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Abstract 

Dijkstra’s algorithm is an algorithm for finding the shortest path between nodes in a 

graph. The algorithm published in 1959 by Dutch computer scientist Edsger W. Dijkstra, can be 

applied on a weighted graph. Dijkstra’s original algorithm runtime is a quadratic function of the 

number of vertices.  

In this paper, I will investigate the parallel formulation of Dijkstra’s algorithm and its 

speedup against the sequential one. The implementation of the parallel formulation will be 

performed by Message Passing Interface (MPI) and Open Multi-Processing (OpenMP). The 

results gained indicated that the performance of MPI and OpenMP to be significantly better than 

sequential for a higher number of input data scale. And the smaller number of processors/threads 

give the fastest result for MPI and OpenMP implementation. However, the results show that the 

average speedup achieved by parallelization is not satisfied. The parallel implementation of 

Dijkstra’s algorithm may not be the best option. 

 

Keywords: Dijkstra’s algorithm; graph; parallel computing; MPI; OpenMP; performance 
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Chapter 1: Serial Dijkstra’s Algorithm 

1.1 Introduction 

A graph consists of a set of vertices or nodes, together with a set of unordered pairs of 

these vertices for an undirected graph or a set of ordered pairs for a directed graph [1]. These 

pairs are known as edges, arcs, or lines for an undirected graph and as arrows, directed edges, 

directed arcs, or directed lines for a directed graph. Graphs are implemented as data structures by 

the adjacency list and adjacency matrix. In this paper, we talk about an undirected and non-

negative weighted graph. Figure 1(a) is an undirected graph with non-negative weights. Figure 

1(b) is an adjacency list representation of the undirected graph in Figure 1(a). Similarly, Figure 

1(c) is an adjacency matrix representation of the graph in Figure 1(a). 

 

Figure 1(a). The undirected graph G with 7 vertices, 12 edges and non-negative weight. 
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Figure 1(b). The adjacency list representation of G. 

 

 

Figure 1(c). The adjacency matrix representation of G. 
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Suppose we have a given weighted graph G = (V, E, w), where V is the set of vertices in 

this graph and E is the set of edges that connect with vertices, w is the set of weights of these 

edges. The single source shortest paths problem is to find the shortest paths from a vertex s ∈ V 

to all other vertices in V [2]. A shortest path from vertex s to vertex v is a minimized-weight 

path. Depending on the application, edge weights may represent time, cost, penalty, loss, or any 

other quantity that accumulates additively along a path and is to be minimized.  

Dijkstra’s algorithm is a greedy algorithm. A greedy algorithm is a simple, intuitive 

algorithm that is used in optimization problems. The algorithm makes the optimal choice at each 

step as it attempts to find the overall optimal way to solve the entire problem. Dijkstra’s 

algorithm incrementally finds the shortest paths from s to the other vertices of G. It always 

chooses an edge to a vertex that appears closest.  

There are several variants of Dijkstra’s algorithm [3]; the original variant found the 

shortest path between two specific vertices, but a more common variant fixes a single vertex as 

the source vertex and finds shortest paths from the source to all other vertices in the graph, 

producing a shortest-path tree [4]. 

Dijkstra’s algorithm can solve the single source shortest path problem on a graph. For a 

given source vertex in the graph, the algorithm finds the shortest path between the vertex and 

every other vertex. The solution to the shortest path problem is not unique. If it exists several 

paths from source vertex to the specific vertex, Dijkstra’s algorithm will choose one path 

arbitrary. In particular, it depends on the order in which we traverse the vertices in each iteration. 

1.2 Pseudo Code 

/* V: set of vertices in the graph; 
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 * E: set of edges in the graph; 

 * w: set of weights of these edges;  

 * s: source vertex; 

 * / 

1. procedure DIJKSTRA_SINGLE_SOURCE_SP (V, E, w, s) 

2. begin 

3.  S := {s};  // S holds the vertices that the shortest path has been found 

4.  for  all v ∈ U do  // U = V - S 

5.   if (s, v) exists set d[v] := w(s, v); // d[v] holds the min weight from s to v 

6.   else set d[v] := ∞   

7.  while S ≠ V do 

8.  begin 

9.   find a vertex u such that d[u] := min{d[v] | v ∈ U}; 

10.   S := S ∪{u}; 

11.   for all v ∈ U do 

12.    d[v] := min{d[v], d[u] + w(u, v)}; // update min weight of other vertices 

13.  endwhile 

14. end DIJKSTRA_SINGLE_SOURCE_SP 

 

Algorithm 1. Dijkstra’s sequential single-source shortest paths algorithm [2]. 

 

From the pseudo code, the time complexity is at line 7~line 12. In the graph (V, E, w), V 

is all vertices in the graph and E presents all edges. The first level loop at line 7, the time is O 

(|𝑉|). At line 9, get the best vertex, cost time O (|𝑉|). The second level loop at line 11, the time 

is O (|𝐸| |𝑉|⁄ ). The total time complexity is 𝑂 (|𝑉| ∗ (|𝑉| + |𝐸| |𝑉|⁄ )) =  𝑂 (|𝑉|2 + |𝐸|) →

𝑂(|𝑉|2) → 𝑂(𝑛2). 
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1.3 Description 

The main feature of Dijkstra’s algorithm is to extend the outer layer (the breadth-first 

search idea) around the source vertex until it reaches the end vertex. 

When calculating the shortest path in the Graph G, we specify the starting vertex s (that 

is, starting from the source vertex s). In addition, two sets S and U are introduced. The role of S 

is to record the vertices and the corresponding shortest path length for which the shortest path 

has been found. The set U is used to record the vertices and the distance from the vertices to the 

source vertex s which the shortest path has not been found. Initially, there is only the source 

vertex s in S; U contains vertices other than s, and the path of the vertex in U is the path from 

source vertex to this vertex. Then, find the shortest path for this vertex from U and add it to S, 

update the vertex and the corresponding path in U. Then, find the shortest vertex of the path from 

U and add it to S, update the vertex and the corresponding path in U … repeat the operation until 

all the vertices have been traversed. 

(1) Initially, S only contains the starting vertex s; U contains other vertices except s, and 

the distances. The distance is the weight from the starting vertex s to the vertices in U. 

For example, the distance of the vertex v in U is ∞ if s and v are not adjacent. 

(2) Select the shortest vertex u from U and add vertex u to S; meanwhile, remove vertex u 

from U; 

(3) Update the distance from each vertex in U to the source vertex. The reason why the 

distance of the vertices in U is updated is that in the previous step u is the vertex of 

the shortest path, so that the distance of other vertices can be updated by u; for 

example, the distance of (s, v) may be greater than the distance (s, u) + (u, v).  

(4) Repeat steps 2 and 3 until all the vertices have been traversed. 
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Simply looking at the above theory may be difficult and misunderstood. The algorithm can be 

illustrated by an example Figure 2(a). We would like to compute the distances from source 

vertex D to other vertices. 

1) Choose source vertex D 

S = {D (0)} 

U = {A (∞), B (∞), C (3), E (4), F (∞), G (∞)} 

S is the set of vertices that the shortest path has been calculated. 

U is the set of vertices that the shortest path has not been calculated. 

C (3) means the distance from vertex C to D is 3. 

 

Figure 2(a). Choose source vertex D. 

 

2)  Choose vertex C, add vertex C to S 

After the previous operation, the distance from vertex C to source vertex D in U is the 

shortest. Therefore, C is added to S and we update the distance of the vertices in U. Taking 

the vertex F as an example, the distance from the previous F to D is ∞; but after adding C to 

S, the distance from F to D is 9 = (F, C) + (C, D). 
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S = {D (0), C (3)} 

U = {A (∞), B (13), E (4), F (9), G (∞)} 

 

 

Figure 2(b). Choose vertex C. 

 

3)  Choose vertex E, add vertex E to S 

After the previous operation, the distance from the vertex E to the source vertex D is the 

shortest. Therefore, E is added to S and we update the distance of vertices in U. For example, 

the distance from F to D is 9; but after adding E to S, the distance from F to D is 6 = (F, E) + 

(E, D). 

S = {D (0), C (3), E (4)} 

U = {A (∞), B (13), F (6), G (12)} 
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Figure 2(c). Choose vertex E. 

 

4) Choose vertex F 

S = {D (0), C (3), E (4), F (6)} 

U = {A (22), B (13), G (12)} 

 

Figure 2(d). Choose vertex F. 

 

5)  Choose vertex G 

S = {D (0), C (3), E (4), F (6), G (12)} 

U = {A (22), B (13)} 
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Figure 2(e). Choose vertex G. 

 

 

6)  Choose vertex B 

S = {D (0), C (3), E (4), F (6), G (12), B (13)} 

U = {A (22)} 

 

Figure 2(f). Choose vertex B. 

 

7)  Choose vertex A 

S = {D (0), C (3), E (4), F (6), G (12), B (13), A (22)} 

U = {} 
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Figure 2(g). Choose vertex A. 

 

At this point, the shortest distance from the source vertex D to each vertex is calculated:  

A (22)  B (13)  C (3)  D (0)  E (4)  F (6)  G (12) 
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Chapter 2: Dijkstra’s Algorithm in Parallel Computing 

2.1 Parallel Computing System 

In the simplest sense, parallel computing is the simultaneous use of multiple compute 

resources to solve a computational problem. 

Here are some reasons why we need parallel computing: 

- Save time and/or money. 

- Solve larger/more complex problems. 

- Provide concurrency. 

- Take advantage of non-local resources. 

- Make better use underlying parallel hardware. 

From computational simulation in scientific and engineering applications to business 

applications in data mining and transaction processing, parallel computing has made a huge 

impact in various fields. The cost advantages of parallelism and the performance requirements of 

applications make compelling arguments for supporting parallel computing. 

2.2 Communication Model of Parallel Platforms 

There are two main forms of data exchange between parallel tasks-accessing shared data 

space and exchanging messages. 

2.2.1 Shared-Address-Space Platforms [2] 

The Shared-Address-Space view of the parallel platform supports a common data space 

accessible by all processors. The processor interacts by modifying the data object stored in this 

shared-address-space. A shared-address-space platform that supports program multiple data 

(SPMD) programming is also known as a multiprocessor. Memory in a shared-address-space 
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platform can be local (processor-specific) or global (common to all processors). If it takes the 

same amount of time for the processor to access any memory word (global or local) in the 

system, the platform will be classified as a unified memory access (UMA) multicomputer. On 

the other hand, if it takes longer to access some memory words than others, the platform is called 

non-uniform memory access (NUMA) multicomputer. Figure 3(a) and (b) illustrated the UMA 

platform, and Figure3(c) illustrates the NUMA platform. In Figure 3(b), accessing stored words 

in the cache is faster than accessing locations in memory. However, we still classify it as a UMA 

architecture. The reason is that all current microprocessors have a cache hierarchy. Therefor. If 

you consider cache access time, even a single processor would not be called UMA. Therefore, 

we define NUMA and UMA architectures based on memory access time, not cache access time.  

The existence of global memory space makes programming such platforms easier. Programmers 

do not see all read-only interactions because they are encoded in the same way as in serial 

programs. This greatly reduces the burden of writing parallel programs. 

 

Figure 3. Typical shared-address-space architectures: (a) Uniform-memory-access shared-

address-space computer; (b) Uniform-memory-access shared-address-space ccomputer with 

caches and memories; (c) non-uniform-memory-access shared-address-space computer with 

local memory only [2]. 
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Shared-address-space programming paradigms such as threads (POSIX, NT) and 

directives (OpenMP) support synchronization using locks and related mechanisms. 

OpenMP stands for Open Multi-Processing. OpenMP is an API that can be used with 

FORTRAN, c and C++ for programming shared address space machines. All OpenMP programs 

begin as a single process called the master thread. When the master thread reaches the parallel 

region, it creates muiltiple threads to execute the parallel codes enclosed in the parallel region. 

When the threads complete the parallel region, they synchronize and terminate, leaving only the 

master thread. We initiate the OpenMP programming model with the aid of a simple program. 

OpenMP directives on C and C++ are based on the #pragma compiler directives. The directive 

itself consists of a directive name followed by clauses.  

#pragma omp parallel [clause list] 

OpenMP programs execute serially until they encounter the parallel directive. This 

directive is responsible for creating a group of threads. The exact number of threads can be 

specified in the directive, set using an environmnet variable, or at runtime using OpenMP 

functions. The main thread that encounters the parallel directive becomes the master of this 

group of threads and is assigned the thread id 0 within the group. Each thread created by this 

directive executes the structured block specified by the parallel directive. The clause list is 

used to specify conditional parallelization (if), number of threads (num_threads), and data 

handling (private, firstprivate). 

2.2.2 Message-Passing Platforms [2] 

The logical view of a machine supporting the message-passing paradigm consists of p 

processes, each with its own exclusive address space. Each data element must belong to one of 
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the partitions of the space; hence, data must be explicitly partitioned and placed. On such 

platforms, interactions between processes running on different nodes must be accomplished 

using messages, hence the name message passing. This exchange of messages is used to transfer 

data, work, and to synchronize actions among the processes. In its most general form, message-

passing paradigms support execution of a different program on each of the p nodes. 

All interactions (read-only or read/write) require cooperation of two processes-the 

process that has the data and the process that wants to access the data. Most message-passing 

programs are written using the single program multiple data (SPMD) model. 

Message Passing Interface (MPI) is a standardized and portable message-passing 

standard designed by a group of researchers from academia and industry to function on a wide 

variety of parallel computing architectures. The standard defines the syntax and semantics of a 

core of library routines useful to a wide range of users writing portable message-passing 

programs in C/C++ and Fortran. MPI’s goals are high performance, scalability, and portability. 

The MPI interface is meant to provide essential virtual topology, synchronization, and 

communication functionality between a set of processes (that have been mapped to computer 

instances) in a language-independent way. MPI library functions include, but not limited to, 

Point-to-Point (Send and Receive Routines), Collective Communication and Computation 

Operations (Barrier, Broadcast, Reduction, Gather, Scatter, All-to-All), Groups and 

Communicators (Split). 

2.3 Parallel Formulation of Dijkstra’s Algorithm [2] 

According Algorithm 1, Dijkstra’s algorithm is iterative. Each iteration adds a new vertex 

to the computed set. Since the value of d[v] for a vertex v may change every time a new vertex u 

is added in S, it is hard to select more than one vertex. This is not easy to perform different 
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iterations of the while loop in parallel. However, each iteration can be performed in parallel as 

follows. 

Let p be the number of processes, and let n be the number of vertices in the graph. The 

set V is partitioned into p subsets using the 1-D block mapping. Each subset has n/p consecutive 

vertices, and the work associated with each subset is assigned to a different process. Let Vᵢ be the 

subset of vertices assigned to process Pᵢ for i = 0, 1, …, p - 1. Each process Pᵢ stores the part of 

the array d that corresponds to Vᵢ (Figure 4.a). Each process Pᵢ computes di[u] = min{di[v]|v (V 

- S) Vi} during each iteration of the while loop. The global minimum is then obtained over all 

di[u] by using the all-to-one reduction operation and is stored in process P₀. Process P₀ now 

holds the new vertex u, which will be inserted into S. Process P₀ broadcasts u to all processes by 

using one-to-all broadcast. The process Pᵢ responsible for vertex u marks u as belonging to set S. 

Finally, each process updates the values of d[v] for its local vertices. 

 

Figure 4. The partitioning of the distance array d and the adjacency matrix A among p processes 

[2]. 
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When a new vertex u is inserted into S, the values of d[v] for v (V - S) must be updated. 

The process responsible for v must know the weight of the edge (u, v). Hence, each process Pᵢ 

needs to store the columns of the weighted adjacency matrix corresponding to set S of the 

vertices assigned to it. This corresponds to 1-D block mapping of the matrix. The space to store 

the required part of the adjacency matrix at each process is Θ (n²/p). Figure 4.b illustrates the 

partitioning of the weighted adjacency matrix. 

The computation performed by a process to minimize and update the values of d[v] 

during each iteration is Θ (n/p). The communication performed in each iteration is due to the all-

to-one reduction and the one-to-all broadcast. For a p-process message-passing parallel 

computer, a one-to-all broadcast to one word takes time log p. Finding the global minimum of 

one word at each iteration is Θ (log p). The parallel run time of this formulation is given by  

𝑇𝑃 = Θ (
𝑛2

𝑝
) +  Θ(𝑛 log 𝑝).  

Equation 1 [2] 

Since the sequential run time is W = Θ (n²), the speedup and efficiency are as follows: 

𝑆 =
Θ(𝑛2)

Θ(𝑛2 𝑝⁄ ) + Θ(𝑛 log 𝑝)
 

𝐸 =
1

1 + Θ((𝑝 log 𝑝)/𝑛)
 

Equation 2 [2] 

For a cost-optimal parallel formulation (p log p) /n = O (1). Thus, this formulation of 

Dijkstra’s algorithm can use only p = O (n/log n) processes. Furthermore, the isoefficiency 

function due to communication is Θ (p² log² p). Since n must grow at least as fast as p in this 



25 
 

 

formulation, the isoefficiency function due to concurrency is Θ (p²). Thus, the overall 

isoefficiency of this formulation is Θ (p² log² p) [2]. 
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Chapter 3: Parallel Design and Implementation of Dijkstra’s Algorithm 

3.1 Technologies 

In this part, we talk about which technology to use in the implementation and made 

various decisions. 

3.1.1 Message Passing API/system 

The message passing API must be available on all systems on which it is implemented, 

and it should be as simple and straightforward as possible, preferably supporting collective 

operations. The MPI matches this, so I did not seriously consider alternatives when choosing it. 

The MPI implementation is free, easily available, with C bindings, and I already know about it.  

3.1.2 Shared Address API/system 

The chosen shared address API must allow a lot of control over the tasks that are 

performed simultaneously. It must also be provided for free. OpenMP provides a layer on top of 

native threads to facilitate various thread-related tasks. Using the instructions provided by 

OpenMP, the programmer does not need to perform the task of initializing the attribute object, 

setting parameters for the thread, and dividing the iteration space. This facility is especially 

useful when the underlying problem has a static or regular task diagram. In the context of various 

applications, the overhead associated with automatically generating thread code from 

instructions has been shown to be minimal. 

3.1.3 Language 

I choose C due to the availability of a relatively stable MPI implementation for message 

passing and the library for OpenMP. 
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3.1.4 System Environment 

The serial Dijkstra’s algorithm implementation, Dijkstra’s algorithm implementation in 

MPI, Dijkstra’s algorithm implementation in OpenMP, the three implementations are run in 

Minnesota Supercomputing Institute (MSI) system [5]. 

3.2 Test Data 

After the technologies to use were determined, I write a JAVA program to generate test 

data. This program generates a 2D array with random numbers in the range of 1 to 15, which 

represents the input graph for Dijkstra’s algorithm. The weights are created from the Random 

function in JAVA. Assume G is a 2D array, G[i][j] represents the weight from vertex i to vertex 

j. If they have no direct connect, the weight is set as 9999999, otherwise it is a random number 

between 1 ~15. If i = j, that means it’s the vertex i (or j) itself. We set G[i][j] = 0 if (i==j). The 

weights are randomly generated. The calculated distance will not be too large. This does not 

affect our experimental goals because I only need to get results from different programs that use 

same data. I will run the same set of data on serial Dijkstra’s algorithm implementation, 

Dijkstra’s algorithm implementation in MPI, Dijkstra’s algorithm implementation in OpenMP to 

compare the time consumed. We totally have six sets of data are used for input adjacency matrix. 

That means, for the graph, 8 vertices, 64 vertices, 256 vertices, 512 vertices, 1024 vertices and 

2048 vertices are used. Here is an example for the 8 vertices matrix. 
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0               2               9999999   3                 4               3               9999999   3  

2               0               8               8                 9               9999999   7               7  

9999999   8               0               6                 7               9999999   9999999   2  

3               8               6               0                 7               3               9               7  

4               9               7               7                 0               9999999   9999999   4  

3               9999999   9999999   3                 9999999   0               8               3  

9999999   7               9999999   9                 9999999   8               0               9999999  

3               7               2               7                 4               3               9999999   0 

3.3 Algorithm 

Details on how the algorithm was implemented are given in the section below. The 

complete source code for the implementations described can be found in Appendix A. Pseudo-

code describing the implementations in simplified form has been provided here.  

3.3.1 Implementation Dijkstra’s Algorithm with MPI 

The algorithm implementation, simplified in the pseudocode, is shown below.  

/* wgt: points to locally stored portion of the weight adjacency matrix of the graph; 

 * lengths: points to a vector that will store the distance of the shortest paths from 

 * the source to the locally stored vertices; 

 * / 
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1. procedure DIJKSTRA_SINGLE_SOURCE_SP_MPI (V, E, wgt, lengths, s) 

2. begin 

3.  for  all v ∈ V do  

4.      set lminpair[0]:local min distance;  

5.       set lminpair[1]:corresponding vertex;          

6.     for vertices in each processor 

7.    find a vertex u at the smallest distance from the source s; 

8.  MPI_Allreduce(); 

9.  Get the global minmum vertex u and mark it; 

10.  for all v ∈ nlocals do  // The number of vertices stored locally. 

11.             lengths[v] := min{lengths[v], udist + wgt[u*nlocal + v]};    

12.  endwhile 

13. end DIJKSTRA_SINGLE_SOURCE_SP_MPI 

Algorithm 2. Dijkstra’s MPI single-source shortest paths algorithm. 

 

The main computational loop of Dijkstra's parallel single-source path algorithm executes 

three steps. First, each process will find the locally stored vertex in Vo with the shortest distance 

from the source. Then, the process determines the vertex with the shortest distance and includes 

it in Vc. Third, each process updates the distance array to reflect the fact that Vc contains new 

vertices. 

The first step is to scan the vertices stored locally in Vo to determine the short vertex v 

[v]. The calculation result is stored in the array lminpair. Specifically, lminpair[0] stores the 

distance between vertices, and lminpair[1] stores the vertices themselves. Consider the following 

steps to clarify why this storage solution should be used. The next step is to calculate the vertex 

with the smallest total distance to the source. We can find the sum of the shortest distance by 

minimizing the distance value stored in lminpair[0]. 
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However, in addition to the shortest distance, we also need to know the specific vertex of 

the shortest distance. Therefore, the appropriate reduction operation is MPI_MINLOC, which 

returns the minimum value and the index value associated with the minimum value. Because of 

MPI_MINLOC, we use a two-element array lminpair to store the distance and the vertex that 

reaches that distance. In addition, all processes need the result of the restore operation to perform 

the third step, so we use the MPI_Allreduce operation to perform the reduction. The result of 

the reduction operation is returned to the gminpair array. We can perform the third and last step 

of each iteration by scanning the local vertices belonging to Vo and updating the shortest 

distance between them and the source vertex. 

In our MPI program, we assign n/p consecutive W columns to each processor, and uses 

the MPI_MINLOC reduction operation to select the vertex v to be included in Vc at each 

iteration. Recall that the index returned by the MPI_MINLOC operation on (a, i) and (a, j) has a 

smaller index (because the value is the same). Therefore, among the vertices that are close to the 

source vertices, they are biased toward the least vertices. This can lead to load imbalance, 

because vertices stored in lower-level processes tend to be included in Vc faster than vertices in 

higher-level processes (especially many vertices in Vo have the smallest same distance to 

source). Therefore, in higher-level processes, the configured Vo size will be larger, and the entire 

runtime will dominate. 

One way to solve this problem is to use circular distribution to distribute the columns of 

W. This allocation process will get all p vertices starting from vertex i. In this scheme, each 

process also allocates n/p vertices, but the indexes of these vertices almost cover the entire graph. 

Therefore, MPI_MINLOC preferentially selects the vertex with the smallest number, and will not 

cause load imbalance [2]. 
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3.3.2 Implementation Dijkstra’s Algorithm with OpenMP 

Most OpenMP constructs apply to a structured block, that is a block of one or more 

statements with one point of entry at the top and one point of exit at the bottom. We can find 

computational intensive loops in Dijkstra’s sequential algorithm and make the loop iterations 

independent, then place the appropriate OpenMP directives and test. 

1. procedure DIJKSTRA_SINGLE_SOURCE_SP_OPENMP (V, E, w, distances, s) 

2. begin 

3.  #pragma omp parallel private 

4.      shared () 

5.        omp_get_thread_num ( ); 

6.      omp_get_num_threads ( );  

7.   Each thread finds the min distance u unconnected vertex inner  

8.   # pragma omp critical   // update overall min 

9.   # pragma omp barrier 

10.   # pragma omp single   // mark new vertex as done 

11.                for all v in each thread 

12.    distances[v] := min{distances[v], distances[u]+ w[u][v]};    

12.  endwhile 

13. end DIJKSTRA_SINGLE_SOURCE_SP_OPENMP 

Algorithm 3. Dijkstra’s OpenMP single-source shortest paths algorithm. 

 
As the pseudocode shows, OpenMP Dijkstra’s algorithm implementation is very similar 

to the sequential one. Compared with MPI implementation, OpenMP has less lines of code.  

The function omp_set_num_threads sets the default number of the threads that will be 

created on encountering the next parallel directive. We use this function in the main 

function.  
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The omp_get_num_threads function returns the number of threads participating in a 

team. The omp_get_thread_num returns a unique thread id for each thread in a team. This 

integer lies between 0 and omp_get_num_threads() – 1. 

The critical directive ensures that at any point in the execution of the program, only 

one thread is within a critical section specified by a certain name. 

OpenMP provides a critical directive for implementation critical regions. There is a 

critical region that allows different threads to execute different code while being protected from 

each other.  

A barrier is one of the most frequently used synchronization primitives. OpenMP 

provides a barrier directive. On encountering this directive, all threads in a team wait until 

others have caught up, and then release. 

A single directive specifies a structured block that is executed by a single thread. On 

encountering the single block, the first thread enters the block. All the other threads proceed 

to the end of the block [2]. 
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Chapter 4: Implementation Results and Analysis 

Table 1 contains all primary results of running the Dijkstra’s algorithm in sequential, MPI 

and OpenMP programs. The code is run in the same system environment, and the input data 

source is generated by Random function. In this paper, the total six sets of data are used for input 

adjacency matrix. That means, for the graph, 8 vertices, 64 vertices, 256 vertices, 512 vertices, 

1024 vertices and 2048 vertices are used. After running the code, we can get the results, which is 

the duration in seconds. For OpenMP and MPI parallel computation, 2, 4, 8, 16, 32, 64, 128, 256, 

512 processors (the numbers of vertices should larger than processors) are used to run the code. 

Table 1. Execution time in seconds for all three implementations. 
 

 8  

vertices 

64 

vertices 

256 

vertices 

512 

vertices 

1024 

vertices 

2048 

vertices 

Seq 0.0035 0.0029 0.0099 0.1162 0.3568 0.9965 

OpenMP2 0.0003 0.0015 0.0093 0.0651 0.2493 0.8583 

OpenMP4 0.0003 0.0016 0.0109 0.0635 0.2488 0.7933 

OpenMP8 0.0007 0.8831 0.0140 0.0854 0.2807 0.9432 

OpenMP16  0.0574 0.0233 0.2736 0.6794 1.7490 

OpenMP32  0.0640 0.1186 0.5117 1.3014 2.8708 

OpenMP64  0.0864 0.2030 0.7614 1.7558 3.5983 

OpenMP128   0.3302 1.3960 2.8929 5.9080 

OpenMP256   0.9902 2.7855 5.3655 10.5335 

OpenMP512    6.1405 10.6755 20.9920 

MPI2 0.0246 0.0178 0.0287 0.1137 0.1316 0.5040 

MPI4 0.0353 0.0210 0.0218 0.0413 0.1281 0.4723 

MPI8 0.0144 0.0164 0.0264 0.0440 0.1324 1.3663 

MPI16  0.0264 0.0453 0.1010 0.2055 3.3525 

MPI32  10.8733 1.2415 56.9774 3.9622 21.4067 

MPI64  27.2983 3.1004 67.9168 7.1446 41.7286 

MPI128   7.3566 19.8329 17.9661 119.9792 

MPI256   18.8646 32.8870 44.8353 343.0892 

MPI512    488.7678 1733.9085 2399.9986 
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Table 2.  The best execution time in seconds the three implementations (the numbers in brackets 

indicate how many threads/processors). 
 

 

 8  

vertices 

64  

vertices 

256  

vertices 

512 

vertices 

1024 

vertices 

2048 

vertices 

Seq 0.0035 0.0029 0.0099 0.1162 0.3568 0.9965 

OpenMP 0.0003(2) 0.0015(2) 0.0093(2) 0.0635(4) 0.2488(4) 0.7933(4) 

MPI 0.0144(8) 0.0164(8) 0.0218(4) 0.0413(4) 0.1281(4) 0.4723(4) 

 

 

 

Figure 5. Best execution time for each implementation at different data sets. 
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Figure 5 shows the best execution time for sequential, OpenMP and MPI with different 

number of vertices. We can see the performance is better when using OpenMP and MPI to run 

the algorithm. For a small number of vertices, more time could be spent on parallelization and 

synchronization than it is spent on execution of code as sequential. So, when the number of 

vertices less then 512, it is not obvious that parallelization is superior to sequential. We can 

predict the cost time of MPI and OpenMP to be significantly better than sequential for a higher 

number of vertices. 

Another result is that the best execution time for MPI is slightly better than OpenMP as 

number of vertices increases. In a shared-address-space system, whenever one processor needs to 

read data that another processor has written, its cache must be updated. When multiple 

processors read and write data on the same cache line, the cache needs to be updated 

continuously, this means that the cache is never effective as it must be constantly updated. This 

can have a big impact on the performance of algorithms on systems with a shared-address-space. 

In contrast, distributed storage systems that use message passing have a separate cache for each 

processor which is not invalidated or updated directly by other processors. Therefore, cache 

coherence is not such an issue on message passing systems. 

The following table shows the computation time of OpenMP and MPI when the number 

of vertices is 1024 and 2048.  
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Table 3. The results for OpenMP and MPI implementation with different threads/processors.  

 

number of 

threads / 

processors 

OpenMP 

1024 vertices 

MPI 

1024 vertices 

OpenMP 

2048 vertices 

MPI 

2048 vertices 

2 0.2493 0.1316 0.8583 0.5040 

4 0.2488 0.1281 0.7933 0.4723 

8 0.2807 0.1324 0.9432 1.3663 

16 0.6794 0.2055 1.7490 3.3525 

32 1.3014 3.9622 2.8708 21.4067 

64 1.7558 7.1446 3.5983 41.7286 

128 2.8929 17.9661 5.9080 119.9792 

 

 

 

Figure 6. Different threads/processors for OpenMP and MPI implementation in 1024 graph 

vertices. 
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Figure 7. Different threads/processors for OpenMP and MPI implementation in 2048 graph 

vertices. 

 

Figure 6 and Figure 7 show the performance of Dijkstra’s algorithm on different 

processor/thread configurations. According to Table 1, we know the performance for OpenMP 

and MPI implementation are better than the sequential ones for Dijkstra’s algorithm. However, 

through the Figure 6 and Figure 7, we observe the smaller number of processors/threads give the 

fastest result. For instance, if we use 1024 vertices, the best number of processors for MPI 

implementation is 2, 4, 8; for OpenMP, the number is the same. When the number of vertices is 

2048, we have reached a similar conclusion. This is likely because each added process/thread in 

code causes extra communication costs in updating them. As the number of processors/threads 
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increase obviously, these communication costs become significantly impact. Especially for MPI 

Dijkstra’s algorithm, it’s very poor compared to the OpenMP one, and increasing the number of 

processors causes the slowdown to worsen. The parallel performance is likely very poor because 

it is dominated by the communication time, the time taken to do the MPI_Allreduce each 

iteration. 

According to parallel formulation in Dijkstra’s algorithm described in Section 2.3, we can 

compute the speedup in each condition. The following table is a comparison for theoretical 

speedup and experiment speedup in MPI implementation with 1024 vertices graph input. 

Table 4. The comparison for theoretical speedup and experiment speedup for MPI 

implementation with 1024 graph vertices and different number of processors. 

 

number of processors Theoretical speedup 

1024 vertices 

Experiment speedup 

1024 vertices 

2 1.9961 2.7112 

4 3.9690 2.7853 

8 7.8168 2.6947 

16 15.0588 1.7363 

32 27.6757 0.0901 

64 46.5455 0.0499 

128 68.2667 0.0199 
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Figure 8. The comparison for theoretical speedup and experiment speedup for MPI 

implementation with 1024 graph vertices in different processors. 
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is usually determined by the slowest machine. If the time required by each computer is different, 

there is the problem of the skew of the slaves. 

There may be many reasons why the high level of parallel execution of Dijkstra’s has not 

reached the expected speedup. One reason may be that the code used is inefficient. 

In the experiment, the speedup decreases also maybe because the communication latency 

outperforms the benefit from using more processors. We should consider all the information 

needed to evaluate the performance of parallel algorithm on a specific architecture with specific 

technology dependent constants, like CPU speed, communication speed. 
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Chapter 5: Conclusions and Further Work 

We introduced, designed and implemented parallel Dijkstra’s algorithm in this paper. The 

results found allow the following conclusions to be drawn: 

• The performance of Dijkstra’s algorithm is better when using OpenMP and MPI 

implementation than using sequential implementation. Especially for handling large 

input data sets. 

• For parallelization Dijkstra’s algorithm, the best execution time for MPI is slightly 

better than OpenMP as number of vertices increases.  

• For both OpenMP and MPI implementations, the smaller number of processors/ 

threads give the fastest result.  

• Compared theoretical speedup and experiment speedup in MPI implementation with 

1024 vertices input. The experiment speedup is not a linear growth with processors 

increasing. Compared with seral execution, the parallel execution of Dijkstra’s 

algorithm does not have a good performance in terms of speedup.  

The following would be useful topics for further research: 

• Optimization of the algorithm implementations. Fully optimized implementations, 

particularly the use of a priority queue for replacing the array is an area that allows 

for much further work. A priority queue is that each element additionally has a 

“priority” associated with it. For a min-priority queue, the minimum element has 

highest priority and it will be served before an element with low priority. A min-

priority queue provides 3 basic operations: add_with_priority(), 

decrease_priority() and extract_min(). Suppose |V| is the number of 

vertices and |E| is the number of edges in a graph. If Dijkstra’s algorithm uses an array 
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to scan all the vertices directly, it costs time 𝑂(|𝑉|2) . For sparse graphs, if the number 

of edges is smaller than number of vertices, we can implement the input graph by 

adjacency list instead of adjacency matrix and use the binary heap or Fibonacci heap 

as a priority queue for optimization. 

The process is below: 

(1) Add the source vertex to the heap and adjust the heap; 

(2) Select the top element u and delete it from heap; 

(3) Deal with the vertices that are adjacent to u: if the vertex is in the queue, update 

the distance and adjust the position of the element in the heap; if the vertex is not 

in the heap, add it to the heap and update the heap; 

(4) If the obtained u is the end point, end this algorithm; otherwise, repeat steps 2  

and 3. 

The complexity of using a binary heap requires 𝑂((|𝐸| + |𝑉|) log |𝑉|). The Fibonacci 

heap improves this to 𝑂(|𝐸| + |𝑉| log |𝑉|). [5] 

• Doing experimental runs with different system environment. 
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Appendix 

Selected Code 

A.1 Serial Dijkstra’s Implementation 

/* seqDijk.c 

* Test program that does sequential Dijkstra’s Algorithm. 

*/ 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <sys/time.h> 

 

/* Number of vertices in the graph. */ 

#define N 2048 

/* Define the source vertex. */ 

#define SOURCE 1 

#define MAXINT 9999999 

 

/* Function that implements Dijkstra's single source shortest path algorithm  

   for a graph represented by adjacency matrix, and use source vertex as input. */ 

void dijkstra (int graph[N][N], int source); 

 

int main (int argc, char *argv[]) { 
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 int weight[N][N]; 

 int i, j; 

 char fn[255]; 

 FILE *fp; 

 double time_start, time_end; 

 struct timeval tv; 

 struct timezone tz; 

 gettimeofday(&tv, &tz); 

 time_start = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00; 

  

 /* Open input file, read adjacency matrix */ 

 strcpy(fn, "input2048.txt"); 

 fp = fopen(fn, "r"); 

 if ((fp = fopen(fn, "r")) == NULL) { 

  printf("Can't open the input file: %s\n\n", fn); 

  exit(1); 

 } 

 //printf("\nThe adjacency matrix: \n"); 

 for (i = 0; i < N; i++) { 

  for (j = 0; j < N; j++) { 

   fscanf(fp, "%d", &weight[i][j]); 

   //if (weight[i][j] == 9999999) printf("%4s", "INT"); 

   //else printf("%4d", weight[i][j]); 
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  } 

  //printf("\n"); 

 } 

 dijkstra(weight, SOURCE); 

 printf("\n"); 

 printf("Nodes: %d ", N); 

 gettimeofday(&tv, &tz); 

 time_end = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00; 

 printf("time cost is %1f\n", time_end - time_start); 

 printf("\n"); 

 return 0; 

} 

 

void dijkstra(int graph[N][N], int source) { 

 /* This array holds the shortest distance from source to other vertices. */ 

 int distance[N]; 

 

 /* This value sets to 1 if vertices are finished to compute. */ 

 int visited[N]; 

 int i, j, count, nextNode, minDistance; 

 

 /* Initialize all vertices' distance and status. */ 

 for (i = 0; i < N; i++) { 
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  distance[i] = graph[source][i]; 

  visited[i] = 0; 

 } 

 visited[source] = 1; 

 count = 1; 

 

 /* Find shortest path for all vertices. */ 

 while (count < N) { 

  minDistance = MAXINT; 

 

  /* Pick the minimum distance vertex from the set of vertices that  

     is not processed. */ 

  for (i = 0; i < N; i++) { 

   if (distance[i] < minDistance && !visited[i]) { 

    minDistance = distance[i]; 

    nextNode = i; 

   } 

  } 

  /* Mark this vertex is true. That means the vertex is processed. */ 

  visited[nextNode] = 1; 

  count++; 

  /* Update the dist value of the picked vertex. */ 

  for (i = 0; i < N; i++) { 
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   if (!visited[i] && minDistance + graph[nextNode][i] < distance[i]) { 

    distance[i] = minDistance + graph[nextNode][i]; 

   } 

  } 

 } 

  

 /* Print the distance values. */ 

 //printf("\nThe distance vector is\n"); 

 //for (i = 0; i < N; i++) { 

 // printf("%d ", distance[i]); 

 //} 

 //printf("\n");  

} 

 

A.2 Message Passing Dijkstra’s Implementation 

/* MPIdijk.c 

 * The program that does MPI Dijkstra’s Algorithm. 

 */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

#include <math.h> 

#include <sys/time.h> 
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#include "mpi.h" 

 

#define N 2048 

#define SOURCE 1 

#define MAXINT 9999999 

/*single source Dijkstra's Algorithm*/ 

/*@param n: number of vertices; 

  @param source: rank of the root 

  @param wgt: points to locally stored portion of the weight adjacency matrix of the graph; 

  @param lengths: points to a vector that will store the distance of the shortest paths from the 

source to the locally stored vertices; 

 */ 

void SingleSource(int n, int source, int *wgt, int *lengths, MPI_Comm comm) { 

 int temp[N]; 

 int i, j; 

 int nlocal; /* The number of vertices stored locally */ 

 int *marker; /* Used to mark the vertices belonging to Vo */ 

 int firstvtx; /* The index number of the first vertex that is stored locally */ 

 int lastvtx; /* The index number of the last vertex that is stored locally */ 

 int u, udist; 

 int lminpair[2], gminpair[2]; 

 int npes, myrank; 

 MPI_Status status; 
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 MPI_Comm_size(comm, &npes); 

 MPI_Comm_rank(comm, &myrank); 

 nlocal = n / npes; 

 firstvtx = myrank*nlocal; 

 lastvtx = firstvtx + nlocal - 1; 

   

 /* Set the initial distances from source to all the other vertices */ 

 for (j = 0; j<nlocal; j++) { 

  lengths[j] = wgt[source*nlocal + j]; 

 } 

 /* This array is used to indicate if the shortest part to a vertex has been found or not. */ 

 /* if marker [v] is one, then the shortest path to v has been found, otherwise it has not. */ 

 marker = (int *)malloc(nlocal*sizeof(int)); 

 for (j = 0; j<nlocal; j++) { 

  marker[j] = 1; 

 } 

 /* The process that stores the source vertex, marks it as being seen */ 

 if (source >= firstvtx && source <= lastvtx) { 

  marker[source - firstvtx] = 0; 

 } 

 /* The main loop of Dijkstra's algorithm */ 

 for (i = 1; i<n; i++) { 

  /* Step 1: Find the local vertex that is at the smallest distance from source */ 
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  lminpair[0] = MAXINT; /* set it to an architecture dependent large number */ 

  lminpair[1] = -1; 

  for (j = 0; j<nlocal; j++) { 

   if (marker[j] && lengths[j] < lminpair[0]) { 

    lminpair[0] = lengths[j]; 

    lminpair[1] = firstvtx + j; 

   } 

  } 

  /* Step 2: Compute the global minimum vertex, and insert it into Vc */ 

  MPI_Allreduce(lminpair, gminpair, 1, MPI_2INT, MPI_MINLOC, comm); 

  udist = gminpair[0]; 

  u = gminpair[1]; 

  

  /* The process that stores the minimum vertex, marks it as being seen */ 

  if (u == lminpair[1]) { 

   marker[u - firstvtx] = 0; 

  } 

  /* Step 3: Update the distances given that u got inserted */ 

  for (j = 0; j<nlocal; j++) { 

   if (marker[j] && ((udist + wgt[u*nlocal + j]) < lengths[j])) { 

    lengths[j] = udist + wgt[u*nlocal + j]; 

   } 

  } 
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 } 

 free(marker); 

} 

 

int main(int argc, char *argv[]) {  

    int npes, myrank, nlocal; 

    int weight[N][N]; /*adjacency matrix*/ 

    int distance[N]; /*distance vector*/ 

    int *localWeight; /*local weight array*/ 

    int *localDistance; /*local distance vector*/ 

    int sendbuf[N*N]; /*local weight to distribute*/ 

    int i, j, k; 

    char fn[255]; 

    FILE *fp; 

    double time_start, time_end; 

    struct timeval tv; 

    struct timezone tz; 

     

    gettimeofday(&tv, &tz); 

    time_start = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00; 

     

    /* Initialize MPI and get system information */ 

    MPI_Init(&argc, &argv); 
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    MPI_Comm_size(MPI_COMM_WORLD, &npes); 

    MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 

 

    nlocal = N/npes; /* Compute the number of elements to be stored locally. */ 

 

    /*allocate local weight and local disatance arrays for each prosess*/ 

    localWeight = (int *)malloc(nlocal*N*sizeof(int)); 

    localDistance = (int *)malloc(nlocal*sizeof(int)); 

 

    /* Open input file, read adjacency matrix and prepare for sendbuf */ 

    if (myrank == SOURCE) {   

     strcpy(fn,"input2048.txt"); 

     fp = fopen(fn,"r");  

     if ((fp = fopen(fn,"r")) == NULL) { 

        printf("Can't open the input file: %s\n\n", fn); 

        exit(1); 

     } 

    //printf("\nThe adjacency matrix: \n"); 

  for(i = 0; i < N; i++) {    

       for(j = 0; j < N; j++) {    

    fscanf(fp,"%d", &weight[i][j]); 

    // if (weight[i][j] == 9999999) printf("%4s", "INT"); 

    // else printf("%4d", weight[i][j]); 
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       } 

   // printf("\n"); 

  } 

  /*prepare send data  */ 

  for(k=0; k<npes; ++k) { 

   for(i=0; i<N;++i) { 

    for(j=0; j<nlocal;++j) { 

     sendbuf[k*N*nlocal+i*nlocal+j]=weight[i][k*nlocal+j]; 

    } 

   } 

  } 

    } 

    /*distribute data*/  

    MPI_Scatter(sendbuf, nlocal*N, MPI_INT, localWeight, nlocal*N, MPI_INT, SOURCE, 

MPI_COMM_WORLD);      

    

    /*Implement the single source dijkstra's algorithm*/ 

    SingleSource(N, SOURCE, localWeight, localDistance, MPI_COMM_WORLD); 

 

    /*collect local distance vector at the source process*/ 

    MPI_Gather(localDistance, nlocal, MPI_INT, distance, nlocal, MPI_INT, SOURCE, 

MPI_COMM_WORLD); 
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    if (myrank == SOURCE) { 

     printf("Nodes: %d\n", N); 

  //printf("The distance vector is \n"); 

     //for (i = 0; i < N; ++i) { 

 //  printf("%d ", distance[i]); 

 // } 

    // printf("\n"); 

  gettimeofday(&tv, &tz); 

  time_end = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00; 

  printf("time cost is %1f\n", time_end - time_start); 

    } 

    free(localWeight);  

    free(localDistance); 

    MPI_Finalize(); 

    return 0; 

} 

 

A.3 Shared-Address Dijkstra’s Implementation 

/* openMPdijk.c 

 * The program that does OpenMP parallel Dijkstra’s Algorithm. 

 */ 

#include <stdlib.h> 

#include <stdio.h> 
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#include <string.h> 

#include <sys/time.h> 

#include <omp.h> 

 

#define N 2048 

#define SOURCE 1 

#define MAXINT 9999999 

 

void dijkstra ( int graph[N][N], int source ); 

 

/* This program runs single source Dijkstra's algorithm. Given the distance  

   matrix that defines a graph, we seek a minimum distance array between  

   source vertex and all other vertices.  */ 

int main(int argc, char **argv) { 

 int i, j; 

 char fn[255]; 

 FILE *fp; 

 int graph[N][N]; 

 int threads; 

 printf("Please enter number of threads: "); 

 scanf("%d", &threads); 

 omp_set_num_threads(threads); 

 double time_start, time_end; 



57 
 

 

 struct timeval tv; 

 struct timezone tz; 

 gettimeofday(&tv, &tz); 

 time_start = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00; 

 

 strcpy(fn, "input2048.txt"); 

 fp = fopen(fn, "r"); 

 if ((fp = fopen(fn, "r")) == NULL) { 

  printf("Can't open the input file: %s\n\n", fn); 

  exit(1); 

 } 

 //printf("\nThe adjacency matrix: \n"); 

 for (i = 0; i < N; i++) { 

  for (j = 0; j < N; j++) { 

   fscanf(fp, "%d", &graph[i][j]); 

   //if (graph[i][j] == 9999999) printf("%4s", "INT"); 

   //else printf("%4d", graph[i][j]); 

  } 

  //printf("\n"); 

 } 

 dijkstra(graph, SOURCE);  

  

 gettimeofday(&tv, &tz); 
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 time_end = (double)tv.tv_sec + (double)tv.tv_usec / 1000000.00; 

 printf("Nodes: %d\n", N); 

 printf("time cost is %1f\n", time_end - time_start); 

 return 0; 

} 

 

void dijkstra(int graph[N][N], int source){ 

 int visited[N]; 

 int i; 

 int md; 

 int distance[N]; /* This array holds the shortest distance from source to other vertices. */ 

 int mv; 

 int my_first; /* The first vertex that stores in one thread locally. */ 

 int my_id; /* ID for threads */ 

 int my_last; /* The last vertex that stores in one thread locally. */ 

 int my_md; /* local minimum distance */ 

 int my_mv; /* local minimum vertex */ 

 int my_step; /* local vertex that is at the minimum distance from the source */ 

 int nth; /* number of threads */ 

 

 /* Initialize all vertices' distance and status. */ 

 for (i = 0; i < N; i++) { 

  visited[i] = 0; 
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  distance[i] = graph[source][i]; 

 } 

 visited[source] = 1; 

  

 /* OpenMP parallelization starts here */ 

 # pragma omp parallel private ( my_first, my_id, my_last, my_md, my_mv, my_step ) \ 

 shared ( visited, md, distance, mv, nth, graph ) 

 { 

  my_id = omp_get_thread_num ( ); 

  nth = omp_get_num_threads ( );  

  my_first =   (my_id * N ) / nth; 

  my_last  =   ((my_id + 1) * N) / nth - 1; 

  //fprintf(stdout, "P%d: First=%d   Last=%d\n", my_id, my_first, my_last); 

  for (my_step = 1; my_step < N; my_step++) { 

   # pragma omp single  

   { 

    md = MAXINT; 

    mv = -1;  

   } 

   int k; 

   my_md = MAXINT; 

   my_mv = -1; 
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                         /* Each thread finds the minimum distance unconnected vertex inner of  

                                    the graph */ 

   for (k = my_first; k <= my_last; k++) { 

    if (!visited[k] && distance[k] < my_md) { 

     my_md = distance[k]; 

     my_mv = k; 

    }   

   } 

   /* 'critical' specifies that code is only be executed on one thread at a time,  

     * because we need to determine the minimum of all the my_md here. */ 

   # pragma omp critical 

   { 

    if (my_md < md) { 

     md = my_md; 

     mv = my_mv; 

    } 

   } 

/* 'barrier' identifies a synchronization point at which threads in a parallel  

 * region will wait until all other threads in this section reach the same point. So    

* that md and mv have the correct value. */ 

   # pragma omp barrier 

    

   # pragma omp single  
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   {  

    /* It means we find the vertex and set its status to true. */ 

    if (mv != - 1){ 

     visited[mv] = 1; 

    } 

   } 

   # pragma omp barrier  

    

   if ( mv != -1 ){ 

    int j; 

    for (j = my_first; j <= my_last; j++) { 

     if (!visited[j] && graph[mv][j] < MAXINT && 

distance[mv] + graph[mv][j] < distance[j]) { 

      distance[j] = distance[mv] + graph[mv][j]; 

     } 

    } 

   } 

   #pragma omp barrier 

  } 

 } 

 /* 

 printf("\nThe distance vector is\n"); 

 for (i = 0; i < N; i++) { 
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  printf("%d ", distance[i]); 

 } 

 printf("\n"); 

 */ 

} 
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