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Abstract: Cerebral amyloid angiopathy (CAA) refers to beta-amyloid (Aβ) deposition in brain vessels
and is clinically the main cause of lobar intracerebral hemorrhage (ICH). Aβ can also accumulate in
brain parenchyma forming neuritic plaques in Alzheimer’s disease (AD). Our study aimed to deter-
mine whether the peripheral lipid profile and lipoprotein composition are associated with cerebral
beta-amyloidosis pathology and may reflect biological differences in AD and CAA. For this purpose,
lipid and apolipoproteins levels were analyzed in plasma from 51 ICH-CAA patients (collected
during the chronic phase of the disease), 60 AD patients, and 60 control subjects. Lipoproteins (VLDL,
LDL, and HDL) were isolated and their composition and pro/antioxidant ability were determined.
We observed that alterations in the lipid profile and lipoprotein composition were remarkable in
the ICH-CAA group compared to control subjects, whereas the AD group presented no specific
alterations compared with controls. ICH-CAA patients presented an atheroprotective profile, which
consisted of lower total and LDL cholesterol levels. Plasma from chronic ICH-CAA patients also
showed a redistribution of ApoC-III from HDL to VLDL and a higher ApoE/ApoC-III ratio in HDL.
Whether these alterations reflect a protective response or have a causative effect on the pathology
requires further investigation.
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1. Introduction

Cerebral beta-amyloidosis is defined as the accumulation of amyloid-beta (Aβ) in
the brain and is a principal neuropathological feature in Alzheimer’s disease (AD) and in
the most common form of sporadic cerebral amyloid angiopathy (CAA). AD is the most
common cause of dementia worldwide whereas CAA is the most frequent cause of lobar
intracerebral hemorrhage (ICH) in adults over 55-60 years of age [1,2]. After symptomatic
ICH, cognitive deterioration is a relevant clinical manifestation of CAA, independent of
AD [3]. CAA is present in nearly all brains with AD [4], although advanced CAA is only
present in approximately 25% of AD brains [5]. Even though there is a high overlap between
the two diseases, in terms of Aβ level generation and clearance pathways, the pathological
mechanisms and clinical presentation differ. While Aβ accumulates in cerebral blood
vessels replacing smooth muscle cells and inducing vascular degeneration compromising
the vessel functionality and integrity in CAA, in AD Aβ accumulates in brain parenchyma
being the core of neuritic plaques contributing to the loss of synapses and neurons [4]. Aβ
peptides are caused by the sequential processing of amyloid precursor protein (APP) by β-
secretase and then by
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-secretase, mainly generating peptides consisting of 40 or 42 amino
acids (Aβ40 and Aβ42, respectively). Aβ42 is the main component of amyloid plaques
in sporadic AD brains, while Aβ40 is the predominant component in vascular deposits
in CAA [6,7]. Actually, Aβ40 levels in cerebrospinal fluid (CSF) have been described to
be lower in CAA patients than in AD, whereas Aβ42 is decreased in both [8]. Beyond the
Aβ peptide length, the reasons explaining the localization of Aβ peptides in CAA and
AD, which involve a different clinical phenotype, are still unidentified. Even though both
pathologies present distinctive symptomatology, there are no biomarkers to distinguish
them in the clinical practice yet [4]. In this context, cerebral Aβ deposition, parenchymal,
and vascular, can be detected by amyloid positron emission tomography (PET) imaging.
However, PET’s diagnostic accuracy for CAA is still limited [9].

It is known that tight control of cholesterol is essential for correct brain function [10]
and growing evidence shows that cholesterol metabolism in the brain is closely related to
the onset of neurocognitive impairment [11]. Cholesterol levels in AD have been extensively
studied, and although there are conflicting data [12], a meta-analysis in 2017 reported that
high levels of total cholesterol in midlife and early states of aging are significantly associated
with a higher risk of developing AD [13]. In this context, lipid-lowering statins have been
reported to reduce the risk of AD and decrease its progression [14]. In contrast, it has been
demonstrated that low triglycerides, total and LDL cholesterol, and high HDL cholesterol
levels, are associated with an increased probability of ICH occurrence, including lobar
ICH [15–17]. Even though statin treatment as such does not increase the risk of experiencing
ICH, it has been suggested that in patients with prior ICH history, this treatment could
eventually promote another hemorrhagic event [16,18].

On the other hand, the APOE locus, which encodes ApoE, is the genetic factor most
associated with sporadic AD and CAA [19–21]. Indeed, the Apoε4 allele is a major risk
factor for both AD and CAA and it is associated with neuritic and vascular Aβ deposi-
tion [22–24]. In contrast, the Apoε2 allele is protective in AD [25] but a risk factor for ICH
attributed to CAA [23,26]. This difference regarding the genetic association of the Apoε2
supports a functional involvement of lipid metabolism in the transport and localization
of Aβ within the brain, as the involvement of the Apoε2 allele has been related to a major
clearance across the blood-brain barrier (BBB) [27]. In addition to the ApoE genotype,
polymorphisms in other genes related to lipid metabolism, such as ApoJ, ApoC-III and
ApoA-I, have also been reported as genetic determinants of AD risk [28–30].
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The relationship of lipoproteins with pathological processes is not only related to
their concentration but also depends on their qualitative characteristics. Lipoproteins are
not homogeneous entities but are formed by multiple heterogeneous particles differing
in their relative content of both lipids and proteins [31]. Regarding the protein moiety of
lipoproteins, the only common molecule in all very-low-density lipoprotein (VLDL) and
low-density lipoprotein (LDL) particles is ApoB-100, whereas ApoA-I is the only protein
contained in all the high-density lipoprotein (HDL) particles [32]. However, particularly in
HDL, there are a plethora of other apolipoproteins and enzymes with different functions,
whose content varies among lipoproteins and confers them in different capacities [33].

In an atherosclerotic disease context, the ability of lipoproteins, mainly HDL and
LDL, to enter the arterial wall is well known. As opposed to LDL, which mainly plays a
proinflammatory role, the function of HDL includes antioxidant and anti-inflammatory
actions protecting the arterial wall from deleterious effects [33]. This function is mediated
by apolipoproteins such as ApoA-I or enzymes such as paraoxonase-1 (PON1), lecithin
cholesterol acyltransferase (LCAT), or lipoprotein-associated phospholipase A2 (Lp-PLA2).
This implication of lipoproteins in the arterial wall can also have an effect on brain vessel
stability in conditions such as CAA. In addition, some apolipoproteins, such as ApoE and
ApoJ, are the main transporters of lipids in the brain [10,34], and together with ApoA-I,
they can also modulate cerebral Aβ aggregation, deposition, and distribution [27,35–39].
This suggests that alterations in the composition and function of plasma lipoproteins
could have a direct role in the formation of amyloid deposits in the arterial wall of brain
arteries and/or parenchyma. Based on this assumption, our aim was to analyze the
composition and function of lipoproteins isolated from AD or ICH-CAA plasma patients
to assess possible abnormalities compared with lipoproteins from sex- and age-matched
healthy subjects.

2. Experimental Section
2.1. Study Population

The population studied in this project consisted of 51 patients who had presented ICH
with clinical suspicion of CAA, 60 AD patients, and 60 gender- and age-matched control
subjects. The 51 ICH-CAA patients were recruited during a follow-up visit in neurology or
stroke units of 10 different Spanish centers. All AD patients and controls were recruited at
Vall d’Hebron University Hospital (VHUH).

ICH-CAA patients were >55 years old and had suffered at least one lobar intracere-
bral hemorrhage. Patients who exhibited any deep intracerebral hemorrhage, presented
microbleeds in the basal ganglia, internal or external capsule, thalamus or brainstem, or
were being treated with anticoagulant therapy were excluded. The diagnosis was made by
magnetic resonance imaging (MRI) acquired following the clinical protocol in each center.
In all cases, MRI examinations were obtained using a 1.5-T whole-body scanner. Images
obtained included axial T2-weighted turbo spin-echo, axial T1-weighted spin-echo, turbo
fluid-attenuated inversion recovery (FLAIR), and axial T2-weighted susceptibility- based
echo-planar gradient-echo sequence. All MRI images were evaluated in VHUH by the
same neuroradiologist to avoid bias among the different centers. ICH-CAA patients accom-
plished a CAA diagnosis according to the modified Boston criteria [40] and did not present
a diagnosis of dementia at the time of recruitment. According to the modified Boston
criteria, 11 patients were classified as possible CAA, 37 probable CAA, and 3 probable
CAA with supporting pathology.

The recruited AD patients presented sporadic probable Alzheimer’s disease, according
to NIA-AA criteria [41], with mild-to-moderate dementia based on the mini-mental state
examination [42]. The MMSE score for the AD cohort was 18 ± 4. AD patients did
not present a history of stroke before recruitment. The control subjects were healthy
acquaintances or companions of the patients, who were >55 years old and had no history
of stroke or dementia (MMSE = 30 ± 0).
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The data obtained from the whole cohort included patient coding, inclusion date,
demographic characteristics (age, sex), relevant vascular risk factors (HTA, DM, dyslipi-
demia), and medication, including statin intake. Clinical and anthropometric data of all
groups are shown in Table 1. Blood samples of all groups were collected at a follow-up visit.
Samples from the ICH-CAA group were obtained at 11 ± 18 months after the last ICH.

Table 1. Demographic and clinical characteristics.

Parameters Control ICH-CAA AD p-Value

Age 76.0 [71.0–81.0] 77.0 [72.0–79.0] 77.0 [72.3–81.0] 0.755
Gender (F) 34 (56.7%) 32 (62.7%) 42 (70%) 0.317

Hypertension 34 (63.0%) 22 (43.1%) 27 (61.4%) 0.083
Diabetes 7 (13.0%) 5 (9.8%) 7 (15.9%) 0.672

Dyslipidemia 19 (35.2%) 17 (34.7%) 22 (51.2%) 0.189
ApoE2 7 (11.7%) 6 (11.8%) 2 (3.3%) 0.181
ApoE4 10 (16.7%) 11 (21.6%) 28 (46.7%) $,** 0.001

Age is expressed as median [interquartile range]. ** p < 0.001 vs. the control group; $ p < 0.05 vs. the ICH-CAA
group. Bold numbers indicate statistically significant differences.

The study was approved by the Clinical Investigation Ethical Committee of the Vall
d’Hebron University Hospital, Barcelona, Spain (PR(AG)326/2014) and had the approval
of the Ethical Committees of all the participating centers. The study was conducted in
accordance with the Helsinki Declaration.

Ten mL of blood in EDTA-containing Vacutainer tubes (Becton Dickinson, Franklin
Lakes, NJ, USA) was collected from each participant. Blood was centrifuged at 4 ◦C
for 15 min at 2500 rpm and plasma was immediately aliquoted and frozen at −80 ◦C.
APOE genotypes (rs429358 and rs7412) were determined by allelic discrimination using
the TaqMan® Genotyping Master Mix (Applied Biosystems, Foster City, CA, USA) and
the SNP genotyping mixes C-3084793 and C-904973 (Applied Biosystems) in a Rotor-Gene
6000 Real-Time PCR analyzer (Corbett Life Sciences, Valencia, CA, USA).

2.2. Plasma Determinations

The lipid profile, total apolipoproteins, Lp-PLA2 activity, LDL size, and HDL sub-
fraction proportion were determined in plasma obtained in EDTA-containing Vacutainer
tubes. The lipid profile included total cholesterol, triglycerides, and VLDL, LDL, and HDL
cholesterol. The cholesterol in the lipoprotein fractions was routinely quantified using
a direct HDL-cholesterol method (HDL-C plus) or by ultracentrifugation when the TG
concentration was higher than 3 mmol/L, according to the National Cholesterol Education
Program [43]. All these determinations were performed in the Clinical Biochemistry Unit
of the VHUH in an AU 5800 autoanalyzer (Beckman Coulter, Pasadena, CA, USA) using
reagents from Beckman Coulter. Apolipoproteins B, A-I, A-II, E, and C-III were quantified
in the Research Institute of the Hospital de Sant Pau in a Cobas 6000/c501 autoanalyzer
using reagents from Roche Diagnostics (ApoB, ApoA-I, Basel, Switzerland) and Kamiya
Biomedical Company (ApoA-II, ApoE, ApoC-III, Seattle, WA, USA). ApoJ was determined
by ELISA in a subgroup of the cohort (30 controls, 22 ICH-CAA, and 30 AD) (Mabtech,
Stockholm, Sweden). The LDL size and HDL subfraction ratio were evaluated by non-
denaturing polyacrylamide gradient (2.5–16%) gel electrophoresis (GGE), as described
previously [44]. Briefly, the LDL size was measured using a homemade standard containing
four bands of LDL, and the HDL2/3 ratio was calculated from the intensity of HDL 2
and HDL 3 bands. Lp-PLA2 activity was measured using 2-tio-PAF (Cayman Chemicals,
Ann Arbor, MI, USA) as a substrate [45] according to the manufacturer’s instructions.
The distribution of Lp-PLA2 between lipoprotein fractions was assessed by precipitating
ApoB-containing lipoproteins from plasma with dextran sulfate [46].
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2.3. Lipoprotein Composition

Lipoproteins were isolated by flotation sequential ultracentrifugation according to
density: VLDL (1.006–1.019 g/mL), LDL (1.019–1.063 g/mL), and HDL (1.063–1.210 g/mL).
Their lipid and apolipoprotein composition was determined by measuring the content of
cholesterol, triglycerides, ApoB, ApoA-I (Roche Diagnostics), phospholipids, free choles-
terol (Wako Pure Chemical, Osaka, Japan), ApoA-II, ApoE, and ApoC-III (Kamiya Biomed-
icals, Seattle, WA, USA) in an autoanalyzer Cobas 6000/c501. ApoJ content in isolated
lipoproteins was evaluated using commercial ELISA (Mabtech, Stockholm, Sweden). Before
ELISA quantification, lipoprotein samples were diluted to the same cholesterol concentration.

2.4. LDL and HDL Susceptibility to Oxidation

Lipoproteins were dialyzed against phosphate-buffered saline (PBS) pH 7.4 by gel
filtration chromatography in a PD10 column (Sephadex G-25, GE Healthcare, Chicago, IL,
USA). Susceptibility to oxidation was evaluated by monitoring the formation of conjugated
diene formation at 234 nm in a Synergy HT spectrophotometer (BioTek, Winooski, VT,
USA). LDL or HDL at 0.15 mM cholesterol were incubated with 5 µM CuSO4, and the lag
phase time of the oxidation kinetics was determined [47].

2.5. Antioxidant Capacity of HDL

HDL at 0.15 mM cholesterol was incubated with a standard LDL (obtained from a
pool of normolipidemic plasma and stored with 10% sucrose at −80 ◦C), and oxidation was
induced by adding 5 µM CuSO4. Conjugated diene formation was monitored as described
in the previous section. The results are expressed as the capacity of HDL to prolong the lag
phase time of the standard LDL alone, as described previously [48].

2.6. Statistical Analysis

All the data were analyzed by comparing the three groups: controls, ICH-CAA, and
AD patients. The association of categorical variables with the diagnostic groups was studied
using contingency tables and a Chi-squared test using the Pearson p-value. Significant
p-values were adjusted by the Bonferroni test when necessary. The distribution of the
continuous variables was tested using the Kolmogorov-Smirnov test. If the distribution was
normal, one-way ANOVA and Bonferroni’s test for multiple comparisons were performed.
If the distribution was not normal, an independent-samples Kruskal-Wallis test with
Dunn-Bonferroni adjustment for multiple comparisons was applied. A Forward LR binary
logistic regression using the significant variables after multiple comparisons for each study
(lipidic profile, each lipoprotein composition, ApoJ distribution, and lipoprotein size),
ApoE4 genotype, sex, and age were assessed. The odds ratios (ORs) and 95% confidence
intervals (CIs) for the effect on diagnosis were estimated using binary logistic regression
analysis. Data are expressed as the mean ± SD for normal distributions or as the median
[interquartile range] for non-normal distributions. A p-value below 0.05 was considered
statistically significant.

3. Results
3.1. Lipid Profile

All groups presented similar clinical characteristics with a low incidence of diabetes
and relatively frequent dyslipidemia and hypertension (Table 1). Statin intake was similar
among groups (Ctrl: 12 (21.8%), ICH-CAA: 17 (31.5%), AD: 14 (31.1%), p-value: 0.461).
Table 2 shows the lipid profile and apolipoprotein concentration in the plasma from
the three groups. No significant difference was observed between the control group
and AD patients. In contrast, ICH-CAA subjects showed lower levels of ApoA-II than
controls, and differences were also found between ICH-CAA and AD patients, with lower
levels of total cholesterol and LDL-c in the ICH-CAA group. Although ApoE levels were
significantly different when comparing all groups, multiple comparison analysis did not
allow reaching statistical significance between cohorts. Both ApoA-II and LDL-c levels
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remained significantly lower in the ICH-CAA patients after adjustment for the ApoE4
genotype by binary logistic regressions (ApoA-II (dg/L): OR: 0.538 [0.346–0.835], p = 0.006;
and LDL-c (mg/dL): OR: 1.016 [1.005–1.027], p = 0.004) (Supplemental Table S1).

Table 2. Lipid profile and apolipoprotein concentration in plasma.

Parameters Controls ICH-CAA AD p-Value

Total cholesterol 228.00 [199.50–261.50] 207.00 [185.00–226.00] * 230.00 [198.00–283.00] $ 0.006
HDL-c 58.30 ± 11.32 58.57 ± 13.09 60.52 ± 15.98 0.642
LDL-c 145.00 [108.00–172.20] 126.00 [114.00–139.60] 143.70 [117.90–190.65] $ 0.004

VLDL-c 24.80 [18.00–32.00] 21.00 [16.60–26.80] 21.50 [17.50–29.00] 0.150
Triglycerides 122.00 [91.50–162.50] 105.00 [83.00–134.00] 108.50 [87.00–145.00] 0.133

ApoA-I 1.744 ± 0.266 1.707 ± 0.329 1.670 ± 0.284 0.399
ApoA-II 0.416 [0.337–0.460] 0.340 [0.260–0.423] * 0.400 [0.340–0.440] 0.010

ApoB 1.095 [0.938–1.285] 0.995 [0.895–1.095] 1.070 [0.900–1.300] 0.052
ApoC-III 0.126 ± 0.054 0.116 ± 0.045 0.107 ± 0.049 0.112

ApoE 0.053 ± 0.016 0.045 ± 0.018 0.053 ± 0.016 0.030
ApoJ 0.218 ± 0.059 0.193 ± 0.060 0.211 ± 0.054 0.079

Lipids are expressed as mg/dL and apolipoproteins are expressed as g/L. * p < 0.05 vs. the control group; $ p < 0.05 vs. the ICH-CAA group.

3.2. Prevalence of ApoE Genotypes

As expected, the AD group presented a higher incidence of the ApoE4 genotype than
the control and ICH-CAA groups (Table 1 and Supplemental Figure S1). No difference in
the frequency of the ApoE4 genotype was observed between ICH-CAA patients and control
subjects. Regarding the distribution of the ApoE2 genotype, no statistically significant
difference was observed among groups (Table 1 and Supplemental Figure S1).

3.3. Lipoprotein Composition

VLDL from ICH-CAA patients contained lower cholesterol (total and esterified) levels
than those from control subjects and AD patients, and higher ApoC-III levels than those
from AD patients (Table 3). These differences in the composition suggest larger VLDL
particles in plasma from ICH-CAA patients. No difference was observed between plasma
VLDL from AD patients and controls. After adjusting for the ApoE4 genotype, the esterified
cholesterol levels remained significantly different between the ICH-CAA group and control
(OR: 0.808 [0.683–0.956], p = 0.013); and ApoCIII levels between ICH-CAA group and AD
(OR: 0.39 [0.184–0.829], p = 0.014) (Supplemental Table S2).

Table 3. VLDL composition.

Parameters Controls ICH-CAA AD p-Value

Cholesterol 20.15 [18.13–21.78] 17.70 [16.60–20.10] * 20.65 [18.00–22.70] $ 0.001
Free cholesterol 6.65 [6.03–7.45] 6.30 [5.90–6.70] 6.80 [6.10–7.50] $ 0.031

Esterified cholesterol 13.36 ± 1.90 12.12 ± 3.03 * 13.62 ± 2.92 $ 0.008
Triglycerides 49.66 ± 4.79 50.73 ± 5.52 48.23 ± 6.07 0.056
Phospholipid 19.70 [18.33–20.48] 19.10 [18.30–20.20] 19.40 [18.53–20.70] 0.731

Protein 11.23 [10.59–11.90] 10.93 [9.87–12.10] 11.44 [9.89–12.75] 0.750
ApoB-100 10.07 [9.30–10.79] 9.60 [8.02–10.08] 10.20 [8.48–12.10] 0.149
ApoC-III 0.70 [0.50–1.00] 0.90 [0.40–1.30] 0.60 [0.23–0.85] $ 0.022

ApoE 0.40 [0.13–0.68] 0.47 [0.20–0.80] 0.36 [0.17–0.68] 0.724

Data are expressed as the percentage of each component of the total lipoprotein mass. * p < 0.05 vs. the control group; $ p < 0.05 vs. the
ICH-CAA group.

No difference in LDL composition was observed among the studied groups (Table 4).
Only a trend toward lower esterified cholesterol content in the ICH-CAA cohort compared
to the control and AD groups was detected.
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Table 4. LDL composition.

Parameters Controls ICH-CAA AD p-Value

Cholesterol 39.20 [38.10–40.30] 38.60 [36.50–40.40] 39.30 [38.10–40.25] 0.288
Free cholesterol 10.30 [9.70–10.68] 10.40 [9.80–10.80] 10.30 [9.65–10.68] 0.755

Esterified cholesterol 29.10 [28.28–29.88] 28.20 [26.70–30.00] 29.15 [28.13–29.90] 0.062
Triglycerides 7.65 [6.90–8.88] 8.40 [6.90–9.60] 7.70 [6.70–9.00] 0.334
Phospholipid 25.40 [24.70–25.98] 25.40 [24.88–26.00] 25.50 [24.80–26.00] 0.766

Protein 27.50 [26.95–28.38] 27.40 [26.60–28.40] 27.37 [26.76–28.24] 0.587
ApoB-100 27.37 [26.73–28.28] 27.43 [26.45–28.40] 27.24 [26.60–28.13] 0.723

ApoE 0.10 [0.05–0.20] 0.14 [0.09–0.21] 0.12 [0.06–0.18] 0.294

Data are expressed as the percentage of each component of the total lipoprotein mass.

Regarding the composition of HDLs, total and esterified cholesterol levels were in-
creased in plasma from the ICH-CAA group compared with that from both the control and
AD groups (Table 5), which is suggestive of the presence of more mature HDL particles
in this group. Additionally, the ApoE level showed a trend to increase, whereas ApoC-III
was decreased in ICH-CAA patients compared with controls and AD patients, respectively,
resulting in a higher ApoE/ApoC-III ratio in the ICH-CAA cohort compared to controls.
No difference was observed between AD patients and controls. After adjusting for the
ApoE4 genotype, esterified cholesterol levels remained significantly different between ICH-
CAA and both controls (OR: 1.583 [1.119–2.239], p = 0.010) and AD (OR: 0.525 [0.365–0.754],
p = 0.0005), and ApoC-III levels also remained significantly different between ICH-CAA
and controls (OR: 0.414 [0.221–0.772], p = 0.006) (Supplemental Table S3).

Table 5. HDL composition.

Parameters Controls ICH-CAA AD p-Value

Cholesterol 16.04 ± 1.61 17.06 ± 1.70 * 16.32 ± 1.42 $ 0.003
Free cholesterol 3.10 [2.80–3.48] 3.30 [2.80–3.70] 3.20 [2.90–3.60] 0.487

Esterified cholesterol 12.92 ± 1.42 13.86 ± 1.30 * 13.08 ± 1.13 $ <0.001
Triglycerides 3.05 [2.70–3.80] 3.00 [2.00–4.00] 3.20 [2.53–3.90] 0.444
Phospholipid 28.67 ± 2.63 28.68 ± 2.36 29.06 ± 1.76 0.567

Protein 51.92 ± 2.82 51.08 ± 2.80 51.34 ± 2.17 0.214
ApoA-I 38.98 ± 3.10 39.11 ± 2.70 38.94 ± 2.65 0.948
ApoA-II 10.97 ± 1.86 10.44 ± 1.81 10.68 ± 1.87 0.318
ApoC-III 1.59 [0.93–2.00] 0.95 [0.60–1.35] * 0.98 [0.64–1.79] 0.003

ApoE 0.38 [0.21–0.50] 0.47 [0.26–0.80] 0.36 [0.21–0.46] 0.081
ApoE/ApoC-III 0.25 [0.13–0.39] 0.50 [0.25–0.92] * 0.28 [0.13–0.65] 0.007

Data are expressed as the percentage of each component of the total lipoprotein mass. * p < 0.05 vs. the control group; $ p < 0.05 vs. the
ICH-CAA group.

3.4. Apolipoprotein J Content in Lipoproteins

Levels of ApoJ were also quantified in a subgroup of patients with the aim of studying
whether the distribution of this apolipoprotein among the different lipoproteins differed
between the selected clinical groups. However, the results showed that the ApoJ content in
each lipoprotein fraction was similar between groups (Table 6). A tendency toward higher
ApoJ levels in LDL was found in AD patients when the three groups were analyzed. Indeed,
ApoJ levels in LDL from AD patients were significantly higher than the corresponding
levels in plasma from ICH-CAA patients when adjusted for the ApoE4 genotype (OR: 1.015
[1.002–1.027], p= 0.019) (Supplemental Table S4).
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Table 6. ApoJ content in lipoproteins.

Parameters Controls ICH-CAA AD p-Value

ApoJ in HDL 988.07 ± 405.68 1106.81 ± 349.20 1000.17 ± 270.93 0.430
ApoJ LDL 97.46 [73.84–189.11] 104.27 [81.81–144.17] 146.54 [97.46–221.94] 0.064

ApoJ VLDL 218.64 [170.18–309.78] 249.60 [167.51 –318.45] 223.08 [178.98–332.63] 0.782

Data are expressed as µg apoJ/mmol cholesterol.

3.5. Lipoprotein Size and Oxidation-Related Functions

GGE allows us to define the LDL subfraction phenotype of patients. LDL subfraction
phenotype A (large LDL particles > 25.5 nm) is the usual phenotype present in normolipi-
demic healthy subjects, in contrast to phenotype B (small LDL particles < 25.5 nm), which
is characteristic of hypertriglyceridemic subjects at high cardiovascular risk. GGE showed
that LDL particles from AD patients were slightly smaller than LDL particles from the ICH-
CAA group (Table 7), reflecting the differences in lipid profiles between the two groups.
However, in all groups, including AD patients, the LDL subfraction phenotype was type A;
therefore, it can be considered non-atherogenic. No differences in the HDL2/HDL3 ratio
were observed among groups. Regarding Lp-PLA activity, in plasma from AD patients,
a decrease in the relative proportion of this activity associated with HDL was observed.
No difference was detected in either LDL or HDL susceptibility to oxidation or in the
antioxidant capacity of HDL among groups. After adjusting for the ApoE4 genotype,
both the LDL size and Lp-PLA relative activity remained significantly lower in the AD
group when compared to IHC-CAA (OR: 0.55 [0.331–0.912], p = 0.021; OR: 0.962 [0.925–1],
p = 0.049 (Supplemental Table S5).

Table 7. Lipoprotein size, Lp-PLA2 activity and oxidative properties of LDL and HDL.

Parameters Controls ICH-CAA AD p-Value

LDL size (nm) 26.23 [25.83–26.89] 26.40 [25.90–26.86] 26.13 [25.52–26.50] $ 0.020
Ratio HDL2/HDL3 0.86 [0.38–1.23] 0.96 [0.56–1.44] 0.91 [0.45–1.37] 0.611

Total Lp-PLA2 activity 1 18.30 [15.40–22.55] 17.30 [14.17–21.80] 18.32 [16.10–21.45] 0.415
Lp-PLA2 activity in HDL 1 7.85 [6.53–9.80] 8.18 [7.30–9.73] 7.75 [6.80–8.63] 0.381

Lp-PLA2 activity in HDL (%) 43.16 [36.97–52.18] 46.49 [42.09–54.55] 40.25 [35.83–48.24] $ 0.029
HDL lag time (min) 25.04 ± 5.88 27.09 ± 4.85 25.71 ± 5.66 0.165
LDL lag time (min) 46.00 [38.71–51.93] 46.00 [38.50–50.60] 46.20 [40.18–5.45] 0.904

Antioxidant ability of HDL 2 121.48 ± 47.21 124.02 ± 50.73 105.95 ± 44.31 0.104
1 µmol/min mL. 2 percentage of increase in lag time. $ p < 0.05 vs. the ICH-CAA group.

4. Discussion

This study was conducted to determine whether a complete peripheral lipid analysis
in plasma can reveal functional or quantitative circulating markers associated with cerebral
beta-amyloidosis pathology and/or reflect biological differences in AD and CAA patients.

Our results showed that alterations in the lipid profile and lipoprotein composition
were more evident in ICH-CAA than in AD patients compared to sex- and age-matched
control subjects. We found that the lipid profile of the AD cohort was very similar to that
of the control subjects. In contrast, patients in a chronic phase after an ICH associated
with CAA presented multiple differences, in both the basic lipid profile and lipoprotein
composition, compared with control and AD subjects. Even though statin treatment can
modify the lipid profile, no relationship was found between statin intake and diagnosis
groups, implying that statin treatment did not have an important effect on the obtained
results. In addition, the ApoE genotype frequency in our cohort was similar between
controls and ICH-CAA patients; hence, differences found in the lipid profile of ICH-CAA
patients cannot be attributed to the ApoE genotype either. From a cardiovascular risk point
of view, the lipid profile of ICH-CAA subjects was rather atheroprotective, displaying lower
levels of total and LDL cholesterol. Other potential cardiovascular risk factors, such as
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hypertension and diabetes, were similar among groups, and smoking or sedentarism were
not studied. This result agrees with previous findings reporting an association between
total and LDL cholesterol and increased risk of ICH [12,15,16]. Actually, a prior study
reported that a decline in total and LDL cholesterol occurs within 6 months preceding
ICH [49]. Indeed, the ApoE2 genotype, which is a risk factor for ICH in CAA, is also
associated with lower levels of LDL cholesterol [50]. Lower LDL cholesterol levels were
described to be associated with hematoma growth and increased mortality after acute
ICH for both lobar and deep localizations [51]. In addition, previous evidence showed
that lower total cholesterol and higher HDL cholesterol levels were associated with the
presence of specifically lobar cerebral microbleeds [52,53], a characteristic trait of CAA [54].
Since lipids are an essential complement of cellular membranes, it has been proposed
that lower blood cholesterol levels and triglycerides may cause fragility and necrosis
in endothelial and smooth muscle cells in arterial media, contributing to vessel rupture
in patients with ICH or presenting with multiple CMB [16,55,56]. However, the exact
pathological mechanisms are still unclear, and other possible explanations, such as the
effect of cholesterol on platelet aggregability, are also plausible [51]. On the other hand,
our data show that ApoA-II plasma levels were exclusively decreased in the ICH-CAA
group, whereas the other apolipoproteins presented similar concentrations among groups.
Only a few reports have studied ApoA-II in subjects with cognitive impairment, and the
results are divergent. Whereas Song et al. reported that a low concentration of ApoA-II was
associated with an increased risk for cognitive decline in normal individuals [57], Lehallier
et al. described increased ApoA-II levels in patients with the progression of mild cognitive
impairment to AD [58]. Further studies are necessary to confirm or refute whether ApoA-II
levels in the blood are associated with the development or progression of CAA.

Regarding the lipoprotein composition, alterations in the lipid content of VLDL in
ICH-CAA suggest larger particles. The mechanism leading to this higher size of VLDL is
probably related to the increased ApoC-III content since this apolipoprotein is the main
inhibitor of the enzyme lipoprotein lipase (LpL), which degrades VLDL triglycerides in the
capillary endothelium [59]. Interestingly, increased ApoC-III in VLDL was accompanied by
decreased ApoC-III bound to HDL, which may reflect a redistribution of this apolipopro-
tein among plasma lipoproteins in ICH-CAA patients. In addition, HDL particles from
these patients presented a higher ApoE/ApoC-III ratio than those from controls and AD
patients and, thus, being a potential biomarker for ICH-CAA. Besides, our data suggest
that HDL from ICH-CAA are more mature particles with increased esterified cholesterol.
Hence, from a cardiovascular point of view, HDL from ICH-CAA subjects, with more
ApoE and less ApoC-III, would also be atheroprotective by enhancing reverse cholesterol
transport [60–62], in accordance with the atheroprotective lipid profile found in plasma
from ICH-CAA patients. Moreover, these data open the possibility that the alterations
observed in ICH-CAA HDL particles, especially the increase in ApoE in relation to a
decreased ApoC-III, could be a defensive response against the deposition of Aβ in the
walls of the brain vasculature, which would be in line with recent results showing that
ApoE-enriched HDL reduces CAA in an in vitro model [63].

Concerning lipoprotein composition in the AD cohort, ApoC-III levels in HDL also
tended to be lower than in controls. Indeed, higher ApoC-III levels in HDL have been
associated with lower dementia and AD risk [64]. We also found low content of Lp-PLA2
activity in HDL from AD patients, which could suggest impaired anti-inflammatory func-
tion. The physiological implications of such observation in the context of AD are difficult to
appraise. However, the antioxidative and anti-inflammatory enzymes transported by HDL
play a key role in the maintenance of a systemic non-inflammatory status in blood. There-
fore, this finding could be related to the concept that inflammation is a central mechanism
in the development of AD [65], which would be reflected at a systemic level in decreased
anti-inflammatory capacity of HDL.

We were particularly interested in studying the distribution of ApoJ in circulating
lipoproteins because of its potential to participate in Aβ accumulation and clearance and
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modulate the balance between Aβ levels in brain vessels and parenchymal plaques [66].
In addition, ApoJ is co-deposited with fibrillary Aβ in both parenchymal plaques and
vascular Aβ deposits [67–70]. Therefore, we first analyzed the levels of circulating total
ApoJ levels, although no statistically significant differences among groups were obtained.
It is worth mentioning that previous studies have found increased ApoJ levels in the
plasma of AD and ICH-CAA patients [71–73], but other studies have not confirmed such
differences [64,74]. However, it has been proposed that ApoJ levels are associated with AD
in an age-dependent manner, especially in individuals above 80 years old, as a protective
response to brain injury [75], which could explain our results in a slightly younger cohort.
Furthermore, ApoJ is a chaperone that interacts with Aβ and prevents its fibrillation
and toxicity in vitro [36,76,77] and it is also involved in the clearance of Aβ across the
BBB [37,38]. In this sense, we observed higher ApoJ levels in LDL from AD patients,
which suggests a redistribution of ApoJ in lipoproteins in AD. Since it has been previously
demonstrated that lipidated ApoJ has a major affinity for one of the receptors involved
in Aβ clearance through the BBB (LRP-2) [78], the increase in ApoJ levels in LDL could
be seen as a protective response to enhance parenchymal Aβ clearance. However, the
meaning of our findings regarding abnormal ApoJ distribution in lipoproteins and their
link to AD pathology warrants further research and confirmation in other cohorts.

The results obtained in this study do not allow us to consider these lipid-related
variables as biomarkers for diagnosis or clinical follow-up in medical practice. Nonetheless,
our data can provide some insights to elucidate the relevance of lipid metabolism in the
cerebral amyloidosis process and cerebral vascular functionality, which could potentially
help in the management and treatment of these diseases. In future studies, it would be
interesting to evaluate plasma Aβ levels in the different lipoproteins and thereby extend our
results. Analyzing the Aβ distribution among circulating lipoproteins could also deepen
our understanding of the role and function of lipoproteins in cerebral beta-amyloidosis.
Unfortunately, the Aβ levels in lipoproteins were too low to be detected in the samples
used in this study.

The biological overlap between CAA and AD pathologies involves an intrinsic lim-
itation to differentiate the cohorts of the study. Although AD patients and controls did
not present a history of ICH, the lack of neuroimaging data in those cohorts could have
masked the presence of CAA-related radiological markers. To overcome this limitation and
define a clear CAA phenotype in comparison to other potential degrees of CAA pathology,
we selected only patients with at least one lobar ICH (ICH-CAA cohort) and without
microbleeds in deep cerebral structures nor diagnosis of dementia. Nevertheless, even if
there were some common pathological features in the AD and ICH-CAA cohorts, it would
not determine the clear and specific lipid profile signature found in the last group.

In addition, the comparison of the three cohorts of the study suggests the analysis of
plasma biomarkers of patients who have suffered a symptomatic intracerebral hemorrhage
with patients without stroke. We tried to overcome this limitation by selecting plasma
samples from ICH-CAA patients in a chronic phase of the disease, avoiding changes in
biomarkers due to the inflammatory process caused during the acute phase of the stroke.

It is also important to keep in mind that the data obtained in the ICH-CAA cohort
may reflect pathological changes associated with the previous symptomatic hemorrhage
within the brain rather than the deposition of Aβ along the cerebral vasculature. In fact,
a similar lipid profile has been previously found in non-lobar ICH patients before and
immediately after the hemorrhagic episode [15,16,49]. Therefore, lipid analysis of patients
who have suffered an ICH independent of a CAA etiology in a chronic phase of the disease
would serve to compare and reinterpret our results. Furthermore, our study presents other
limitations. First, the sample size is small, which could be a cause of patient selection
bias. Larger studies with a higher number of patients should be conducted to confirm our
results. Second, the observational nature of our study does not allow us to discriminate
whether the differences observed between groups are a cause, a consequence, or a response
to the pathology.
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5. Conclusions

Our data show that, unlike AD, the lipid profile and lipoprotein composition in
samples from chronic ICH-CAA patients present numerous differences from those in
control subjects. Specifically, we observed an atheroprotective profile associated with
ICH-CAA diagnosis, which confirmed previous studies and consisted of lower blood total
and LDL cholesterol levels. In this study, ICH-CAA patients also presented a redistribution
of ApoC-III from HDL to VLDL and a higher ApoE/ApoC-III ratio in HDL. Whether
the alterations observed in lipoproteins from the ICH-CAA cohort are a reflection of a
protective response or have a causative effect requires further investigation.
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