difference. In

time difference technique, the change in tissue conductivity measured at two different instances is

calculated. This change is back projected to form an image showing changes in the conductivity

distribution happened between two instances. In frequency difference imaging, the change in tissue

conductivity at two different frequencies is calculated. Frequency difference technique is based on

the fact that different tissues have different frequency response [14]. In static imaging, the absolute

values of conductivity distribution are calculated and used to form an image. As mentioned above,

there have been numerous algorithms studied and implemented to reconstruct the impedance

distribution image. The imaging algorithms can be classified as iterative and non-iterative. The

impedance image reconstruction is a non-linear problem since the internal impedance distribution

is unknown, hence an iterative method could give the best result [4], but it would be

computationally more expensive. In this project, two algorithms using time difference imaging are

implemented, a one step that is non-iterative Gauss Newton One Step and iterative Total variation

algorithm.

21

2.1.1 Advantages/Disadvantages of EIT

 The Electrical Impedance Tomography is performed non-invasively. It uses up to ten

milliamperes of alternating current [10] to inject through the body of interest to measure the

induced potential and build the relative impedance image. This technique is less harmful as

compared to the available imaging techniques such as Computed Tomography (CT) or Magnetic

Resonance Imaging (MRI). CT uses ionizing radiation whereas MRI uses strong magnetic fields,

both of which can be harmful for longer exposures to the patient. Because the EIT imaging

technique uses few milliamperes current, it can be used for long term patient monitoring, for

instance in cases where continuous lung ventilation needs to be monitored. The EIT systems

mostly include hardware to generate low level constant current source, a data acquisition

hardware and a computer for processing acquired data from multiple channels. This makes EIT

systems portable. Another very important advantage is that EIT technique has faster imaging

capabilities. Some of the commercially available EIT systems provide 40 images/seconds frame

rate [3]. Real time imaging can be made possible due to such temporal resolution.

 The major disadvantage of EIT systems is the technique has lower spatial resolution. In

the EIT image reconstruction problem there can be a very small change on the surface potential

for a large change in conductivity inside the body of interest. Also the final solution is very

sensitive to noise introduced due to measurement artifacts [16].

22

2.1.2 Typical EIT System

 This section includes the description of typical EIT system. Figure 2.1 shows the block

diagram

Figure 2. 1 Typical EIT System Block Diagram

The EIT system can be divided into two parts such as data acquisition and data processing.

Following is the description of both parts in brief.

1. Data Acquisition and Control

 As described above, in EIT, number of electrodes are placed on the surface of the subject

of interest. To retrieve the internal conductivity distribution, an alternating current is applied to a

pair of electrodes and resulting voltages on remaining electrodes are recorded. The current

application is repeated in a pattern for other electrodes and respective voltages are recorded. For

achieving this functionality, a current source is required. The current source is to be connected to

different electrodes, in a pattern, hence a multiplexer can be used to connect one current source to

a pair of electrodes. Similarly, the voltage readout from the remaining electrodes also needs to be

taken from different electrodes in a pattern, hence a multiplexer can be used to choose which

23

electrode to be connected to ADC. The multiplexers can be controlled through a microcontroller

or a microprocessor. The controller needs to be used to control the system functionality as well as

to transfer the acquired measurement data to the software for processing. The link between

controller and software system can be wired or wireless.

2. Data Processing and Display

 In EIT, the software system or a Graphical User Interface is required to set the parameters

such as number of electrodes and current application pattern for the acquisition. The main

functionality of the software should be to store the voltage measurements, run the image

reconstruction algorithms and display the results. The typical EIT system software operational

flow would include setting up the system parameters, creating a forward model, acquiring, and

storing the measurement data, solving for the inverse solution, and displaying the reconstructed

image.

2.1.3 Stimulation and Measurement Patterns

 When a current is applied using two electrodes on a surface of a body with homogeneous

impedance distribution, it forms equipotential distribution inside the body. If there is a change in

the impedance distribution the potential distribution varies accordingly, hence changing the

potential on the boundary. Due to this the injected current and measured boundary potential can

be used to approximate the impedance distribution of the internal of the body.

 There are two current injection patterns, multiple electrode current drive and pair

electrode current drive [4], [14]. In multiple electrode current drive pattern, the current is applied

24

to more than two electrodes and the potential is measured on all the electrodes. This current

pattern is repeated till the current is injected through all the electrodes. This way the current

density inside the body increases which also increases the sensitivity towards the impedance

distribution measurements[4]. However, this method is not cost effective as well as it

complicates the hardware design.

 The pair electrode current drive is typically implemented in two ways, adjacent current

drive, and opposite current drive. In adjacent current drive, the current is injected between two

adjacent electrodes, as shown in figure 2.2 (a) and voltage is measured between remaining

adjacent electrode pairs. This sequence is repeated till the current is injected through all the

electrodes. Another pair electrode current drive type is opposite or pseudo-polar drive pattern

[17]. In this drive pattern the current electrode pair is selected as opposite, as shown in figure 2.2

(b). The voltage is measured at the adjacent electrodes. In this project the opposite current drive

pattern is used.

Figure 2. 2 Stimulation Pattern for Electrode Pair

25

2.2 Mathematical Background

 In EIT, the problem is to reconstruct the internal conductivity distribution with the help

of known applied current and measured voltages on the surface. In this section, the mathematical

model required to solve the said problem is discussed.

 In case of clinical EIT, the applied current is known, and the induced voltages are

measured. From available current and voltage values, internal conductivity distribution is to be

calculated, this makes it as an inverse problem. Moreover, according to Hadamard [14], a

mathematical model of a physical problem is well posed if it satisfies the following conditions

1. A solution exists for all admissible data

2. The solution is unique for all the admissible data

3. The solution continuously depends on the data

 In case of the EIT problem, there are more unknowns than the known parameters. Because

of this a unique solution may not exist. Also, for any given measurement precision, the change in

conductivity precision may be arbitrarily large and may go undetected. This makes the problem

ill-posed[11]. To find a practical solution for this problem it is regularized using regularization

methods. Also, for improving the situation of data dependency, some additional information about

conductivity distribution is introduced. This a priori information constraints the solution and brings

stability to the solution.

 Mostly, the conductivity calculation is approached in two steps, forward problem, and

inverse problem. If the current applied to the body is known along with conductivity distribution

and voltage is to be calculated, it is called as forward problem. If the current applied and voltage

measured is known and conductivity distribution is to be calculated, it is called as inverse problem.

26

In the following section, the mathematical expression behind forward and inverse problem are

discussed.

2.2.1 Forward Problem

 For solving EIT forward problem, a forward model is built in which the initial

conductivity of the body is assumed. With the help of applied current and assumed conductivity,

the boundary voltage is calculated. This computation is based on electromagnetism [7], [18].

 In EIT computation, the low frequency signals are used so that the static field

assumptions can be used[7], [18], [19]. This is because at low frequencies the wavelength is

much greater than the dimension of a body of interest [7]. It is also assumed that the internal

conductivity distribution is not affected by the electromagnetic field density, hence the

conductivity anywhere can be treated as scalar [19] .

The Maxwell’s equations [19] for electric field E and magnetic field H in point format are given

as follows

∇𝑋 𝐸 = −

𝜕𝐵

𝜕𝑡

(2.1)

 ∇𝑋 𝐻 =
𝜕𝐷

𝜕𝑡
+ 𝐽 (2.2)

where,

B = Magnetic flux

D = Electric Displacement

J = Current density

Using Ohm’s law, the internal current density J in terms of electric field [20]is given by

27

 𝐽 = 𝜎 𝐸 (2.3)

where, σ is the internal conductivity distribution.

In case of EIT, the dimension of the object under investigation is much smaller than the

wavelength of the signal applied, for example, if the applied signal frequency is 10 kHz the

wavelength would be 3x104 meters. This makes the dimension of the object under investigation

<1% of the signal wavelength. Hence, the internal electric field can be considered as static and can

be defined in terms of the scalar potential (V) as follows

 E = −∇ V (2.4)

where, V represents the scalar potential distribution within the field. Combining equations 2.4 and

2.3, we get

 J = − 𝜎∇ V (2.5)

If it is considered that there are no internal current sources [20], we get

 ∇. J = 0 (2.6)

Combining equations 2.5 and 2.6, we get

 ∇. 𝜎∇ V = 0 (2.7)

Equation 2.7 is the partial differential equation (PDE) which dominates the EIT problem [21].

For a domain 𝛺(𝑥, 𝑦, 𝑧), the equation 2.7 can also be written as

 𝜕

𝜕𝑥
𝜎

𝜕𝑉

𝜕𝑥
+

𝜕

𝜕𝑦
𝜎

𝜕𝑉

𝜕𝑦
+

𝜕

𝜕𝑧
𝜎

𝜕𝑉

𝜕𝑧
= 0 (2.8)

For equation 2.7 to have a unique solution, the boundary condition needs to be defined [19].

If ∂Ω represents the boundary, applying the Gauss’s theorem for conservation of current [19], [20],

we can write

28

∫ 𝑗 = 0

∂Ω

(2.9)

where, j is the current density at the boundary. The current density at the boundary is given as

[20]

 j = −J . n (2.10)

where, n is an outward unit normal to the boundary ∂Ω. Using equation 2.5, equation 2.10 can

also be written as

 j = 𝜎∇ V. n (2.11)

Equation 2.7 and 2.11 represent the EIT forward problem [19], with the help of known

conductivity and known applied current, the potential distribution V can be calculated.

2.2.2 Inverse Problem

 The goal behind solving the inverse problem is to get the unknown internal conductivity

distribution with the help of measured voltages and simulated voltages. By solving the forward

problem, the simulated voltages at the boundary can be calculated. If V𝑚is the measured voltages

at the boundary, then the solution can be approached by minimizing the difference between

measured voltages and simulated voltages

 𝑉𝑚 − 𝐹(𝜎) ≈ 0 (2.12)

where, F(.) is the forward operator which gives the simulated voltages which depends upon the

conductivity distribution σ.

If F(σ) can be approximated by using Taylor series and considering only first order

approximation, we get

29

𝐹(𝜎) ≈ 𝐹(𝜎0) +

𝝏𝐹(𝜎0)

𝝏𝜎
(𝜎 − 𝜎0)

(2.13)

where σ0 is the assumed initial estimation. Equation 2.13 can be written as

 𝐹(𝜎) ≈ 𝐹(𝜎0) + 𝑱(𝜎 − 𝜎0)

As J =
𝝏𝐹(𝜎0)

𝝏𝜎
 is the Jacobian matrix of F calculated at σ0. Hence, equation 2.12 can be re-written

as

 𝑉𝑚 − 𝐹(𝜎0) − 𝑱(𝜎 − 𝜎0) ≈ 0 (2.14)

Putting ∆V = 𝑉𝑚 − 𝐹(𝜎0), which shows the variation in the measured potentials for change in

conductivity [17], and ∆𝜎 = 𝜎 − 𝜎0, which shows the change in conductivity, then equation 2.14

becomes

 ∆V ≈ 𝐉∆𝜎 (2.15)

Which gives

 ∆𝜎 ≈ 𝐉−𝟏∆V (2.16)

Since Jacobian matrix is mostly not invertible, equation 2.16 is solved by minimizing the least

squares errors as follows [19]

 ∆𝜎𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛(‖𝐉∆𝜎 − ∆V‖2) (2.17)

Which gives, [19]

 ∆𝜎𝐿𝑆 = (𝑱𝑇𝑱)−1𝑱𝑻∆V (2.18)

 Here, since there are a greater number of unknown conductivity elements than the known

boundary measurements, the problem is ill-conditioned[19]. For getting a unique solution to this,

regularization is needed. Regularization is a technique used to find more stable but approximate

solution by applying a prior information. There are several regularization methods, but in EIT

30

application Tikhonov regularization is commonly used[11]. It adds a regularization parameter with

prior information.

Hence, equation 2.18 becomes [17]

 ∆𝜎 = (𝑱𝑇𝑱 + 𝜆2𝑅𝑇𝑅)−1𝑱𝑻∆V (2.19)

Where, λ is called as the hyperparameter or regularization parameter and R is the regularization

matrix, which controls the smoothness of the solution [17]. There are various methods to calculate

the regularization matrix R, for example, NOSER, Laplace, Tikhonov etc.

2.3 Finite Element Method

 Finite element method (FEM) is a numerical method used to solve problems that are

described by partial differential equations [22], [23]. In EIT, forward problem is solved with the

help of finite element method [11]. An area under investigation is discretized as a group of non-

overlapping finite elements such as triangles or quadrilaterals. In other words, a continuous

physical problem is converted into discretized finite element problem with unknown nodal

values. The process of analyzing any problem with finite element method [19], [23] involves

- Dividing the solution region into finite elements, also called as finite element mesh. The output

of mesh generation consists of arrays of nodal coordinates.

- Selecting the interpolation functions to interpolate the field variables over the element.

- Deriving the equations for elements which relates the nodal values of the unknown function to

other parameters.

- Finding the global equation system for the complete solution region by assembling the element

equations.

31

- Solving the global equation system

 Consider, a domain is divided into finite number of triangles and the triangle shown in

figure 2.3 represents an element in the finite element model with vertices denoted by node1 (x1,

y1), node2 (x2, y2) and node3 (x3, y3). The problem statement here is to find the approximation

for the potential 𝑉𝑒 within an element e. The potential for each element then can be interrelated to

find the approximate solution for the complete region.

Figure 2. 3 Typical Triangular Element in 2D problem

If the solution region is divided into N number of triangular elements, the approximate

potential for the whole region can be represented as[24]

𝑉(𝑥, 𝑦) = ∑ 𝑉𝑒

𝑁

𝑒=1

(2.20)

The common form of approximation for V within a triangular element is polynomial

approximation as follows

 𝑉𝑒(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 (2.21)

32

From equation 2.21, the potential at Ve1, Ve2, Ve3 at the triangular element nodes 1,2 and 3 can be

written as

[
V𝑒1

V𝑒2

V𝑒3

] = [

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

] [
𝑎
𝑏
𝑐

]

(2.22)

The coefficients a, b and c can be determined using equation 2.22 as follows

[
𝑎
𝑏
𝑐

] = [

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

]

−1

[
V𝑒1

V𝑒2

V𝑒3

]

(2.23)

Solving for inverse of the coordinate matrix and substituting resulting equation into equation 2.21,

we get

𝑉𝑒(𝑥, 𝑦) = [1 𝑥 𝑦]
1

2𝐴
[

(𝑥1𝑦3 − 𝑥3𝑦2) (𝑥3𝑦1 − 𝑥1𝑦3) (𝑥1𝑦2 − 𝑥2𝑦1)
(𝑦2 − 𝑦3) (𝑦3 − 𝑦1) (𝑦1 − 𝑦2)
(𝑥3 − 𝑥2) (𝑥1 − 𝑥3) (𝑥2 − 𝑥1)

] [
 V𝑒1

 V𝑒2

V𝑒3

]

(2.24)

where, A is the area of the element and given as

2𝐴 = |

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

|
(2.25)

For the value of area A to be positive, the nodes numbering should be done counter clock wise as

shown in figure 3 with arrow [23].

Equation 2.24 can also be written as

𝑉𝑒 = ∑ 𝛼𝑖(𝑥, 𝑦)𝑉𝑒𝑖

3

𝑖=1

(2.26)

where,

33

α1 =

1

2𝐴
 [(x2y3 – x3y2) + (y2 – y3) x + (x3 – x2) y]

(2.27a)

α2 =

1

2𝐴
 [(x3y1 – x1y3) + (y3 – y1) x + (x1 – x3) y] (2.27b)

α3 =

1

2𝐴
 [(x1y2 – x2y1) + (y1 – y2) x + (x2 – x1) y] (2.27c)

Here, 𝛼𝑖 are the linear interpolation functions and called as element shape functions [24].

Equation 2.26 defines the potential within the triangular element as a function of the values of

the potential at the element’s three nodes.

From equation 2.7, EIT partial differential equation, if 𝑉𝐸 is the actual solution and 𝑉𝐹𝐸𝑀 is the

approximate solution found by FEM, then [24]

 ∇. 𝜎∇𝑉𝐹𝐸𝑀 − ∇. 𝜎∇𝑉𝐸 = 𝑅 (2.28)

where, R is the residual. Hence,

 ∇. 𝜎∇𝑉𝐹𝐸𝑀 = 𝑅 (2.29)

As, ∇. 𝜎∇𝑉𝐸 = 0 and ∇. 𝜎∇𝑉𝐹𝐸𝑀 ≈ 0.

In the weighted residuals method, the weighted sum of the residuals over all the elements can be

zero if proper weight can be found. Hence, the integral of the weighted residual over the medium

Ω will be zero [24].

∫ 𝑊𝑅𝑑Ω = 0

Ω

(2.30)

where, W is defined [24] as

 𝑊 = ∑ 𝑤𝑖
𝑛
𝑖=1 𝛼𝑖 (2.31)

where, 𝛼𝑖 represents the shape functions for the element, and 𝑤𝑖 are the weight coefficients, and

n is the dimension of the element. Putting equation 2.29 in 2.30, we get

34

∫ 𝑊(∇. 𝜎∇𝑉𝐹𝐸𝑀)𝑑Ω = 0

Ω

(2.32)

Rearranging and solving equation 2.32 by following the procedure given in [24], equation 2.32

can be written for kth element, assuming conductivity 𝜎𝑘 is constant along the element, we get

∫ 𝜎𝑘∇𝑉𝑒 . ∇W𝑑Ω

E𝑘

= 𝜎𝑘 ∑ 𝑉𝑒𝑖

3

𝑖=1

∑ 𝑤𝑗

3

𝑗=1

 𝐶𝑖𝑗
𝑘

(2.33)

where, 𝐶𝑖𝑗
𝑘 is called as the stiffness matrix for element k.

𝐶𝑖𝑗

𝑘 = ∫ ∇𝛼𝑖. ∇𝛼𝑗𝑑Ω

E𝑘

(2.34)

For entire mesh, equation 2.33 would be [24]

∫ 𝜎𝑘∇𝑉𝑒. ∇W𝑑Ω

Ω

= ∑ 𝜎𝑘

𝑁

𝐸=1

∑ 𝑉𝑒𝑖

3

𝑖=1

∑ 𝑤𝑗

3

𝑗=1

 𝐶𝑖𝑗
𝑘

(2.35)

where, N is the total number of elements.

To calculate stiffness matrix, using equations 2.27a, 2.27b and 2.27c, we have

α1 =

1

2𝐴
 [a1 + b1x + c1y]

(2.36a)

α2 =

1

2𝐴
 [a2 + b2x + c2y] (2.36b)

α3 =

1

2𝐴
 [a3 + b3x + c3y] (2.36c)

where,

a1 = x2y3 – x3y2; b1 = y2-y3; and c1 = x1 - x3

a2 = x3y1 – x1y3; b2 = y3 – y1; and c2 = x1 – x3

35

a3 = x1y2 – x2y1; b3 = y1 – y2; and c3 = x2 – x1

Using equation 2.36a, 2.36b and 2.36c, the elemental stiffness matrix 𝐾𝑒 is given as follows [24]

𝐾𝑒 =
𝜎𝑒

4𝐴𝑒
[

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

]

(2.37)

Assembling all the elemental stiffness matrices the Global Stiffness matrix K is formed and

following system of equations is derived [24], [25]

 [K]𝑛𝑥𝑛[V]𝑛𝑥1 = [I]𝑛𝑥1 (2.38)

where, [V]nx1 is the matrix of potentials at all the nodes and [I]nx1 is the matrix of currents at all the

nodes. Equation 2.38 can be written as

 [V]𝑛𝑥1 = [K]𝑛𝑥𝑛
−1 [I]𝑛𝑥1 (2.39)

2.4 Jacobian Matrix

 Jacobian matrix, in case of EIT, provides the relationship between voltage distribution on

the region of interest’s surface and the regions internal conductivity distribution[26]. Jacobian

matrix is calculated using FEM, current injection pattern and electrode position[27]. A standard

method to calculate Jacobian matrix is proposed in [25]. In this method, the Jacobian matrix is

derived by differentiating equation 2.39 with respect to conductivity σ [25] , we get

𝐉 =

∂V

∂σ𝑗
= −K−1.

∂K

∂σ𝑗
 . K−1I

(2.40)

Which can be written as

 𝐉 =
∂V

∂σ𝑗
= −K−1.

∂K

∂σ𝑗
 . V

(2.41)

36

If there are M number of boundary measurements and N number of FEM elements, then 𝐉 𝜖 R𝑀𝑥𝑁.

In this method only stiffness matrix derivative is to be calculated to get J.

2.5 EIT Algorithms

 There are various image reconstruction algorithms used for EIT problem solving. There

are two imaging techniques in EIT, difference imaging and static imaging. In this project, two

algorithms based on difference imaging are implemented, Gauss Newton One step and Total

Variation. In this section, both the algorithms are discussed.

2.5.1 Gauss Newton One Step Algorithm

 The Gauss Newton One Step solver is based on Gauss-Newton algorithm described in [25]

. It is an improvement based on Gauss-Newton algorithm along with statistical consideration and

prior information. It is used as a difference method. It uses regularized model to solve EIT inverse

problem. The Gauss Newton approach uses the noise variance of the measurements and the

covariance of the conductivity distribution for linearized image reconstruction[6]. Using this

method, the solution to the inverse problem in EIT is estimated by minimizing [28]

 ‖𝑱𝛥𝜎 − 𝛥𝑉‖
𝛴𝑛

−1
2 + ‖𝛥𝜎 − 𝛥𝜎∗ ‖𝛴𝑚

−1
2 (2.42)

Where, ∆𝜎∗ is the initial estimation which is 0 in case of difference EIT [17].

 ∑
𝑛 is the covariance matrix of the measurement noise n.

 ∑
𝑚 is the expected image covariance. The covariance matrices are normally modeled

heuristically from a priori considerations as follows

37

 W = ξn
2 ∑ −1

𝑛 (2.43)

And

 R = ξ𝑚
2 ∑ −1

𝑚 (2.44)

where, ξ𝑛 is the average measurement noise amplitude and ξ𝑚 is the a priori amplitude of

conductivity change.

Here, W models the measurement accuracy and for difference EIT it is Identity matrix (I). R

represents the regularization matrix. Various prior calculation methods are available to calculate

the regularization matrix R, for example, NOSER, Laplace, Tikhonov etc.

Solving equation 2.42 gives the linearized, one step inverse solution as follows

𝛥𝜎 = (𝑱𝑇

1

𝜉𝑛
2

𝑊𝑱 +
1

𝜉𝑚
2

𝑅)
−1

𝑱𝑇
1

𝜉𝑛
2

𝑊𝛥𝑉
(2.45)

Let’s put λ =
ξ𝑛

ξ𝑚
 , then equation 2.45 can be written as

 𝛥𝜎 = (𝑱𝑇𝑊𝑱 + 𝜆2𝑅)−1𝑱𝑇𝑊𝛥𝑉 (2.46)

The hyperparameter λ controls the tradeoff between the resolution and noise attenuation in

the resulting image. Usually the hyperparameter is selected heuristically [29]. Few of the

reconstructed results generated over a range of hyperparameter values are observed and the one

with best result is selected. In this project, the hyperparameter value is used as 0.003, this value is

used by the previous students who worked on the EIT image reconstruction project in St. Cloud

State University.

38

2.5.2 Total Variation Algorithm

 The Total Variation (TV) technique is a regularization method which allows the

regularization of discontinuous parameters. The commonly used regularization techniques fall

short of describing sharp variations in the reconstructed image whereas TV preserves the edges

in reconstructions[30]. In many regularization matrices L2 norm is used which makes the

solution biased towards smoother functions. TV uses L1 norm which makes it discontinuous and

not differentiable at every point. The total variation of a conductivity image is defined as follows

[31]

TV(σ) = ∫|∇𝜎|𝑑𝛺

𝛺

(2.47)

Where, 𝛺 is the region of interest. Let us consider the discretized version of the region (FEM), the

conductivity is assumed to be piecewise constant over each element [31]. This also means the

conductivity ∇𝜎 is non-zero only on the edges between the elements.

Hence, for the ith edge, shared by the FEM elements m(i) and n(i), the difference in conductivity

is

 |𝜎𝑚(𝑖) − 𝜎𝑛(𝑖)| (2.48)

The Total Variation of the entire image can be written as the sum of the TV of all the edges

 TV(σ) = ∑ 𝑙𝑖

𝑖

|𝜎𝑚(𝑖) − 𝜎𝑛(𝑖)|
(2.49)

Where li is the length of the ith edge in the mesh.

Equation 2.49 can also be expressed as

39

 TV(σ) = ∑

𝑖

|𝐿𝑖𝜎 |
(2.50)

Where L is the sparse matrix with one row for each edge and each row has two non-zero elements

in the columns m(i) and n(i). Hence, the TV is the sum of the absolute values.

TV algorithm for EIT

 There are various algorithms developed for solving TV regularized problems. A few

algorithms are described in [30]. For EIT application, Primal and Dual Interior Point Method

(PDIPM) and Iteratively Reweighted Least Squares (IRLS) methods are mostly used. PDIPM

introduces a smoothness parameter and a dual variable using the Cauchy-Schwartz inequality. [31]

provides detailed explanation of PDIPM algorithm implementation for clinical EIT. The IRLS

method solves a weighted least squares problem iteratively [32]. Both methods are available in

EIODRS.

In this project, the Total Variation algorithm shown by Rabi Gartaula [33] is used. It uses one step

Gauss Newton approximation step to find initial solution, 𝜎0, as follows

 𝛥𝜎 = (𝑱𝑇𝑊𝑱 + 𝑅𝑇𝑅)−1𝑱𝑇𝑊𝛥𝑉 (2.51)

For further iterations, a TV regularization parameter is calculated as follows

WB =

0.5

√(𝑅 ∗ ∆𝜎)2 + 𝛽

(2.52)

Where, 𝛽 is a smoothness parameter and kept constant throughout iterations. This parameter is

incorporated in equation 2.51 for further iterations, as shown in equation 2.53.

40

∆𝜎 =

𝐽𝑇 ∗ 𝑊 ∗ ∆𝑉

(𝐽𝑇 ∗ 𝑊 ∗ 𝐽 + 𝑅𝑇 ∗ 𝑊𝐵 ∗ 𝑅)

(2.53)

Equation 2.52 and 2.53 are repeated for the set number of iterations.

2.6 Prior Techniques

 As mentioned in section 2.2, a prior information is introduced to stabilize the solution of

the ill-posed problem[28]. The technique of applying prior information is called as

regularization. There are different methods of prior calculation. In this section, three methods

such as Tikhonov, NOSER and Laplace are discussed.

2.6.1 Tikhonov Prior

 It is the most used method of regularization in EIT inverse solution. The Tikhonov

regularization uses differential operators which provides smooth solutions. If the elements of

image are considered as independent with identical expected magnitudes, the regularization matrix

[19] becomes,

 𝑅 = 𝐼 (2.54)

Where, I is the identity matrix. This is called as zeroth-order Tikhonov regularization. This

regularization provides the smooth solutions but does not preserve sudden changes in the image

[34]. In this project, Tikhonov prior is used to reduce the complexity of the computation.

41

2.6.2 NOSER Prior

 NOSER prior, stands for Newton’s One Step Error Reconstruction, is also known as

weighted diagonal prior[35]. In NOSER prior the regularization matrix [28] is calculated as

 𝑅 = [𝑑𝑖𝑎𝑔(𝑱𝑇𝑱)]𝑃 (2.55)

Where J is the Jacobian matrix. The exponent p needs to be selected carefully to keep balance

between solution stability and image contrast [17] and p Є [0,1].

2.6.3 Laplace Prior

 Laplace prior is a second order high pass filter[36]. For a finite element mesh, it is

defined as -1 for each adjacent element and 3 for the element itself[28]. Hence, edges are

preserved in Laplace prior as compared to Tikhonov and NOSER [36]. In other words, it

preserves high frequency components such as edges in the image.

42

Chapter 3: Previous Work Study

 There are few EIT image reconstruction project works performed by past St. Cloud State

University students. Three of the projects were studied as a preliminary study for this project.

Two of the projects were C# implementation of the EIT image reconstruction algorithms. Third

project was FPGA based implementation which included complete EIT data acquisition as well

as data processing system[9]. The hardware designed in FPGA based project is used in this

project, with some modifications. In this chapter, a brief description of each project functionality

and design is given.

3.1 Study on human brain Activity and electrical impedance tomography [19]

3.1.1 Design Description

 It is a C# implementation of Gauss-Newton one step algorithm for EIT image

reconstruction. Tikhonov, Laplace and NOSER priors are implemented. A graphical user interface

(GUI) provides user with the options to set the available system parameters. The parameters

required for FEM settings, stimulation, measurement data, prior selection and image

reconstruction algorithm can be set through GUI. The measurement data that is the homogeneous

and inhomogeneous data taken from a phantom and stored in text files is used to test the code. The

C# implementation is designed by following the open source MATLAB implementation EIDORS.

 For building finite element model (FEM), number of electrodes and number of rings is

taken as input. The FEM is designed as a 2D circular model and discretized according to the

number of rings entered by the user. There is a class defined to handle FEM model generation and

43

it provides the model’s nodes coordinate data, element assembly data and electrode positioning

matrix.

 The experiment setup is entered in the form of a stimulation pattern. It is created with the

help of user entered data which is the current injection pattern, opposite or adjacent, and voltage

measurement pattern and amplitude of the applied current. User can also set if the measurement

from the drive pattern is to be used or need to be removed. This process interprets the stimulation

information into a vector form.

 Next, homogeneous data and non-homogeneous data are loaded. It is read through text

files; hence user needs to browse and select the specific text file. The data is read from the file and

stored in a matrix for further processing. If the measurement from drive pattern to be excluded, it

is removed at this stage. Then, a difference data is calculated by subtracting homogeneous data

from in-homogeneous data.

 As Gauss Newton One step algorithm is implemented for image reconstruction, a prior

needs to be selected. Depending upon user selection the prior R is calculated. At this stage,

measurement noise covariance W and Jacobian Matrix J is calculated. User also needs to enter

hyperparameter before starting reconstruction. The image reconstruction algorithm is designed

according to its EIDORS implementation. Once the reconstruction button is clicked, the algorithm

is run, and the resulting image is drawn on the GUI.

 A brief flowchart of the design is created. Also, the code is tested with the given

homogeneous and inhomogeneous data and the resulting images are shown in following section.

44

3.1.2 Flowchart

Figure 3.1 shows the workflow which summarizes C# code in [19]

Figure 3. 1 C# Implementation Flowchart (Chen)

45

3.1.3 Test Results

 The C# implementation in this project is tested using an 8 electrode measurement data.

The text files for homogeneous measurement and inhomogeneous measurement are available.

The code is tested for different number of rings, the options for rings are 4,8,12 and 16, and

different priors, the options for priors are NOSER, Tikhonov and Laplace. The result with 16

rings and Tikhonov prior is shown below in figure 3.2.

Figure 3. 2 Image for 16 rings and Tikhonov Prior (Chen)

3.2 Image Reconstruction and EIT [33]

3.2.1 Design Description

 In this project, three EIT image reconstruction algorithms are implemented in C. The

algorithms are Gauss Newton one step, Total Variation and Conjugate Gradient. A GUI is designed

to allow user to enter the system parameters and measurement data files. Multithreading is also

implemented in order to make the design more time efficient. The parameters that can be set from

46

the GUI are measurement data files, algorithm selection, FEM parameters, stimulation parameters,

prior selection, hyperparameter and number of iterations.

 The homogeneous and inhomogeneous data can be loaded from the menu option Load on

GUI. The files can be loaded in two formats, txt and xls or xlsx. The data is stored in matrix format

for further use.

 The parameters used to build finite element model such as number of electrodes, number

of rings and background conductivity can be entered from the textboxes available on GUI. On the

click of Setup FEM button, a 2D Mesh is generated and FEM model is displayed on the GUI.

Later, if the number of electrodes or number of rings are changed, the FEM model is updated

accordingly. The Jacobian background matrix is also created.

 The design implements three priors, Laplace, NOSER and Tikhonov. Default prior is set

as Laplace and can be changed from GUI. If the prior is changed, the prior matrix is updated

accordingly.

 The algorithm selection can be done from the menu bar available on GUI. To reconstruct

the image, an algorithm needs to be selected. The hyperparameter value can also be set from GUI.

The maximum iteration parameter required in case of TV and conjugate gradient is set as 3 and 50

respectively, by default. There is a Re-generate button on GUI, if pressed the set algorithm gets

executed and resulting image gets drawn on screen. A timer is used to check if the calculations are

done and image is ready to be drawn.

47

3.2.2 Flowchart

 Figure 3.3 shows the working flowchart of the C# design

Figure 3. 3 C# Implementation Flowchart (Rabi)

48

3.2.3 Test Results

The code was tested using available 8-electrode homogeneous and inhomogeneous data.

All three algorithms for different rings and prior settings are tested and results are captured. The

result with conjugate gradient algorithm, 24 rings and Laplace prior is shown below in figure 3.4.

Figure 3. 4 Conjugate Gradient Image result with 24 rings, Laplace Prior (Rabi)

3.3 Real-Time Electrical Impedance Tomography [9]

3.3.1 Design Description

 This project includes a complete system design for real time Electrical Impedance

Tomography for head imaging. A FPGA based system is developed which can drive the

electrodes, read the voltages at the electrodes, process the acquired data, and send the resulting

image data to a C# based GUI for display. A 12-electrode system is used to connect to a circular

phantom. Analog circuitry is developed to drive and read data to and from the electrodes. A

49

Zynq 7020 device-based development board, Zedboard, is used to interface the analog circuit to

the onboard Zynq FPGA. The Zynq FPGA controls the electrode interface as well as process the

acquired data. Gauss Newton One step algorithm along with Tikhonov prior is implemented for

image reconstruction. The C# GUI is designed to provide user with control over system

operation, such as start, stop acquisition and processing etc. The GUI communicates with Zynq

FPGA over serial port. It receives the processed data and displays it on the screen. The GUI also

provides an option of one-time measurement and continuous measurement. With the continuous

measurement option selected, the system is designed to be able to produce the image data

continuously in real-time.

3.3.2 Hardware Description

 Figure 3.5 shows the block level representation of analog circuitry, Analog Front End

board designed in this project to drive and read to and from the electrodes.

Figure 3. 5 Block Diagram of Analog Front End Hardware

50

The devices (ICs) used in AFE board are as follows

- DAC LTC1668

- Operational Amplifier OPA 2192

- Multiplexer ADG 1606

- Digital Potentiometer AD5293

- Instrumentation Amplifier AD8429

- ADC AD7761

- FMC Connector

 As shown in the block diagram, the AFE has two main sections, transmitter, and receiver.

The transmitter section includes DAC, filters, and the constant current circuit to generate the

sinusoidal signal to drive the electrodes. A digital data (16-bit) for a sinusoidal signal at different

frequencies is generated in the FPGA. This digital data is converted to analog signal using Linear

Technology LTC1668 DAC chip. The Linear Technology LTC1668 IC is a 16-bit 50Msps

digital to analog converter. The DAC takes 16-bit input data and gives differential current output.

The differential current output is filtered through an active bandpass filter designed for a range of

100Hz-100kHz. The filtered signal is passed through a current source before passing it to the

electrodes through multiplexing switches. To limit the output current, a digital potentiometer,

AD5293 is used. The value setting for digital potentiometer is controlled through FPGA.

 In EIT systems, the current needs to be injected through each electrode in a pattern, hence

a multiplexer arrangement using Analog Devices ADG1606 multiplexer IC is incorporated to

connect the current signal to electrodes. The ADG1606 IC is 16:1 multiplexer. There are twelve

such multiplexers used in the design and each multiplexer is connected to all twelve electrodes.

51

Two of the multiplexers are connected to the differential current input coming from DAC, and

other ten multiplexers are connected to the receiver circuit. This way, using the four select

signals of the multiplexers, each multiplexer gets connected to one electrode each time. The

select signals are controlled from FPGA to control the current application and voltage

measurement pattern.

 The induced voltage measurement is connected to the receiver circuit through the

multiplexer section. As mentioned above, at every switch rotation, there would be two electrodes

connected to inject the current and other ten electrodes to measure induced voltage. These ten

electrodes are used in pairs to generate 8 measurements. Signal from each electrode is passed

through a passive bandpass filter designed for a range of 150Hz to 300kHz. The filtered signal

from adjacent electrodes are then passed through an instrumentation amplifier to generate one

measurement output. The instrumentation amplifier stage is set with a gain of 7 [37]. The single

ended signal is passed through an active bandpass filter designed for a range 70Hz to 398kHz.

The filter also provides a gain of 2. Hence, effectively, the signal is applied with a gain of 14

before giving it to the ADC.

 The Analog Devices AD7761 ADC is an 8-channel 16-bit ADC, with individual serial

output for each channel. This ADC converts 8 channel analog data to digital and provides it at 8

serial outputs in 16bit format. The output of ADC is passed to the FPGA for further processing.

The AFE is connected to the Zedboard through an FPGA Mezzanine Card (FMC) connector.

52

3.3.3 FPGA Implementation

 Zynq FPGA design constitutes two parts, programmable logic design and processor

software design. The processor is mainly responsible for communicating with the GUI over serial

port for getting the system configuration and sending the image reconstruction output data. The

processor also reads digitized voltage measurement data from PL and processes it through DFT to

get the magnitude of the measurement. This magnitude data is passed to the PL logic to use in

reconstruction process.

 The Programmable logic is mainly responsible for reconstruction algorithm

implementation. The PL also generates the DAC signal as per the configuration received from

processor and stores the ADC data readout for all 8 channels to pass to the processor. For image

reconstruction, since Gauss Newton One Step algorithm is used, following equation governs the

reconstruction process

 𝛥𝜎 = (𝑱𝑇𝑊𝑱 + 𝜆2𝑅)−1𝑱𝑇𝑊𝛥𝑉 (3.1)

Where, 𝛥𝜎 = change in impedance, to be calculated

 𝑱 = Jacobian Matrix

W = variance matrix

 𝜆 = hyperparameter

R = Prior Matrix

𝛥𝑉 = Difference voltage

Above equation can be written in the following format

 𝛥𝜎 = 𝐵 𝛥𝑉 (3.2)

where B is called as reconstruction matrix and given as

53

 B = (𝑱𝑇𝑊𝑱 + 𝜆2𝑅)−1𝑱𝑇𝑊 (3.3)

 In the present system, most of the part of the reconstruction matrix can be kept constant.

For instance, Tikhonov prior is fixed for this implementation. Additionally, the parameters

required to calculate FEM such as number of electrodes, number of rings, current injection

pattern, measurement pattern are also fixed. Hence, the reconstruction matrix is precalculated

using MATLAB and stored as constant in the FPGA code. The difference voltage matrix is

calculated using magnitude data provided by processor and the image data is calculated by

multiplying reconstruction matrix and voltage difference matrix. The calculated data output is

passed to processor where it transmits the data to GUI over serial port. Figure 3.6 shows the

block diagram which summarizes the FPGA functionality

Figure 3. 6 FPGA Block Level Implementation (Senior Design Team)

3.3.4 FPGA Design Analysis

 In this section, a detailed analysis of FPGA design is performed. The FPGA

implementation is designed to drive and read data from 12 electrodes attached to a circular

phantom, process the measurements in FPGA for impedance image reconstruction and transmit

54

the resulting image to GUI over serial port to display. In this design the reconstruction matrix in

equation 3.3, is derived using MATLAB before programming the FPGA and used as a constant

for solving equation 3.2. The reconstruction matrix size is 576X96, which is due to 12 rings, 12

electrode model. The homogeneous and inhomogeneous measurement data are retrieved in PS

and passed to PL. The measurement matrix is 96X1 as there are 8 measurements and 12 total

electrodes. The difference vector, which is 96X1 matrix, is calculated in PL. Hence, effectively,

the row-wise multiplication of 576X96 matrix and 96X1 vector is performed in PL, that is

equation 3.2, to get the output image. This multiplication output is transferred to GUI through

processor and serial port. In this implementation, there are 96 multiplications which needs to be

done one time to get one output. The present code implements two such multipliers and uses 192

DSP slices out of 220 available. Also, in this design the processor is used for serial

communication and DFT implementation for measurement data magnitude calculation.

 Figure 3.7 shows the timing summary of the present implementation. It is observed that

the present design has the total negative slack of almost 1.7 us and 410 failing endpoints.

Negative slack implies that the signal may not reach to the destination within the desired time.

Total negative slack is the addition of all the worst negative slack violations [38].

Figure 3. 7 Timing Summary of FPGA design (Senior Design Team)

55

 Figure 3.8 shows the device utilization report of FPGA implementation. It is observed that,

in the design most of the LUTs are used for data storage which makes total LUT utilization up to

82.28%. Also, in the design, two 96 input multipliers are implemented, which makes DSP

utilization as 87.27%.

Figure 3. 8 Device Utilization Report (Senior Design Team)

3.3.5 GUI Design Description

 A graphical user interface is designed using C#, which communicates with Zynq FPGA

over serial port. The GUI provides user with controls such as initiate reading homogeneous and

inhomogeneous measurements. It also allows user to set the frequency of the injection current to

be set as one of the following - 500Hz, 1kHz, 2.5kHz, 5kHz, 10kHz. The number of samples to be

used to get magnitude of the measured signal through DFT can also be set as 512, 1024, 2048,

4096, 8192 samples, through GUI. A command structure is designed to communicate the

instructions between GUI and Zynq FPGA.

 Once measurements are done, the reconstruction calculations are performed inside FPGA

and the resulting data is sent to GUI. The reconstruction data is stored in proper format and

displayed on the GUI. A 2D Mesh calculation is performed to draw the reconstruction image on

56

the GUI. This operation of acquiring the data to printing the image on screen can be performed

once or continuously, depending upon user selection. A handshaking command is used to initiate

the communication repeatedly in case continuous operation is selected. Flowchart in figure 3.9

summarizes the working of C# code.

3.3.6 System Performance

 According to [9], this system could generate 1.4 frames per second in continuous mode.

The frame rate was measured for system setting as 512 number of samples, 128ksps sampling

frequency and 115200 baud rate. The time required to complete the process for image

reconstruction starting from image data acquisition is measured or calculated to verify the frame

rate. It takes 48ms for data acquisition for twelve switch positions, with 512 number of samples

per channel and 128ksps sampling frequency. For the FPGA computation, that is image

reconstruction computation, it takes around 100ms. At 115200 baud rate, the time taken for

transmission of image data to PC over serial port is 200ms. The time taken for image to refresh

on screen in C# takes 350ms. This way, complete data acquisition to image display time takes

700ms, which gives frame rate of 1.4.

57

Figure 3.9 shows the working flow of C# code.

Figure 3. 9 Flowchart for GUI Implementation (Senior Design Team)

58

Chapter 4: EIT MATLAB Implementation

A MATLAB based open source software called as EIDORS provides a wide range of

functions which can be used to solve an EIT reconstruction problem. As a part of preliminary

work, a MATLAB code using EIDORS is developed. This chapter includes the description of the

MATLAB code design and test results.

4.1 About EIDORS

 The Electrical Impedance and Diffused Optical Reconstruction Software (EIDORS)

provides a software library for 2D as well as 3D reconstruction for electrical impedance

tomography as well as optical tomography [15]. It is developed using MATLAB. EIDORS

provided software libraries can be used to reconstruct an EIT image using complex algorithms.

There are various FEM models, algorithms and prior methods implemented in EIDORS. In this

project, a MATLAB code using EIDORS is developed to understand the forward and inverse

modeling in EIT reconstruction process.

The EIDORS software download and help can be found on the following website

http://eidors3d.sourceforge.net/

 Once the software is downloaded, the folder needs to be unzipped. In order to use

EIDORS libraries in MATLAB, user needs to run the following command in MATLAB

command window or at the starting of the code which uses EIDORS functions

run C:/path/to/eidors/startup.m

http://eidors3d.sourceforge.net/

59

4.2 Design Description

 In EIT image reconstruction, first a forward model is built depending upon the number of

electrodes and number of rings. Number of rings is the specification for generating a finite

element model. The forward model and measurement data are used to obtain the inverse solution.

In this code the measurement data that is homogeneous and inhomogeneous data are read from

text files. At the starting of this project only eight electrode data were available in text files,

hence, the code is designed for eight number of electrodes.

 At first, the measurement data is loaded. EIDORS provides various forward model

building options for complex geometries. A function mk_common_model() provides FEM model

for geometries such as 2D circle, 2D thorax, cylindrical etc. A 2D circular model from 64

elements to 6400 elements, which corresponds to 4 to 40 equally spaced rings, can be

constructed. However, as the number of elements increases, the computation time increases.

Hence, in this project, four options for number of rings are provided, 4, 8, 12 and 16. User can

select any one option and corresponding FEM model will be created.

 The computation requires the stimulation pattern and parameters used at the time of

taking the measurements. In the case of the eight-electrode data which is used, the stimulation is

given in opposite pattern, and measurements are taken from adjacent electrodes. Also, the

stimulation current is used as 0.25mA. These parameters are used to create a stimulation pattern.

 EIDORS provides various algorithms to solve the inverse problem. In this code, Gauss

Newton One Step and Total Variation algorithms are used. User can select any one of the

algorithms for further computation. For Total Variation, EIDORS provides two methods,

Iteratively Reweighted Least Squares (IRLS) and Primal Dual – Interior Point Method (PDIPM)

60

[31]. In this project IRLS method is used. Next, three prior application options such as Laplace,

Noser and Tikhonov are provided. User can select any one of the priors for further computation.

Using the forward model, selected algorithm and prior and measurement data the inverse

solution is obtained using inv_solve() function. Finally, the image is displayed on the screen.

Flowchart

Figure 4.1 shows the flowchart for the MATLAB code designed for EIT image

reconstruction. The code is given in the appendix section in this document.

Figure 4. 1 EIDORS Code Flowchart

61

4.3 Test Results

 The above designed code is tested using available eight electrode measurement data. All

the options were tried to observe the changes in the reconstructed image. Following images,

figure 4.2 and figure 4.3, show some of the results. The blue area in the image is a low

impedance anomaly which is introduced while taking inhomogeneous measurements. It was

observed that, the Total Variation algorithm, as it is iterative, provides a more precise solution

with respect to the one step Gauss Newton algorithm. Also, as the number of elements increased,

the low impedance area in the reconstructed image started to get precise. Also, the Noser prior

was observed to give a better result.

Figure 4. 2 Image with Gauss Newton One Step, 16 rings and Tikhonov Prior

Figure 4. 3 Image with Total Variation, 12 rings and Noser Prior

62

Chapter 5: XILINX Development Hardware and Software

 In this project, the Xilinx provided Zynq 7020 SoC based development board is used as a

controller and processor for the EIT system. This chapter introduces the Xilinx Zynq SoC

architecture, a brief introduction of the development board used in this project and the Xilinx

provided VIVADO design suite for FPGA design development.

5.1 Device Architecture

 The Xilinx Zynq-7000 SoC family integrates dual core ARM cortex A9 processor and

high performance, low power programmable logic [39]. The programmable logic as well as

processor can be programmed independently or to work together, depending upon the

requirement of the end application. The availability of ARM based processors allows usage of

operating systems like Linux.

63

Figure 5.1 shows the block diagram of architecture of Zynq SoC.

Figure 5. 1 Zynq FPGA SoC Architecture [39]

 As can be seen in above figure, the Zynq SoC device is divided into two parts, processing

system and programmable logic. The processing system (PS) includes ARM cortex A9 processor

along with I/O peripherals such as UART, USB, Ethernet, CAN, SDIO, I2C and SPI and 54 general

purpose IOs. It also includes on chip memory and external memory interfaces such as DDR

controller, quad SPI controller, NAND controller and SRAM controller.

64

 The programmable logic includes configurable logic block (CLBs), block RAMs,

DSP48E1 slices for digital signal processing, configurable I/Os and Analog to Digital converter.

To interface PS and PL side designs, two types of interfaces can be used, functional interfaces and

configuration interfaces. Functional interfaces include AXI (Advanced eXtensible Interface),

Extended MIO interface (EMIO), interrupts, DMA flow control, clocks, and debug interfaces.

Configuration interface signals are the signals which are connected to a fixed logic within the PL

configuration block in order to provide control to PS. It includes Processor Configuration Access

Port (PCAP), Configuration Status, Single event Update (SEU) and program/done/init signals.

 Due to the high performance and scalable architecture of Zynq SoCs, they are increasingly

becoming popular for various applications such as automation, networking, digital

communication, biomedical instrumentation etc.[39]. With the availability of high-performance

interconnect interfaces between PS and PL, a complex design can be partitioned in Hardware (PL)

and Software (PS) for efficient performance. More detailed information about Zynq-7000 devices

can be found in [39] and [40]. Depending upon application requirement and algorithm complexity,

the Zynq-7000 family device can be selected.

5.1.1 Zynq 7020 Device Specifications

- Processor Specification

• Processor: Dual core ARM Cortex-A9 MPCore

• Maximum Frequency: 667MHz

• L1 Cache: 32 KB Instruction, 32 KB data cache

• L2 Cache: 512 KB

65

• On Chip Memory: 256 KB

• External Memory Support: DDR3, Qaud-SPI, NAND, NOR

• Peripherals: UART, CAN, I2C, SPI, USB, Gigabit Ethernet, SDIO

- Programmable Logic Specification

• FPGA: Artix-7

• Programmable Logic Cells: 85k

• Look-Up Tables (LUTs): 53,200

• Flip-Flops: 106,400

• Block RAM (36Kb Blocks): 140

• DSP Slices: 220

• ADC

5.2 Development Board

 In this project, a Zynq 7020 based development board that is Zedboard is used. This Zynq

evaluation and development board includes variety of on-board peripherals and expansion

connectors.

66

Figure 5.2 shows the hardware block diagram of Zedboard [41].

Figure 5. 2 Zedboard Block Diagram [41]

 As shown in above figure, Zedboard provides many onboard peripherals which makes it

preferred platform for various designs. It provides onboard memory such as DDR3 and QSPI. It

67

also provides various interfaces such as USB, Ethernet, UART, SDIO, PMOD connectors, LEDs

and switches. It also has HDMI output port, VGA port and Audio line in, line out, headphone and

microphone in. The Zynq FPGA provides few different boot methods. The boot process can be

performed through NOR flash memory, NAND flash memory, Quad-SPI memory, SD card or

JTAG. The boot mode can be selected by varying the inputs to boot mode configuration IO pins.

Zedboard provides jumpers JP7,8,9,10 and 11 using which the boot mode can be selected. In this

project, a JTAG boot mode is set by connecting the JTAG configuration pins to GND using the

jumper connections. The USB-JTAG port is used to program the FPGA and PS.

5.3 Development Software

 The Xilinx provided VIVADO Design Suite includes various design tools required to

develop an embedded system along with FPGA design. VIVADO Design Suite includes [42]

- VIVADO Integrated Design Environment (IDE)

- Software Development kit (SDK)

- Intellectual property cores

 The VIVADO IDE allows user to develop a customized FPGA design including

embedded processor hardware. The VIVADO IDE provides a graphical user interface for Xilinx

FPGA designs. It provides following features [43]

- Register Transfer Level (RTL) design using VHDL, Verilog and System Verilog or a

block wise integration of intellectual property blocks.

- Behavioral, Functional and Timing Simulation

- Synthesis, Place and Route implementation, floor planning

68

- Logic Analyzer for debugging the design

- Constraints entry

- Timing Analysis

- Bitstream generation

 The FPGA hardware design developed using VIVADO IDE is used as a hardware

platform for the software development. The Software Development Kit (SDK) allows user to

develop the software application. The SDK provides following features

- Design a C/C++ based standalone application

- Design a Linux based application

- Build the design

- Program the FPGA and Debug

 In this project VIVADO IDE 2018.3 and SDK 2018.3 are used for PL and PS design and

development respectively. More detailed information about VIVADO Design Suite can be found

in [39]–[43].

69

Chapter 6: EIT System Architecture

In this chapter, a block wise architecture of the complete EIT system implemented in this

project is discussed. It also includes the design specifications and a brief description of the image

reconstruction algorithms implementation.

6.1 System Architecture

 Figure 6.1 shows the block level implementation of the EIT system. It includes a

graphical user interface, data acquisition hardware and a phantom created for testing the EIT

system.

Figure 6. 1 Block Diagram of EIT System Implementation

As shown in the figure, the data acquisition and control system communicate with the

graphical user interface through a serial port. Also, the data acquisition system provides the

current signal to the phantom and reads the voltage measurement from the phantom through

electrodes. The phantom tissue is created using animal hide gelatin. It is a twelve-electrode

system, which means that the data acquisition system is designed for controlling and acquiring

70

data from twelve electrodes. The injected current frequency can be set from the GUI. There are

two image reconstruction algorithms implemented in this system, Gauss Newton One Step and

Total Variation.

 In the following section, the functionality and architecture of GUI and data acquisition

system is described. The complete system specifications are also listed.

6.1.1 Data Acquisition and Control

 The data acquisition system constitutes of a Zedboard and the analog front-end (AFE)

hardware. As mentioned in chapter 3, the AFE is designed by one of the senior design teams [9]

as a part of their project. The detailed architecture of AFE is described in chapter 3. The AFE is

originally designed to work at high frequency with the range 500Hz to 10kHz. In this project, the

AFE hardware is modified to work with low frequency range from 1Hz to 30Hz. The detailed

design modifications are given in chapter 6.

 The Zedboard is a development board designed around Xilinx Zynq SoC. The Zynq SoC

includes an ARM Cortex A9 processor (PS) and a high-speed FPGA (PL). The Zynq SoC

architecture and device specifications are given in chapter 4. The Zynq SoC is responsible for

- Communicating with GUI for receiving system specifications

- Generating sinusoidal signal for current injection

- Acquiring the voltage measurement data through ADC

- Process the data through DFT

- Use the voltage data to reconstruct the image using the selected algorithm

- Transfer the image data to GUI for display

71

 The design to implement above mentioned functionalities is developed using both PS and

PL in Zynq SoC. The processor initializes UART and all the hardware designed in PL. The

processor receives the system configuration from GUI and configures respective sub systems in

FPGA accordingly. For instance, if the signal frequency is set as 30Hz from GUI, the FPGA

logic designed to generate sinusoidal signal is configured to output 30 Hz. The processor also

configures the ADC through SPI communication. It also reads the sampled ADC data and

processes it through DFT to get the measured voltage amplitude. The reconstruction and

Jacobian matrices required for image reconstruction algorithms’ computation are stored in the

SD-card. The processor, at initialization, reads the files stored in SD-card and copies the data in

DDR memory for later use.

 The FPGA (PL) includes the logic to generate the sinusoidal signal for the DAC on the

AFE. The PL also includes the logic to control digital potentiometer. The ADC on AFE board is

configured by PS for setting the sampling frequency, however, the sampling frequency is varied

as per the requirement within the PL logic. The ADC provides the digitized data as 8 channel

serial input. The serial input is parallelized and stored in FIFOs inside FPGA. The data storage in

FIFOs is controlled by PS. The FIFO data is read by PS and processed through DFT to get the

voltage measurement data. The Gauss Newton One Step algorithm computation is a matrix and

vector multiplication, that is reconstruction matrix and voltage measurement data. This

computation is implemented in the FPGA. The voltage measurement data and reconstruction

matrix data are passed by PS to PL and the parallel computation is performed. The resulting

output is stored in DDR to transfer to GUI for display. The detailed implementation is described

in chapter 7.

72

 The AFE is connected to Zedboard through an FMC connector available on Zedboard.

The FMC connector provides 68 single ended FPGA IOs [41].

6.1.2 Graphical User Interface

 The graphical user interface (GUI) is designed using C# windows application form. The

GUI is mainly responsible for allowing user to set the system parameters, communicating with

Zynq SoC over serial port to transfer the parameters and receive the image or voltage difference

data, and displaying the processed image.

 There is a communication protocol set for data transfer between GUI and Zynq SoC. The

system parameters that can be set from GUI are signal frequency, sampling frequency and

number of samples. As previously mentioned, there are two image reconstruction algorithms

implemented, the GUI allows the algorithm selection and the parameters related to algorithm

such as hyperparameter and number of iterations. The image reconstruction algorithms are

implemented in Zynq SoC as well as C# GUI, the user can select whether to use Zynq SoC

hardware only for data acquisition and process the data in software (C#) or to process the data in

SoC and only display the reconstructed image on GUI. If Zynq SoC is only used for data

acquisition, it transfers the difference voltage data to GUI. This data is processed through

selected algorithm on GUI. This data is also stored in text files, such up to 100 frames can be

stored. This data can be used later, that is offline to reconstruct and observe the image. The

reconstruction matrix and Jacobian matrix required for computations are calculated once and

stored in text files for later use. This way, the matrices need not be calculated each time

reconstruction computation is done. Also, to display the image on GUI, the 2D FEM mesh is

73

computed in C#. The mesh computation and Jacobian matrix computation is used from the C#

implementation developed by one of the previous students in St. Cloud State University [19].

The detailed implementation of C# GUI developed in this project is described in chapter 8.

6.1.3 System Specification

Following is the list of specifications provided by the EIT system

- Twelve electrode EIT hardware

- Twelve rings forward model (mesh)

- Opposite current injection system

- Fixed 0.25 mA current injection

- 2Hz to 10kHz current signal frequency range

- Sampling Frequency options 250Hz, 500Hz, 1kHz, 2kHz and 128kHz

- Number of samples for data acquisition can be set as 256, 512, 1024, 2048, 4096 and

8192

- Image reconstruction algorithms

o Gauss Newton One Step

o Total Variation

74

- Tikhonov prior

- Number of iterations can be set from 1 to 6

- Hyper parameter can be set as 0.3,0.03 or 0.003

- Single or continuous acquisition

- Option for data processing in Zynq SoC or C# GUI

- Up to 100 measurement data storage

- Image reconstruction from database

6.2 Algorithm Implementation

 As mentioned above, the image reconstruction algorithms are implemented in the Zynq

SoC as well as in C# (GUI). In this section the reconstruction algorithms’ implementation is

discussed. A one step algorithm that is Gauss Newton One Step and an iterative algorithm that is

Total Variation are implemented. As both the algorithms are time difference method, the voltage

measurements are taken as homogeneous at one instant and inhomogeneous at another instant.

The voltage difference between homogeneous and inhomogeneous is calculated and used in the

conductivity reconstruction computation.

6.2.1 Gauss Newton One Step

 As explained in the chapter 2, Gauss Newton One Step algorithm is represented using

following equation

 𝛥𝜎 = (𝑱𝑇𝑊𝑱 + 𝜆2𝑅)−1𝑱𝑇𝑊𝛥𝑉 (6.1)

Where, 𝛥𝜎 = change in conductivity, to be calculated

75

 𝑱 = Jacobian Matrix

W = variance matrix

 𝜆 = hyperparameter

R = Prior Matrix

𝛥𝑉 = Difference voltage

Above equation can be written in the following format

 𝛥𝜎 = 𝐵 𝛥𝑉 (6.2)

Where B is called as reconstruction matrix and given as

 B = (𝑱𝑇𝑊𝑱 + 𝜆2𝑅)−1𝑱𝑇𝑊 (6.3)

 In equation 6.3, the variance matrix, W, is identity matrix since it is a difference method.

If a Tikhonov prior method is used, then R becomes identity matrix. The hyperparameter is kept

as 0.003 throughout the computation.

 The Jacobian matrix computation depends upon the forward model, that is number of

electrodes, stimulation method and number of rings. Since, in this system all the system

parameters are constant the Jacobian matrix need to be calculated only once. This way, equation

6.3, that is reconstruction matrix can be calculated once and can be used for computation for

every new difference voltage measurement.

76

Zynq SoC Implementation

 Using all the system specifications, the reconstruction matrix is calculated in C# and

stored in a text file. The text file is stored in a SD card. On initialization of PS, the reconstruction

matrix from SD card is read and copied to the DDR memory on board. The Gauss Newton One

Step implementation requires equation 6.2 to be implemented. This requires the difference

voltage data. The homogeneous and inhomogeneous data is acquired, and the difference voltage

is calculated.

 The twelve electrodes and twelve rings give 576 triangular elements in the 2D FEM

model. This makes the reconstruction matrix size as 576x96. Also, with twelve number of

electrodes and opposite stimulation method, there are 96 total measurements for one

homogeneous or inhomogeneous data acquisition. This makes equation 6.2 as a multiplication

between 576x96 matrix and 96x1 voltage difference vector. This can be achieved by

implementing the row wise multiplication in FPGA. The voltage difference data is transferred

from PS to FPGA and stored in an array. Later each row of reconstruction matrix is transferred

from DDR to FPGA for a parallel multiplication and accumulation operation. The result is

transferred to DDR for storage. Moreover, the Zynq SoC FPGA has 220 DSP slices, if one row

multiply and accumulate computation is implemented in FPGA to be executed parallelly, it takes

96 DSP slices. Hence, two rows multiply and accumulate operation is achieved using 192 DSP

slices. Two rows are transferred to FPGA at one time from DDR, the computation is performed,

and result is stored in DDR. After the computation completes for all the rows, the resulting

image data of size 576x1 is transferred to GUI over serial port for display. The logic

implementation is detailed in chapter 8.

77

Software Implementation

 The Gauss Newton One Step equation, equation 5.2 is also implemented in C#. As

mentioned above, user can set the Zynq SoC for only data acquisition. This way, once

homogeneous and inhomogeneous measurements are done, the voltage difference data is

transferred to GUI. The precalculated reconstruction matrix is read from a text file and used to

compute equation 5.2. The resulting 576x1 data is used to display the conductivity change image

on the GUI. The implementation logic is detailed in chapter 9.

6.2.2 Total Variation

 As explained in chapter 2, the total variation is an iterative method and hence is

performed in following steps.

Gauss Newton one step is to be used to find initial solution

 𝛥𝜎0 = (𝑱𝑇𝑊𝑱 + 𝑅𝑇𝑅)−1𝑱𝑇𝑊𝛥𝑉 (6.4)

For further iterations, a TV regularization parameter is to be calculated as follows

W𝐵 =

0.5

√(𝑅 ∗ ∆𝜎0)2 + 𝛽

(6.5)

where, 𝛽 is smoothness parameter and kept constant throughout iterations

This parameter is to be incorporated in equation 6.4 to get,

 𝛥𝜎 = (𝑱𝑇𝑊𝑱 + 𝑅𝑇 𝑊𝐵𝑅)−1𝑱𝑇𝑊𝛥𝑉 (6.6)

The calculations in equation 6.5 and 6.6 are repeated for few iterations to get the result.

78

 To implement TV algorithm, the previously implemented Gauss Newton One Step

computation is used to calculate initial solution that is equation 6.4. The TV regularization

parameter is calculated using initial solution, Tikhonov prior R and, 𝛽 = 0.0004.

 Next, to compute equation 6.6, the Jacobian and variance matrices need to be used. As

mentioned earlier, the Jacobian can be calculated only once. Also the variance matrix is identity

matrix, hence, the numerator in equation 6.6 that is (𝐽𝑇 ∗ 𝑊) matrix and part of the denominator

that is (𝐽𝑇 ∗ 𝑊 ∗ 𝐽) matrix are precalculated and used for computation for every new difference

voltage measurement.

 Zynq SoC Implementation

 The matrices (𝐽𝑇 ∗ 𝑊) and (𝐽𝑇 ∗ 𝑊 ∗ 𝐽) are calculated in C# and stored in text files.

These text files are then stored in SD card. At the initialization of processor, it reads the above

said files and stores the data into onboard DDR. If Total Variation algorithm is selected, the

initial solution is calculated using the reconstruction matrix stored in DDR and FPGA

implementation for Gauss Newton One Step, as described in previous section. Next, for the

calculation for TV regularization parameter, that is equation 6.5, the size of prior matrix is

576x576 and the initial solution is 576x1. This computation is implemented in PS.

 The TV regularization parameter and (𝐽𝑇 ∗ 𝑊 ∗ 𝐽) matrix is used to calculate the

denominator of equation 6.6, in PS. Now, to calculate resulting conductivity change in equation

6.6, the matrix inversion for denominator needs to be done. The inverse is calculated using row

elimination method. The calculated inverse is multiplied with (𝐽𝑇 ∗ 𝑊) matrix to generate new

reconstruction matrix. This new reconstruction matrix and difference voltage data are used to

79

calculate new conductivity change value, using the Gauss Newton One Step multiplier

implemented in FPGA. If the number of iterations is set as more than one, equation 6.5 and 6.6

are repeated to calculate new conductivity change values. Once the computation is completed for

all iterations, the resulting image data is transferred to GUI for display. The detailed

implementation is given in chapter 8.

Software Implementation

 The Total Variation algorithm is also implemented in C#. If the hardware is set to be used

for only data acquisition and TV algorithm is selected, the received voltage difference data is

used to compute the conductivity change by using the C# TV implementation. Again, the

precalculated matrices (𝐽𝑇 ∗ 𝑊) and (𝐽𝑇 ∗ 𝑊 ∗ 𝐽) are read from text files and used for

computation. To compute initial solution that is equation 6.4, the C# Gauss Newton

implementation is used. The computation for equation 6.5 and 6.6 is implemented through matrix

operations and repeated for set number of iterations. The resulting 576x1 conductivity change

matrix is used to display the image on GUI. The implementation logic is detailed in chapter 9.

80

Chapter 7: Analog Front End Design Study and Modifications

This chapter gives the design analysis of the analog front-end hardware and the

description of the changes implemented in the AFE hardware, in this project. As mentioned in

chapter 3, the AFE board is developed by a senior design team [9] to work with higher frequency

range 100Hz to 10kHz. In this project, the AFE is modified to work with low frequency range

1Hz to 30Hz.

7.1 Design Analysis

 The AFE board design and its functionality are studied to use it in this project. The brief

design description of the analog front-end board is given in chapter 3. The AFE is designed to

generate the current injection signal and acquire the voltage measurement data. It involves three

main sections, transmitter, switching circuitry and receiver.

7.1.1 Transmitter Section

 Figure 7.1 shows the functional blocks in the transmitter section.

Figure 7. 1 AFE Transmitter Section

 The FPGA generates digitized data for selected sinusoidal signal frequency. The digitized

data is given to a digital to analog converter, LTC 1668. The Linear Technology LTC1668 IC is

a 16-bit 50Msps digital to analog converter. The DAC takes 16-bit input data and gives

81

differential current output. The differential current output is converted to single ended voltage

signal using a differential current to voltage circuitry. There are some corrections done on the

board for this circuit which are not there in the available schematic. Figure 7.2 shows the updated

schematic for the section.

Figure 7. 2 Differential to Single Ended DAC out

 Signal T+ and Signal T- are the output coming from DAC. The single ended voltage

output of above circuit is passed through a band limiting active filter. The active bandpass filter

is designed for 100Hz to 100kHz frequency band. The filtered signal is passed through a current

control circuitry as shown in figure 7.3.

Figure 7. 3 Current limiting circuit

82

 There is a digital pot connected between the feedback loop of Opamp U14. The digital

potentiometer AD5293 is a 20kohm potentiometer with 1024 programmable steps. It can be

controlled through SPI interface. The output current can be calculated as

 𝐼𝑟𝑚𝑠 = 𝑉𝑟𝑚𝑠/(𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝑃𝑜𝑡 + 𝑅11) (7.1)

Where, 𝑉𝑟𝑚𝑠 is the input voltage and 𝐼𝑟𝑚𝑠 is the output current.

7.1.2 Switching circuit

 The switching circuit is designed in such a way that the current signal can be connected

to an opposite pair of electrodes in a pattern and at the same time voltage measurement from

adjacent electrode pairs can be taken. To achieve this a ADG 1606 multiplexer IC is used. It is a

16:1 multiplexer, which can be controlled by 4 selector switch inputs. There are twelve

electrodes. There are twelve multiplexers and all of them are connected to the twelve electrodes

in a pattern. Two of the multiplexers are connected to the differential current input coming from

DAC, and other ten multiplexers are connected to the receiver circuit. This way, using the four

select signals of the multiplexers, each multiplexer gets connected to one electrode each time.

The select signals are controlled from FPGA to control the current application and voltage

measurement pattern. The voltage is measured using a pair of adjacent electrodes. Hence, there

are eight voltage measurements generated using ten electrodes. These eight measurements are

connected to an eight channel ADC for converting the analog signal into digital and pass it to

FPGA for further processing.

83

Figure 7.4 shows the electrode sequence connected to a phantom.

Figure 7. 4 Electrode Connection with Phantom

Table 7.1 shows the sequence of current injection and voltage measurement with respect

to switch position, electrode pair and its corresponding ADC channel

Table 7. 1 Electrode stimulation and measurement pattern

Switch Position Current Injection

Electrode pair

Voltage Measured

Electrode pair

ADC Channel

0000 (0) Y0-Y6

Y1-Y2 AN0

Y2-Y3 AN1

Y3-Y4 AN2

Y4-Y5 AN3

Y7-Y8 AN4

Y8-Y9 AN5

Y9-Y10 AN6

Y10-Y11 AN7

0001(1) Y1-Y7

Y2-Y3 AN0

Y3-Y4 AN1

Y4-Y5 AN2

Y5-Y6 AN3

Y8-Y9 AN4

Y9-Y10 AN5

Y10-Y11 AN6

Y11-Y0 AN7

0010(2) Y2-Y8
Y3-Y4 AN0

Y4-Y5 AN1

84

Table 7.1 Continued

Switch Position Current Injection

Electrode pair

Voltage Measured

Electrode pair

ADC Channel

0010(2) Y2-Y8

Y5-Y6 AN2

Y6-Y7 AN3

Y9-Y10 AN4

Y10-Y11 AN5

Y11-Y0 AN6

Y0-Y1 AN7

0011(3) Y3-Y9

Y4-Y5 AN0

Y5-Y6 AN1

Y6-Y7 AN2

Y7-Y8 AN3

Y10-Y11 AN4

Y11-Y0 AN5

Y0-Y1 AN6

Y1-Y2 AN7

0100(4) Y4-Y10

Y5-Y6 AN0

Y6-Y7 AN1

Y7-Y8 AN2

Y8-Y9 AN3

Y11-Y0 AN4

Y0-Y1 AN5

Y1-Y2 AN6

Y2-Y3 AN7

0101(5) Y5-Y11

Y6-Y7 AN0

Y7-Y8 AN1

Y8-Y9 AN2

Y9-Y10 AN3

Y0-Y1 AN4

Y1-Y2 AN5

Y2-Y3 AN6

Y3-Y4 AN7

0110(6) Y6-Y0

Y7-Y8 AN0

Y8-Y9 AN1

Y9-Y10 AN2

Y10-Y11 AN3

Y1-Y2 AN4

Y2-Y3 AN5

Y3-Y4 AN6

Y4-Y5 AN7

85

Table 7.1 Continued

Switch Position Current Injection

Electrode pair

Voltage Measured

Electrode pair

ADC Channel

0111(7) Y7-Y1

Y8-Y9 AN0

Y9-Y10 AN1

Y10-Y11 AN2

Y11-Y0 AN3

Y2-Y3 AN4

Y3-Y4 AN5

Y4-Y5 AN6

Y5-Y6 AN7

1000(8) Y8-Y2

Y9-Y10 AN0

Y10-Y11 AN1

Y11-Y0 AN2

Y0-Y1 AN3

Y3-Y4 AN4

Y4-Y5 AN5

Y5-Y6 AN6

Y6-Y7 AN7

1001(9) Y9-Y3

Y10-Y11 AN0

Y11-Y0 AN1

Y0-Y1 AN2

Y1-Y2 AN3

Y4-Y5 AN4

Y5-Y6 AN5

Y6-Y7 AN6

Y7-Y8 AN7

1010(10) Y10-Y4

Y11-Y0 AN0

Y0-Y1 AN1

Y1-Y2 AN2

Y2-Y3 AN3

Y5-Y6 AN4

Y6-Y7 AN5

Y7-Y8 AN6

Y8-Y9 AN7

1011(11) Y11-Y5

Y0-Y1 AN0

Y1-Y2 AN1

Y2-Y3 AN2

Y3-Y4 AN3

Y6-Y7 AN4

Y7-Y8 AN5

Y8-Y9 AN6

Y9-Y10 AN7

86

 Receiver Section

 The receiver section functional blocks are shown in figure 7.5

Figure 7. 5 AFE Receiver Section

 The signal from each electrode is passed through a passive bandpass filter. The pass band

for passive filter is 144Hz to 320kHz. The voltage measurement for EIT is performed using

adjacent electrode pairs. Hence, the filtered signal from adjacent electrodes are then passed

through an instrumentation amplifier, AD8429, to generate one measurement output. There are

ten such instrumentation amplifiers used to generate ten single ended voltage measurements. The

output of instrumentation amplifier is passed through an active bandpass filter with a frequency

band of 72Hz to 398kHz. Out of the ten single ended voltage signals only eight are required for

the EIT computation. Hence, the eight single ended voltage measurements are connected to an

eight channel ADC, AD7761. This ADC converts 8 channel analog data to digital and provides it

at 8 serial outputs in 16bit format. The output of ADC is passed to the FPGA for further

processing. Table 1 shows the electrode pairs set to form eight ADC inputs.

7.2 Modifications to Operate on Low Frequency

 The tissue impedance mainly includes extracellular impedance, cell membrane

impedance and intracellular impedance [44]. The intracellular and extracellular parts of tissue

87

pass higher frequencies same way, however, at low frequencies the cell membrane provide high

capacitance [45]. Moreover, at the time of injuries, fluid level increases in intracellular part of

the tissue. Hence, using lower frequencies for EIT, conditions like tissue edema can be detected.

 The AFE hardware is originally designed to work with frequency range 100Hz to 10kHz.

To create an EIT set up for low frequency EIT study, the AFE needed to be modified to work

with lower frequencies. From the above analysis, it can be said that the active and passive

bandpass filters needed to be modified for a lower frequency range. There were already some

modifications done on the AFE board by senior design team, however the modifications were not

documented because of which the capacitor values in the filter designs were unknown. To

analyze the changes, the receiver section was tested for 10Hz input frequency. It was observed

that the passive filter was attenuating the input signal by a factor of 10. The output of passive

filter is given to the instrumentation amplifier which has a gain setting of seven. The signal was

observed to be amplified by the factor of seven at the output of instrumentation amplifier. This

signal is passed to active bandpass filter. It was observed that the resistor combination of

bandpass filter was again designed to introduce the attenuation of a factor of ten. Hence, the

signal was very low at the output of active bandpass filter.

88

Figure 7.6 shows receiver circuit for channel 0, showing passive filters and active filters.

The component values in the following schematic are that of for high frequency filter design, as

described in previous section

Figure 7. 6 AFE receiver channel for ADC channel AN0

 To identify the issues in the filter design, the capacitors on the board in passive and active

filter designs were removed and the values were measured using a Fluke meter. With the known

values of capacitors, the passive and active filter designs were simulated. The Cadence Orcad

PSpice software was used for simulations. Following are the simulation results for passive filter

and active filter designs.

- Passive Filter

 The measured values for resistors and capacitors in the passive circuit are as follows

C3 = 0.22uf R4 = 174kohm

C4 = 2.2uf R3 = 4kohm

After calculation using the R-C values of passive filter, the passband for the design comes as 4Hz

to 18Hz.

89

Figure 7.7 shows the schematic drawn for simulation

Figure 7. 7 Passive filter schematic for simulation

 The filter design was simulated using a frequency sweep simulation from 0.01Hz to

100kHz. Figure 7.8 shows the frequency response achieved

Figure 7. 8 Passive filter frequency response

90

The frequency response shows the calculated values in the passband. At -3db the frequencies

are 0.3Hz to 203.9 Hz. It is also observed that the input used for simulation is 1V and the

attenuation of 10 causes the passband amplitude to be less than 100mV.

- Active Filter

 The measured values for resistors and capacitors in the active bandpass filter circuit are

as follows

C1 = 2.2uf R1 = 174kohm

C2 = 0.1nf R2 = 20kohm

 After calculation using the measured R-C values, the passband for active bandpass filter

is 0.4Hz to 80kHz, with gain 0.1. Figure 7.9 shows the schematic drawn for simulation. The

bandpass filter output is level shifted by 2.5V, hence, the schematic has the 2.5VDC input at

noninverting input terminal of the Op-amp.

Figure 7. 9 Active Bandpass filter schematic for simulation

91

 The filter design was simulated using a frequency sweep simulation from 0.001Hz to

10MHz. Figure 7.10 shows the frequency response achieved. The simulation shows the -3dB

frequencies as 0.4Hz and 80kHz. Also, the amplitude shows the attenuation of a factor of 10.

Figure 7. 10 Frequency response for active bandpass filter

- Modifications

 To remove the attenuation at input stage that is passive filter stage, it was decided to

bypass the high pass filter and keep the lowpass filter. This way, the low pass filter cutoff

frequency would be 18Hz with no attenuation. Figure 7.11 shows the updated schematic for

passive filter, drawn for simulation

Figure 7. 11 Modified schematic for Passive filter

92

Figure 7.12 shows the simulation waveform for the passive lowpass filter.

Figure 7. 12 Passive lowpass filter frequency response

 The active bandpass filter was also modified to remove the attenuation and add the gain

of two by changing the value of feedback resistor from 20kHz to 300kHz. This makes new active

bandpass filter frequency range as 0.4Hz to 5.3kHz and gain of 1.72.

93

Figure 7.13 shows the schematic for the active bandpass filter

Figure 7. 13 Modified schematic for the active bandpass filter

Figure 7.14 shows the frequency response for above shown active bandpass filter. As can

be observed the -3dB frequency pass band is form 0.4Hz to 5.3kHz. Also, the gain of 1.7 can be

observed.

Figure 7. 14 Frequency response for modified active bandpass filter

94

 The above described changes were implemented on AFE board and further testing was

done. There is an active bandpass filter in the transmitter section of the AFE design. The changes

done in the active bandpass filter of receiver section are replicated in the active bandpass of the

transmitter section.

 The updated AFE hardware was tested by connecting a phantom between the electrodes

and signals were observed at multiple points in the design. The current injection signal was used

as 10Hz. Table 7.2 shows the signal measurement at different points taken for channel 0. All the

measurements are peak to peak.

Table 7. 2 Measurement for Channel 0

T+ Signal_0 Passive

Filter

out

(U21.1)

Signal_1 Passive

Filter

out

(U21.4)

Instrumentation

amplifier out

(U21.7)

Active

filter

out

(U23.7)

1.22V 248mV 224mV 80mV 72mV 1.2V 1.96V

 In this table, T+ is the transmitter output going to phantom. Signal_0 and Signal_1 are the

electrode pair signals which will generate ADC channel 0 input. The instrumentation amplifier

output and the active filter output shows the collective gain of around 7*1.72 = 12.

 All the receiver channels were tested for the modified receiver design, on oscilloscope as

well as the digitized data on serial port. Different frequencies from 2Hz to 30Hz were used for

testing.

95

Chapter 8: FPGA Design Development

This chapter provides a detailed description for the FPGA design. As described in chapter

6, the data acquisition system includes a Zynq SoC based development board, Zedboard along

with the AFE board. The Zynq SoC performs the signal generation, data acquisition and data

processing tasks. The Zynq SoC constitutes of FPGA and processor. In this project, the processor

and FPGA both are used to develop a complete EIT control system. This chapter covers the

FPGA design as well as processor application developed in this project.

8.1 Zynq SoC Design Description

 The Zynq SoC PS and PL can be programmed independently. However, a combination of

PS and PL can be used to create more efficient designs. In this project, the Zynq SoC is used to

control the flow of operation in the EIT system, generate the drive signals and acquire the

measured data. The FPGA logic constitutes of the hardware for following functionalities

• Generate the digital sinusoidal signal

• Program the digital potentiometer through SPI

• Acquire the eight channel ADC data

• Control the sampling frequency of the acquisition

• Control the Number of samples of the acquired data

• DMA function for data read/write from PS DDR

• A Parallel multiplier for reconstruction computation

These functions are monitored and controlled by PS. The PS performs following functionalities

• Load the reconstruction matrices from SD card to PS DDR

96

• Communicate with GUI over serial port for control data such as operating frequency,

number of samples, sampling frequency etc.

• Program the hardware in FPGA according to the control data

• Program the ADC through SPI communication

• Control the switching system

• Start the acquisition according to the commands received from GUI

• Read the ADC data stored in FPGA

• Process the ADC data through DFT

• Initialize the DMA transfer for reconstruction computation

• Perform part of the Total variation algorithm computation

• Transfer the image data or measurement data to the GUI

 Xilinx provided VIVADO design suite 2018.3 is used to develop the Zynq SoC design.

For generating the FPGA logic hardware, VIVADO IDE is used. For developing processor

application, Xilinx SDK is used. Implementation for each of the above-mentioned PS and PL

functionalities are described below. First a VIVADO design which includes the FPGA hardware

design is described. Later, SDK code that is the processor code is described.

8.2 VIVADO Design

 VIVADO IDE is used to generate the hardware platform including an FPGA design and

an embedded processor. VIVADO IP Integrator is used to generate a block diagram for the

required functionalities using processor IP, some of the Xilinx provided IPs such as DMA,

FIFOs etc. and some of the custom designed IP cores. A custom logic for the required

97

functionalities is written in Verilog and converted to an IP core using Xilinx IP packager. Figure

8.1 shows the functional blocks in the VIVADO design. Most of the IP cores can be controlled

by the processor through AXI lite ports.

Figure 8. 1 VIVADO Functional block diagram

 The complete VIVADO design can be divided into six parts, processor, signal generation,

Digital pot controller, Data Acquisition, AXIS multiplier and switching system. The processor is

the Zynq SoC ARM hardware processor. It is programmed using SDK and the design details are

98

given in next section of this chapter. Other parts’ design and development is described in this

section. Figure 8.2 shows the complete VIVADO block diagram built for this project.

Figure 8. 2 Complete VIVADO Block Diagram

99

8.2.1 Processor

 The Zynq 7 processing system is added to the block diagram as an IP core. Using the Run

Block Automation option, the Zedboard settings are applied. There are few design specific

options which needs to be enabled in the processor IP configuration. On the Clock Configuration

page, under PL Fabric Clocks, FCLK_CLK0 is selected by default. The PL clock frequency is

confirmed to be set at 100MHz. On the PS-PL Configuration page, under the HP Slave AXI

Interface, S AXI HP0 Interface is selected. The HP interface is selected for DMA connections.

The fabric interrupts are also enabled for further use in DMA transactions. To enable the fabric

interrupts, on the interrupts page, under Fabric Interrupts, IRQ_F2P is selected. The EMIO GPIO

is used for ADC SPI connections. A five-bit EMIO GPIO is enable from the page MIO

Configurations. Figure 8.3 shows the processor IP after the configuration updates.

Figure 8. 3 Processor IP

8.2.2 Signal Generator

 In this project a sinusoidal signal from frequency 1Hz to 10kHz is required to be

generated. The Analog Front End board has a 16-bit DAC for analog signal transmission to the

100

electrodes. The DAC needs a 16-bit digital data clocked at 50MHz, along with the 50MHz clock.

A custom AXI-lite Slave IP core is created to provide a 16-bit digital data and 50MHz clock for

the DAC. The procedure to create and use custom IP using IP packager is given in [46]. Figure

8.4 shows the DAC data generation IP Core block, named as DDS_IP

Figure 8. 4 DAC data generation IP core

 It has an AXI Lite slave port to take the settings input from PS. The Zedboard has

100MHz onboard clock, it is used to generate a 50MHz clock required for DAC. The IP core

gives 16-bit data output and 50MHz clock output. This IP includes a DDS IP core, a Clocking

wizard IP core and an ODDR (output DDR primitive) for clock forwarding to output pin.

A separate design including the DDS, Clocking wizard and ODDR is created, simulated, and

then incorporated with a custom AXI-lite Slave IP core. The phase data setting for DDS IP core

is received through the AXI-Lite port from PS. Following is the DDS IP and Clocking wizard IP

setting description. The simulated waveform is also given.

a) DDS IP Core:

 The Xilinx LogiCORE IP DDS (Direct Digital Synthesizer) complier has the phase to

sinusoidal waveform data generator logic. With the appropriate phase setting, the core generates

101

the sinusoidal waveform samples with a specific frequency [47]. An analog signal can be

generated by taking the digital data generated by DDS and given to the DAC.

 The DDS IP core needs a phase increment value to be set up to convert it to sinusoidal

waveform. With the appropriate phase increment value, the output frequency is given by

following equation

𝑓𝑜𝑢𝑡 = 𝑓𝑐𝑙𝑘 ∗

∆𝜃

2𝐵

(8.1)

where, 𝑓𝑜𝑢𝑡 is the output frequency,

𝑓𝑐𝑙𝑘 is the system clock frequency,

∆θ is the phase increment value and

B is the phase width that is number of bits used to set phase increment value

The frequency resolution that can be achieved is given as

∆𝑓 =

𝑓𝑐𝑙𝑘

2𝐵

(8.2)

In this project, the DAC used has 50MHz update rate. Hence, system clock is set as

50MHz. The frequency output required is 1Hz to 10kHz, hence, to achieve the frequency

resolution less than 1Hz, the phase width is set as 32 bits

Hence, Resolution

 ∆𝑓 = 50𝑀𝐻𝑧/232 = 0.011𝐻𝑧 (8.3)

To setup the required output frequency for the DDS, the phase increment value needs to be

entered. The phase increment value can be calculated as follows

∆𝜃 = 𝑓𝑜𝑢𝑡 ∗

2𝐵

 𝑓𝑐𝑙𝑘

(8.4)

102

For example, for 100Hz sinusoidal output waveform, the phase increment value to be entered is

∆𝜃 = 100𝐻𝑧 ∗

232

50𝑀𝐻𝑧
 = 8590

(8.5)

The DDS compiler IP is set with following settings in graphical user interface

- The Configuration option is set as Phase Generator and SIN/COS LUT

- System Clock: 50MHz

- Number of Channels: 1

- Mode of Operation: Standard

- Parameter Selection: Hardware parameters

- Phase Width: 32 bits (can be set from 3 to 48 bits)

- Output width: 16 bits (can be set from 3 to 16 bits)

- Phase Increment Programmability: Streaming, it allows phase increment value to be

taken in from the phase channel

- Phase offset programmability: None

- Output Selection: Sine

- Amplitude Mode: Full range

- Memory Type: Auto

- Optimization Goal: Auto

- DSP48 Use: Minimal

- DATA Has TLAST: Not Required

- No Output Ready

- Output form: Twos complement

103

- Latency Configuration: Auto

- Control Signals: ARESETn

b) Clocking wizard IP Core

 The DAC requires the digital data clocked at 50MHz. Hence, a Clocking Wizard is used

to convert an on board 100MHz clock to 50MHz. In the Clocking wizard IP settings, PLL

primitive is used. Input clock is set as 100 MHz and the output clock, clk_out1 is set as 50MHz.

The 50MHz clock is given as input to the DDS IP Core. For connecting the PLL IP core output

to the FPGA output pin, an output DDR primitive is used.

 Figure 8.5 shows the simulation for 100Hz output. The DDS core output is signed 16-bit.

To get the continued sinusoidal data, the polarity needs to be reversed by adding 0x8000 in the 16-

bit output data.

Figure 8. 5 Simulation waveform for 100Hz

104

c) Integration with AXI-lite custom IP

 The above tested design is added to the design with AXI-lite slave interface and packaged

as an IP. The DDS IP core inputs are 32-bit phase increment data input and a valid signal. In the

AXI lite interface code, the 0th bit of slave register0 is used as valid signal and slave register1 is

used for phase data value.

8.2.3 Digital Pot controller

In the transmission section of the AFE board, a digital potentiometer is used to control

the current. An AXI-lite custom IP core is generated to take the pot settings from PS and

program into the digital pot through the SPI communication. Figure 8.6 shows the IP core block.

It has a ready input coming from the potentiometer IC, AXI-lite port for input from PS, and

SCLK, DIN and SYNC are the signals to transfer the data serially to the potentiometer.

Figure 8. 6 Digital Pot control IP core

 Again, a separate logic for digital pot communication is designed and then incorporated

in a custom AXI-lite slave IP. The PS writes the digital pot value setting through AXI-lite slave

port. Following is the logic description for the IP.

a) Digital potentiometer communication logic

105

 The digital pot used in AFE is a 20kohm, 1024 position resistance. The resistance value

can be controlled digitally through a SPI-compatible serial interface. The control includes

• SCLK: Serial data clock, can be set up to 50MHz

• DIN: Serial data input to Digital pot

• SDO: Serial data output from Digital pot

• SYNC: Frame synchronization signal for data input

• Ready: Ready output, identifies the completion of a write or read operation

 The pot value can be written or read through this interface. In this project, the pot values

are only written through the SPI interface.

 The data transfer through the SPI interface is done through a 16-bit shift register. The

shift register structure is as follows, bit 15-14 = 0, bit 13-10 = 4 control bits and bit 9 – 0 = 10

data bits.

 The control bits control the pot operation and the data bits are written to the internal data

register. To set the potentiometer wiper at some specific value, the wiper needs to be unlocked

first, write the desired value and lock the wiper again. For detailed protocol please refer [48].

Following are the shift register words used in this project,

- Unlock wiper: 0x1802

- Data value: (0x0400 + wiper setting to be written)

- Lock Wiper: 0x1800

 A state machine is developed to write above shown words through the serial interface.

106

Figure 8.7 shows the write timing diagram [48] for the SPI communication. As can be

seen, if Ready signal is high, the Sync signal must be set low for starting to shift out the 16-bit

data serially. Upon the shifting out of all 16 bits, the Sync needs to be set high.

Figure 8. 7 Write Timing Diagram AD5293 [48]

 As stated above, the SCLK can be set up to 50MHz, in this project the SCLK is set as

6.25MHz. A SYNC signal and Ready signals are used to start the data transfer and poll the

completion respectively. To set the clock frequency and wait period, counters are used. All the

data transfer logic is set up in five states such as IDLE, SYNC_LOW, LOAD, POLL_READY

and WAIT_EN_LOW. As the digital pot setting value is written through PS, there are few

handshaking signals used such as enable, done and error. If the enable signal is raised high by

PS, the state machine moves from IDLE state to SYNC_LOW state. In SYNC_LOW state,

SYNC signal is set low and the data to be transferred is copied in the shift register. The data load

sequence is as shown above that is unlock, actual data word and lock data word. In next state that

is LOAD, the data is shifted out from the MSB side. After the 16th bit shift, it moves into next

state that is POLL_READY. To indicate the transfer has been completed, the digital pot IC

107

should lower the Ready signal. Hence the Ready signal is polled to be low for around 2us. If it

does not go low, the error signal is raised high. In the next state that is WAIT_EN_LOW, the

enable signal is polled to be lowered by PS to finish the data transfer. If the ready signal goes

low without error, the state moves to SYNC_LOW to load the next data and the next data gets

shifted out. At the end that is after transferring the lock word, a done signal is raised high to

indicate the transfer is completed. The state machine flowchart for this code is shown in

appendix in this document.

b) Integration with the AXI-lite custom IP

 The above designed code is integrated with a custom AXI-lite slave IP and packaged as

an IP. The digital pot SPI communication code requires 16-bit data for the potentiometer value

and enable signal. Also, the code provides two status signals such as DONE and ERROR. For PS

to be able to read and write to the digital pot logic, the AXI-lite slave communication is used. As

shown in figure 8.8, the 0th slave register is used to write the data and enable signal to the digital

pot logic. The out_reg is defined as a 32-bit register which includes the DONE and ERROR

signals. The out_reg is then connected to the output register 1of the AXI-lite protocol.

Figure 8. 8 AXI-lite register usage for digital pot programming

108

8.2.4 Data Acquisition

 The data acquisition logic is designed for reading and storing serial ADC input for 8

channels and transferring the stored data to PS for processing. It includes ADC interface, shift

register logic for converting serial input to parallel, logic to control sampling frequency, logic to

control number of samples, a combinational logic to control FIFO data read/write and AXI

GPIOs to transfer FIFO data to PS. In this section, all sections of the data acquisition logic are

described.

a) ADC Interface

 The ADC used on AFE board is an 8 channel, 16-bit ADC. There is a SPI control

interface for programming the sampling speed and power mode. The digital data is provided

through 8 serial data output pins along with the clock and ready signal. In this project, the SPI

programming is handled in PS. In PL the serial data input is converted to parallel and stored.

 The ADC requires a master clock MCLK of 32.768MHz. This clock is provided through

FPGA. The Zedboard has 100MHz input clock, it is used to generate 32.768MHz clock for ADC

through a clocking wizard.

 The ADC conversion data is clocked out on an output clock from ADC, that is DCLK.

This clock is set by setting the ADC power mode. There are three modes, such as fast, median

and low power mode. In this project, the median mode is set through SPI. This makes DCLK =

MCLK/8 = 4.096MHz. There is a framing signal DRDY (Data Ready) which indicates the

conversion data is ready. In the FPGA logic, DCLK and DRDY signals are used and serial ADC

conversion data is shifted in.

109

Figure 8.9 shows the data output timing diagram for ADC. The ADC data word here is 24 bits,

out of which first 8 bits are header which includes information like channel number and status.

The other 16-bit is ADC output.

Figure 8. 9 ADC interface timing diagram[49]

b) Shift Register

 There are eight ADC inputs which provide conversion data serially. The serial input

needs to be parallelized to store in the memory. Hence, a custom logic is required. In this project,

the shift register logic developed by Senior design team [9] is used as it is. In this section, the

logic is described.

 The eight inputs are connected as an 8-bit bus to the FPGA pins and separated using Slice

IP core. Figure 8.10 shows the sliced serial input and the Shift register IP core

Figure 8. 10 ADC channel and shift register IP block

110

 As described in previous section, the ADC data is clocked out on DCLK of ADC. The

DCLK is also provided out for reading the digitized ADC data. Hence, the DCLK is used in the

FPGA logic to shift in the serial data. In the above figure, the shift register IP has clock input,

which is DCLK, DataIn is a Data Ready signal coming from ADC and Data is the serial data

input. The output of the shift register is 16-bit ADC data. The logic is developed using Verilog

and converted into a custom IP. In the Verilog code the data is clocked out on rising edge of

DCLK. Hence, in FPGA, the data is shifted in on negative edge of the clock.

c) Sampling frequency control

 In this project, the ADC operation is set at the median power mode. In this mode, the

maximum sampling frequency can be set at 128kHz. However, at low frequency signals such as

2Hz to 100Hz, the sampling frequency needs to be lowered. This is achieved by setting the ADC

sampling frequency at one fixed rate and while storing the converted data in the FPGA, dividing

the sampling rate by skipping number of samples. A custom logic is designed using Verilog and

then converted to an IP to integrate in the main design.

 In figure 8.11, the count_fs is the IP core which divides the sampling frequency. The

ADC Data ready signal is used to generate write enable for the FIFOs to write the acquired data.

To divide the actual sampling frequency, the Data ready is forwarded only at the sampling rate

which is required. Hence, the count_fs logic controls the forwarding of Data ready signal. The

division counter value is loaded from PS, as the required sampling frequency is set through PS.

Hence, the count_fs block has the inputs such as clock, which is DCLK, DataIn which is ADC

Data ready, div_count, which is 12 bit division counter set from PS and a reset_count signal. The

111

output of count_fs is OutReady signal which is further used to generate write enable for FIFO.

To load the signals coming from PS, AXI GPIO is used. As seen in the figure, two GPIO

channels, one bit and 12 bit are set.

Figure 8. 11 Sampling frequency setting logic blocks

 Initial part of the count_fs logic is taken from one of the IP cores designed by senior

design team[9]. However, the sampling frequency division logic is developed in this project.

Figure 8.12 shows the code snippet for the count_fs logic.

Figure 8. 12 sampling frequency division logic

112

The DataIn that is Data ready signal is sampled on the negative edge of the DCLK. Once

the data ready signal is high, a counter is started. The division counter is incremented by one at

every Data ready detection. Once the Data ready is detected, the ADC data starts shifting in

shift_reg IP core, hence, to count if all the 24 bits are shifted in, the counter is incremented at

negative edge of the DCLK. If the counter reaches 26 counts, it is set to zero until new data

ready is detected. If the counter has reached 26 and division counter, which indicates number of

data ready signals, has also reached to the expected count, then a OutReady signal is set high.

This makes sure, the Data ready signal only gets forwarded after a specific number of samples.

Once the OutReady is set high, all the counters are set to zero.

d) Number of Samples control

 According to the signal frequency and sampling frequency, the number of samples which

needs to be stored are variable. Depending upon the set number of samples, the ADC data

writing to the FIFO is limited. This is achieved by a custom logic which monitors FIFO write

enable signals and informs PS that the required number of samples are stored. The PS then

disables the FIFO write enable signal. The logic is developed using Verilog and then converted

to an IP for further use in main design. Figure 8.13 shows the count_fifo IP core.

Figure 8. 13 Number of samples control IP block

113

 The IP core has inputs count_in, which is required number of samples setting coming

from PS, data_enable, which is enable signal coming from PS, rst, which is the reset signal

coming from PS, the wr_en signal, which is the FIFO write enable and the wr_clk which is FIFO

write clock. The output is count_reached which is connected to PS through AXI GPIO.

 The count_in signal coming from PS is connected through an AXI GPIO named

AXI_GPIO_SampleNo.It si configured for 16 bit output.

 The control signals, data_enable and rst are connected from PS to count_fifo IP through

an AXI GPIO IP core named ADC_control_bits. The AXI GPIO is configured for 4-bit output.

Each of these outputs are used for separate function and separated by Slice IP cores. The 0th bit

of the GPIO output is data_enable and 2nd bit is the reset signal.

 In the count_fifo logic, if the data_enable signal is high, the FIFO write enable pulses are

counted. If the count reaches to the set number of samples value, the count_reached signal is set

high. The PS reads this signal and disables the data_enable signal which also stops writing data

in FIFO.

e) FIFO storage and combinational logic

 The shift register converts every ADC conversion data from serial to parallel data. The

parallel data is stored in a FIFO. Eight 8192 depth, 16-bit FIFOs are used to store the eight-

channel data. There is a combinational logic which combine PS control bits and ADC signals to

control the data samples writing into FIFOs.

114

Figure 8.14 shows the FIFO IP core generated using Xilinx provided FIFO generator IP core.

Figure 8. 14 FIFO IP Core

 The FIFO IP is configured as native, independent clock built in FIFO. Other settings for

the configuration are First word fall through, write width 16 bit, write depth 8192, Read clock

frequency 100MHz, write clock frequency 4MHz and single programmable full threshold

constant 8185. The programmable full threshold is set at its maximum.

 As mentioned above, the FIFO is an independent clock FIFO. The ADC clock is used as

write clock as the ADC data is clocked in at ADC clock. The read clock is set as the FPGA clock

which is 100MHz. The write enable is generated using a combinational logic. Figure 8.15 shows

the combinational logic used to control the write enables to FIFO. An AND gate is used to

generate the wr_en signal. One of the inputs to the AND gate is inverted FIFO full signal. The

FIFO full signal sets high only if the FIFO is full, hence, the write enable will automatically stop

if the FIFO becomes full. As there are eight FIFOs and all the FIFOs have same sequence of

write and read, the FIFO full signal used here belongs to the FIFO used to store ADC channel 1

data. Other input to the wr_en AND gate comes from another AND gate. This AND gate have

115

one of the inputs as data_enable. This signal is generated by PS and controlled over the required

number of samples storage. Another input to this AND gate is OutReady signal which comes

from count_fs IP core, shown in section c above. Hence, the OutReady will be used as write

enable only if the FIFO is not full and PS has issued data_enable.

Figure 8. 15 Combinational Logic for FIFO write enable

 Once the required number of ADC data samples are written in FIFO, the PS issues read

enable signal and reads all the data. However, the read enable signal needs to be of only one

clock pulse data width for only one data to come out on the output bus of FIFO. If the read signal

is set high from PS and then set low for one data read, there is a possibility that due to the

processor execution time the width of the read enable signal is more than one clock pulse. Hence,

a custom logic is generated in Verilog and then converted to IP, to make sure the width of the

read enable signal. Figure 8.16 shows the IP core to set the read enable for FIFO.

Figure 8. 16 FIFO Read enable signal IP core

116

 The IP has the local clock and reset inputs. The gen_rd input is the read enable signal

coming from PS. The read enable signal from PS is connected to the logic through

ADC_control_bits AXI GPIO. The bit 1 from the ADC_control_bits AXI GPIO is the read

enable signal. Figure 8.17 shows the logic used for sampling the PS read enable signal. The PS

read enable is sampled on a negative edge of the clock so that the output read enable signal stays

stable during the next positive edge of the clock. Once the PS read enable is detected, the output

read enable is set high along with a flag. On the next negative clock edge as the flag is set high,

the output read enable signal resets.

Figure 8. 17 generate FIFO read enable logic

117

f) AXI GPIO Data transfer

 The sixteen-bit ADC data stored in FIFOs is read through AXI GPIOs. For each ADC

channel, there is one AXI GPIO IP core used, with 16-bit input port. The FIFO output is

connected to PS through these AXI GPIOs. For each sample read, the PS issues read enable,

corresponding data comes on the FIFO read port and PS reads the data through AXI GPIO.

8.2.5 AXIS multiplier

 The AXI multiplier is designed to perform the reconstruction matrix and difference

voltage vector multiplication. Due to the limitation of available DSP slices in the device, the

computation needs to be divided as two rows and a vector multiplication at one time. The voltage

difference vector and rows of reconstruction matrix are stored in PS DDR. This data is

transferred to the PL through DMA (Direct Memory Access) IP core. In the following section,

the details of DMA IP core and AXIS multiplier logic development are given.

a) Direct Memory Access IP Core

 The Xilinx DMA IP core provides high-speed direct memory access between AXI

memory mapped and AXI stream interfaces. In other words, it transfers data from one part to

another without much involvement from PS. It works in two modes, simple and scatter gather.

The scatter gather mode includes scatter gather engine which can manage the DMA data transfer

itself, less involvement of PS, and can be used to transfer number of packets of data. In simple

mode, the transfers are handled by reading source and destination address from PS. Simple mode

involves less FPGA resources as it excludes scatter gather engine. In this design, simple mode is

118

used as it provides the required functionality. The IP is configured for data width as 32 bits and

width of buffer length register as 14 bits. The width of buffer length register indicates the

allowed length of the data transfer buffer and can be set from 8 to 25. The buffer length is

specified as 2^width of buffer length. In this case, the maximum data that will be transferred

from DDR to PL is two rows that is 96*2*4bytes = 768 bytes.

 Figure 8.18 shows the IP core block configured in simple mode.

Figure 8. 18 AXI DMA IP Core block in the design

 In simple mode, the IP core requires data transfer information such as source address,

destination address and transfer length, configured. The information is configured by processor

through AXI lite interface. The DMA IP also provides data transfer interrupts which can be used

to identify if the transaction has completed. In this case, the interrupts are enabled in the IP core

and connected to PS, however, are not used in final design. The ports shown in above figure are

defined as follows

• S_AXI_LITE: AXI lite interface for communication between PS and IP core

• S_AXIS_S2MM: AXI stream interface from slave to memory mapped (PL to DDR)

• M_AXIS_MM2S: AXI stream interface from memory mapped to slave (DDR to PL)

119

• M_AXI_MM2S: AXI read channel

• M_AXI_S2MM: AXI Write channel

• mm2s_introut: memory mapped to slave data transfer Interrupt

• s2mm_introut: slave to memory mapped data transfer interrupt

For further information, please refer [50].

b) AXIS Multiplier Design

 The matrix data for computation is transferred from DDR to PL through DMA. The

DMA IP core uses AXI-stream protocol for data transfer on PL side. Hence, an AXI-stream

custom IP core is generated with the functionality of two row multiplication. Apart from the

AXI-stream communication ports, the custom IP also uses some handshaking signal to be

controlled by PS. Figure 8.19 shows the AXIS multiplier IP core. It has AXI-stream slave input

to take data input from DMA, AXI-stream master output to write the output to DMA. The

handshaking signals that is load_diff and load_row, are coming from PS to indicate start storing

the difference and row data respectively. The three-bit monitor port has some intermittent signals

connected to it so that to debug the DMA transaction.

Figure 8. 19 AXIS multiplier IP core block

120

 AXI stream is a type of AXI4 interface which is used for streaming data [51]. It does not

include address for data transfer. It includes signals such as Data, Valid, Ready and Last.

 The voltage difference data, which is 96 words and two rows data which is 96+96 = 192

words is loaded from DDR to PL using the handshaking signals load_row and load_diff. A

multiplier is designed which takes 96 words voltage data and 96 words, single row data and

performs multiply and accumulate function and produces the result. The parallel computation

takes 96 DSP slices. Two such multipliers are configured for two row multiplication at a time.

Hence, total 192 DSP slices are utilized.

 The AXIS multiplier logic is designed using Verilog. In the logic flow, Verilog blocking

and non-blocking both type of assignments are used. If blocking assignment (=) is used, the next

statement in the always block gets executed only after the current statement is executed. If

nonblocking assignment (<=) is used, all the statements in the same always block gets executed

at the same time.

121

 Figure 8.20 shows the logic block designed to store voltage difference data and matrix

row data into local arrays.

Figure 8. 20 AXIS multiplier data load logic

Here, blocking assignments are used in order to store the data in particular index and

increment the index immediately after that. The AXI-stream signal valid and control signal from

PS load_diff is used to load the difference data in the diff_data array. Similarly, valid and

load_row signals are used to load the row data into the local array. As can be observed, two rows

that is 96+96 = 192 data words are copied. The data width is kept as 20 bits for both difference

data as well as reconstruction matrix row data. The reconstruction matrix, when computed in C#

is stored as signed integer by multiplying the matrix data by 10000 and using only integer part.

 There are two instances of multiplier and accumulator logic. The difference data and each

row data are connected to each instance. Once the row data copy into local variable is done, the

computation is performed. Here, we need the multiplication to be performed parallelly. However,

the DSP slices in the device are spread column wise throughout the device. Also, to use DSP

122

slices efficiently for multiply and accumulate operation, the addition must be pipelined. In this

code, the logic is pipelined in six stages. After loading the row data, it takes 70ns to output the

multiply and accumulate computation. The output of computation for each row is 40 bits. The

output needs to be transferred to the DDR through DMA and DMA data transfer is 32 bits wide.

Hence, the 40-bit data is stored in a 64-bit word and the 64-bit data is transferred in two

transactions.

 Upon completion of computation for both rows, a counter is incremented and used to

load the resulting data to DMA input. The logic developed for this loads the two rows

computation result to the data output. For each row, there are two 32-bit words in the result.

Hence, four words are transferred one after another. The valid and last signals are generated

accordingly.

 From the simulations during the development, it is found that, for the one-time difference

data load it takes 960 ns. For two row data load, computation, and data output it takes 2us.

Hence, for total 576 rows, that is total image computation, it should be 576us. Additionally, there

are three signals which are taken out to monitor the flow of operation. The monitor signals are

the difference data load done, rows load done, and data output done. These signals are connected

to LEDs and were used to debug the DMA transaction at the design time.

c) Load Signals from PS

 The load signals that is load_diff and load_row, are controlled by PS. An AXI GPIO IP is

used to connect the control signals to AXIS multiplier IP block. The AXI GPIO. IP core named

123

axi_gpio_10 is configured to provide single channel two-bit GPIO output. The two bits are

separated using Xilinx Slice IP core.

8.2.6 Switching Logic

 The current injection and voltage measurement for the electrodes is performed in a

pattern. The 16:1 multiplexer ICs are used to achieve this. The multiplexers have four select

signals and one enable signal. The select signal switching and enable of the multiplexers is

controlled through PS. An AXI GPIO IP core is used to connect the PS control signals to FPGA

pins. The AXI GPIO is configured for 5-bit output channel. The 5-bits are separated as four for

select signals and one for enable signal, using Slice IP cores.

8.2.7 Implementation and Bitstream Generation

 Once the VIVADO block design is completed, the FPGA pin assignment is done by

adding an XDC file. The pin configuration is added in the appendix in this document. After

adding the XDC file, the design is synthesized, implemented and bitstream is generated. It also

generates a hardware definition file (hdf), which includes the specification of the hardware

design in PL for PS. Whenever an IP is added to the VIVADO design, which can be accessed

through PS, it gets an address assigned. The hardware definition file includes the address

information for these IP cores. In this VIVADO design there are multiple IPs which will be

controlled by PS. The address assigned to each IP can be observed in address editor in VIVADO

IDE. The AXI-lite IPs are assigned the address range from 0x4121_0000. Each AXI-lite IP is

accessed through accessing its registers at the assigned address space.

124

 The high-performance memory ports for AXI DMA connections are assigned the address

space of DDR. The Zedboard provides 512Mbytes of DDR memory.

 The hdf file then is exported along with the bitstream and SDK is launched.

8.3 SDK Design

 Xilinx SDK is used to develop an application to run on the Zynq processor. In this

section, the C application project design is described.

8.3.1 Design Description

 The SDK design is mainly responsible for communicating with the GUI over serial port,

configuring and controlling the FPGA hardware, DFT computation for voltage measurements,

DMA communication for EIT computations in FPGA and part of Total Variation algorithm

computation. There is a communication protocol designed to transfer data over serial port. The

UART is configured in interrupt mode to receive different commands from GUI. The matrices

required for EIT computation such as Gauss Newton One Step algorithm reconstruction matrix

and Jacobian matrix are stored in SD-card. These matrices are read and copied to PS-DDR upon

initialization. There is a 512MB DDR memory provided on Zedboard. For most of the

computations, the DDR memory is used to store the data. The processor takes the system

parameters such as signal frequency, sampling frequency and number of samples from GUI.

These parameters are programmed accordingly into their respective PL IP cores, if necessary.

The processor also takes in algorithm parameters such as type of algorithm, hyperparameter and

number of iterations from GUI and store for further computation. For the EIT computation, two

125

types of measurements sets are taken, homogeneous and in homogeneous. The GUI sends the

command to take homogeneous data input and inhomogeneous data input separately. For both

measurement sets, the current injection and voltage measurement are taken in a pattern by

changing the switch selectors. The acquired voltage measurement data is passed through a DFT

computation to obtain the amplitude of the signal. Upon completion of inhomogeneous

measurements, the set algorithm computation is performed. There are two algorithms, Gauss

Newton One Step and Total Variation.

 For Gauss Newton One Step computation, the reconstruction matrix and voltage

measurement difference vector multiplication is performed. This multiplication is implemented

in PL however the reconstruction matrix is stored in DDR. This matrix is transferred to PL two

rows at a time through DMA. The result of the computation is also stored in DDR. After the

computation completes the result vector is transferred to GUI over serial port.

 For Total Variation computation, it requires Gauss Newton One step computation to get

the initial solution, hence the it is calculated through PL implementation as mentioned above.

Further TV computation needs to calculate a regularization parameter, a matrix inversion, and a

matrix multiplication. These matrix computations are performed in PS. At the end, the updated

reconstruction matrix is achieved and again the PL logic is used to calculate the reconstruction

matrix and difference voltage computation. The result is stored in DDR and transferred to GUI

for the display.

 There is also an option, which can be set from GUI, to use the Zynq SoC only to acquire

the voltage measurement data and perform the computation in GUI. If this option is set through

GUI, the homogeneous and inhomogeneous measurement data is transferred to GUI over serial

126

port. For experiment purpose, an option of reference image computation is implemented. If this

option is set from GUI, the homogeneous data is modified.

 A functional flowchart of the SDK code is given in the appendix in this document. On

initialization, all the peripherals such as UART, DMA, AXI GPIOs, ADC and DDS etc. are

configured and initialized to the default value wherever necessary. As the UART is set up for the

interrupt mode, the further functionality of the code depends upon the command received from

GUI.

 In the following section, every function implemented in the SDK design is described.

8.3.2 UART Configuration

 The processor UART is configured to work in interrupt mode. The PS UART has the

default setting of Baud rate 115200, data width 8bits, Stop bit 1 and no parity. In this project the

UART default settings are kept unchanged. In Zynq FPGA, there is a Generic Interrupt Controller

(GIC) which controls the interrupt request from the peripherals [52]. The GIC is configured for

monitoring the UART interrupt. The UART can generate an interrupt on multiple events. It

includes an interrupt mask register which can enable or disable a specific interrupt for the design

[39]. A mask value is generated and loaded in the interrupt mask register which enables interrupt

for receive FIFO full event, receive FIFO overflow event and Timeout error event. The Timeout

error occurs when the receiver has remained idle for more than the time set in timeout register. A

receive timeout is set to 8, so that it generates an interrupt if the receive channel has remained idle

for 8*4*bit period time. Next, the PS UART can work in four modes, Normal, Local loopback,

Remote loopback, and automatic echo. The UART is set to work in Normal mode.

127

 The interrupt handler is set to read the received data and raise a flag once the data is read.

There is a communication protocol set between GUI and Zynq processor. According to the

protocol, the maximum data to be received is not more than 10 bytes at a time. Hence, the

maximum data to be read from the serial port is set as 10 bytes. The received data is stored in the

buffer INPUT.

8.3.3 Communication Protocol

 The communication between GUI and processor includes transfer of various parameter

settings from GUI to processor and the respective response or data transfer from processor to

GUI. There is a communication protocol set for the data transaction between GUI and processor

over serial port.

 The command structure for transferring commands from GUI to processor, includes three

fields as shown below

Command Identifier Parameter Value End of command

 The Value and End of command field is there only in cases of transfer of some parameter value

data along with the Command Identifier.

The End of command is always denoted by a semicolon.

Following are the commands used in this project.

- Read homogeneous data command

h - -

128

- Read inhomogeneous data command

i - -

- Number of Samples command

L Parameter Value ;

- Signal Frequency command

F Parameter Value ;

- Sampling frequency command

D Parameter Value ;

- Switch command

s - -

- Gauss Newton One Step Algorithm set command

g - -

- Total Variation Algorithm select command

t - -

- Hyperparameter value set command

P Parameter Value ;

129

- Number of iterations set command

N Parameter Value ;

- Use reference image commands

R - -

- Do not use reference image command

r - -

- FPGA acquire and process command

A - -

- FPGA only acquire command

a - -

 In response to the commands received from GUI, the processor responds with a response

format. Also, the processor may send some other data to the GUI. Depending upon the data to be

transferred from processor to the GUI there are four formats.

- For most of the parameter setting commands received from GUI, the processor response

with a message that the parameter is received. The response structure is as follows

M ; Color Char : Message \n

The first filed in above response format indicates that this is just a message. The

characters “;” and “:” are used as separators for different fields. The color character is introduced

to display the messages in different colors on GUI. There can be two color characters “G” for

130

green and “R” for red. The end of the line character “\n” is for GUI to understand the end of

response.

- At various places the execution time is measured and send to GUI for display. The format

for sending measured time to the GUI is

T ; Time \n

 The first field indicates that the data contains time measurement.

- If the FPGA is set in acquire only mode, upon the inhomogeneous measurement

completion, the homogeneous and inhomogeneous data words are transferred to the GUI. The

format is as follows

& ; All Homogeneous data

words separated by comma

All Inhomogeneous data

words separated by comma

\n

- If the FPGA is set in acquire and process mode, upon the inhomogeneous measurement

completion, the computation is performed as per the selected algorithm and the resulting image

data is transferred to the GUI. The image data includes two words, higher and lower per element,

that is 576. The format for transferring higher word and lower word for all 576 elements is as

follows

$; All [Higher word, lower word] separated by colon \n

131

8.3.4 Command Handling

 In this section, most of the commands’ execution implementation is described.

For the commands which come with a value, the characters between command identifier and end

of command are stored in a character array and depending upon the command identifier, the

character array is converted to integer or float. For instance, if the command is for setting

hyperparameter, the character array is converted to float. After retrieving the integer or float

value, respective action is taken. In case of set number of iterations command, since the

maximum number of iterations that can be set are less ten, the value is received as a character,

hence the character is just subtracted from 48 to get the respective integer value. For the

commands which include only one character, the respective action is taken.

 For set hyperparameter value and set number of iterations value, the received characters

are converted to float and integer respectively and stored in the respective variables for later use.

In both cases, a message including the received value is sent back to GUI for display.

 For set signal frequency command, the value is stored in a variable and the DDS IP core

in FPGA is set accordingly. The details of DDS programming are given in DAC setting section.

After programming the DDS, a message including the set frequency value is sent to GUI for

display.

 For set sampling frequency command, the value is stored in a variable and the sampling

frequency IP core in FPGA is set accordingly. The details of sampling frequency programming

are given in the data acquisition section. After programming the sampling frequency, a message

including the set sampling frequency value is sent to GUI for display.

132

 For set number of samples command, the value is stored in a variable and programmed in

the AXI GPIO used to load the number of samples value to FPGA, using XGpio_DiscreteWrite()

command. After programming the number of samples, a message including the set number of

samples value is sent to GUI for display.

 For the set switch command, the current switch value is written to the switches and the

variable holding current switch value is incremented by 1. The default value at the initialization,

for the switch variable is set at zero. At every command, the value is incremented by one up to

eleven and then reset to zero again. This command is implemented for test purpose. In case, the

switch rotation is required to be performed manually, this command can be used.

 For the FPGA acquire and process or FPGA acquire only commands, a flag is set and

reset respectively. A message is sent to GUI to acknowledge the setting. For reference image use

or do not use commands, again the respective flag is set and reset respectively.

 For read homogeneous data command, a flag is set indicating homogeneous data

acquisition is performed. The data acquisition loop is executed which takes the voltage

measurement with moving patterns and computes its DFT to record the measured voltage. This

data acquisition loop is described in data acquisition section. In this project the computations are

performed by following the EIT computations implemented in MATLAB EIDORS. For this

purpose, the homogeneous and inhomogeneous measurements are required to be reordered. The

reorder sequence is followed from EIDORS. An array with reorder sequence is declared as

constant. Once the homogeneous measurements are completed, all 96 measurements are

reordered using the reorder array as index.

133

 For read inhomogeneous data command, first it is checked if homogeneous data

acquisition is completed. If not, a message is sent to GUI saying acquire homogeneous data first.

If the homogeneous data acquisition is performed already, the inhomogeneous data

measurements are taken by execution of data acquisition loop. The details of this loop are given

in data acquisition section. Upon completing the measurements for all twelve electrode pairs, the

inhomogeneous measurement data is reordered as explained above. After reordering is done, the

difference between inhomogeneous and homogeneous measurements is computed.

 For performing the reconstruction computations, the FPGA mode is checked. If the

acquire only mode is set, the homogeneous and inhomogeneous measurements are sent to the

GUI for further computation, using the format shown in previous section. If the FPGA is set for

acquire and process, the Gauss Newton computation is performed by execution the

multiplication_loop() function. Then the algorithm setting is checked, if Gauss Newton One Step

algorithm is set, the result of multiplication_loop() is sent to the GUI for display. If the Total

Variation algorithm is set, the result of multiplication_loop() is used as the initial solution and

the respective computation is performed. The implementation of Gauss Newton and Total

Variation computation is given in following sections. After the TV computations are performed

for set number of iterations, the resulting mage data is transferred to GUI for display.

8.3.5 Memory management

 As previously mentioned, most of the computation data is stored in DDR memory.

Hence, the DDR memory is mapped for different variables. The DDR memory address range is

from 0x00000000 to 0x000FFFFF, that is 1MB is reserved [39]. Hence, the memory from

134

0x00100000 onwards can be used for processor code. The memory up to 0x0FFFFFFF, that is

256MB is kept as processor code region. The memory starting from address 0x10000000 is

mapped for variables.

Table 8.1 gives the detail of the DDR memory allocation and its functionality.

Table 8. 1 DDR Mapping

Base Memory Name Base Address Functionality

MEM_BASE_ADDR 0x1000 0000 Used to store the reconstruction matrix

diff_base_addr 0x1006 0000 Used to store the difference matrix

RX_BUFFER_BASE 0x1007 0000 Used to store the image data result received

from FPGA

RX_BUFFER_BASE_Wb 0x1007 2000 Used to store the TV regularization

parameter Wb

Mat_base 0x1008 0000 Used to store the Jt*W Matrix read from SD

Card

Mat_base_result 0x1010 0000 For storing matrix inversion result

Mat_base_JtWJ 0x1050 0000 For storing Jt*W*J matrix read from SD card

Mat_base_mult 0x1070 0000 To store the new reconstruction matrix

Mat_base_JtWJ_N 0x1080 0000 For storing Jt*W*J + Wb

For_char 0x10B0 0000 For storing SD card file data

 The heap and stack sizes are also modified to 0x50000 each to be able to allocate the

temporary data.

8.3.6 SD Card Read

 The Zedboard provides SD-card interface. The SD-card storage can be used to store the

data which can be loaded to DDR memory on initialization. The reconstruction matrix and

Jacobian matrices are stored in an SD card in text file formats. A 4GB SD-card is used. On

135

initialization, the SD card is mounted, the text files are read, and the data is copied to the DDR

memory on fixed locations.

 To use SD-card, the generic fat file system library “xilffs” needs to be enabled from

board support package settings [52]. Additionally, in application project C/C++ build settings,

xilffs library needs to be added under ARM v7 gcc linker -> libraries.

 A separate SD_card.h header file and SD_card.c files are created to handle the SD_card

mount, unmount and read functions. The header file includes SD_Init(), SD_Eject() and

ReadFile() function definitions. It also includes ff.h, generic fat file system module provided by

Xilinx.

 In the main code, after initialization and configuration of peripherals, SD card functions

are executed, and the SD card data is read and copied to DDR memory. Before being able to

access the contents of SD-card memory, the memory module needs to be mounted. The SD_init()

function mounts the memory module using f_mount() command. The f_mount() function is

given a fat file system type (fatfs) variable as input and 0:/ as path as in Zynq PS the SD-card0 is

always mounted on 0:/ path.

 After reading form the SD-card memory is completed, the memory module is unmounted.

The SD_Eject() function unmounts the memory module using f_mount() command but with 0

instead of fatfs variable as one of the input parameters.

 There are three text files stored in the SD-card, the reconstruction matrix, the Jt*W

Matrix and Jt*W*J matrix. The reconstruction matrix text file includes integer data and the

Jacobian matrices text files includes floating point data. A function ReadFile() is implemented

which can read the data from a given text file and copy the contents on given DDR memory

136

location. The text file contents are read as characters. Hence, the file contents need to be read

completely and then each data must be converted to its respective data type, integer, or float,

before storing it to DDR location. The maximum text file content size is around 4MB which is

far more than the local data cache of the Zynq PS, which is 32kB. Hence, the text file contents

are also stored in DDR before converting the contents into integer or float. The Readfile()

function requires name of the text file to be read, the DDR base address to copy the text file

contents, the base address to copy the converted data and the data type in which the text file data

needs to be converted. The text files are read one by one. Each file is opened in read mode and

the contents are read. In all the text files the semicolon or “$” character is used to separate data

words. Hence, using the separator characters each data word is converted to its respective data

type and stored in the respective DDR memory location. After converting all the contents of the

file, the file is closed. The flowchart for Readfile() function is added in the appendix in this

document.

8.3.7 DAC Setting

 As described in VIVADO design section, the digital data for a set sinusoidal signal

frequency is generate using DDS IP core. To program the required DDS IP core, it is

incorporated in an AXI-lite custom IP. The slave registers of this IP are used to set the DDS

settings value. According to the design, slave register0 is used to enable or disable DDS and

slave register1 is used to set the phase value.

 In SDK code, a separate header file DAC.h is generated to include the AXI-lite DDS IP

variables. The slave registers are accessed through a structure variable. The header file also

137

includes the function definitions such as enable_DDS(), disable_DDS and Phase_data(). In the

DAC.c file, the AXI-lite DDS IP base address is assigned to a structure variable defined in

DAC.h. This way the first variable in the structure is used to access slave register0 and second

variable is used to access slave register1. In enable_DDS() function, the first variable in structure

is set as one to enable the DDS. Similarly, in disable_DDS(), the first variable in structure is set

to zero to disable the DDS. The phase value is loaded in the slave register1 through second

structure variable.

 The DDS is set at 30Hz frequency by loading the respective phase value calculated using

equation 8.4. When the set DDS frequency command is received, the DDS phase value is

calculated as follows

 DDS_setting = ((freq_out/50x106) x 232) + 0.5 (8.6)

Where, freq_out is the required frequency setting received from GUI. The 0.5 value is added to

round the float variable to nearest integer. This value is passed to Phase_data() function to load

into DDS. Before setting the phase value, the DDS is disabled, and after updating the phase

value the DDS is enabled again.

8.3.8 Digital Potentiometer setting

 As described in VIVADO design section, the digital potentiometer is programmed

through SPI protocol. The value setting to be transferred through SPI is programmed through

AXI-lite registers. According to the IP, the slave register0 is used to enable/disable and load 16-

bit data value, and the slave register1 is used to read the transfer status.

138

 In SDK code, a separate header file digital_pot.h is generated to include the AXI-lite

digital pot variables. The slave registers are accessed through a structure variable. The header file

also includes the function definitions such as enable_digipot(), disable_digipot() and

read_digipot(). In the digital_pot.c file, the AXI-lite digital pot IP base address is assigned to a

structure variable defined in digipot.h. This way the first variable in the structure is used to

access slave register0 and second variable is used to access slave register1. The functions

enable_digipot() and disable_digipot() write the pot value at the slave register 0. The

read_digipot() function reads the slave register1 value and stores it in a local variable.

 In the main code, the digital pot value is updated at the initialization using

enable_digipot() and disable_digipot() functions. The value programmed in the present code is

0xCD, which corresponds to 4kohm resistance. For enabling the digital pot IP core logic, the 16th

bit is set one as the enable bit in the slave register0.

8.3.9 ADC setting

 The ADC requires to be programmed for sampling frequency and power mode through

SPI communication. The SPI communication is achieved through EMIO GPIO. The EMIO pins

are extended GPIOs for processor which can be routed through PL for pin assignment. In Zynq

PS, the EMIO connections are separated in two 32-bit banks, bank 2 and bank 3 [52].To control

each EMIO pin, the respective bank registers need to be used. In this project, the SPI signals are

controlled by using the EMIO bank2 registers. The ADC SPI programming code is taken from

the SDK code designed by senior design team [9].

a) ADC SPI Details:

139

 The ADC SPI is a 16-bit 4-wire interface, which can be used for reading or writing the

ADC configuration. In the 16-bit SPI frame, the 15th bit is read/write bit (1 for read and 0 for

write). Bits 14 to 8 are address bits and bits 7 to 0 are data bits. Figure 8.21 shows the read write

command format.

Figure 8. 21 ADC SPI communication format [49]

 To set the sampling frequency, channel mode A register with address 0x01 is

programmed. In this project, the ADC is set for median power mode and sync5 (low latency)

filter with 128ksps sampling frequency. In the median mode, the MCLK is 4.096MHz. The

desired sampling frequency that is output data rate can be achieved by setting the decimation

rate. The ODR is given by

 ODR = (MCLK/32)/Decimation Ratio (8.7)

 Hence, for 128ksps, the decimation rate needs to be set as 32. This makes the data word

to be written in the channel mode A register as 0x0108. To set the median power mode, the

power mode register, address 0x04, is loaded with the data 0x0422. Refer [49] for register

bitwise details.

140

b) Processor Implementation:

 During the PS configuration in VIVADO design, five EMIO pins are enabled. The five

pins are used for ADC SPI connections and ADC Reset pin as shown in table 8.2.

Table 8. 2 ADC SPI EMIO Pin Assignment

EMIO Number SPI Signal Name FPGA Pin

0 SCLK N18

1 SDO G16

2 SDI G15

3 CS N17

4 Reset J18

As mentioned above, the EMIO pins are accessed through GPIO bank 2 registers. In the

SDK code, the init_ADC() function includes the ADC SPI logic. The GPIO bank registers are

used to enable the EMIO pins and set them as output. The command data to set the power mode

and the sampling frequency are programmed by toggling SCLK to generate clock and shifting

the data word out on SDI. The functional flowchart of the SPI logic is added in the appendix in

this document. The SPI master communication requires a two-frame communication. Therefore,

the SPI write command is executed twice for each data. Also, the Reset pin is always kept high

as the ADC reset signal is active low.

141

8.3.10 Data Acquisition

 As described in VIVADO design, the data acquisition logic in PL includes sampling

frequency logic, number of samples logic, ADC interface logic, FIFOs, ADC control logic and

AXI GPIOs to read FIFO contents. In the SDK code, the GPIOs are initialized, number of

samples and sampling frequency variables are set through respective GPIO channels, the ADC

data acquisition is controlled, and the stored data is read and processed.

a) ADC Sampling Frequency setting:

 The ADC sampling frequency setting is set through ADC SPI programming, which is set

at 128ksps. However, the modified sampling rate or the divided sampling rate value is set in the

FPGA through an AXI GPIO IP core. In the SDK code, during initialization, the AXI GPIO for

sampling frequency divisor is initialized. As mentioned in VIVADO design, there two channels

set in this GPIO, channel 1 for reset signal, which resets the count and channel 2 for setting the

divisor value. The required divisor value for the required sampling frequency is calculated using

following equation

 Divisor = 128000/Required Sampling frequency (8.8)

For instance, for required sampling frequency 250Hz, the divisor needs to be set at 512.

The divisor value is written in channel 2 of the GPIO. The reset signal is set high and low, so that

the counter resets and starts a new cycle with modified sampling rate divisor. When the

command to modify the sampling frequency is received, again a new divisor is calculated and

programmed in the GPIO. The reset signal is set and reset to restart the counter.

142

b) Data Acquisition Loop

 For the homogeneous and inhomogeneous measurements, the data acquisition loop is run.

It rotates the current injection pattern by changing the switch settings from 0 to 11. The relation

between switch pattern and ADC channels is given in a table in chapter 7. For every switch

setting, the data acquisition is enabled, and the set number of samples are stored in FIFOs in PL.

This stored sampled data is read and processed through Discrete Fourier Transform (DFT). The

DFT magnitude for the set signal frequency is computed and stored as a measurement.

 The DFT computation of a discretized signal is represented by following equations

Real R(k) = ∑ 𝑥

𝑁−1

𝑛=0

(𝑛) 𝑐𝑜𝑠 (
2𝜋

𝑁
𝑘𝑛)

(8.9)

Imaginary I(k) = − ∑ 𝑥

𝑁−1

𝑛=0

(𝑛) 𝑠𝑖𝑛 (
2𝛱

𝑁
𝑘𝑛)

(8.10)

for k = 0, 1, …N-1

where, N = Total number of samples,

The magnitude of the DFT spectrum using real and imaginary values is given as

 Magnitude |X(k)| = √𝑅2(𝑘) + 𝐼2(𝑘) (8.11)

 In this project, the DFT computation is performed for specific frequency. The relation

between k and the signal frequency f is given by following equation

𝑓 = 𝑘 ∗

𝐹𝑠

𝑁

(8.12)

where, Fs is the sampling frequency. In the SDK code, for the DFT computation, the k value

calculated as

143

𝑘 = 𝑓 ∗

𝑁

𝐹𝑠

(8.13)

 For the computation, the 16-bit digitized ADC data is converted to its corresponding

voltage level by multiplying it by 0.0000625 which is ADC resolution 0.000125uV divided by

2.The division by 2 is done to reduce the amplitude of the voltage signal by a factor of 2. Also, to

use the math library functions such as sine and cosine, in the C/C++ build settings, under ARM

v7 gcc linker -> libraries m library needs to be added.

The functional flowchart of data acquisition loop is added in the appendix in this document.

8.3.11 Gauss Newton one step implementation

 In this project, the Gauss Newton one step computation is reduced to a reconstruction

matrix and voltage difference, as explained in chapter six. The reconstruction matrix (576x96) is

stored in the DDR and used for computation once the voltage measurements are done. In SDK

code, the multiplication_loop() function performs the required computation.

 The actual multiplication for Gauss Newton One Step computation is implemented in PL.

The data that is reconstruction matrix and difference voltage vector is transferred from PS-DDR

to PL through DMA. The processor initializes the DMA transfers. First, the difference voltage

vector is transferred and then the rows of reconstruction matrix are transferred. The rows are

transferred two at a time. The PS polls for the reception through DMA and initiates for next two

row transfer. Once all the rows are transferred and the computation result is received, the Gauss

Newton One Step computation is completed.

 As described in VIVADO design, the DMA is configured in simple mode. The simple

transfer requires base DDR address and the size of the transfer. The code in figure 8.22 shows

144

the simple transfer from DMA to device that is PL. The TxBufferPtr is the base address of the

voltage difference vector. The MAX_PKT_LEN is a length variable, which is 96 in this case.

Once the transfer is initialized, a polling method is used to monitor if complete data is

transferred.

Following figure 8.22 shows the DMA transfer in simple mode.

Figure 8. 22 DMA transfer

After transferring the difference data, reconstruction matrix rows are transferred. Since two rows

are transferred in one DMA transfer, the for loop is repeated for 288 iterations for 576 rows

transfer. The flowchart of multiplication_loop() function is shown in appendix in this document.

8.3.12 Total Variation Implementation

 The Total Variation (TV) computations are performed in TV_iterations() function. As

described in chapter 6, the TV computation includes following steps

- computation of initial solution using Gauss Newton One Step method

- TV regularization parameter computation

- Denominator computation

- Matrix inverse computation

- Matrix multiplication computation to achieve the new reconstruction matrix and

145

- computation of solution using newly calculated reconstruction matrix in Gauss Newton

one step method

The steps after initial solution are repeated for the set number of iterations. The Gauss

Newton computation is performed using multiplication_loop() function as described in previous

section. The TV regularization parameter is computed using following equation

W𝐵 =

0.5

√(𝑅 ∗ ∆𝜎0)2 + 𝛽

(8.14)

where, R is the regularization matrix, which in this case is 576x576 identity matrix. However,

the regularization matrix is always used as (hyper parameter * R) in the TV computation. The

∆𝜎0 is the initial solution calculated using Gauss Newton computation and 𝛽 is smoothness

parameter and kept constant throughout iterations as 0.0004. This value is taken similar to the

TV computation developed by Rabi [33].

146

As R is 576x576 identity matrix and initial solution is 576x1, the (𝑅 ∗ ∆𝜎0) computation is

576x1 and equals to initial solution. Figure 8.23 shows the WB computation code snippet.

Figure 8. 23 Wb computation code (SDK)

The initial solution that is the output generated by multiplication_loop() is stored in DDR

in two words, higher and lower. Each two-word data is read and combined. The reconstruction

matrix is multiplied by 10000 while generation and storage in a text file, so that it can be used as

integer. However, the Jacobian matrices are not scaled the same way. Hence, the initial solution

words are divided by 10000. As mentioned above, the R matrix is always multiplied by

hyperparameter, hence, the initial solution words are multiplied by hyperparameter. Next, the WB

computation is to be stored in DDR, hence the location for ith WB is computed using base

address. Next, the WB computation as per equation 8.14 is done. After WB computation, the

denominator in the following equation needs to be computed. In the above figure, that is WB

147

loop, the last line computes (𝑅𝑇 𝑊𝐵𝑅) by multiplying by hyper parameter for R as R is the

identity matrix. Here, the R is 576x576 and WB is 576x1, hence for matrix computation the WB

matrix needs to be converted to a diagonal 576x576 matrix with WB along the diagonal.

However, here as R is identity matrix, minimum required computation is performed.

Next step is to compute denominator in the following equation.

𝛥𝜎 =

𝑱𝑇𝑊𝛥𝑉

(𝑱𝑇𝑊𝑱 + 𝑅𝑇 𝑊𝐵𝑅)

(8.15)

For denominator, the (𝑱𝑇𝑊𝑱) matrix is stored in DDR at the time of initialization. It is

read and the WB is added in the diagonal elements. Figure 8.24 shows the code snippet for the

denominator computation.

Figure 8. 24 TV Denominator computation code (SDK)

 In this code, JtWJ_ptr shows the Jt*W*J matrix base address, Wb_ptr is the WB base

address and JtWJ_N_ptr shows the denominator base address. The denominator is also stored in

the DDR after computation.

After denominator computation, the inverse of denominator is to be calculated. The

inverse is calculated using row elimination method. Here, the denominator matrix is 576x576,

148

hence an identity matrix of size 576x576 is created and row elimination method is performed to

get the inverse of the denominator.

As the data sizes of all the matrices are very large, the computation involves reading and

writing rows of the matrices from DDR as per requirement.

149

Figure 8.25 shows the flowchart of the inverse computation logic. Here, D is used for

denominator matrix and I is used for numerator matrix.

Figure 8. 25 Matrix Inversion logic flowchart (SDK)

150

The inverse matrix is multiplied with Jt*W matrix to get the new reconstruction matrix.

The inverse matrix is stored in DDR. The Jt*W matrix is also stored in DDR. However, the Jt*W

matrix is of 576x96, hence, to speed up the computation, the matrix is copied to local memory. A

matrix multiplication loop is executed. Each element of the result is multiplied by 10000 and

stored as an integer, as it is a new reconstruction matrix and will be used for Gauss Newton

computation in PL.

 After the computation of new reconstruction matrix, the multiplication_loop() is executed

to perform reconstruction matrix and voltage difference vector multiplication. This way the

solution for the TV algorithm for first iteration is achieved. If there are more than one iterations

set, new computed result from multiplication_loop() is used as new solution and all the

computations are repeated for each iteration. Once the TV iterations are completed, the last

solution is transferred to the GUI over serial port for display.

8.3.13 Reference Image data logic

 The reference image implementation was done for experimentation purpose. The

assumption behind reference image is that the reference impedance distribution is uniform

throughout the phantom. To achieve this, the homogeneous measurement is taken for all twelve

electrode pairs. Before reordering the homogeneous measurements, the first eight measurements

for the first current injection electrode pair are copied to all other pairs. Hence, making all the

twelve measurements identical. This data is reordered and used as homogeneous measurement.

The inhomogeneous data is measured as usual with salt water and the image is formed.

151

8.3.14 Time measurement

 In this project, the execution time is measured at various places. A 64-bit global timer is

used to measure the elapsed time.

 The start time is measured using XTime_GetTime() function, before the start of the

section for which the elapsed time is to be measured . After execution of the section, end time is

measured. The elapsed time is calculated using following equation

 Elapsed time = (End time – Start time) / COUNTS_PER_SECOND (8.16)

 Here, COUNTS_PER_SECOND parameter is provided in xparameters.h, and is half of

the CPU frequency, as the global timer is clocked at the half of the CPU frequency. The PS

operating frequency is 667 MHz. This way the execution time in seconds can be calculated and

sent to the GUI for display.

152

Chapter 9: Graphical User Interface Design and Development

 This chapter provides the detailed description of the Graphical User Interface (GUI)

design. The GUI is developed using C# windows form application in .net framework. The GUI

includes various controls and displays to interact with EIT system to set the system parameters

and observe the results. It also includes Gauss Newton One Step and Total Variation algorithm

computations for EIT image reconstruction. In this chapter the C# GUI and code design are

described.

9.1 Design Description

 The graphical user interface is mainly responsible for communicating with EIT system

hardware over serial port to transfer control data and image data. It provides control settings for

EIT system operation such as operating frequency setting, sampling frequency setting and

number of samples settings. It also provides controls to start the data acquisition for

homogeneous as well as inhomogeneous measurement data. The acquisition can be performed

one time or in a continuous mode. As described in chapter 6, the image reconstruction algorithms

are developed in Zynq SoC as well as C#. The GUI provides the option to select where to

perform the image reconstruction computation. The algorithm settings such as type of algorithm,

hyperparameter and number of iterations can also be set from GUI. There are two features added

for experimentation purpose, the usage of reference image in FPGA and manual switch settings

from GUI. Depending upon the control settings, the Zynq SoC transfers the image data or

voltage measurement data to GUI. If the received data is image data, it is displayed on the screen

added in the GUI. If the received data is voltage measurements, the data is stored in text files for

153

later use as well as used to reconstruct the image using set algorithm computation developed in

C#. The reconstructed image is then displayed. There is a color bar provided to display the data

range spread with respect to the colors used for image display. The image data is normalized to

for mapping to the color matrix. A color scale bar is provided to vary the data used for

normalization. The GUI can also be operated in a demonstration mode. The frame data stored in

text files during acquisition can be used to reconstruct and visualize the image offline. For the

reconstruction computation in Zynq SoC as well as C#, the reconstruction matrices are stored in

SD card and text files respectively. These reconstruction matrices computation is implemented in

C#. The logic used to compute Jacobian matrices and 2D mesh is taken from the C#

implementation done by Xin Chen [19]. Figure 9.1 shows the GUI designed in this project.

Figure 9. 1 GUI Design for EIT System

154

9.1.1 GUI Specifications

 In this section, the detailed specifications and functions of each control and display

feature provided in the GUI is given. Following are the EIT system GUI specifications

- Port Settings menu to set the serial port connection settings

- Signal Frequency setting combo box: available options - 2Hz, 4Hz, 10Hz, 30Hz, 100Hz,

500Hz, 1kHz, 5kHz and 10kHz.

- Sampling frequency setting combo box: available options - 250Hz, 500Hz, 1kHz, 2kHz

and 128kHz

- Number of samples combo box: available options – 256, 512, 1024, 2048, 4096, 8192

- Read Homogeneous Data Button: To send read homogeneous command to the Zynq SoC

- Read Inhomogeneous Data Button: To send read Inhomogeneous command to the Zynq

SoC

- Radio buttons for single or continuous acquisition setting

- Stop Acquisition button: to stop the acquisition in continuous mode

- Inhomo Acquisition Time textbox: to display the time taken during the inhomogeneous

acquisition and image computation process

- Radio buttons for FPGA Acquire and Process or Acquire only options: To set the Zynq

SoC in acquisition only mode

- Select Algorithm combo box: available options – Gauss Newton One Step and Total

Variation

- Hyperparameter combo box: available options 0.3,0.03 and 0.003

- Number of Iterations combo box: available options – 1 to 6

155

- System Status pane: To display the system status

- Message Display textbox: To display miscellaneous data

- Calculate Reconstruction Matrix button: to calculate the Gauss Newton One step

reconstruction matrix and Total variation Jacobian matrices

- Display Screen: to display reconstructed image

- Color bar: to display data range with respect to colors

- Reference image usage buttons: to enable or disable reference image usage in the Zynq

SoC, experimentation purpose

- Switch setting button: to set the switches manually, test purpose

- Demonstration radio buttons: To enable or disable demonstration mode

- Reconstruct images from data base button

9.1.2 GUI Implementation

 As mentioned in previous section, the GUI provides various functions to control the EIT

system and reconstruct the image. The functional flowchart of the C# implementation is shown

in appendix in this document. In this section, the implementation of each function is explained.

1) Serial Port Settings

 The GUI communicates with the Zynq SoC over serial port. For serial port connection

control, a menu option named Port Settings is provided on the left-top side corner on the GUI. A

separate form is added in the design which gets opened when user clicks on the Port Settings

menu. Also, upon initialization, the GUI is set to try to connect to a default serial port (COM 8,

156

in this case). If it could not connect, it shows the error message which asks to select another port.

Figure 9.2 shows the port setting menu form. User needs to select the desired port settings and

select Apply settings. The GUI starts to establish the serial port connection on the selected com

port, however, if the connection is not established, it displays the error message asking to select

another port.

Figure 9. 2 Port settings form

2) System Controls

 There are two types of controls on the GUI. One for which the selection is transferred to

the Zynq SoC over serial port and other for which the selection is used to perform some function

in C# code itself. In this section the function of each control is explained.

 The GUI communicates with the Zynq SoC over serial port using a command structure.

The command structure is described in chapter 8. For the GUI controls such as Signal

Frequency, Sampling Frequency, Number of Samples, Algorithm type, Hyperparameter and

157

Number of Iterations, if the selected index is changed, the selected value is stored in a local

variable. Also, the system mode is checked to be in demo mode, if not, the selected value is sent

to the Zynq SoC using the command format to send a value from GUI to Zynq SoC.

 If Read Homogeneous Data button is clicked, the system mode is checked to be in demo

mode, if not, the read homogeneous data command is sent to the serial port. If Read

Inhomogeneous Data button is clicked, again the system mode is checked to be in demo mode, if

not, the read homogeneous data command is sent to the serial port. Also, the radio button for

Continue Acquisition is checked, if selected, a flag is set to indicate the inhomogeneous data

acquisition command is to be sent continuously. The time taken for inhomogeneous data

measurement and respective image display is displayed on the GUI in a textbox. To achieve this,

a DateTime structure is used to read the current time once the inhomogeneous data read

command is sent to the serial port. A flag indicating the current time is read, is also set. There is

a timer component added in the GUI design to generate a tick after every 1000ms. If this flag is

set, the current time is measured again and subtracted from the time measured at the time of

inhomogeneous data read command. This difference gives the elapsed time till the current time.

It is displayed in a text box.

 The Zynq SoC is set in Acquire and Process mode, by default. Hence, the Acquire and

Process radio button is selected by default. If the Acquire Only radio button is selected and if the

system is not in the demo mode, the respective command is sent to the serial port. Also, as with

the FPGA Acquire Only setting, the voltage measurement data sent by FPGA is to be stored in

text files. Hence, if Acquire Only is selected, a path to the folder where the text files are to be

158

stored is asked to be set. The folder browser dialogue is opened and if the user selects a folder,

the folder path is stored in a variable for later use.

 If a Continue Acquisition radio button is selected, a flag to indicate continuous

acquisition is set. If the Stop Acquisition button is clicked, the continuous acquisition flag is

reset.

 If radio button Use Reference Image selection is changed, the system mode is checked to

be in demo mode, if not, respective command is sent to the serial port. The Next Switch button is

added to send the command over serial port to increment the switch position manually. If the

system is not in the demo mode and the Next Switch button is clicked, the respective command is

sent to the serial port. The switch position is also displayed in the text box next to Next switch

button. To display the current position, a variable is set 0 at the initialization and once the Next

switch button is clicked, the variable is incremented by one and displayed in the text box. As

there are twelve switch position, if the variable reaches eleven, the variable is set to zero again.

 The Calculate Reconstruction Matrix button click executes a function which takes

number of rings and number of electrodes as input and generates the Jt*W matrix, Jt*W*J matrix

and reconstruction matrix. These matrices are then stored in text files. This function

Generate_ReconMatrix() is explained in later section.

 The panel Demonstrate includes the controls for the demo mode. There are two radio

buttons Enable and Disable demonstration mode and a button Reconstruct Images from

Database. The demonstration mode is described in a separate section.

159

3) Data Reception on Serial Port

 As explained in chapter 8, there are four types of data formats that Zynq SoC sends to

GUI over serial port. The types are message, time, image data and voltage measurement data. In

all types of data packets received from Zynq SoC, the first character is the packet identifier and it

is separated from rest of the data using a semicolon. Hence, whenever a data packet is received

over serial port, it is split using string split for “;” character. This way the packet identifier

character and rest of the packet is separated. Next, the packet identifier character is checked, and

respective action is taken. In this section, the functions performed in GUI for each packet

identifier are explained.

a) Message packet:

 If the packet identifier character is “M”, the following data contains a message. This

message also includes the color identifier character at the starting, R for red and G for green. The

message is displayed in the system status label using Display_label() method. Display_label()

method separated the color character from the message and displays the message in the

respective color on a label.

b) Execution Time Packet

 If the packet identifier character is “T”, the following data in the packet is execution time.

The data is displayed in a textbox next to Messages label. This packet can be used to transfer any

miscellaneous information from Zynq SoC to GUI.

160

c) Image Data Packet

 If the packet identifier character is “$”, the following data is image data. As explained in

chapter 8, the image data is 576, 64-bit words. Hence, each word is sent as two 32-bit words,

higher and lower. The image data words are separated by “:” character and the 32-bit data words

are separated by “,”. When the image data packet is received, the 576 words are separated by

splitting the received string for “:”. Next, the higher and lower data words are combined to form

an image data word. Once all the 576 image data words are formed and stored as an integer, a

start_reconstruct_flag is set.

d) Voltage Measurement data packet

 If the packet identifier character is “&”, the following data is homogeneous and

inhomogeneous voltage measurement data. If the voltage measurement packet is received, there

are two functions performed. First, the received data is stored in text file in a specific format,

second, the difference voltage is calculated and using the set algorithm, image reconstruction

computation is performed.

 There is a limit set of 100 such voltage measurement data files. When the system is set in

to Acquire Only mode, a folder is selected to store the files created using data received in this

packet. Whenever a new folder for file storage is selected, the file counter is set at zero. Every

time a packet is received, a new text file is created. The name of the file is created as

“testyyyyMMddHHmmssffff.txt”. Where, “yyyyMMddHHmmssffff” indicates the current time

stamp from year to milliseconds. The current time is read using DateTime structure provided in

C#. Next, the current system settings, such as signal frequency, sampling frequency, number of

161

samples, hyperparameter and number of iterations are read using a function get_frame_details().

This system setting information is written in the file. In the packet, there is a homogeneous data

and inhomogeneous data. All the data is stored in the text file. The system settings are stored in

the following format

Setting Name : Value ;

Here, the setting names used are

- Frequency: for signal frequency

- Fs: for sampling frequency

- Samples: for number of samples

- hp: for hyper parameter

- Iterations: for number of iterations

The value parameter is the respective system setting.

 The system settings, homogeneous and inhomogeneous data are separated by a character

“$”. The homogeneous data starts with a word Homogeneous, followed by a character “#” and

the homogeneous data words separated by a character “,”. Next, the inhomogeneous data starts

with a word Inhomogeneous, followed by a character “#” and the inhomogeneous data words

separated by a character “,”. After all the data is stored in the file, the file counter is increased by

one.

 For image reconstruction computation, voltage difference data is calculated by

subtracting homogeneous data from inhomogeneous data. A method run_algorithm() is run to

perform the reconstruction computation. In this method, if the selected algorithm is Gauss

162

Newton one step, the reconstruction matrix and difference data array are passed to a Gauss

Newton algorithm computation method. If the selected algorithm is Total Variation, the

reconstruction matrix, difference data, number of iterations, hyperparameter, Jt*W matrix and

Jt*W*J matrix are passed to a Total Variation algorithm computation method. The algorithm

computation methods’ implementation is explained in a separate section. Once the computation

is completed, the start_reconstruction_flag is set.

4) Image Display

 In this project, the image data is calculated using a twelve electrode, twelve ring forward

model. After the image data computation or image data reception over the serial port, a

start_reconstruction_flag is set. On each timer tick event of 1000ms timer, the

start_reconstruction_flag is checked to be set. If it is, the available image data is passed to a

Start_reconstruction() method to map the image data on the forward model mesh and draw the

mesh on screen. The flag is reset after the image display is done. Start_reconstruction() method

code is taken from the C# implementation developed by Chen [19]. In the Start_reconstruction()

method, a 2D forward model mesh is computed. Next, a color map is generated, and the image

data is normalized to map to the color map data. The mapped image data is then drawn as

polygons on the screen. The actual image data and the mapped image data are then used to draw

a color bar to show the data range with respect to colors used to show image.

 Once the complete image data is plotted, the flag for continuous data acquisition is

checked. If the flag is set and the system is not in demo mode, the Read Inhomogeneous Data

command is sent to serial port.

163

a) Mesh Computation

 The 2D mesh computation code is taken from the C# implementation developed by Chen

[19]. This code is developed by following the 2D circular mesh computation implementation in

EIDORS, which is open source software. In this section, a brief description of the functionality

of the 2D mesh code is described.

 A separate class Painter is there, which includes the definitions for 2D mesh components

such as elements matrix, node matrix, electrodes structure etc. It also includes the method

Make2DModel() which performs the computation. The Make2DModel() takes number of rings

and number of electrodes as input. A separate Matrix class is there which includes the matrix

definitions and matrix computation methods. The 2D mesh computation is done using matrices.

To generate a 2D mesh element data, a unit circle is divided into twelve (number of rings)

equidistant rings. The area between each ring is divided into triangles with equal area. This way

for twelve rings, a 2D mesh generates 576 triangular elements. The output of 2D mesh

computation is a matrix of nodal coordinates which includes coordinates for nodes on each ring

for the triangles and a matrix of element node sequence which can be used to utilize the nodal

coordinates and get the coordinates for each triangle.

b) Image Drawing

 As mentioned above, most of the Start_reconstruction() method is adopted from Chen’s

C# implementation. Hence, in this section the overall function of the code and the additions done

in this project are explained. After mesh generation, the nodal coordinates are modified with

respect to the height and width of the screen panel on which the mesh will be displayed. An RGB

164

color model is generated. In the next step, the image data is normalized so that it can be mapped

to the RGB color model matrix. To normalize the data, a value which corresponds to the

respective maximum image data for that system setup, is used. This value is retrieved through a

get_color_scale() method. This method is explained in next section. The ImageMap() method is

defined in Matrix class. Next, for all the elements, nodal coordinate data is used to form a

triangle coordinate. Then, Red, Green and Blue values corresponding to the image data for that

element is read and a color is formed. The triangle is drawn on the screen and filled with the

above formed color. Once all the elements are drawn, a color bar indicating the image data range

with respect to the colors used is updated. This method is explained in a separate section.

c) Color Scale

 The ImageMap() method was using maximum of the absolute values of image data

available at the time, to normalize the data for mapping. However, in the cases where

homogeneous and inhomogeneous measurements were taken one after another without making

any changes for example not adding any anomaly, the slight measurement noise was reflecting in

the image mapping. Hence, the feature of adjusting color scale is added, so that the image data is

normalized with the same reference for all measurements for one system settings. A scroll bar is

provided on the screen, which is set at 1 by default. Various measurements with the current

phantom are observed. It is concluded that the maximum image data value changes with respect

to the number of samples and sampling frequency. Hence, in get_color_scale() method,

following equation is used to calculate the color scale value

165

 Color_scale = 8*106 * (C_value)/(2N_index * 2Fs_index) (9.1)

where, 8*106 is set by observing the image data value for various settings.

C_value: color scale scroll bar value

N_index: Number of samples combo box index

Fs_index: Sampling frequency combo box index

This value is then used to normalize the image data. In case, this value is smaller, the image data

plot logic stops and displays an error asking to increase the color scale value on scroll bar.

d) Color Bar Display

 A color bar is displayed next to the image which indicates the image data range with

respect to the colors used to display that image. To achieve this, a rectangle panel is created on

the GUI and filled with a color blend which is retrieved using RGB map and image map. First,

the image map data is sorted in an ascending order. Five values from the sorted image map data

are read such as maximum, that is at index 575, index 431, index 287, index 143 and minimum

that is at index 0. The index of these values in unsorted image data are retrieved and its

corresponding actual image data values are displayed on the labels. These labels are placed

besides the color bar, as maximum being on the top and minimum being at the bottom.

 Next, the Red, Green and Blue values corresponding to each image map data index are

read from RGB map and respective combined color is created. These five colors are blended

with five different positions using ColorBlend class. The generated color blend variable

interpolates the five colors at five positions. A rectangle panel is filled with the color array in

color blend variable.

166

5) Reconstruction Algorithm Implementation

 There are two algorithms implemented in C#, Gauss Newton One Step algorithm and

Total Variation algorithm. As described before, as most of the system parameters in this project

are constant, the Jacobian matrix and reconstruction matrix can be calculated once only. There is

a provision in C# code to compute the Jacobian and reconstruction matrices. There is a button

provided on GUI which computes the required matrices and stores each matrix in a separate text

file. For Zynq SoC implementation, these text files are copied in a SD card. For C#

implementation the text files are stored in the project directory. On initialization, these files are

opened, and the matrices are stored in local variables. In this section the reconstruction matrices

computation and both algorithm implementation is discussed.

a) Reconstruction matrices computation

 In this project, the system parameters like number of electrodes, number of rings and

stimulation pattern are constant. Hence, the Jacobian matrix computation can be performed only

once. As described in chapter 6, for Gauss Newton computation, a reconstruction matrix is

required to be calculated. For Total Variation implementation, as it is an iterative method, the

reconstruction matrix needs to be calculated at each iteration, however, the Jt*W and Jt*W*J

matrices can be calculated at once. The Calculate Reconstruction Matrix button on GUI executes

the above described matrices computation through Generate_ReconMatrix() method. A separate

class Operations is created to include this method.

 The Jacobian matrix computation needs a 2D mesh and a stimulation pattern. The C#

code Jacobian computation, 2D mesh computation and stimulation pattern computation is taken

167

from the C# implementation developed by Chen [19]. In the Generate_ReconMatrix() method,

first, three text files are generated. Next a 2D mesh is computed using Painter class. A

background conductivity is assumed in the Jacobian computation, which is set as one. Hence, a

576x1 array with value 1 is generated for Jacobian background. The parameters required for

stimulation pattern computation are the current injection pattern, which is opposite in this case,

the measurement pattern, which is adjacent in this case, there is no measurement taken on the

current driving electrodes and the applied current is 0.25mA. These values are passed to a

method Mk_stimulation() method. This method returns the injection and measurement pattern

arrays. Next, the Jacobian matrix is calculated by passing the mesh, stimulation pattern and

Jacobian background to a Jacobian_adjoint() method. It returns a 96x576 matrix.

 For the reconstruction matrix computation, the matrices Jt*W and Jt*W*J are required.

Here, J is the Jacobian matrix, Jt is Jacobian matrix transpose and W is the covariance matrix,

which in this case is a 96x96 identity matrix. Hence, Jt*W is only the transpose of Jacobian

matrix calculated above. This matrix is then written in the respective text file. Here, the data type

is double, and it is written in text files only up to eight decimal places. Each data word is

separated by a semicolon. Also, to speed up the data writing process a StringBuilder class is

used. It allows to build a large string of all data and all data can be written in the file at once.

Next, the Jt*W*J matrix is computed by implementing a matrix multiplication. The resulting

576x576 matrix is written in the respective text file.

 Next, the denominator for the reconstruction matrix is calculated which is (Jt*W*J +

λ2*R). Here, R is the regularization matrix which is identity matrix as Tikhonov regularization is

used. The hyperparameter λ is set as 0.003. Next, an inverse is calculated for the resulting

168

denominator matrix using row elimination method. The row elimination method implementation

is done similar to the Zynq PS implementation, as described in chapter 8. The only difference is,

in this case, all the matrices are stored in the local variables, which makes the computation faster

as compared to that of Zynq PS implementation. The inverse matrix is multiplied with Jt*W

matrix to get the reconstruction matrix of size 576x96. The reconstruction matrix is multiplied by

10000 and only integer part is stored in the text file. This is implemented so that the FPGA

computation becomes easier to implement. The same reconstruction matrix is used in C#, so that

the computation remains same throughout the project.

b) Algorithm Implementation

 Once the reconstruction matrix is calculated, the Gauss Newton algorithm computation is

a 576x96 reconstruction matrix and a 96x1 difference voltage vector multiplication. A Gauss

Newton computation method that is GNOS() includes a Mat_vec_mult() method which is

developed to implements the required matrix and vector multiplication.

 The Total Variation implementation computation involves steps such as calculating initial

solution using Gauss Newton method, calculating TV regularization parameter, calculating

denominator, calculating inverse, calculating new reconstruction matrix, and calculating the

solution for the iteration. First, the initial solution is calculated by passing the stored

reconstruction matrix and the voltage difference data to GNOS() method. For the calculation of

TV regularization parameter WB, the initial solution is divided by 10000, as the reconstruction

matrix is multiplied by 10000 while storage. The calculation of WB, the denominator and inverse

computation are implemented similar to the implementation of same variables’ computation in

169

Zynq PS. The only difference is, in this case all the matrices are stored in local variables. The

new reconstruction matrix data is also multiplied by 10000 and the solution for the iteration is

achieved by multiplying new reconstruction matrix and the voltage difference data. If the number

of iterations is set more than one, the resulting solution is used as the new solution and the steps

from calculating WB to next solution, are repeated for the number of iterations.

6) Demonstration Mode

 The system can be run in a demonstration mode. This means that the voltage

measurement data stored in a specific format can be used to reconstruct the images using the EIT

GUI. In this project, the Zynq SoC can be used only for acquisition. In such case the voltage

measurement data sent by Zynq SoC is stored in text files along with the system parameters set

at the time of acquisition.

 If the Reconstruct Images from Database button is clicked and the radio button Enable

Demo Mode is selected, a folder selection dialog box is opened. The text files with frame data

are supposed to be set with a name including “test”. If the folder is selected, the files in the folder

containing “test” in the name are opened one by one. The file contents are read and the system

setting information and homogeneous and inhomogeneous data are separated. The system

information is updated at their specific fields on the GUI. The homogeneous and inhomogeneous

data are used to calculate the voltage difference vector. Depending upon the algorithm type

setting, the voltage difference data is passed to the respective algorithm computation function.

The resulting image data is then displayed on the screen. This is repeated until all the text files in

that folder, with the text “test” in their names are opened, read and the image computation is

170

performed. There is a delay of 1000ms added between any two file reads so that the image data

displayed for all the files can be visualized properly.

7) Execution Time Measurements

 In this project, the elapsed time measurement is done at various steps, for instance,

reconstruction computation. A stopwatch class in C# is used to measure the elapsed time. A

stopwatch is reset and then started immediate before the code section for which the elapsed time

measurement is required to be done. After the code section execution, the stopwatch is stopped.

The total elapsed time is then read using the stopwatch.elapsed() method and displayed in a

message textbox.

171

Chapter 10: Experiments and Results

 The EIT system designed in this project provides various controls for EIT image

reconstruction. The EIT system is tested by changing various parameters available and the results

are observed. This section includes the description and results of the experiments performed to

test the system. The system performance is also discussed at the end.

10.1 Analog measurements

 The Analog Front End board is tested for transmission and reception section signals at

various places on board. Figure 10.1 shows the image of the EIT system hardware, including

Zedboard and AFE board.

Figure 10. 1 EIT System Hardware Setup

 Chapter 7 shows the results of the AFE testing. In this section, the phantom response at

four different frequencies, 2Hz, 4Hz, 10Hz and 30Hz is observed by measuring the voltages at

eight ADC channel inputs, for switch position 0.As mentioned in the system specifications, this

172

system works from 2Hz to 10kHz. However, the hardware that is AFE currently available only

works up to 30Hz.

 For these observations, the transmission signal, that is DAC frequency is set at specific

frequency and the resulting voltage measurement at eight ADC channels is observed on

oscilloscope. The current injection setting for all the signal frequencies is 0.25mA. Figure 10.2

shows the peak to peak voltage for each channel with respect to the frequency. It can be observed

as the frequency increases the voltage level decreases. However, there is some attenuation

expected for 30Hz signal frequency as the lowpass filter in the receiver section before ADC is

designed for the cutoff of frequency of 18Hz.

Figure 10. 2 Voltage measurement at 8 ADC channels for different frequencies

The change in voltage with respect to frequency can be more elaborately examined if the

measurements are taken for broader range of frequency such as 2 Hz to 10kHz in the same setup.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9

V
O

LT
A

G
E(

V
P

P
)

VOLTAGE MEASUREMENT E CHANNELS

2Hz 4Hz 10Hz 30Hz

173

10.2 Image Reconstruction results

 The image reconstruction is verified by making holes in the phantom and adding salt

water as a low impedance anomaly. Figure 10.3 shows the tissue phantom used for testing. As

can be observed, there are two holes made in the phantom.

Figure 10. 3 Tissue phantom used for the testing

 The Gauss Newton One Step and Total Variation algorithm image reconstruction results

are observed at different system settings. To compare the image output between both algorithms,

only single hole is used. Following are few of the results.

174

10.2.1 Image reconstruction results

 For this observation, the homogeneous measurements are taken without adding any salt

water in the phantom holes. For inhomogeneous measurements, the left side hole in the phantom

shown in figure 10.3 is filled with salt water.

1) Gauss Newton One Step

a) Figure 10.4 shows the observations taken for Signal Frequency 30Hz, Sampling Frequency =

250Hz, Number of Samples = 2048

Figure 10. 4 Gauss Newton One Step Low Impedance Image at 30Hz

175

b) Figure 10.5 shows the observations taken for Signal Frequency 2Hz, Sampling Frequency =

250Hz, Number of Samples = 8192

Figure 10. 5 Gauss Newton One Step Low Impedance Image at 2Hz

176

2) Total Variation image reconstruction result

a) Figure 10.6 shows the observations taken for Signal Frequency = 30Hz, Sampling Frequency

= 250Hz, Number of Samples = 2048, hyper parameter = 0.003 and Iterations = 1

Figure 10. 6 Total Variation Low Impedance Image at 30Hz

177

b) Figure 10.7 shows the observations taken for Signal Frequency 2Hz, Sampling Frequency =

250Hz, Number of Samples = 8192, hyper parameter = 0.003 and Iterations = 1

Figure 10. 7 Total Variation Low Impedance Image at 2Hz

 As observed from figure 10.4 to 10.7, the Total Variation algorithm produces more

precise result as compared to the Gauss Newton one step algorithm. Also, the image

reconstruction result does not vary much between 2Hz and 30Hz.

178

10.2.2 Image Reconstruction with Two holes

 To observe if impedance change at two different places gets detected, two holes are filled

with salt water, alternatively. For homogeneous measurements, left side hole is filled with salt

water. For inhomogeneous measurements, salt water from left side hole is cleared and right-side

hole is filled with salt water. For reconstruction Gauss Newton One Step algorithm is used. The

red color in the image shows high impedance change and the blue color shows the low

impedance change. As for the left side hole, the salt water is removed, the effective impedance

during inhomogeneous measurements was higher, hence it shows red color. Similarly, for the

right-hand side hole, the salt water is added during inhomogeneous measurements, this makes

the effective impedance at that area lower, hence it shows the blue color.

179

Figure 10.8 shows the resulting image for frequency 30Hz, sampling frequency 250Hz and

number of samples 2048.

Figure 10. 8 Impedance change at two locations, with Gauss Newton One Step

180

 Figure 10.9 shows the above image reconstructed using Total Variation algorithm.

Figure 10. 9 Impedance change at two locations, with Total Variation

181

10.3 System Implementation and Performance Analysis

 In this section the FPGA design implementation and overall system performance is

discussed.

10.3.1 FPGA Design Implementation Report

 The FPGA design, that is VIVADO design is explained in detail in chapter 8. The design

includes DAC logic, Digital pot logic, 8-channel ADC data acquisition and storage logic and two

96-word depth multiplier and accumulator sections. Figure 10.10 shows the device utilization

report for the FPGA design. It shows that the design uses 192 DSPs to implement the multiplier.

Also, if compared to the FPGA design implemented by senior design team as shown in chapter 3,

the LUT utilization is much less in this project.

Figure 10. 10 FPGA Design Device Utilization Report

182

 Figure 10.11 shows the timing summary report of the FPGA design. It shows that there

are no timing violations in the design. The multiplier section of the design uses 192 DSPs. It may

introduce timing violations after the implementation. However, while designing, the accumulator

part is implemented as a pipeline in six stages. This helps the implemented design meet timing

constraints.

Figure 10. 11 FPGA Design Timing Summary

Again, if compared to the FPGA design implemented by the senior design team, the timing

performance is much improved.

10.3.2 Timing Analysis

 The execution time and computation time measurement is done at various sections in this

project. The respective analysis is presented. The execution time measurement methods utilized

in SoC and C# are explained in chapter 8 and chapter 9 respectively.

183

 First, since the AFE receiver section works with only low frequency range, the

acquisition time for low frequencies with respect to number of samples is shown in table 10.1

below. This time is calculated using following equation

 Required time = (1/sampling frequency) * Number of samples * 12 (10.1)

 The multiplier 12 is used as there will be twelve measurement cycles for twelve

electrodes. Table 10.1 shows the time required for one homogeneous or inhomogeneous

measurement, in seconds.

Table 10. 1 Acquisition time at low frequency

No. of

Samples ->

256 512 1024 2048 4096 8192

Fs (Hz)

250 12.288 24.576 49.152 98.304 196.608 393.216

500 6.144 12.288 24.576 49.152 98.304 196.608

1000 3.072 6.144 12.288 24.576 49.152 98.304

2000 1.536 3.072 6.144 12.288 24.576 49.152

 The computation time required for Gauss Newton One Step calculation and Total

variation calculation for one iteration is measured. Since the algorithms are implemented at both

Zynq SoC and C#, the execution time is measured at both implementations. Table 10.2 shows the

execution time for both algorithms’ computation. The execution time for C# implementation was

measured on the computer with specifications as Intel core i5-6200U CPU with 2.30GHz

frequency and 16 GB RAM.

Table 10. 2 Algorithm computation time

Algorithm Name Zynq SoC

Implementation

C# Implementation

Gauss Newton One Step 1.96ms 0.6ms

Total Variation (1 Iteration) 20.49seconds 4.6seconds

184

 It can be observed that the Gauss Newton One Step computation time in SoC is larger

than the time required for the same computation in C#. The time required for one iteration

computation of Total Variation algorithm in SoC is also very large as compared to the same

computation time in C#. Moreover, for the computations performed in SoC, the resulting image

data is required to be transferred to the GUI over serial port. In this project the serial port baud

rate is set at 115200. According to the image data transfer format shown in chapter 8, the data

packet contains, two starting characters, 576 x 2 image data words separated by a character and

two end characters. Hence, serial data transfer time can be calculated as

𝑇𝑖𝑚𝑒 (𝑖𝑚𝑎𝑔𝑒 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟) =

(2 + (576 ∗ 5)𝑋2 + 2) ∗ 8𝑏𝑖𝑡𝑠

115200

(10.2)

This equals to 400ms. Hence, for every image data computation performed in SoC, there

would be 400ms time overhead added for image data transfer from SoC to GUI. In case of image

computation in C#, the voltage measurement data is required to be transferred from SoC to GUI.

According to the voltage data transfer format shown in chapter 8, this data packet contains two

starting characters, 96 homogeneous data words separated by a character, a separation character,

96 inhomogeneous data words separated by a character and two end characters. Hence, serial

data transfer time can be calculated as

𝑇𝑖𝑚𝑒 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟) =

(2 + (96 ∗ 5)𝑋2 + 1 + 2) ∗ 8𝑏𝑖𝑡𝑠

115200

(10.3)

This equals to 67ms. This shows that there is a serial data transfer overhead in case of

image computation in C# software also, however, it is far less than that of in case of image data

computation in SoC.

185

 In the GUI, the 2D mesh computation and the image data mapping to the mesh and

display time is measured. It takes around 500ms.

10.3.3 Low Impedance Anomaly Detection:

 The phantom used for testing is a circular phantom with diameter 19cm. As the FEM

used for image reconstruction uses 12 rings, the diameter is divided into 24 equally spaced

triangles. Hence, one triangle represents 19cm/24 = 0.79cm length.

 The width of the left-hand hole is around 2.5cm and the height is 1.5 cm. Hence, it should

have around 3.16 triangles as width and 1.89 triangles in height. Similarly, the width of the right-

hand hole is 2cm and height is 1.5cm. Hence, it should show 2.53 triangles in width and 1.89

triangles in height. Figure 10.12 shows the measurements of the width of left-hand and right-

hand holes on phantom.

Figure 10. 12 Phantom holes measurements

186

Figure 10.13 shows image reconstructed after filling both the holes with salt water. For

this observation, a homogeneous measurement is taken with both holes empty and

inhomogeneous measurements are taken by filling both holes with salt water. The image is

reconstructed using TV algorithm. As can be observed, the left side hole is showing 3 triangles in

width and 2 triangles in height. Similarly, the right-hand side hole is showing 3 triangles in width

and two triangles in height. Here depth of the holes is not considered. As can be observed, low

impedance anomalies are detected very close to the actual dimensions in the physical phantom.

Figure 10. 13 Low Impedance Anomaly detection

187

Chapter 11: Discussion and Conclusion

 Electrical Impedance Tomography imaging technique has a potential to be used in

various biomedical applications. As mentioned previously in this document, there are various

manufacturers who provide EIT systems for commercial clinical use. An EIT system includes a

signal source and data acquisition hardware and a processing unit to reconstruct a conductivity

image using the measurement data. As the reconstruction computation involves complex

algorithm implementation, it is often implemented on computers. In this project, a Zynq SoC,

along with some custom designed hardware, is used to build a complete EIT system, which

includes signal source, data acquisition and image reconstruction capabilities.

 A twelve electrode EIT system, with signal frequency options 2Hz to 10kHz and

reconstruction algorithm options Gauss Newton One Step and Total Variation is developed. The

system includes a Zedboard, Analog Front End (AFE) board and a C# GUI. The AFE board is

designed by a senior design team and used in this project with some modifications. The AFE

board includes required hardware to drive the current signal and digitize the acquired voltage

measurement signals. It is modified so that it can work with lower frequency range 1Hz to 30Hz.

The Zynq SoC design includes signal generation, control of signal application and voltage

measurement pattern, data acquisition and processing logic. It constitutes of a VIVADO design

for generating a SoC hardware and an SDK design. The GUI is designed to receive data from

Zynq SoC over serial port, display the image data and process the measurement data if required.

The EIT reconstruction algorithms are implemented in Zynq SoC as well as C#. This way the

efficiency of Zynq SoC implementation is evaluated.

188

 The system provides various controls over system parameters as well as image

algorithms. The system is tested by varying the control parameters and observing the results. The

image reconstruction at different frequencies is observed. As per the input frequency, different

sampling frequency and number of samples are used for data acquisition. It is observed that

when the number of cycles acquired for an input signal is more than sixty, the low impedance

anomaly can be observed in the reconstructed image. The reconstruction result using the single

step Gauss Newton One Step algorithm and iterative Total Variation algorithm is observed. The

results observed for 2Hz and 30Hz are shown in chapter 10. It is observed that, the Total

Variation algorithm detects the low impedance anomaly more precisely. The system is also

tested for detecting impedance changes at two different locations in the phantom. It is observed

that the system can detect, a high impedance and low impedance change at one time in the given

setting. The reconstructed images are observed at 2Hz, 4Hz, 10Hz, and 30Hz using Gauss

Newton One Step and Total Variation algorithms. It is observed that there is not much change in

the low impedance anomaly detection for all the frequencies, for this tissue phantom. For low

frequencies like 2Hz and 4Hz, the number of samples are required to be kept as 8192 and

sampling frequency 250Hz. In case of Total Variation algorithm, the hyperparameter can be

changed but in this testing process, it is not changed. This is because, in case of TV algorithm,

the initial solution is calculated using the stored reconstruction matrix which uses 0.003 as

hyperparameter.

 The FPGA implementation reports, as shown in chapter 10, shows that the device

utilization for LUTs is reduced and the timing constraints performance is much improved if

compared to the previous FPGA based design implemented by senior design team. Also, in the

189

previous design, the Gauss Newton One Step image computation in FPGA takes around 100ms,

however, in the current FPGA implementation, the same computation takes around 2ms time.

The device utilization performance improvement is achieved by using SD-card, DDR and DMA

for reconstruction matrix storage and transfer in FPGA only as per requirement. The timing

constraints performance improvement is achieved by using pipelined implementation for the

multiply and accumulate logic. Hence, it can be said that the timing performance of the Gauss

Newton One Step FPGA implementation has largely improved in this project. However, if the

timing performance of the image reconstruction algorithms’ implementation in SoC is compared

with the similar implementation in C# software, the later performs much faster. From the

observations shown in chapter 10, it can be said that even if one step image reconstruction

algorithm implementations perform much faster in FPGA, the overhead of image data transfer

makes the process slower. Also, the iterative Total variation algorithm computation involves

large matrices computations, because of which the SoC implementation becomes much slower

that the similar implementation done in C#.

 From overall computation performance observations of the system, it can be said that the

software implementation of image reconstruction algorithms gives better timing performance as

compared to SoC implementation. However, in future, to develop an SoC based standalone EIT

system with only one step algorithm computation, some modifications can be implemented. One

of the modifications which can be done is to use ethernet or USB for data transfer between SoC

and GUI. This way, the serial data transfer overhead can be reduced. Another modification

which can be tried is to use Linux OS on Zynq processor and display the image on a screen

through HDMI out available on Zedboard. Additionally, from the point of view of AFE

190

hardware, in future, the AFE hardware can be modified to work with a wide range of frequencies

from 2Hz to 10kHz.

 To conclude, in this project, a Zynq SoC based, twelve electrode, twelve ring EIT system

is designed. To understand the EIT technology, a background research is performed. To

understand the implementation requirements, the EIT implementations developed by previous St.

Cloud State University students are studied. A MATLAB code using EIDORS is developed to

understand the flow of image reconstruction process. A data acquisition system is designed using

Zynq SoC and a GUI is designed using C# windows form application. A serial link is established

between Zynq SoC and GUI for data transfer. A one step Gauss Newton One Step and an

iterative Total Variation algorithm are developed in Zynq SoC as well as C#. For algorithm

implementations in Zynq SoC, software - hardware co-design is used. The system is tested for

performance. It is observed that the Gauss Newton One Step FPGA implementation, if compared

with the senior design team implementation, is improved. For image reconstruction performance,

it is observed that the iterative Total Variation algorithm gives the better result as compared to

one step Gauss Newton algorithm. The computation time performance between C#

implementation and SoC implementation is compared and it is observed that the C#

implementation for both algorithms is much faster as compared to the implementation in Zynq

SoC.

191

Bibliography

[1] R. P. Henderson and J. G. Webster, “An Impedance Camera for Spatially Specific

Measurements of the Thorax,” IEEE Trans. Biomed. Eng., vol. BME-25, no. 3, pp. 250–254,

May 1978, doi: 10.1109/TBME.1978.326329.

[2] T. K. Bera, “Applications of Electrical Impedance Tomography (EIT): A Short Review,”

IOP Conf. Ser. Mater. Sci. Eng., vol. 331, p. 012004, Mar. 2018, doi: 10.1088/1757-

899X/331/1/012004.

[3] C. Putensen, B. Hentze, S. Muenster, and T. Muders, “Electrical Impedance Tomography for

Cardio-Pulmonary Monitoring,” J. Clin. Med., vol. 8, no. 8, p. 1176, Aug. 2019, doi:

10.3390/jcm8081176.

[4] B. Brown, “Electrical impedance tomography (EIT): a review,” J. Med. Eng. Technol., vol.

27, no. 3, pp. 97–108, Jan. 2003, doi: 10.1080/0309190021000059687.

[5] J. Latikka, T. Kuurne, and H. J. Eskola, “Conductivity of living intracranial tissues,” Phys.

Med. Biol., vol. 46, no. 6, 2001.

[6] A. Adler et al., “GREIT: a unified approach to 2D linear EIT reconstruction of lung images,”

Physiol. Meas., vol. 30, no. 6, pp. S35–S55, Jun. 2009, doi: 10.1088/0967-3334/30/6/S03.

[7] M. Fernández-Corazza, N. von-Ellenrieder, and C. H. Muravchik, “Estimation of electrical

conductivity of a layered spherical head model using electrical impedance tomography,” J.

Phys. Conf. Ser., vol. 332, p. 012022, Dec. 2011, doi: 10.1088/1742-6596/332/1/012022.

[8] Sunjoo Hong, Jaehyuk Lee, and Hoi-Jun Yoo, “Wearable lung-health monitoring system

with electrical impedance tomography,” in 2015 37th Annual International Conference of the

192

IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Aug. 2015, pp. 1707–

1710, doi: 10.1109/EMBC.2015.7318706.

[9] R. Dubois, C. Burg, L. Hengel, and J. Kelzenberg, “Real-Time Electrical Impedance

Tomography,” Department of Electrical Engineering, St. Cloud State University, MN, USA.

[10] O. Gilad, L. Horesh, and D. S. Holder, “Design of electrodes and current limits for low

frequency electrical impedance tomography of the brain,” Med. Biol. Eng. Comput., vol. 45,

no. 7, pp. 621–633, Aug. 2007, doi: 10.1007/s11517-007-0209-7.

[11] W. R. B. Lionheart, “EIT Reconstruction Algorithms: Pitfalls, Challenges and Recent

Developments,” Physiol. Meas., vol. 25, no. 1, pp. 125–142, Feb. 2004, doi: 10.1088/0967-

3334/25/1/021.

[12] M. G. Crabb, “Convergence study of 2 D forward problem of electrical impedance

tomography with high-order finite elements,” Inverse Probl. Sci. Eng., vol. 25, no. 10, pp.

1397–1422, Oct. 2017, doi: 10.1080/17415977.2016.1255739.

[13] E. J. Woo, P. Hua, J. G. Webster, and W. J. Tompkins, “A robust image reconstruction

algorithm and its parallel implementation in electrical impedance tomography,” IEEE Trans.

Med. Imaging, vol. 12, no. 2, pp. 137–146, Jun. 1993, doi: 10.1109/42.232242.

[14] T. A. Khan and S. H. Ling, “Review on Electrical Impedance Tomography: Artificial

Intelligence Methods and its Applications,” Algorithms, vol. 12, no. 5, p. 88, Apr. 2019, doi:

10.3390/a12050088.

[15] B. Grychtol, N. Lesparre, W. R. B. Lionheart, and A. Adler, “EIDORS: the past, the

present and the future,” p. 4.

193

[16] F. Zamora-Arellano et al., “Development of a Portable, Reliable and Low-Cost Electrical

Impedance Tomography System Using an Embedded System,” Electronics, vol. 10, no. 1, p.

15, Dec. 2020, doi: 10.3390/electronics10010015.

[17] S. Russo, S. Nefti-Meziani, N. Carbonaro, and A. Tognetti, “A Quantitative Evaluation of

Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors,” Sensors, vol. 17, no.

9, p. 1999, Aug. 2017, doi: 10.3390/s17091999.

[18] N. K. Soni, K. D. Paulsen, H. Dehghani, and A. Hartov, “Finite element implementation

of Maxwell’s equations for image reconstruction in electrical impedance tomography,” IEEE

Trans. Med. Imaging, vol. 25, no. 1, pp. 55–61, Jan. 2006, doi: 10.1109/TMI.2005.861001.

[19] X. Chen, “STUDY ON HUMAN BRAIN ACTIVITY AND ELECTRICAL

IMPEDANCE TOMOGRAPHY,” Department of Electrical Engineering, St. Cloud State

University, MN, USA, Master’s Thesis, Dec. 2012.

[20] J. Padilha Leitzke and H. Zangl, “A Review on Electrical Impedance Tomography

Spectroscopy,” Sensors, vol. 20, no. 18, p. 5160, Sep. 2020, doi: 10.3390/s20185160.

[21] W. Zhang and D. Li, “An instrumental electrode model for solving EIT forward

problems,” Physiol. Meas., vol. 35, no. 10, pp. 2001–2026, Oct. 2014, doi: 10.1088/0967-

3334/35/10/2001.

[22] M. N. O. Sadiku, Numerical Techniques in Electromagnetics with MATLAB, Third

Edition

[23] M. N. O. Sadiku, “A simple introduction to finite element analysis of electromagnetic

problems,” IEEE Trans. Educ., vol. 32, no. 2, pp. 85–93, May 1989, doi: 10.1109/13.28037.

194

[24] T. K. Bera and J. Nagaraju, “A FEM-Based Forward Solver for Studying the Forward

Problem of Electrical Impedance Tomography (EIT) with A Practical Biological Phantom,”

in 2009 IEEE International Advance Computing Conference, Patiala, India, Mar. 2009, pp.

1375–1381, doi: 10.1109/IADCC.2009.4809217.

[25] T. J. Yorkey, J. G. Webster, and W. J. Tompkins, “Comparing Reconstruction

Algorithms for Electrical Impedance Tomography,” IEEE Trans. Biomed. Eng., vol. BME-

34, no. 11, pp. 843–852, Nov. 1987, doi: 10.1109/TBME.1987.326032.

[26] C. Gómez-Laberge and A. Adler, “Direct EIT Jacobian calculations for conductivity

change and electrode movement,” Physiol. Meas., vol. 29, no. 6, pp. S89–S99, Jun. 2008,

doi: 10.1088/0967-3334/29/6/S08.

[27] S. Liu, J. Jia, Y. D. Zhang, and Y. Yang, “Image Reconstruction in Electrical Impedance

Tomography Based on Structure-Aware Sparse Bayesian Learning,” IEEE Trans. Med.

Imaging, vol. 37, no. 9, pp. 2090–2102, Sep. 2018, doi: 10.1109/TMI.2018.2816739.

[28] Md. R. Islam and Md. A. Kiber, “Electrical Impedance Tomography imaging using

Gauss-Newton algorithm,” in 2014 International Conference on Informatics, Electronics &

Vision (ICIEV), Dhaka, Bangladesh, May 2014, pp. 1–4, doi: 10.1109/ICIEV.2014.6850719.

[29] B. M. Graham and A. Adler, “Objective selection of hyperparameter for EIT,” Physiol.

Meas., vol. 27, no. 5, pp. S65–S79, May 2006, doi: 10.1088/0967-3334/27/5/S06.

[30] Z. Zhou et al., “Comparison of total variation algorithms for electrical impedance

tomography,” Physiol. Meas., vol. 36, no. 6, pp. 1193–1209, Jun. 2015, doi: 10.1088/0967-

3334/36/6/1193.

195

[31] A. Borsic, B. M. Graham, A. Adler, and W. R. B. Lionheart, “Total Variation

Regularization in Electrical Impedance Tomography,” p. 35.

[32] T. Dai and A. Adler, “EIT Reconstruction Using Total Variation Norms for Data and

Image Terms,” p. 5.

[33] R. Gartaula, “Image Reconstruction and EIT,” St. Cloud State University, Minnesota,

Starred Paper, Sep. 2014.

[34] H. R. Ferreira, H. I. A. Bustos, and W. B. Figuerola, “Simulation inverse problems of

reconstruction of image data using patterned electrical impedance tomography female

breast,” in 2014 IEEE 16th International Conference on e-Health Networking, Applications

and Services (Healthcom), Natal, Oct. 2014, pp. 1–6, doi:

10.1109/HealthCom.2014.7123253.

[35] T. Dai and A. Adler, “Electrical Impedance Tomography reconstruction using

ℓ1 norms for data and image terms,” in 2008 30th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Aug. 2008, pp.

2721–2724, doi: 10.1109/IEMBS.2008.4649764.

[36] V. Sarode, S. Patkar, and A. N Cheeran, “Comparison of 2-D Algorithms in ElT based

Image Reconstruction,” Int. J. Comput. Appl., vol. 69, no. 8, pp. 6–11, May 2013, doi:

10.5120/11860-7642.

[37] “Instrumentation Amplifier AD8429 Datasheet.” Analog Devices.

[38] “Vivado Design Suite User Guide UG906.” Xilinx, Jun. 19, 2012.

[39] “Zynq-7000 SoC Technical Reference Manual UG585.” Xilinx, Jul. 01, 2018.

[40] “Zynq-7000 SoC Datasheet: Overview.” Xilinx, Jul. 02, 2018.

196

[41] “Zedboard, Zynq Evaluation and Development Board Hardware User’s Guide.” AVNET,

Jan. 27, 2014.

[42] “Embedded System Tools Reference Manual, UG1043.” Xilinx, Dec. 05, 2018.

[43] “VIVADO Design Suite User Guide, Using the VIVADO IDE, UG893.” Xilinx, Apr. 04,

2018.

[44] J. Song et al., “Electrical Impedance Changes at Different Phases of Cerebral Edema in

Rats with Ischemic Brain Injury,” BioMed Res. Int., vol. 2018, pp. 1–10, Jun. 2018, doi:

10.1155/2018/9765174.

[45] S. Khalil, M. Mohktar, and F. Ibrahim, “The Theory and Fundamentals of Bioimpedance

Analysis in Clinical Status Monitoring and Diagnosis of Diseases,” Sensors, vol. 14, no. 6,

pp. 10895–10928, Jun. 2014, doi: 10.3390/s140610895.

[46] “UG1118, VIVADO Design Suite User Guide, Creating and Packaging Custom IP.”

Xilinx, Mar. 02, 2020.

[47] “DS794 Xilinx LogiCORE IP DDS Compiler v5.0.” Xilinx, Mar. 2011.

[48] “AD5293, Analog Devices Single Channel 1024 position potentiometer.” Analog

Devices.

[49] “AD7761, 8-channel,16-bit, Simultaneous Sampling ADC Datasheet.” Analog Devices.

[50] “PG021, AXI DMA v7.1 LogiCORE IP Product Guide.” Xilinx, Jun. 14, 2019.

[51] “UG1037, VIVADO Design Suite, AXI Reference Guide.” Xilinx, Jul. 15, 2017.

[52] L. Crockett, R. Elliot, M. Enderwitz, and R. Stewart, The Zynq Book, Embedded

Processing with the ARM Cortex -A9 on the Xilinx Zynq-7000 All Programmable SoC, 1st

197

ed. Department of Electronic and Electrical Engineering, University of Strathclyde,

Glasgow, Scotland, UK.

198

Appendix

A) MATALB EIDORS Code

 %EIDORS Code for 8 Electrode data, with opposite current Injection

%and Adjucent Measurements

%Monali Sinare

%September - 2020

 %Load EIDOR

run X:\696_Matlab\EIDORS\eidors-v3.10\eidors-v3.10\eidors\startup.m

 %Read Data from text files

homo = fopen('homo.txt','r');

inhomo = fopen('inhomo.txt','r');

homo_data = fscanf(homo,'%f');

inhomo_data= fscanf(inhomo,'%f');

fclose('all');

 n_elec = 8; %number of electrodes

 Rings = input('Enter Number of Rings (4,8,12,16)');

if Rings == 4

 n_rings = 'a2c';

elseif Rings == 8

 n_rings = 'b2c';

elseif Rings == 12

 n_rings = 'c2c';

199

elseif Rings == 16

 n_rings = 'd2c';

else

 disp('Invalid Number Entered, Default set at : 8');

 n_rings = 'b2c';

end

 imdl = mk_common_model(n_rings,n_elec); %create FEM model

%create stimulation pattern

options = {'no_meas_current'}; %No measurements taken on driving electrodes

ampl = 0.25; %current amplitude

[stim,meas_sel] = mk_stim_patterns(n_elec,1,'{op}','{ad}',options,ampl);

imdl.fwd_model.stimulation = stim;

imdl.fwd_model.meas_select = meas_sel;

 imdl.hyperparameter.value = 0.003; % Assign Hyperparameter

 %Assign Algorithm

disp('Select one of the following Algorithms');

disp('1: Gauss Newton One Step');

disp('2: Total Variation');

 Algorithm = input('Enter Serial number of Algorithm : ');

 if Algorithm == 1

 imdl.solve = @inv_solve_diff_GN_one_step;

 disp_var_a = 'Gauss Newton One Step';

200

elseif Algorithm == 2

 imdl.solve = @inv_solve_TV_irls;

 disp_var_a = 'Total Variation';

 imdl.parameters.max_iterations = 3;

else

 disp('Invalid Number Entered, Default Set : Gauss Newton One Step');

 imdl.solve = @inv_solve_diff_GN_one_step;

 disp_var_a = 'Gauss Newton One Step';

end

disp('Select one of the following Priors'); %Assign Prior

disp('1: Laplace');

disp('2: Noser');

disp('3: Tikhonov');

Prior = input('Enter Serial number of Prior : ');

if Prior == 1

 imdl.RtR_prior = @prior_laplace;

 disp_var_p = 'Laplace';

elseif Prior == 2

 imdl.RtR_prior = @prior_noser;

 disp_var_p = 'Noser';

elseif Prior == 3

 imdl.RtR_prior = @prior_tikhonov;

201

 disp_var_p = 'Tikhonov';

else

 disp('Invalid Number Entered, Default Set : Laplace Prior');

 imdl.RtR_prior = @prior_laplace;

 disp_var_p = 'Laplace';

end

disp('calculating.....');

img = inv_solve(imdl, homo_data, inhomo_data); %Reconstruct Image

show_fem(img); %Display the image

colorbar;

title("Output Image For " + disp_var_a + " Algorithm and " + disp_var_p + " Prior");

202

B) VIVADO Design Flowcharts

1) Digital pot state machine Verilog code flowchart

203

C) SDK code flowcharts

1) SDK main code functional flowchart

204

2) SD card Readfile() code flowchart

205

3) ADC SPI SDK implementation flowchart

206

4) Data Acquisition loop flowchart

207

5) Multiplication loop flowchart

208

D) C# Implementation functional flowchart

209

	Very Low Frequency Electrical Impedance Tomography Image Reconstruction System Using FPGA Software-Hardware Co-design
	Recommended Citation

	tmp.1619043671.pdf.gPcqN

