
St. Cloud State University St. Cloud State University

theRepository at St. Cloud State theRepository at St. Cloud State

Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and
Information Technology

1-2021

Parallelizing Dijkstra's Algorithm Parallelizing Dijkstra's Algorithm

Mengqing He
mhe@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
He, Mengqing, "Parallelizing Dijkstra's Algorithm" (2021). Culminating Projects in Computer Science and
Information Technology. 35.
https://repository.stcloudstate.edu/csit_etds/35

This Starred Paper is brought to you for free and open access by the Department of Computer Science and
Information Technology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating
Projects in Computer Science and Information Technology by an authorized administrator of theRepository at St.
Cloud State. For more information, please contact tdsteman@stcloudstate.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/442617758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/35?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Parallelizing Dijkstra’s Algorithm

by

Mengqing He

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Computer Science

December, 2020

Starred Paper Committee:

Jie H. Meichsner, Chairperson

Andrew A. Anda

Bryant A. Julstrom

2

Abstract

Dijkstra’s algorithm is an algorithm for finding the shortest path between nodes in a

graph. The algorithm published in 1959 by Dutch computer scientist Edsger W. Dijkstra, can be

applied on a weighted graph. Dijkstra’s original algorithm runtime is a quadratic function of the

number of vertices.

In this paper, I will investigate the parallel formulation of Dijkstra’s algorithm and its

speedup against the sequential one. The implementation of the parallel formulation will be

performed by Message Passing Interface (MPI) and Open Multi-Processing (OpenMP). The

results gained indicated that the performance of MPI and OpenMP to be significantly better than

sequential for a higher number of input data scale. And the smaller number of processors/threads

give the fastest result for MPI and OpenMP implementation. However, the results show that the

average speedup achieved by parallelization is not satisfied. The parallel implementation of

Dijkstra’s algorithm may not be the best option.

Keywords: Dijkstra’s algorithm; graph; parallel computing; MPI; OpenMP; performance

3

Acknowledgement

I would like to thank my advisor Dr. Meichsner for offering a lot of valuable help and

suggestions to my paperwork. Without her help, I cannot finish this paper smoothly. I would also

like to thank the committee members Dr. Anda and Dr. Julstrom for sharing their valuable time

and advice on my paper research work.

4

Table of Contents

 Page

List of Algorithms ... 5

List of Tables .. 6

List of Figures ... 7

Chapter

1. Serial Dijkstra’s Algorithm ... 9

 1.1 Introduction .. 9

 1.2 Pseudo Code ... 11

 1.3 Description ... 12

2. Dijkstra’s Algorithm in Parallel Computing ... 19

 2.1 Parallel Computing System .. 19

 2.2 Communication Model of Parallel Platforms .. 19

 2.3 Parallel Formulation of Dijkstra’s Algorithm .. 22

3. Parallel Design and Implementation of Dijkstra’s Algorithm .. 26

 3.1 Technologies .. 26

 3.2 Test Data .. 27

 3.3 Algorithm ... 28

4. Implementation Results and Analysis ... 33

5. Conclusions and Further Work ... 41

References ... 43

Appendix .. 44

5

List of Algorithms

Algorithm Page

1. Dijkstra’s sequential single-source shortest paths algorithm .. 12

2. Dijkstra’s MPI single-source shortest paths algorithm ... 29

3. Dijkstra’s OpenMP single-source shortest paths algorithm .. 31

6

List of Tables

Table Page

1. Execution time in seconds for all three implementations ... 33

2. The best execution time in seconds the three implementations 34

3. The results for OpenMP and MPI implementation with different

 threads/processors ... 36

4. The comparison for theoretical speedup and experiment speedup for MPI

 implementation with 1024 graph vertices and different number of

 processors .. 38

7

List of Figures

Figure Page

1(a). The undirected graph G with 7 vertices, 12 edges and non-negative weight 9

1(b). The adjacency list representation of G ... 10

1(c). The adjacency matrix representation of G ... 10

2(a). Choose source vertex D ... 14

2(b). Choose vertex C ... 15

2(c). Choose vertex E ... 15

2(d). Choose vertex F ... 16

2(e). Choose vertex G ... 16

2(f). Choose vertex B ... 17

2(g). Choose vertex A ... 17

3. Typical shared-address-space architectures: (a) Uniform-memory-access

 shared-address-space computer; (b) Uniform-memory-access shared-

 address-space computer with caches and memories; (c) non-uniform-

 memory-access shared-address-space computer with local memory only 20

4. The partitioning of the distance array d and the adjacency matrix A among

 p processes .. 23

5. Best execution time for each implementation at different data sets 34

6. Different threads/processors for OpenMP and MPI implementation in 1024

 graph vertices .. 36

7. Different threads/processors for OpenMP and MPI implementation in 2048

 graph vertices .. 37

8

Figure Page

8. The comparison for theoretical speedup and experiment speedup for MPI

 Implementation with 1024 graph vertices in different processors 39

9

Chapter 1: Serial Dijkstra’s Algorithm

1.1 Introduction

A graph consists of a set of vertices or nodes, together with a set of unordered pairs of

these vertices for an undirected graph or a set of ordered pairs for a directed graph [1]. These

pairs are known as edges, arcs, or lines for an undirected graph and as arrows, directed edges,

directed arcs, or directed lines for a directed graph. Graphs are implemented as data structures by

the adjacency list and adjacency matrix. In this paper, we talk about an undirected and non-

negative weighted graph. Figure 1(a) is an undirected graph with non-negative weights. Figure

1(b) is an adjacency list representation of the undirected graph in Figure 1(a). Similarly, Figure

1(c) is an adjacency matrix representation of the graph in Figure 1(a).

Figure 1(a). The undirected graph G with 7 vertices, 12 edges and non-negative weight.

10

Figure 1(b). The adjacency list representation of G.

Figure 1(c). The adjacency matrix representation of G.

11

Suppose we have a given weighted graph G = (V, E, w), where V is the set of vertices in

this graph and E is the set of edges that connect with vertices, w is the set of weights of these

edges. The single source shortest paths problem is to find the shortest paths from a vertex s ∈ V

to all other vertices in V [2]. A shortest path from vertex s to vertex v is a minimized-weight

path. Depending on the application, edge weights may represent time, cost, penalty, loss, or any

other quantity that accumulates additively along a path and is to be minimized.

Dijkstra’s algorithm is a greedy algorithm. A greedy algorithm is a simple, intuitive

algorithm that is used in optimization problems. The algorithm makes the optimal choice at each

step as it attempts to find the overall optimal way to solve the entire problem. Dijkstra’s

algorithm incrementally finds the shortest paths from s to the other vertices of G. It always

chooses an edge to a vertex that appears closest.

There are several variants of Dijkstra’s algorithm [3]; the original variant found the

shortest path between two specific vertices, but a more common variant fixes a single vertex as

the source vertex and finds shortest paths from the source to all other vertices in the graph,

producing a shortest-path tree [4].

Dijkstra’s algorithm can solve the single source shortest path problem on a graph. For a

given source vertex in the graph, the algorithm finds the shortest path between the vertex and

every other vertex. The solution to the shortest path problem is not unique. If it exists several

paths from source vertex to the specific vertex, Dijkstra’s algorithm will choose one path

arbitrary. In particular, it depends on the order in which we traverse the vertices in each iteration.

1.2 Pseudo Code

/* V: set of vertices in the graph;

12

 * E: set of edges in the graph;

 * w: set of weights of these edges;

 * s: source vertex;

 * /

1. procedure DIJKSTRA_SINGLE_SOURCE_SP (V, E, w, s)

2. begin

3. S := {s}; // S holds the vertices that the shortest path has been found

4. for all v ∈ U do // U = V - S

5. if (s, v) exists set d[v] := w(s, v); // d[v] holds the min weight from s to v

6. else set d[v] := ∞

7. while S ≠ V do

8. begin

9. find a vertex u such that d[u] := min{d[v] | v ∈ U};

10. S := S ∪{u};

11. for all v ∈ U do

12. d[v] := min{d[v], d[u] + w(u, v)}; // update min weight of other vertices

13. endwhile

14. end DIJKSTRA_SINGLE_SOURCE_SP

Algorithm 1. Dijkstra’s sequential single-source shortest paths algorithm [2].

From the pseudo code, the time complexity is at line 7~line 12. In the graph (V, E, w), V

is all vertices in the graph and E presents all edges. The first level loop at line 7, the time is O

(|𝑉|). At line 9, get the best vertex, cost time O (|𝑉|). The second level loop at line 11, the time

is O (|𝐸| |𝑉|⁄). The total time complexity is 𝑂 (|𝑉| ∗ (|𝑉| + |𝐸| |𝑉|⁄)) = 𝑂 (|𝑉|2 + |𝐸|) →

𝑂(|𝑉|2) → 𝑂(𝑛2).

13

1.3 Description

The main feature of Dijkstra’s algorithm is to extend the outer layer (the breadth-first

search idea) around the source vertex until it reaches the end vertex.

When calculating the shortest path in the Graph G, we specify the starting vertex s (that

is, starting from the source vertex s). In addition, two sets S and U are introduced. The role of S

is to record the vertices and the corresponding shortest path length for which the shortest path

has been found. The set U is used to record the vertices and the distance from the vertices to the

source vertex s which the shortest path has not been found. Initially, there is only the source

vertex s in S; U contains vertices other than s, and the path of the vertex in U is the path from

source vertex to this vertex. Then, find the shortest path for this vertex from U and add it to S,

update the vertex and the corresponding path in U. Then, find the shortest vertex of the path from

U and add it to S, update the vertex and the corresponding path in U … repeat the operation until

all the vertices have been traversed.

(1) Initially, S only contains the starting vertex s; U contains other vertices except s, and

the distances. The distance is the weight from the starting vertex s to the vertices in U.

For example, the distance of the vertex v in U is ∞ if s and v are not adjacent.

(2) Select the shortest vertex u from U and add vertex u to S; meanwhile, remove vertex u

from U;

(3) Update the distance from each vertex in U to the source vertex. The reason why the

distance of the vertices in U is updated is that in the previous step u is the vertex of

the shortest path, so that the distance of other vertices can be updated by u; for

example, the distance of (s, v) may be greater than the distance (s, u) + (u, v).

(4) Repeat steps 2 and 3 until all the vertices have been traversed.

14

Simply looking at the above theory may be difficult and misunderstood. The algorithm can be

illustrated by an example Figure 2(a). We would like to compute the distances from source

vertex D to other vertices.

1) Choose source vertex D

S = {D (0)}

U = {A (∞), B (∞), C (3), E (4), F (∞), G (∞)}

S is the set of vertices that the shortest path has been calculated.

U is the set of vertices that the shortest path has not been calculated.

C (3) means the distance from vertex C to D is 3.

Figure 2(a). Choose source vertex D.

2) Choose vertex C, add vertex C to S

After the previous operation, the distance from vertex C to source vertex D in U is the

shortest. Therefore, C is added to S and we update the distance of the vertices in U. Taking

the vertex F as an example, the distance from the previous F to D is ∞; but after adding C to

S, the distance from F to D is 9 = (F, C) + (C, D).

15

S = {D (0), C (3)}

U = {A (∞), B (13), E (4), F (9), G (∞)}

Figure 2(b). Choose vertex C.

3) Choose vertex E, add vertex E to S

After the previous operation, the distance from the vertex E to the source vertex D is the

shortest. Therefore, E is added to S and we update the distance of vertices in U. For example,

the distance from F to D is 9; but after adding E to S, the distance from F to D is 6 = (F, E) +

(E, D).

S = {D (0), C (3), E (4)}

U = {A (∞), B (13), F (6), G (12)}

16

Figure 2(c). Choose vertex E.

4) Choose vertex F

S = {D (0), C (3), E (4), F (6)}

U = {A (22), B (13), G (12)}

Figure 2(d). Choose vertex F.

5) Choose vertex G

S = {D (0), C (3), E (4), F (6), G (12)}

U = {A (22), B (13)}

17

Figure 2(e). Choose vertex G.

6) Choose vertex B

S = {D (0), C (3), E (4), F (6), G (12), B (13)}

U = {A (22)}

Figure 2(f). Choose vertex B.

7) Choose vertex A

S = {D (0), C (3), E (4), F (6), G (12), B (13), A (22)}

U = {}

18

Figure 2(g). Choose vertex A.

At this point, the shortest distance from the source vertex D to each vertex is calculated:

A (22) B (13) C (3) D (0) E (4) F (6) G (12)

19

Chapter 2: Dijkstra’s Algorithm in Parallel Computing

2.1 Parallel Computing System

In the simplest sense, parallel computing is the simultaneous use of multiple compute

resources to solve a computational problem.

Here are some reasons why we need parallel computing:

- Save time and/or money.

- Solve larger/more complex problems.

- Provide concurrency.

- Take advantage of non-local resources.

- Make better use underlying parallel hardware.

From computational simulation in scientific and engineering applications to business

applications in data mining and transaction processing, parallel computing has made a huge

impact in various fields. The cost advantages of parallelism and the performance requirements of

applications make compelling arguments for supporting parallel computing.

2.2 Communication Model of Parallel Platforms

There are two main forms of data exchange between parallel tasks-accessing shared data

space and exchanging messages.

2.2.1 Shared-Address-Space Platforms [2]

The Shared-Address-Space view of the parallel platform supports a common data space

accessible by all processors. The processor interacts by modifying the data object stored in this

shared-address-space. A shared-address-space platform that supports program multiple data

(SPMD) programming is also known as a multiprocessor. Memory in a shared-address-space

20

platform can be local (processor-specific) or global (common to all processors). If it takes the

same amount of time for the processor to access any memory word (global or local) in the

system, the platform will be classified as a unified memory access (UMA) multicomputer. On

the other hand, if it takes longer to access some memory words than others, the platform is called

non-uniform memory access (NUMA) multicomputer. Figure 3(a) and (b) illustrated the UMA

platform, and Figure3(c) illustrates the NUMA platform. In Figure 3(b), accessing stored words

in the cache is faster than accessing locations in memory. However, we still classify it as a UMA

architecture. The reason is that all current microprocessors have a cache hierarchy. Therefor. If

you consider cache access time, even a single processor would not be called UMA. Therefore,

we define NUMA and UMA architectures based on memory access time, not cache access time.

The existence of global memory space makes programming such platforms easier. Programmers

do not see all read-only interactions because they are encoded in the same way as in serial

programs. This greatly reduces the burden of writing parallel programs.

Figure 3. Typical shared-address-space architectures: (a) Uniform-memory-access shared-

address-space computer; (b) Uniform-memory-access shared-address-space ccomputer with

caches and memories; (c) non-uniform-memory-access shared-address-space computer with

local memory only [2].

21

Shared-address-space programming paradigms such as threads (POSIX, NT) and

directives (OpenMP) support synchronization using locks and related mechanisms.

OpenMP stands for Open Multi-Processing. OpenMP is an API that can be used with

FORTRAN, c and C++ for programming shared address space machines. All OpenMP programs

begin as a single process called the master thread. When the master thread reaches the parallel

region, it creates muiltiple threads to execute the parallel codes enclosed in the parallel region.

When the threads complete the parallel region, they synchronize and terminate, leaving only the

master thread. We initiate the OpenMP programming model with the aid of a simple program.

OpenMP directives on C and C++ are based on the #pragma compiler directives. The directive

itself consists of a directive name followed by clauses.

#pragma omp parallel [clause list]

OpenMP programs execute serially until they encounter the parallel directive. This

directive is responsible for creating a group of threads. The exact number of threads can be

specified in the directive, set using an environmnet variable, or at runtime using OpenMP

functions. The main thread that encounters the parallel directive becomes the master of this

group of threads and is assigned the thread id 0 within the group. Each thread created by this

directive executes the structured block specified by the parallel directive. The clause list is

used to specify conditional parallelization (if), number of threads (num_threads), and data

handling (private, firstprivate).

2.2.2 Message-Passing Platforms [2]

The logical view of a machine supporting the message-passing paradigm consists of p

processes, each with its own exclusive address space. Each data element must belong to one of

22

the partitions of the space; hence, data must be explicitly partitioned and placed. On such

platforms, interactions between processes running on different nodes must be accomplished

using messages, hence the name message passing. This exchange of messages is used to transfer

data, work, and to synchronize actions among the processes. In its most general form, message-

passing paradigms support execution of a different program on each of the p nodes.

All interactions (read-only or read/write) require cooperation of two processes-the

process that has the data and the process that wants to access the data. Most message-passing

programs are written using the single program multiple data (SPMD) model.

Message Passing Interface (MPI) is a standardized and portable message-passing

standard designed by a group of researchers from academia and industry to function on a wide

variety of parallel computing architectures. The standard defines the syntax and semantics of a

core of library routines useful to a wide range of users writing portable message-passing

programs in C/C++ and Fortran. MPI’s goals are high performance, scalability, and portability.

The MPI interface is meant to provide essential virtual topology, synchronization, and

communication functionality between a set of processes (that have been mapped to computer

instances) in a language-independent way. MPI library functions include, but not limited to,

Point-to-Point (Send and Receive Routines), Collective Communication and Computation

Operations (Barrier, Broadcast, Reduction, Gather, Scatter, All-to-All), Groups and

Communicators (Split).

2.3 Parallel Formulation of Dijkstra’s Algorithm [2]

According Algorithm 1, Dijkstra’s algorithm is iterative. Each iteration adds a new vertex

to the computed set. Since the value of d[v] for a vertex v may change every time a new vertex u

is added in S, it is hard to select more than one vertex. This is not easy to perform different

23

iterations of the while loop in parallel. However, each iteration can be performed in parallel as

follows.

Let p be the number of processes, and let n be the number of vertices in the graph. The

set V is partitioned into p subsets using the 1-D block mapping. Each subset has n/p consecutive

vertices, and the work associated with each subset is assigned to a different process. Let Vᵢ be the

subset of vertices assigned to process Pᵢ for i = 0, 1, …, p - 1. Each process Pᵢ stores the part of

the array d that corresponds to Vᵢ (Figure 4.a). Each process Pᵢ computes di[u] = min{di[v]|v (V

- S) Vi} during each iteration of the while loop. The global minimum is then obtained over all

di[u] by using the all-to-one reduction operation and is stored in process P₀. Process P₀ now

holds the new vertex u, which will be inserted into S. Process P₀ broadcasts u to all processes by

using one-to-all broadcast. The process Pᵢ responsible for vertex u marks u as belonging to set S.

Finally, each process updates the values of d[v] for its local vertices.

Figure 4. The partitioning of the distance array d and the adjacency matrix A among p processes

[2].

24

When a new vertex u is inserted into S, the values of d[v] for v (V - S) must be updated.

The process responsible for v must know the weight of the edge (u, v). Hence, each process Pᵢ

needs to store the columns of the weighted adjacency matrix corresponding to set S of the

vertices assigned to it. This corresponds to 1-D block mapping of the matrix. The space to store

the required part of the adjacency matrix at each process is Θ (n²/p). Figure 4.b illustrates the

partitioning of the weighted adjacency matrix.

The computation performed by a process to minimize and update the values of d[v]

during each iteration is Θ (n/p). The communication performed in each iteration is due to the all-

to-one reduction and the one-to-all broadcast. For a p-process message-passing parallel

computer, a one-to-all broadcast to one word takes time log p. Finding the global minimum of

one word at each iteration is Θ (log p). The parallel run time of this formulation is given by

𝑇𝑃 = Θ (
𝑛2

𝑝
) + Θ(𝑛 log 𝑝).

Equation 1 [2]

Since the sequential run time is W = Θ (n²), the speedup and efficiency are as follows:

𝑆 =
Θ(𝑛2)

Θ(𝑛2 𝑝⁄) + Θ(𝑛 log 𝑝)

𝐸 =
1

1 + Θ((𝑝 log 𝑝)/𝑛)

Equation 2 [2]

For a cost-optimal parallel formulation (p log p) /n = O (1). Thus, this formulation of

Dijkstra’s algorithm can use only p = O (n/log n) processes. Furthermore, the isoefficiency

function due to communication is Θ (p² log² p). Since n must grow at least as fast as p in this

25

formulation, the isoefficiency function due to concurrency is Θ (p²). Thus, the overall

isoefficiency of this formulation is Θ (p² log² p) [2].

26

Chapter 3: Parallel Design and Implementation of Dijkstra’s Algorithm

3.1 Technologies

In this part, we talk about which technology to use in the implementation and made

various decisions.

3.1.1 Message Passing API/system

The message passing API must be available on all systems on which it is implemented,

and it should be as simple and straightforward as possible, preferably supporting collective

operations. The MPI matches this, so I did not seriously consider alternatives when choosing it.

The MPI implementation is free, easily available, with C bindings, and I already know about it.

3.1.2 Shared Address API/system

The chosen shared address API must allow a lot of control over the tasks that are

performed simultaneously. It must also be provided for free. OpenMP provides a layer on top of

native threads to facilitate various thread-related tasks. Using the instructions provided by

OpenMP, the programmer does not need to perform the task of initializing the attribute object,

setting parameters for the thread, and dividing the iteration space. This facility is especially

useful when the underlying problem has a static or regular task diagram. In the context of various

applications, the overhead associated with automatically generating thread code from

instructions has been shown to be minimal.

3.1.3 Language

I choose C due to the availability of a relatively stable MPI implementation for message

passing and the library for OpenMP.

27

3.1.4 System Environment

The serial Dijkstra’s algorithm implementation, Dijkstra’s algorithm implementation in

MPI, Dijkstra’s algorithm implementation in OpenMP, the three implementations are run in

Minnesota Supercomputing Institute (MSI) system [5].

3.2 Test Data

After the technologies to use were determined, I write a JAVA program to generate test

data. This program generates a 2D array with random numbers in the range of 1 to 15, which

represents the input graph for Dijkstra’s algorithm. The weights are created from the Random

function in JAVA. Assume G is a 2D array, G[i][j] represents the weight from vertex i to vertex

j. If they have no direct connect, the weight is set as 9999999, otherwise it is a random number

between 1 ~15. If i = j, that means it’s the vertex i (or j) itself. We set G[i][j] = 0 if (i==j). The

weights are randomly generated. The calculated distance will not be too large. This does not

affect our experimental goals because I only need to get results from different programs that use

same data. I will run the same set of data on serial Dijkstra’s algorithm implementation,

Dijkstra’s algorithm implementation in MPI, Dijkstra’s algorithm implementation in OpenMP to

compare the time consumed. We totally have six sets of data are used for input adjacency matrix.

That means, for the graph, 8 vertices, 64 vertices, 256 vertices, 512 vertices, 1024 vertices and

2048 vertices are used. Here is an example for the 8 vertices matrix.

28

0 2 9999999 3 4 3 9999999 3

2 0 8 8 9 9999999 7 7

9999999 8 0 6 7 9999999 9999999 2

3 8 6 0 7 3 9 7

4 9 7 7 0 9999999 9999999 4

3 9999999 9999999 3 9999999 0 8 3

9999999 7 9999999 9 9999999 8 0 9999999

3 7 2 7 4 3 9999999 0

3.3 Algorithm

Details on how the algorithm was implemented are given in the section below. The

complete source code for the implementations described can be found in Appendix A. Pseudo-

code describing the implementations in simplified form has been provided here.

3.3.1 Implementation Dijkstra’s Algorithm with MPI

The algorithm implementation, simplified in the pseudocode, is shown below.

/* wgt: points to locally stored portion of the weight adjacency matrix of the graph;

 * lengths: points to a vector that will store the distance of the shortest paths from

 * the source to the locally stored vertices;

 * /

29

1. procedure DIJKSTRA_SINGLE_SOURCE_SP_MPI (V, E, wgt, lengths, s)

2. begin

3. for all v ∈ V do

4. set lminpair[0]:local min distance;

5. set lminpair[1]:corresponding vertex;

6. for vertices in each processor

7. find a vertex u at the smallest distance from the source s;

8. MPI_Allreduce();

9. Get the global minmum vertex u and mark it;

10. for all v ∈ nlocals do // The number of vertices stored locally.

11. lengths[v] := min{lengths[v], udist + wgt[u*nlocal + v]};

12. endwhile

13. end DIJKSTRA_SINGLE_SOURCE_SP_MPI

Algorithm 2. Dijkstra’s MPI single-source shortest paths algorithm.

The main computational loop of Dijkstra's parallel single-source path algorithm executes

three steps. First, each process will find the locally stored vertex in Vo with the shortest distance

from the source. Then, the process determines the vertex with the shortest distance and includes

it in Vc. Third, each process updates the distance array to reflect the fact that Vc contains new

vertices.

The first step is to scan the vertices stored locally in Vo to determine the short vertex v

[v]. The calculation result is stored in the array lminpair. Specifically, lminpair[0] stores the

distance between vertices, and lminpair[1] stores the vertices themselves. Consider the following

steps to clarify why this storage solution should be used. The next step is to calculate the vertex

with the smallest total distance to the source. We can find the sum of the shortest distance by

minimizing the distance value stored in lminpair[0].

30

However, in addition to the shortest distance, we also need to know the specific vertex of

the shortest distance. Therefore, the appropriate reduction operation is MPI_MINLOC, which

returns the minimum value and the index value associated with the minimum value. Because of

MPI_MINLOC, we use a two-element array lminpair to store the distance and the vertex that

reaches that distance. In addition, all processes need the result of the restore operation to perform

the third step, so we use the MPI_Allreduce operation to perform the reduction. The result of

the reduction operation is returned to the gminpair array. We can perform the third and last step

of each iteration by scanning the local vertices belonging to Vo and updating the shortest

distance between them and the source vertex.

In our MPI program, we assign n/p consecutive W columns to each processor, and uses

the MPI_MINLOC reduction operation to select the vertex v to be included in Vc at each

iteration. Recall that the index returned by the MPI_MINLOC operation on (a, i) and (a, j) has a

smaller index (because the value is the same). Therefore, among the vertices that are close to the

source vertices, they are biased toward the least vertices. This can lead to load imbalance,

because vertices stored in lower-level processes tend to be included in Vc faster than vertices in

higher-level processes (especially many vertices in Vo have the smallest same distance to

source). Therefore, in higher-level processes, the configured Vo size will be larger, and the entire

runtime will dominate.

One way to solve this problem is to use circular distribution to distribute the columns of

W. This allocation process will get all p vertices starting from vertex i. In this scheme, each

process also allocates n/p vertices, but the indexes of these vertices almost cover the entire graph.

Therefore, MPI_MINLOC preferentially selects the vertex with the smallest number, and will not

cause load imbalance [2].

31

3.3.2 Implementation Dijkstra’s Algorithm with OpenMP

Most OpenMP constructs apply to a structured block, that is a block of one or more

statements with one point of entry at the top and one point of exit at the bottom. We can find

computational intensive loops in Dijkstra’s sequential algorithm and make the loop iterations

independent, then place the appropriate OpenMP directives and test.

1. procedure DIJKSTRA_SINGLE_SOURCE_SP_OPENMP (V, E, w, distances, s)

2. begin

3. #pragma omp parallel private

4. shared ()

5. omp_get_thread_num ();

6. omp_get_num_threads ();

7. Each thread finds the min distance u unconnected vertex inner

8. # pragma omp critical // update overall min

9. # pragma omp barrier

10. # pragma omp single // mark new vertex as done

11. for all v in each thread

12. distances[v] := min{distances[v], distances[u]+ w[u][v]};

12. endwhile

13. end DIJKSTRA_SINGLE_SOURCE_SP_OPENMP

Algorithm 3. Dijkstra’s OpenMP single-source shortest paths algorithm.

As the pseudocode shows, OpenMP Dijkstra’s algorithm implementation is very similar

to the sequential one. Compared with MPI implementation, OpenMP has less lines of code.

The function omp_set_num_threads sets the default number of the threads that will be

created on encountering the next parallel directive. We use this function in the main

function.

32

The omp_get_num_threads function returns the number of threads participating in a

team. The omp_get_thread_num returns a unique thread id for each thread in a team. This

integer lies between 0 and omp_get_num_threads() – 1.

The critical directive ensures that at any point in the execution of the program, only

one thread is within a critical section specified by a certain name.

OpenMP provides a critical directive for implementation critical regions. There is a

critical region that allows different threads to execute different code while being protected from

each other.

A barrier is one of the most frequently used synchronization primitives. OpenMP

provides a barrier directive. On encountering this directive, all threads in a team wait until

others have caught up, and then release.

A single directive specifies a structured block that is executed by a single thread. On

encountering the single block, the first thread enters the block. All the other threads proceed

to the end of the block [2].

33

Chapter 4: Implementation Results and Analysis

Table 1 contains all primary results of running the Dijkstra’s algorithm in sequential, MPI

and OpenMP programs. The code is run in the same system environment, and the input data

source is generated by Random function. In this paper, the total six sets of data are used for input

adjacency matrix. That means, for the graph, 8 vertices, 64 vertices, 256 vertices, 512 vertices,

1024 vertices and 2048 vertices are used. After running the code, we can get the results, which is

the duration in seconds. For OpenMP and MPI parallel computation, 2, 4, 8, 16, 32, 64, 128, 256,

512 processors (the numbers of vertices should larger than processors) are used to run the code.

Table 1. Execution time in seconds for all three implementations.

 8

vertices

64

vertices

256

vertices

512

vertices

1024

vertices

2048

vertices

Seq 0.0035 0.0029 0.0099 0.1162 0.3568 0.9965

OpenMP2 0.0003 0.0015 0.0093 0.0651 0.2493 0.8583

OpenMP4 0.0003 0.0016 0.0109 0.0635 0.2488 0.7933

OpenMP8 0.0007 0.8831 0.0140 0.0854 0.2807 0.9432

OpenMP16 0.0574 0.0233 0.2736 0.6794 1.7490

OpenMP32 0.0640 0.1186 0.5117 1.3014 2.8708

OpenMP64 0.0864 0.2030 0.7614 1.7558 3.5983

OpenMP128 0.3302 1.3960 2.8929 5.9080

OpenMP256 0.9902 2.7855 5.3655 10.5335

OpenMP512 6.1405 10.6755 20.9920

MPI2 0.0246 0.0178 0.0287 0.1137 0.1316 0.5040

MPI4 0.0353 0.0210 0.0218 0.0413 0.1281 0.4723

MPI8 0.0144 0.0164 0.0264 0.0440 0.1324 1.3663

MPI16 0.0264 0.0453 0.1010 0.2055 3.3525

MPI32 10.8733 1.2415 56.9774 3.9622 21.4067

MPI64 27.2983 3.1004 67.9168 7.1446 41.7286

MPI128 7.3566 19.8329 17.9661 119.9792

MPI256 18.8646 32.8870 44.8353 343.0892

MPI512 488.7678 1733.9085 2399.9986

34

Table 2. The best execution time in seconds the three implementations (the numbers in brackets

indicate how many threads/processors).

 8

vertices

64

vertices

256

vertices

512

vertices

1024

vertices

2048

vertices

Seq 0.0035 0.0029 0.0099 0.1162 0.3568 0.9965

OpenMP 0.0003(2) 0.0015(2) 0.0093(2) 0.0635(4) 0.2488(4) 0.7933(4)

MPI 0.0144(8) 0.0164(8) 0.0218(4) 0.0413(4) 0.1281(4) 0.4723(4)

Figure 5. Best execution time for each implementation at different data sets.

0.0002441

0.0004883

0.0009766

0.0019531

0.0039063

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

8 64 256 512 1024 2048

Se
co

n
d

s

Number of Vertices

seq OpenMP MPI

35

Figure 5 shows the best execution time for sequential, OpenMP and MPI with different

number of vertices. We can see the performance is better when using OpenMP and MPI to run

the algorithm. For a small number of vertices, more time could be spent on parallelization and

synchronization than it is spent on execution of code as sequential. So, when the number of

vertices less then 512, it is not obvious that parallelization is superior to sequential. We can

predict the cost time of MPI and OpenMP to be significantly better than sequential for a higher

number of vertices.

Another result is that the best execution time for MPI is slightly better than OpenMP as

number of vertices increases. In a shared-address-space system, whenever one processor needs to

read data that another processor has written, its cache must be updated. When multiple

processors read and write data on the same cache line, the cache needs to be updated

continuously, this means that the cache is never effective as it must be constantly updated. This

can have a big impact on the performance of algorithms on systems with a shared-address-space.

In contrast, distributed storage systems that use message passing have a separate cache for each

processor which is not invalidated or updated directly by other processors. Therefore, cache

coherence is not such an issue on message passing systems.

The following table shows the computation time of OpenMP and MPI when the number

of vertices is 1024 and 2048.

36

Table 3. The results for OpenMP and MPI implementation with different threads/processors.

number of

threads /

processors

OpenMP

1024 vertices

MPI

1024 vertices

OpenMP

2048 vertices

MPI

2048 vertices

2 0.2493 0.1316 0.8583 0.5040

4 0.2488 0.1281 0.7933 0.4723

8 0.2807 0.1324 0.9432 1.3663

16 0.6794 0.2055 1.7490 3.3525

32 1.3014 3.9622 2.8708 21.4067

64 1.7558 7.1446 3.5983 41.7286

128 2.8929 17.9661 5.9080 119.9792

Figure 6. Different threads/processors for OpenMP and MPI implementation in 1024 graph

vertices.

0.125

0.25

0.5

1

2

4

8

16

32

2 4 8 16 32 64 128

Se
co

n
d

s

Number of Threads/Processors

OpenMP MPI

37

Figure 7. Different threads/processors for OpenMP and MPI implementation in 2048 graph

vertices.

Figure 6 and Figure 7 show the performance of Dijkstra’s algorithm on different

processor/thread configurations. According to Table 1, we know the performance for OpenMP

and MPI implementation are better than the sequential ones for Dijkstra’s algorithm. However,

through the Figure 6 and Figure 7, we observe the smaller number of processors/threads give the

fastest result. For instance, if we use 1024 vertices, the best number of processors for MPI

implementation is 2, 4, 8; for OpenMP, the number is the same. When the number of vertices is

2048, we have reached a similar conclusion. This is likely because each added process/thread in

code causes extra communication costs in updating them. As the number of processors/threads

0.25

0.5

1

2

4

8

16

32

64

128

2 4 8 16 32 64 128

Se
co

n
d

s

Number of Threads/Processors
OpenMP MPI2048

38

increase obviously, these communication costs become significantly impact. Especially for MPI

Dijkstra’s algorithm, it’s very poor compared to the OpenMP one, and increasing the number of

processors causes the slowdown to worsen. The parallel performance is likely very poor because

it is dominated by the communication time, the time taken to do the MPI_Allreduce each

iteration.

According to parallel formulation in Dijkstra’s algorithm described in Section 2.3, we can

compute the speedup in each condition. The following table is a comparison for theoretical

speedup and experiment speedup in MPI implementation with 1024 vertices graph input.

Table 4. The comparison for theoretical speedup and experiment speedup for MPI

implementation with 1024 graph vertices and different number of processors.

number of processors Theoretical speedup

1024 vertices

Experiment speedup

1024 vertices

2 1.9961 2.7112

4 3.9690 2.7853

8 7.8168 2.6947

16 15.0588 1.7363

32 27.6757 0.0901

64 46.5455 0.0499

128 68.2667 0.0199

39

Figure 8. The comparison for theoretical speedup and experiment speedup for MPI

implementation with 1024 graph vertices in different processors.

Speedup is a measure that captures the relative benefit of solving a problem in parallel. It

is defined as the ratio of the time taken to solve a problem using the best sequential algorithm to

the time required to solve the same problem on a parallel computer with p identical processing

elements. If speedup can maintain a linear growth with processors, multiple machines can well

shorten the required time. However, this speedup is very difficult to achieve, because when the

machine increases, there is a problem of communication loss, as well as the problem of each

computer node itself (the skew of the slaves). For example, the total time spent by the algorithm

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

2 4 8 16 32 64 128

Sp
ee

d
u

p

Number of Processorss

Theoretical speedup Experiment speedup

40

is usually determined by the slowest machine. If the time required by each computer is different,

there is the problem of the skew of the slaves.

There may be many reasons why the high level of parallel execution of Dijkstra’s has not

reached the expected speedup. One reason may be that the code used is inefficient.

In the experiment, the speedup decreases also maybe because the communication latency

outperforms the benefit from using more processors. We should consider all the information

needed to evaluate the performance of parallel algorithm on a specific architecture with specific

technology dependent constants, like CPU speed, communication speed.

41

Chapter 5: Conclusions and Further Work

We introduced, designed and implemented parallel Dijkstra’s algorithm in this paper. The

results found allow the following conclusions to be drawn:

• The performance of Dijkstra’s algorithm is better when using OpenMP and MPI

implementation than using sequential implementation. Especially for handling large

input data sets.

• For parallelization Dijkstra’s algorithm, the best execution time for MPI is slightly

better than OpenMP as number of vertices increases.

• For both OpenMP and MPI implementations, the smaller number of processors/

threads give the fastest result.

• Compared theoretical speedup and experiment speedup in MPI implementation with

1024 vertices input. The experiment speedup is not a linear growth with processors

increasing. Compared with seral execution, the parallel execution of Dijkstra’s

algorithm does not have a good performance in terms of speedup.

The following would be useful topics for further research:

• Optimization of the algorithm implementations. Fully optimized implementations,

particularly the use of a priority queue for replacing the array is an area that allows

for much further work. A priority queue is that each element additionally has a

“priority” associated with it. For a min-priority queue, the minimum element has

highest priority and it will be served before an element with low priority. A min-

priority queue provides 3 basic operations: add_with_priority(),

decrease_priority() and extract_min(). Suppose |V| is the number of

vertices and |E| is the number of edges in a graph. If Dijkstra’s algorithm uses an array

42

to scan all the vertices directly, it costs time 𝑂(|𝑉|2) . For sparse graphs, if the number

of edges is smaller than number of vertices, we can implement the input graph by

adjacency list instead of adjacency matrix and use the binary heap or Fibonacci heap

as a priority queue for optimization.

The process is below:

(1) Add the source vertex to the heap and adjust the heap;

(2) Select the top element u and delete it from heap;

(3) Deal with the vertices that are adjacent to u: if the vertex is in the queue, update

the distance and adjust the position of the element in the heap; if the vertex is not

in the heap, add it to the heap and update the heap;

(4) If the obtained u is the end point, end this algorithm; otherwise, repeat steps 2

and 3.

The complexity of using a binary heap requires 𝑂((|𝐸| + |𝑉|) log |𝑉|). The Fibonacci

heap improves this to 𝑂(|𝐸| + |𝑉| log |𝑉|). [5]

• Doing experimental runs with different system environment.

43

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd

ed. MIT Press, 2009.

 [2] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing, 2nd

ed. Addison Wesley, 2003.

 [3] C. Wong. “Parallel-Dijkstra’s-Algorithm,” November 2015, https://github.com/

courtniwong/Parallel-Dijkstras-Algorithm [Accessed March 2019].

 [4] “Dijkstra's algorithm,” https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm [Accessed

March 2019].

 [5] Minnesota Supercomputing Institute, https://www.msi.umn.edu/ [Accessed October 2020].

https://github.com/
https://www.msi.umn.edu/

44

Appendix

Selected Code

A.1 Serial Dijkstra’s Implementation

/* seqDijk.c

* Test program that does sequential Dijkstra’s Algorithm.

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/time.h>

/* Number of vertices in the graph. */

#define N 2048

/* Define the source vertex. */

#define SOURCE 1

#define MAXINT 9999999

/* Function that implements Dijkstra's single source shortest path algorithm

 for a graph represented by adjacency matrix, and use source vertex as input. */

void dijkstra (int graph[N][N], int source);

int main (int argc, char *argv[]) {

45

 int weight[N][N];

 int i, j;

 char fn[255];

 FILE *fp;

 double time_start, time_end;

 struct timeval tv;

 struct timezone tz;

 gettimeofday(&tv, &tz);

 time_start = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00;

 /* Open input file, read adjacency matrix */

 strcpy(fn, "input2048.txt");

 fp = fopen(fn, "r");

 if ((fp = fopen(fn, "r")) == NULL) {

 printf("Can't open the input file: %s\n\n", fn);

 exit(1);

 }

 //printf("\nThe adjacency matrix: \n");

 for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 fscanf(fp, "%d", &weight[i][j]);

 //if (weight[i][j] == 9999999) printf("%4s", "INT");

 //else printf("%4d", weight[i][j]);

46

 }

 //printf("\n");

 }

 dijkstra(weight, SOURCE);

 printf("\n");

 printf("Nodes: %d ", N);

 gettimeofday(&tv, &tz);

 time_end = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00;

 printf("time cost is %1f\n", time_end - time_start);

 printf("\n");

 return 0;

}

void dijkstra(int graph[N][N], int source) {

 /* This array holds the shortest distance from source to other vertices. */

 int distance[N];

 /* This value sets to 1 if vertices are finished to compute. */

 int visited[N];

 int i, j, count, nextNode, minDistance;

 /* Initialize all vertices' distance and status. */

 for (i = 0; i < N; i++) {

47

 distance[i] = graph[source][i];

 visited[i] = 0;

 }

 visited[source] = 1;

 count = 1;

 /* Find shortest path for all vertices. */

 while (count < N) {

 minDistance = MAXINT;

 /* Pick the minimum distance vertex from the set of vertices that

 is not processed. */

 for (i = 0; i < N; i++) {

 if (distance[i] < minDistance && !visited[i]) {

 minDistance = distance[i];

 nextNode = i;

 }

 }

 /* Mark this vertex is true. That means the vertex is processed. */

 visited[nextNode] = 1;

 count++;

 /* Update the dist value of the picked vertex. */

 for (i = 0; i < N; i++) {

48

 if (!visited[i] && minDistance + graph[nextNode][i] < distance[i]) {

 distance[i] = minDistance + graph[nextNode][i];

 }

 }

 }

 /* Print the distance values. */

 //printf("\nThe distance vector is\n");

 //for (i = 0; i < N; i++) {

 // printf("%d ", distance[i]);

 //}

 //printf("\n");

}

A.2 Message Passing Dijkstra’s Implementation

/* MPIdijk.c

 * The program that does MPI Dijkstra’s Algorithm.

 */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <sys/time.h>

49

#include "mpi.h"

#define N 2048

#define SOURCE 1

#define MAXINT 9999999

/*single source Dijkstra's Algorithm*/

/*@param n: number of vertices;

 @param source: rank of the root

 @param wgt: points to locally stored portion of the weight adjacency matrix of the graph;

 @param lengths: points to a vector that will store the distance of the shortest paths from the

source to the locally stored vertices;

 */

void SingleSource(int n, int source, int *wgt, int *lengths, MPI_Comm comm) {

 int temp[N];

 int i, j;

 int nlocal; /* The number of vertices stored locally */

 int *marker; /* Used to mark the vertices belonging to Vo */

 int firstvtx; /* The index number of the first vertex that is stored locally */

 int lastvtx; /* The index number of the last vertex that is stored locally */

 int u, udist;

 int lminpair[2], gminpair[2];

 int npes, myrank;

 MPI_Status status;

50

 MPI_Comm_size(comm, &npes);

 MPI_Comm_rank(comm, &myrank);

 nlocal = n / npes;

 firstvtx = myrank*nlocal;

 lastvtx = firstvtx + nlocal - 1;

 /* Set the initial distances from source to all the other vertices */

 for (j = 0; j<nlocal; j++) {

 lengths[j] = wgt[source*nlocal + j];

 }

 /* This array is used to indicate if the shortest part to a vertex has been found or not. */

 /* if marker [v] is one, then the shortest path to v has been found, otherwise it has not. */

 marker = (int *)malloc(nlocal*sizeof(int));

 for (j = 0; j<nlocal; j++) {

 marker[j] = 1;

 }

 /* The process that stores the source vertex, marks it as being seen */

 if (source >= firstvtx && source <= lastvtx) {

 marker[source - firstvtx] = 0;

 }

 /* The main loop of Dijkstra's algorithm */

 for (i = 1; i<n; i++) {

 /* Step 1: Find the local vertex that is at the smallest distance from source */

51

 lminpair[0] = MAXINT; /* set it to an architecture dependent large number */

 lminpair[1] = -1;

 for (j = 0; j<nlocal; j++) {

 if (marker[j] && lengths[j] < lminpair[0]) {

 lminpair[0] = lengths[j];

 lminpair[1] = firstvtx + j;

 }

 }

 /* Step 2: Compute the global minimum vertex, and insert it into Vc */

 MPI_Allreduce(lminpair, gminpair, 1, MPI_2INT, MPI_MINLOC, comm);

 udist = gminpair[0];

 u = gminpair[1];

 /* The process that stores the minimum vertex, marks it as being seen */

 if (u == lminpair[1]) {

 marker[u - firstvtx] = 0;

 }

 /* Step 3: Update the distances given that u got inserted */

 for (j = 0; j<nlocal; j++) {

 if (marker[j] && ((udist + wgt[u*nlocal + j]) < lengths[j])) {

 lengths[j] = udist + wgt[u*nlocal + j];

 }

 }

52

 }

 free(marker);

}

int main(int argc, char *argv[]) {

 int npes, myrank, nlocal;

 int weight[N][N]; /*adjacency matrix*/

 int distance[N]; /*distance vector*/

 int *localWeight; /*local weight array*/

 int *localDistance; /*local distance vector*/

 int sendbuf[N*N]; /*local weight to distribute*/

 int i, j, k;

 char fn[255];

 FILE *fp;

 double time_start, time_end;

 struct timeval tv;

 struct timezone tz;

 gettimeofday(&tv, &tz);

 time_start = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00;

 /* Initialize MPI and get system information */

 MPI_Init(&argc, &argv);

53

 MPI_Comm_size(MPI_COMM_WORLD, &npes);

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 nlocal = N/npes; /* Compute the number of elements to be stored locally. */

 /*allocate local weight and local disatance arrays for each prosess*/

 localWeight = (int *)malloc(nlocal*N*sizeof(int));

 localDistance = (int *)malloc(nlocal*sizeof(int));

 /* Open input file, read adjacency matrix and prepare for sendbuf */

 if (myrank == SOURCE) {

 strcpy(fn,"input2048.txt");

 fp = fopen(fn,"r");

 if ((fp = fopen(fn,"r")) == NULL) {

 printf("Can't open the input file: %s\n\n", fn);

 exit(1);

 }

 //printf("\nThe adjacency matrix: \n");

 for(i = 0; i < N; i++) {

 for(j = 0; j < N; j++) {

 fscanf(fp,"%d", &weight[i][j]);

 // if (weight[i][j] == 9999999) printf("%4s", "INT");

 // else printf("%4d", weight[i][j]);

54

 }

 // printf("\n");

 }

 /*prepare send data */

 for(k=0; k<npes; ++k) {

 for(i=0; i<N;++i) {

 for(j=0; j<nlocal;++j) {

 sendbuf[k*N*nlocal+i*nlocal+j]=weight[i][k*nlocal+j];

 }

 }

 }

 }

 /*distribute data*/

 MPI_Scatter(sendbuf, nlocal*N, MPI_INT, localWeight, nlocal*N, MPI_INT, SOURCE,

MPI_COMM_WORLD);

 /*Implement the single source dijkstra's algorithm*/

 SingleSource(N, SOURCE, localWeight, localDistance, MPI_COMM_WORLD);

 /*collect local distance vector at the source process*/

 MPI_Gather(localDistance, nlocal, MPI_INT, distance, nlocal, MPI_INT, SOURCE,

MPI_COMM_WORLD);

55

 if (myrank == SOURCE) {

 printf("Nodes: %d\n", N);

 //printf("The distance vector is \n");

 //for (i = 0; i < N; ++i) {

 // printf("%d ", distance[i]);

 // }

 // printf("\n");

 gettimeofday(&tv, &tz);

 time_end = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00;

 printf("time cost is %1f\n", time_end - time_start);

 }

 free(localWeight);

 free(localDistance);

 MPI_Finalize();

 return 0;

}

A.3 Shared-Address Dijkstra’s Implementation

/* openMPdijk.c

 * The program that does OpenMP parallel Dijkstra’s Algorithm.

 */

#include <stdlib.h>

#include <stdio.h>

56

#include <string.h>

#include <sys/time.h>

#include <omp.h>

#define N 2048

#define SOURCE 1

#define MAXINT 9999999

void dijkstra (int graph[N][N], int source);

/* This program runs single source Dijkstra's algorithm. Given the distance

 matrix that defines a graph, we seek a minimum distance array between

 source vertex and all other vertices. */

int main(int argc, char **argv) {

 int i, j;

 char fn[255];

 FILE *fp;

 int graph[N][N];

 int threads;

 printf("Please enter number of threads: ");

 scanf("%d", &threads);

 omp_set_num_threads(threads);

 double time_start, time_end;

57

 struct timeval tv;

 struct timezone tz;

 gettimeofday(&tv, &tz);

 time_start = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00;

 strcpy(fn, "input2048.txt");

 fp = fopen(fn, "r");

 if ((fp = fopen(fn, "r")) == NULL) {

 printf("Can't open the input file: %s\n\n", fn);

 exit(1);

 }

 //printf("\nThe adjacency matrix: \n");

 for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 fscanf(fp, "%d", &graph[i][j]);

 //if (graph[i][j] == 9999999) printf("%4s", "INT");

 //else printf("%4d", graph[i][j]);

 }

 //printf("\n");

 }

 dijkstra(graph, SOURCE);

 gettimeofday(&tv, &tz);

58

 time_end = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00;

 printf("Nodes: %d\n", N);

 printf("time cost is %1f\n", time_end - time_start);

 return 0;

}

void dijkstra(int graph[N][N], int source){

 int visited[N];

 int i;

 int md;

 int distance[N]; /* This array holds the shortest distance from source to other vertices. */

 int mv;

 int my_first; /* The first vertex that stores in one thread locally. */

 int my_id; /* ID for threads */

 int my_last; /* The last vertex that stores in one thread locally. */

 int my_md; /* local minimum distance */

 int my_mv; /* local minimum vertex */

 int my_step; /* local vertex that is at the minimum distance from the source */

 int nth; /* number of threads */

 /* Initialize all vertices' distance and status. */

 for (i = 0; i < N; i++) {

 visited[i] = 0;

59

 distance[i] = graph[source][i];

 }

 visited[source] = 1;

 /* OpenMP parallelization starts here */

 # pragma omp parallel private (my_first, my_id, my_last, my_md, my_mv, my_step) \

 shared (visited, md, distance, mv, nth, graph)

 {

 my_id = omp_get_thread_num ();

 nth = omp_get_num_threads ();

 my_first = (my_id * N) / nth;

 my_last = ((my_id + 1) * N) / nth - 1;

 //fprintf(stdout, "P%d: First=%d Last=%d\n", my_id, my_first, my_last);

 for (my_step = 1; my_step < N; my_step++) {

 # pragma omp single

 {

 md = MAXINT;

 mv = -1;

 }

 int k;

 my_md = MAXINT;

 my_mv = -1;

60

 /* Each thread finds the minimum distance unconnected vertex inner of

 the graph */

 for (k = my_first; k <= my_last; k++) {

 if (!visited[k] && distance[k] < my_md) {

 my_md = distance[k];

 my_mv = k;

 }

 }

 /* 'critical' specifies that code is only be executed on one thread at a time,

 * because we need to determine the minimum of all the my_md here. */

 # pragma omp critical

 {

 if (my_md < md) {

 md = my_md;

 mv = my_mv;

 }

 }

/* 'barrier' identifies a synchronization point at which threads in a parallel

 * region will wait until all other threads in this section reach the same point. So

* that md and mv have the correct value. */

 # pragma omp barrier

 # pragma omp single

61

 {

 /* It means we find the vertex and set its status to true. */

 if (mv != - 1){

 visited[mv] = 1;

 }

 }

 # pragma omp barrier

 if (mv != -1){

 int j;

 for (j = my_first; j <= my_last; j++) {

 if (!visited[j] && graph[mv][j] < MAXINT &&

distance[mv] + graph[mv][j] < distance[j]) {

 distance[j] = distance[mv] + graph[mv][j];

 }

 }

 }

 #pragma omp barrier

 }

 }

 /*

 printf("\nThe distance vector is\n");

 for (i = 0; i < N; i++) {

62

 printf("%d ", distance[i]);

 }

 printf("\n");

 */

}

	Parallelizing Dijkstra's Algorithm
	Recommended Citation

	tmp.1609796932.pdf.mRJiz

