
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 

 

This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  

To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

Author(s):  Kefeng Zhang , Tuqiao Zhang and Dejun Yang 

Article Title:  An explicit hydrological algorithm for basic flow and 
transport equations and its application in agro-hydrological models for 
water and nitrogen dynamics 
Year of publication: 2010 
Link to published article: http://dx.doi.org/10.1016/j.agwat.2010.08.004  

Publisher statement:  Zhang, K. et al. (2010). An explicit 
hydrological algorithm for basic flow and transport equations 
and its application in agro-hydrological models for water and 
nitrogen dynamics. Agricultural Water Management, Vol. 
98(1), pp. 114-123 

 

 
 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/44261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


 1 

An explicit hydrological algorithm for basic flow and transport equations and its 2 

application in agro-hydrological models for water and nitrogen dynamics 3 

 4 

Kefeng Zhang
a,*

, Tuqiao Zhang
b
, Dejun Yang

c
 5 

 6 

a
Warwick-HRI, Warwick University, Wellesbourne, Warwick, CV35 9EF, UK 7 

b
Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China 8 

c
School of Environment Science and Spatial Informatics, China University of Mining and 9 

Technology, Xuzhou 221116, China 10 

 11 

*
Corresponding author 12 

 13 

Address: Warwick-HRI, The University of Warwick, Wellesbourne, 14 

Warwick CV35 9EF, UK 15 

 16 

Tel: 0044 24 7657 4996 17 

Fax:  0044 24 7657 4500 18 

E-mail: kfzhang@hotmail.com; kefeng.zhang@warwick.ac.uk 19 

 20 

Number of text pages:  25 21 

Number of tables:  6 22 

Number of figures:  9 23 

 24 

mailto:kfzhang@hotmail.com
mailto:kefeng.zhang@warwick.ac.uk


 1 

Abstract 1 

 2 

Hydrological simulation is a key component in argo-hydrological models for 3 

optimizing resources use and minimizing the environmental consequences in 4 

agriculture. In this study we extended a simple and explicit algorithm for solving the 5 

basic soil water flow equation by Yang et al. (J. Hydrol. 370, 177-190) to the solute 6 

transport equation. The key feature of the algorithm is to use a uniform soil layer 7 

thickness and a small time step in solving the soil water and solute transport equations, 8 

so that the calculations can be made on a layer basis. This drastically simplifies the 9 

procedure of modeling water and solute transport in soil using the basic equations. 10 

The proposed algorithm was tested against the complex finite element (FE) numerical 11 

scheme in simulating soil water and solute transport in different soils via numerical 12 

experiments. The results showed that the proposed algorithm with a uniform soil layer 13 

thickness of 5 cm and a small time step of 0.001d was able to achieve the identical 14 

accuracy as the FE method. Tests of the proposed algorithm in simulating water and 15 

nitrogen dynamics against data from a field experiment on wheat revealed that the 16 

predicted results with the simple algorithm were in good agreement with the time-17 

course measurements of soil water and mineral N concentration at the various depths 18 

in the profile, suggesting that the proposed algorithm performed well and can be 19 

reliably applied in agro-hydrological models. The simplicity and accuracy of the 20 

algorithm will encourage scientists to use basic equations for soil water and solute 21 

transport more in the future for improving performance of agro-hydrological models. 22 

 23 

Key words: Richards’ equation, transport equation, soil-crop system, soil water 24 

movement, solute transport. 25 
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 1 

1. Introduction 2 

 3 

With the advance in computing power and increasingly understanding of soil 4 

and plant sciences, process-based agro-hydrological models have become powerful 5 

tools in optimizing resources use and minimizing environmental consequences in crop 6 

production. Numerous agro-hydrological models have been devised for the optimal 7 

use of water, fertilizer and pesticide in the literature over the last few decades (see 8 

reviews by Bastiaanssen et al.; 2007; Cannavo et al., 2008; Ranatunga et al., 2008). 9 

For example, according to the review by Cannavo et al. (2008), for crop nitrogen (N) 10 

models alone, there are 62 models available for evaluating the effect of different N 11 

management on plant growth and environmental impacts. 12 

 13 

Hydrological simulation is a key module in agro-hydrological models. Mainly 14 

there are two approaches used for hydrological simulations in such models, i.e. 15 

cascade approach and numerical method based on basic soil water flow and solute 16 

transport equations (Bastiaanssen et al., 2007; Cannavo et al., 2008; Ranatunga et al., 17 

2008). The cascade approach assumes that water moves into the soil profile where it is 18 

routed through the soil layers, and the solute transports with water flow. Water drains 19 

between two soil layers when the soil water is above field capacity. Due to the 20 

simplicity of the algorithm and stability of numerical results, the cascade approach has 21 

been used in many agro-hydrological models for hydrological simulations (Arnold et 22 

al., 1993; Ritchie, 1998; Greenwood, 2001; Droogers et al., 2001; Brisson et al., 2003; 23 

Zhang et al., 2007, 2009; Renaud et al., 2008; Pederson et al., 2009; Raes et al., 2009). 24 

Cannavo et al. (2008) surveyed 16 models for predicting nitrate leaching in the 25 



 3 

cropped soils, and found that a large proportion (7 out of 16) of models adopted this 1 

approach. However, as pointed out by Cannavo et al. (2008), this approach cannot 2 

correctly simulate soil water content between field capacity and saturation, which has 3 

become a severe limitation for calculating denitrification. Further, this approach 4 

produces poor daily drainage dynamics, and is not capable of simulating capillary 5 

flow (Gandolfi et al., 2006), and thus cannot be applied in the cases where 6 

groundwater table is high and capillary flow is important to meet crop 7 

evapotranspiration. Besides it is difficult to implement precise boundary conditions, 8 

such as free drainage, often imposed at the lower boundary in a cascade approach 9 

(Yang et al., 2009), which could result in unacceptable results as the hydrological 10 

results are highly sensitive to parameterization at the lower boundary (Boone and 11 

Wetzel, 1996). 12 

 13 

The other approach, named the numerical method, uses the basic equations for 14 

soil water movement and solute transport, and generally produces more accurate 15 

results, compared to those by the cascade algorithm (Gandolfi et al., 2006; Yang et al., 16 

2009). Such an approach is now widely accepted, especially in the research models. 17 

However, the uptake of models of this type for practical use is still low (Bastiaanssen 18 

et al. 2007). One reason for this might be due to the complex nature of the numerical 19 

methods involved, and the associated long program code (Yang et al., 2009). Since 20 

these equations are highly non-linear partial differential equations, complex numerical 21 

schemes, such as finite element (FE) method, are often employed to solve the 22 

equations (Šimůnek et al., 1992). This contrasts with the simple algorithms used in 23 

modeling other processes such as plant dry matter accumulation, root growth, solute 24 

reactions and transformations in agro-hydrological models (Cannavo et al., 2008; 25 



 4 

Zhang et al., 2009). Although the numerical schemes such as the FE method used for 1 

the solutions to the basic equations are well developed (Šimůnek et al., 2008), and 2 

software such as HYDRUS-1D and HYDRUS (2D/3D) (Šimůnek et al., 2005; 2006) 3 

is readily available for 1-D or multi-dimensional simulations, its use requires 4 

specialized expertise that many potential users have not got. Further, the numerical 5 

solutions to the transport equation often exhibit oscillatory behavior, especially when 6 

relatively steep concentration fronts are simulated (Šimůnek et al., 1992). Extra 7 

measures such as ‘upstream weighting and artificial dispersion coefficients’ are 8 

therefore often introduced within the FE method, which makes the numerical scheme 9 

even more complex. This partially explains why many agro-hydrological models in 10 

practical use, as reported in Cannavo et al. (2008), do not adopt this method for water 11 

and nutrients management in agriculture. 12 

 13 

Apart from cascade models and numerical methods, attempts have long been 14 

made to derive analytical solutions to the basic flow equation (Green and Ampt, 1911; 15 

Gardner, 1958; Philip, 1958; Parlange, 1971; Parlange et al., 1985; Mollerup, 2007; 16 

Wang et al., 2009). Since the flow equation is a highly non-linear differential equation, 17 

assumptions have to be made in deriving such analytical solutions. These assumptions 18 

include: soil hydraulic conductivity is an analytical function of soil water content; 19 

hysteresis is neglected; and the medium is homogeneous and isotropic (Feddes et al., 20 

1988). Due to these restrictions, together with the difficulties in dealing with the 21 

initial soil water distributions and boundary conditions, the derived solutions have 22 

found limited application. Although there are reports on the studies of water 23 

infiltration into layered soils using the similar approach (Hachum and Alfaro, 1980; 24 

Chu and Marino, 2005) and of the development of the kinematic models for soil water 25 



 5 

movement and solute transport for unsaturated groundwater recharge (Charbeneau, 1 

1984), the derived algorithms are only able to estimate the wetting front in the events 2 

of water infiltration, and are not capable of simulating capillary flow and predicting 3 

soil water content distribution. Thus they are not appropriate to be employed in agro-4 

hydrological models in which the simulation of upwards water flow resulting from 5 

evaporation in layered soils is crucially important.  6 

 7 

A new approach using the integrated Richards’ equation (IRE) strategy has 8 

been proposed and tested for water transfer in the soil-crop system (Yang et al., 2009). 9 

The approach, based on the work by Lee and Abriola (1999), strikes a balance 10 

between the simplicity and robustness of cascade approaches and accuracy of 11 

numerical methods. The IRE approach considers that water content in a soil layer is 12 

only influenced by neighbouring layers, i.e. the above and below layers. The water 13 

flux between two soil layers is calculated by integrating the Richards’ equation over 14 

the layer in a small time step. It has been demonstrated that the algorithm worked well 15 

with 5 cm layer thickness and a time step of 0.001 d in different cropped soils (Yang 16 

et al., 2009). However, the approach is only valid for soil water movement, and 17 

therefore cannot be applied in simulating solute transport in the soil which is a key 18 

process in agro-hydrological models for fertilizer and pesticide practices. 19 

 20 

The objectives of this study were three-folds: 1) to formulate the simple and 21 

explicit algorithm using the integration strategy over the basic equations for soil water 22 

movement and solute transport by extending the work by Yang et al. (2009), so that 23 

the proposed algorithm can have a wide application in agro-hydrological models; 2) to 24 

evaluate the proposed algorithm against the FE method in simulating water and solute 25 
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dynamics in different soils via numerical experiments; 3) to validate the proposed 1 

approach in predicting water and N dynamics in a soil-wheat system against data from 2 

a field experiment. 3 

 4 

2. Theory 5 

 6 

2.1 Governing equations for water and solute dynamics in the soil-crop system 7 

 8 

In 1-D situations, the differential equations for water and solute transfer within 9 

the soil profile in the soil-crop system, based on the general governing equations for 10 

water flow and solute transport in porous media (Bear, 1972), are 11 

 12 
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) is the volumetric soil water content, h (L) is the soil pressure head, Sw 15 
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) is the sink term, i.e. root water uptake, z (L) is the vertical coordinate, t (T) is 16 
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-3

) is the solute concentration, 17 
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T
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) is the function for the zero- and first-order rate 18 

reactions for solute in the liquid and soil phases, Sc (M L
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T
-1

) is the root solute uptake, 19 

Dz (L
2
 T

-1
) is the dispersion coefficient. 20 

 21 

The soil hydraulic functions are defined according to van Genuchten (1980) 22 

and Mualem (1976) 23 

 24 
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 3 

where  is the relative saturation, s  and r  are the saturated and residual soil water 4 

contents,  (L
-1

) and n are the shape parameters of the retention and conductivity 5 

functions, m=1-1/n, and Ks is the saturated hydraulic conductivity. 6 

 7 

The dispersion coefficient in Eq. (2) is given by Bear (1972) 8 

 9 

dzLz DvDD          (5) 10 

 11 

where Dd (L
2
 T

-1
) is the ionic molecular diffusion coefficient in free water, DL (L) is 12 

the dispersivity, and  is the tortuosity factor, which is defined by Millington and 13 

Quirk (1961), i.e.  14 

 15 
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 17 

2.2 Explicit algorithm for the governing equations 18 

 19 

Eqs. (1) and (2) are partial differential equations which normally requires 20 

complex numerical schemes such as the FE method to solve them (Šimůnek et al., 21 

1992). This involves an iterative procedure to obtain the solution to the water flow 22 

equation (Eq. 1) by solving the system of linear algebraic equations and a solution to 23 

the transport equation (Eq. 2). Yang et al. (2009) have demonstrated that a procedure 24 



 8 

using an integration strategy of Eq. (1) over the soil layers could result in a much 1 

simpler algorithm and satisfactory results in simulating soil water movement. The 2 

approach works with soil layers with uniform thickness. The thickness of soil layer is 3 

fixed as 5 cm which is considered appropriate and commonly used in agro-4 

hydrological models (Greenwood, 2001; Zhang et al., 2007, 2009; Renaud et al., 2008; 5 

Pedersen et al., 2010) to describe processes such as root length distribution in the soil-6 

crop system. In this study, this technique has further been expanded to Eq. (2) so that 7 

the simulations of soil water movement and solute transport were made easier. The 8 

proposed approach considers that water movement and solute transport in a soil layer 9 

is only influenced by the adjacent layers in a small time step, allowing soil water flow 10 

and solute transport to be calculated on a layer basis. 11 

 12 

Integrating Eq. (1) vertically over a soil layer leads to (Yang et al., 2009) 13 

 14 
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 16 

Similarly, using the same scheme to Eq. (2) yields 17 

 18 
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where i is the soil layer number, t  is the time step, i  is the layer-average soil 21 

water content change in layer i in t , z  is the soil layer thickness, 
1iwv  and 

1icv , 22 

iwv  and civ  represent water flux and solute transport from the layer i+1 to i and from i 23 

to i-1, which are calculated 24 



 9 

 1 

)1/)(( ,1111 zhKv iiiiwi        (9) 2 

)/)(( 11,1111 iziiidiziLci cvzcDvDv      (10) 3 

)1/)(( 1, zhKv iiiiwi         (11) 4 

)/)(( 1, iziiidiziLci cvzcDvDv       (12) 5 

 6 

where iih ,1 , 1,iih  and iic ,1 , 1,iic  are the differences in soil pressure head and 7 

solute concentration between layers i+1 and i, and i and i-1, respectively. 8 

 9 

To implement the proposed procedure, the soil domain is discretized into 5 cm 10 

layers. The bottom layer is numbered 1, and the soil layer number increases upwards 11 

to the top layer. Eqs. (7) and (8) are applied from the layer 1 at the bottom to the top 12 

layer for the re-distributions of water content and solute concentration in the soil 13 

profile at each time step t . Detailed steps of implementing the procedure for the soil 14 

water movement, which is similar with that for the present work, can be seen 15 

elsewhere (Yang et al., 2009) 16 

 17 

2.3 Sink and N transformation terms in the soil-crop system 18 

 19 

Eqs. (1) and (2) are general equations describing water movement and solute 20 

transport in soil. In this study, in addition to the evaluation of the proposed algorithm 21 

in modeling soil water movement and solute transport, we also tested the algorithm 22 

for predicting water and N dynamics in a soil-wheat system. To do so the sink terms 23 

for water and N uptake and N transformation required to be specified. 24 



 10 

 1 

2.3.1 Sink term for water uptake Sw 2 

 3 

The sink term for root water uptake Sw is dependent on crop water demand, 4 

root length distribution and soil water availability. It is formulated as (Feddes et al., 5 

1978)  6 

 7 
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where w is the root water stress reduction factor, similar with that by Feddes et al. 14 

(1978), Tpot (L T
-1

) is the potential crop transpiration, and L (L L
-3

) is the root length 15 

density. Root water uptake is assumed to be zero when soil pressure head is below h3, 16 

i.e. the soil pressure head at the permanent wilting point (h3 = -15000 cm), and is 17 

unlimited for soil pressure head between h1 (-1 cm) and 
highh2  (-500 cm) for a rapid 18 

transpiration (0.5 cm d
-1

) and 
lowh2  (-1100 cm) for a slow transpiration (0.1 cm d

-1
). 19 

The increase in water uptake between h3 and h2 is linearly related to the soil pressure 20 

head. Water uptake is also assumed to be 0 for soil pressure head greater h1 due to 21 

lack of oxygen in the root zone (Zhang et al., 2009, 2010a). 22 

 23 



 11 

The potential crop transpiration is calculated according to the FAO 56 crop 1 

coefficient method (Allen et al., 1998) 2 

 3 

0ETKT cbpot           (15) 4 

 5 

where Kcb, dependent on crop species and its development stage, is the basal crop 6 

coefficient for transpiration, ET0 (L T
-1

) is the reference evapotranspiration. ET0 and 7 

Kcb can be determined according to Allen et al. (1998). 8 

 9 

Root growth simulation is in accordance with that proposed by Pedersen et al. 10 

(2010). The rooting depth is calculated as a product of the cumulative mean day 11 

temperature and the specific root growth rate, while crop total root length is calculated 12 

as a product of root dry weight and a fixed specific root length. The root length 13 

declines logarithmically from the soil surface downwards (Pedersen et al., 2010), i.e. 14 
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where ∆Wr (M L
-2

) is the increment in root dry weight, which is a function of the 20 

increment in crop dry weight and crop dry weight (Zhang et al., 2009), Sr (L M
-1

) is a 21 

specific root length density, ∆Rz and Rz (L) are the increment in rooting depth and the 22 

rooting depth, respectively, T (K) is the mean daily air temperature, Trbase (K) is the 23 

base temperature for root growth, Krz (L T
-1

 K
-1

) is the vertical root growth rate, ∆L0 24 



 12 

and L0 (L) are the increment of root length and the total root length, respectively, and 1 

az is the shape parameter controlling root distribution down the profile. 2 

 3 

2.3.2 Sink term for N uptake Sc 4 

 5 

The sink term for N uptake, based on the crop N demand, root length 6 

distribution, soil mineral N concentration and the minimum soil mineral N 7 

concentration for root uptake, is formulated as (Pedersen et al., 2010)  8 

 9 
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 11 

in which the potential N uptake Npot is estimated by modifying the equation from 12 

Nielsen and Barber (1978) 13 

 14 
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where UN and UNr (M L
-2

) are the N demand in the above-ground and root biomass, 17 

respectively, Npot (M L
-2

) is the potential N uptake, cN (M L
-3

) is the layer-specific soil 18 

mineral N concentration in the 5 cm soil layers, cNmin (M L
-3

) is the minimum soil 19 

mineral N concentration below which no N uptake is possible, c0 (M L
-3

) is the plant 20 

N uptake coefficient, and kN (M L
-1

 T
-1

) is the plant N uptake efficiency. 21 

 22 

2.3.3 N transformation term f 23 

 24 
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N mineralization from soil organic matter is considered in the model. The 1 

algorithm is devised based on the assumption that the organic matter breakdown rate 2 

is first-order. The equation for estimating N released from soil organic matter is given 3 

in Zhang et al. (2009) and Zhang et al. (2010b). 4 

 5 
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where Nsmin (M L
-2

 T
-1

) is the daily N mineralization rate from soil organic matter, kmin 8 

(T
-1

) is the rate of temperature-independent organic matter breakdown,  (M L
-3

) is 9 

the soil bulk density, Zsmin (L) is the soil depth where N mineralization takes place, mC 10 

is the soil organic C content, RCN is the C:N ratio of the soil organic matter, Ts (K) is 11 

the base temperature at which 
10/)(

10
sTT

Q equals 1, and Q10 is the factor change in rate 12 

with a 10 degree change in temperature. 13 

 14 

2.4 Water flux on the soil surface 15 

 16 

The soil surface is subject to the atmospheric condition, i.e. rainfall and 17 

potential soil evaporation (irrigation is treated in the same way as rainfall). The 18 

potential soil evaporation is estimated using the FAO approach (Allen et al., 1998) 19 

 20 

0ETKE epot           (22) 21 

 22 

where Epot (L T
-1

) is the potential soil evaporation, and Ke is the evaporation 23 

coefficient, which can be calculated using the FAO approach  according to the crop 24 

species and its development stage (Allen et al., 1998). 25 
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 1 

In the case of the sum of rainfall and irrigation greater than the potential 2 

evaporation, the water flux from the surface is considered as infiltration. The actual 3 

infiltration flux in a given time step, actI  (L T
-1

), is determined by the following 4 

equation (Yang et al., 2009). 5 

 6 
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 8 

in which, Top is the water content in the top soil layer, and wTop (L T
-1

) is the potential 9 

net water flux at the surface. 10 

 11 

Otherwise, the water flux on the soil surface is treated as evaporation, and the 12 

actual evaporation in a given time step from the top soil layer, actE  (L T
-1

), is 13 

expressed as (Yang et al., 2009) 14 

 15 
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 17 

where KTop and hTop are the soil hydraulic conductivity and soil pressure head in the 18 

top layer, respectively, and hmin (= -26500 cm) is the minimum soil pressure head that 19 

the atmosphere could possibly exert in the top soil layer (Yang et al., 2009). 20 

 21 

In order to calculate plant transpiration and soil evaporation, daily potential 22 

transpiration by plant (Eq. 15) and evaporation from soil surface (Eq. 22) are first 23 

calculated. The amounts of transpiration and evaporation in t  are then determined 24 

by evenly distributing daily transpiration and evaporation over 24 h. The calculated 25 
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potential soil evaporation in t  is applied to the soil surface for computing actual 1 

evaporation, whereas the potential crop transpiration is applied in the root zone for 2 

computing actual root water uptake. 3 

 4 

It should be pointed out that soil evaporation and plant transpiration are 5 

coupled processes, and therefore they should be dealt with simultaneously as 6 

implemented in numerical methods such as the FE method. However, in cascade 7 

models these processes are decoupled at daily intervals. This leads to a much simpler 8 

calculation procedure, but could compromise the estimation of plant transpiration. For 9 

example, under the circumstances of soils containing limited water, if soil evaporation 10 

is satisfied first, then plant transpiration could be underestimated. In this study, the 11 

identical approach for calculating soil evaporation and plant transpiration used in 12 

cascade models is adopted, and both transpiration and evaporation are computed in 13 

each time step t . Since plant transpiration and soil evaporation in each time step are 14 

very small (as a result of the small time step of 0.001 d), the error in calculating plant 15 

transpiration is greatly reduced. Thus the proposed algorithm has the simplicity and 16 

robustness of cascade approaches and accuracy of numerical methods. Moreover, the 17 

proposed algorithm, compared with cascade models, has the advantage of considering 18 

water infiltration more accurately in the cases where rainfall or irrigation intensity is 19 

known in detail (Yang et al., 2009). 20 

 21 

2.5 Model evaluation 22 

 23 

Model performance is often evaluated using the correlation coefficient (R) or 24 

the coefficient of determination (R
2
). However, Willmott and Wicks (1980) found that 25 



 16 

high values of R or R
2
 may not be related to the sizes and the differences between 1 

measurement and simulation, and thus could in fact be misleading. In this study a 2 

more exhaustive approach for an evaluation of model performance was carried out as 3 

suggested by Willmott (1982). The calculated metrics on which the model 4 

performance was assessed included: the Nash-Sutcliffe efficiency (NSE) (Nash and 5 

Sutcliffe, 1970), the root of the mean squared error (RMSE), and the mean absolute 6 

error (MAE) 7 

 8 
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where Pi and Oi are the predicted and measured values, respectively, 'O  is the 13 

average of the measured values, and No  is the number of measurements. 14 

 15 

3. Experiments 16 

 17 

The experiment used for testing the fitness of the proposed algorithm was 18 

conducted in the Bouwing farm on winter wheat at the Institute for Soil Fertility 19 

Research, The Netherlands in 1983 (Groot and Verberne, 1991). The summary of the 20 

experiment relevant to this study including fertilization is given in Table 1. The 21 

measurements included spatial-temporal soil water content, soil mineral N in the 22 



 17 

layers of 0-30, 30-60 and 60-90 cm as well as above-ground dry matter accumulation, 1 

and N contents in various organs during growth made at intervals of three weeks from 2 

February 1983. N contained in the above-ground dry weight was measured at the 3 

same time as these for soil water content and mineral N concentration. The weather 4 

variables including air temperature, radiation and rainfall were measured during the 5 

experiment. Details of the experiment can be seen in Groot and Verberne (1991). 6 

 7 

4. Model parameterization 8 

 9 

This study was carried out in two parts. The first part examined the proposed 10 

algorithm in the simulation of water movement and solute transport in different soils 11 

via numerical experiments, and included a comparison of its performance against the 12 

FE method. The second part involved comparing of the simulation results using the 13 

proposed algorithm for water and N dynamics in the soil-wheat system with the data 14 

from the field experiment described above. 15 

 16 

4.1 Numerical study 17 

 18 

To examine the performance of the proposed algorithm in hydrological 19 

simulations, a case of modeling water movement and nitrate transport in a soil column 20 

immediately after an application of 100 kg ha
-1

 nitrate-N (NO3-N) was assumed. The 21 

FE method was selected for comparison. The simulations were carried out on three 22 

soils: i.e. a coarse, a medium and a fine texture. The hydraulic properties for both soils 23 

were set to those suggested by Wösten et al. (1999) (see Table 2 for details). The soil 24 

columns were assumed to have a depth of 100 cm, with an initial soil water content 25 
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set to be 0.393, 0.432 and 0.513 cm
3
 cm

-3
 throughout the column for the coarse, 1 

medium and fine soils, respectively. The lower boundary condition was specified as 2 

free drainage, whereas no water flux was allowed at the surface. It was assumed that 3 

NO3-N was dissolved in the top 5 cm soil layer immediately after the application. The 4 

calculated NO3-N concentrations were 0.513, 0.463 and 0.390 mg cm
-3

 for the coarse, 5 

medium and fine soils, respectively. The diffusion coefficient and dispersivity were 6 

1.64 cm
2
 d

-1
 and 0.5 cm, respectively. For the proposed algorithm, the soil column 7 

was divided into 20 uniform 5 cm layers, with a simulation time step for both soils of 8 

0.001 d, similar to that proposed by Lee and Abriola (1999) and Yang et al. (2009). In 9 

the FE method, the soil column was divided into 50 soil layers with various 10 

thicknesses (thin layers at the bottom where the lower boundary condition was 11 

imposed). Two FE methods with and without the ‘upstream weighting and the 12 

artificial dispersion’ scheme, named as the ‘complex’ and ‘ordinary’ FE methods, 13 

were used in the simulations for comparison. 14 

 15 

4.2 Validation experiment 16 

 17 

Soil water retention curves for different layers (0-40 and 40-100 cm) in the 18 

validation experiment were given in Groot and Verberne (1991). The values of the 19 

hydraulic parameters used in Eqs (3) and (4) to describe the soil water retention 20 

curves were fitted using the RETC software (van Genuchten et al., 1991) and are 21 

listed in Table 3 (after Yang et al., 2009), based on the data provided by Groot and 22 

Verberne (1991). The calculated soil domain was 120 cm down from the soil surface, 23 

and the boundary condition at the bottom was set as free drainage (Yang et al., 2009). 24 
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The soil hydraulic properties in the layer of 100-120 cm were assumed the same as 1 

those in the layer of 40-100 cm. 2 

 3 

The daily above-ground N requirement was calculated using the following 4 

equations which were obtained by differentiating the cumulative N curves fitted based 5 

on the measurements given by Groot and Verberne (1991) with respect to time (Fig. 6 

1a) 7 

 8 

1ha kg

213164245.1

164876119.20358.0

8738077.0

DOY

DOYDOY

DOY

U N  (28) 9 

 10 

where DOY is the Julian day of the year. 11 

 12 

The amount of N partitioned in the roots was estimated using the approach 13 

described in Zhang et al. (2009). The increment in root dry weight is a fraction of the 14 

increment in the above-ground crop dry weight with the fraction decreasing with an 15 

increase in above-ground dry weight. The above-ground dry weight was modeled 16 

using a simple growth equation which mimics initial exponential followed by near 17 

constant growth. The equation, which is temperature-driven and uses the targeted 18 

yield, calculates the daily above-ground dry weight ΔW (t ha
-1

) as W/(1+W) 19 

(Greenwood et al., 1985; Greenwood, 2001). The root %N changes with W in the way 20 

of W

crit eN 26.035.11%  (Greenwood et al., 1985; Greenwood, 2001). By setting the 21 

measured dry yield of 17 t ha
-1

 as the target yield in the growth equation, the modeled 22 

root dry weight and corresponding N amount in the experiment are shown in Fig. 1(b). 23 

The modeled ratio of above-ground dry weight to root dry weight at harvest was 0.16, 24 



 20 

close to the experimental finding of 0.19 (Arima et al., 1999). This, together with the 1 

root %N equation which is based on experimental evidence (Osaki et al., 1997), 2 

makes the estimation of N partitioned into the roots reliable. Since the variations of N 3 

in the roots do not change markedly in the very early stages and towards maturity, 4 

only N uptake in roots at the middle growth stages was considered and the uptake rate 5 

was 0.42 kg N ha
-1

 d
-1

. Other parameter values used in the simulations for the 6 

validation experiment are shown in Table 4, based on the work by Pedersen et al. 7 

(2009) and Zhang et al. (2007; 2009). The weather information used in the simulation 8 

periods, including daily mean, minimum and maximum air temperatures, wind speed, 9 

rainfall and global radiation, was given in Groot and Verberne (1991).  10 

 11 

The simulation started on the first measurements on 7 February 1983 of soil 12 

water content and mineral N concentration in the profile. The measured soil water 13 

content and mineral N concentration distributions down the profile were set as the 14 

initial conditions. The time step for solving the governing equations using the 15 

proposed algorithm was 0.001 d, which is the same as suggested by Yang et al. (2009) 16 

for 5 cm soil layers. 17 

  18 

5. Results and discussion 19 

 20 

5.1 Numerical study 21 

 22 

5.1.1 Fine and medium soils 23 

 24 



 21 

Soil water content and NO3-N concentration distributions at various time 1 

intervals were simulated and compared using the proposed algorithm and the FE 2 

methods for the fine and medium soils (Figs. 2, 3). It is clear that the profiles 3 

predicted by the proposed algorithm agree well with those from the FE methods. It 4 

was also found that the simulated results from both the ‘ordinary’ and ‘complex’ FE 5 

methods were virtually identical for the fine soil, whereas there were slight 6 

differences in the simulated soil NO3-N concentration between the ‘ordinary’ and 7 

‘complex’ FE methods in the medium soil. This indicates that the ‘ordinary’ FE 8 

method may sufficiently be accurate in simulating water movement and solute 9 

transport in both soils, and the simple algorithm proposed in this study can achieve the 10 

same accuracy of the simulated results as those from the FE methods. 11 

 12 

5.1.2 Coarse soil 13 

 14 

The same simulations and comparisons were also carried out for the coarse 15 

soil (Fig. 4). Further, the statistical metrics including RMSE, NSE, MAE and R
2
 were 16 

calculated for NO3-N concentration, and the results are shown in Table 5. The 17 

simulated soil water content profiles at intervals using the proposed algorithm are in 18 

good agreement with those from the FE methods (Fig. 4a), which confirms that the 19 

proposed algorithm is capable of simulating soil water movement in different soils 20 

accurately. While the simulated NO3-N concentration profiles at intervals using the 21 

proposed algorithm agree fairly well with those from the ‘complex’ FE method (Fig. 22 

4bcd, Table 5), large discrepancies were observed in the simulated results between the 23 

‘ordinary’ FE method and the ‘complex’ FE method, and between the ‘ordinary’ FE 24 

method and the proposed algorithm. The ‘ordinary’ FE method severely 25 
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underestimated NO3-N transport in the soil profile, resulting in much higher NO3-N 1 

concentration in the top 20 cm soil layer. This can be attributed to the steep NO3-N 2 

concentration front and the dominant convection in the simulated coarse soil. 3 

However, the case studied is a real scenario of the fertilization in a wet soil. This 4 

suggests that caution should be taken when using the ‘ordinary’ FE method in 5 

predicting NO3-N movement, especially in estimating NO3-N leaching in the coarse 6 

soil. The differences in NO3-N concentration profiles simulated by the proposed 7 

algorithm and the ‘complex’ FE method might be due to the artificial dispersion in the 8 

FE method resulting from the ‘upstream weighting and the artificial dispersion’ 9 

scheme.  10 

 11 

5.1.3 Effect of dispersion term in NO3-N transport 12 

 13 

Fig. 5 shows NO3-N concentration distributions down the soil profile after 30 14 

day free drainage simulated using the proposed algorithm for the transport equation 15 

with and without the dispersion term. The dispersion term has a bigger effect on NO3-16 

N transport in the fine and medium soils (Fig. 5bc) than the coarse soil (Fig. 5a). This 17 

can be explained by the fact that in the coarse soil NO3-N transport is dominated by 18 

the convection term, i.e. NO3-N mainly moves with water flow. However, in the 19 

medium and fine soils water flow is not as easy as that in the coarse soil due to narrow 20 

pores. As a result dispersion becomes an important process in NO3-N transport in the 21 

soil. This implies that in modeling NO3-N transport in the medium and fine soils, the 22 

dispersion term has to be taken into consideration to enable the predictions to be 23 

reasonable. 24 

 25 



 23 

It is evident, from the above, that the proposed algorithm presented in this 1 

study produces the results as accurately as those from the ‘complex’ FE method in 2 

modeling soil water dynamics and NO3-N transport in different soils. Given the 3 

simplicity, stability and the ability of the proposed algorithm, it can be concluded that 4 

the proposed algorithm has a good potential to be used in agro-hydrological models 5 

for accurately simulating soil water movement and solute transport. 6 

 7 

5.2 Validation experiment 8 

 9 

5.2.1 Comparison of simulated and measured soil water content and mineral N 10 

concentration  11 

 12 

Fig. 6 shows the overall comparisons of the simulated and measured values of 13 

soil water content and soil mineral N concentration in the various soil layers at time 14 

intervals, whereas Figs. 7 and 8 show the detailed comparisons of the time-course soil 15 

water content and mineral N concentration in various layers. The statistical 16 

comparisons between the measured and simulated values of soil water content and 17 

soil mineral N are given in Table 6. The calculated RMSE and MAE values for soil 18 

water content are 0.038 cm
3
 cm

-3
 and 0.032 cm

3
 cm

-3
. Likewise, the values for soil 19 

mineral N are 8.95 kg-N ha
-1

 and 5.49 kg-N ha
-1

. This, and relatively high values of 20 

NSE of 0.620 and 0.841 for soil water content and soil mineral N, indicates that the 21 

overall performance of the model for water and N dynamics in the soil-wheat system 22 

was satisfactory. However, a noticeable discrepancy was observed from soil mineral 23 

N in the top 30 cm layer on DOY of 164, 31 days after the fertilizer-N application 24 

(Fig. 8). The model simulated a sharp increase in soil mineral N in the top 30 cm layer 25 
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after the fertilization event. But this was not materialized in the measurement. Such a 1 

phenomenon of ‘disappearance’ of the applied fertilizer-N was observed elsewhere 2 

(Neeteson et al., 1986; Nielsen and Jensen, 1986), and might be attributed to the soil 3 

processes such as ammonia volatilization, denitrification and microbial 4 

immobilization which were not considered in this study. Accurate simulations of N 5 

transformation in these processes currently remain challenging due to the difficulties 6 

in quantifying various factors controlling these processes (Barton et al., 1999; 7 

Cannavo et al., 2008).  8 

 9 

5.2.2 Simulated water and N dynamics in the soil-wheat system 10 

 11 

Actual soil evaporation, crop transpiration and water percolation at 1 m depth 12 

were simulated (Fig. 9a). The simulated cumulative soil evaporation and crop 13 

transpiration were 108 and 285 mm, respectively. Crop evapotranspiration was mainly 14 

met by rainfall during the growing season (344 mm) and soil water originally 15 

contained in the soil. Water percolation at 1 m depth was not significant and only 16 

occurred at the early crop development stages when the soil was relatively wet (Fig. 17 

9a). The simulated cumulative N uptake, N mineralization from soil organic matter 18 

and N leaching at 1 m depth are shown in Fig. 9b. N uptake by the crop before DOY 19 

of 100 was small, and followed by a steady increase. N mineralized from soil organic 20 

matter accumulated with time, and the accumulation rate increased with time due to 21 

the increase in air temperature. During the growing period, the total N mineralized 22 

from soil organic matter was 65 kg ha
-1

. At the end of the simulation the simulated 23 

cumulative N uptake was 219 kg ha
-1

, which was mainly met by the applied fertilizer-24 

N, mineral N originally contained in the soil and the mineralized N from the soil. N 25 
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leaching at 1m depth was small as the total simulated value was approximately 12 kg 1 

ha
-1

. This was supported by previous studies that in N leaching in the west Europe is 2 

not great between spring and autumn when the soil is cropped (Neeteson and Carton, 3 

2001; Zhang et al., 2009). 4 

 5 

6. Conclusions 6 

 7 

The simple and explicit algorithm for solving the basic soil flow equation 8 

(Yang et al., 2009) has been extended to solve the basic solute transport equation 9 

using a 5 cm soil layer and a small time step of 0.001 d. Numerical experiments show 10 

that the algorithm is able to produce the results as accurately as those from the FE 11 

method in modeling soil water dynamics and solute transport, even in the coarse soil 12 

where convection is dominated. Compared with the FE method, the proposed 13 

algorithm is much simpler, and easier to implement. Thus, the proposed algorithm 14 

provides an alternative to the FE method for accurate simulation of water and solute 15 

transport in soil using the basic theory. The reliability of the proposal algorithm was 16 

also tested in simulating water and N dynamics in the soil-wheat system. Good 17 

agreement of the time-course soil water content and mineral N concentration at 18 

different depths in the soil profile between measurement and simulation was achieved, 19 

suggesting that the proposed algorithm has a potential to be employed in agro-20 

hydrological models.  21 

 22 
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Figure captions: 1 

Fig. 1. Measured N uptake in the above-ground parts (a) and estimated root dry matter 2 

and N accumulations (b) in the validation experiment. 3 

Fig. 2. Comparison of soil water content (a) and NO3-N concentration down the soil 4 

profile at intervals (b) for the fine soil. 5 

Fig. 3. Comparison of soil water content (a) and NO3-N concentration down the soil 6 

profile after 5 days (b), 10 days (c) and 30 days (d) for the medium soil. 7 

Fig. 4. Comparison of soil water content (a) and NO3-N concentration down the soil 8 

profile after 5 days (b), 10 days (c) and 30 days (d) for the coarse soil. Key to 9 

symbols: see legend to Fig. 3. 10 

Fig. 5. NO3-N concentration distributions down the soil profile after 30 days 11 

calculated with and without dispersion term for the fine soil (a), medium soil 12 

(b) and coarse soil (c). 13 

Fig. 6. Overall comparison of soil water content (a) and soil mineral N (b) in different 14 

soil layers and at time intervals between measurement and simulation in the 15 

validation experiment. 16 

Fig. 7. Comparison of soil water content  in the layers of 0-30 cm (a) and 30-60 cm 17 

(b) and 60-90 cm (c) in the validation experiment. 18 

Fig. 8. Comparison of soil mineral N between measurement and simulation in the 19 

layers of 0-30 cm, 30-60 cm and 60-90 cm in the validation experiment (60 20 

kg-N ha
-1

 of N fertilizer was applied on DOY of 133). 21 

Fig. 9. Simulated cumulative actual crop transpiration, soil evaporation and water 22 

percolation at 1 m depth (a) and cumulative N uptake, N mineralization from 23 

soil organic matter and N leaching at 1 m depth (b) in the validation 24 

experiment. 25 



 

Table 1 

Summary of the validation experiment 

 

Soil type Silty clay loam 

Crop Wheat 

Sowing and harvest dates 21 Oct. 1982, 01 Aug. 1983 

Layer thickness of measured soil water content 

and mineral N concentration (cm) 

0-30, 30-60, 60-90 

Dates of soil water and mineral N measurements 

(mmdd) 

0207,0228,0328,0418,0509,0531,

0613,0704,0718,0801 

N fertilizer (kg N ha
-1

) rate and date of 

fertilization (mmdd) 

(60) 0513 
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Table 2 

Soil hydraulic parameter values for the coarse and fine soils in the numerical 

experiments (Wösten et al., 1999) 

 

  s (cm
3
 cm

-3
) r (cm

3
 cm

-3
) n  Ks (cm d

-1
) 

Coarse soil 0.40 0.03 0.0383 1.3744 60.0 

Medium soil 0.44 0.01 0.0314 1.1804 12.1 

Fine soil 0.52 0.01 0.0367 1.1012 24.8 

 

 

 

 

 

 



 35 

 

Table 3 

Fitted soil hydraulic parameter values in the validation experiment using the RETC 

software
a
 (Yang et al., 2009) 

 

  s (cm
3
 cm

-3
) r (cm

3
 cm

-3
) n  Ks (cm d

-1
) 

0–40 cm 0.51 0.00 0.0266 1.1841 40.0 

40–100 cm 0.49 0.00 0.0046 1.1835 2.0 

 
a
 The RETC software was developed by van Genuchten et al. (1991). 
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Table 4 

Model parameter values used in the simulations in the validation experiment 

 

Parameter Value Unit Explanation 

az 3.0 - Shape parameter for root distribution 

c0 0.007 kg m
-3

 Mineral N concentration constant 

cNmin 0.002 kg m
-3

 Min. mineral N concentration in soil layer  

kmin 0.00015 d
-1

 Rate of organic matter breakdown 

kN 0.07 g m
-1

d
-1

 Plant N uptake coefficient 

Q10 3 - Value of Q10 

Sr 300000 m kg
-1

 Specific root length density 

Tmax 27 C Max. temperature for root growth 

Tmin 7 C Min. temperature for root growth 

Ts 20 C Base temperature when Q10 function equals 1 

zmin 30 cm Soil depth where N mineralization occurs 
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Table 5 

Statistical analysis of simulated NO3-N concentration between the ‘complex’ FE 

method and the proposed algorithm, and between the ‘complex’ and the ‘ordinary’ FE 

methods 

 

  RMSE 

(mg cm
-3

)
NSE

(mg cm
-3

) 

R  

‘Complex’ FE method vs 

proposed algorithm 

 

0.022 

 

0.949 

 

0.014 

 

0.965 

‘Complex’ FE method vs 

‘ordinary’ FE method 

 

0.064 

 

0.585 

 

0.039 

 

0.970 
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Table 6 

Statistical analysis of soil water content and soil mineral N between measurement and 

simulation 

 

  RMSE
a

NSE
a
 R  

Soil water content (cm
3
 cm

-3
) 0.04 0.620 0.03 0.749 

Soil mineral N (kg-N ha
-1

) 8.95 0.841 5.49 0.846 

 
a
 RMSE and MAE have the same unit of the analyzed item. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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