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Abstract: One significant characteristic of Multiple Sclerosis (MS), a chronic inflammatory demyeli-
nating disease of the central nervous system, is the evolution of highly variable patterns of white
matter lesions. Based on geostatistical metrics, the MS-Lesion Pattern Discrimination Plot reduces
complex three- and four-dimensional configurations of MS-White Matter Lesions to a well-arranged
and standardized two-dimensional plot that facilitates follow-up, cross-sectional and medication
impact analysis. Here, we present a script that generates the MS-Lesion Pattern Discrimination Plot,
using the widespread statistical computing environment R. Input data to the script are Nifti-1 or
Analyze-7.5 files with individual MS-White Matter Lesion masks in Montreal Normal Brain geometry.
The MS-Lesion Pattern Discrimination Plot, variogram plots and associated fitting statistics are
output to the R console and exported to standard graphics and text files. Besides reviewing relevant
geostatistical basics and commenting on implementation details for smooth customization and exten-
sion, the paper guides through generating MS-Lesion Pattern Discrimination Plots using publicly
available synthetic MS-Lesion patterns. The paper is accompanied by the R script LDPgenerator.r, a
small sample data set and associated graphics for comparison.

Keywords: multiple sclerosis; MS-lesion; MRI; geostatistics; R statistical computing

1. Introduction

Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous
system with neurodegenerative processes in the later course, affects more than 2.5 million
people worldwide. It is the leading nontraumatic cause of serious neurologic disability in
young adults. MS is initially characterized by phases of clinical relapses and remissions in
80–90% of the patients, and frequently followed by progression of disability over time. MS
is highly variable—from benign to disastrous [1]: some patients may accumulate severe
and irreversible disability within a few years, while others may show a benign course with
just little or no disability even after decades. The hallmark of MS are lesions in the white
and grey matter of the central nervous system, which are hyperintense on T2-weighted
MRI sequences. MRI is the key technology to assess MS-lesion dissemination in space and
time [2]. The number of MS-lesions, total lesion volume, spatial lesion pattern and single
lesion shape are highly variable across patients with MS [3]. This makes the correlation of
radiological data and clinical findings extremely challenging—a situation also known as
the “clinicoradiological paradox” [4].
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Variography, a core method of classical geostatistics, proved suitable for explorative
data analysis (EDA) of MS-White Matter Lesion patterns (MS-WML) and for extracting
quantitative spatial-statistics metrics on MS-WML. The MS-Lesion Pattern Discrimination
Plot (MS-LDP) summarizes these metrics in a clear and standardized form, to aid in follow-
up, cross-sectional and medication impact analysis [5,6]. With the aid of the MS-LDP,
significantly different evolution of MS-lesion patterns could be disclosed between male
and female early MS cohorts [7].

2. Materials and Methods
2.1. Sample Data

Three phantoms of brains with MS-lesions (MNI_mild, MNI_moderate, MNI_severe)
that were used for both illustrating this paper and as the accompanying sample data were
downloaded from: https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_ms.html.

2.2. Software

The R-script LDPgenerator.r (Supplementary Materials, see Appendix A for description)
is based on the statistical computing environment R [8] and was developed and tested in
R version 3.6.0. LDPgenerator.r, the above-mentioned sample data and result files can be
found in Appendix A. RNifti, a necessary R package can be downloaded and installed
from the CRAN package repository: https://CRAN.R-project.org/package=RNifti.

2.3. Basics of the MS-Lesion Pattern Discrimination Plot

Below, the rationale behind and the making of the MS-Lesion Pattern Discrimination
Plot (MS-LDP) is reviewed in compact form. For a more in-depth discussion of the clinical
background, especially the application of the MS-LDP to real-world data sets, see [5–7]. As
an example of MS-LDP graphics depicting a larger cohort of patients with MS that was
processed with LDPgenerator.r, see LDP_Supplement.jpg in Appendix A (from [7], where
also an interpretation of this MS-LDP can be found).

Based on geostatistical methods, LDPgenerator.r produces MS-LDP from either bi-
nary MS-WML masks or MS-WML probability maps in Montreal Normal Brain (MNB)
geometry (Figure 1).

In the current context, a binary MS-WML mask is a voxel array that represents MS-
lesions with voxel value of 1 and all other voxels with value of 0. Such masks are derived
from MRI data either by expert manual labelling the MS-lesions with specific software
(e.g., MRIcron, [9]) or by automatic MS-lesion extraction software (e.g., LST, [10]). Auto-
matic MS-lesion extraction software yields MS-WML probability maps with lesion prob-
ability values between 0.0 and 1.0. These can be internally binarized by LDPgenerator.r,
employing a user-supplied threshold. MNB geometry means that individual brain ge-
ometry is mapped to the Montreal Normal Brain template [11], usually with the help of
dedicated software (e.g., SPM [12] or FSL [13]).

Geostatistics comprises a range of algorithms for characterizing, modelling [14] and
simulation [15] of multidimensional data and associated uncertainty, including spatiotem-
poral data [16]. Originally developed for mining optimization [17], geostatistics subse-
quently found the way into a variety of space-time related fields. In medicine, early appli-
cations of geostatistics deal with the creation of geomedical maps, showing the geograph-
ical distribution of disease cases (https://www.esri.com/library/ebooks/geomedicine.
pdf) [18]. Possible applications of geostatistics go far beyond 2D mapping in the macro
scales, however. For example, geostatistical methods can be readily employed in the micro
scales [19,20] and enable quantitative texture analysis [21,22]. Since this paper focuses on
the application of the variogram to texture analysis of MS-lesion patterns, a short excursus
to the foundation of variography seems reasonable. The variogram is a central EDA tool in
classical two-point geostatistics (“classical” as compared to the more recent approach of
Multiple-Point Geostatistics [23]). The variogram (Figure 2) quantifies the spatial structure
of measurements by contrasting the distance between pairs of measurement points (ab-

https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_ms.html
https://CRAN.R-project.org/package=RNifti
https://www.esri.com/library/ebooks/geomedicine.pdf
https://www.esri.com/library/ebooks/geomedicine.pdf
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scissa) and the associated variability (γ, on the ordinate). In other words, the variogram
yields a measure of spatial correlation [24,25].
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Figure 1. 3D-view of binary MS-lesion mask in MNB geometry (phantom of human brain with 
severe MS lesions, binarized (threshold value = 0.5). MS-lesions (with voxel value of 1) are ma-
genta, all other volume (with voxel value of 0) is transparent. Small insert top left indicates posi-
tion of MS-lesions within white matter (transparent grey). Axis colors: x = red, y = green, z = blue. 
Axis scale: millimeters. 
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recent approach of Multiple-Point Geostatistics [23]). The variogram (Figure 2) quantifies 
the spatial structure of measurements by contrasting the distance between pairs of meas-
urement points (abscissa) and the associated variability (γ, on the ordinate). In other 
words, the variogram yields a measure of spatial correlation [24,25]. 

Figure 1. 3D-view of binary MS-lesion mask in MNB geometry (phantom of human brain with
severe MS lesions, binarized (threshold value = 0.5). MS-lesions (with voxel value of 1) are magenta,
all other volume (with voxel value of 0) is transparent. Small insert top left indicates position of
MS-lesions within white matter (transparent grey). Axis colors: x = red, y = green, z = blue. Axis
scale: millimeters.
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Figure 2. Variogram plot: Distance (abscissa) vs. γ (ordinate) with directional empirical vario-
grams, separately fitted variogram models and associated model parameters a, c. Red, green, blue 
colors refer to variography x, y, z directions. Dots represent empirical directional variogram val-
ues, lines are fitted exponential variogram models, parameters a, c define coordinates of squares as 
derived from variogram modeling. Produced with LDPgenerator.r from binary MS-WML mask in 
Figure 1. See text for details. 
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pairs within a specified lag h, according to Equation (1). Calculating γ(h) for increasing lag 
distances h, the empirical variogram plot (short: “the variogram”) is derived (Figure 2).  

Variograms of binary MS-WML generally start with small values of γ at small h (dis-
tance in Figure 2), which is due to the large correlation of adjacent voxel pairs. After an 
increase in γ with lag away from the origin, with further increases in h the correlation 
decreases, and the variogram levels off. The flatter the variogram near its origin, the more 
pronounced is the spatial correlation (i.e., in the current context: the larger the MS-lesions 
will be, on average). Computing variograms for specific lag orientations yields so-called 
directional variograms. Individual directional empirical variograms in the three major or-
thogonal directions of MNB geometry (x, y, z directions, compare Figure 1) can be used 
to disclose and quantify spatial anisotropies of MS-lesion patterns.  

Since empirical variograms focus on visual inspection, several permissible variogram 
functions for quantifying empirical variograms were introduced [26]. These functions ap-
proximate an empirical variogram’s shape by two parameters: the variogram range a, and 
the variogram sill c. Among the available variogram model functions, the exponential 
variogram model was found to be the most suitable for quantifying MS-lesion patterns 
[5]:  

Figure 2. Variogram plot: Distance (abscissa) vs. γ (ordinate) with directional empirical variograms,
separately fitted variogram models and associated model parameters a, c. Red, green, blue colors
refer to variography x, y, z directions. Dots represent empirical directional variogram values, lines
are fitted exponential variogram models, parameters a, c define coordinates of squares as derived
from variogram modeling. Produced with LDPgenerator.r from binary MS-WML mask in Figure 1.
See text for details.
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The empirical variogram γ(h) is straightforwardly computed using (Equation (1)):

γ(h) =
1

2n(h)
∗

n

∑
i=1

((z(xi)− z(xi + h))2 (1)

z(x) value of variable at some 3D location x, here z(x) is a voxel with z = binary variable
(0 or 1); h lag vector of separation between observed data (units: here, mm); n(h) number
of data pairs [z(x), z(x+h)] at lag h; γ(h) empirical variogram value for lag h.

The γ(h) of a binary MS-WML is calculated by comparing the values (0 or 1) of all voxel
pairs within a specified lag h, according to Equation (1). Calculating γ(h) for increasing lag
distances h, the empirical variogram plot (short: “the variogram”) is derived (Figure 2).

Variograms of binary MS-WML generally start with small values of γ at small h
(distance in Figure 2), which is due to the large correlation of adjacent voxel pairs. After
an increase in γ with lag away from the origin, with further increases in h the correlation
decreases, and the variogram levels off. The flatter the variogram near its origin, the more
pronounced is the spatial correlation (i.e., in the current context: the larger the MS-lesions
will be, on average). Computing variograms for specific lag orientations yields so-called
directional variograms. Individual directional empirical variograms in the three major
orthogonal directions of MNB geometry (x, y, z directions, compare Figure 1) can be used
to disclose and quantify spatial anisotropies of MS-lesion patterns.

Since empirical variograms focus on visual inspection, several permissible variogram
functions for quantifying empirical variograms were introduced [26]. These functions
approximate an empirical variogram’s shape by two parameters: the variogram range a,
and the variogram sill c. Among the available variogram model functions, the exponential
variogram model was found to be the most suitable for quantifying MS-lesion patterns [5]:

γ(h) = c
(

1− exp
(
−3|h|

a

))
(2)

c Sill; a Range; h lag vector of separation; γ(h) model variogram value for lag h.
When exponential variogram models are separately fitted to x, y, z directional vari-

ograms (Equation (2)), three value pairs are derived: a[X], c[X]; a[Y], c[Y]; a[Z], c[Z]; (with
a[X], c[X]; . . . values of a, c in direction x, etc.). Plotting the natural logarithm of above
three value pairs, the Component MS-LDP is produced (Figure 3a). It yields information on
MS-WML geometrical anisotropies—e.g., lesion confluence along the CSF system, isotropic
growth of individual lesions or Dawson fingers. The MS-LDP (Figure 3b) abstracts MS-
WML geometry with just two parameters in combining above three value pairs by their
means (Equation (3)):

a = ln(mean(a[X], a[Y], a[Z]), c = ln(mean(c[X], c[Y], c[Z]) (3)

The MS-LDP quantifies important geometric aspects of MS-WML: a is considered a
measure of spatial continuity, c is proxy of total lesion load. The higher a, the bigger and
smoother (i.e., with less lesion surface roughness) are lesions; the higher c, the higher is
total MS-lesion load. From analyzing a larger cohort of consistently acquired MS-WML,
abscissa a, and ordinate c of the MS-LDP were defined to span: a . . . 0 to 3, c . . . −12
to −4 [6]. Figure 3a is a Component MS-LDP and Figure 3b is the associated MS-LDP,
produced from MNI_mild, MNI_moderate and MNI_severe data.
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y, z directional variogram model parameters, indicated by red, green, blue squares. For MNI_mild, 
a strong anisotropy according to MS-lesions stretched in z direction is indicated by relatively higher 
ln(a[z]). (b) MS-LDP, mean (ln(a[xyz]) vs. mean (ln(c[xyz]) for MNI_mild (label = 1), MNI_moderate 
(label = 2) and MNI_severe (label = 3). MS-lesion pattern (1, 2, 3) geometry is abstracted to one point 
each. This is useful to avoid overloading graphics when working with a larger number of MS-WML 
(e.g., [5,6], compare the real-world MS_LDP: LDP_Supplement.jpg, in Appendix A). 

  

Figure 3. (a) Component MS-LDP, ln(a[x,y,z]) vs. ln(c[x,y,z]) for MS-WML: MNI_mild (label = 1), MNI_moderate (label = 2)
and MNI_severe (label = 3). Each MS-WML geometry is expressed by x, y, z directional variogram model parameters,
indicated by red, green, blue squares. For MNI_mild, a strong anisotropy according to MS-lesions stretched in z direction
is indicated by relatively higher ln(a[z]). (b) MS-LDP, mean (ln(a[xyz]) vs. mean (ln(c[xyz]) for MNI_mild (label = 1),
MNI_moderate (label = 2) and MNI_severe (label = 3). MS-lesion pattern (1, 2, 3) geometry is abstracted to one point each.
This is useful to avoid overloading graphics when working with a larger number of MS-WML (e.g., [5,6], compare the
real-world MS_LDP: LDP_Supplement.jpg, in Appendix A).

3. Results (Developed Code)
3.1. LDPgenerator.r: Program and Data Flow

Figure 4 shows LDPgenerator.r code sections and sequence of operations. In short,
the program flow is as follows: after the user has selected input and output files, for each
input file, empirical variograms are calculated and exponential variogram models are fitted.
Variogram graphics are generated and Component MS-LDP and MS-LDP parameters are
stored in a container file. After processing all input files, plots are generated from the
container file.

Below, code sections 1–5 are described in more detail (see Figure 4 and compare
respective comments in LDPgenerator.r code):

Section 1 (code lines 11–12):

Package RNifti is loaded; this package is prerequisite for fast access to images stored
in Nifti-1 or Analyze-7.5 medical image formats.

Section 2 (code lines 14–29):

Default values for variography parameters can be set by the user: image (binarization)
threshold in case MS-lesion probability maps from automatic MS-lesion segmentation
programs are to be processed, nonlinear least squares (nls) starting estimates, number of
lags, graphics appearance.

ImageThreshold: The standard input to LDPgenerator is binary MS-WML, i.e., a bina-
rized voxel array with MS-lesion voxels = 1 and all other voxels = 0. When floating-point
MS-lesion probability maps with MS-lesion probabilities between 0.0 and 1.0 are input,
ImageThreshold controls the conversion to binary: all voxels with values above ImageTh-
reshold are set to 1.0 (MS-lesion), voxels with lower values are set to 0.0 (non-lesion).
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involved in generating MS-LDP. Grey labels are code sections, central processing loop is on grey
background.

Max_lag: Defines the number of distance classes (lags) used in variography. Each
distance class is one voxel wide, i.e. measured in voxel dimension. Variograms of binary
MS-WML should be confined to distances of 0–15 mm, because this range holds the most
relevant correlation information [5]; i.e., if voxel dimension is 1.5 mm, Max_lag should be
set to 10.

Guess_a, Guess_C: nls starting estimates for the Exponential Variogram Model. For further
information on nls (Nonlinear Least Squares function) parameters, see the R documentation.

LDPxdim, LDPydim: Size of LDP and Variogram graphics output, in pixels (width, height).
LDPsymbolsize, LDPtextsize: Relative size of symbols and annotation text in MS-

LDP graphics.
VarioGraphicsPostfix: File postfix of Variogram graphics per Nifti/Analyze file.

Section 3 (code lines 32–36): Input and output files are selected; LDPgenerator.r uses the
straightforward graphical user interface (GUI) of base R.

List of input files (*.nii, *.img, *.hdr): Input files can be selected from the list presented by
the GUI. Input files must be formatted Nifti-1.0 (file type *.nii) or Analyze-7.5 (file pairs of
type *.hdr,*.img). Mixing Nifti and Analyze files is possible. Analyze files can be selected by
selecting either .hdr or .img. Make sure input files are explicitly 3D in the image headers (!)

LDP container file (*.var): The user provides a file name, with standard extension var.
The LDP container file (ASCII) contains variography data (compare Table 1) on each input
file to generate the Component MS-LDP and MS-LDP graphics.
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Table 1. Contents of variogram parameter file MNI.var.

ID ln(avg(a[xyz])) ln(avg(C[xyz])) ln(aX) ln(CX) ln(aY) ln(CY) ln(az) ln(CZ) File

1 0.62610 −9.74182 0.30975 −9.74533 0.40066 −9.75081 1.01342 −9.72945 MNI_mild.img

2 1.00625 −7.59234 0.89172 −7.58171 0.98117 −7.63554 1.13109 −7.56123 MNI_moderate.img

3 1.48463 −6.51406 1.30517 −6.47390 1.51387 −6.57510 1.61090 −6.49598 MNI_severe.img

LDP graphics file (*.png): The user provides a file name, with standard extension .png.
After processing all input files, LDPgenerator.r produces the MS-LDP (Figure 3b).

LDP component graphics file (*.png): The user provides a file name, with standard
extension .png.

After processing all input files, LDPgenerator.r produces the Component MS-LDP
with a, c symbols for x, y, z directions (compare Figure 3a). Graphics file format is portable
network graphics.

Section 4 (code lines 46–207): In the central processing loop, for each input file, the following
operations are performed:
Section 4a (code lines 51–69): RNifti extracts a voxel array and associated geometry data
(number of voxels in x, y, z direction, xyz dimension per voxel).
Section 4b (code lines 71–76): The extracted voxel array is thresholded, yielding a classified
result (1 = MS-lesion, 0 = rest).
Section 4c (code lines 78–139): Three individual empirical variograms are calculated—one
per voxel array x, y, z direction, for lags 1 to Max_lag. Lag values and pair counts are stored.
Section 4d (code lines 141–175): An exponential variogram model is separately fit to each
x, y, z empirical variograms, using the R nls function with starting estimates Guess_a,
Guess_C. Derived model parameters ax, Cx, ay, Cy, az, Cz, and mean a, mean c values are
stored for x, y, z directions.
Section 4e (code lines 177–200): Per input file, empirical variogram graphs and associated
exponential variogram model functions for individual x, y, z directions are displayed and
stored in png format, with associated filenames.
Section 4f (code lines 202–207): The index number (1 ... n) of processed MS-WML, the
natural logarithm of model parameters mean(ax, ay, az), mean(Cx, Cy, Cz) and directional
components ax, Cx, ay, Cy, az, Cz, and the respective input file name are appended to
the LDP container file (ASCII). File contents are a good starting point for postprocessing
geostatistical data on MS-WML (Table 1). MS-WML index numbers are displayed in MS-
LDP and Component MS-LDP graphics to reference input file names while not overloading
graphics.
Section 5 (code lines 209–248): MS-LDP and Component MS-LDP graphics are displayed
and exported in png format. LDPgenerator.r terminates.

3.2. A Worked Example in 5 Steps

The associated sample data set comprises three MS-lesion probability maps (“brain
phantoms”) downloaded from brainweb https://brainweb.bic.mni.mcgill.ca/brainweb/
anatomic_ms.html, converted to the Analyze format. First, copy the file pairs MNI_mild.hdr,
MNI_mild.img; MNI_moderate.hdr, MNI_moderate.img; MNI_severe.hdr, MNI_severe.img
(files included in Supplementary Materials, see Appendix A for description) to a suitable
directory. Then follow the 5 steps below:

Step 1: From standard R, launch LDPgenerator.r (no changes of parameters necessary in
the script);
Step 2: Define input files: Navigate to the relevant directory and select MNI_mild.hdr,
MNI_moderate.hdr and MNI_severe.hdr from the file list;
Step 3: Define the LDP container output file: In the highlighted input box, type MNI.var
(Supplementary Materials, see Appendix A for description);

https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_ms.html
https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_ms.html
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Step 4: Define the LDP graphics output file: In the highlighted input box, type MNI_LDP.png
(Supplementary Materials, see Appendix A for description);
Step 5: Define the Component LDP graphics output file: In the highlighted input box, type
MNI_LDP_xyz.png (Supplementary Materials, see Appendix A for description).

After step 5, LDPgenerator.r sequentially opens the selected input files and creates
associated graphics containing variograms, variogram models and model parameters in
the input file directory: MNI_mild.hdr_variograms.png, MNI_moderate.hdr_variograms.png,
MNI_severe.hdr_variograms.png (files included in Supplementary Materials, see Appendix A
for description). Moreover, variography parameters are appended to the LDP container file
MNI.var. To avoid overloading graphics with labels, in MNI.var the input files are sequen-
tially numbered from 1 . . . n, graphical elements in MNI_LDP_xyz.png and MNI_LDP.png
are labelled accordingly.

Table 1 shows contents of LDP container file (ASCII) with variogram model parame-
ters: ID, variogram model parameters and associated MS_WML file names.

As further example, a “real-world” MS-LDP that was used in a clinical study is
included in Supplementary Materials (LDP_Supplement.jpg, Supplementary Materials, see
Appendix A for description). See [7] for details and in-depth interpretation.

4. Discussion

Based on the widespread, freely available R statistics environment, LDPgenerator.r pro-
vides routine production of MS-Lesion Pattern Discrimination Plots, associated variogram
graphics and statistics.

The first implementation for generating MS-LDP that was used in [5–7] involved
operating-system based scripting and incorporated, besides R scripts, two MS-Windows
based software components. Obviously, this was tedious, error-prone and limited the
generation of MS-LDP to the MS-Windows operating system. As compared to above
original implementation, MS-LDP can now be produced easily in standard R, by just
selecting input files and defining output files via the R standard graphical user interface.

The script runs with acceptable speed, processing time for a typical MS-WML is
about one minute on a current PC. Clearly, an interpreted language like R has drawbacks
regarding processing speed. There are several opportunities for script improvement,
however: LDPgenerator.r involves several loops, parts of which could be re-formulated
as optimized user defined functions, which in turn would speed up the script. Except of
package RNifti, the current version of LDPgenerator.r is implemented on base R. Since the R
environment enables straightforward code extension with a wealth of packages, here are
some ideas for customization/improvements:

• Adding a 3D viewer: The recent version of RNifti (1.1) contains a basic viewer for easy
implementation of Nifti/Analyze viewing. Providing interactive viewing of MS-WML
would facilitate setting the correct binarization threshold values, via enabling visual
checking of resulting lesion probability maps.

• Using a GUI package, e.g., https://r4stats.com/articles/software-reviews/r-gui-
comparison/.

• Availability of state-of-art GUI elements like customizable buttons, input boxes or
spinners would enable easy tuning of variography and graphics parameters.

• Using an improved graphics package—see: https://cran.r-project.org/web/views/
Graphics.html. More sophisticated annotation elements like labels, scalable arrows,
or improved legend elements would facilitate explorative data analysis of time series
portrayed in the MS-LDP, e.g., data from follow-up MRI.

LDPgenerator.r was developed with R version 3.6.0 and tested with input data from
variable sources. Some pitfalls occurred that need to be mentioned: LDPgenerator.r can
process only Nifti and Analyze files that are declared “3D” in their file headers. Using
R Studio to launch LDPgenerator.r, graphics generation failed with high-resolution (4k)
graphics hardware. LDPgenerator.r was tested under Windows 7 and Windows 10 operating
systems. While no problems occurred under Windows 7, under Windows 10, a Qt: Untested

https://r4stats.com/articles/software-reviews/r-gui-comparison/
https://r4stats.com/articles/software-reviews/r-gui-comparison/
https://cran.r-project.org/web/views/Graphics.html
https://cran.r-project.org/web/views/Graphics.html
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Windows version 10.0 detected! message is issued. In the current context this warning can be
ignored, however.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-342
5/11/1/90/s1, Program code and sample data to be found in Appendix A.
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Appendix A

The zip file in the Supplementary Materials contains the following files:

• R Script

◦ LDPgenerator.R

• Sample data for testing LDPgenerator.R

◦ MNI_mild.hdr
◦ MNI_mild.img
◦ MNI_moderate.hdr
◦ MNI_moderate.img
◦ MNI_severe.hdr
◦ MNI_severe.img

• Associated LDPgenerator.R result files from above sample data

◦ MNI_mild.hdr_variograms.png
◦ MNI_moderate.hdr_variograms.png
◦ MNI_severe.hdr_variograms.png
◦ MNI.var
◦ MNI_LDP_xyz.png
◦ MNI_LDP.png

• LDP with data from Clinical Study [7] (Marschallinger et al., 2018), created by LDP-
generator.r

◦ LDP_Supplement.jpg
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