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Abstract 

 

Comparative Study of Spectral Sensitivity, Irradiance Sensitivity, Spatial Resolution and 

Temporal Resolution in the Visual Systems of Ocypode quadrata and Aratus pisonii  

 

 

Autrum’s studies (1950, 1958) on terrestrial arthropods first revealed that the visual systems 

of arthropods reflected their lifestyles and habitats, demonstrating that rapidly moving 

predatory diurnal species tend to have better temporal resolution than slower moving nocturnal 

species. In order to test Autrum’s hypothesis that visual adaptions are driven by predator/prey 

interactions, the visual physiology of a nocturnal fast-moving predatory crab, the Atlantic ghost 

crab (Ocypode quadrata), and a diurnal herbivorous crab, the mangrove tree crab (Aratus 

pisonii), was examined and compared. Spectral sensitivity, irradiance sensitivity, and temporal 

resolution of the crabs were quantified using the electroretinogram (ERG), while the spatial 

resolution was calculated utilizing morphological methods. Both O. quadrata and A. pisonii 

had a single dark-adapted spectral sensitivity peak (494 and 499 nm respectively) and 

chromatic adaptation had no effect on their spectral sensitivity, indicating that both species 

have monochromatic visual systems. The temporal resolution of O. quadrata was not 

significantly different from that of A. pisonii, but O. quadrata did possess a significantly greater 

spatial resolution and irradiance sensitivity. Both species possess an acuity zone in the anterior 

region of their eyes. The data presented in this study will aid in the current understanding of 

the correlation between visual physiology and the life history of the animal. 
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1.  Introduction 

1.1 Background 

The visual systems of most animals are highly evolved to efficiently extract visual signals 

from the background noise. Since the photons in the visual signals are limited in dim-light 

environments, inhabitants of these environments face the classic trade-off between sensitivity 

and resolution. The evolution to reach the best balance between sensitivity and resolution can 

occur in the composition of the visual pigments (Forward et al., 1988), the membrane properties 

of the photoreceptor cells (de Souza & Ventura, 1989; Laughlin & Wickström, 1993), and the 

structure of the eye (rev in Meyer-Rochow, 2001). Nocturnal animals and deep-sea animals 

require higher sensitivity (and the resultant lower resolution) to see in dim light (Frank, 2000; 

Johnson et al., 2002), while carnivorous (usually diurnal) predatory animals require higher 

temporal resolution (resulting in lower sensitivity) to track their prey (Howard et al., 1984; de 

Souza & Ventura, 1989; Laughlin & Weckström, 1993). It has been hypothesized that 

differences in organisms’ visual systems result mostly from differences in their ecology – 

primarily habitat and lifestyle, which includes prey preferences and activity cycles (Autrum, 

1958).  

The animals in this study belong to the subphylum Crustacea, which consists of around 

52,000 species worldwide (Cronin & Porter, 2008). Crustaceans occupy almost every 

conceivable niche within marine ecosystems (Cronin & Porter, 2008), and the visual systems 

of crustaceans are very diverse with respect to their eye morphology and physiology. This study 

sought to compare the visual physiology of Ocypode quadrata (Atlantic ghost crab) and Aratus 

pisonii (mangrove tree crab), two decapod crustaceans occupying different niches in South 

Florida, in terms of their spectral sensitivity, irradiance sensitivity, spatial resolution, and 

temporal resolution. These two species were chosen because of their vastly different feeding 

ecologies, providing an excellent test of Autrum’s hypothesis that visual physiology is 

correlated with the life history of an animal.  
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1.2 Structure of Crustacean Compound Eyes 

   The two species in this study are decapod crustaceans, which all possess a compound 

eye consisting of tens to thousands of repeating units called ommatidia (Hodierna, 1644; Muller, 

1826; rev in Land & Nilsson, 2012). Each ommatidium contains a corneal facet, a crystalline 

cone, and a rhabdom comprised of differing numbers of retinula cells (Figure 1). The corneal 

facet functions as a lens and composes the surface structure of compound eyes. A crystalline 

cone, functioning as a light guide, sits right below the corneal facet. Photosensitive pigments 

are located in retinula cells in the rhabdom.    

There are two existing configurations, apposition and superposition, in the compound eye 

of modern crustaceans (Horridge, 1971; rev in Meyer-Rochow, 2001). In apposition eyes, each 

ommatidium is isolated from its neighboring ommatidia by screening pigment cells. The end 

of the crystalline cone is directly connected with the rhabdom, and the rhabdom only receives 

light from its corresponding facet (Figure 1A). Contrary to this, superposition eyes have a 

distinct clear-zone between the end of the crystalline cones and the rhabdom, allowing light 

from multiple facets to be focused on a single rhabdom (Horridge, 1971; rev in Cronin & Porter, 

2008; Figure 1B). Compared to the apposition eye, superposition eyes have higher sensitivity, 

but due to the superposition of light from multiple facets, they sacrifice acuity. Apposition eyes 

can be mostly found in diurnal (day active) species, while superposition eyes are usually 

possessed by nocturnal (night active) species and deep-sea species (Land, 1984; rev in Meyer-

Rochow, 2001).  

Retinula cells are fragile and can be permanently damaged by strong light when there is a 

massive bleaching of the photopigment that spans the cell membranes (Shelton et al., 1985). 

The apposition optics that are found in most diurnal species protect the retinula from being 

exposed to too much light. However, some diurnal and shallow-water species also have 

superposition eyes, and during the day, the screening pigments migrate up between the 

crystalline cones, essentially turning these superposition eyes into functionally apposition eyes. 

At night, the screening pigment migrates back down below the retinula cells, functioning 

similarly to pupillary dilation of the human eye, to increase light sensitivity in dark 
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environments. However, the screening pigments are energetically expensive, thus many 

nocturnal and deep-sea crustaceans do not have screening pigments. 

 

 
Figure 1. From Meyer-Rochow, 2001. Pathway of the light and structural elements in a 

model crustacean compound eye. (a) apposition eye. (b) superposition eye. The shaded areas 

show the light entering the rhabdom from a single facet in apposition eyes and multiple facets 

in superposition eyes. C=cornea, Co=crystalline cones, DP=distal screening pigment, 

CZ=clear-zone, Rh=rhabdoms, PP=proximal screening pigment, Ax=axons. 

 

1.3 Spatial Resolution 

The rhabdom is the location where the light stimulus is transduced into an electrical signal. 

It contains high concentrations of light-sensitive pigments called rhodopsins. Rhodopsins 

absorb light and convert the energy into electrochemical energy, which sensory cells transduce 

into electrical signals that transmit the visual information to the optic neuropils of the brain 

(rev in Rockstein, 2013). Johannes Muller’s study (1826) on compound eye vision was the first 

to provide a hypothesis that described the image formation in the compound eye - Muller's 

mosaic theory. In this hypothesis, which was developed for insects with apposition optics, each 

ommatidium only detects the light at a small angle to its axis, and the visual fields of adjacent 



10 

 

ommatidia do not significantly overlap. Consequently, the contribution of all individual 

ommatidia in a compound eye results in a mosaic image. Modern studies on compound eye 

verified the mosaic hypothesis in terms of optics, elevating it to the level of a theory, but these 

studies also demonstrated that due to post-ommatidial neural processing, ommatidial visual 

fields do overlap (Wiitanen & Varela, 1971; rev in Rockstein, 2013), and the final image is not 

a mosaic.  

Spatial resolution is the amount of detail that an eye can capture, and it can be directly 

quantified by measuring the interommatidial angle (△Φ), which is the angle of separation 

between adjacent ommatidial axes (Barlow, 1952; rev in Caves et al., 2016). Another parameter 

that can be used for studying visual acuity is cycles per degree (CPD), the angle subtended at 

the eye by two stripes in a grating composed of equal light and dark stripes, each pair of stripes 

being one cycle (rev in Feller et al., 2021). In other words, animals with high spatial acuity can 

distinguish very small stripes (small minimum separable threshold), while those with low 

spatial acuity can only distinguish very broad stripes. △Φ is calculated by dividing the facet 

diameter by the radius of curvature of the eye (Snyder, 1976; Figure 2), and CPD is the 

reciprocal of 2△Φ. The radius of the eye curvature and the radius of the whole eye are generally 

different in the arthropods with ellipsoid-shaped eyes, while in arthropods with spherical eyes, 

those values can be the same (Stavenga, 1979). 

 

Figure 2. Parameters for measuring spatial resolution. Sagittal section of several ommatidia, 

where △Φ is the interommatidial angle, D is the facet diameter, and R is the radius of curvature.  



11 

 

Spatial resolution can also be measured through the behavioral method. For example, 

Caves et al. (2016) tested the spatial resolution of cleaner shrimps by measuring their 

optomotor responses (OMR). The study recorded the optomotor response by placing cleaner 

shrimps inside a rotating drum lined with vertical black and white strips. The shrimp will rotate 

in the same direction as the drum rotation if it can resolve the strip. The finest detail a shrimp 

can resolve will be the thinnest strip width to which the shrimp responds, and two times that 

width (one black + one white stripe) is interpreted as the animal’s minimal spatial resolution.    

Spatial resolution is inversely proportional to the △Φ, as an eye with a small △Φ can 

resolve more details. Meanwhile, △Φ can directly affect photosensitivity, because the light 

acceptance angle of each ommatidia can affect the number of entering photons. In eyes of the 

same shape and size, the larger the △Φ, the lower the spatial resolution, and the greater the 

photosensitivity. Cirolana borealis, as an example, is a marine isopod with extraordinary huge 

facets. This feature gives this species one of the most sensitive crustacean eyes known, but with 

poor spatial resolution (Nilsson & Nilsson, 1981). However, one way to increase spatial 

resolution without decreasing photosensitivity is to have a larger eye, or an ellipsoid eye rather 

than a spherical eye (Caves et al., 2018). 

A pseudopupil is a dark spot seen around the center of a compound eye and can be an 

indicator of spatial resolution as well. This dark spot is caused by the absorption of incident 

light by the ommatidium directly facing the observer (Stavenga, 1979; Figure 3). The location 

of pseudopupil is not fixed as it moves across the facets of compound eye when the eye is 

rotated or the observer is moved (Zeil & Al-Mutairi, 1996). The size of the pseudopupil is 

directly proportional to the number of ommatidium that are viewed “head-on” and it sometimes 

varies markedly at different parts of the eye, which means spatial resolution is not evenly 

distributed on the entire eye (Zeil & Al-Mutairi, 1996). Many arthropods possess an acuity 

zone with extraordinarily high spatial resolution. The size of pseudopupil is much larger in the 

acuity zone and this feature can be used to locate the acuity zone of the eye. The spatial 

resolution could also be different in vertical vision and horizontal vision. For example, the 

pseudopupil increased in size vertically but not horizontally in the acuity zone of Uca lactea 

annulipes (Zeil & Al-Mutairi, 1996; Figure 3), which means that the spatial resolution in the 
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acuity zone is higher in vertical vision, but the same as that of the other parts of the eye in 

horizontal vision. 

 

 

Figure 3. From Zeil & Al-Mutairi, 1996. The pseudopupils varied in shape and size in 

different parts of the compound eye of Uca lactea annulipes (Zeil & Al-Mutairi, 1996). Most 

members in the family Ocypodidae, including this species, has an acuity zone in the middle 

part of the eye. 

 

 

1.4 Temporal Resolution 

The temporal resolution of photoreceptors is a measure of how long the photoreceptors 

collect light before an electrical signal is sent to the brain (the integration time), and it is directly 

related to the speed of moving targets that the photoreceptor can track. A high temporal 

resolution requires responses being delivered to the brain in high frequency, which means less 

time to collect photons for each response. An animal with a higher temporal resolution will be 

great at tracking fast moving objects but will have trouble discerning contrast between an 
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animal and the background light in a dim light (nighttime or deep-sea) environment. 

Conversely, a low temporal resolution indicates that the eye takes more time to collect photons 

before sending a signal to the brain. Rapidly moving objects will look blurred for the animals 

with a lower temporal resolution, but the animals will have better contrast resolution in dim 

light environments, which means a greater photosensitivity (Laughlin & Weckström, 1993; 

Frank, 1999).  

Photosensitivity is directly proportional to the size of facets, the length of rhabdoms, the 

△Φ, and the integration time. Therefore, photosensitivity is inversely proportional to both 

spatial resolution and temporal resolution, and an increase in photosensitivity is usually 

correlated with a decrease in temporal resolution and/or spatial resolution in eyes of the same 

size (Ruck, 1958; Frank, 2017; rev in Goldsmith & Bernard, 1974). The evolution of animals' 

eyes involved reaching the best balance between the resolution and irradiance sensitivity 

(Srinivasan & Bernard, 1975).  

It is energetically expensive to have a good temporal resolution because the faster ion 

channels required for higher temporal resolution are metabolically more expensive than slower 

ion channels (Laughlin & Weckström, 1993). Therefore, evolution dictates that animals that 

are nocturnally active and need better contrast resolution have lower temporal resolution, as do 

those species that feed on slow moving or non-moving prey. Animals that are active predators 

and feed on fast-moving prey require higher temporal resolution, and in general, their prey 

provide sufficient energy to maintain the higher metabolic requirements of the fast ion channels 

required for higher temporal resolution. If an animal has reached the best balance between 

resolution and sensitivity, any additional improvement in temporal resolution will result in 

greater cost than benefit (Laughlin & Wickström, 1993). Therefore, evolution will not drive 

animals to unnecessarily improve temporal resolution. 

Insects and crustaceans that have been studied to date show an improvement in the 

temporal resolution under light-adaptation (Laughlin & Weckström, 1993; Frank, 2003), with 

the exception of a few deep-sea crustaceans that show no change or even a slight decrease in 

their temporal resolution upon being light-adapted (Frank, 2003). In addition, the irradiance of 

the stimulus light used to measure the temporal resolution also affects the measurements 
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(Glantz, 1968; Laughlin & Weckström, 1993; Frank, 2017). As the stimulus light irradiance 

increases, the temporal resolution of most crustaceans increases gradually to a maximum, 

referred to as the critical flicker fusion frequency maximum (CFFmax) (Glantz, 1968; Figure 4). 

This is the maximum flicker rate of a light stimulus the eye is capable of following at any light 

intensity when measured electrophysiologically; if the flicker rate is above the CFFmax, then it 

looks like a steady glow rather than a flickering light, and the only response is when the 

stimulus is initially turned on. This parameter has often been used to determine the temporal 

resolution in crustaceans (Frank, 1999; Figure 4). The response latency is another indicator of 

temporal resolution, revealing the speed of light transduction. The response latency is defined 

as the elapsed time between the onset of the light stimulus and the onset of the photoreceptor 

response, and therefore it is inversely correlated with the critical flicker fusion frequency 

(Laughlin & Weckström, 1993; Figure 5A). Since the response latency also varies with light 

irradiance, it is usually measured with an irradiance that produces a response that is 50% of the 

maximum amplitude that the eye is capable of generating to the highest light irradiance. 

Temporal resolution of an individual animal can also vary due to temperature (higher 

temperature results in higher temporal resolution in many species (Frank, 2017)) and ontogeny 

(in certain species). Frank’s (2017) study on deep sea crustaceans demonstrated the significant 

effects of temperature and ontogeny on temporal resolution. The study tested the temporal 

resolution of juvenile and adult stages of Gnathophausia ingens and Systellaspis debilis under 

three different temperatures. Results indicated that the temperature significantly increased the 

CFFmax of adults and juveniles of both species. At the same temperature, the CFFmax of 

juveniles and adults was significantly different in S. debilis but not in G. ingens. Therefore, for 

any kind of comparative study of temporal resolution, it is important that the CFFmax is 

measured in individuals that have been thoroughly dark-adapted, that the temperature remains 

constant, and that experimental subjects are all around the same stage of their live history (i.e., 

either all juveniles or all adults).   
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Figure 4. From Frank, 1999. (A) Examples of species with different the maximum flicker 

fusion frequency. Top trace (ERG) is the electroretinogram response recorded from the eye; 

lower trace (S) is the flicking light stimulus. (B) Flicker fusion frequency (Hz) as a function of 

irradiance (photons cm-2 s-1) for Oplophorus gracilirostris. As irradiance increases, flicker 

fusion frequency increases up to the maximum critical flicker fusion frequency (arrow), the 

point at which further increases in irradiance do not lead to any increase in flicker fusion 

frequency. 

 

 

1.5 Irradiance Sensitivity 

Light irradiance is defined as the radiant flux (i.e., the power of light or photons per second) 

received by a surface per unit area, and the irradiance sensitivity is the characteristic that 

determines the photosensitivity of an eye. The irradiance sensitivity is usually different in 

animals living in different light levels. For example, crustaceans living in the deep sea generally 

have a higher photosensitivity for better vision in darkness (Frank, 2003). Irradiance sensitivity 

in the compound eye is determined by the eye structure, aperture size, and rhabdom properties 

(rev in Meyer-Rochow, 2001). Visual structures such as reflective tapetum or reduced lens can 

significantly increase the number of photons received by photoreceptors (Meyer-Rochow & 

Tiang, 1984; Palmer et al., 2018).  

Aperture size of each ommatidium is another important factor that can affect irradiance 

sensitivity, as an aperture with a large surface area can receive more light. The aperture in an 

apposition eye is equal to the surface area of each corneal facet, while in the superposition, it 

B 
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is equal to the surface area of multiple facets because the rhabdom in a superposition eye can 

receive light from neighboring facets (Horridge, 1971; rev in Meyer-Rochow, 2001; Figure 1). 

Therefore, superposition eyes generally have a better photosensitivity than apposition eyes, 

with the exception of apposition eyes with unusually large facets, such as Cirolana mentioned 

above. The size of facets is directly correlated with the size of ommatidia and the △Φ. Since 

the △Φ is inversely proportional to the spatial resolution, irradiance sensitivity is often 

inversely correlated with the spatial resolution for eyes of the same size. 

Irradiance sensitivity is also directly proportional to the response latency of the 

photoreceptor cell (Frank, 2003; Figure 5B) and therefore often inversely correlated with the 

temporal resolution (explained in section 1.4). The irradiance sensitivity in most crustaceans is 

affected by the dark/light adaptation (Meyer-Rochow & Tiang, 1984), because light adaptation 

can reduce response latency. Most crustaceans will maintain a greater irradiance sensitivity 

when dark adapted, but as the light level increases, many predatory species will sacrifice their 

irradiance sensitivity by decreasing the response latency to increase their temporal resolution. 

Visual transduction, the process of light being converted into electrophysiological signal, 

is caused by the absorption of photons by photopigments and photons (rev in Meyer-Rochow, 

2001). The absorption of photons results in a conformational change in the photopigment, 

opening ion channels, with the resulting ion flow producing an electrical signal. The 

electroretinogram is an extracellular signal that results from the summed mass response from 

multiple photoreceptor cells in response to a light stimulus. As the light irradiance increases, 

the amplitude (voltage) of this signal will gradually increase until it reaches the maximum 

amplitude (Vmax). A response/stimulus curve, called V/log I curve, is usually generated to 

compare the irradiance sensitivities between different species (Figure 6). The logK, the log 

irradiance required to elicit a response that is 50% of Vmax, and the dynamic range, log 

irradiance range between response limits of 5–95% Vmax, are also additional measures of the 

photosensitivity (Laughlin & Hardie, 1978). 
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Figure 5. From Frank, 2003. The irradiance sensitivity and temporal resolution of 13 

species of deep-sea crustaceans. (A) Correlation between response latency and CFFmax of 

dark-adapted eyes. Line is linear trend line fit to the data. (B) Correlation between response log 

K (irradiance required to generate 50% Vmax amplitude response) and response latency. (C) 

Correlation between log K and CFFmax. 

 

 

Figure 6. From Frank, 2003. The V/logI curves of 12 species of deep-sea crustaceans. 

Shaded boxes indicate dynamic range; numbers at the top indicate the size. m = slope of curve. 
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1.6 Spectral Sensitivity  

Most decapod crustaceans have two classes of photoreceptor cells. Seven anatomically 

similar photoreceptor cells (called R1-7) form the main portion of the rhabdom, and one 

separate cell (called R8) is located at the distal part of the rhabdom (Eguchi & Waterman, 1967; 

Cummins & Goldsmith, 1981). R1-7 cells contain blue-green sensitive visual pigments, while 

the R8 cell contains violet-ultraviolet sensitive visual pigment in those species for which these 

data are available (rev in Marshall et al., 2003). R8 cells in some decapods are reduced or lost, 

resulting in these species not being able to sense violet or near-UV light (Cummins & 

Goldsmith, 1981; rev in Marshall et al., 2003). 

Spectral sensitivity is the ability of an eye to detect light as a function of wavelength. 

Animals are more sensitive to the light (i.e., it takes less light to generate a response) with a 

wavelength closer to the wavelength maximally absorbed by their visual pigments. There are 

two existing hypotheses explaining the relationship between spectral sensitivity and the light 

spectrum in the habitat. The Sensitivity Hypothesis states that the photopigment matches the 

spectral composition of light in its habitat for maximum sensitivity to the available light (Clarke, 

1936; Munz, 1958). The Contrast Hypothesis states that photopigment has evolved to 

maximize the contrast between the light reflected from objects of interest and the background 

light (Lythgoe, 1968).  

The Sensitivity Hypothesis can be best explained by comparing the sensitivities of 

crustaceans living in different habitats (Figure 7). Even though a small amount of water is 

colorless, rivers and oceans appear to have color because of the selective absorption and 

scattering effects of water. Longer wavelengths of light, such as red and orange, are the 

wavelengths most strongly absorbed by water. As a result, long wavelength light disappears 

first as the sunlight travels through the water, and even the green light will disappear if the light 

travels for a longer distance. The wavelength of light that penetrates best in clear oceanic water 

is 475 nm, which is blue, and the spectrum shifts toward green in more coastal, turbid water. 

The spectral range might even shift toward yellow in freshwater environments (Jerlov, 1976). 

R1-7 spectral sensitivity of coastal crabs that live in greener water have maxima between 483 
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to 516 nm (Forward et al., 1988), while the crustaceans that live in bluer open water have 

sensitivity maxima between 460 and 490 nm (Frank & Widder, 1999). 

 

 

 

Figure 7. From Munz & McFarland, 1977. The Sensitivity Hypothesis states that the spectral 

sensitivity is matched to the spectral composition of light in its habitat. (Clarke, 1936; Munz, 

1958) (a) Light irradiance at 3m in clear oceanic reef water at noon (solid line) and after sunset 

(dotted line). (Data from Eniwetok atoll in the Pacific Ocean - Munz & McFarland, 1973.) R1-

7 cell sensitivities in most monochromatic and dichromatic marine crustaceans range between 

the vertical solid lines. (b) Light at noon (solid line) and just after dark (dotted line) in an 

estuary. Crab R1-7 spectral sensitivities lie between the vertical solid lines. (Light data from 

Munz & McFarland, 1977) 

 

 

A spectral sensitivity that is exactly matched to the background light is good for detecting 

a dark item against the brighter background. On the other hand, the spectral sensitivity 

maximum should be offset from the background light in order to detect bright targets against a 

dark background, in order to maximize the contrast between the light reflected from the target 

and the background light (Lythgoe, 1968). The spectral sensitivity of oplophorids and 

sergestids, two groups of deep-sea crustaceans, is offset from the downwelling light maximum 

and bioluminescent sources (Frank & Widder, 1999), which can potentially be explained by 

the Contrast Hypothesis (Figure 8).  
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Figure 8. From Marshall et al., 2003.  A spectral sensitivity offset from the maximum 

irradiance is useful to detect light objects against a darker background. Sensitivity of 

oplophorids and sergestids is offset from the light in their habitats. Normalized light irradiance 

at 3 m, 60 m, and 335 m (progressively thicker lines) in clear oceanic water. Spectral sensitivity 

maxima of euphausiids lies between solid vertical lines; spectral sensitivity maxima of 

oplophorid and sergestid shrimps lies between dotted vertical lines  

  

 

1.7 Methods of Investigating Visual Systems  

There are several methods for testing an organism’s visual capabilities. Behavioral studies 

seek to observe a behavioral response of an animal to a stimulus light. The results can directly 

illustrate the relationship between the stimuli and responses. However, the result might not be 

accurate since captive environments can alter the behavior of most wild animals (Okuno, 1963). 

Histological studies illustrate the detailed physical structure of an eye. Images from light 

microscopy can provide multiple important characteristics of an eye. The presence of a clear-

zone can be used as evidence for determining if the eye is of the superposition type (Horridge, 

1971), while the density of facets will be used for calculating the spatial resolution. Histological 

studies do not require live animals, but only well-preserved tissues. However, the result is 

limited to the structure of the eye and cannot illustrate any physiological characteristic, such as 

temporal resolution. 

Spectrophotometry is a technique to measure the spectral absorbance of liquid solutions. 

It has been widely used to assess the spectral sensitivity of compound eyes. Visual pigments in 

compound eyes are extracted with a solution and examined by a spectrophotometer. The result 

will not be affected by other factors, such as the animal’s behavior and the environmental 

conditions. Therefore, this study can be extremely precise. However, the results might be offset 
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from whole eye spectral sensitivity because extracted photopigments might not behave the 

same in situ as they do in solution (Bruno & Goldsmith, 1974; rev in Johnson et al., 2002), and 

the effects of any screening pigments are not taken into account. 

Microspectrophotometry (MSP) is a technique similar to spectrophotometry but measures 

the spectral absorbance of visual pigments in situ (i.e., on frozen sections of the rhabdom). 

MSP directly measures intact rhabdoms and provides excellent information on the absorbance 

of the photopigments within the eyes. However, MSP may not show the accurate spectral 

sensitivity of the eye, as any filtering effects of screening pigments and/or pre-retinal tissues 

are eliminated in isolated rhabdoms (Wald, 1967; Cummins & Goldsmith, 1981; Frank & Case, 

1988). 

An electroretinogram (ERG) records electrical activity of retinal cells in response to the 

absorption of photons. A photoreceptor cell will provide an electrical response to a stimulus 

light flash, and the ERG, being an extracellular signal, records the summed mass response of 

multiple photoreceptor cells simultaneously. ERG is a very efficient way to study an animal’s 

visual capabilities, because it directly records the responses in the receptor layer that takes into 

account any changes caused by pre-retinal filtering (Bryceson, 1986) and can be used to 

measure photosensitivity, spectral sensitivity and temporal resolution. However, the drawback 

of electrophysiological studies is that they need to be conducted in living animals. 

Each method has its own strengths and weaknesses. An ERG was used to determine the 

spectral sensitivity of crustaceans in this study, because the ERG provides more accurate data 

than either spectrophotometry or MSP. Another reason for using the ERG is that it is also able 

to measure the temporal resolution and irradiance sensitivity in addition to spectral sensitivity. 

In addition, histological techniques were used to study the spatial resolution and eye structure 

of crustaceans. The combination of electrophysiology and histology has been used in many 

previous studies of the visual physiology of crustacean eyes (Bernhard et al., 1963; Jacklet, 

1969; Caves et al., 2016). The advantage of this combination is that the aspects of the visual 

system that need to be known to understand how well these visual systems are adapted to the 

habitat and life history of the organisms - spatial resolution, temporal resolution, irradiance 

sensitivity, and spectral sensitivity, can all be determined with these two techniques. 
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1.8 Objectives  

Vision provides vital information to all animals with photoreceptors, and different species 

have different visual systems depending on their lifestyles and the environments they live in. 

Therefore, the study of visual physiology provides important information on the ecology of a 

species. This study will conduct research on the vision of crustaceans. Crustaceans serve as an 

indispensable food source of many marine organisms, including many commercial fishes 

(Szaniawska, 2018). Many crustaceans are opportunists and have a wide range of food 

preferences, consequently increasing the stability of an ecosystem (Covich et al., 2010; 

Szaniawska, 2018). Crustaceans can also serve as indicator animals for accessing the impact 

of human activity and climate change, as they are very sensitive to the influence of biotic and 

abiotic factors (Hayden & Dolan, 1974; Abduho & Madjos, 2018). This study will contribute 

to the understanding of the visual ecology and physiology of crustaceans, therefore benefitting 

marine conservation efforts. 
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2.  Methods 

2.1 Species   

 

Figure 9. The Atlantic ghost crab (A) and the mangrove tree crab (B). 

 

The Atlantic ghost crab, Ocypode quadrata 

 The Atlantic ghost crab, Ocypode quadrata (Figure 9A), is a carnivorous crab of the family 

Ocypodidae inhabiting the sandy beaches from Block Island, Rhode Island, USA to Santa 

Catarina, Brazil (Williams, 1984). The ghost crab is nocturnal and forages actively from sunset 

till dawn (Wolcott, 1978). Ghost crabs are sand burrowers in the intertidal zone (Figure 10A) 

and will only get into the water for moistening their gills (Williams, 1965), as they will drown 

if submerged in water for too long. The muscles of their leg have high tetanus fusion-

frequencies, of the order of 90 Hz, which allows for extremely rapid locomotion (Hafemann & 

Hubbard, 1969). The speed of ghost crabs is correlated with their body size and most of the 

crabs can reach a speed of over 2m/s (Burrows & Hoyle, 1973). The fast speed of ghost crabs 

allows them to escape from predation (Burrows & Hoyle, 1973) and actively hunt for prey 

(Wolcott, 1978).  

 Ghost crabs are mainly active predators and feed exclusively on other smaller crustaceans 

and mollusks (Wolcott, 1978). In addition, ghost crabs are also scavengers and will consume 

dead marine animals washed up on the coasts. As the ghost crabs occupy an important role in 

the food web of intertidal habitats, ghost crabs can be a great biological indicator for the health 

status of the coastal areas and their population density is correlated with the level of 

anthropogenic impacts on beaches (Aheto et al., 2011; Noriega et al., 2012). Many studies have 

A B 
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shown a reduction in the population densities of the Atlantic ghost crab in regions disturbed by 

humans (Barros, 2001; Neves & Bemvenuti, 2006; Magalhães et al., 2009). 

 Most crabs in the genus Ocypode, including the Ocypode quadrata, have sensitive auditory 

systems for interspecific communication and prey detection (Horch & Salmon, 1972; Clayton, 

2008). During courtship, the male ghost crab hits the ground with the major cheliped to produce 

long vibrational sounds. If attracted to the male, a female ghost crab will approach the male by 

moving toward the sound source (Clayton, 2008). The ghost crab also has a well-developed 

olfactory system and can distinguish a wide range of odor cues, which allows the crab to be an 

excellent predator and scavenger (Wellins et al., 1988).  

Forward et al. (1988) attempted to use MSP to investigate the spectral sensitivity of 

Ocypode quadrata but were not able to collect any data because of the heavy coatings of 

screening pigment granules. The main function of screening pigment granules is to absorb 

unwanted stray light (Stavenga, 1989). The screening pigment in the ghost crab is mobile, 

moving up between the ommatidia during the day to protect the rhabdoms from too much light. 

At night, the screening pigments retract, allowing rhabdoms to receive more light, which results 

in increased photosensitivity. These screening pigment granules, located in the pigment cells 

between retinula cells (Insausti, 2013), interfere with measurements of the absorption spectra 

of the visual pigments.      

 

 

 

Figure 10. Dwelling habitats of O. quadrata and A. pisonii. O. quadrata is usually buried in 

sandy beaches during the daytime (A), while A. pisonii primarily lives in mangrove forests (B). 

A B 
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The mangrove tree crab, Aratus pisonii 

The mangrove tree crab, Aratus pisonii (Figure 9B), is an arboreal crab of the family 

Grapsidae inhabiting the mangrove forests of the western Atlantic from central Florida to Brazil 

and the eastern Pacific from Sonora to Peru (Rathbun, 1917). This crab is diurnal and lives 

above water on the root, trunk and branches of mangrove trees, especially the red mangrove 

(Conde & Diaz, 1989, Figure 10B). The mangrove tree crab is great climber and can even jump 

from tree to tree. The dorsal side of the crab’s carapace has a similar color to tree bark, which 

gives them great camouflage in mangrove forests. However, if spotted by a predator, the crab 

is not able to move rapidly. Instead, its defense mechanisms against predation will be either 

moving to the back side of the tree or falling into the water. 

Studies on the diet of the mangrove tree crab indicate that they are herbivore and mainly 

feed on mangrove leaves and arboreal algae (Beever et al., 1979). However, the study by Conde 

& Diaz (1989) suggested that the mangrove tree crab might also be an omnivorous scavenger, 

since the crab is able to survive on an omnivore diet for a very long time in laboratory. There 

is no direct observation of a mangrove tree crab scavenging on an animal corpse in the wild, 

but researchers found that fish meat bait could occasionally attract mangrove tree crabs. Animal 

corpses are very rare in mangrove forests but as they contain high concentrations of nutritious 

proteins, they would be extremely valuable for mangrove tree crabs. Upon an incidental 

encounter of an animal corpse, the crab may switch briefly from being an herbivore to being a 

scavenger.   

The mangrove tree crab is a keystone species in the mangrove forest ecosystem (Beever et 

al., 1979). It is one of the very few species that can exclusively feed on mangrove leaves and 

then bring the energy to the higher trophic levels. They constantly transfer the energy and 

biomass from arboreal mangrove habitat to the surrounding aquatic system in the form of frass 

(the excrement of plant-eating invertebrates) and offspring (Beever et al., 1979). In Florida, the 

average output of eggs of mangrove tree crab in mangrove forest, with a density of 2.8 mature 

females per m2, is 207 eggs per day per m2, with 99.959% of the larvae and young crabs being 

consumed by other aquatic organisms. After an egg successfully reached adulthood, a single 

adult crab can consume 35.3 cm2 of leaf area per month and produce about 0.25 cm3 of frass/ 
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cm2 of red mangrove. This eventually results in one mangrove tree crab introducing 8.8 cm3 of 

frass into the aquatic system each month. 

 The vision of Aratus pisonii has never been studied. The evolution of the visual system of 

the mangrove tree crab should mainly be driven by the predation pressure, since most of the 

mortality in the population is caused by predation. Foraging might not be a strong factor acting 

on the evolution on the visual system of this crab, because there is never any shortage of 

mangroves leaves in mangrove forests. 

 

 

2.2 Specimen Collection and Maintenance  

Aratus pisonii were collected from the mangrove forests, and Ocypode quadrata were 

collected from the intertidal zones of exposed sandy beaches in Hollywood, Florida. All 

animals were transported to the laboratory in plastic containers containing seawater from the 

collection site and were kept in complete darkness until the experiments. The temperature of 

the laboratory remained constantly at 21.8 Celsius. Fresh mangrove leaves were supplied in 

abundance in the container of Aratus pisonii, while fish meat was provided to Ocypode 

quadrata once every two days. The seawater was changed daily, and all animals were used for 

experiments within 10 days of collection. 

 

 

2.3 Electrophysiological Recordings  

The electrophysiological recording method was based on methods used by Frank et al. 

(2012). All animals were dark adapted in a dark room for seven hours prior to the experiment. 

Animals were prepared for recordings under dim red light and remained alive during the 

experiments. For both species, the chelipeds were autotomized by applying pressure to the 

merus with a hemostat in order to prevent the animals from pulling the electrode out from their 

eyes. A drop of Cyanoacrylate glue was applied to the base of eye stalk to stabilize the eye, 

and the carapace was glued to a plastic holder. Animals were suspended in a seawater bath 

inside a Faraday cage that was covered with a lightproof sheet. The animal body was 
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submerged in the seawater with only the dorsal surface of the eye slightly above the level of 

the water. A glass insulated tungsten microelectrode (Frederick Haer Corp. Inc.) was placed 

into the eye with the aid of a dissecting microscope (Olympus Corp.). A silver chloride 

electrode was placed in the water near the animal to ground out the background electrical noise 

in the water bath. Once prepared, animals were allowed to dark-adapt for 1 hour prior to 

experiments, since the animals might be slightly light-adapted under the dim red light.  

Signals were amplified with an X Cell-3 Microelectrode Amplifier (FHC, Inc.) with a high 

impedance probe. Level of amplification was set to 2000X, and filters were set between 1-1000 

Hz. Data were displayed on a laptop computer (PowerBook Titanium G4, Apple Inc.) and then 

digitized using a program written in LabView (National Instructions, Austin, TX, USA) and 

stored for later analysis.  

 

 

2.4 Optical Apparatus and Light Stimuli  

The pathway of a light stimuli from the light source to the tested eye was in the following 

order: Light source, monochromator, shutter, neutral-density filter wheel, light guide, and the 

eye. The full spectrum light was first adjusted to monochromatic light at the tested wavelength 

by a monochromator (CM110 monochromator, Spectral Products, Putnam, CT, USA). Flash 

duration was regulated by a computer-controlled shutter (Model VS14, Vincent Associates, 

Rochester, NY, USA), and light irradiance was controlled with a neutral-density filter wheel 

driven by a computer-controlled stepper motor (all control programs were written in LabView). 

Test flashes of light were transmitted to the eye through a one end of a bifurcated light guide 

composed of randomized silica fibers that had been positioned close to the eye so that the entire 

eye was bathed in light. 

The light irradiance was measured at each wavelength with an optometer (UDT 

Instruments, San Diego, CA, USA). These light calibration data were in μW cm-2 and then 

were converted to photons cm-2 s-1, because the number of photons within 1 microwatt of light 

varies at different wavelength and the response of photoreceptor cell is based on the number of 

photons absorbed. The conversion was done using the following equation: irradiance [in 
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photons cm-2 s-1] = 5035000000* wavelength [in nm] * irradiance [in μW cm-2] 

 

 

2.5 Electrophysiological Experiments Procedure  

Spectral Sensitivity  

A dim test flash of constant wavelength and irradiance was given at the beginning of the 

experiment, and the measurements began when the response to the test flash had not changed 

for 1 hour. The eye was then stimulated with stimulus flashes of monochromatic light, and 

flash irradiance was adjusted until the eye produced a criterion response of 50 μV. Duration of 

each flash was 0.1 second, and the wavelengths of the flashes were in random order, ranging 

from 380-600 nm in increments of 10 nm. A dim test flash was given after testing each 

wavelength in order to ensure the eye remains fully dark-adapted. Data were plotted as the 

inverse of the irradiance required to evoke the criterion response at each wavelength and 

normalized to the wavelength of maximum sensitivity.  

 

Irradiance Sensitivity 

Voltage versus log irradiance (V/logI) curves were generated from measurements made in 

dark-adapted eyes to compare the irradiance sensitivity of two species. The dark-adapted eyes 

were stimulated with 0.1 second test flashes of increasing irradiances of 490 nm 

monochromatic light. The first stimulus flash was the dimmest flash and the irradiance started 

at around 108 photons cm-1 s-1. The irradiance of each following flash was increased by half 

log unit until the response was saturated. To ensure that the stimulus was given to a fully dark-

adapted eye, a dim test flash was administered after each stimulus, and no further stimulus 

flashes were given until the response to the test flash had recovered to the dark-adapted level. 

The V/log I curves were plotted with the Zettler modification of the Naka-Rushton equation 

(Naka and Rushton, 1966; Zettler, 1969): V/Vmax=Im/(Im+Km), where I is stimulus irradiance, 

Vmax is maximum response amplitude the eye is capable of generating, and K is the irradiance 

yielding a response that is 50% Vmax. The dynamic range of 5-95% Vmax was also labeled in 

the curves. 
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Temporal Resolution  

Temporal resolution was examined by determining the CFFmax and the response latency. 

CFFmax was tested under both dark-adapted and light adapted condition, while the response 

latency was tested in dark-adapted eyes. In the dark-adapted test, all animals remained fully 

dark-adapted, because light adaptation could affect the temporal resolution in certain species. 

A stimulus of 490 nm flickering monochromatic light was presented to the dark-adapted eye, 

and the flicker frequency was increased until critical flicker fusion was achieved. The flickering 

light stimulus was generated by a computer-controlled electromagnetic shutter with a constant 

50% duty cycle (50:50 light: dark ratio). To ensure that the eye remains dark-adapted, a dim 

test flash was given between each measurement, and subsequent flickering stimuli would not 

be given until the amplitude of the test flash had returned to its dark-adapted level. Irradiance 

was then increased by one log unit, and the flicker rate of the stimulus light was increased until 

critical flicker fusion is again achieved. CFFmax was determined as the point at which the eye 

could no longer respond to each individual flash of light. The response latency, equal to the 

elapsed time between the onset of stimulus and the onset of response, was measured under a 

test flash with an irradiance of K (measured in irradiance sensitivity test), which is the 

irradiance that produced a response that was 50% of the Vmax. 

 

 

2.6 Light and Electron Microscopy 

Scanning Electron Microscopy (SEM) 

After the electrophysiology experiments, animals were anesthetized by placing them in 

seawater at 4°C for 3–4 minutes. A scalpel was used to cut off the eyes for SEM and histology 

studies. Samples were stored in 2% glutaraldehyde in seawater at 4°C.  

Post-fixation for scanning electron microscopy was in 1% OsO4 (osmium) in phosphate-

buffered saline (PBS) for 1.5 hours, followed by three 15-minute washes in buffer. Samples 

were dehydrated through a sequence of 20%, 50%, 70%, 95%, and 100% ethanol for 15 

minutes each. The samples were then dried in 3 changes of hexamethyldisilazane (HMDS) for 

5 minutes each. Following drying, samples were coated with a thin (20 nm) layer of Pd in a 
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Cressingtin 108 Manual Sputter Coater. Imaging was in a Philips XL-30 Field Emission 

Scanning Electron Microscope at varying magnifications. Images were digitally recorded. 

  

 

Spatial Resolution and Histology Experiments 

It was not known whether the animals have apposition or superposition eyes prior to the 

experiment. The clear-zone in superposition eyes would be heavily covered with screening 

pigments if the eyes were light adapted, which will make it extremely difficult to differentiate 

apposition from superposition eyes. Therefore, the collection of the eyes for histology was 

conducted under red light so that all specimens were fully dark-adapted.  

To make sure the fixative penetrated to the center of the eye, each eye was cut into two 

equal sagittal sections before fixation in a mixture of 2.5% glutaraldehyde and 3.7% 

formaldehyde in seawater at room temperature (Alkaladi & Zeil, 2014). Samples were 

subsequently washed in three changes of seawater for 5 minutes each. The eyes were 

dehydrated through a sequence of 20%, 50%, 70%, 90%, 95%, and 100% ethanol for 15 

minutes each. Samples were embedded in paraffin wax and sectioned at a thickness of 5 μm.  

The tissue sections were then deparaffinized, hydrated with water, and then stained for 5 

minutes using Mallory-Heidenhain Stain, which consists of 1.0 gram of Phosphomolybdic or 

phosphotungstic acid, 2.0 grams of Orange G, 1.0 gram of water-soluble aniline blue, and 3.0 

grams of acid fuchsin in 200 mL distilled water. 

Sections were viewed and photographed under a light microscope, and the digital images 

were analyzed using Image J. The following structures were examined histologically: screening 

pigments, the presence or absence of clear-zone, rhabdoms and facets. The interommatidial 

angle (△Φ) was used to quantify spatial resolution and was calculated by dividing the facet 

diameter by the radius of the eye curvature. The local curvature was measured by fitting circles 

to the images of eyes, with the radius of the eye curvature being equal to the radius of the circle 

(following Baldwin Fergus et al., 2015).  

 In order to determine if the animal possessed an acuity zone, the pseudopupils of both 

species were examined visually. The live animal was placed 20 cm in front of the eyes of the 
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observer and rotated 360° vertically and then 360° horizontally. Any increase in the size of 

pseudopupil would indicate the presence of an acuity zone. After an acuity zone was found, 

the spatial resolution was quantified from the △Φ in the acuity zone, using the same 

measurement for calculating the △Φ in non-acuity zone. Photos of pseudopupils in the anterior, 

dorsal, and posterior of the eye were taken with a camera (Canon Inc.) connected to a stereo 

microscope (Meiji Techno). 

 

 

2.7 Statistics 

The CFFmax, the response latency, the interommatidial angle and the cycles per degree in 

the non-acuity zone, the interommatidial angle and the cycles per degree in the acuity zone, the 

rhabdom length, and the facet diameter were analyzed statistically to determine if there were 

significant differences between O. quadrata and A. pisonii. A Shapiro-Wilk test was used to 

test for normality, and a two-sample t-test was used to analyze normally distributed data, while 

a two-sample Mann-Whitney Wilcoxon test was used to analyze non-normal data. All 

statistical analyses were conducted using the statistical software package R and null hypotheses 

(no difference between the two species for each of the factors mentioned above) were rejected 

when p ≤ 0.05. 
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3.  Results 

3.1 Spectral sensitivity 

Each species showed only one peak in the dark-adapted spectral sensitivity curve, with 

peak sensitivity of 494 nm (O. quadrata) and 499 nm (A. pisonii). Chromatic adaptation at a 

wavelength of 500 nm was used to determine whether the animals have additional 

photopigments. The chromatic-adapted spectral sensitivity curves of both species are the same 

as their dark-adapted curves, which indicates that each species has only one blue sensitive 

photopigment. Any flashes at a wavelength below 400 nm or above 600 nm cannot evoke a 

criterion response of 50 μV, and therefore the range of the sensitivity curves is between 400 

and 600 nm (Figure 11).  

 

 
Figure 11. Spectral sensitivity curves for O. quadrata and A. pisonii. The dark-adapted 

spectral sensitivity curves for both O. quadrata (A) and A. pisonii (B) show a single sensitivity 

peak in the blue wavelengths. Under 500 nm chromatic adaptation, there was no change in the 
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shape of the spectral sensitivity curve for either O. quadrata (C) and A. pisonii (D). Data points 

represent the inverse of the irradiance required to evoke the criterion response at each 

wavelength and normalized to the wavelength of maximum sensitivity. Error bars represent 

standard error of the mean (S. E. M). Solid lines are the best-fit absorbance curves. 

 

 

3.2 Temporal Resolution and Irradiance Sensitivity 

The dark-adapted CFFmax of both species was the same, and both species had a higher 

CFFmax when light-adapted than when dark-adapted (Table 1). The light-adapted CFFmax is 

statistically different between O. quadrata and A. pisonii, even though the absolute difference 

was only 1.5 Hz. There is also no significance difference in response latency between the two 

species.  

 

Table 1. CFFmax, latency of 50% Vmax response, and logK in O. quadrata and A. pisonii. 

  O. quadrata A. pisonii  

CFFmax: dark-adapted (Hz) 33.7±0.3 (n=3) 33.5±0.2 (n=6) p=0.89 

CFFmax: light-adapted (Hz) 41.8±0.4 (n=5) 43.3±0.2 (n=6) p=0.016 * 

Latency of 50% Vmax (s) 0.0237±0.0003 (n=3) 0.0228±0.0007 (n=5) p=0.51 

logK (log photons cm-2 s-1) 12.48 (n=3) 13.62 (n=4) p=0.00005 * 

Sample size (n) indicates number of individuals per species, and values are means±S.E.M. 

Asterisk indicates a statistically significant difference. 
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The logK value was significantly lower in O. quadrata than in A. pisonii. The dynamic 

ranges of both O. quadrata and A. pisonii were both approximately 3 log units (Figure 12). 
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Figure 12. V/logI curves for O. quadrata and A. pisonii. Data points represent the mean of 

irradiance sensitivity data normalized to Vmax for each individual; error bars are S. E. M. 

Solid curves are best fit (Excel solver) to the Naka–Rushton equation, and the shaded areas 

represent the dynamic range between 5% Vmax and 95% Vmax. 

 

 

3.3 Eye Structures and Spatial Resolution 

O. quadrata has apposition eyes, as the end of the crystalline cone is directly connected to 

the rhabdom (Figure 13A). The shape of the eyes is between a hemisphere and an ellipsoid 

(Figure 13B). The diameter of facets does not change within the eye, while the radius of eye 

curvature and the size of pseudopupil increased in the middle anterior region of the eye, 

indicating that the O. quadrata eye possesses an acuity zone (Figure 13B). The pseudopupil of 

O. quadrata in the acuity zone only elongated vertically but not horizontally (Figure 14), and 

therefore the spatial resolution varied between their vertical vision and horizontal vision. The 

△Φ measured horizontally was 1.36°, which is the same as the △Φ measured vertically in the 

bottom and top parts of the eye. In the middle anterior region of the eye, where the acuity zone 

is found, the △Φ is 0.42°. 

A. pisonii also has apposition eyes (Figure 13C). The body size of the male crabs is slightly 

n=3 n=4 



35 

 

larger than that of the females, and consequently the eye radius of most males was slightly 

larger than that of the females. Nevertheless, in A. pisonii, any increase in eye radius also 

proportionally increased the diameter of facets, and therefore interommatidial angle and spatial 

resolution were not affected by the variation in body sizes. The shape of the eyes is a 

hemisphere (Figure 13D), with a △Φ of 1.87°. An acuity zone with a △Φ of 1.21° was found 

in the anterior region of the eye. Spatial resolution does not vary between the vertical and 

horizontal vision in A. pisonii, and the pseudopupil in the acuity zone increased in size both 

vertically and horizontally (Figure 14). 
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Figure 13. Light (A,B,C,D) and Scanning Electron Microscopy (E,F) of O. quadrata 

(A,B,E) and A. pisonii (C,D,F). There is no clear-zone between the crystalline cones and 

rhabdoms in O. quadrata (A) or A. pisonii (C). O. quadrata has ellipsoid eyes (B), while A. 

pisonii has spherical eyes (D). In both species, the shape of the facets (E,F) is a hexagon. a, 

anterior; p, posterior; d, dorsal; v, ventral; cc, crystalline cones; co, cornea; rh, rhabdom. Red 

circle indicates the position of the acuity zone.  
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 O. quadrata A. pisonii 

Anterior 

view 

  

Dorsal 

view 

  

Posterior 

view 

  

Figure 14. Pseudopupils of O. quadrata and A. pisonii. The pseudopupil is the dark spot 

near the center of each view, and it increased in size in the anterior region of the eye in both 

species. 
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 The shape of the facets in both species is hexagonal, as seen in the SEM images (Figure 

13 E, F). The average length of rhabdom and the diameter of facets in O. quadrata were 

significantly larger than those in A. pisonii. The △Φ in the acuity zone and non-acuity zone of 

O. quadrata were significantly smaller than those in A. pisonii (table 2). 

 

 

Table 2. Measures of spatial resolution in O. quadrata and A. pisonii. 

  O. quadrata A. pisonii t-test 

Facet diameter (μm) 53.83±1.49 (n=4) 31.38±2.72 (n=5) p=0.00034 * 

Rhabdom length (μm) 436±5 (n=3) 368±14 (n=4) p=0.016 * 

△Φ in non-acuity zone (deg) 1.36+0.05 (n=4) 1.87±0.13 (n=5) p=0.013 * 

Cycles/degree in non-acuity zone 0.37±0.01 (n=4) 0.27±0.02 (n=5) p=0.0040 * 

△Φ in acuity zone (deg) 0.42±0.01 (n=4) 1.21±0.01 (n=4) p=0.00075 * 

Cycles/degree in acuity zone 1.18±0.03 (n=4) 0.41±0.02 (n=4) p=0.0000022 * 

Sample size (n) indicates number of individuals per species, and values are means±S. E. M. 

Asterisk indicates a statistically significant difference.  
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4.  Discussion 

4.1 Spectral Sensitivity 

The results of the dark-adapted sensitivity experiments showed that there is no difference 

in the spectral sensitivity between O. quadrata and A. pisonii – both peaked in the blue region 

of the spectrum (494 nm and 499 nm respectively). This is consistent with earlier studies that 

demonstrated that most terrestrial and shallow-water decapods are maximally sensitive to 

wavelengths between 480 and 540 nm (rev in Marshall et al., 1999; Johnson et al., 2002). The 

light spectrum in terrestrial and shallow-water areas peak in the blue-green region of the light 

spectrum (rev in Marshall et al., 2003; Ciocca & Wang, 2013), and the maximum sensitivity 

of photopigments of both Atlantic ghost crabs and mangrove tree crabs is matched for 

maximum sensitivity to the light spectrum, which is consistent with the Sensitivity Hypothesis.  

Being diurnally active vs. nocturnally active did not play an important role in their spectral 

sensitivity since the spectrum of nightlight is very similar with the daylight with only a slightly 

shift toward the longer wavelengths (Ciocca & Wang, 2013). Atlantic ghost crabs and 

mangrove tree crabs are both terrestrial species, and the light that passed through their eyes has 

been scattered similarly by the atmosphere. Consequently, the background light in their habitats 

have the same spectrum, which caused a similar evolution in their spectral sensitivity.  

The spectral sensitivity curves did not change between dark-adaptation and chromatic-

adaptation, which indicated that both the Atlantic ghost crab and the mangrove tree crab have 

only one photopigment. The absence of photopigments at the UV wavelength indicates that 

their R8 rhabdom cells are either lost or reduced. The flat sandy beach is a relatively monotone 

environment, and a monochromatic visual system should provide sufficient contrast detection 

for an Atlantic ghost crab to spot prey (Figure 10A). The mangrove forest habitat of the 

mangrove tree crab is a complex three-dimensional environment (Figure 10B). However, since 

the mangrove tree crab is an herbivore, a monochromatic visual system is adequate for it to 

recognize mangrove leaves in mangrove forests. Color vision may not result in an advantage 

that is significant enough to drive evolution in either species. 
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4.2 Temporal Resolution and Irradiance Sensitivity 

The dark-adapted CFFmax of the Atlantic ghost crab was virtually identical to that of the 

mangrove tree crab (33.7 vs. 33.5 Hz), indicating that both species have the same temporal 

resolution. While the light-adapted CFFmax of the Atlantic ghost crab was significantly higher 

than that of the mangrove tree crab, the difference of only 1.5Hz is too small a difference to 

have an effect on their ability to track moving objects, and this small difference, together with 

no difference in their dark-adapted CFFmax or response latency, indicates that both species have 

the same temporal resolution.   

Their feeding ecology could play an important role on the evolution of their temporal 

resolution, and based on feeding ecology alone, the Atlantic ghost crab would be expected to 

have a higher temporal resolution since it is a predator, eating mobile prey, while the mangrove 

tree crab eats non-motile leaves. However, the day/night activity pattern can also affect 

temporal resolution, and the nocturnal Atlantic ghost crab, in this case, would need a lower 

temporal resolution correlated with a higher sensitivity, than the diurnal mangrove tree crab. 

The effects of the predator/prey interaction and day/night activity pattern may have 

counterbalanced each other, resulting in similar temporal resolution in this nocturnal predator 

and this diurnal herbivore. 

Irradiance sensitivity of apposition eyes is a function of integration time and facet size. 

The response latency of the Atlantic ghost crab is about the same as that of the mangrove tree 

crab, suggesting no difference in their integration time of light transduction. However, the logK 

value of the Atlantic ghost crab is significantly smaller than that of the mangrove tree crab, 

meaning that it takes significantly less light to produce a 50% Vmax, which indicates a 

significantly higher irradiance sensitivity in the Atlantic ghost crab. As there is no difference 

in temporal resolution, this difference in the irradiance sensitivity must result from the 

significant differences in their optics or eye sizes. Both species have apposition eyes, but the 

Atlantic ghost crab has a significantly larger corneal facet (53.8 vs. 31.4 μm), meaning that 

each rhabdom has a larger aperture, collecting more light and thus providing a partial 

explanation for the significantly higher photosensitivity in the Atlantic ghost crab.   

This is similar to what has been found in two other species of crabs with similar activity 
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levels – one nocturnal and one diurnal. The facet diameter of Leptograpsus variegatus, a 

nocturnally active crab living by the shoreline (similar to the Atlantic ghost crab), has a facet 

diameter of 45 μm (Stowe 1980), which is considerably larger than the 19-36 μm of Uca lacteal, 

a low-tide diurnal crab (Alkaladi & Zeil, 2014).  

Enlarged corneal facets have also been found in many other nocturnal and deep-sea 

arthropods. Only 0.0001% of the surface light remains at a depth of 400 m in clearest ocean 

water (Jerlov, 1976) and some deep-sea crustaceans have evolved extraordinarily huge facets 

for increased photosensitivity (rev in Land & Nilsson, 1990). For example, both the isopod 

Cirolana (a shallow water species but in water so murky that the light intensity is equivalent 

to that at 600 m in clear ocean water) and the deep-sea amphipod Phronima have apposition 

eyes with a facet diameter of 150 μm and 100-135 μm respectively (Nilsson & Nilsson, 1981; 

Land, 1981). Warrant et al. (2004) found similar adaptations in several species of bees. Like 

all other bees, the nocturnal sweet bee, Megalopta genalis, has apposition eyes, but the 

photosensitivity of their eyes is almost 30 times greater than the eyes of diurnal honeybees. 

This is primarily due to the relatively large facets - 36 μm average diameter in the nocturnal 

species, whereas the diurnal species have an average facet diameter of 20 μm. All these studies 

including the current study support the hypothesis that in general, nocturnally active species 

would have larger corneal facets than diurnally active species.  

 

 

4.3 Eye Structures and Spatial Resolution 

 The absence of the clear-zone between crystalline cones and rhabdoms indicates that both 

Atlantic ghost crabs and mangrove tree crabs have apposition eyes. No tapetal reflection was 

observed in the Atlantic ghost crab or the mangrove tree crab when tested with a beam of light 

at night, another indication of apposition optics, as the tapetal reflection is a feature that can 

only be found in superposition eyes (Kunze, 1979).  

  Apposition eyes in these two species is consistent with what has been described for other 

species in the families Ocypodidae and Grapsidae, all of which have been found to possess 

apposition eyes (Arikawa et al., 1987; Alkaladi & Zeil, 2014; rev in Gaten, 1998). This eye 

https://en.wikipedia.org/wiki/Ocypodidae
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structure in the mangrove tree crab is consistent with their lifestyle - they are active during the 

day and apposition eyes allow less light to get to the retinula cells, protecting them from 

possibly damaging light levels. The apposition eye type of Atlantic ghost crabs is not consistent 

with most nocturnally active species, because apposition eyes generally are not as sensitive as 

superposition eyes at night. However, the results presented here show the Atlantic ghost crab 

has a large facet diameter, which makes their eyes as sensitive as a superposition eye at night. 

There are also nocturnally active insects with apposition optics, including cricket, locust, and 

cockroach (rev in Honkanen et al., 2016), and thus the superposition vision is beneficial but 

not necessary for nocturnally active species.  

Even though the Atlantic ghost crab has larger facets, which is normally associated with a 

lower spatial resolution, it has a larger eye than the mangrove tree crab (an averaged diameter 

of 3.18 vs 1.87 mm), and therefore possess a larger number of ommatidia with longer rhabdoms 

and a longer focal length. Longer rhabdoms increase photosensitivity, as there is a greater 

chance that photons will be absorbed by the visual pigment during their trip through a long 

rhabdom, while the longer focal increases spatial resolution, as the focal length is directly 

proportional to the radius of eye curvature (Caves et at. 2018). The △Φ, the ratio of facet 

diameter to the radius of eye curvature, is significantly smaller in the Atlantic ghost crab than 

that in the mangrove tree crab, giving them the higher spatial resolution that they would need 

to identify motile prey, while the larger eye diameter counteracts the usual reduction in 

sensitivity that is associated with a better spatial resolution.  

The larger radius of eye curvature in the Atlantic ghost crab compared to the mangrove 

tree crab mainly originates from the difference in the shape of their eyes. The Atlantic ghost 

crab has an ellipsoid shaped eye, which is a divergent trait in the family Ocypodidae. 

Ocypodidae crabs have an acuity zone in the middle anterior region of their eyes (Zeil & Al-

Mutairi, 1996; Figure 3) and their vertical spatial resolution is extremely high compared to 

other arthropods (rev in Feller et al., 2021). The eyes of Ocypodidae crabs have great distance 

perception in a flat environment. However, the vertical resolution and horizontal resolution are 

very different in their eyes, resulting in a lack of stereopsis, the perception of three-dimensional 

structure (rev in Schwind, 1989; Alkaladi & Zeil, 2014). Therefore, most Ocypodidae crabs, 

https://en.wikipedia.org/wiki/Ocypodidae
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including the Atlantic ghost crab, are ground dwellers living in a flat environment. The 

mangrove tree crabs, on the other hand, have a spherical eye, which is common in the family 

Grapsidae. The eyes of the mangrove tree crabs are wide apart (Figure 9B), offering them great 

stereopsis (rev in Schwind, 1989), and this should enhance their binocular vision, assisting 

them in navigating in a three-dimensional mangrove forest.  

 

 

4.3 Sensitivity vs Resolution. 

 This study has demonstrated that the hypothesized inverse relationship between 

sensitivity and resolution might not always be valid. The Atlantic ghost crab has not only a 

greater irradiance sensitivity, but also a higher spatial resolution. The irradiance sensitivity is 

usually inversely corelated with the spatial resolution because the aperture size is directly 

proportional to the irradiance sensitivity but inversely proportional to the spatial resolution. 

Any change in the aperture size will result in an increase in one of these two visual 

characteristics and a decrease in the other. However, the spatial resolution is not only 

determined by the aperture size but also by the shape and size of the eye. Therefore, factors 

such as radius of eye curvature and shape of the eye can weaken the inverse relationship 

between irradiance sensitivity and spatial resolution. In this study, both radius of eye curvature 

and eye shape had a huge effect on the spatial resolution, and therefore the inverse relationship 

between irradiance sensitivity and spatial resolution was not significant. 
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5.  Conclusion 

 When attempting to correlate visual adaptations with environmental characteristics, it is 

important to not only look at activity cycles (diurnal vs. nocturnal), but also feeding ecology. 

The ghost crab is an active predator, needing higher spatial resolution, but is also nocturnal, 

needing greater sensitivity, and the two requirements seem to conflict with each other. This 

study demonstrated the importance of using both histological and electrophysiological methods 

to study visual adaptations, as the electrophysiological results demonstrated that the nocturnal 

ghost crab was significantly more photosensitive than the diurnal mangrove crab, as expected, 

but the lack of differences in temporal resolution would have made this a puzzling result. 

However, the histological studies demonstrated that this difference in photosensitivity 

originated in differences in the eye morphology of the two species. Larger eyes together with 

larger facet diameters can produce both an increase in spatial resolution and an increase in 

photosensitivity, which a nocturnal active predator would need, while the smaller facet 

diameters and smaller eyes are sufficient for a diurnally active species specializing on non-

motile prey. The prey differences also explain why the ghost crab can afford to have a 

metabolically more expensive larger eye, while the less active mangrove crab can get sufficient 

nutrients from its herbivorous diet to support its smaller eyes. This study emphasized the 

relationship between pseudopupil and spatial resolution, and it is an excellent technique for 

comparing the vertical and horizontal resolutions.  
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