
Electromechanics and Electrorheology of Fluid Flow
with Internal Micro-particle Electrorotation

by

Hsin-Fu Huang

2005, M.S., Fluid Mechanics Division, Department of Mechanical Engineering
National Taiwan University, Taipei, Taiwan

2004, B.S., Department of Mechanical Engineering
National Taiwan University, Taipei, Taiwan

Submitted to the Department of Mechanical Engineering ARCHIVES
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY OF TECHNOLOGY

at the SEP 0 1 2010

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIBRARIES

JUNE 2010

0 2010 Massachusetts Institute of Technology. All rights reserved.

Signature of Author
Department of Mechaqk'l Engineering

'KJApril 30, 2010

Certified by _______________
Markus Zahn

Th as and Gerd Perkins Professor of Electrical Engineering
/Y~ /Thes Sugisor

Certified by
Gareth H. c nley

SoE Professor of Teaching Innovation, Professor of Mechanical mineering
/00 Thesis Comyiittee Chairman

Accepted by
David E. Hardt

Ralph E. and Eloise F. Cross Professor of Mechanical Engineering
Chairman, Department Committee on Graduate Studies





Electromechanics and Electrorheology of Fluid Flow
with Internal Micro-particle Electrorotation

by

Hsin-Fu Huang

Submitted to the Department of Mechanical Engineering on
April 30, 2010 in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

ABSTRACT
The negative electrorheological responses of two dimensional Couette and Poiseuille flows with
internal micro-particle electrorotation are modeled and analyzed via a set of "fully continuum
mechanical modeling field equations" formulated in this thesis. By combining the theories of
particle electromechanics and continuum anti-symmetric/couple stresses, general governing
equations are presented to describe the physical aspects of mass conservation, linear momentum
balance, angular momentum balance, and electro-quasi-static field of the negative electro-
rheological fluid flow. A "rotating coffee cup model" is also developed for the first time to
derive the retarding polarization relaxation equation with its accompanying equilibrium retarding
polarization in order to characterize the non-equilibrium motion effects of the continuum spin

velocity, co, continuum linear velocity, v, and micro-particle rotation speed, n, on the
polarization responses as well as the electrical body torque inputs in the negative
electrorheological flow field. Using the general assumptions of steady, incompressible, fully
developed, and two dimensional flows, we reduce and simplify the full general governing
equations in the zero spin viscosity and the finite spin viscosity small spin velocity limits for
both Couette and Poiseuille flow geometries.

In the zero spin viscosity limit, expressions for the spin velocity and effective viscosity of
Couette flow as well as the spin velocity, linear velocity, and two dimensional volume flow rate
of Poiseuille flow are derived in terms of the applied direct current electric field strength, shear
rate (for Couette flow), driving pressure gradient (for Poiseuille flow), and spatial coordinate by
solving the simplified continuum linear and angular momentum equations with the linear flow
velocity being subjected to the no-slip boundary condition. As for the finite spin viscosity small
spin velocity limit, analytical solutions to the spin velocity, linear velocity, and effective
viscosity of Couette flow as well as solutions to the spin velocity, linear velocity, and two
dimensional volume flow rate of Poiseuille flow are obtained and expressed in terms of the
applied direct current electric field strength, boundary condition selection parameter (p), spin

viscosity, and driving shear rate (for Couette flow) or pressure gradient (for Poiseuille flow) by
solving a set of differential equations coupling the linear and angular momentum balances of the

negative electrorheological fluid flow subjected to the no-slip and co=0.5/Vxv (with

0 , 1) boundary conditions. After obtaining the solutions in the respective zero spin viscosity

and finite spin viscosity small spin velocity limits, series of parametric studies are then
performed on these solutions via varying the pertinent physical parameters involved in several



parametric regimes of interest so as to illustrate the negative electrorheological behavior and
fluid flow response due to internal micro-particle electrorotation.

Modeling results in the two limits generally show that with a direct current electric field
applied perpendicularly to the flow direction, the spin velocity is increased and the effective
viscosity is decreased as compared to the zero electric field values of the electrorheological fluid
flow in Couette geometries at a given driving shear rate. It is also found that with a constant
driving pressure gradient, the internal micro-particle electrorotation induces increased continuum
fluid spin velocity, linear flow velocity, and two-dimensional volume flow rate on the
macroscopic level in Poiseuille flow geometries when a direct current electric field perpendicular
to the direction of flow is applied. Results of the Couette effective viscosity and Poiseuille
volume flow rate obtained from our present continuum mechanical formulation are further
compared to the experimental measurements as well as modeling results from single particle
dynamics based two-phase volume averaged effective medium analysis found in current
literature. With the "rotating coffee cup" fluid polarization model, the present zero spin viscosity
continuum solutions to the effective viscosity and volume flow rate agree with the theoretical
solutions obtained from single particle dynamics analysis. The zero spin viscosity solutions to
the Couette effective viscosity also fall closer to the experimental measurements reported in
current literature for low to moderate direct current electric field strengths. Moreover, the present
continuum mechanical formulation in the finite spin viscosity small spin velocity limit is more
capable of accurately capturing the negative electrorheological flow responses in the low shear
rate and low driving pressure gradient flow regimes characterized by the respective Couette
effective viscosity and Poiseuille volume flow rate. These finite spin viscosity small spin
velocity results agree better with previous experimental measurements reported in the literature
and bring the theoretical modeling of the negative electrorheological flow phenomenon due to
internal micro-particle electrorotation closer to physical reality-both of which were generally
not possible in previous literature. This important improvement in modeling the negative
electrorheological response considered in this thesis is due to our proposed "rotating coffee cup
model," which is likely the first model to treat the continuum spin velocity and the micro-particle
rotation speed as separate physical variables. Using the finite spin viscosity small spin velocity
analysis, we also derive for the first time a characteristic length scale determined by the balances
between the electrical body torque input and the angular momentum conversion between the
linear and spin velocity fields, which can be used to explain why the present continuum zero spin
viscosity solutions are very much similar to those obtained from single particle dynamics based
two-phase volume averaged effective medium analysis found in current literature.

Future work includes a more advanced modeling of the polarization relaxation processes in
the negative electrorheological fluid flow, the full non-linear analysis of finite spin viscosity
effects on the angular momentum balances within the electrorheological flow field without the
restriction of the small spin velocity limit, and the search of possible applications of our
proposed continuum mechanical modeling field equations theory in the research areas of
micro/nano-fluidics, biofluid dynamics, and engineering torque-shear rate control systems.

Thesis Supervisor: Markus Zahn
Title: Thomas and Gerd Perkins Professor of Electrical Engineering

Thesis Committee Chairman: Gareth H. McKinley
Title: SoE Professor of Teaching Innovation, Professor of Mechanical Engineering
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Figure 4.13. Variations of the effective viscosity, q*, plotted with respect to the applied shear

rate, r*, evaluated at q* =1 and 8 =0, 0.25, 0.5, 0.75, and 1 for (a) E* =2 1 and (b)

E* = 0.6 <1.

Figure 4.14. Variations of the effective viscosity, q*, plotted with respect to the shear rate, *

evaluated at p =1 and q* =0.5, 0.65, 1, 2, and 10 for (a) E* = 2 1 and (b) E* =0.6 <1.

Chapter 5

Figure 5.1. The schematic diagram illustrating the geometry, dimensions, and physical

parameters for Poiseuille flow with internal micro-particle electrorotation.

Figure 5.2. The three roots, W*, * and w* (given respectively in Eqs. (5.7), (5.8), and

(5.9)), of the dimensionless Poiseuille spin velocity, w*, to the angular momentum equation,

Eq. (5.6). The spin velocity profiles are plotted with respect to the spatial coordinate, z*, at

F = 2 x10
4 (Pa/m) and E* = EO/E =1.0, 1.01, and 1.05 for both Figs. 5.2(a) and 5.2(b), and

E* = 0.7, 0.8, 0.9, 0.95, and 0.99 for Fig. 5.2(c) with E =1.3x10 6 (V/m). The dash-dash

curves denote w*j (Eq. (5.7)), the dash-dot-dash curves denote *2 (Eq.(5.8)), and the solid

gray curves denote w~3 (Eq. (5.9)). In Fig. 5.2(a), we have substituted the positive valued

particle rotation speed, Q, of Eq. (2.57) or (5.12) into Eqs. (4.5)-(4.7) in evaluating the spin

velocity profiles. Therefore, the profiles shown in Fig. 5.2(a) are only valid within the spatial

region of 0.5 < z* 1. Similarly, a negative valued Q from Eq. (2.57) or (5.12) has been

used in Eqs. (4.5)-(4.7), and thus, the spin velocity profiles shown in Fig. 5.2(b) are only

valid within 0 5 z* <0.5. As for Fig. 5.2(c), the particle rotation speed is set to zero, Q =0 ,

in Eqs. (4.5)-(4.7). It can be seen that the spin velocity profiles evaluated at electric fields

strengths of E* = 0.95~1 become multi-valued in space near the middle of the flow channel

(note that Q goes to zero for E* = 1 in Eq. (2.57) or (5.12)).

Figure 5.3. The normalized Poiseuille spin velocity profile, *, plotted with respect to the

spatial coordinate, z*, evaluated at E* = 0, 0.4, 0.8, 1.0, 2.0, and 3.0, with F* = 1. The gray
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curve denotes the zero electric field value for the spin velocity, i.e., the vorticity of ordinary

Poiseuille flow. Note that Eqs. (5.7) and (5.8), with the proper selection of the micro-particle

rotation speeds in Eq. (2.57) or (5.12), are used in the evaluation of the spin velocity for

E* >1, whereas for E* < 0.9, Eq. (5.7) (with Q =0 in Eqs. (4.5)-(4.7)) is used throughout

the spatial domain of interest.

Figure 5.4. The normalized Poiseuille spin velocity profile, o*, plotted with respect to the

spatial coordinate, z*, evaluated at F* = 1, 2, and 5, with E* = 2. The gray curve denotes the

zero electric field value for the spin velocity, i.e., the vorticity of ordinary viscous Poiseuille

flow. Note that Eqs. (5.7) and (5.8), with the proper selection of the micro-particle rotation

speeds in Eq. (2.57) or (5.12), are employed in the evaluation of the spin velocity shown in

this figure.

Figure 5.5. The normalized linear velocity profile, u*, of Poiseuille flow with internal micro-

particle electrorotation plotted with respect to the spatial coordinate, z*, evaluated at E* =0,

0.4, 0.8, 1.0, 2.0, and 3.0, with f* = 1. The gray curve denotes the zero electric field velocity

profile, which is the original Poiseuille parabolic profile. Equations (5.7) (use positive Q

from Eq. (2.57) or (5.12) in Eqs. (4.5)-(4.7)) and (5.8) (use negative Q from Eq. (2.57) or

(5.12) in Eqs. (4.5)-(4.7)) are respectively employed in the integrals of Eqs. (5.15) and (5.16)

for E* 1. The evaluation of u* for E* 0.9 is done by employing Eq. (5.7) in both Eqs.

(5.15) and (5.16) with Q = 0 in Eqs. (4.5)-(4.7).

Figure 5.6. The normalized linear velocity profile, u*, of Poiseuille flow with internal micro-

particle electrorotation plotted with respect to the spatial coordinate, z*, evaluated at F* = 1,

2, and 5, with E* = 2. The gray curve denotes the zero electric field velocity profile, which is

the original Poiseuille parabolic profile. Equations (5.7) (use positive Q from Eq. (2.57) or

(5.12) in Eqs. (4.5)-(4.7)) and (5.8) (use negative Q from Eq. (2.57) or (5.12) in Eqs. (4.5)-

(4.7)) are respectively employed in the integrals of Eqs. (5.15) and (5.16) for the linear

velocity profiles shown herein.

Figure 5.7. The two dimensional Poiseuille volume flow rate, Q (m 2 /s ), plotted with respect to

the applied pressure gradient, F*, evaluated at E* = 0, 0.4, 0.8, 1.0, 2.0, and 3.0. The gray

curve represents the zero electric field volume flow rate given by Q0 = Fh3 /l2rq .



Figure 5.8. The schematic diagram illustrating the new coordinate system employed for

analyzing Poiseuille flow with internal micro-particle electrorotation in the finite spin

viscosity small spin velocity limit.

Figure. 5.9. (a) Spatial variations of the total spin velocity profile evaluated at E* = 1, 1.5, 2,

2.5, and 3 with p =1, Y* =1, and F* = 0.125 (or F = 2500 (Pa/m)) kept constant. (b)

Spatial variations of the differences in total spin velocity, A6* as defined in Eq. (5.49),

evaluated at E* =0, 0.2, 0.4, 0.6, 0.8, and 1 with p =1, q* =1, and F* = 0.125 (or F = 2500

(Pa/m)) kept constant.

Figure 5.10. (a) and (b) show the spatial variations of the total spin velocity, w*, evaluated at

F =1500, 2000, 2500, 3000, and 3500 (Pa/m) (or F* = 0.075, 0.1, 0.125, 0.15, and 0.175,

respectively) while p =1, q* =1 and the respective electric field strengths of E* = 2 (Fig.

5.10(a)) and E* = 0.6 (Fig. 5.10(b)) are maintained constant. (c) Spatial variations of the

normalized spin velocity, w* as defined in Eq. (5.50), evaluated at F = 1500, 2000, 2500,

3000, and 3500 (Pa/m) while /3=1, q* =1 and E* =2 are kept constant. The solid gray

line in Fig. 5.10(c) denotes the zero electric field solution of co* = z as given in Eq. (5.51).

(d) The spatial variations of the differences in the normalized spin velocity, Aco* as defined

in Eq. (5.52), evaluated at F = 1500, 2000, 2500, 3000, and 3500 (Pa/m) while p = 1,

7* =1 and E* = 0.6 are kept constant. Note that all five profiles have merged into one curve

at this electric field strength of interest.

Figure 5.11. The spatial variations of the total spin velocity evaluated at p8 =0, 0.25, 0.5, 0.75,

and 1 while F* = 0.125, q* = 1, and the electric field strengths of E* = 2 for Fig. 5.11 (a) and

E* = 0.6 for Fig. 5.11(b) are kept constant.

Figure 5.12. (a) Spatial variations of the total spin velocity evaluated at q* = 0.5, 0.65, 1, 2, and

10 with E* = 2, / =1, and F* =0.125 kept constant. (b) Spatial variations of the differences

in the total spin velocity, AW* as defined in Eq. (5.53), evaluated at 7* = 0.5, 0.65, 1, 2, and

10 with E* =0.6, /3=1, and F* =0.125 kept constant.
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Figure 5.13. Spatial distributions of the induced velocity, u*, evaluated at constant F* = 0.125,

, =1, and =1 for electric field strengths of (a) E* = 1, 1.5, 2, 2.5, and 3 and (b) E* =0,

0.2, 0.4, 0.6, 0.8, and 1. Note that the zero electric field solution of "zero induced velocity" is

noted by the solid gray line shown in Fig. 5.13(b).

Figure 5.14. Spatial distributions of the induced linear velocity profile evaluated at F* = 1500,

2000, 2500, 3000, and 3500 (Pa/m) with constant p =1 and q* =1 for the electric field

strengths of (a) E* =2 and (b) E* =0.6. Note that all five profiles shown in Fig. 5.14(b)

have collapsed into one curve for the electric field strength of E* = 0.6 <1.

Figure 5.15. Spatial distributions of the induced linear velocity profile, u*, plotted with respect

to the boundary condition selection parameter of p =0, 0.25, 0.5, 0.75, and 1 while q* =1,

F*= 0.125, and the respective DC electric field strengths of E* = 2 in Fig. 5.15(a) and

E* = 0.6 in Fig. 5.15(b) are kept constant.

Figure 5.16. Spatial distributions of the induced linear velocity evaluated at q* = 0.5, 0.65, 1, 2,

and 10 with constant F* = 0.125 and P =1 for electric field strengths of (a) E* =2 and (b)

E* =0.6. As can be seen from the two figures, the induced linear velocity gradually reduces

to zero as the spin viscosity is increased.

Figure 5.17. The variations of the induced flow rate, Qq, plotted with respect to the driving

pressure gradient, F*, evaluated at constant p = 1 and q* =1 for electric field strengths of

(a) E* = 1, 1.5, 2, 2.5, and 3 and (b) E* =0, 0.2, 0.4, 0.6, 0.8, and 1. The zero electric field

solution, i.e., zero induced flow rate, is denoted by the solid gray line shown in Fig. 5.17(b).

Figure 5.18. Variations of the induced volume flow rate, Q,, plotted with respect to the driving

pressure gradient, F*, evaluated at p=0, 0.25, 0.5, 0.75, and 1 while -* =1 and the

respective DC electric field strengths in (a) E* = 2 and (b) E* = 0.6 are maintained constant.

Figure 5.19. Variations of the induced volume flow rate plotted with respect to the driving

pressure gradient for electric field strengths of (a) E* =2 and (b) E* =0.6. In both figures,

the solutions are evaluated at constant p =1 and at a varying spin viscosity of q* =0.5, 0.65,

1, 2, and 10.



Chapter 6

Figure 6.1. Comparison of the two Couette effective viscosity solutions respectively obtained in

the zero spin viscosity, 77'= 0, and finite spin viscosity small spin velocity, q's 0,

r o <1, limits. For both curves, we have employed a DC electric field strength of

E* =2. Also, we have used p=1 and =1 for the 1'7#0, r 2 
C2 <1 solution.

Figure 6.2. Comparison of the two total volume flow rate solutions obtained in the zero spin

viscosity, q'= 0, and the finite spin viscosity small spin velocity, 7':# 0, r ow <1, limits,

respectively. The solid back line represents the 7'=0 solution evaluated at E* =2, whereas

the solid gray line represents the t's 0, rw «1 < solution evaluated at E* = 2, 8 = 1, and

1* = 1. The dash-dash line denotes the zero electric field solution, i.e., the total 2D flow rate

of purely viscous Poiseuille flows, Q0 = 1h 3/12i .

Figure 6.3. Comparison of the Couette effective viscosity results among the present continuum

zero spin viscosity modeling predictions (HT, solid curve), the experimental measurements

(LE, dotted curve) reported in Fig. 7a of Lemaire et al. (2008), and the combined single

particle dynamics two-phase volume averaged effective medium theory predictions (LT,

dashed-dashed curve) employed in Fig. 7a of Lemaire et al. (2008). In this figure, the ER

fluid solid volume fraction is # = 0.05, and the solutions or measurements are obtained at

DC electric field strengths of (a) E =1 (kV/mm), (b) EO = 2 (kV/mm), and (c) EO =3

(kV/mm). No fitting parameters or procedures are used in evaluating the zero spin viscosity

HT solutions.

Figure 6.4. Comparison of the Couette effective viscosity results among the present continuum

zero spin viscosity modeling predictions (HT, solid curve), the experimental measurements

(LE, dotted curve) reported in Fig. 7b of Lemaire et al. (2008), and the combined single

particle dynamics two-phase volume averaged effective medium theory predictions (LT,

dashed-dashed curve) employed in Fig. 7b of Lemaire et al. (2008). In this figure, the ER

fluid solid volume fraction is # = 0.1, and the solutions or measurements are obtained at DC

electric field strengths of (a) EO =1 (kV/mm), (b) EO =2 (kV/mm), and (c) EO =3
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(kV/mm). No fitting parameters or procedures are used in evaluating the zero spin viscosity

HT solutions.

Figure 6.5. Comparison of the Couette effective viscosity results in the low shear rate regime

among the present continuum finite spin viscosity small spin velocity modeling predictions

(HT, solid curve), the experimental measurements (LE, dotted curve) reported in Fig. 7a of

Lemaire et al. (2008), and the combined single particle dynamics two-phase volume

averaged effective medium theory predictions (LT, dashed-dashed curve) employed in Fig.

7a of Lemaire et al. (2008). In this figure, the ER fluid solid volume fraction is $ = 0.05, and

the solutions or measurements are obtained at DC electric field strengths of EO = 1

(diamond), 2 (triangle), and 3 (box) (kV/mm). Note that the LT theoretical prediction of the

effective viscosity is invariant of the applied DC electric field strength, and that the

numerical values for the boundary condition selection parameter, p =1, and the spin

viscosity, r7'= h2r7, employed in the finite spin viscosity HT analysis are chosen by physical

arguments discussed in Chapters 4 and 5. No ad hoc fitting parameters or procedures are

used in evaluating the finite spin viscosity HT solutions.

Figure 6.6. Comparison of the Couette effective viscosity results in the low shear rate regime

among the present continuum finite spin viscosity small spin velocity modeling predictions

(HT, solid curve), the experimental measurements (LE, dotted curve) reported in Fig. 7b of

Lemaire et al. (2008), and the combined single particle dynamics two-phase volume

averaged effective medium theory predictions (LT, dashed-dashed curve) employed in Fig.

7b of Lemaire et al. (2008). In this figure, the ER fluid solid volume fraction is $ = 0.1, and

the solutions or measurements are obtained at DC electric field strengths of E = 1

(diamond), 2 (triangle), and 3 (box) (kV/mm). Note that the LT theoretical prediction of the

effective viscosity is invariant of the applied DC electric field strength, and that the

numerical values for the boundary condition selection parameter, 8 =1, and the spin

viscosity, r7'= h2 q7 , employed in the finite spin viscosity HT analysis are chosen by physical

arguments discussed in Chapters 4 and 5. No ad hoc fitting parameters or procedures are

used in evaluating the finite spin viscosity HT solutions.



Figure 6.7. Comparison of the 2D Poiseuille volume flow rate results among the present zero

spin viscosity HT (solid curve) predictions, the experimental measurements, LE (dotted

curve), found in Fig. 5 of Lemaire et al. (2006), and the single particle dynamics based

predictions (dashed-dashed curve) found in Fig. 5 of Lemaire et al. (2006). In this figure, the

gray solid lines denote the zero electric field Poiseuille volume flow rate and the ER fluid

solid volume fraction is # = 0.05. The HT and LT solutions and the LE measurements are

obtained at DC electric field strength of EO =2.7 (kV/mm) in Fig. 6.7(a) and of EO =3.3

(kV/mm) in Fig. 6.7(b). No fitting parameters or procedures are used in the evaluation of the

HT results.

Figure 6.8. Comparison of the 2D Poiseuille volume flow rate results among the present zero

spin viscosity HT (solid curve) predictions, the experimental measurements, LE (dotted

curve), found in Fig. 6 of Lemaire et al. (2006), and the single particle dynamics based

predictions (dashed-dashed curve) found in Fig. 6 of Lemaire et al. (2006). In this figure, the

gray solid lines denote the zero electric field Poiseuille volume flow rate and the ER fluid

solid volume fraction is # = 0.1. The HT and LT solutions and the LE measurements are

obtained at DC electric field strength of E = 2.7 (kV/mm) in Fig. 6.8(a) and of EO =3.3

(kV/mm) in Fig. 6.8(b). No fitting parameters or procedures are used in the evaluation of the

HT results.

Figure 6.9. Comparison of the 2D Poiseuille volume flow rate results in the low pressure

gradient regime among the present finite spin viscosity small spin velocity HT (solid curve)

predictions, the experimental measurements, LE (dotted curve), found in Fig. 5 of Lemaire et

al. (2006), and the single particle dynamics based predictions (dashed-dashed curve) found in

Fig. 5 of Lemaire et al. (2006). In this figure, the ER fluid solid volume fraction is # = 0.05.

The HT and LT solutions and the LE measurements are obtained at DC electric field strength

of E0 =2.7 (kV/mm) in Fig. 6.9(a) and of E =3.3 (kV/mm) in Fig. 6.9(b). In the

evaluations of the HT predictions, p =1 and ql'= h2 are chosen by physical arguments

discussed in Chapters 4 and 5. No ad hoc fitting parameters or procedures are used in the

evaluation of the HT results.

Figure 6.10. Comparison of the 2D Poiseuille volume flow rate results in the low pressure

gradient regime among the present finite spin viscosity small spin velocity HT (solid curve)
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predictions, the experimental measurements, LE (dotted curve), found in Fig. 6 of Lemaire et

al. (2006), and the single particle dynamics based predictions (dashed-dashed curve) found in

Fig. 6 of Lemaire et al. (2006). In this figure, the ER fluid solid volume fraction is # = 0.1.

The HT and LT solutions and the LE measurements are obtained at DC electric field strength

of EO = 2.7 (kV/mm) in Fig. 6.10(a) and of EO = 3.3 (kV/mm) in Fig. 6.10(b). In the

evaluations of the HT predictions, 8 =1 and i'= h2 q are chosen by physical arguments

discussed in Chapters 4 and 5. No ad hoc fitting parameters or procedures are used in the

evaluation of the HT results.

Figure 6.11. Comparison of the electrorotation assisted 2D Poiseuille flow velocity profiles

between the ultrasound velocimetry experimental measurements as reported in Peters et al.

(2010) and the theoretical predictions obtained from the continuum mechanical modeling

field equations in the zero spin viscosity limit as presented in the present thesis.

Figure 6.12. Comparison of the electrorotation assisted 2D Poiseuille flow velocity profiles

between the ultrasound velocimetry experimental measurements as reported in Peters et al.

(2010) and the theoretical predictions obtained from the continuum mechanical modeling

field equations in the finite spin viscosity small spin velocity limit as presented in the present

thesis.

Appendix

Figure A.1. The critical electric field strength for the onset of micro-particle Quincke rotation

plotted with respect to the carrier liquid viscosity. E is evaluated by substituting material

parameters given in Table A.9 into Eq. (1.1).

Figure A.2. The critical electric field strength for the onset of micro-particle Quincke rotation

plotted with respect to the carrier liquid electrical conductivity. E is evaluated by

substituting material parameters given in Table A.9 into Eq. (1.1).

Figure A.3. The coaxial cylindrical electrode and liquid impedance measuring equipment. (a)

Global over view of the experimental setup. (b) Zoom-in view of the coaxial cylinder

electrode and test leads.

Figure A.4. The log-log plot of the measured carrier liquid (oil blend + AOT salt) electric

conductivity versus the AOT salt concentration added to the oil blend.



Figure A.5. The experimental setup for measuring the viscosity of the proposed ER fluid and

other related liquid samples. The basic components of the experimental setup are a standard

600 (mL) beaker and a Brookfield Model DV-l+ viscometer along with an accompanying

Brookfield Model LV-1 spindle (Brookfield Engineering Laboratories, Middleboro, MA).

Figure A.6. The Poiseuille electrorheological fluid flow and electrorotation testing channel.

Figure A.7. Zoom-in view of the Poiseuille flow channel testing section of the whole completed

electrorotation testing apparatus. The dimension of channel height, h, of Poiseuille flow

channel is restrained by plastic C-clamps as shown holding the test cell in the figure.

Figure A.8. Global view of the whole completed Poiseuille flow electrorotation testing apparatus

and equipment.

Figure A.9. Simple LabVIEW program used for monitoring the driving pressure gradient within

the Poiseuille flow channel. (a) Front panel. (b) Block diagram.

Figure A.10. (a) Experimental setup of the Poiseuille flow electrorotation testing apparatus when

the apparatus is energized with high voltage by the Hipotronics ROB high voltage DC power

supply. (b) A Fluke 80k-40 high voltage probe (connected to a Fluke 45 dual display

multimeter) with a voltage division ratio of 1000:1 is used to measure the actual voltage

stressed within the ITO glass Poiseuille flow test cell.

Figure A.11. Mass flow rate of the suspension fluid (or ER fluid) measured with respect to the

driving pressure gradient at applied DC electric field strengths of E0 = 0.018 (box), 0.7 (star),

1.43 (triangle), and 2.06 (diamond) (kV/mm). Each data point shown in the figure is the

averaged result of 2-3 measurements.
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Nomenclature

Abbreviations

Two-dimensional 2D

Three-dimensional 3D

Alternating current AC

Docusate sodium salt, Aerosol OT AOT

Direct current DC

Silicone oil DC 200 DC 200

Silicone oil DC 561 DC 561

Shell DIALA* AX oil DIALA'

Sub-/super-script denoting for the lower half of the Poiseuille flow channel in Chap. 5 DW

Electro-quasi-static EQS

Electrorheological ER

Particle-liquid mixture ER fluid

Huang theory presented in this thesis HT

Indium tin oxide ITO

Lemaire et al. (2006, 2008) experimental measurements LB

Left hand side LHS

Lemaire et al. (2006, 2008) theoretical predictions LT

Maxwell-Wagner MW

Negative electrorheological effect of the first kind nERi

Negative electrorheological effect of the second kind nER2

Order of magnitude 0(.)

Polychlorinated biphenyl PCB



Polyethylene PE

Poly(methyl methacrylate) PMMA

Polytetrafluoroethylene, Teflon* PTFE

Right hand side RHS

Revolutions per minute RPM/rpm

Superscript of "'" denoting transpose of matrix

Tetrachlorobenzyltoluenes Ugilec*

Sub-/super-script denoting for the upper half of the Poiseuille flow channel in Chap. 5 UP

Concentration of AOT salt [AOT]

Superscript "*" denoting dimensionless variables *

Multiplication or vector cross product x

Tilde" "denoting normalized variables

Hat" "denoting dummy indices of integration

Alphabets

Outer diameter of the middle rod of the coaxial cylindrical electrode a

Variable defined in Eq. (2.35) a3

Variable defined in Eq. (2.36) a6

Eigen parameter defined in Eqs. (4.34) and (5.26) A

The inner diameter of the outer ring of the coaxial cylinder electrode b

Parameter defined in Eqs. (4.35) and (5.27) B

Measured capacitance C

Integration constant in Eq. (4.10) CC

Integration constant in Eq. (5.2) C,

Diameter of the micro-particles d

The differential area element (scalar) dA

The differential area element (vector) dA
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The microscopic differential electrical force dFI

The electric displacement field (vector) D

The microscopic electric displacement field (vector) Dt

Coefficients of correction to the macroscopic electric field in Eq. (4.8), i = 1, 2, ... etc. e,

The applied electric field strength E0

Critical electric field strength for the onset of micro-particle Quincke rotation E

y-component of the macroscopic applied electric field E,

z-component of the macroscopic applied electric field E,

Dimensionless applied electric field strength E*

r-component of the microscopic electric field Et

z-component of the microscopic electric field Et

0-component of the microscopic electric field E

# -component of the microscopic electric field E

Macroscopically applied electric field vector E

The microscopic molecular electric field vector Em

Microscopically applied electric field vector Et

Volume fraction of Shell DIALA* Oil AX fr

Measured conductance G

Channel height of Couette and Poiseuille flow channels h

Macroscopically applied (rotating) magnetic field vector H

The imaginary number, i= --I
Unit vector in the x-direction in Cartesian coordinates ix

Unit vector in the y-direction in Cartesian coordinates i,

Unit vector in the z-direction in Cartesian coordinates iz

Unit vector in the r-direction in spherical coordinates ir

Unit vector in the 0 -direction in spherical coordinates i,
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Unit vector in the # -direction in spherical coordinates i,

Unit vector in the y -direction defined in Fig. 3.2 i, "

Unit vector in the z" -direction defined in Fig. 3.2

Averaged moment-of-inertia per unit volume (scalar)

Sum of the moment-of-inertia of the micro-particles per unit volume vdp

Moment-of-inertia density tensor

The unit identity tensor I
Constants in Eqs. (2.17), (2.18), and (2.20), ji, i = 1, 2, 3, 4, ... etc. j

Ohmic current per unit area (microscopic variable)

Surface current density (microscopic variable) K

Characteristic length scale defined by Eq. (6.3)

Separation constant in Eq. (2.14)

Characteristic diffusion length for angular momentum lD

Modified Mason number defined in Eq. (5.5) m

Internal angular momentum (vector) of a continuum fluid particle or parcel, Eq. (1.2) m

Mason number based on vortex viscosity as in Eq. (4.13) M*

Macroscopic magnetization (vector) of the ferrofluid M

The equilibrium magnetization of ferrofluid Meq

Number density of micro-particles n

Normal vector of surfaces n

Hydrodynamic pressure p

y-component of the molecular dipole moment Pmy

z-component of the molecular dipole moment Pmz

x-component of the total dipole moment of the micro-particlep

y-component of the total dipole moment of the micro-particle p

z-component of the total dipole moment of the micro-particle p
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Molecular dipole moment pM

The retarding dipole moment of the micro-particle pt
P

The microscopic molecular dipole moment p"

Equilibrium retarding dipole moment Peq

Total dipole moment of the micro-particle t

Pt
Dipole moment of micro-particle at infinite frequency response P

y-component of the equilibrium retarding polarization defined in Eq. (3.33) Pq

z-component of the equilibrium retarding polarization defined in Eq. (3.33) P

y-component of the total polarization P

y-component of the retarding polarization P,

z-component of the retarding polarization P

Macroscopic retarding polarization (vector) of the ER fluid P

Polarization contribution from the carrier liquid phase P

Total polarization (vector) of the ER fluid P

Polarization due to the infinite frequency response of the rotating micro-particles P

Equilibrium polarization of the rotating coffee cup model defined in Eqs. (3.32) and (3.33) Pq

The equilibrium retarding polarization defined in Eq. (3.14) P

eq

Equilibrium retarding polarization as observed in frame rotating with spin velocity Po

The two-dimensional Poiseuille volume flow rate Q

Zero electric field (purely viscous) 2D Poiseuille volume flow rate, Q0 = 'h3/12rq QO
Quincke rotation induced 2D Poiseuille volume flow rate Qq

r-coordinate in spherical coordinates r

Radius of spherical micro-particle R

Internal angular momentum (vector) defined in Eq. (1.3) s

Time or time coordinate t
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Electrical torque exerted on the micro-particle Tt

Viscous torque exerted on the micro-particle T"

Total stress tensor T

Anti-symmetric part of the total stress tensor T

Symmetric part of the total stress tensor T,

y-component of the continuum linear velocity, v = u, i, + u iu,

z-component of the continuum linear velocity, v = u, i, + uz

Dimensionless linear velocity u*

Zero electric field (purely viscous) total linear velocity (dimensionless) u *

Quincke rotation induced linear velocity (dimensionless) u *q

The Couette boundary driving velocity UO

Continuum linear flow velocity vector v

Microscopic liquid convection velocity vi

Characteristic velocity defined by Eq. (5.29) for Poiseuille flow V

Dimensionless parameter defined in Eq. (5.5) V

Linear velocity on the surface of the rotating micro-particle V

x-coordinate in Cartesian coordinates x

y-coordinate in Cartesian coordinates y

y-coordinate defined in Fig. 3.2 Y

The associated Legendre function, Y,' (cos 9) Y,

z-coordinate in Cartesian coordinates z

Dimensionless z-coordinate z*

z-coordinate defined in Fig. 3.2 ZV"
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Greek Alphabets

The elements of the polarizability tensor (i and j are indices) aj

y-component of polarizability defined in Eq. (4.7) a,

z-component of polarizability defined in Eq. (4.7) a,

Ratio of the polarizabilities, a* = a, /a, = -rf a

The (microscopic) polarizability tensor a

The boundary condition selection parameter #

Shear rate in Couette flow (dimensionless) r*

The Poiseuille flow driving pressure gradient, F = -dp/dy F

Reference pressure gradient, Fr = 2 x 104 (Pa/m) Fr

Dimensionless pressure gradient F*

Small perturbation of micro-particle rotation M

The Kronecker delta, (3og =1, S = 0 ) og

Effective shear rate defined in Eq. (5.23) for Poiseuille flow 3*

Permittivity of free space, s6 = 8.854 xl10 2 (C 2 /N m 2 )60

Permittivity of the liquid phase of the ER fluid 61

Permittivity of the solid phase (micro-particle) of the ER fluid .2

Permittivity of air eair

The scalar macroscopic effective permittivity defined in Eq. (3.25) eff

Elements of the effective permittivity tensor (i and j are indices) e6

The macroscopic effective permittivity tensor seff

The permutation tensor g

Solid volume fraction of the suspended micro-particles #
# -coordinate in spherical coordinates (mostly in Chapters 2 and 3) #

The microscopic electric potential

Zero electric field viscosity of ER fluid, q - yo (1+ 2.5#)



Viscosity of the liquid phase, or carrier liquid, of the ER fluid g1o

Viscosity when anti-symmetric stresses are present, 7, = q + y,

Effective viscosity of ER fluid 17,ff

Spin viscosity 77'

Dimensionless effective viscosity q *

Reference value of spin viscosity, 77'0 = 1.53 x10-8 (N-s 7) y'0

Dimensionless spin viscosity 7*,

Function defined in Eq. (4.18) (OcI

Function defined in Eq. (4.19) (PC2

Angle of rotation of coordinate transformation defined in Fig. 3.2 (i and j being indices) qp

Function defined in Eq. (5.10) P

Function defined in Eq. (5.11) 9P2

Separation constant in Eq. (2.15) K

The second coefficient of viscosity A

The second coefficient of spin viscosity 2'

Parameter defined in Eq. (5.28) A

Magnetic permeability of free space, pO = 4r x 10-' (N/A 2  PO

Coefficients or constants in solutions shown in Section 4.4, i = 1, 2, ... etc. p

The modified bulk compressibility viscosity, v = 2+ Y - v

Sum of the spin viscosity and the second coefficient of spin viscosity, v'= 7'+A' v'

Coefficients or constants in solutions shown in Section 5.4, i = 1, 2, 3, ... etc. H1I

0-coordinate in spherical coordinates 0

Separation function for the 9-variable in Eq. (2.13) 0

Density of ER fluid p

Density of Shell DIALA* AX oil PAX

Density of Silicone oil DC 200 PDC

Free space charge density pf
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Density of micro-particles p,

Density of PE micro-particles PPE

Conductivity of the liquid phase of the ER fluid a,

Conductivity of the solid phase (micro-particle) of the ER fluid U2

Surface charge density o-f

Charge relaxation time of the liquid phase of the ER fluid, r, = 61 /UI TI

Charge relaxation time of the solid phase (micro-particle) of the ER fluid, r 2 = ,2 /22

The magnetization relaxation time rM

The Maxwell-Wagner charge relaxation time defined in Eq. (2.39) r.

Wall shear stress

Elements of the Maxwell stress tensor (i and j being indices) t

The traction vector 4

The Maxwell stress tensor (microscopic) ri

x-component of the continuum spin velocity (scalar) COX

Dimensionless spin velocity CO'

Zero electric field solution to spin velocity me*

First root to Couette flow spin velocity in the zero spin viscosity limit co*

Second root to Couette flow spin velocity in the zero spin viscosity limit C 2

Third root to Couette flow spin velocity in the zero spin viscosity limit 0 Co3

First root to Poiseuille flow spin velocity in the zero spin viscosity limit co*

Second root to Poiseuille flow spin velocity in the zero spin viscosity limit cP2

Third root to Poiseuille flow spin velocity in the zero spin viscosity limit C*3

Normalized (dimensionless) spin velocity co*

Normalized (dimensionless) zero electric field spin velocity COO

Differences in dimensionless spin velocity Aco*
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Differences in normalized dimensionless spin velocity AWc*

Continuum spin velocity vector CO

Micro-particle (averaged) rotation speed (scalar)

Micro-particle (averaged) rotation speed (vector)

Averaged micro-particle rotation speed as observed from particle rotation frame Q"

Immersion depth of the electrode (inside)

Externally observed immersion depth of the electrode

Separation function for the r-variable in Eq. (2.13)

Separation function for the # -variable in Eq. (2.13) P

Vortex viscosity, {' -1.5# 0 (
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Chapter 1

Introduction

1.1 Electrorheology

Electrorheological (ER) fluids are a class of fluids that consist of conducting or insulating

dielectric solid micro-particles suspended within a continuous dielectric liquid medium. Due to

the electrical property (i.e., conductivity or permittivity) mismatch between the solid and liquid

phases, one can control the formation of different microscopic structures formed by the micro-

particles and subsequently the macroscopic material properties of the ER fluid such as the

apparent or effective viscosity of the suspension via the application of external direct current

(DC) or alternating current (AC) electric fields. This phenomenon is termed the "electro-

rheological effect" first defined by W.M. Winslow in the year 1949 (Winslow, 1949). Further

research in the field and literature have then categorized ER phenomena, based on the flow or

rheological responses, into either positive ER or negative ER effects when the ER fluid is

subjected to different forms or combinations of electric field excitations (Winslow, 1949;

Klingenberg & Zukoski, 1990; Halsey, 1992; Foulc et al., 1994; Boissy et al., 1995; Wu &

Conrad, 1997).

Upon the application of DC electric fields, Foulc et al. (1994) discussed the important role of

electrical conductivities of the respective solid and liquid phases in determining the inter-particle

electrical force interactions in ER fluids. Boissy et al. (1995) then further characterized and made

distinctions of macroscopic positive and negative ER responses based on different ratios or

relative magnitudes of the respective conductivities of the two phases. For ER fluids consisting
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of micro-particles with a conductivity, a2, larger than that, o-, of the carrier liquid, stable

particle chains are formed in the direction of the electric field so that the macroscopic fluid

resistance against externally applied shear perpendicular to the electric field is enhanced and

result in an increased measured effective viscosity-the positive ER effect (Winslow, 1949;

Klingenberg & Zukoski, 1990; Halsey, 1992). On the other hand, when the conductivity of the

carrier liquid is larger than that of the micro-particles, i.e., a, > U2 , laminated layers

(perpendicular to the electric field) of packed particles resulting from electromigration are

formed adjacent to one of the two electrodes leaving a portion of the ER fluid relatively clear of

particles and hence leading to a reduction in the resistance against externally applied shear forces

perpendicular to the electric field; a decrease in the effective viscosity is thus measured-the

negative ER effect (Boissy et al., 1995; Wu & Conrad, 1997).

Despite the relatively sparse reports on negative ER effects over the past 60 years of ER

research development, recent experimental observations have found that: (i) with a given

constant shear rate or equivalently the Couette flow boundary driving velocity, the measured

shear stress required to drive the Couette ER fluid flow is reduced (an effectively decreased

viscosity) and (ii) at a given constant pressure gradient, the Poiseuille flow rate of the ER fluid

can be increased both by applying a uniform DC electric field perpendicular to the direction of

the flows (Lobry & Lemaire, 1999; Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006;

Pannacci et al., 2007a; Lemaire et al., 2008). The mechanism responsible for the observed

apparent increased flow rate and decreased effective viscosity was attributed to the spontaneous

electrorotation of the dielectric insulating micro-particles suspended within the more conducting

carrier liquid, which is a mechanism different from the traditional electromigration or particle

electrophoresis explanation as mentioned in previous negative ER literature (Boissy et al., 1995;

Wu & Conrad, 1997). This spontaneous particle electrorotation under the action of a uniform DC

electric field is also often called "Quincke rotation" for G. Quincke's systematic study done in

1896 (Quincke, 1896; Melcher & Taylor, 1969; Melcher, 1974; Melcher, 1981; Jones, 1984;

Jones, 1995). Here, for short hand notation purposes, we shall term the particle electromigration

or electrophoresis induced negative ER effect as the negative ER effect of the first kind (nERl)

and the spontaneous micro-particle electrorotation induced negative ER effect as the negative ER

effect of the second kind (nER2).
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1.2 Particle Electromechanics and Negative Electrorheology

The origin and the operating principles of Quincke rotation can be qualitatively illustrated by

considering an insulating dielectric spherical micro-particle with permittivity v2 and

conductivity a2 suspended in a slightly conducting carrier liquid having a permittivity of 61 and

a conductivity of a,. The material property combination is chosen so that r2 >'r 1 where

r,= s /a, and r 2 = c 2 /a 2 are the charge relaxation time constants of the carrier liquid and the

micro-particle, respectively. As the carrier liquid and the suspended micro-particle altogether are

subjected to a uniform DC electric field, charge relaxation follows the Maxwell-Wagner (MW)

polarization at the solid-liquid interface, and the suspended particle acquires a final equilibrium

dipole moment in the opposite direction to that of the applied DC field for the condition of

-r2>- 1 . This, however, is an unstable equilibrium, and as the applied DC electric field strength

reaches a critical value (Jones, 1984; Jones 1995), namely,

E +o, 870+' , (1.1)

where r/0 is the viscosity of the carrier liquid, the liquid viscous dampening can no longer

withstand any small perturbations misaligning the particle dipole moment and the applied DC

field. The electrical torque resulting from the misalignment of the particle dipole moment and the

electric field exceeds the liquid viscous torque exerted on the micro-particle giving rise to

spontaneous, self-sustained particle rotation either clockwise or counter clockwise with the

rotation axis being perpendicular to the planes defined by the electric field, i.e., no a priori

preferential direction for rotation.

The above physical picture can be further generalized and applied to a dilute collection of

dielectric insulating micro-particles suspended in a slightly conducting carrier liquid medium,

that is, a dilute particle-liquid suspension. Since there is no a priori preferential direction for

Quincke rotation when the micro-particle suspension is subjected to a DC electric field strength

greater than the critical electric field, E, we can expect that the rotation direction of the micro-

particles suspended in a quiescent liquid being completely random except the constraint of the

particle axis of rotation being perpendicular to the planes defined by the electric field. Note

however that when the particle-liquid suspension, or ER fluid, is driven by a boundary shear
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stress (for Couette flows) or a pressure gradient (for Poiseuille flows), the macroscopic

background flow vorticity gives the suspended micro-particles, instead of by random chance,

preferable directions for rotation via viscous interactions once an external DC electric field

(generally larger than the critical field, E,) is applied. It is this combined effect of microscopic

particle electrorotation and macroscopic flow vorticity that gives rise to the newly observed

nER2 phenomenon as described above (Lobry & Lemaire, 1999; Cebers et al., 2000; Cebers et

al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et al., 2008). Up to this point, no

experimental evidence has observed an nER2 effect without initial background flow or vorticity

when a DC electric field with strengths generally greater than E, is applied (Lobry & Lemaire,

1999)-both initial vorticity and micro-particle Quincke rotation are required for nER2.

Additional to the experimental observations, scientists and engineers are always interested in

the theoretical modeling of ER effects such that the ER responses can be predicted

mathematically or computationally, and that commercial products such as electrically actuated

dampers, clutches, or smart materials can be designed and realized. However, ER fluid flow

modeling has also been very challenging due to its inherent solid-liquid two phase nature and the

complexities involved at the microscopic level such as particle-particle interactions, particle-

liquid interactions, electric and flow field interactions, and so on. Nonetheless, with the initial

macroscopic flow vorticity and the micro-particle Quincke rotation identified as fundamental

mechanisms responsible for the nER2 effect, we would like to take a step further and ask how to

theoretically and mathematically model and describe this nER2 phenomenon, that is, how to

model and describe the negative electrorheological responses of a particle-liquid suspension with

the suspended micro-particles undergoing spontaneous electrorotation or Quincke rotation when

the suspension is subjected to a uniform DC electric field and to an initial flow vorticity.

Although models are available in current literature for describing the new nER2

phenomenon, they are focused on first analyzing the dynamics of a single micro-particle in a

shear flow subjected to a DC electric field and then substituting the micro-particle rotation speed

solved from single particle dynamics into a two-phase volume averaged, effective continuum

description of the suspension effective viscosity proposed by Brenner in the 1970s (Brenner,

1970; Lobry & Lemaire, 1999; Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006;

Pannacci et al., 2007a; Lemaire et al., 2008). Very little has been done in developing a

continuum mechanical model from a more classical field theory based perspective or starting
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point for predicting the dynamical behavior of fluids consisting of micro-particles undergoing

spontaneous electrorotation. To the best of the author's knowledge, the ferrofluid spin-up flow is

the most representative flow phenomenon arising from external field induced internal particle

rotation in current rheology research (Moskowitz & Rosensweig, 1967; Rosensweig et al., 1990;

Rosensweig, 1997; Chaves et al., 2006; Elborai, 2006; He, 2006; Chaves et al., 2007, 2008).

1.3 The Ferrofluid Spin-up Flow and the Theory of Continuum Anti-symmetric/Couple

Stresses

Ferrofluids consist of colloidally stabilized magnetic nanoparticles, typically magnetite,

suspended in a non-magnetizable liquid. Spin-up flow phenomenon of ferrofluids was first

observed by Moskowitz and Rosensweig in 1967 when a swirling flow pattern was found on the

fluid surface by applying a rotating magnetic field to a beaker of ferrofluid (Moskowitz &

Rosensweig, 1967; Rosensweig, 1997). Though current literature is more inclined to the theory

of the origin and the direction of the swirling flow being respectively dependent on the surface

stresses and the surface curvature conditions of the ferrofluid (Rosensweig et al., 1990; Rinaldi,

2002), the introduction of magnetic body torque into the ferrofluid is still considered as one of

the fundamental mechanisms or principles in understanding, describing, and analyzing the

dynamical behavior of ferrofluid spin-up flows (Rosensweig, 1997; Rinaldi, 2002; Rinaldi &

Zahn, 2002; Elborai, 2006; He, 2006; Chaves et al., 2007, 2008).

In a ferrofluid spin-up flow, magnetic torque is introduced into the ferrofluid through the

misalignment of the ferrofluid nanoparticle's permanent magnetization and the applied rotating

magnetic field. The internal angular momentum of a continuum ferrofluid "parcel," m, most

likely containing a representative collection of carrier liquid molecules and rotating magnetic

nanoparticles, becomes significant and the continuum stress tensor becomes anti-symmetric for

strong enough magnetic body torques introduced at the microscopic level. A moment-of-inertia

density, I, is defined for the ferrofluid parcel based on the mass distributions of the carrier

liquid molecules and magnetic particles in the parcel. A continuum spin velocity, CO, (column

vector) is then defined by the product of the internal angular momentum density (column vector)

with the inverse of the moment-of-inertia density (tensor), i.e.,
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-=-I -
mO= I -m, (1.2)

(Dahler & Scriven, 1961; Dahler & Scriven, 1963; Condiff & Dahler, 1964). Since a ferrofluid

continuum contains an enormous amount of these parcels, the spin velocity, c, is defined as a

continuous field quantity which in general, can be a function of space and time, i.e.,

CO = CO(x, y, z, t). In order to macroscopically model the internal microscopic particle rotation

effects on the continuum fluid flow motion, a continuum angular momentum conservation

equation is added and coupled with the linear momentum equation so that, in general, the

externally applied magnetic body couple, angular momentum conversion between linear and spin

velocity fields, and the diffusive transport of angular momentum are incorporated into the

description of the flow momentum balances (Dahler & Scriven, 1961; Dahler & Scriven, 1963;

Condiff & Dahler, 1964; Eringen, 1966; Rosensweig, 1997).

A fundamental issue in the current development of ferrofluid spin-up flow is whether the

diffusive angular momentum transport or couple stress has a finite contribution in the angular

momentum balances of the flow. The current consensus is that the couple stress contribution is

vanishingly small, i.e., zero spin viscosity or diffusive transport conditions, as discussed in

Rosensweig (1997), Schumacher et al. (2003), Chaves et al. (2007, 2008), and so on. In a most

recent work by Feng et al. (2006), scaling and numerical analyses were presented to show that in

the limit of an effective continuum, the angular momentum equation is to be couple stress free

and the value of the spin viscosity should be identically zero. However, spin-up velocity profiles

measured by ultrasound velocimetry reported by Elborai (2006), He (2006), and Chaves et al.

(2007, 2008) were compared with the numerical simulations of the full spin-up flow governing

equations and found that the experimental and numerical results would agree only if the spin

viscosity assumes some finite value instead of being vanishingly small or identically zero.

Another issue perhaps related to the debate over zero or finite spin viscosities (or couple

stresses) is about the exact definition of the flow kinematic variable of spin velocity,

CO = CO(x,y,z,t), when modeling ferrofluid spin-up flows with the continuum anti-symmetric/

couple stress tensor theories and the continuum linear and angular momentum governing

equations. By extensive literature review, it can be found that the continuum spin velocity field,

CO, is seemly often defined as the averaged micro-particle rotation speed, Q, or vice versa.



Introduction 45

The continuum angular momentum theory for structured continua of Dahler and Scriven

(1961, 1963) and Condiff and Dahler (1964) was originally applied for modeling flow motion of

fluids consisting of polar molecules. Both phenomenological and statistical approaches were

utilized in deriving the governing linear and angular momentum equations and the definition of

the spin velocity, c, is more likely a continuum kinematic field variable that characterizes the

rate of internal rotation of continuum fluid particles or "parcels" defined under the framework of

the continuum hypothesis (Fox & McDonald, 1998). Eringen (1964, 1966) also derived a similar

set of continuum linear and angular momentum equations for micro-polar fluent media from a

purely mathematical tensorial approach without reference to a detailed description of the

microscopic picture. The equivalent kinematic variable to the spin velocity field was termed

"micro-rotation" in Eringen's model. Without a detailed description of the microscopic picture, it

seems that the "micro-rotation" kinematic variable can only be a field or continuum mechanical

quantity. Kaloni (1992) pointed out the similarities found between the governing continuum

linear and angular momentum equations for polar continua developed by Dahler and Scriven

(1961, 1963) and Condiff and Dahler (1964), and by Eringen (1964, 1966).

With the invention of ferrofluids and the observation of ferrofluid spin-up flows in the 1960s,

Zaitsev and Shliomis (1969) gave a first analysis of the ferrofluid spin-up problem including the

effects of diffusion of particle rotation angular momentum. Their original definition of internal

angular momentum, s, includes the total angular momentum of the suspended particles within a

given volume and that of the carrier liquid entrained by rotation of the particles. Shliomis (1972)

further proposed a constitutive relation relating the internal angular momentum, s, and the

averaged micro or nano particle rotation velocity, Q, through

S = IdQ (1.3)

where IdP is the volume density of the sum of the particles' moment of inertia and is given

explicitly in a very recent work by Shliomis (2002) for a suspension of spherical particles as

'vdp -P~ 
14

10

where p,, d, and # are respectively the solid particle density, particle diameter, and solid

volume fraction of the particles. The kinematic variable representing the internal rotation and

related to the internal angular momentum of the ferrofluid was then based on the averaged nano
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(or micro) particle rotation speed, Q. In order to account for the non-equilibrium effects of flow

motion on the macroscopic magnetization during the ferrofluid spin-up phenomenon, a first

magnetization relaxation equation was also presented by Shliomis in 1972 (Shliomis, 1972;

Shliomis, 2002) with the averaged particle rotation speed, Q, being the non-equilibrium

variable.

Rosensweig et al. (1990) pointed out the similarity or equivalence between the governing

linear and angular momentum equations used by Zaitsev and Shliomis (1969) and by Dahler and

Scriven (1961, 1963) and Condiff and Dahler (1964) for modeling fluid flows with internal

angular momentum. By examining Eqs. (1.2) and (1.3), we can also find the very similar

functional forms of the two constitutive relations. Note however that the respective physical

meanings or definitions of the spin velocity field, co, and the averaged particle rotation speed,

Q, as well as those of Eq. (1.2) and Eq. (1.3) should still be carefully distinguished. The

formulation by Dahler and Scriven (1961, 1963) and Condiff and Dahler (1964) was then

extensively employed in modeling ferrofluid spin-up flows as in Rosensweig et al. (1990),

Rosensweig (1997, 2002), Rinaldi (2002), Rinaldi & Zahn (2002), Elborai (2006), He (2006),

and Chaves et al. (2007, 2008).

In 1970, Brenner (1970) considered the macroscopic effective stress tensor and effective

viscosity arising from the dynamic influences of a dilute collection of rotating spherical solid

micro-particles suspended in a carrier viscous liquid at the microscopic level. An elegant two

scale analysis was performed by first finding the microscopic local flow field near a translating

and rotating micro-particle with Lamb's general spherical harmonics solution (Lamb, 1945) and

then by averaging the dynamic and kinematic variables involved, e.g., microscopic pressure and

velocity fields, over a representative volume of the particle-liquid suspension (a procedure

similar to modern homogenization methods) to obtain an "effective continuum" stress tensor.

This two-phase effective continuum stress tensor is anti-symmetric, is dependent upon the

averaged micro-particle rotation speed, Q, and has a functional form similar to those found in

Condiff and Dahler (1964) and Shliomis (1972, 2002). However, the physical picture or

mechanism of couple stress or spin viscosity was not likely seen to be built into Brenner's 1970

model for the macroscopic stress tensor resulting from microscopic particle rotation.
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In reviewing all this historical development of modeling fluid flows possessing internal

angular momentum or micro/nano-particle rotations, we frequently find that the governing linear

and angular momentum equations as well as constitutive relations from different and

independent formulations are often very much similar in spite of the different original physical

meanings defined for the kinematic variables of spin velocity, co, and averaged particle rotation

speed, 0, in their respective modeling formulations. Perhaps this is why the distinction between

the spin velocity and the averaged particle rotation speed begins to blur, and why the averaged

particle rotation speed (or angular velocity) is employed in continuum mechanical conservation

laws in more recent micro-polar fluid and ferrofluid literature (Lukaszewicz, 1999; Rosensweig,

2002; Feng et al., 2006). Still, it remains an open question of whether the spin velocity field, co,

and the averaged particle rotation speed, Q, are exactly and unambiguously the same (or

different). The interrelationships among the spin velocity, macroscopic continuum vorticity,

microscopic local vorticity, and the local micro- or nano-particle rotation speed also remain

unclear and require further investigation.

The continuum mechanical theory for negative ER fluid flows with internal micro-particle

electrorotation developed in the following chapters shall follow the treatment of Dahler and

Scriven (1961, 1963) and Condiff and Dahler (1964) and those of the general

ferrohydrodynamics literature (Rosensweig, 1997, 2002; Rinaldi, 2002; Rinaldi & Zahn, 2002;

Elborai, 2006; He, 2006; Chaves et al., 2007, 2008). However, we shall view the spin velocity as

a continuum kinematic variable as defined in Eq. (1.2) and in the second paragraph of this

section, i.e., we view the macroscopic continuum spin velocity and the microscopic micro-

particle rotation speed as different quantities.

1.4 Motivation, Aim, and Plan of Thesis

After reviewing the background theories and the issues involved in both the negative

electrorheological effect of the second kind (nER2) and the ferrofluid spin-up flow, the present

thesis is motivated by the following questions:

(i) Apart from the current treatment of nER2 by combining single particle dynamics and two-

phase effective continuum theories (Brenner, 1970; Lobry & Lemaire, 1999; Cebers et al.,

2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et al.,
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2008), can we develop a fully continuum mechanical model with the developed governing

equations being physically parallel and mathematically similar to those employed in

analyzing ferrofluid spin-up flows for describing, analyzing, and predicting nER2 behavior

from a more classical field theory based perspective?

(ii) With the developed governing equations for nER2 being physically parallel and

mathematically similar to those employed in analyzing ferrofluid spin-up flows, what are

the respective nER2 responses under zero spin viscosity and finite spin viscosity conditions?

(iii) To this point, very little information can be found on the polarization relaxation and

equilibrium polarization for a dielectric particle-liquid suspension under the non-equilibrium

influences of micro-particle rotation speed, Q, continuum linear flow velocity, v, and

continuum angular spin velocity, o. Is it possible to find a simple way of incorporating all

three non-equilibrium effects to our model for describing the polarization relaxation process

involved in the nER2 phenomenon?

Motivated by the above reasons, this thesis is therefore aimed at developing a classical

continuum mechanical model that combines particle electrorotation as well as anti-symmetric

and couple stress theories for describing the negative electrorheological behavior of a particle-

liquid mixture (termed ER fluid henceforward) subjected to a DC electric field perpendicular to

the direction of the flow and with a strength generally higher than the Quincke rotation threshold.

In Chapter 2, we formulate and present the general governing equations, in their full form,

for studying the nER2 phenomenon from a classical phenomenological field theory based

continuum mechanical perspective. Identifying the "mathematically analogous, physically

parallel mechanisms" governing the respective electrorotation and ferrofluid spin-up flows as

summarized in Table 1.1, the governing continuum linear and angular momentum equations

originally used for ferrofluid spin-up analyses (Rosensweig, 1997, 2002; Rinaldi, 2002; Rinaldi

& Zahn, 2002; Elborai, 2006; He, 2006; Chaves et al., 2007, 2008) are modified by changing the

external magnetic body force and torque densities (based on macroscopic ferrofluid

magnetization and applied magnetic fields) into external electric body force and torque densities

(based on macroscopic ER fluid polarization and applied electric fields) for analyzing and

describing the nER2 responses.

The second half of Chapter 2 is devoted to the theoretical foundations of Quincke rotation of

a single spherical solid micro-particle. Solutions to the electric potential, electric field, and dipole
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Electrorotation (Quincke rotation) flow Ferrofluid spin-up flow

Particles Insulating dielectric (plastic) micro-particle Magnetic nano-particles

Micro scale polarity Maxwell-Wagner (MW) polarization Permanent magnetic dipole

Macro scale polarity Polarization P (due to induced free surface charge) Magnetization M

Applied field DC electric field E (combined with flow vorticity) Rotating magnetic field H

Body torque density I i x uoM x H

Table 1.1 Summary of physical analogy between the electrorotation and ferrofluid spin-up flows.

momentum are to be solved for an insulating dielectric spherical solid micro-particle suspended

in a slightly conducting dielectric carrier liquid subjected to a uniform DC electric field rotating

at a certain angular velocity. The electric torque exerted on such a micro-particle can be derived

by the dielectrophoretic approximation or the method of Maxwell stress tensor. The derived

electric torque is then balanced by the carrier liquid viscous torque and steady state solutions to

the particle Quincke rotation angular velocity as well as the critical electric field strength, Eq.

(1.1), can be obtained, respectively.

In Chapter 3, we first review the basic ideas of Shliomis' first magnetization relaxation

equation (1972, 2002), Cebers' dipole relaxation equation for single particle Quincke rotation

(1980), and Xiao et al.'s (2008) dynamic effective medium theory based on the Lorentz cavity

model. Summarizing these basic ideas, we present a first polarization relaxation equation and its

corresponding equilibrium polarization that account for the three possible non-equilibrium

variables, i.e., the micro-particle rotation speed, Q , continuum linear flow velocity, v, and

continuum angular spin velocity, co. Note that this proposed polarization relaxation equation

along with its corresponding equilibrium polarization are specifically designed for the retarding

part of the total ER fluid polarization, that is, the part of polarization directly related to the

Maxwell-Wagner (MW) polarization induced surface charges around the solid spherical micro-

particles. By treating the micro-particle rotation speed, Q, and the continuum angular spin

velocity, c, as separate quantities, we would like to promote the idea or question of whether the

two quantities are exactly and unambiguously the same (or different).

With the theoretical foundations laid out and the proposed continuum mechanical model

developed in Chapters 2 and 3, we apply our developed continuum mechanical model to

respectively study and analyze the nER2 responses for Couette and Poiseuille flow geometries in

Chapters 4 and 5. In both Chapters 4 and 5, the general governing equations presented in Chapter
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2 are reduced and simplified for their respective flow geometries. For the two flow geometries,

the respective simplified governing equations are then solved to obtain analytical expressions in

the zero spin viscosity limit and in the finite spin viscosity small spin velocity limit. Parametric

studies are then performed for the two geometries.

For Couette flow geometries discussed in Chapter 4, the spin velocity field, o, and the

effective viscosity, ,,ff, are studied in terms of the externally applied DC electric field, E, and

the Couette boundary driving velocity, U0 , in the zero spin viscosity, 77'=0, limit. As for the

finite spin viscosity small spin velocity limit (q'# 0 , r cof << 1), the spin velocity field, co,

linear velocity field, v, and the effective viscosity, ,,ff, are analyzed as functions of the

externally applied DC electric field, E, the Couette boundary driving velocity, U0 , the spin

viscosity, t7', and the boundary condition selecting parameter, 8. Similarly, for Poiseuille flow

geometries discussed in Chapter 5, the spin velocity field, co, linear velocity field, v, and the

two dimensional (2D) volume flow rate, Q, are studied in terms of the externally applied DC

electric field, E, and the Poiseuille driving pressure gradient, 1F, in the zero spin viscosity,

'= 0, limit. On the other hand, for the finite spin viscosity small spin velocity limit

q'# 0 , r <1), the spin velocity field, o, linear velocity field, v, and the 2D volume flow

rate, Q, are analyzed as functions of the externally applied DC electric field, E, the Poiseuille

driving pressure gradient, F, the spin viscosity, q', and the boundary condition selecting

parameter, 8.

Chapter 6 compares the present continuum mechanical results respectively obtained for both

Couette and Poiseuille flow geometries in Chapters 4 and 5 with the results obtained from

experimental observation and two-phase effective medium theories as found in current

literature.* Results obtained in both the zero spin viscosity limit and the finite spin viscosity

small spin velocity limit are to be compared and discussed. We shall also discuss how different

*Experimental considerations as part of the present thesis work regarding material selection, ER fluid synthesis,

liquid impedance measurements, viscosity measurements, construction of negative ER phenomenon testing

equipment, and the electrorotation assisted Poiseuille flow rate experiment are given in Appendix.
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choices of equilibrium polarization employed in our polarization relaxation model affect the

resulting theoretical predictions of the nER2 responses at the end of Chapters 4 and 5.

Chapter 7 concludes the thesis by summarizing the principle findings and the state-of-the-art

contributions of this thesis and by outlining directions for potential future work. Hopefully, the

theoretical results and discussions obtained for internal micro-particle electrorotation induced

negative electrorheological flow responses given in this thesis can contribute substantially to the

sparse negative electrorheology research and serve as a parallel, analogous research that offers

new, complementary insights to the ferrofluid spin-up problem.

The theory for internal micro-particle electrorotation induced negative electrorheological

flow responses presented in this thesis should find potential applications in designing electrically

actuated dampers, clutches, and smart materials (Espin et al., 2005; Esmonde et al., 2009) as

well as in modeling or analyzing the electrorheological or magnetorheological responses of

physiological and human blood flows (Happel & Brenner, 1983; Larson, 1998; Lukaszewicz,

1999; Haik et al., 2001; Khashan & Haik, 2006).
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Chapter 2

Theoretical Foundations and

Governing Equations

In this chapter, we lay down the theoretical foundations and mathematical tools for

describing and analyzing the nER2 responses. These ideas and tools are then further applied to

obtain the mathematical expressions and solutions given in Chapters 3, 4, and 5.

In order to quantitatively model and describe the present negative ER flow phenomenon,

several physical principles involved are considered: (i) the continuity or mass conservation, (ii)

the linear momentum balance, (iii) the angular momentum balance, (iv) the electro-quasi-static

(EQS) field, and (v) the polarization relaxation of the negative ER fluid flow. For the first part of

this chapter, we shall formulate and present the continuum governing field equations that

encompass and characterize aspects (i) through (iv), namely, the continuity equation, the linear

momentum equation, the angular momentum equation, and the EQS Maxwell's equations. The

second part of this chapter is then devoted to solving the electric potential, electric field, and

dipole moment of a dielectric insulating spherical micro-particle suspended in a slightly

conducting liquid undergoing spontaneous electrorotation, or Quincke rotation. Based on these

solutions of micro-particle Quincke rotation, we develop and present the polarization relaxation

equation along with its accompanying equilibrium polarization (aspect (v)) in Chapter 3. We

summarize the assumptions used or employed in the theoretical development of our continuum

mechanical formulation for the nER2 effect at the end of this chapter.
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2.1 Electrorheology-Governing Equations for Micro-polar Fluids

As we have learned at the end of Chapter 1, a very close resemblance or similarity can be

drawn between the ferrofluid spin-up flow and nER2 by identifying the "mathematically

analogous, physically parallel mechanisms" governing the respective magnetic and electric

counter parts as summarized in Table 1.1. The macroscopic rheological responses of the two

flows are also closely related to the micro or nano scale particle dynamics as well as the

entrainment of surrounding carrier liquid due to particle rotation.

With the above physical picture and by carefully examining the governing continuum

mechanical field equations employed in ferrofluid spin-up flow studies (Rosensweig, 1997,

2002; Rinaldi, 2002; Rinaldi & Zahn, 2002; Elborai, 2006; He, 2006; Chaves et al., 2007, 2008),

we formulate and present the governing continuum mechanical equations for describing the

internal micro-particle rotation induced negative ER effect, nER2, as: the mass continuity

equation for incompressible flow,

V-v=0, (2.1)

the linear momentum equation,

pDv = -Vp +(P -V)E +2(V xco+vV(V .v)+qV2v (2.2)
Dt

and the angular momentum equation,

Do -2 -2
I- =PxE+2{ Vxv-2a)+'V(V-m +'VCO, (2.3)

Dt

where v is the linear flow velocity, p is the ER fluid density, p is the pressure in the flow field,

P is the fluid total polarization, E is the electric field, co is the flow spin velocity, I is the

average moment of inertia per unit volume, 7' is the spin viscosity, g is the vortex viscosity

which is related to the carrier liquid viscosity, qo, and particle solid volume fraction, #, through

- 1.5#770 for dilute suspensions with # < 1, v = A + - g is the sum of the second coefficient

of viscosity, 2, the zero field ER fluid viscosity, q - 70 (1+ 2.5#), and the negative of the vortex

viscosity, g , q, = 7 + 4 is the sum of the zero field ER fluid viscosity and the vortex viscosity,

v'= q '+A' is the sum of the spin viscosity, 1', and the second coefficient of spin viscosity, 2'

(Condiff & Dahler, 1964; Brenner, 1970; Rosensweig, 1997, 2002), and D/Dt is the material
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derivative given by

-. + v V . (2.4)
Dt at (V

Note that Eq. (2.2) generally follows the form of the well known Navier-Stokes equation.

However, by introducing microscopic polarity and micro-particle rotation to the macroscopic

fluid flow, additional terms are included in Eq. (2.2) to account for the Kelvin body force

density, (Pi -V)ZE, and the anti-symmetric force density, 24V x c, as contributions in the linear

momentum balances of the fluid flow. Moreover, Eq. (2.3) characterizes the ER fluid parcel spin

velocity, w, so that the torque and angular momentum balances resulting from the electrical

torque input and fluid motion can be described and related to other variables pertinent to this

problem. In Eq. (2.3), the left hand side (LHS) represents the angular momentum per unit

volume of a continuum ER fluid parcel; the first term on the right hand side (RHS) represents the

electrical torque density introduced to the flow field via the rotating micro-particles under the

action of the external DC field; the second term on the RHS represents the angular momentum

density transformation or conversion between the vorticity and the spin velocity fields; the third

term on the RHS represents the gradient of the divergence of the spin velocity and is analogous

to the "gradient of the divergence of the velocity" term in Eq. (2.2) that measures the bulk

compression effects in the fluid flow; and finally, the fourth term on the RHS represents the

diffusive transport of angular momentum within the flow field (Rosensweig, 1997, 2002).

Our development of Eqs. (2.1)-(2.4) closely follows those employed in the ferrofluid spin-up

problem. However, we have carefully changed the fluid magnetization to ER fluid total

polarization and substituted the externally applied electric field for the applied magnetic field so

that the magnetic body force and torque become electric body force and torque inputs in the

continuum linear and angular momentum equations.

Rigorously speaking, the expressions of the vortex viscosity, ~1.5#7 , and the zero

electric field ER fluid (suspension) viscosity, r -r qo (1+ 2.5$A), i.e., the Einstein's relation, are

results derived from models based on micro-/nano-particle rotation speeds (Shliomis, 1972) or a

two-phase effective medium (Brenner, 1970) and are not exactly suited for use in the general

continuum mechanical field equations (Dahler & Scriven, 1961; Dahler & Scriven, 1963;

Condiff & Dahler, 1964; Lukaszewicz, 1999). However, since these viscosity relations are up to
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now the best approximations (to the exact continuum picture) available as well as widely

accepted and extensively used in the general ferrofluid literature (Rosensweig, 1997; Rinaldi,

2002; Rinaldi & Zahn, 2002; Elborai, 2006; He, 2006; Chaves et al., 2007, 2008), we have

employed these definitions or relations of the vortex viscosity and zero electric field viscosity in

our current development of Eqs. (2.1)-(2.4) for the nER2 phenomenon.

With the governing equations for the mechanical subsystem being setup, we now turn to the

development of the electrical subsystem for the present negative ER fluid flow, i.e., nER2. The

electric field in the ER flow field is generally described by the electro-quasi-static (EQS)

Maxwell equations (Melcher, 1981; Haus & Melcher, 1989), namely,

Vx E ~, (2.5)

and

V-D=p ~0, (2.6)

with

D=eoE+Pt, (2.7)

where D is the electric displacement field, pj is the free space charge density, and

o = 8.854 x 10-12 (C 2 /N. M2 , or F/m) is the electric permittivity of free space. Here, we have

assumed that on the macroscopic continuum level, the free space charge density is zero. We

approach this non-equilibrium problem of nER2 from the EQS Maxwell's equations instead of

the full Maxwell's equations because of the following reasons: (i) the characteristic length scale

of the rotating micro-particles is much less than the characteristic length scale for

electromagnetic wave propagation and (ii) the characteristic frequency for Quincke rotation

(~kHz, as will be seen in the following development of this thesis) is generally much less than

those of most electromagnetic waves (-GHz) (Haus & Melcher, 1989).

To complete the description of the electrical subsystem, we need a continuum

phenomenological polarization relaxation equation and its accompanying equilibrium

polarization that account for the non-equilibrium effects of both the linear and angular motions

on the ER fluid polarization. Since the torque input at the micro scale for particle electrorotation

is related to the induced surface charge around the surface of the micro-particles, we shall focus

on how non-equilibrium motion, i.e., micro-particle rotation, Q, continuum fluid spin velocity,
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0), and continuum fluid velocity, v, affects the retarding polarization, P (the part of

polarization directly related to the particle surface charges), instead of the total polarization of

the ER fluid, P . Nevertheless, this development of the polarization relaxation equation and its

accompanying equilibrium polarization for the ER fluid will require the microscopic picture of

micro-particles undergoing Quincke rotation as given in the next section, and thus will be

postponed until Chapter 3.

Before closing this section, several remarks regarding the governing equations of Eqs. (2.1)-

(2.7) are to be made:

(i) By using the incompressibility condition given in Eq. (2.1), we are treating the ER fluid, or

particle-liquid suspension, as a homogenous single phase continuous medium with no

further detailed microscopic two-phase structure. We have assumed that a representative

amount or ensemble of solid micro-particles and carrier liquid molecules makes up one

continuum ER fluid particle or "parcel" under the general continuum hypothesis. This

assumption most likely views the ER fluid parcel as a statistical mass average instead of a

volume average over the two-phase microscopic details.

(ii) With the above physical picture, the average moment of inertia per unit volume, I , given on

the LHS of Eq. (2.3) is assumed to follow the physical definition given by Eq. (1.2) instead

of that given by Eqs. (1.3) and (1.4). In general, the moment of inertia per unit volume (or

density) is a tensor that describes the mass distributions of the carrier liquid molecules and

dielectric particles in the ER parcel. To reduce the complexities involved in dealing with a

tensor quantity, we consider that the ER fluid is homogeneous and isotropic and that the

moment of inertia density tensor, I, is to be replaced by an averaged scalar moment of

inertia per unit volume, I, in Eq. (2.3). Note however that for viscous slow flows

considered in the present thesis, the inertia terms in the equations of motion, Eqs. (2.2) and

(2.3), are generally negligible.

(iii) Also following the physical picture given in Remark (i), the physical quantities or variables

found in Eqs. (2.1)-(2.7) such as the spin velocity field, CO, linear velocity field, v,

hydrodynamic pressure field, p , electric field, E, displacement field, D, and so on are to

be defined for a homogeneous single phase continuous medium within the mathematical

domain setup by the ER fluid flow.
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02 , -2

x- _
E' = Eo i

Figure 2.1. The schematic diagram for the problem of solving the EQS fields within and around a spherical

particle of radius R (with conductivity of o2 and permittivity of C2) suspended in a liquid medium (with o,

el ) rotating at constant angular velocity Q = Qi, subjected to a uniform DC electric field, Et = E i,.

(iv) Note that by definition, the spin velocity, CO, and the linear velocity, v, shown in Eqs. (2.2)

and (2.3) are continuum field variables which are related to the respective averages of the

internal angular momentum and linear momentum over collections of micro-particles and

carrier liquid molecules in an ER fluid parcel. They should be distinguished from the micro-

particle rotation velocity, Q, which is the microscopic angular velocity of the suspended

micro-particles within an ER fluid parcel. The microscopic picture or information of a

suspension of micro-particles undergoing Quincke rotation as well as the Maxwell-Wagner

(MW) induced surface charge and dipole moment will basically only enter (additional to the

definitions of vortex and zero electric field viscosities) our present classical field theory

based continuum mechanical formulation through the equilibrium polarization and the

polarization relaxation equation as will be discussed in the next chapter.
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2.2 Particle Electromechanics-Quincke Rotation

We start our discussions on Quincke rotation of a "single micro-particle" by considering the

two region problem of the EQS fields inside (r < R) and outside (r > R) of a dielectric

insulating spherical solid micro-particle with a radius of R, a permittivity of c2, and an electric

conductivity of a 2 rotating at a constant angular speed, Q = Qi, , suspended in a slightly

conducting liquid medium (with a permittivity of c, and a conductivity of a,) subjected to a

constant uniform DC electric field, Et = Eli, = Eoi, (t denotes microscopic field quantities), as

shown in Fig. 2.1. For this EQS problem,

V x EI 0, (2.8)

and thus

Et = -VIt, (2.9)

where OI is the electric potential. Since in both regions, there is no free space charge present

and the respective electric permittivities are constant, Gauss' law for the displacement field, i.e.,

V-Dt =0, (2.10)

becomes

V-E = 0, (2.11)

for the two regions. By substituting Eq. (2.9) into Eq. (2.11), we write the resulting Laplace's

equation in spherical coordinates as

1 a = 2 a Dt 1 a - D 1 a2  .
V2I0 -ar + -I sin9-- (2.12)

r2 Or ar r2 sin 0 ao ao r2 sin 2  2.2

We separate the variables with the form suggested by Jackson (1999), namely,

~(r)
Ot (r,,#) = r (0) T (#), (2.13)

and arrive at the following set of separated equations, i.e.,

l(l+1- 0 (2.14)
dr2  r2

d=2,
+K27=0 ,(2.15)

and
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- C sin 0 O+[ l(l+1)- Cj = 0, (2.16)
sin 0 dO d8 sin 20

where / and K are the separation constants (Jackson, 1999). Solving Eqs. (2.14), (2.15), and

(2.16), we obtain the respective solutions of

6-. (r)= j r'*1 +j2r ', (2.17)

'T (#)= j cos(K#)+j 4 sin (K#), (2.18)

and

0(0)= Y1K (Cos 9), (2.19)

and arrive at the general solution to V (r,,#b), i.e.,

qt (r, 0,#b) = I (jr' + j 2 r-('+ )(j cos(ic#) + 14 sin (r#)) YK (cos 9), (2.20)
1KI

where j, j2, 13, and j4 are constants to be determined from boundary conditions and

Y, (cos 9) is the associate Legendre function (Arfken, 1970; Jackson, 1999).

The boundary conditions on the inner and outer electric potentials and fields are the electric

field strength far away from the micro-particle,

E -+ E0 i= E0 (cos Oi - sin io) as r --+ oo, (2.21)

the continuity of the electric potential at the solid-liquid interface,

V (r = R-,) 0#)= D (r = R*,,#), (2.22)

and charge conservation at the steady rotating micro-particle surface,

n- +V -K = 0 at r = R, (2.23)

in which n = i, is the normal vector of the spherical surface, Jj, = o-E is the Ohmic current per

unit area, V= J- -V is the surface divergence with I0 being the unit identity tensor

(Brand, 1947; Deen, 1998), and Kf = a- V is the surface current density with o-f being the

surface charge density and V being the linear velocity on the surface of the rotating micro-

particle. The description of the boundary condition, Eq. (2.23), is completed by the following

relations, namely,
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(2.24)n- =1 a-E; (r = R*,9,#)-o2E (r = R-,0,#),

with Et being the r component of the electric field,

a-, =c Er (r=R*,0,#)-f 2Et (r = R-,,#), (2.25)

and

VQi x Ri= OR sin 0 cos #I+ cos 6 co - sin#)x I= -R (sin#,+ cos 6 co (2.26)

By applying the boundary conditions given above, i.e., Eqs. (2.21)-(2.26), to the general

solution of the electric potential, Eq. (2.20), the electric potentials and fields of the present two

region problem can be solved. We obtain the electric potential, V, and field components, Er,

E , and Eo, for inside (r < R) the rotating micro-particle as

- cosO

Eo (9,) - E0 sin 0 -

and

E0 (#)= - 3 cos #,
R

a6 sin~sin#,

- cos sin#,

and the outer (r > R) electric potential and field components as

(I(r,0,#)= -rE0 cos O+ '2 = -rEo cos O+ 2 (a34reIr 4wjr

2
Er (r,,#)= E0 cos 0+--(a cosO+a sinosin6),

r

E (rO,#0) =

cos6+a 6 sin 0 sin ), (2.31)

(2.32)

(2.33)1
-E 0 sin 0 - I(-a 3 sin+a sincos9),

r

and

E0 (r,#b)= 13 a 6 cos #,
r

where

r -_E cos+r sin0sin#0, (2.27)

(2.28)

(2.29)

(2.30)

(2.34)

Er (0,$) =- (
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U2 1 _ 62-'1

___- L 2o1+02 2es±+s
a31= EOR3 2 1 + 2 + , (2.35)

26 1 c 2 1 rMW2

21+oq2 2,61+2 "
a6 = -EOR 3 2 U2'2 ,(2.36)

p7=pt(+p i (2.37)

ir= sinOcosqOix+sinO sin Oi,+cos i,, (2.38)

and

r 2e, 2 , (2.39)
'rW-203 + o~2

is the Maxwell-Wagner relaxation time.

We expand the outer (r > R ) electric potential, Eq. (2.31), with Eqs. (2.37) and (2.38) and

compare the coefficients to obtain the total dipole moment (as observed from outside the micro-

particle) of the rotating micro-particle as

p/=p1 t+p +p I 4 a+41rela3i , (2.40)

and the retarding part of the dipole moment (Cebers, 1980; Lobry & Lemaire, 1999; Cebers et

al., 2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et al., 2008)

as

pt = 47ra 6 y+ 41rj a3-EoR3 v2 - 1 ). (2.41)
2sl +es2

Microscopically, the Maxwell-Wagner polarization induced surface charge around the spherical

particle with half of the hemisphere having positive charge and the other half having negative

charge is directly related to the retarding dipole moment given by Eq. (2.41) (Cebers, 1980).

However, as viewed from the macroscopic level, the total charge observed far away from this

induced dipole is to be zero.

The electrical torque exerted on this rotating micro-particle as shown in Fig. 2.1 can be

evaluated via the dielectrophoretic approximation (Jones, 1995), i.e.,
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T = H xE=a(4zcsa6  a+ 4 iaI) xzEoi = p x Ei = 4zcaEI (2.42)

This torque expression given in Eq. (2.42) can be verified by calculating the electrical torque

with the general Maxwell stress tensor (Sauer & Schlgl, 1985). The proof is given in the

following. Generally speaking, the electrical torque exerted on the rotating spherical micro-

particle is evaluated by integrating all the differential electrical force, dFt , exerted on the

particle's spherical surface at r = R with the lever arm being R = Rir i.e.,

= R x dF = Rix dF. (2.43)

The differential electrical force, dFI , is related to the Maxwell stress tensor, Vt and the

differential area element, dA = ndA = nR2 sin Odqd9 , through

dFt = dA - [rJ = n - 1tJ R2 sin 6drd9, (2.44)

where n is the surface normal vector, [ denotes the difference of the particular physical

variable across the spherical surface, and

Vt = ,d r9E.2s ,E E, (2.45)

is the Maxwell stress tensor where e is the dielectric permittivity of the particular medium or

region of interest, o5 is the Kronecker delta ( 5 = =1 6 = 0), and E7, Et Et represent the

electric field with i, j, or k being r, 9, or 4. Defining the surface normal to be pointing out

of the sphere, i.e., n = i, , and expanding the Maxwell stress tensor (symmetric) as

T1 rO TrqS

Tt = r r? rot, rt (2.46)
t V t

we evaluate the traction vector, r , and obtain

L rt rO Iro
n. =n*Vt 'ir =t[1 0 0] 4r VCol Vt I-~ r+IrOi (2.47)

Vt Vtf

where
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rl, = EE - (ErEr+ E +E E0) (2.48)

Tr, =CEE' , (2.49)

rlt =eE E , (2.50)

with e being dependent on the particular medium or region of interest. Using Eqs. (2.44) and

(2.47), we rewrite the integral in Eq. (2.43) to obtain

RI xlr = R*- rt, (r = R-)]r(.1

+(-rt (r = R*+- r=R-) I[, (r=R*)-r+t(r=R-)IR2sin ddO

and subsequently

f s E E c2E E r=R --[cE;Eo I 2ErE r=R I 4R3 sin 9dbd9. (2.52)

Substituting

i6 = cos cosi , + cos0sin Oi, -sin Oi., (2.53)

io = - sin #i., + Cos #i, (2.54)

Eqs. (2.28)-(2.30), and Eqs. (2.32)-(2.34) and performing the integral in Eq. (2.52), we again

arrive at Eq. (2.42) with the y- and z- components of the electrical torque being zero.

The electrical torque exerted on the rotating micro-particle is balanced by the viscous torque

in low Reynolds number flows, i.e.,

T" = -8;77oQR'i, . (2.55)

In steady state micro-particle Quincke rotation, T + T 0, and thus with Eqs. (2.36), (2.42),

and (2.55),

2 72 + _7 2 - 1

-4rcE,2ER 3  +2 2,2 8rqrOR 3 = 0 ,(2.56)

such that the steady state micro-particle Quincke rotation angular speed is found as
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+ =.O -1, EO >: Ec ,(2.57)

0, EO < Ec

where Ec is defined in Eq. (1.1), rmw is given in Eq. (2.39), and the + and - signs denote counter

clockwise and clockwise rotation with the coordinate system defined in Fig. 2.1. In Eq. (2.57),

we have assumed that the particle rotation is only in the x-direction; this is because we will only

be considering 2D flow geometries in the following chapters. Note however that for the most

general cases, the particle rotation axis is perpendicular to the planes defined by the electric field,

which has a three dimensional feature.

We further explain the result found in Eq. (2.57) with the micro-particle torque-speed curves

as plotted in Fig. 2.2. Figure 2.2 shows the "magnitudes" of the respective viscous and electrical

torques versus the steady state micro-particle Quincke rotation angular speeds. The linear gray

3

2
TV+
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Eo=0.5Ee

X

-2

-3 2Ec
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Figure 2.2. The steady state torque-speed curves of a single micro-particle undergoing Quincke rotation. The

solid gray line represents the magnitude of the viscous torque, T7, exerted on the micro-particle whereas the

solid black curves represent the magnitudes of the electric torque, T. , exerted on the micro-particle evaluated at

EO = .5E, E,, and 2E, (V/m).

'Peolow
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solid line denotes the magnitude of the viscous torque, T, whereas the solid black curves denote

the magnitudes of the electrical torque, Tt, evaluated at electric field strengths of E = 0.5E,,

E , and 2E, (V/m). For the case of EO = 0.5Ev, we find that the line for the viscous torque only

intersects the electrical torque curve at 0 = 0, i.e., no micro-particle Quincke rotation, which is

the solution for EO < E, given in Eq. (2.57). Since the slope of the viscous torque is greater than

that of the electrical torque near Q = 0 for EO = 0.5E, or EO < E,, any slight perturbation in the

electrical torque that causes micro-particle rotation will be quickly dampen out by the viscous

torque, that is, the magnitude of the viscous torque increases much faster with respect to the

rotation speed as compared to the electrical torque, and thus Q = 0 for EO = 0.5E, or EO < E, is

a stable solution. As we increase the electric field strength to EO = E, the slope of the electrical

torque becomes the same as that of the viscous torque, and the zero micro-particle rotation

solution, Q = 0 , becomes a neutrally stable solution. This is the point at which the micro-particle

starts to have the tendency to rotate due to small noise or perturbations in the particle-liquid

system (recall the physical picture of the micro-particle's dipole moment being in the opposite

direction to the applied electric field for charge relaxation times of r2 > or specifically for the

particle being much insulating than the liquid, i.e., oI >> o , as discussed in Chapter 1). As we

increase the applied electric field strength further to EO = 2E,, the line for the viscous torque

now intersects the electric torque curve at three points, namely, Q = 0 and

Q=+ - (1/s), (2.58)

where the ± signs denote either clockwise or counter clockwise rotation directions. Note

however that the zero rotation solution, 0 = 0, is no longer a stable solution since the slope of

the viscous torque is now less than that of the electrical torque and any slight perturbations in the

electrical torque cannot be dampened out by the viscous torque (for a given small value of

particle rotation, M, near Q = 0, the growth of the electrical torque is greater than that of the

viscous torque). The micro-particle rotation speed, Q, thus starts to grow and finds two stable

operating points, at which the slope of the viscous torque is greater than that of the electrical

torque, as given by Eq. (2.58).
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The physical constants and material properties employed in plotting Fig. 2.2 are given in

Table 4.1 in Chapter 4. As can be seen in Fig. 2.2, the characteristic frequency obtained by this

set of physical constants and material properties is on the order of kilohertz, which is generally

much less than the characteristic frequencies of propagating electromagnetic waves. The

solutions to the electric potential and field obtained in this section will be employed in our

development of the ER fluid polarization relaxation equation along with its equilibrium

polarization in Chapter 3.

Further information regarding the theory of particle Quincke rotation can be found in Jones

(1984, 1995). More coordinate transformation relationships such as those given in Eqs. (2.38),

(2.53), (2.54), etc. can be found in Griffiths (1999) and Zahn (2003). For detailed and elegant

calculations of electrical torques exerted on cylinders and spheres using the method of Maxwell

stress tensors, please refer to Sauer & Schl6gl (1985).

2.3 Summary of Assumptions Built-in the Present Formulation

At the end of Chapter 2, we summarize the assumptions that have been made so far or will be

made in the following chapters of Chapters 3, 4, and 5 so that this section can serve as a quick

reference of all the assumptions or approximations built-in the present continuum mechanical

formulation of the nER2 effect discussed in this thesis.

(i) The physical model of the ER fluid or particle-liquid suspension considered herein is a dilute

collection (with solid volume fraction being #< 1) of insulating dielectric spherical micro-

particles suspended within a slightly conducting liquid medium. The micro-particles are

considered to be neutrally buoyant such that the solid phase do not sediment and separate

from the liquid phase of the ER fluid. By asserting a dilute suspension, electrical and

hydrodynamic interactions among the micro-particles are generally neglected at the

microscopic level.

(ii) Additional to the above physical picture, we consider that both micro-particle Quincke

rotation and initially imposed macroscopic flow vorticity are always required to produce the

negative electrorheological effects of the second kind (nER2). So far, no nER2 effect has

been observed without the presence of an initially imposed macroscopic flow vorticity.

(iii)The four remarks made at the end of Section 2.1.
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(iv)In Section 2.2, we have applied the electro-quasi-static (EQS) Maxwell's equations to solve

for the electric potentials and electric fields inside and outside of a rotating single micro-

particle when subjected to a uniform electric field of Et = E i, = E0 i, . We have assumed

that no bulk spatial free charge is present in either the liquid or the solid phase such that

pf = 0 and that only surface charge, o-f, is present on the surface of the rotating micro-

particle. The surface charge distribution and the subsequent dipole moment of the micro-

particle obey the principle of Maxwell-Wagner interfacial polarization and the microscopic

physical picture of the electrical double layer along with its finite charge distributions are

neglected.

(v) On the macroscopic level, we assume the electric field applied to the ER fluid or particle-

liquid suspension, E, is a direct current (DC) uniform electric field. Because the ER fluid

flow velocity considered in this thesis is much less than the speed of propagating

electromagnetic waves, we can apply the electro-quasi-static (EQS) Maxwell's equations to

the ER fluid flow problem of interest. We also assume no spatial free charge density is

present in the ER flow field, i.e., pf = 0.

(vi)As will be discussed in the next chapter, the development of the polarization relaxation

equation and its accompanying equilibrium polarization is focused on the retarding

polarization instead of the total ER fluid polarization. The retarding polarization is the part of

the total ER fluid polarization that is directly related to the surface charges on the surfaces of

the rotating micro-particles induced by the Maxwell-Wagner interfacial polarization

mechanism. As will be shown in the next section, a "rotating coffee cup model" is developed

to characterize the retarding polarization relaxation process when the ER fluid is subjected to

motion. The model consists of a retarding polarization relaxation equation along with its

accompanying equilibrium retarding polarization. We define a quasi-equilibrium state for a

continuum ER fluid parcel consisting of carrier liquid molecules and rotating micro-particles

with all the micro-particles contained within the ER fluid parcel rotating in the same

direction such that a two-component equilibrium retarding polarization is made possible.

(vii) In this thesis, two flow geometries are considered, they are the two-dimensional Couette

and Poiseuille flow geometries. For each of the geometries, two limits of the classical

continuum mechanical field equations as formulated in this chapter are considered. They are
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the zero spin viscosity limit, 77'= 0, and the finite spin viscosity small spin velocity limit,

'# 0 and r c« 1. Both of the flow fields are considered to be two-dimensional, steady

state, fully developed, and incompressible flows. We also consider the ER fluid flow

discussed in this thesis to be slow flows so that flow instabilities and turbulence are not

present.

(viii) As for the macroscopic uniform DC electric fields applied to the two flow geometries, we

neglect any presence of the possible fringing electric fields for the 2D geometries. Using the

physical and mathematical arguments of fully developed flow, dilute micro-particle

suspension, and continuity of tangential electric fields across the interface of the ER fluid and

perfectly conducting electrodes, we approximate the macroscopic electric field to be in the z-

direction only with the y-component of the electric field being zero, i.e., E, = 0 . We assume

that the z-component of the macroscopic electric field, Ez, is related to the microscopic

electric field, Ez, through Eq. (4.8). Due to the dilute particle suspension, the macroscopic z-

electric field is eventually approximated as E, ~ Ez = E0 .

(ix)Rigorously speaking, the relations of the vortex viscosity, (~1.5#0, and the zero electric

field ER fluid viscosity, or Einstein relation, q - 0 (1+ 2.5#), were derived from physical

and mathematical models based on averaged micro-particle rotation speeds, Q, instead of

the continuum spin velocity, co. Thus, using the relations of -1.5$77 and 7 - 7 (1+2.5$)

in our developed continuum mechanical field equations is only an approximation. To this

point, no explicit expressions have been derived for the vortex viscosity or zero electric field

ER fluid viscosity based solely on the continuum spin velocity.

(x) Although we are neglecting the two-phase microscopic details and treating the ER fluid or

the particle-liquid suspension as an homogeneous isotropic single phase continuous medium,

microscopic information is still preserved and built-in to our continuum mechanical field

equations through the expressions of the vortex viscosity, zero electric field ER fluid

viscosity, and the equilibrium retarding polarization.

(xi)For flows fields in the zero spin viscosity limit, the continuum spin velocity is free-to-spin at

the ER fluid-solid boundaries since the highest order derivative in the continuum angular

momentum equation is dropped out due to a zero spin viscosity. Moreover, since both sets of



70 Chapter 2

the governing equations for the respective Couette and Poiseuille geometries reduce into

algebraic cubic equations in the zero spin viscosity limit, the solutions obtained from solving

these algebraic equations may be imaginary or complex valued. However, only real valued

solutions are physically valid and considered in this thesis.

(xii) In order to satisfy the stable micro-particle rotation condition as discussed in the literature

(Lobry & Lemaire, 1999; Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006;

Pannacci et al., 2007a; Lemaire et al., 2008), the direction of the micro-particle rotation is

assumed to always be in the direction of the macroscopically imposed flow vorticity. As will

be seen in Chapter 3, the equilibrium retarding polarization generally depends on both the

magnitude and direction of the micro-particle rotation speed, K2, and thus we need to

properly choose the micro-particle rotation direction in accordance with the macroscopic

imposed flow vorticity before substituting this piece of microscopic information into the

equilibrium polarization and solving for the subsequent continuum field equations.

(xiii) Considering a 2D parallel plate Poiseuille flow geometry as shown in Fig. 5.1 or Fig. 5.8,

we find that the solid boundaries are symmetric with respect to the middle plane of the 2D

flow channel and that the macroscopic imposed flow vorticity direction is actually

asymmetric about the middle plane of the flow channel. Therefore, if the suspended micro-

particles are rotating clockwise in the lower half of the channel, the micro-particles in the

upper half of the flow channel should be rotating in the counter clockwise direction, and the

micro-particle rotation speed of the micro-particles near the mid-plane of the channel is close

to zero rotation velocity. This observation is also generalized for the continuum spin velocity

field since due to the constraint of the two symmetric solid boundaries of Poiseuille flow, the

continuum spin velocity is an odd function of the spatial coordinate perpendicular to the

parallel plate boundaries with the point of asymmetry being the mid-plane of the Poiseuille

flow channel.



Equilibrium Polarization and Polarization Relaxation 71

Chapter 3

Equilibrium Polarization and

Polarization Relaxation

This chapter presents the development of the equilibrium polarization and the polarization

relaxation equation that describe how the ER fluid polarization is influenced by the non-

equilibrium process of macroscopic flow motion and microscopic particle rotation. Previous

work done by Cebers (1980) has shown a dipole relaxation equation to account for the rotation

effects on the charge relaxation/conservation processes of a dielectric insulating spherical solid

micro-particle undergoing Quincke rotation in a suspending slightly conducting liquid medium.

In the same 1980 paper, Cebers also generalized the dipole relaxation equation to describe the

macroscopic polarization relaxation process of a liquid-particle suspension with the micro scale

solid particles being in a state of spontaneous electrorotation. Note however that the non-

equilibrium variable in Cebers' 1980 polarization relaxation model is solely based on the

microscopic averaged particle rotation speed, n, instead of a continuum spin velocity of the ER

fluid parcel, c.

Drawing a parallel reference from the ferrofluid spin-up flow, we find that the macroscopic

magnetization relaxation equation for describing the non-equilibrium effects of flow motion on

the ferrofluid magnetization is also based upon the non-equilibrium internal kinematic variable

of the microscopic averaged particle rotation speed, Q, (Shliomis, 1972, 2002). Again we are

faced with the dilemma of whether the micro-particle rotation speed, Q, and the continuum spin

velocity, co, are the same physical quantities or are they related but actually different physical
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quantities as discussed in the previous two chapters. Recall that one of the main thrusts of the

present thesis is to offer some possible new view points (if not arbitrarily dismissed or neglected

in the past) to discuss the physical nature of the continuum spin velocity variable through the

development of a set of classical continuum mechanical field equations for describing nER2

responses. Therefore, we take on the approach of treating the micro-particle rotation speed, 0,

and the continuum spin velocity, c, differently, i.e., the micro-particle particle rotation speed,

Q , being a microscopic variable and the spin velocity, c, being a macroscopic continuum

variable which is not necessarily just the average of the rotation speeds of all the micro-particles

contained in an arbitrary continuum ER fluid parcel.

In the following discussions, we first review the general ideas and summarize the final results

of Shliomis' first magnetization relaxation equation for ferrofluids (Shliomis, 1972, 2002;

Rosensweig, 1997), Cebers' dipole relaxation equation for a single rotating micro-particle

(Cebers, 1980), and Xiao et al.'s dynamic effective medium theory for finding the macroscopic

effective electric permittivity resulting from a collection of rotating micro-particles (Xiao et al.,

2008). We then combine the concepts of the above three models to formulate our proposed

"rotating coffee cup model" and the subsequent polarization relaxation equation with its

accompanying equilibrium polarization (specifically designed for the retarding part of the total

polarization) for modeling the non-equilibrium effects of the continuum spin velocity, CO,

continuum linear velocity, v, and micro-particle rotation speed, Q, on the ER fluid polarization

in an nER2 flow field. This developed polarization relaxation equation is to be coupled with the

continuum linear momentum equation, Eq. (2.2), and the continuum angular momentum

equation, Eq. (2.3), respectively through the continuum linear velocity, v, and the continuum

spin velocity, o, such that together with the continuity equation, Eq. (2.1), and the EQS

Maxwell's equations, Eqs. (2.5)-(2.7), a complete set of governing continuum mechanical field

equations encompassing both the mechanical and electrical aspects of the present nER2 problem

is formulated. Nevertheless, we do not completely omit the microscopic picture of micro-paricles

rotating spontaneously in the micro scale. The microscopic information of a particle-liquid

suspension with the suspended particles undergoing Quincke rotation is to be controlled or

inserted into our present continuum model through our proposed form of equilibrium

polarization.
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The last section of this chapter is devoted to a comparison of several different equilibrium

polarization schemes that we have investigated along the course of developing our proposed

"rotating coffee cup model." We would like to offer some possible physical explanations or

physical pictures that best describe the respective different schemes. The limitations of our

proposed "rotating coffee cup model" will also be summarized hopefully to offer some pointers

or directions for future development of more advanced or sophisticated polarization relaxation

models.

3.1 Review of Shliomis' First Magnetization Relaxation Equation (Shliomis, 1972, 2002;

Rosensweig, 1997)

In his first model, Shliomis considered an observer in a frame of reference rotating along

with the average micro-/nano-particle rotation speed so that in this particular frame, denoted by a

superscript of " ", the observed averaged particle rotation speed is

fa = 0 , (3.1)

and that the magnetization of the ferrofluid follows a "Debye" form (Shliomis, 2002) of

D M (',Meq) (3.2)
Dt rm

where M is the magnetization of the ferrofluid, rM is the characteristic magnetic relaxation time

determined by the Neel and Brownian relaxation mechanisms, D/Dt is the material derivative

defined by Eq. (2.4) , and Me, is the equilibrium magnetization which is generally given by the

Langevin relation for nano scaled Brownian particles (Rosensweig, 1997; Shliomis, 2002). Since

the average particle rotation produces a shift in the ferrofluid magnetization vector as observed in

the stationary or laboratory frame, Eq. (3.2) becomes

D M -1_ I - -S=1 xM Q M Meq, (3.3)
Dt VM

in the stationary or laboratory frame with Q being the averaged particle rotation speed

(Shliomis, 1972, 2002; Rosensweig, 1997).
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3.2 Review of Cebers' Dipole Relaxation Equation for a Single Rotating Micro-particle

(Cebers, 1980)

Cebers' dipole relaxation equation for a single particle undergoing Quincke rotation can be

obtained using the electric potential and field solutions that we have derived in Section 2.2 with

reference to the coordinate system shown in Fig. 2.1. Here, we outline some of the intermediate

steps required for obtaining Cebers' final expression and for showing the fundamental physics

involved in the model.

The surface charge density, af, given in Eq. (2.25) is explicitly evaluated by substituting

Eqs. (2.28) and (2.32) with r = R such that

(2c + 2 Fa6sinosino + a _ -2 1 R3EO cos 0. (3.4)
7- R 3(32,+62

Recognizing the terms within the bracket of Eq. (3.4) being the vector dot product of the surface

normal vector, n = i, with i, defined in Eq. (2.38), and the retarding dipole moment, p/4zc,

with pt defined in Eq. (2.41), Eq. (3.4) can be rewritten as

= ,2 P .n (3.5)
R3  4,7.1

(Cebers, 1980; Pannacci et al., 2007b). Note that there is an additional 1/4rc factor in Cebers'

original expression of Eq. (3.5) due to the differences in the definition of charge in the respective

Gaussian and SI unit systems. In this thesis, we only use SI units.

The other piece of information required to derive the dipole relaxation equation is the general

(unsteady) form of the charge conservation equation at the surface of the rotating micro-particle,

L.e.,

n J+pvv +VX Kf =- at r=R, (3.6)

or

n f +V1 -= at r=R,

since it is assumed that only surface charges are present at the solid-liquid interface with no

spatial charges in the respective two bulk phases. As compared to Eq. (2.23), we have kept the
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unsteady derivative term in Eq. (3.7) to account for the transient effects. Using Kj = o- V and

Eq. (2.26), the surface divergence term in Eq. (3.7), V -Kt , is expanded as

VIKt = -Qsino # f 'Qcot os (3.8)
0ao o#

Substituting Eq. (3.4) into Eq. (3.8) and recognizing the expansion of (x t).n/49,i with

n = i, and Q = Qi, , Eq. (3.8) can be condensed into

2-el+ 62 x9 -tn
V-K= 3 (3.9)Z f R 3 4xe,

We evaluate the jump in the current density by inserting Eqs. (2.28) and (2.32) into Eq. (2.24)

and arrive at

-10aC 
(3.10)

ra6sinosin9+a 3 _2 -3 i R3E0 cos 2 _1- 62 R3Eocos (
2,+ c2 ( 2a, +a2 2,+sv2

with "x" in Eq. (3.10) being simply the multiplication notation instead of the cross product.

Again, using n = 'r and Pt/4gs as well as defining the equilibrium retarding dipole moment as

the retarding dipole moment at zero particle rotation (see Fig. 2.1 for the definition of the spatial

coordinates), i.e.,

pI = 4;c, a2 -a1 _v2-J R3EOI (3.11)
e ( 2a- +u-2 2,- +se2

Eq. (3.10) is reduced into the following form of

n. -a, = 2( -Tq. (3.12)f R 3 4;rei

Finally, we substitute Eqs. (3.5), (3.9), and (3.12) into Eq. (3.7) and obtain Cebers' dipole

relaxation equation as

d =xpt (pt -pq,, (3.13)
dt r (

in which the partial time derivative has been changed to a total derivative following Cebers'
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original definition (Cebers, 1980). A macroscopic version of Eq. (3.13) can also be obtained by

assuming all the micro-particles are rotating in the same direction and multiplying Eq. (3.13)

with the number density of micro-particles per unit volume, n, namely,

d P -- 1 -- x
=flxP- P- P4, (3.14)

dt r,

where r, is the Maxwell-Wagner relaxation time defined in Eq. (2.39), P is the retarding

polarization and P4 is the equilibrium retarding polarization defined by Eq. (3.11) at zero

particle rotation.

Reviewing the above derivation, it can be learned that the dipole relaxation equation is

simply a direct result from charge conservation at the surface of the rotating micro-particles. This

is why Cebers and co-workers (Cebers, 1980; Lobry & Lemaire, 1999; Cebers et al., 2000;

Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a, b; Lemaire et al., 2008) have

specifically coined the term of "retarding dipole moment," which is the part of the total dipole

moment directly related to the surface charge density, Eq. (3.5), of the rotating micro-particles.

The dipole relaxation is generally related to the charge relaxation at the solid-liquid interfaces of

the micro-particles and does not depend on the infinite frequency (or instantaneous) response of

the dipole moment, i.e.,

pt = 4c, 2 -1 R3EO i. (3.15)
2e, + s

The infinite frequency response of the dipole moment given in Eq. (3.15) will always be in the

same direction as the applied electric field direction and thus will not contribute to the electrical

torque exerted on the micro-particles and does not enter the charge or dipole relaxation process.

Comparing Eqs. (3.3) and (3.14), it can be found that the two relaxation equations share very

much the same form despite the different physical arguments involved in deriving the respective

equations. Moreover, Eqs. (3.13) and (3.14) are derived only with reference to the stationary or

laboratory frame as compared to the stationary and particle rotation frames employed in deriving

Eq. (3.3). Note however that both of the equations are based on the averaged micro-particle

rotation speed (or angular velocity), Q , instead of a continuum spin velocity, co. Before we take

on the task of differentiating these two kinematic variables, we first turn our attention to a

dynamic effective medium theory proposed by Xiao et al. (2008) that is employed in deriving the
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macroscopic effective electric permittivity due to a collection of micro-particles (or suspension

of particles) rotating at a given speed of Q at the microscopic level.

3.3 Review of the Dynamic Effective Medium Theory (Xiao et al., 2008)

In their work, Xiao et al. (2008) considered the macroscopic effective electric permittivity,

8eff (which most generally is a tensor), of a dilute collection of micro-particles (with a

permittivity of .2) rotating at a given constant speed, K, suspended in a medium having a

permittivity of s6 at the microscopic level. In other words, they treated the dilute particle-free

space suspension as an effective homogeneous medium with a permittivity of eff .

Recall from Chapter 1 that for a dilute collection of solid micro-particles undergoing

Quincke rotation in a quiescent liquid medium, there is no a priori preferred direction for particle

electrorotation except the limitation of the particle axis of rotation being perpendicular to the

direction of the applied electric field. Considering the schematics and coordinate system defined

in Fig. 2.1 with the electric field being applied in the z-direction, i.e., Et = EO i, , it can be learned

that the macroscopic effective (retarding) polarization resulting from a collection of micro-

particles undergoing Quincke rotation in a quiescent liquid medium is generally directed in the z-

direction with the x- and y-components of the effective polarization being averaged to zero due

to the randomness of the micro-particle dipole orientations in the quiescent carrier liquid.

Nonetheless, Xiao et al. (2008) considered the case of all the micro-particles rotating in the same

direction at a given constant angular speed in their particle-free space suspension, which is a

condition equivalent to the physical picture of micro-particle Quincke rotation in the presence of

some initial background flow vorticity as discussed in Chapter 1. Hence, the macroscopic

polarization vector obtained in their model generally has three components (in 3D, two

components in 2D), and the macroscopic effective electric permittivity, eff, as well as the

molecular (or microscopic) polarizability, a , become tensors.

From general electromagnetism texts (Reitz et al., 1992; Griffiths, 1999; Zahn, 2003), we

know that the microscopic molecular electric field, E, , can be related to the macroscopic
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averaged electric field, E , and total polarization, P , in a dielectric medium through the Lorentz

cavity model relation (Reitz et al., 1992), i.e.,

- I -
E, =E +- P (3.16)

36o

We rewrite the macroscopic electric displacement field, D, on the LHS of Eq. (2.7) in terms of

the macroscopic averaged field, E, and a macroscopic effective electric permittivity tensor, eff ,

i.e.,

D=eff -E, (3.17)

such that the total polarization can be expressed as

P = (ef - co 1I- E, (3.18)

where co is the permittivity of free space and I0 is the unit identity tensor. With all the micro-

particles rotating in the same direction and with the suspending medium being free space, the

total polarization resulting from all the total dipole moments of the rotating micro-particles in the

particle-free space suspension is written as

H =P =a-E.=P/n, (3.19)

where p,' is the total dipole moment of the rotating micro-particle, p"' is the molecular dipole

moment, a is the molecular polarizability tensor, and n is the number density of the micro-

particles. Note that in Xiao et al.'s (2008) formulation, they have treated the total dipole moment

of the rotating micro-particles, p,', as the molecular dipole moment, p"', and the number density

of micro-particles as the number density of molecular dipoles. In other words, they have

generalized the original Lorentz cavity model, Eq. (3.16), by treating the rotating micro-particles

as "molecules." This view point is very similar and close to our physical picture of an ER fluid

parcel consisting of a representative amount or ensemble of rotating micro-particles and

background carrier liquid molecules as presented in Chapter 1. However, the total dipole

moment of the rotating micro-particles, p, considered by Xiao et al. (2008) is the "lossless

dielectric dipole moment" instead of a Maxwell-Wagner polarization induced dipole for leaky
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dielectric systems (Melcher & Taylor, 1969). Combining Eqs. (3.16), (3.18), and (3.19), Xiao et

al. (2008) arrived at the following expression for the effective electric permittivity, namely,

- n =. == =
Ce - sc I0=-a - e +n2-60 . (3.20)

We expand Eq. (3.20) for a 2D geometry defined by the z-y plane based on the spatial x-y-z

coordinate shown in Fig. 2.1 and obtainLy I0 yz 0] n [yy L yz _Le +2eo 8z (3.21)
_. 6zy -z 0 30 a,, zy czy, Ezz + 2.0

where ai and c, are the tensor elements of the polarizability and permittivity tensors,

respectively. Equation (3.21) will be further applied in the development of our proposed

equilibrium retarding polarization shown in the next section.

3.4 The Proposed "Rotating Coffee Cup Model" for the Polarization Relaxation Equation

with its Equilibrium Polarization

Consider an ER fluid parcel (consisting of a representative amount or ensemble of rotating

micro-particles and carrier liquid molecules) rotating at a macroscopic continuum spin velocity

of co. The internal micro-particles of this ER fluid parcel are rotating at an average particle

rotation speed of Q at the microscopic level. For an observer rotating along with the spin

velocity of the ER fluid parcel, we assume the retarding polarization of the ER fluid parcel, P,

follows the Debye form, namely,

D"c (P eq
D - , (3.22)

Dt

where r., is the Maxwell-Wagner relaxation time as defined in Eq. (2.39), the superscript

denotes the reference frame moving or rotating along with the spin velocity, and P," is the

equilibrium retarding polarization as observed in the frame rotating along with the spin velocity.

Following Shliomis' idea (Shliomis, 1972, 2002; Rosensweig, 1997), we convert Eq. (3.22) into

the stationary or laboratory frame as
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DP1 (3.23)
=COx P - P ,(.3

Dt _(
where D/Dt is the material derivative as defined in Eq. (2.4), i.e.,

DP aP(-V)P CxP P-P . (3.24)
Dt at 'M q

Equation (3.24) describes the non-equilibrium influences of the macroscopic continuum linear

velocity, v , and spin velocity, c, on the retarding polarization, P. It follows a similar form to

those given in Eqs. (3.3) and (3.14), but we have changed the averaged micro-particle rotation

speed into a continuum spin velocity to account for the shift in the retarding polarization. The

treatment of employing the term cox P in Eq. (3.24) is similar to the original polarization

relaxation equation derived by Dahler and Scriven (1963) for "polarized molecules" via

statistical methods. Here, we have limited the use of Eq. (3.24) to the retarding polarization, P,

instead of the total polarization, P . The reason for employing this limit is given in the following

development and formulation of the equilibrium retarding polarization, P0 , for the polarization

relaxation equation, Eq. (3.24).

We start our formulation by considering the two-phase nature or details, i.e., looking inside

the ER fluid parcel, of a leaky dielectric system of a dilute particle-liquid suspension (with the

liquid having a conductivity of a, and a permittivity of vl, the micro-particles having a

conductivity of o 2 and a permittivity of c2, and the micro-particle solid volume fraction being

< 1) subjected to a uniform DC electric field, E, with a field strength much greater than the

critical electric field, E, such that the suspended micro-particles are in a state of spontaneous

Quincke rotation. Again, we utilize the electric potential and field solutions solved in Section 2.2

and refer to the schematic diagram and spatial coordinate system defined in Fig. 2.1 in our

discussions. We assume a 2D geometry based on the z-y plane defined by the spatial coordinate

system shown in Fig. 2.1.

For simplicity, we first consider the suspended micro-particles rotating in a quiescent carrier

liquid such that there is no a priori preferred direction for Quincke rotation and that the

polarization due to the sum of the induced dipole moment of the rotating micro-particles when

subjected to E = Eziz is in the z-direction only (y-components being averaged to zero).
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Neglecting the tensorial details, we consider a "scalar" macroscopic effective electric

permittivity, eff', for the total macroscopic polarization, P, of the particle-liquid suspension and

modify Eq. (3.18) into

= (ee -eC)E. (3.25)

Using the solution to the total dipole moment of a micro-particle undergoing Quincke rotation,

i.e., the z-component in Eq. (2.40), we apply the Maxwell mixture theory (Jones, 1995; Morgan

& Green, 2003) and obtain the scalar effective electric permittivity 6ef as

0-2 2 i

e28 = 1+3$ 2 1 + 2a, +oa2 21 +2 (3.26)
2e+s2 1+r 12

where the micro-particle rotation speed is given by Eq. (2.57). Substituting Eq. (3.26) into Eq.

(3.25), we find the total polarization of the particle-liquid suspension consists of three parts,

namely,

PJ = J +P +P , (3.27)

where

P = (i -- o) E, i, ,(3.28)

is the polarization contribution from the carrier liquid phase (we have absorbed the free space

permittivity into PJ),

P, = 3$sc1  E I= 4rsinR E, (3.29)
2,6+62 281+ 82

is the polarization contribution due to the infinite frequency response (e.g., Eq. (3.15)) of the

suspended rotating micro-particles, and

C2 -al 62-61 C2 - 1  62 -1

- 2a+q2 28+c 3 2a+a2 2se+ (3P=3 3# i 2 
2  

2 EI= 4renR 2W2 2 E, (3.30)

is the polarization contribution from the retarding polarization (e.g., see z-component of Eq.

(2.41)) of the suspended rotating micro-particles. In Eqs. (3.29) and (3.30), the micro-particle

solid volume fraction, $, is converted into the micro-particle number density, n, via
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#=n ~7d o(nR), (3.31)

with d = 2R being the micro-particle diameter. During the derivation of Eqs. (3.25)-(3.30), we

have also assumed that the macroscopic averaged electric field, E = Ei, , is roughly the same as

the microscopic electric field, Et = Eoi, (see definition in Section 2.2). This assumption is only

true when the suspension is dilute, i.e., #< 1, since the macroscopic averaged field, E = Ei,

only differs from the microscopic field, Et = Eoi, , with a correction term on the order of

magnitude of # in Cebers' (1980) analysis of the averaged electric field produced by a particle-

liquid suspension with the micro-particles undergoing Quincke rotation when subjected to a

microscopic electric field of E = EOi , .

Examining the polarization contributions from Eqs. (3.28) and (3.29), we find that the

mathematical forms of the two equations indicate both the liquid polarization and the infinite

frequency response of the micro-particle dipole moment do not depend on the micro-particle

rotation speed, Q, and respond instantly to changes in the applied electric field, E = Ezi

Moreover, the liquid polarization as given in Eq. (3.28) is always in the same direction as that of

the applied macroscopic electric field, E = E, i . Hence, the polarization contributions from the

carrier liquid, Eq. (3.28), and the infinite frequency response of the particle dipole moment, Eq.

(3.29), generally do not contribute to the body electrical torque input through the ER fluid parcel

and are less likely required to be relaxed via a polarization relaxation equation when the particle-

liquid suspension is in full motion with all the continuum linear and spin velocities as well as the

microscopic particle rotation speed coming into the non-equilibrium physical picture. This is the

reason why we have limited the polarization relaxation process to the retarding polarization in

Eq. (3.24) since the body electrical torque input exerted on the ER fluid parcel is mostly

concentrated on the microscopic particle-liquid interface where the interfacial charges

accumulate (recall the physical arguments given in Section 3.2 for deriving Cebers' (1980)

model for micro-particle dipole relaxation).

Having the knowledge of only the retarding polarization is required to be relaxed, we need to

find a suitable microscopic equilibrium state to define our equilibrium retarding polarization,
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P0,', such that combined with the retarding polarization relaxation equation, Eq. (3.24), all the

non-equilibrium characteristics of the continuum linear velocity, v, the continuum spin velocity,

co, and the micro-particle rotation speed, Q, can possibly be incorporated in our model for the

ER fluid flow.

A simplest and most intuitive microscopic state of (dynamic) equilibrium can be defined for

our ER fluid parcel as: a leaky dielectric system of a particle-liquid suspension subjected to both

an applied macroscopic electric field, E = E iz ~ E' = EO iz , and an "infinitesimal" initial

macroscopic background flow vorticity so that the direction of micro-particle Quincke rotation is

all aligned in the same direction as that of the flow vorticity (to satisfy the stable micro-particle

rotation condition (Lobry & Lemaire, 1999; Cebers et al., 2000; Cebers et al., 2002; Lemaire et

al., 2006; Pannacci et al., 2007a; Lemaire et al., 2008)), and that the angular speed of micro-

particle Quincke rotation is given by Eq. (2.57). We define this state as a quasi-static-

equilibrium state for the ER fluid parcel. Assuming the mutual electrical and hydrodynamic

interactions between the suspended micro-particles can be neglected (i.e., dilute suspension with

# < 1), the macroscopic equilibrium retarding polarization of the ER fluid parcel, P,, , resulting

from the above described microscopic dynamic equilibrium state can be obtained by multiplying

the retarding dipole moment of the rotating micro-particle, Eq. (2.41), with the particle number

density, n, i.e.,

Pqenp=Pi+P|i, (3.32)

with

( 2 1 _l 2 1

2ul+u2 21 j+c2
"zq =4 7r,6inR3 1+rWQ E0, (3.33)

. U2 e _ v2 8 81

25 1+ 2 281+82)

where the magnitude of the micro-particle rotation speed, Q, is given by Eq. (2.57) and the

direction of micro-particle rotation, either plus or minus sign in Eq. (2.57) for a 2D geometry

defined by the z-y plane shown in Fig. 2.1, is to follow that of the macroscopic flow vorticity.
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Figure 3.1. The schematic or cartoon illustrating the physical concept of the "rotating coffee cup model"

describing the retarding polarization relaxation process for an ER fluid parcel.

Equations (3.32) and (3.33) represents the macroscopic retarding polarization of a static,

motionless ER fluid, namely, w =0 and v=0. However, this does not mean that at

macroscopic equilibrium, the micro-particles cannot rotate at the microscopic level, i.e.. Q w 0,

when the applied electric field is larger than the critical electric field given in Eq. (1.1), that is,

E0 > E,. As for the cases of EO < E, Q is set to zero in Eqs. (3.32) and (3.33) since an applied

field less than the critical field will give imaginary values of Q and the real root can only be

zero as in Eq. (2.57).

Rigorously speaking, one more piece of information is required to complete the whole

description of the equilibrium retarding polarization-the equilibrium retarding polarization,

Pt', employed in Eq. (3.24) generally needs to be a vector quantity observed in the reference

frame rotating along with the continuum spin velocity, oj. In other words, the micro-particle

rotation speed employed in Eqs. (3.32) and (3.33) should be the vector particle rotation speed

observed in the reference frame rotating along with the spin velocity instead of those given in

Eq. (2.57). However, detailed rotation dynamics of a rotating micro-particle subjected to both

shear flow and an applied electric field needs to be solved in order to correct for the differences

in the vector values of the equilibrium retarding polarization (or the retarding dipole moments
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due to micro-particle rotation, Q) as observed in the respective spin velocity and stationary

frames. Moreover, we will also require the interrelationships among the spin velocity,

macroscopic continuum vorticity, microscopic local vorticity, and the local micro-particle

rotation speed to better describe the micro-particle rotation dynamics in a consistent manner

under our continuum framework. Nonetheless, both of these required physics are still very much

open to further investigation and will add substantial complexities to our model rendering the

mathematical analysis of the nER2 problem unfeasible or impractical in terms of engineering

analysis. As a first approach, we approximate and assign Eqs. (3.32) and (3.33) to be P , i.e.,

, -+ P, (3.34)

with magnitude of the micro-particle rotation speed being given by Eq. (2.57) and the direction

of the micro-particle rotation being determined by the macroscopic flow vorticity direction.

Inserting Eq. (3.34) into Eq. (3.24), we have

DP aP -V -) - I
D - v -V x P , (3.35)

Dt at T,

such that together with Eqs. (2.57), (3.32), and (3.33), the non-equilibrium effects of the micro-

particle rotation velocity, K2, ER fluid continuum spin velocity, co, and ER fluid continuum

linear velocity, v, on the retarding polarization of the ER fluid parcel can be described and

characterized. Due to the approximation made in Eq. (3.34), the application of Eqs. (2.57),

(3.32), (3.33), and (3.35) is limited to ER flow conditions of slow flow velocity and low to

moderate applied external electric field strengths. In the development of Eqs. (2.57), (3.32),

(3.33), and (3.35), we have assumed that the induced dipole moment on the micro-particles

obeys the Maxwell-Wagner polarization-the induced charges are distributed on the surface of

the particles in the micro scale. We have also assumed that only the retarding part of the

macroscopic ER fluid polarization, i.e., the polarization directly related to the interfacial charges,

needs to be relaxed according to the non-equilibrium motions. Unlike the ferrofluid equilibrium

magnetization, the equilibrium retarding polarization, Eqs. (3.32) and (3.33), does not follow a

Langevin function (Rosensweig, 1997). This is because we are considering the rotation of micro-

sized dielectric insulating particles on which Brownian motion has little influence (Jones, 1995).

Figure 3.1 shows a cartoon that illustrates the physical concept or "big-picture" for the

relaxation process of the ER fluid retarding polarization characterized by the combined equations
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Figure 3.2. Schematic for the coordinate transformation between the z - y coordinate and the z"- y" coordinate

as described by Eq. (3.38).

of Eqs. (2.57), (3.32), (3.33), and (3.35). In the cartoon, it can be seen that an ER fluid parcel is

rotating with a spin velocity of c and slowly translating with a linear velocity of v through a

uniform DC electric field, E. If we move along with the ER fluid parcel, the micro-particle

rotation velocity is observed to assume some finite value instead of zero. Thus, while the ER

fluid parcel is rotating on the macro scale, the micro-particles contained within the parcel are

also rotating in the micro scale. This is an analogous situation to the rotating coffee cup

machines commonly seen in amusement parks or carnivals-the platform supporting the coffee

cups is rotating at a certain angular velocity while the coffee cups (carrying kids or people)

above the platform is also rotating at some other angular velocity. Drawing this analogy, we term

our polarization relaxation model for the retarding polarization as the "rotating coffee cup

model."

Some final remarks can be made on Eqs. (3.32) and (3.33). By setting the micro-particle

rotation speed n to zero, the equilibrium retarding polarization shown in Eqs. (3.32) and (3.33)

reduces back to the one given by Cebers (1980), i.e., Pq given in Eqs. (3.32) and (3.33)

becomes P in Eq. (3.14), or Eq. (3.11) times the particle number density, n. The different

physical implications respectively given by P and P will be compared in Section 3.5. Lastly,
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Eqs. (3.32) and (3.33) can also be derived via the dynamic effective medium model proposed by

Xiao et al. (2008) as discussed in Section 3.4. The proof is given in the following.

With the micro-particles in the dilute particle-liquid suspension rotating in the same

direction, say U = x , in the z-y plane as shown in Fig. 2.1, we treat the rotating micro-particles

as "molecules" and the applied microscopic electric field, Et = Eoi, , as the molecular electric

field, Em , denoted in Eq. (3.19). Note however that we substitute the total dipole moment of the

rotating micro-particles used in Eq. (3.19) with the retarding dipole moment of the particles, i.e.,

p P =pa-Em =P/n, (3.36)

such that the retarding dipole moment of the micro-particles, pt from Eq. (2.41), become the

"molecular dipole moments," p" . In other words,

p'= P .i + Paz i
P=P PMjY±PmzI

u2 - i _v2 -5 i72 - ai _2 -vi (3.37)
rmR3  2a01 + u 2 2c, +e2 2a 1+ 2 2,i +cE

1 4 'I+rZQ 2  .Eoi ±4;r1  1+ Z.Q 2  Oz

for each of the rotating micro-particles (or molecules) within the ER fluid suspension with the

magnitude of Q given by Eq. (2.57) and the direction of K given by the flow vorticity (either

positive or negative in a 2D flow field defined by the z-y coordinate). Again, the physical picture

of treating the rotating micro-particles as "molecules" is consistent with our definition of a

continuum ER fluid parcel consisting of a representative amount or ensemble of micro-particles

and carrier liquid molecules.

Referring to the coordinate transformation shown in Fig. 3.2, which relates the z-y coordinate

as shown in Fig. 2.1 to some arbitrary z "- y" coordinate through

y cos ,, cosq 1,y " , (3.38)
z_ cos Q,, cos Lz"

(Kundu & Cohen, 2004), we project the applied microscopic electric field, Et = EOi, , and the

molecular dipole moment given in Eq. (3.37) to the new z "-y " coordinate respectively as

Em = Et = EO iz = EO cos 9pi, "+ EO cos (pziz", (3.39)

and
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pm = pmC + pmzl =(pm, cosCos q+ os9 '+(P p,,c ,p, cos (Q, (3.40)

with pmy and p,, defined in Eq. (3.37). Notice that the direction cosines shown in Fig. 3.2 have

the relationships of: cos p,, = cos (,2 and cos p, = - cos , . Expanding Eq. (3.40) with Eq.

(3.37) and recognizing Eq. (3.39) in the expansion of Eq. (3.40), we arrive at the form of

pM =a -E,, in Eq. (3.36) with p" given by the expanded Eq. (3.40), E, given by Eq. (3.39),

and the molecular polarizability a given by

=ay ay.a= " ) , (3.41)

where

32a, + q2 2,61+.62ay = azz = 4zc6R 3 1+ 2 2,1±2 (3.42)

and

Q(0~2 - a1. 62 - E

az = -az, = -4rcR 3  2u+r q2 2 .+2 (3.43)

The expressions given in Eqs. (3.41)-(3.43) are consistent with those derived by Xiao et al.

(2008) for a 2D geometry. Since the macroscopic effective permittivity tensor, eff,, depends on

the molecular polarizability tensor, a, as in Eq. (3.21), the elements of eff should also have the

following relations, that is, e,, = 6,z and c, = -e, .

Expanding Eq. (3.21), we have the following to coupled relations, namely,

-CYZ = n ayy s, + a, ( s,, + 2.o ),(3.44)

and

3co + nacs,
=, +2co = o (3.45)

1- a
36o

For dilute suspensions, i.e., 0 << 1, we recognize the following relations, namely,
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-- a = n =#1 2o1 ±ca 2  2c1+62 (3.46)
3860 38o " C I +rZt2W

and

r2 1 2 1

n a n gj0 6 2 1 + o 2 
28s, +.c2 (347)

38o 380 o 1+ r2

with the use of Eq. (3.31). Introducing Eqs. (3.46) and (3.47) into Eqs. (3.44) and (3.45) and

retaining to the first order of the solid volume fraction, i.e., - O(), we solve the coupled

relations of Eqs. (3.44) and (3.45) to obtain

O-W, 2 ~a -V_ 2 1--

.y na = -4ceinR 3  I2a +a2 2 '1 +.1, (3.48)

and

U2 1 _ V 2 1 V

2cT + c- 28 +86
ezz - ~-- naz, = 4rc,,nR3  

1 2 1 2'. (3.49)

For an applied macroscopic electric field in the z-direction, E = E i~ EOiz (which will be the

case in the following analyses of Chapters 4 and 5), we again arrive at Eq. (3.33) by substituting

E = E iz ~ EO iz as well as Eqs. (3.48) and (3.49) into a modified version of Eq. (3.18) for the

equilibrium retarding polarization, i.e.,

P = sq -s 1 E = o Yz] L . (3.50)

3.5 Comparison among Different Equilibrium Polarization Schemes

In order to completely describe the retarding polarization relaxation of an ER fluid parcel, the

retarding polarization relaxation equation, Eq. (3.35), is accompanied by the equilibrium

retarding polarization, Eqs. (3.32) and (3.33), with the magnitude and direction of the micro-

particle rotation speed given respectively by Eq. (2.57) and the direction of the macroscopic flow
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Figure 3.3. Cartoon illustrating the physical picture of the equilibrium retarding polarization based on the

equilibrium retarding dipole moment, Eq. (3.11), employed in Cebers' (1980) polarization relaxation equation,

Eq. (3.14).

vorticity under the framework of the "rotating coffee cup model" presented in the previous

section. However, there are also other choices available for the polarization relaxation model or

for the equilibrium polarization. In this section, we first describe the possible physical

implications of several different polarization relaxation or equilibrium polarization models. The

reason or need for our proposed "rotating coffee cup model" from a continuum mechanical

perspective then becomes evident by comparing the strengths and weaknesses among the

different models available. Finally, the limitations of the "rotating coffee cup model" is to be

summarized so as to offer further insights and future directions for more advanced polarization

relaxation modeling.

We first consider Cebers' (1980) polarization relaxation equation, Eq. (3.14), which has its

origin from the microscopic dipole relaxation equation, Eq. (3.13), with the equilibrium retarding

polarization PO = np being defined by the equilibrium retarding dipole moment, pq in Eq.

(3.11), times the particle number density, n . The cartoon characterizing this model is given in

Fig. 3.3 with E being the applied electric field, Q being the micro-particle rotation speed, v

being the linear flow velocity, and the arrows denoting the retarding dipole moment of the micro-

particles. Though Eqs. (3.13) and (3.14) are developed in a stationary frame of reference, the
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arguments of Shliomis' (1972, 2002) first magnetization relaxation equation can still be applied

to alternatively derive Eqs. (3.13) and (3.14) since the equilibrium retarding polarization,

P = npeq, and the equilibrium dipole moment, peq, are both defined by a zero micro-particle

rotation velocity, Q = 0 (see Fig. 3.3). Therefore, for an observer rotating along with the

averaged micro-particle rotation speed, f" = 0, the retarding polarization can also be written as

a Debye form with the equilibrium retarding polarization, P = npt , being given at zero micro-

particle rotation velocity (as seen in the "a" frame). Equation (3.14) can then be obtained by

converting the Debye form back to the stationary frame and the total derivative in Eq. (3.14) can

be generally replaced by the material derivative, Eq. (2.4). Therefore, Cebers' (1980) model most

generally can encompass the influences of the non-equilibrium motions of the linear flow

velocity and the averaged micro-particle rotation speed on the polarization relaxation. However,

as can be seen in Fig. 3.3, this model is more focused on the two-phase particle-liquid suspension

nature as mainly defined by the micro-particle rotation speed, Q , and does not incorporate the

non-equilibrium effects of a continuum spin velocity, C, i.e., a representative amount or

ensemble of the suspended micro-particles and the carrier liquid molecules contained within an

ER fluid parcel rotating at o with respect to the center of mass of the ensemble of the suspended

micro-particles and the carrier liquid molecules (or ER fluid parcel). The physical picture shown

in Fig. 3.3 is more likely interpreted as an local element of particle-liquid suspension with the

suspended micro-particles rotating at n while being convected along the flow with a speed of v.

Note however that in previous studies on the nER2 effect (Lobry & Lemaire, 1999; Cebers et al.,

2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et al., 2008),

Cebers' dipole relaxation equation, Eq. (3.13), is combined with the angular momentum balance

equation of a "single micro-particle" to solve for the micro-particle rotation speed, 92. After the

micro-particle rotation speed of the single particle is obtained, the stable solution to Q is

substituted into an effective viscosity expression based on averaged particle rotation speeds as

derived by Brenner (1970).

Based on Cebers' (1980) formulation, we can take a second step further and combine our

proposed spin velocity based continuum retarding polarization relaxation equation, Eq. (3.35),

with Cebers' equilibrium retarding polarization at zero micro-particle rotation speeds,
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Figure 3.4. Cartoon illustrating the physical implications of employing Cebers' (1980) equilibrium retarding

polarization in the present continuum spin velocity based retarding polarization relaxation equation, Eq. (3.35).

Pq = P =fnpq with pq given in Eq. (3.11), to incorporate the non-equilibrium effects of the

spin velocity as well as the physical picture of a representative amount or ensemble of the

suspended micro-particles and the carrier liquid molecules contained within an ER fluid parcel

rotating at o with respect to the center of mass of the ER fluid parcel. The schematic diagram or

cartoon illustrating this idea is given in Fig. 3.4 with E being the applied electric field, E being

the micro-particle rotation speed, v being the continuum linear flow velocity, o being the

continuum spin velocity, and the arrows denoting the retarding dipole moment of the micro-

particles. With the equilibrium retarding polarization defined at zero micro-particle rotation

speeds, i.e., P, = P = np, , an observer rotating and moving along with the reference frame of

the spin velocity "''" observes zero micro-particle rotation, Q = 0, meaning all the micro-

particles are rigidly frozen or embedded within the ER fluid parcel when the ER fluid parcel is

rotating at a spin velocity of o and being convected at a linear velocity of v. In other words, the

micro-particle rotation speed is always synchronized with the continuum spin velocity (as

observed in the stationary frame) such that when observed in the spin velocity reference frame,

we see a zero particle rotation, Q = 0. Yet, a more realistic physical picture should also capture

two more physical aspects: (i) a micro-particle with a dipole moment (or a component of the
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dipole moment) in the opposite direction of the applied external electric field is generally in a

state of unstable equilibrium and (ii) with the electrical torque input concentrated on the

suspended micro-particles, the micro-particles should be rotating at a greater angular speed, Q,

as compared to the spin velocity, co, (when both observed in the stationary frame) such that the

rotating micro-particles entrain an enough or representative amount of nearby micro-particles

and carrier liquid molecules that constitutes or defines a continuum ER fluid parcel. Due to the

above two reasons, we may expect that this second approach to the polarization relaxation

process as illustrated in Fig. 3.4 is likely a good approximation to low applied electric field and

very viscous ER fluid flows since under low field viscous dominant conditions, both the spin

velocity and the micro-particle rotation speed approach the macroscopic flow vorticity.

Moreover, since the micro-particles are rigidly frozen or embedded in the ER fluid parcel when

viewed from the spin velocity reference frame, the body torque input on the ER fluid parcel is

likely to be greater and may overestimate the reduction in the effective viscosity of an nER2

fluid flow. This overestimation of the reduction in the effective viscosity can be generally

verified by comparing the Couette effective viscosity results obtained by employing

= P4 = npeq in Eq. (3.35) as to those obtained by substituting Eqs. (3.32) and (3.33) in Eq.

(3.35) (i.e., the rotating coffee cup model) at moderate to high electric field strengths after the

full analytic expressions of the Couette solutions are solved in the zero spin viscosity limit,

l'= 0, in Chapter 4. It can also be found that the Couette effective viscosity solutions obtained

by substituting P = P = npeq in Eq. (3.35) in the zero spin viscosity limit of our present

continuum mechanical field equations fall relatively close to the effective viscosity results

predicted by the combined single particle dynamics and two-phase effective medium theory as

found in current literature (Pannacci et al., 2007a; Lemaire et al., 2008).

A third possible choice for the equilibrium retarding polarization shown in Eq. (3.35), Peq , is

to define a dynamic equilibrium state in which the micro-particles contained within one ER fluid

parcel are rotating in complete random directions such that the equilibrium retarding polarization

is collinear but opposite to the direction of the applied electric field with polarization

components in directions other than the electric field direction being averaged to zero due to the

randomness in particle rotation. The cartoon showing this state of microscopic dynamic
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Figure 3.5. Cartoon illustrating a state of dynamic equilibrium for the equilibrium retarding polarization of an

ER fluid parcel with the suspended micro-particles rotating in complete random directions within the ER fluid

parcel. This dynamic equilibrium state best represents the condition of micro-particles rotating in random

directions in a quiescent carrier liquid.

equilibrium is given in Fig. 3.5 where E is the applied electric field, f is the micro-particle

rotation speed, v is the continuum linear flow velocity, o is the continuum spin velocity, and

the arrows are the retarding dipole moments of the micro-particles. In mathematical terms, the

equilibrium retarding polarization described by Fig. 3.5 is simply substituting Eq. (3.30) (with

the magnitude of the micro-particle rotation speed given by Eq. (2.57)) for P, in the continuum

retarding polarization relaxation equation shown in Eq. (3.35). Nevertheless, we need to point

out that this model (as defined above and by Fig 3.5) for the equilibrium retarding polarization is

only good for infinitesimal macroscopic ER fluid motions, i.e., a nearly quiescent ER fluid with

the suspended micro-particles rotating at random directions in the micro scale, and generally

cannot produce significant electrical body torque or the subsequent nER2 effect, which is likely

consistent to the experimental observation and physical picture that both initial imposed flow

vorticity and micro-particle Quincke rotation are required to induce the nER2 phenomenon.

After reviewing the other possible models for the equilibrium polarization, it is now evident

why we need to propose a "rotating coffee cup model" to formulate our continuum polarization

relaxation equation, Eq. (3.35), and its accompanying equilibrium retarding polarization, Eqs.

(3.32) and (3.33) for describing the polarization relaxation process of the nER2 fluid flow from a
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classical field theory based continuum mechanical point of view. Using the "rotating coffee cup

model," we can incorporate the non-equilibrium effects due to a continuum spin velocity, CO,

while also be consistent with the microscopic picture of (i) a micro-particle with a dipole

moment (or a component of the dipole moment) in the opposite direction of the applied external

electric field is generally in a state of unstable equilibrium and (ii) with the electrical torque input

concentrated on the suspended micro-particles, the micro-particles should be rotating at a greater

angular speed, Q, as compared to the spin velocity, co, (when both observed in the stationary

frame) such that the rotating micro-particles entrain an enough or representative amount of

nearby micro-particles and carrier liquid molecules that constitutes or defines a continuum ER

fluid parcel.

As already mentioned in Section 3.4, the equilibrium retarding polarization, Pq employed

in Eq. (3.35) should rigorously be the polarization observed in the reference frame moving or

rotating along with the continuum spin velocity, i.e., P,, (please compare the Jaumann

derivative, or corotational derivative, in its vector form (Fredrickson, 1964; Brenner, 1984;

Rinaldi, 2002) with Eqs. (3.3), (3.14), (3.23), and (3.35)). However, since correcting for this

frame difference will add a significant amount of complexity both in physical and mathematical

modeling, we have made the approximation of Eq. (3.34) and employed Eqs. (3.32) and (3.33) in

the polarization relaxation equation of Eq. (3.35). The magnitude and direction of the micro-

particle rotation speed employed in Eq. (3.33) are respectively determined by Eq. (2.57) and the

macroscopic flow vorticity. Therefore, from Eq. (2.57), the equilibrium retarding polarization of

Eqs. (3.32) and (3.33) reduces to the one used in Cebers' (1980) original equilibrium retarding

polarization, with Pq = P0"q = nptq and p q given by Eq. (3.11), when the externally applied

electric field strength is lower than that of the Quincke rotation critical electric field, E . In other

words, our "rotating coffee cup model" as shown in Fig. 3.1 consistently reduces to the physical

picture given in Fig. 3.4 by using P= P0 = npjt in Eq. (3.35) for low electric field strengths,

i.e., E <E,. The proposed rotating coffee cup model therefore should fairly capture the

polarization relaxation process within our present continuum mechanical framework for low to

moderate applied electrical field strengths.
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Lastly, unlike Cebers' (1980) dipole relaxation equation, Eq. (3.13), the present rotating

coffee cup model for the polarization relaxation of the ER fluid is developed or formulated on a

phenomenological basis rather than on a charge relaxation/conservation basis. The present

"rotating coffee cup model" cannot capture the whole micro- and macroscopic picture of the

charge relaxation/conservation within the ER fluid parcel consisting of both rotating micro-

particles and carrier liquid molecules when in non-equilibrium motion. To rigorously account for

the charge conservation within an ER fluid parcel, the microscopic electrical double layers

(EDL) around the rotating micro-particles come into the physical picture and a charged species

mass transport analysis based on the Nerst-Plank equation is required (Probstein, 1994). These

research topics are however still open for further investigation and is beyond the scope of the

present thesis.
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Chapter 4

Couette Flows with Internal

Micro-particle Electrorotation

After laying down the foundations in the previous two chapters, we now further apply the

developed governing classical continuum mechanical field equations, namely, the continuity

equation, Eq. (2.1), the linear momentum equation, Eq. (2.2), the angular momentum equation,

Eq. (2.3), the EQS Maxwell's equations, Eqs. (2.5)-(2.7), and the retarding polarization

relaxation equation with its accompanying equilibrium retarding polarization, Eqs. (2.57), (3.32),

(3.33), and (3.35), to study and analyze the negative electrorheological responses of ER fluid

flows with internal micro-particle electrorotation, i.e., the nER2 effect, in two-dimensional (2D)

Couette flow geometries.

Using the assumptions outlined in Section 2.3, we first present the simplified set of

governing equations in the zero spin viscosity limit, q'= 0, for Couette flows in Section 4.1.

With this simplified set of equations, Section 4.2 presents the analytic expressions of the

continuum spin velocity, oz (or c*), and effective viscosity, rff (or q*), as functions of the

shear rate, y* (or the Couette boundary driving velocity, UO), and externally applied DC electric

field, E0 (or E*). Parametric studies are then performed on these solutions obtained, and the

results are discussed for the nER2 response in the zero spin viscosity limit.

Similarly, Section 4.3 presents the simplified set of governing equations for Couette flows

with internal micro-particle electrorotation in the finite spin viscosity small spin (velocity) limit,

i.e., r7's 0 and r, co 1. By employing suitable boundary conditions, the coupled set of
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Figure 4.1. The schematic diagram illustrating the geometry, dimensions, and physical parameters for Couette

flow with internal micro-particle electrorotation.

differential equations are then solved to obtain analytical solutions to the spin velocity field, o,

(or w*), linear velocity field, u, (or u*), and effective viscosity, yff (or q*), as functions of the

shear rate, y* (or UO), the applied DC electric field, EO (or E*), the boundary condition

selection parameter, p, and the spin viscosity, 1'. Results of the parametric studies performed

on these finite spin viscosity, small spin solutions are finally discussed. These solutions, results,

and discussions are given in Section 4.4.

4.1 The Simplified Governing Equations in the Zero Spin Viscosity Limit for Couette Flow

Geometries

Consider the Couette flow geometry shown in the schematic diagram of Fig. 4.1. The lower

plate of the parallel plate system is fixed at zero velocity while the upper plate is applied with a

constant velocity, UO, in the positive y-direction. We assume that the flow is steady (a/at = 0),

incompressible, fully developed (a/ay = 0), and two-dimensional (a/ax = 0) in Cartesian

coordinates. Under these assumptions, the continuity equation, Eq. (2.1), with v = ui+ uZi is

readily reduced to duz /dz =0 and subsequently to uz =0 since the z-velocity component, u,,

has to satisfy the no-slip and non-penetrating (impermeable walls) boundary conditions at z =0
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and h with h being the height of the 2D channel. Moreover, by using the EQS Faraday's

equation, Eq. (2.5), with E = Ei, + Eiz and the condition of fully developed flow, we find

dE, /dz =0 such that E, is just a constant throughout the 2D channel. Noting that the

boundaries at z = 0 and h are perfectly conducting electrodes, and that the tangential component

of the electric field is continuous across the boundaries, the constant E, is simply zero.

Therefore, the applied DC electric field is to be in the z-direction only. The fringing effects at the

ends of the channel are to be neglected.

The governing equations are further simplified by considering a zero spin viscosity, i.e.,

r'=0, in the angular momentum equation, Eq. (2.3). Given the above assumptions combined

with the continuity and zero spin viscosity conditions, Eqs. (2.2), (2.3), and (3.35), are then

simplified into the following:

(4.1)

rMcoP - (P, - Pez)=0, (4.2)

2{ dox+ d2 =0, (4.3)
dz ed2

and

PE + 2 j - 2cox 0 , (4.4)
dz

where u, is the y-velocity component, cox is the x-spin velocity component (note: Co = Coxix in

2D), Ez is the z-component of the applied DC electric field, and P and P are respectively the

retarding polarization components in the y- and z- directions, i.e., P = P i +P,iz . Note that we

have substituted the total polarization, P,, with the retarding polarization, P, in Eq. (4.4). This

is because the DC electric field is applied in the z-direction only with E, =0 . Thus the total

polarization in the y-direction comes from the dipole moment tilt of the rotating micro-particles

in the micro scale, which, on the macroscopic level, is generally the y-component of the retarding

polarization. Finally, the z-linear momentum equation reduces to an equation which relates only

the pressure gradient to the Kelvin body force density, and thus can be treated separately from

the other equations.



Substituting Eq. (3.33) into Eqs. (4.1) and (4.2), we can solve for the y- and z- components of

the retarding polarization as

=P,= n a, -0rmw a' E, (4.5)

az + rym oxay_(46
PZ 2 (4.6)

where

U2 1 a 2-l

2a1 + 2  261+'2)

y _yz -4 R3 "1 , rM2WQ(4.7)

az __azz. C2 - 21 2 -C

2a, +a 2 2e, +e2

I1+ rMWQ2

with az, and a,, respectively defined in Eqs. (3.42) and (3.43), and the magnitude and direction

of the micro-particle rotation speed, 0, being respectively given by Eq. (2.57) and that of the

macroscopic flow vorticity. Generally speaking, the z-component of the electric field, E , in Eq.

(4.4) depends on the flow linear and spin velocities, and the EQS equations, Eqs. (2.5) and (2.6),

need to be solved together with the retarding polarization, Eqs. (4.5), (4.6), and (4.7), linear

momentum, Eq. (4.3), and angular momentum, Eq. (4.4), equations with the suitable electrical

and mechanical boundary conditions applied at z =0 and h. However, the coupled set of

governing equations becomes much more non-linear and less practical in engineering analyses.

Assuming that, due to flow motion, corrections to the z-electric field, E , can be related to the

microscopic applied electric field and the micro-particle solid volume fraction through

Er ~ E+#e +#02 + --- EO +#e +02e 2 +..., (4.8)

where e, 's are the correction terms, we substitute Eq. (4.5) into Eq. (4.4) and approximate to the

first order of magnitude of the volume fraction, #, E ~ EO + #e + --- for dilute suspensions, i.e.,

< 1, so that the electrical field equations, Eqs. (2.5) and (2.6), can be decoupled from the

mechanical field equations, Eqs. (2.1)-(2.3), or Eqs. (4.3) and (4.4). Hence the governing

equations specific to the Couette flow geometry with internal particle electrorotation is obtained

as Eq. (4.3) and
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a* -- rMWC na,E2 +2{- du' -2., =0, (4.9)2 2

1+a VMC,( dz

where a* = a,/a, = -riQi. In Eq. (4.9), the first order correction, e,, to the z-electric field has

been neglected because e, has become a second order term after being substituted into Eq. (4.4),

i.e., naE0 E, -naEo (E0 +#e, +- ) with $<1 and na, - nR3 - nd3 -(b) as in Eq. (3.31).

The boundary conditions for the velocity field, v = u, i, , is the general no-slip boundary

condition, i.e., v = 0 at z = 0 and v = U0 i, at z = h . On the other hand, the angular momentum

equation, Eq. (4.9), eventually reduces to an algebraic equation for zero spin viscosity conditions

as will be discussed shortly in Section 4.2; hence, there are no additional constraints to be

applied at the boundaries for the Couette spin velocity field. This "free-to-spin" condition on co,

for i'= 0 is likely an analogous case to the Euler equation for inviscid fluid flow-the linear

flow velocity is allowed to slip at the solid-fluid boundaries when the fluid viscosity goes to

zero.

4.2 Continuum Analysis in the Zero Spin Viscosity Limit

4.2.1 Solutions to the Spin Velocity, Linear Velocity, and Effective Viscosity

Integrating Eq. (4.3) with respect to z, we have

2{o, + -,-= C , (4.10)
dz

where C, is a constant. Substituting Eq. (4.10) into Eq. (4.9), we find that the spin velocity, o',

does not depend on the spatial coordinate, z, and therefore Eq. (4.3) reduces to the original

governing equation for simple Couette flow, i.e.,

d 2u
'= 0, (4.11)

dz2

and the solution to Eq. (4.11) is

U
u(z) = -P--z. (4.12)

h
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Inserting Eq. (4.12) into Eq. (4.9) and using the following non-dimensionalization scheme,

namely,

)* = rw , = U and M* 24 , (4.13)
h naE r

the non-dimensional angular momentum equation is obtained as

co*3+ 7 -2 1+ , m*+ - =0. (4.14)
2 ( 2M* 2 2M*

Equation (4.14) can be solved to obtain analytical expressions by symbolic calculation

packages (Mathematica, Wolfram Research, Inc.) and the three roots of Eq. (4.14) are expressed

as functions of y* and M*. The three roots to Eq. (4.14) are:

Oc1=-+±1 3IM* 9c2+ + 4 3+ q 2  P (c 2 +44c1+c 2  (4.15)
6 6 M

CC2 6 , Y (4.16)-e,(1+ 6 (9c2+ 44 + 9C2 + 12M L -1 c2 + 49CI + 9PC 2

and

COC 3 6 
, (4.17)

-c,(12-i) 6 I4M*( c2 + 4,+ 2  + 12 M* L(1+i I) c2 + 49C+2Oc2)j

where

(Pci = 6M* + 12M-2 - M-27*2, (4.18)

and

9 C2 = -18M* 2y* +72M*3,* +2M*37*3 -108M*2a*. (4.19)

Nevertheless, it should be pointed out that not all the three roots to c* are likely to be

physically meaningful and interpretable for the flow phenomena of interest presented herein.

Moreover, each of the three roots may vary from real to complex valued (or vice versa) in

different parametric regimes. In order to find the most physically meaningful and interpretable

solution or combination of solutions from the three possible roots to the current problem, the

following considerations and conditions are applied to the flow field: (i) only real valued
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solutions are considered, (ii) the ER fluid is "free-to-spin" at the solid-ER fluid boundaries since

the governing physics reduce from a boundary value problem to an algebraic problem in zero

spin viscosity conditions, and (iii) due to micro scale viscous interactions, the micro-particle

angular velocity, Q, should rotate in the same direction as that of the macroscopic ER flow

vorticity so that the micro-particle rotation is always stable (Lobry & Lemaire, 1999; Cebers et

al., 2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et al., 2008).

We have shown that the spin velocity is a constant throughout the channel when q'= 0 in the

Couette geometry. Hence, co* assumes some finite value at the solid-ER fluid boundaries, which

is readily self-consistent with the "free-to-spin" condition. To satisfy condition (iii) for EO E,

we need to substitute into Eqs. (4.5)-(4.7) the micro-particle angular velocity with the minus sign

in Eq. (2.57) which has the same negative sign (or clockwise rotation) as the macroscale Couette

flow vorticity, namely, V x = (du, dz) -(U 0 /h) i, with the coordinate systems defined

in Figs. 2.1 and 4.1. For EO < E, we employ Q = 0 (see Eq. (2.57)) in Eqs. (4.5)-(4.7) and select

or pick out the root to the spin velocity, co or co, that has the same negative sign as the Couette

flow vorticity. For the parametric regimes of our interests, we identify the stable and real valued

solution to the spin velocity as: for EO E (use negative Q value in Eqs. (2.57), (4.5), (4.6),

and (4.7)),

CC2 6 , (4.16)

-ICI (I + i1)[ 6I4M* (9c2 + + C2 + 12 /iM* L1 + + )
for EO 0.8E, (use Q = 0 in Eqs. (2.57), (4.5), (4.6), and (4.7)),

c +c1 3 M* c2 4 c 2  -1C .3M* (c2+4 c2 , ) (4.15)
6 [rM*(2+ 46 2M*

and for 0.8E < EO < E, with Q =0 in Eqs. (2.57), (4.5), (4.6), and (4.7), co* is given by both

co* and c i.e., Eqs. (4.15) and (4.16), where

Pci = 6M* +12M2 - M*2 *2, (4.18)

and
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9 C2 = -18M* 2Y* +72M*3 ,* +2M*r*3 -108M*2 a*. (4.19)

Note that the results shown in Eqs. (4.15), (4.16), (4.18), and (4.19) are obtained under the

"Solve" command of Mathematica. In 0.8E, < EO < E, part of the real valued solution to c* is

given by Eq. (4.15) and the other part is given by Eq. (4.16), thus, both solutions have to be used

in the evaluation of the spin velocity solutions.

The effective viscosity of Couette flows with particle electrorotation, 7,ff, is derived by

recognizing the relationship between the wall shear stress, r,, and the average shear rate (or the

velocity of the upper plate, UO, divided by the channel height, h) when the shear stress is held

constant for a given flow or experimental condition, i.e.,

Ts =r =eff r/ = izT-* - , (4.20)

in which [ ] denotes the shear stress differences across the solid-ER fluid interface, i is the

row vector [0 0 1], i is the column vector [0 1 0]', and T = T Ta is the total stress

tensor with the symmetric part being

-p 0 0

T = -pI r v+(v = 0 -p / ' du (4.21)
T = +7vdz

o q du _
dz

and the anti-symmetric part being

0 0 0

Ta= , - (V x v -2-co) 0 0 ( ' 2c , (4.22)
dz

0 du
0 -{xI2,J

dz

where I is the unit identity tensor, e is the permutation tensor, and the superscript t denotes

the transpose of a matrix (Rosensweig, 1997). By expanding the total stress tensor into matrix

form as in Eqs. (4.21) and (4.22) and substituting the velocity field, Eq. (4.12), and the spin
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velocity field, Eq. (4.16) and/or (4.15), into Eqs. (4.20)-(4.22), the effective viscosity can be

obtained as

reff = 7e +
2 (-

7
(4.23)

or in dimensionless terms,

* ef-le 2 ci (4.24)

where * = * and/or co* depending on the regimes of the electric field strength, and

r7 ~ r7o (1+ 2.50) is the zero field ER fluid (particle-liquid mixture) viscosity as defined in

Section 2.1. The shear stress differences in Eq. (4.20) are all evaluated at z = 0 in this thesis.

4.2.2 Modeling Results and Discussions

After obtaining the velocity and spin velocity fields as well as the effective viscosity, we now

Item Description Value Units

d Micro-particle diameter 8.00x1O- 5  m

E Critical electric field strength 1.30x10 6  6 WI

h Channel height 1.00 x10-3  m

n Particle number density 3.73 x 10" m-3

s6 Permittivity of carrier liquid 3.27 x 10~" C2 N1 M-2

62 Permittivity of particles 2.30 xl-" C2 N-' -2

# Solid volume fraction of the particles 1.00 x10~1  --

77 Carrier liquid viscosity (no particles) 1.20 x 10-2 Pa -s

7' Spin viscosity 0 N-s

'7 Zero field fluid viscosity (w/ particles) 1.53 x 10-2 Pa -s

)e e = '7+' 1.76 x 10- 2  Pa-s

-, Conductivity of the carrier liquid 4.00 x 10-8 S-m-1

o2 Conductivity of the particles 1.00 x 10-" S'-m--

r, Maxwell-Wagner relaxation time 1.11 x 10-3 S

Vortex viscosity 1.80x10-3  Pa s

Table 4.1. System parameters, physical constants, and material properties used in the numerical evaluations (Lobry

& Lemaire, 1999; Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et

al., 2008).
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Figure 4.2. The dimensionless Couette spin velocity, co*, plotted with respect to the average shear rate, r*
evaluated at E* = 0, 0.4, 0.8, 1.0, 2.0, and 3.0. For E* 1.0, the spin velocity is given by Eq. (4.16), i.e.,

0* = OC2 (negative valued Q from Eq. (2.57) used in Eqs. (4.5)-(4.7)), whereas for the cases of E* 0. 8 ,o* is

given by Eq. (4.15), c* = o* , with the micro-particle rotation speed, 0 , set to zero in Eqs. (4.5)-(4.7). The gray

line denotes the zero electric field spin velocity, namely, half of the fluid vorticity, a* = -r*/2.

further present the numerical evaluations of the analytical expressions given in Eqs. (4.15),

(4.16), (4.23), and (4.24). The system parameters, physical constants, and material properties

used in our evaluations follow those given in Lobry and Lemaire (1999), Cebers et al. (2000),

Cebers et al. (2002), Lemaire et al. (2006), Pannacci et al. (2007a), and Lemaire et al. (2008) so

as to facilitate a more effective comparison between the current continuum model and the two-

phase effective continuum formulation found in the literature. These data are summarized in

Table 4.1.

Shown in Fig. 4.2 is the Couette spin velocity, a*= c, given by Eq. (4.16), i.e.,

* =O) * for EO > E and by Eq. (4.15), i.e., co* = m* , for E 0.8E, plotted with respect to

the average shear rate, r* =rwU/h, evaluated at E* = EO/E =0, 0.4, 0.8, 1.0, 2.0, and 3.0

where Ec =1.3 x 106 (V/m) is the critical electric field for the onset of particle Quincke rotation

evaluated by Eq. (1.1). It is learned from Fig. 4.2 that the magnitude of the spin velocity within

106 Chapter 4



Negative Electrorheology in Couette Flow Geometries

the flow field increases as the applied electric field strength is increased with y* kept constant.

On the other hand, the ER fluid spin magnitude also increases as the average shear rate, Y*, or

the applied velocity of the upper boundary, U0 , increases while the electric field strength is kept

constant. As the applied electric field, E0 or E*, is gradually reduced, the ER fluid spin velocity

gradually reduces back to the zero electric field angular velocity of a continuum fluid parcel, i.e.,

0*= -7*/2, or half of the Couette flow vorticity, which can be readily deduced from Eq. (4.14)

by letting M* -+ oo or E -+0. This solution is noted by the gray line with E* = 0 in Fig. 4.2.

Notice that for a given field strength and shear rate, the spin velocity, w* or Co, is a constant

throughout the channel and, thus, does not depend on the spatial z-coordinate as already

discussed in Sections 4.1 and 4.2.1 for the Couette geometry. With the spin velocity being a

constant in Eq. (4.3), the velocity field of Couette flow with internal micro-particle

electrorotation is found to be the same as that of Couette flow without particles-a result

consistent with those given in Shliomis (1972) and Rosensweig (1997). Thus, the velocity field

of Couette flow with micro-particle electrorotation is not further presented herein since plots of

the linear profile given by Eq. (4.12) can be easily found in standard fluid mechanics text books,

e.g., Fox and McDonald (1998).

Figure 4.3 shows the effective viscosity, q* = 7,/q, of Couette flow with internal micro-

particle electrorotation as given in Eqs. (4.23) and (4.24). The effective viscosity is plotted with

respect to the average shear rate, y*, with the electric field strength being evaluated at E* = 0,

0.4, 0.8, 1.0, 2.0, and 3.0. Again, the spin velocity solution given by Eq. (4.16) is employed in

Eqs. (4.23) and (4.24) for conditions of E* = E0 /E, 1, whereas Eq. (4.15) is employed in Eqs.

(4.23) and (4.24) for E* s; 0.8. It is readily seen that the effective viscosity decreases as the

applied DC electric field strength increases. However, as the magnitude of the shear rate

increases, the amount of reduction in the effective viscosity decreases regardless of the applied

electric field strength. Since the effective viscosity is normalized and non-dimensionalized by the

zero electric field ER fluid viscosity, q, we further point out that the value of 7* should

approach to one as the applied electric field goes to zero, which is a result easily found by

substituting e = -y*/2 into Eq. (4.24). The zero electric field result is indicated by the gray
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Figure 4.3. The effective viscosity, q*, found for Couette flow plotted with respect to the average shear rate, r

evaluated at E' = 0, 0.4, 0.8, 1.0, 2.0, and 3.0. For E* > 1.0, the spin velocity given by Eq. (4.16), i.e., c* = m*, is

used in the evaluation of Eqs. (4.23) and (4.24), whereas for E* 0.8, C* = w* given by Eq. (4.15) is employed in

Eqs. (4.23) and (4.24). The gray line denotes the zero electric field value of the effective viscosity, i.e.,

11* = qff / =1, with the value of q given in Table 4.1.

line in Fig. 4.3. It can be seen from the figure that the predicted effective viscosities q* approach

to one when the shear rate, y*, goes large or when the applied electric field strength is reduced

towards zero.

From Fig. 4.3, we find that zero or negative viscosities are attainable when the applied DC

electric field strength is strong enough. By using the terms "zero or negative viscosities," we do

not mean that the true fluid viscosity is zero or negative, but that the effective or apparent

viscosity comes out to be zero or a negative value through performing the force balance

described by Eqs. (4.20)-(4.24) when the boundary shear stress, z,, is maintained a constant. In

experimental terms, as the applied electric field strength becomes large, the "pumping" or

"conveyer belt" effect of the micro-particles undergoing electrorotation on the ER fluid

continuum becomes so significant that the ER fluid spin or rotation itself, instead of some

externally applied force or torque, provides the shear stress required to move the upper plate of
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the Couette geometry. Therefore, we may observe a finite shear rate, y*, or plate velocity, UO,

while the readings on the rheometer or viscometer indicate a zero torque applied to the fluid. As

for negative effective viscosity conditions, the electrorotation conveyer belt is even more

effective that the rheometer or viscometer eventually has to "hold back" the Couette driving plate

to maintain some value of applied torque or shear rate. Further discussions can be found in Lobry

and Lemaire (1999) for the rheometric experimental considerations and in Rinaldi et al. (2005)

for experimental torque measurements on ferrofluids subjected to rotating magnetic fields.

4.3 The Simplified Governing Equations with Finite Spin Viscosities in the Small Spin

Velocity Limit for Couette Flow Geometries

After examining and analyzing the continuum nER2 responses of Couette flows with internal

micro-particle electrorotation in the zero spin viscosity limit, i.e., 77'= 0, we now turn out

attention to the continuum nER2 responses with finite spin viscosities in the angular momentum

equation but linearized for small spin velocity conditions, i.e., q' 0 and r Co2 <1.

Following the same assumptions given in Section 4.1 with the 2D Couette geometry defined

in Fig. 4.1, we obtain u, =0 and E, =0 due respectively to the non-penetrating (impermeable

walls) boundary condition and the continuity of tangential electric field for perfectly conducting

electrodes at z = 0 and h. By employing these results, the linear momentum equation, Eq. (2.2),

angular momentum equation, Eq. (2.3), and the retarding polarization relaxation equation, Eq.

(3.35), are simplified for finite spin viscosity conditions, namely,

-rIMWCoP, -(P, - P)=0, (4.1)

rMWco,P - (P - Pz ) =0, (4.2)

dco d2u
2; * +X ' =0, (4.3)

dz ed2

and

(du d 20

where the definitions of the variables shown in Eqs. (4.1), (4.2), (4.3), and (4.25) are the same as
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those given in Section 4.1. Again, as in Eq. (4.4), we have replaced the total ER fluid

polarization, P,,, with the retarding polarization, P, in Eq. (4.25) since the DC electric field is

applied in the z-direction with E, = 0 and thus the polarization in the y-direction is basically due

to the (retarding) dipole moment tilt resulting from micro-particle electrorotation. The reduced

version of the z-linear momentum equation relates merely the z-pressure gradient to the z-

component of the Kelvin body force density, (P .V) E, and is treated apart (or neglected) from

Eq. (4.1), (4.2), (4.3), and (4.25).

Using the equilibrium retarding polarization given in Eq. (3.33), we solve Eqs. (4.1) and (4.2)

to obtain

a,, -- MyWGzE
P = n ' Eo (4.5)1+ ry 2

Mz + rMW x yPZe 2 2 O

where

(4.6)

a a = ][a,]4R3
a YZa freR3I

0 2 _ 62 6 1 )In2.7,+ a2 2e, +c2

2 ~ 1  __ 2 1

2a,+a 2 261 +c2

with a,, and a, respectively defined in Eqs. (3.42) and (3.43), and the magnitude and direction

of the micro-particle rotation speed, Q, being respectively given in Eq. (2.57) and that of the

macroscopic flow vorticity. We apply the same approximation to the z-component of the electric

field, i.e., Eq. (4.8), and substitute Eqs. (4.5) and (4.8) into Eq. (4.25) to obtain

a* - c 2 ,du d 2 0

2Z2 2 naZE +24 ' 2wx + ' =0,
1r,W )X dz d

(4.26)

where a' = a,/a, = -r,,Q and the electrical body torque term, PE , has been retained to the

first order of the particle solid volume fraction, $, for dilute suspensions, i.e., #5< 1, since

nazEoEz ~ nazEO (EO +#e, +- --) and naz - nR3 - nd3 - O() as in Eq. (3.31).

(4.7)
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We now further linearize Eq. (4.26) with the condition of small spin velocities, i.e.,

r a <1, such that Eq. (4.26) becomes

(a*- ri co,)naEj+2g - -2coj+' d ' =0. (4.27)
(dz dZ2

Equations (4.3), (4.7), and (4.27) together form the simplified governing equations for analyzing

and describing the continuum nER2 responses of the Couette flow with internal micro-particle

electrorotation in the finite spin viscosity small spin velocity limit, i.e., r/'s 0 and rWO <1.

As a caveat, the criterion of rwcq <1 for linearization gives an estimate of the maximum

range of spin velocity valid for our analyses. Since the Maxwell-Wagner relaxation time has the

order of magnitude of 0(10-3) for the selected materials given in the present work (see Table

4.1), the dimensional spin velocity can at most be at the order of 0(100) to 0(101) so that

Wrco_ 0 (10-2) to 0(10-4 which is roughly a general estimate for a physical value that is

much less than one.

The boundary condition on the velocity field, v = u, i, , is once again the no-slip boundary

condition, i.e., v =0 at z =0 and v = UO iY at z =h . However, unlike the case of zero spin

viscosity conditions, Eq. (4.27) does not reduce to an algebraic equation and the condition of

"free-to-spin" no longer applies to Eq. (4.27). For finite spin viscosity conditions, the boundary

condition on the continuum spin velocity field, Co = o, i, , is given by

co= (V x V), (4.28)

at z = 0 and h , where p is a boundary condition selection parameter ranging from zero to one,

i.e.,

0 6 p 1, (4.29)

as described in Kaloni (1992), Lukaszewicz (1999), Rinaldi (2002), and Rinaldi and Zahn

(2002). Notice that previous work (Kaloni, 1992) has reported that the boundary condition of

co=. i, =0 may give theoretical predictions inconsistent with experimental observations for

some micro-polar fluid flow conditions. As will be discussed in the following section,

inconsistency is also found between the results predicted by our present continuum mechanical



model when c = woix =0 at the boundaries and those experimentally observed in previous

literature (Lobry & Lemaire, 1999; Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006;

Pannacci et al., 2007a; Lemaire et al., 2008).

4.4 Continuum Analysis with Finite Spin Viscosities in the Small Spin Velocity Limit

4.4.1 Solutions to the Spin Velocity, Linear Velocity, and Effective Viscosity

Integrating Eq. (4.3), we have

2{o,+q, ' = pA, (4.30)
dz

where p, is a constant. By employing the following non-dimensionalization scheme, namely,

co,z =-,u = ' ,andr* =r -, (4.31)
h UO h

and substituting Eq. (4.30) into Eq. (4.27), the linear momentum equation, Eq. (4.30), and the

angular momentum equation, Eq. (4.27) (combined with Eq. (4.30)), are respectively non-

dimensionalized as

du* r 24
= - CO (4.32)

dz r1ey

and

A2 _2 = B, (4.33)dz*

where

hh2 ( 44 42A = I (nazE + (4.34)
)7 VMW 77eMW

and

B = ,mwh p, - nayE2, (4.35)

with the stars "*" denoting dimensionless variables (A and B also being dimensionless but p,

has dimensions). Equation (4.33), a linear, second order constant coefficient ordinary differential

equations, can further be solved as
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(4.36)

where p3 and p4 are constants. After substituting Eq. (4.36) into Eq. (4.32), we integrate the

linear momentum equation, Eq. (4.32), and arrive at

STM j

77e)'
(4.37)- ~sinh(Az*)- 2  cosh(Az*)+ B* +

7leY A le A liey A2

with p2 being a constant and B being related to p, through Eq. (4.35). The boundary conditions

on the linear and spin velocity fields can also be non-dimensionalized via Eq. (4.31); the non-

dimensional no-slip boundary condition and Eq. (4.28) then becomes

(4.38)u* =0 at z* = 0 and u* = at z* =1,

and

1 - du*
CO* -- ,ly * at z* =0,1,

2 dz*

respectively. We apply Eqs. (4.38) and (4.39) to Eqs. (4.36) and (4.37) and solve for the

coefficients, pi, P2, p3, and p4, as

A ( A27*q '+ 2h2nira,E) cosh - 4Eh 2nnrwa, sinh
, (4.40)

(4.39)

A (#{ -rie) (4h 2 g 2

2 1 p4

p2 7e,7* A'

+ A2 )7e77?) rm, cosh (A) - 2{ (4h2 (,6g -_ 77) + A2 877e) ') 1 sinh (A)

(4.41)

P3 =

-Ar, { A2 8y*qe)7'+ 2h 27*{ (#; -le) + E nyear y ]} cosh ( A (4.42)

-2A { - r,) (4h2 2 + A2q,77') cosh + 4{; (4h 2 ( ( pg - q7 )+ A2 pr11 r?

and

P4 ~

Aie {A213y*q7el7'+ 2h 27* (,6{ - le + E fienteray tanh (A) (4.43)

+ A2 leli') + 4{ (4h 2{ (84 - lie) + A2 'glI7li tan(A

sinhQ(;)

co*(z) =pcosh (Az*) + p4sinh (Az*) - ,B
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Note that the polarizabilities of a, and a, found in Eqs. (4.34), (4.35), and (4.40)-(4.43) are

expressed in terms of the micro-particle rotation speed, Q as defined in Eq. (2.57), through Eq.

(4.7). For the present 2D Couette geometry shown in Fig. 4.1 and the spatial coordinates defined

in both Figs. 2.1 and 4.1, the macroscopically "imposed" flow vorticity, i.e., V x v ~ U0 /h i,

is in the negative x-direction or clockwise direction pointing into the plane. Therefore, in order to

satisfy the stable micro-particle rotation requirement as discussed in Section 4.2, we employ a

negatively valued micro-particle rotation speed, i.e., choose Q < 0 solution from Eq. (2.57), in

the variables of a, and a. (given by Eq. (4.7)) found in Eqs. (4.34), (4.35), and (4.40)-(4.43) for

DC electric field strengths greater than the Quincke rotation critical electric field, i.e., E0 > E ,

with E defined in Eq. (1.1). On the other hand, for the cases of DC electric field strengths less

than the critical electric field, i.e., E0 < Es, we employ the Q = 0 solution from Eq. (2.57) in the

a, and a, found in Eqs. (4.34), (4.35), and (4.40)-(4.43) and require a physically reasonable

solution of the spin velocity field, co* as in Eq. (4.36), to be negatively valued or to be rotating in

the same direction as the macroscopically imposed vorticity. As will be seen in Section 4.4.2, the

spin velocity solution automatically satisfies (without any manual selection of roots) the above

requirement of rotating in the same direction as that of the imposed vorticity when Q = 0 in Eqs.

(2.57), (4.7), (4.34), (4.35), and (4.40)-(4.43) for E0 < E conditions in the q'# 0, r c<< 1

limit of the continuum governing equations.

The effective viscosity of Couette flows with internal micro-particle electrorotation, eff,, for

finite spin viscosities in the small spin velocity limit can again be derived by substituting the

solved spin and linear velocity fields (Eqs. (4.36) and (4.37), respectively) into Eqs. (4.20)-

(4.22), i.e.,

Is = =7
eff U f = I j - -, (4.20)

h TMW =

in which [ denotes the shear stress differences across the solid-ER fluid interface, i is the

row vector [0 0 1], i~ is the column vector [0 1 0]', and T = + T is the total stress

tensor with the symmetric part being
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-p

0

0 0
du

dz

o 77duy
dz

-p

(4.21)

and the anti-symmetric part being

Ta = E -(V x v - 2)=

du

dz

0

du

0

(4.22)

where 10 is the unit identity tensor, c is the permutation tensor, and the superscript t denotes

the transpose of a matrix (Rosensweig, 1997). For the current finite spin viscosity small spin

velocity conditions, the effective viscosity resulting from the nER2 effects in the Couette flow

geometry can then be obtained as

du*
eff= 77e dz*z 20

z -o
+2 ,=, (4.44)

or in dimensionless terms,

* _ie du* 2{ I Z*=0

77 dz * ,._ Y*
(4.45)

where the spin velocity is given by Eq. (4.36), the derivative of the linear velocity is given by the

derivative of Eq. (4.37) with respect to z*, and q ~ qO (1+ 2.5#) is the zero field ER fluid

(particle-liquid mixture) viscosity as defined in Section 2.1. Again, the shear stress differences in

Eq. (4.20) are all evaluated at z = 0.

4.4.2 Modeling Results and Discussions

After obtaining the solutions to the spin velocity, co, or *, linear velocity, u, or u*, and

effective viscosity, ,ff or q*, in the previous subsection, we further investigate the negative

115Negative Electrorheology in Couette Flow Geometries
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electrorheological behavior and fluid flow phenomenon due to internal micro-particle

electrorotation in 2D Couette flow geometries by performing a series of parametric studies. The

dimensionless spin velocity profiles, *, linear velocity profiles, u*, and effective viscosities,

q*, are plotted as functions of the spatial coordinate, z* (for w* and u*), applied DC electric

field strength, E0 , boundary driving velocity, UO, boundary condition selection parameter, ,

and spin viscosity, q', so that the variations in the flow patterns and rheological properties with

respect to the pertinent governing or driving parameters can be illustrated and examined

systematically for q,# 0, r2o <1 conditions.

Since the polarizabilities of a, and a, found in Eqs. (4.34), (4.35), and (4.40)-(4.43) and

subsequently the spin and linear velocities (Eqs. (4.36) and (4.37), respectively) depend upon the

magnitude and direction of the micro-particle rotation speed, Q , as given in Eq. (2.57) for

different regimes of the applied electric field strengths, E0 , we employ the negatively valued

micro-particle rotation speed, Q <0 solution from Eq. (2.57), in the a, and a, polarizabilities

of Eqs. (4.34)-(4.37) and (4.40)-(4.43) for electric field strengths greater than the critical electric

field for Quincke rotation, E defined in Eq. (1.1), and used the zero micro-particle rotation

solution, Q = 0 solution in Eq. (2.57), in a, and a. of Eqs. (4.34)-(4.37) and (4.40)-(4.43) for

electric field strengths less than E so as to satisfy the stable micro-particle rotation requirement

as discussed in the previous sections.

To facilitate the presentation of our results and discussion, several of the physical variables

employed in the following are non-dimensionalized by the following scheme:

* U E* = E U * _ 1 eff (4.46)
Z = -U Ow ) '7 9vw~ t)=TCX 9andq* - 9 (.46

h UO E0  h y q'o

where h is the 2D channel height, UO is the Couette boundary driving velocity, r, is the

Maxwell-Wagner relaxation time defined in Eq. (2.39), E, is the Quincke rotation critical

electric field for a single solid micro-particle as defined in Eq. (1.1), q ~ 77 (1+ 2.5#) is the zero

electric field ER fluid (pure particle-liquid mixture) viscosity as defined in Section 2.1, and 17'0

is a reference spin viscosity given as 7'0 = 1.53x10-8 (N-s ). The numerical value for q' is

chosen by the expression of
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Figure 4.4. The spatial variations of the total spin velocity profiles, co, given by Eq. (4.36) evaluated for (a)

E* 1 and (b) E* 1 with p = 1, r7* = 1 , and UO = 0.01 ( m/s ) (or y* ~ 0.01) kept constant. The gray line in

Fig. 4.4(b) denotes the zero electric field solution of ao* = - y*/2 when the applied DC electric field is reduced to

zero.

q' lrl, (4.47)

derived from the theory of Zaitsev and Shliomis (1969) with 'D being the characteristic diffusion
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Figure 4.5. The spatial variations of the total spin velocity profiles, co* (in (a) and (b)), and the normalized spin

velocity profiles, co* (in (c) and (d)), evaluated at distinct values of the Couette boundary driving velocity, i.e.,

UO = 0.01, 0.05, and 0.1 (m/s ) (or equivalently, y* z0.01, 0.05, and 0.1), for E* = 2 1 (in (a) and (c)) and

E* = 0.6 <1 (in (b) and (d)) while the other parameters of p =1 and * =1 are kept constant. (Cont. next page)

length for angular momentum. Although Zaitsev and Shliomis' (1969) original definition of ID

was "the averaged distance between the suspended rotating micro-particles," we generalize this
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(Cont. Fig. 4.5) The solid gray lines in (c) and (d) denote the zero electric field solution of o = -r*/2.

characteristic length to be the averaged size of an ER fluid parcel (consisting of a representative

amount of rotating micro-particles and carrier liquid molecules) as viewed from a continuum

scale. Since for steady state fully developed internal flows, continuum diffusion processes, e.g.,

boundary layer growth, are generally limited by the length scale of the channel, the characteristic

diffusion length for angular momentum, ID, by our generalized definition then scales as the
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height of the parallel plate channel, i.e., -D ~ h , and thus we arrive at Eq. (4.47). Numerical

values for the material properties, physical constants, and system dimensions used in our

numerical evaluations of the analytical solutions are summarized in Table 4.1.

Shown in Figs. 4.4(a) and 4.4(b) are the total spin velocity profiles, C* given by Eq. (4.36),

plotted with respect to the spatial coordinate, z*, for Couette flow with internal micro-particle

electrorotation for electric field strengths larger than the critical electric field, i.e., E* = 1, 1.5, 2,

2.5, and 3, and for field strengths less than the critical field, i.e., E* =0, 0.2, 0.4, 0.6, 0.8, and 1,

respectively. For both Figs. 4.4(a) and 4.4(b), we have employed p =1, * =1, and UO = 0.01

(m/s ) (corresponding to a dimensionless shear rate of y* = 0.0110625) in the evaluation of the

spin velocity profile solutions; we choose this combination of parametric regimes such that we

follow the assumption of small spin velocity solutions, i.e., r g «o 1, under our theoretical

framework. It can be seen from the two figures that, irrespective of the different regimes of the

applied electric field strength, the magnitude of the spin velocity, c0, increases as the applied

electric field strength is increased, whereas the magnitude of the spin velocity is reduced as the

applied electric field strength is decreased. We can also confirm that the rotation direction of the

spin velocity field is indeed consistent with that of the macroscopically imposed vorticity, both

in the negative x-direction with the coordinates defined in Fig. 4.1, so that the solutions satisfy

the stable micro-particle rotation requirement. Note however that the spin velocity solutions

respectively shown in Figs. 4.4(a) and 4.4(b) are still of different orders of magnitude due to the

different regimes of electric field strengths and the different polarizabilities employed in Eqs.

(4.34)-(4.37) and (4.40)-(4.43). As we gradually reduce the applied electric field strength, E*,

from E* 21 to E* <1, we find that the magnitude of the spin velocity also decreases and

eventually reduces to the zero electric field solution of =wV x v/2=-0.5r du,/dz

S-Y*/2 = -5.53125x 10-3, as denoted by the gray curve shown in Fig. 4.4 (b), which is simply

half the vorticity of the ER fluid flow when no electric field is applied to the ER fluid. Figure 4.4

also suggests that the values of the spin velocities are greatest, i.e., the ER fluid rotation is

strongest, in the middle of the two dimensional channel. This implies that the fluid flow in the

upper half of the channel, z* = 0.5 1.0, is likely to be accelerated and the fluid flow in the
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lower half of the channel, z* = 0.0 - 0.5, is to be reduced. We shall come back to this result

when we examine the linear velocity field.

We next examine the effects of the applied shear rate, y*, on the total spin velocity field, o*,

by varying y* in the two regimes of the applied electric field strength, i.e., E* >1 and E* <1, as

shown in Figs. 4.5(a) and 4.5(b), respectively. In Fig. 4.5(a), we have evaluated the spin velocity

field, c*, with respect to z* at UO = 0.01, 0.05, and 0.1 (m/s ) (corresponding to a dimensionless

shear rate of y* ~0.01, 0.05, and 0.1, respectively) with E* = 2, = 1, and * =1 whereas in

Fig. 4.5(b), we have employed UO =0.01, 0.05, and 0.1 (m/s) with E* = 0.6, p =1, and =1

in our evaluations of the spin velocity field. The combination of parameters is again chosen so

that ar,o «1 is generally satisfied. From both Figs. 4.5(a) and 4.5(b), it can be found that the

magnitude of the spin velocity field, c*, increases as the applied shear rate, y*, or Couette

boundary driving velocity is increased, and that the magnitude of w* is decreased as y* is

reduced regardless of which regime of electric field strength is of interest. This result is simply a

manifestation of the fact that the greater the mechanical driving force the greater the response in

ER fluid flow at the respective constant electric field strengths. Due to the different regimes of

electric field strengths employed, the variations of the spin velocity profiles with respect to the

spatial coordinate, z*, as shown in Fig. 4.5(a) are much more significant as compared to flat

profiles found in Fig. 4.5(b). Yet, the order of magnitudes of the spin velocity solutions in both

Figs. 4.5(a) and 4.5(b) are now the same. We can further normalize the dimensionless spin

velocity profiles, c*, with o* = - 7*/2 so that the normalized spin velocity profile is given as

(O= * , (4.48)

and the normalized spin velocity profile at zero electric field strengths, i.e., half the vorticity of

the ER fluid flow when E* =0, becomes one and is independent of the applied shear rate or

Couette boundary driving velocity, i.e.,

= ?=1. (4.49)
T 0

These solutions are shown in Figs. 4.5(c) and 4.5(d) for the respective electric field strengths of
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E* = 2 and E* = 0.6 with the rest of the parameters used in the evaluation of the solutions being

the same as those given in Figs. 4.5(a) and 4.5(b). As can be learned from Fig. 4.5(c) for electric

field strengths greater than the critical electric field, the normalized spin velocity profile, co

gradually meets the zero electric field solution, coo =1 noted by the gray line in the figure, as the

applied Couette boundary driving velocity or shear rate is increased. This result implies that as

the applied shear rate becomes large, the mechanical viscous driving force dominates over the

electrical torque input such that the normalized spin velocity solution becomes closer to the value

found at zero electric field strengths, i.e., the solution found only when viscous force is present.

The consistency between the solutions presented in Fig. 4.5(c) and the physical picture described

above also implies that the spin velocity field solutions we have obtained are generally correct.

Note however that for the E* = 0.6 <1 solutions given in Fig. 4.5(d), the spin velocity field is

independent of the applied shear rate (with the numerical values of the differences among the

spin velocity profiles evaluated at the respective shear rates being within 0 (i0-16)) and does not

converge to co =1 as noted by the gray line in the figure as the applied shear rate grows large.

This result found in Fig. 4.5(d) is basically due to the different form of the polarizability (a, and

a, with the micro-particle rotation speed being set to zero) used in Eqs. (4.34)-(4.37) and (4.40)-

(4.43) for E* = 0.6 <1 as compared to the result obtained from Fig. 4.5(c) and does not

necessarily suggest that the solutions given in Fig. 4.5(d) is incorrect. By comparing Figs. 4.5(c)

and 4.5(d), it can be learned that there is a difference in the flow field responses when we employ

different forms of polarizabilities (a, and a, ) in regard of the different regimes of the applied

electric field strengths. In other words, the model of the polarizabilities (a, and a,) and

subsequently the equilibrium retarding polarization, Eqs. (3.32) and (3.33), employed in the

polarization relaxation equation, Eq. (3.35), may generally have influence on the final negative

electrorheological response of the nER2 fluid flows.

Before examining how the total spin velocity profile varies with respect to changes in the

boundary condition selection parameter, 8, we define two difference variables based on the spin

velocity as
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A (z*, E* =2,* =1, , U = 0.01)
517p , (4.50)

= co*(z*, E* = 2, q* =1, , Uo = 0.01)-o*(z*,E* = 2,q* = lo=1,U 0 =0.01)

for E* =2 1 and

A co* (z*, E* = 0.6, q* =1,j8, UO = 0.01)
17p O* z* .E* 0.6 q 1)6 19UO =0. , (4.51)

=c*(z*,E*=0.6,q*= U = 0.01)-o*(z*,E* =0.6,q* =1,/p=1,U0 = 0.01) (

for E* = 0.6 <1. Note that since the spin velocity, co, evaluated are rotating in the same

direction as that of the macroscopically imposed flow vorticity, the spin velocities, co*, shown in

Eqs. (4.50) and (4.51) are negative values (i.e., co* rotating in the negative x-direction).

Figures 4.6(a) and 4.6(b) illustrate the spatial variations of the differences in the spin velocity

as respectively defined in Eqs. (4.50) and (4.51) for distinct values of the boundary condition

selection parameter, i.e., p = 0, 0.25, 0.5, and 0.75. Since the spin velocities, co*, are of negative

values in Eq. (4.50), we find in Fig. 4.6(a) that as 8 is reduced from 0.75, 0.5, 0.25, to 0, the

total spin velocity, w*, becomes slightly more negative as compared to the total spin velocity

evaluated at p = 1, i.e., co* (p8 =1), for the electric field strength of E* = 2 1. Similarly, for the

negatively valued total spin velocity in Eq. (4.51), we find in Fig. 4.6(b) that as p8 is decreased

from 0.75, 0.5, 0.25, to 0, the total spin velocity, co*, becomes considerably less negative as

compared to the total spin velocity evaluated at p = 1, i.e., co* (p = 1), for the electric field

strength of E* =0.6 <1. From these two figures shown in Fig. 4.6, it can be found that varying

the boundary condition selection parameter, p, results in different responses in the total spin

velocity field, co*, for the different polarizabilities (a, and a, as in Eq. (4.7)) utilized within the

different regimes of electric field strengths of interest. Consequently, the negative electro-

rheological responses of nER2 are also dependent on the boundary condition selection

parameter, 8, and the different polarizabilities utilized for the different regimes of electric field

strengths applied since both the linear velocity field, u*, and the effective viscosity, q*, both

depend on the total spin velocity field, co*.

Figure 4.7 shows the spatial variations of the total spin velocities evaluated at distinct values

of the spin viscosity, q' or q* , for the Couette flow geometry with E* = 2 1 in Fig. 4.7(a) and
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Figure 4.6. Spatial variations of the differences in the total spin velocity profile, Ac*, as defined in Eqs. (4.50)

and (4.51) evaluated at r/* = 1, UO = 0.01 (m/s ), and #= 0, 0.25, 0.5, and 0.75 for (a) E* = 2 1 and (b)

E* =0.6 <1.

with E* = 0.6 <1 in Fig. 4.7(b). In both plots, we have employed p =1 and UO =0.01 (m/s)

(corresponding to a shear rate of y* ~ 0.01), and the value of spin viscosity is varied from
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q'=1.53x10-7, 3.06x10-8 , 1.53x10-8 , 9.945x10- 9 , and finally to 7.65x10~9 (N-s), which

corresponds to * =10, 2, 1, 0.65, and 0.5 as shown in the figures.



Despite the different orders of magnitudes of the total spin velocities, W*, shown in the two

figures of Fig. 4.7, it can be learned that the magnitude of the total spin velocity of the ER fluid

parcel is enhanced as the spin viscosity, q*, is reduced for both Figs. 4.7(a) and 4.7(b). This

result is consistent with the mathematical nature of the diffusive term, 82/8z2 or d 2/dz2 ,

presented in the governing equation, Eq. (4.27), of the spin velocity field, that is, the diffusive

term in the equation tends to smooth out the concentrated values, or singularities, in our

calculation domain. Therefore, the larger the spin viscosity, the stronger the diffusive transport of

the ER fluid angular momentum (from the electrical torque) is obtained. In other words, as 7' or

q* increases, the total spin velocity profile, co, becomes smoother or flatter with a smaller

magnitude regardless of the electric field strengths of interest. On the contrary, when the spin

viscosity is reduced, the diffusive transport of the angular momentum introduced by the external

electric field through the electrical body torque of the ER fluid is also reduced, and the total spin

velocity is then more concentrated or enlarged. Nevertheless, there is a limitation to the reduction

of the spin viscosity in the present continuum model since as q' is reduced to a certain value, the

spin velocity grows so large that it violates the r c2 «1 criteria, as can be suggested by the

dramatic increase in the magnitude of the total spin velocity in Fig. 4.7(a) while is reduced

from 10 to 0.5. Also notice that with the other variables, i.e., E*, p, and y* (or U0 ), kept

constant, the total spin velocity profiles, c*, shown in both Figs. 4.7(a) and 4.7(b) gradually

meet the zero electric field solution of c =*-,y*/2=-5.53125x10-3 when the spin viscosity,

q* , is gradually increased (note: zero electric field solution not shown here since co* falls pretty

close to c* when q* =10 in both figures). Again, for this Couette flow geometry, Fig. 4.7

indicates that the linear flow velocity is increased in the upper half of the channel and the

velocity is decreased in the lower half of the channel due to the fact that the spin velocities found

in the two plots are the greatest in the middle of the flow channel.

In the following discussions on the linear velocity field, we define a micro-particle Quincke

rotation induced velocity as

uq u -u =u -z (4.52)

which is simply the total linear velocity, u*, subtracted by the zero electric field linear velocity,
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U* = z* i.e., the (dimensionless) ordinary Couette flow linear velocity when no external electric

field is applied as given in Eq. (4.12). The reason for defining u* in Eq. (4.52) is because the

total linear velocity fields, u*, obtained for the nER2 effect by our continuum analysis in the

finite spin viscosity small spin velocity limit generally fall close to the zero electric field solution

given by Eq. (4.12), or in dimensionless terms, u* = z* , and are thus difficult to be distinguished

from the zero electric field solution. We therefore present the Quincke rotation induced linear

velocity, u*, instead of the total linear velocity, u*, so as to magnify or better illustrate the

variations in the velocity fields with respect to the different physical parameters involved in the

nER2 problem.

The Quincke rotation (or electrorotation) induced velocity profiles, namely, u* given by Eqs.

(4.37) and (4.52), are plotted for the electric field regimes of E* 1 and E* <1 in Figs. 4.8(a)

and 4.8(b), respectively. By keeping the parameters of p = 1, r* = 1, and U = 0.01 (m/s)

(corresponding to a shear rate of y* ~ 0.01) constant, we plot the spatial variations of u* at

E* = 1.01, 1.5, 2, 2.5, and 3 in Fig. 4.8(a) and plot the spatial variations of u* at E* = 0, 0.2, 0.4,

0.6, 0.8, and 1 in Fig. 4.8(b) (note: when E* =1 the micro-particle rotation speed is zero, n =0,

as calculated from Eq. (2.57), thus the polarizabilities of a, and a, also have the same Q = 0

condition as what we would employ for the cases of E* <1). For both plots in Fig. 4.8, the

induced velocity, u*, is positive in the upper half of the channel while the lower half of the

channel has a negative induced velocity. Hence, when we add u* and u* = z* together to obtain

the total linear velocity field, u*, the total flow velocity in the upper channel is accelerated while

the total velocity in the lower channel is reduced. This result is generally consistent with the

physical picture we have discussed for the spin velocity profiles in Fig. 4.4. Moreover, it can also

be seen in both Figs. 4.8(a) and 4.8(b) that the strength or magnitude of the induced velocity is

enhanced as the applied electric field, E*, is increased whereas the magnitude of the induced

velocity is decreased as the applied electric field strength is reduced. Yet, the order of magnitude

of the induced velocities shown in Fig. 4.8(a) for E* 1 is much greater than those found in Fig.

4.8(b) for the electric field strengths of E* <1. As we gradually reduce the applied electric field
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Figure 4.8. Spatial variations of the Quincke rotation induced linear velocity profiles, u*, given by Eqs. (4.37)

and (4.52) evaluated at p =1, r/* =1 , and UO = 0.01 (m/s ) (or y* ~ 0.01) for (a) E* >1 and (b) E' 1. The

solid gray line shown in (b) represents the zero electric field solution of zero induced linear velocity.

strength from E* 1 in Fig. 4.8(a), to E* <1 in Fig. 4.8(b), and finally to E* =0 (noted by the

gray line in Fig. 4.8(b)), we find that the Quincke rotation induced linear velocity, u*, also
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gradually decreases and eventually goes to zero, i.e., u* = 0, which gives exactly the zero

electric field total linear velocity of u* =u* +u* = 0+ u* = z*. The symmetries about the point of

(, z*) = (0,0.5) in the induced velocity profiles of the two plots shown in Fig. 4.8 indicate that

the Quincke rotation induced 2D flow rate for Couette flow is likely to be negligible or close to

zero because the positive induced linear velocity in the upper half of the flow channel is

generally canceled by the negative induced linear velocity in the lower half of the channel.

Therefore, the effective viscosity, q* or ,,ff, rather than the Quincke rotation induced 2D

volume flow rate is generally a better candidate for experimentally measuring the macroscopic

negative electrorheological effects when an external DC electric field is applied to the Couette

flow geometry.

We next consider the effects of the applied Couette boundary driving velocity, UO, or

equivalently the applied shear rate, y*, on the Quincke rotation induced linear velocity field, U*.

Since the linear velocities, uY and uq, are made dimensionless based upon the Couette boundary

driving velocity, UO, the dimensionless linear velocities, u* and u*, are also normalized such

that no further normalization of the dimensionless variables is required as we have done for the

spin velocities, d*. Shown in Fig. 4.9(a) are the spatial variations of the Quincke rotation

induced linear velocity, u*, evaluated at U0 =0.01, 0.05, and 0.1 (m/s ) (or equivalently,

Y* ~0.01, 0.05, and 0.1) with E* =2>1, p=1, and q* =1. As for Fig. 4.9(b), the spatial

variations of u* are evaluated at UO =0.01, 0.05, and 0.1 (m/s ) (or equivalently, y* ~0.01, 0.05,

and 0.1) with E* = 0.6 <1, p =1, and 1* =1. As can be seen in Fig. 4.9(a), the induced linear

velocity, u* (dimensionless and normalized), is reduced as the applied shear rate, y*, or Couette

boundary driving velocity, UO, is increased. In other words, as the applied shear rate becomes

large, the induced linear velocity, u*, gradually becomes zero, which is simply the zero electric

field solution of zero induced linear velocity. This result is consistent with that of the normalized

spin velocity profiles, c*, as shown in Fig. 4.5(c) and again verifies the physical picture of with

the applied electric field kept constant, mechanical viscous forces gradually dominates the ER
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Figure 4.9. Spatial variations of the induced linear velocity profile, u*, evaluated at p=1, *,=I, and

U0 =0.01, 0.05, and 0.1 (m/s )(or y* ~0.01, 0.05, and 0.1) for (a) E* =2.>1 and (b) E' =0.6<1. Note that the

three linear velocity profiles respectively evaluated at U0 = 0.01, 0.05, and 0.1 (m/s ) have collapsed into one

curve in (b) for the DC electric field strength of E* = 0.6 < 1.

fluid flow responses as the applied Couette boundary driving velocity or the shear rate is

increased. On the other hand, we find that the induced linear velocity profiles, u*, evaluated



respectively at U0 =0.01, 0.05, and 0.1 (m/s ) (or equivalently, y* ~0.01, 0.05, and 0.1) for

E* =0.6<1, P =1, and * =1 have collapsed into one profile (the differences among the u*'s

respectively evaluated at different shear rates are very small) in Fig. 4.9(b). Note however that

the order of magnitude of this collapsed induced linear velocity profile is much smaller as

compared to that found in Fig. 4.9(a) for the electric field regime of E* = 2 1. The result shown

in Fig. 4.9(b) is also consistent with the normalized spin velocity profile, co*, as given in Fig.

4.5(d), and is generally due to a zero micro-particle rotation speed, Q = 0, that we have

employed in the polarizabilities a, and a, as well as the subsequent equilibrium retarding

polarization, Eq. (3.33), and the resulting spin and linear velocity solutions (Eqs. (4.36) and

(4.37), respectively) for the electric field regime of E* = 0.6 < 1.

The influences of different values of the boundary condition selection parameter, p, on the

spatial variations of the Quincke rotation induced linear velocity profile, u*, are shown in Figs.

4.10(a) and 4.10(b) for electric field regimes of E* = 2 1 and E* = 0.6 <1, respectively.

Despite the different electric field regimes considered, we have employed the constant values of

q* =I and U0 =0.01 (m/s ) (or y* ~0.01) and varied the boundary condition selection

parameter from p = 0, 0.25, 0.5, 0.75, and to 1 in both Figs. 4.10(a) and 4.10(b). It can be found

from Fig. 4.10(a) that the induced linear velocity profiles respectively evaluated at distinct values

of 8 have collapsed into one profile with the induced linear velocity being positive in the upper

half of the flow channel and negative in the lower half of the channel for E* =2 1. The

differences between or among the induced linear velocity profiles evaluated respectively at

p = 0, 0.25, 0.5, 0.75, and 1 generally fall within the order of magnitude of O(10~1) in Fig.

4.10(a). Unlike the velocity profiles shown in Fig. 4.10(a), the induced velocity, u,* varies

considerably as the boundary condition selection parameter, p8, is changed in Fig. 4.10(b) for

E*=0.6<1. It can be learned from Fig. 4.10(b) that as p is increased from 0 to 1, the

magnitude of the induced velocity u* is reduced, which is a result different from what we have

learned from the variations of the spin velocity profile shown in Fig. 4.6(b). In Fig. 4.6(b), we

find that the differences of the spin velocity, Aco* as defined in Eq. (4.51), are positive values
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Figure 4.10. Spatial variations of the induced linear velocity profile, u*, evaluated at /* =1, U = 0.01 (m/s),

and #=0, 0.25, 0.5, 0.75, and 1 for (a) E* = 2 1 and (b) E* = 0.6 < 1. In (a), the five profiles evaluated for

their respective values of p have collapsed into one profile.

and increase as 6 is reduced. This means that as compared to the total spin velocity evaluated at

= 1 (with other parameters kept constant), the total spin velocity becomes less negative (the

magnitude of co* being decreased) as the boundary condition selection parameter, p, is
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Figure 4.11. The spatial variations of the induced linear velocity,

r/* =0.5, 0.65, 1, 2, and 10 for (a) E* = 2> Iand (b) E* = 0.6 <1
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1 2

u*, evaluated at p =1, UO = 0.01 (m/s ), and

decreased (recall the total spin velocity co* is negatively valued, i.e., rotating in the same

negative x-direction as the imposed flow vorticity). However, as seen in Fig. 4.10(b), the

magnitude of the induced linear velocity increases as p is decreased. This result implies that the
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spin velocity and the induced linear velocity generally do not share the same trends of variation

with respect to the boundary condition parameter, p, and that either c* or u* (or u*) cannot

solely determine exactly the final macroscopic negative electrorheological responses of the

Couette ER fluid flow. From the functional forms of Eqs. (4.44) and (4.45), we learn that both

the total spin velocity field and the derivative of the total linear velocity field are required in

order to evaluate the final effective viscosity solution that characterizes the macroscopic negative

ER phenomenon.

Figures 4.11(a) and 4.11(b) present the spatial variations of the Quincke rotation induced

linear velocity profile, u*, with respect to distinct values of the spin viscosity, q' or 1* , for the

respective applied electric field regimes of E* =2 1 and E* = 0.6 <1. For both figures in Fig.

4.11, we employ the constant values of p =1 and UO =0.01 (m/s ), i.e., r* ~0.01, and vary the

spin viscosity from t* = 0.5, 0.65, 1, 2, to 10. Although the order of magnitudes of the induced

velocities found in both Figs. 4.11 (a) and 4.11(b) are much different, the magnitudes of the

induced velocity profiles in both figures are increased as the value of the spin viscosity is

decreased. If contrarily, we increase the value of the spin viscosity, q* , while keeping the other

parameters constant, it can be found that the magnitudes of the induced linear velocity profiles,

u*, are reduced and eventually become zero, i.e., zero induced linear velocity, which is exactly

the zero electric field solution as discussed previously. This result from examining the induced

linear velocity profile is consistent with that obtained from examining the total spin velocity

profile as shown in Figs. 4.7(a) and 4.7(b). Again, because of the additional diffusion mechanism

introduced into the ER fluid flow by the spin viscosity, q' or q*,, the induced linear velocity

profiles, u*, are smoother or flatter for large values of 1* whereas the shapes of u* shown in

Fig. 4.11 become more concentrated or singular for small values of

After examining the ER responses of the total spin velocity, w*, and the induced linear

velocity, u*, profiles in the 2D Couette geometry, we now turn our attention to the effective

viscosity, 7,ff or q, as given by Eq. (4.44) or (4.45), which characterizes the final macroscopic

negative electrorheological responses of Couette flow with internal micro-particle electro-

rotation.
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micro-particle rotation speed equals to zero, Q =0 , when E* = 1 as calculated via Eq. (2.57) for (a), which is
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plotted with respect to the applied shear rate, y* (i.e., the Couette boundary driving velocity,

UO ), for the respective electric field strength regimes of E* = 1, 1.5, 2, 2.5, and 3 (E* 1 in Fig.

4.12(a)) and of E* =0, 0.2, 0.4, 0.6, 0.8, and 1 (E* 1 in Fig. 4.12(b)) with the other variables of

p =1 and * =1 kept constant. Note that the E* = 1 solution is also plotted in Fig. 4.12(b) since

the micro-particle rotation speed is zero, i.e., 2 = 0, when E* = 1 as calculated by Eq. (2.57) and

hence is the same as setting K2 =0 for the electric field regime of E* <1. From the effective

viscosity solutions shown in Fig. 4.12(a), it can be learned that as the applied DC electric field

strength is increased, the effective viscosity of the ER fluid flow is decreased. It can also be

learned from the solutions for E* = 1.5, 2, 2.5, and 3 as shown in Fig. 4.12(a) that as the

magnitude of the applied shear rate becomes large, the reduction in the effective viscosity is

reduced irrespective of the applied DC electric field strength, that is, the effective viscosity is

dependent on the applied shear rate. Nevertheless, the shear rate dependence is not observed for

the effective viscosity solution evaluated at E* =1 as well as for the E* <1 solutions shown in

Fig. 4.12(b). In Fig. 4.12(b), the effective viscosity solutions are generally independent of the

applied shear rate, 7*, regardless of the applied DC electric field. As the DC electric field

strength is increased in Fig. 4.12(b), we find that the effective viscosity decreases, i.e., the

negative ER effect. If however, we reduce the applied DC electric field strength, the reduction in

the effective viscosity is also reduced and eventually approaches the zero electric field solution

of q* = 1 (as denoted by the gray line in Fig. 4.12(b)), which is simply the zero electric field

viscosity, y7 ,ff = 7 ~ 7o (1+ 2.5$), as mentioned in the previous sections. Referring back to the

E* > 1 results shown in Fig. 4.12(a), it can also be seen that as the applied shear rate, y*,

increases, the effective viscosity solutions gradually approach the zero electric field solution of

q* =1, which again verifies the physical picture of the mechanical viscous forces become

dominant when the applied shear rate is increased with the applied DC electric field kept

constant as already discussed for the total spin velocity field and the induced linear velocity field.

We also find that zero or negative effective viscosities are attainable for the E* >1 solutions

shown in Fig. 4.12(a). The finite spin viscosity small spin velocity results presented in Fig.

4.12(a) are very much similar to those obtained in the zero spin viscosity limit as shown in Fig.

4.3, but the effective viscosity results for E* =1 and E* <1 (see Fig. 4.12(b)) do not share the
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non-linear dependency on the shear rate found in Figs. 4.3 and 4.12(a). This behavior is perhaps

due to the different forms of equilibrium retarding polarization, Eq. (3.33), or polarizabilities of

a, and a2 , Eq. (4.7), resulting from the respective finite micro-particle rotation speeds, # # 0,

for E* >1 and zero micro-particle rotation speed, Q =0, for E* 1 employed for the final

solutions of Eqs. (4.36), (4.37), (4.44), and (4.45). Thus, in the finite spin viscosity small spin

velocity limit, non-linearity is likely to be introduced to the linear solutions obtained by treating

the spin velocity, co* or co, and the micro-particle rotation speed, Q, as different physical

variables with a non-zero micro-particle rotation speed.

We next examine the influences of different boundary condition selection parameter, p, on

the effective viscosity solutions in Fig. 4.13. In Fig. 4.13(a), we keep E* = 2>1 and = 1

constant and plot the effective viscosity, 7*, with respect to the applied shear rate, y*, at distinct

values of the boundary condition selection parameter, i.e., 8 = 0, 0.25, 0.5, 0.75, and 1. On the

other hand, we keep E* =0.6 <1 and q* =1 constant and plot the effective viscosity, 7*, with

respect to the applied shear rate, y*, at p = 0, 0.25, 0.5, 0.75, and 1 in Fig. 4.13(b). As can be

seen in Fig. 4.13(a), effective viscosities less than the zero electric field solution, q* =1, are

generally achieved regardless of the boundary condition selection parameter employed. As the

applied shear rate is increased, the reduction in the effective viscosity shown in Fig. 4.13(a) is

also decreased, which is a result we have already learned from examining Fig. 4.12(a). However,

the reduction in the effective viscosity decreases much faster and the effective viscosity

approaches 1* =1 much sooner for small values of 8 (as compared to 1* evaluated at large p)

when the applied shear rate becomes large. Hence, the negative ER effect in the Couette

geometry is likely to be more significant for p closer to 1 when the DC electric field strength,

the applied shear rate, and the spin viscosity are kept constant. For the effective viscosity

solutions shown in Fig. 4.13(b), we find that the effective viscosity solutions are again

independent of the applied shear rate. However, the effective viscosity increases from a value

slightly less than q* =1 to a value greater than q* =1.1, i.e., a positive ER effect, when the

boundary condition selection parameter p is decreased from 1 to 0 for the DC electric field

strength regime of E* =0.6<1 in Fig. 4.13(b). This positive ER effect, increase in effective
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viscosity, is generally inconsistent with the experimental observations on Couette flow with

internal micro-particle electrorotation as reported in Lobry & Lemaire (1999), Pannacci et al.

(2007a), and Lemaire et al. (2008). Although it has been reported by Kaloni (1992) that
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the inconsistency between our continuum mechanical model predictions and the experimental

observations by Lobry & Lemaire (1999), Pannacci et al. (2007a), and Lemaire et al. (2008) is

solely due to a zero boundary condition selection parameter or zero spin boundary conditions.

We will return to this issue when we examine the induced 2D Poiseuille volume flow rate in

Chapter 5.

Finally, we discuss how the effective viscosity solutions vary with respect to different values

of the spin viscosity, *, for DC electric field strengths of E* =2 1 and E* =0.6<1 in Figs.

4.14(a) and 4.14(b), respectively. In both figures, the effective viscosities are plotted with respect

to the applied shear rate and evaluated at q* = 0.5, 0.65, 1, 2, and 10 while p =1 and the

respective DC electric field strengths are kept constant. Again, in Fig. 4.14(a), it can be seen that

the effective viscosity results are similar to those obtained in Figs. 4.12(a) and 4.13(a) as well as

those obtained in the zero spin viscosity limit, i.e., Fig. 4.3. For the spin viscosity values of

interest, a negative ER effect or an effective viscosity less than q* = 1 is generally achieved.

Moreover, zero or negative effective viscosity conditions are also attainable at low shear rates.

However, as we increase the value of the spin viscosity, q*, the reduction in the effective

viscosity (strength or magnitude of the negative ER effect) is decreased and approaches the zero

electric field solution of q* = 1 at a much faster rate when the applied shear rate is increased.

Thus, the negative ER effect, or reduction in the effective viscosity, q*, (as compared to the zero

electric field solution of q* = 1) is generally more significant for small spin viscosities (a* ) as

compared to large spin viscosities, q* . Lastly, the effective viscosity solutions given in Fig.

4.14(b) also show negative ER behavior, i.e., effective viscosities less than the zero electric field

solution of q* =1, regardless of the spin viscosities, 1*,, employed in the evaluation of the

solutions. Also irrespective of the spin viscosities employed, we again find that the effective

viscosity solutions do not depend on the applied shear rate, y*, for the DC electric field strength

regime of E* = 0.6 < 1. Nonetheless, despite the fact that q* is independent of y*, the reduction

in the effective viscosity is decreased as the spin viscosity is increased. The effective viscosity

also approaches the zero electric field solution of q* =1 as the value of the spin viscosity
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becomes large. These results are similar to those we have obtained in Fig. 4.14(a)-the negative

ER effect is more significant for small spin viscosity conditions.

Before closing this chapter, a general remark can be made on the results found from the

effective viscosity solutions presented in Figs. 4.12, 4.13, and 4.14. By examining the effective

viscosity versus applied shear rate plots shown in Figs. 4.12(a), 4.13(a), and 4.14(a) for the DC

electric field strength regime of E* > 1, we find that the effective viscosity solutions obtained

from our present continuum mechanical model in the finite spin viscosity small spin velocity

limit are very much similar to those obtained from our continuum analysis in the zero spin

viscosity limit as shown in Fig. 4.3. In the general parametric regime of E* > 1, the effective

viscosity solutions obtained in the two limits both decrease as the applied DC electric field

strength is increased, depend on the magnitude of the applied shear rate, and approach the zero

electric field solution of q* = 1 as the applied shear rate becomes large. Note however that

despite the dependency on the applied shear rate of the effective viscosities obtained for E* = 0.6

and 0.8 in the zero spin viscosity limit, 77'= 0, as shown in Fig. 4.3, we find that the effective

viscosity solutions obtained for the DC electric field regime of E* <1 in the q'# 0, _r2o <1

limit as shown in Figs. 4.12(b), 4.13(b), and 4.14(b) generally do not depend on the magnitude of

the applied shear rate, y*. The reason for the different behavior discussed above is likely due to

the different polarizabilities of a, and a, (given in Eq. (4.7)) or the subsequent equilibrium

retarding polarizations (given in Eq. (3.33)) employed for the respective regimes of DC electric

field strengths, i.e., E* > 1 and E* 1.

For electric field strengths of E* <1, the micro-particle rotation speed is set to zero, Q = 0,

in the equilibrium retarding polarization (or a, and a). Thus, the equilibrium retarding

polarization, Pq , does not depend on the micro-particle rotation speed or the applied electric

field strength, and the retarding polarization relaxation process basically depend only upon the

kinematic variable of the continuum spin velocity, co, for both the zero spin viscosity and the

finite spin viscosity small spin velocity limits. It is likely that the non-linear polarization

relaxation features for field strengths of E* 1 cannot be fully captured by the linearized

governing angular momentum equation, Eq. (4.27), for finite spin viscosities as compared to the

fully non-linear cubic algebraic angular momentum equation, Eq. (4.14), for zero spin
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viscosities. And thus, there is an apparent difference between the results shown in Figs. 4.12(b),

4.13(b), and 4.14(b) and those found in Fig. 4.3 for DC electric field strengths of E* 1.

As for the electric field strengths of E* > 1, we employ a non-zero micro-particle rotation

speed in the equilibrium retarding polarization (or a, and a..) with the magnitude and direction

of the micro-particle rotation speed being respectively given by Eq. (2.57) and the imposed

macroscopic vorticity direction. In this case, the equilibrium retarding polarization, P,, , does

depend on the micro-particle rotation speed (or the applied electric field strength), and the

retarding polarization relaxation process will depend on both the micro-particle rotation speed,

0, and the continuum spin velocity, c, for both the zero spin viscosity and the finite spin

viscosity small spin velocity limits. Therefore, even if the angular momentum equation given by

Eq. (4.27) is linearized for finite spin viscosity small spin velocities, some non-linear features of

the polarization relaxation of the ER fluid flow may still likely be captured by the finite micro-

particle rotation speed built-in the equilibrium retarding polarization, P,, . In other words, by

treating the micro-particle rotation speed, Q , and the continuum spin velocity, co, as separate

kinematic variables at the respective microscopic and macroscopic levels, some non-linear

features as well as information of the polarization relaxation of the ER fluid flow are likely to be

preserved through the finite microscopic particle rotation speed for E* > 1 in the finite spin

viscosity small spin velocity limit. And thus, for the field strengths of E* > 1, we find similar

resemblance in the effective viscosity solutions presented in Figs. 4.12(a), 4.13(a), and 4.14(a)

and those presented in Fig. 4.3 for the two respective limits.
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Chapter 5

Poiseuille Flow with Internal

Micro-particle Electrorotation

In this chapter, we apply the governing classical continuum mechanical field equations,

namely, the continuity equation, Eq. (2.1), the linear momentum equation, Eq. (2.2), the angular

momentum equation, Eq. (2.3), the EQS Maxwell's equations, Eqs. (2.5)-(2.7), and the retarding

polarization relaxation equation with its accompanying equilibrium retarding polarization, Eqs.

(2.57), (3.32), (3.33), and (3.35), to study and analyze the negative electrorheological responses

of ER fluid flows with internal micro-particle electrorotation, i.e., the nER2 effect, in two-

dimensional (2D) Poiseuille flow geometries. The flow of presentation given in this chapter

follows that of Chapter 4.

With the general assumptions summarized in Section 2.3, we first present the simplified set

of governing equations in the zero spin viscosity limit, q'= 0, for Poiseuille flows in Section 5.1.

Solving this simplified set of equations, Section 5.2 presents the analytic expressions of the

continuum spin velocity, co, (or c*), continuum linear velocity, u, (or u*), and 2D volume flow

rate, Q, as functions of the Poiseuille driving pressure gradient, F = - dp/dy (or F *), and the

externally applied DC electric field, E (or E*). Parametric studies are then performed on these

solutions, and the results are discussed for understanding the Poiseuille nER2 responses in the

zero spin viscosity limit.

Section 5.3 then further presents the simplified set of governing equations for Poiseuille

flows with internal micro-particle electrorotation in the finite spin viscosity small spin (velocity)
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Figure 5.1. The schematic diagram illustrating the geometry, dimensions, and physical parameters for

Poiseuille flow with internal micro-particle electrorotation.

limit, i.e., 1' 0 and r «co 1. By employing suitable boundary conditions, the coupled set of

differential equations are then solved to obtain analytical solutions to the spin velocity field, w,

(or c*), linear velocity field, u, (or u*), and 2D volume flow rate, Q, as functions of the

Poiseuille driving pressure gradient, F (or J*), the externally applied DC electric field, E0 (or

E*), the boundary condition selection parameter, 8, and the spin viscosity, 1'. Results of the

parametric studies performed on these "finite spin viscosity small spin" solutions are again

finally discussed. These solutions, results, and discussions are presented in Section 5.4.

5.1 The Simplified Governing Equations in the Zero Spin Viscosity Limit for Poiseuille

Flow Geometries

Figure 5.1 shows the schematic diagram of a 2D parallel plate Poiseuille flow geometry.

Instead of an upper plate moving at a constant velocity UO, the upper and lower plates are now

both fixed at zero velocity, and a pressure gradient, F -ap/ay, is applied in the positive y-

direction, i.e., F >0, through the channel to drive the fluid flow. Based on the similar geometries

given for both Couette and Poiseuille cases, we again assume that the flow is steady,

incompressible, two-dimensional, and fully developed so that the z-velocity component, i.e., u,
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in v=ui,+u.i,, is identically zero and that the applied pressure gradient, F, is at most a

constant for a fully developed flow. The applied DC electric field is further approximated to be

only in the z-direction, namely, E = Eziz , with Ez ~ E and E being a constant across the

channel height, h , as we have already discussed in Section 4.1.

For zero spin viscosity conditions, Eqs. (2.2), (2.3), and (3.35) then reduce to

-M P2-Y-(P,-P|)=0, (4.1)

Z- ',p-(P -P|,q)=0, (4.2)

PEz +2 du 2o, =0, (4.4)
dz

and

do d 2u
F+2{ + '7, =0, (5.1)

dz dz2

where u, is the y-velocity component, om is the x-spin velocity component (note: CO= Coxix in

2D), Ez is the z-component of the applied DC electric field, and P and P are respectively the

retarding polarization components in the y- and z- directions, i.e., P = P i, + Pji . Note that we

have substituted the total polarization, P,, with the retarding polarization, P, in Eq. (4.4). This

is because the DC electric field is applied in the z-direction only with E, =0 as already

mentioned in Section 4.1. The z-linear momentum equation reduces to an equation which relates

only the pressure gradient to the Kelvin body force density, and thus can be treated separately

from the other equations.

After substituting Eq. (3.33) into Eqs. (4.1) and (4.2) and subsequently solving the resulting

two equations, we again arrive at

=P,=n a0-woxaz E, (4.5)

az1+rmwcoxy(
PZ = 1 z+r1_2a' EO, (4.6)

1+rWW-2

where
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-y 1 = 4reR 3  1 "+v 2  (4.7)z zz 2 - 61  2 - 1

2a, + u2 2, + v2)

1+rM2WQ2

with az and a, respectively defined in Eqs. (3.42) and (3.43), and the magnitude and direction

of the micro-particle rotation speed, Q, being respectively given by Eq. (2.57) and that of the

macroscopic flow vorticity. Using Eqs. (4.5) and (4.7) in Eq. (4.4), we obtain the set of

simplified governing equations for Poiseuille flow with internal micro-particle electrorotation in

the zero spin viscosity limit, that is,

dw d2u
Fl+2( x +e =0, (5.1)

dz dz 2

and

a r OI nazE 2 2{ du' 2m, 0 (4.9)
1+ r Cox, dz

where a* = a,/az = --rMW.

Since we are considering zero spin viscosities in the angular momentum equation, the spin

velocity field, O = co ix, again follows the "free-to-spin" condition at the boundaries while we

apply the no-slip BC, v = 0, at z = 0 and h on the velocity field, v = u, (z) i, . Yet, for a

Poiseuille geometry, the spin velocity is no longer a constant throughout the flow field, i.e.,

CO = co, (z) ix, and thus a geometric condition for the spin velocity field, namely, CO -> 0, is

needed as z -> h/2 so as to satisfy the asymmetry between the upper and lower halves of the

flow channel as imposed by the symmetric parallel plate Poiseuille flow boundaries (He, 2006).

Moreover, we apply an additional condition on the micro-particle rotation speed, namely,

Q -> 0 as z -> h/2, since the suspended micro-particles are required to rotate in the

macroscopically imposed flow vorticity direction, which is now also constrained by the

symmetric Poiseuille parallel plate boundaries.
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5.2 Continuum Analysis in the Zero Spin Viscosity Limit

5.2.1 Solutions to the Spin Velocity, Linear Velocity, and 2D Volume Flow Rate

Following a similar procedure to that of the Couette geometry case, we integrate Eq. (5.1) to

have

du

Fz+2{m(O+1,ej =C,, (5.2)

where C, is a constant. Equation (5.2) is then substituted into Eq. (4.9) so that the angular

momentum equation becomes

a -rjOX na,E +2( z+ 2( CI- 2m = 0I . (5.3)

By applying the symmetry conditions, w -+ 0 (or wx ->0 ) and Q -*0 (or Q -+0) as z -+ h/2,

to Eq. (5.3), the constant C, is determined to be Fh/2, and Eq. (5.3) is rewritten as

a -rmo nazEO Fh z _1 2 =0,+I-- _ x o (5.4)
+r z og2 2{ te h 2 ) 7e

which is an algebraic, cubic equation with the z-coordinate being a spatially varying coefficient

and a* = a, /az = -rwQ . Using the following non-dimensionalization scheme, namely,

O* = Co,* z , * = 2q and V* =hr * (5.5)
h nazEr lq q

Eq. (5.4) is non-dimensionalized and the dimensionless angular momentum equation for the

Poiseuille case becomes

.3 V* . 1 .* 1 . V* a*
c)3 . z -- }2+ 1+ .co0 . z -- -- =--0. (5.6)

2m7 ( 2) 2 - m 2m 2) 2m*

We solve Eq. (5.6) by standard symbolic calculation packages (Mathematica, Wolfram

Research, Inc.) to express co* in terms of V*, z*, and m*, or equivalently, to express Co in

terms of z , F, and E0 . The three roots to Eq. (5.6) are:

* 2V*z* - V* I ,
c* [2z-* 6 m* 2 + P2 +9 j 1 (9P2 + (9,P2 +4,1 , (5.7)

- 12m* 12V m( + 2+ 2 -__2



* 2V*z* -V* -,1 12V m* 92 2 +494'P2 12 * I 1± 3I12 /4 ('Z 1 ±5.8)

+ , I+ 0P2 +4 (4
242_m*9P+ P2

and

* 2V*z* V* i 2 * 2 + 2 +4 )Y3
COP-3 

-* _ ,iF3I12 
m 

(5.9)

+ I ,( 1+ iV- 2 ?+4 V3241 mm ' +59

where

P,, = 24m* (1+2m*)-(2V*z* - V*), (5.10)

and

P2 = -72m*V* + 288m*2V* + 2V*3 + 144m*V*z*

-576m* 2V*z* -12V* 3z* +24V*3z* 2 -16V*z* 3 -864m* 2a*

The stability, real valued, and free-to-spin conditions are then applied to select or pick out the

most physically meaningful solution or combination of solutions to the spin velocity, c*, from

the three possible roots, e.g., co*, cop2, and (4s (or respectively, Eqs. (5.7), (5.8), and (5.9)),

found in solving the angular momentum equation, Eq. (5.6). Recall from Chapter 4 that for

E, > E,, we require the suspended micro-particles to rotate in the direction of the macroscopic

flow vorticity, which in this case, is the imposed Poiseuille flow vorticity direction. Based on this

requirement and referring to the coordinate systems shown in Figs. 2.1 and 5.1, we apply the

negative valued micro-particle rotation speed Q , i.e., clockwise or pointing into the plane, in Eq.

(2.57) to Eqs. (4.5)-(4.7) for the lower half of the channel, i.e., 0 < z* <1/2, and the positive

valued 0 , i.e., counter clockwise or pointing out of the plane, in Eq. (2.57) to Eqs. (4.5)-(4.7)

for the upper half of the channel, i.e., 1/2< z* 1. On the other hand, for E < E,, we set Q = 0

in Eqs. (4.5)-(4.7) and require the real valued spin velocity o* to be negative in 0 z* <1/2 and

to be positive in 1/2 < z* 1. Summarizing the above convention so that the stable micro-particle

rotation as well as the symmetry conditions can be satisfied by the micro-particle rotation speed,

Q , we have
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L -lIi,, 
-< z5

rmw E, 2

n= ni=x 0, z*= - for EO E,, (5.12)
2

2
-1 (E -i, 1 *

-l < 0sz -

rmw E,

and

2= ix =0, for 05 z* 1 and EO < E,, (5.13)

which are to be substituted into the polarizabilities a, and az in Eq. (4.7) when solving for the

angular momentum equation, Eq. (5.6), or evaluating the three roots to the spin velocity as given

by Eqs. (5.7)-(5.9).

Figure 5.2 shows the real valued results of the spin velocity, c*, plotted with respect to the

spatial coordinate, z*, with F = 2x10 4 (Pa/m) at E* =1.0, 1.01, and 1.05 for both Figs. 5.2(a)

and 5.2(b) and at E*=0.7, 0.8, 0.9, 0.95, and 0.99 for Fig. 5.2(c) where E*= Eo/E, with

E, = 1.3 x106 (V/m); the dash-dash curves represent the first root, co*I in Eq. (5.7), the dash-

dot-dash curves represent the second root, c*2 in Eq. (5.8), and the solid gray curves represent

the last root, c* in Eq. (5.9). Although the spin velocity profiles extend across the whole

channel domain, 0<5 z* <1, the solutions for E* > 1 shown in Fig. 5.2(a) are only valid for

1/2 < z* 1 since we have employed in Eqs. (4.5)-(4.7) the positive valued Q of Eq. (5.12) that

corresponds to the positive vorticity in 1/2 < z* 1 to satisfy the stable micro-particle rotation

requirement during the numerical evaluation of the figure. Similarly, the spin velocity profiles

for E* >1 shown in Fig. 5.2(b) are only valid for 0 z* <1/2 since the negative valued particle

rotation speed Q of Eq. (5.12) corresponding to the negative vorticity in 0 s z* <1/2 has been

employed in Eqs. (4.5)-(4.7) when evaluating the solutions throughout the whole spatial domain.

For spin velocity profiles shown in Fig. 5.2(c) as well as for the E* =1 solutions shown in both

Figs. 5.2(a) and 5.2(b), we find that with Q = 0 in Eqs. (4.5)-(4.7) (note: Eq. (2.57) or (5.12)

goes to zero when E* =1), the spin velocity profiles become s-shaped centered at z* = 0.5, and

become multi-valued with respect to the spatial coordinate, z*, near the middle of the flow
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channel when F =2 x 10 (Pa/m) and E* =0.95~1.0. This is a similar non-linear behavior found

in AC or traveling wave ferrofluid spin velocity profiles under zero spin viscosity, q'= 0,



Figure 5.2. The three roots, o,,, O*2 , and w,, (given respectively in Eqs. (5.7), (5.8), and (5.9)), of the

dimensionless Poiseuille spin velocity, co, to the angular momentum equation, Eq. (5.6). The spin velocity

profiles are plotted with respect to the spatial coordinate, z*, at F = 2 x 104 (Pa/m ) and E* = EO /E, = 1.0, 1.01,

and 1.05 for both Figs. 5.2(a) and 5.2(b), and E* = 0.7, 0.8, 0.9, 0.95, and 0.99 for Fig. 5.2(c) with E, = 1.3 x 106

(V/m). The dash-dash curves denote *1 (Eq. (5.7)), the dash-dot-dash curves denote w*,2 (Eq.(5.8)), and the

solid gray curves denote Co* (Eq. (5.9)). In Fig. 5.2(a), we have substituted the positive valued particle rotation

speed, Q , of Eq. (2.57) or (5.12) into Eqs. (4.5)-(4.7) in evaluating the spin velocity profiles. Therefore, the

profiles shown in Fig. 5.2(a) are only valid within the spatial region of 0.5 < z* 1. Similarly, a negative valued

Q from Eq. (2.57) or (5.12) has been used in Eqs. (4.5)-(4.7), and thus, the spin velocity profiles shown in Fig.

5.2(b) are only valid within 0 z* < 0.5. As for Fig. 5.2(c), the particle rotation speed is set to zero, Q = 0, in

Eqs. (4.5)-(4.7). It can be seen that the spin velocity profiles evaluated at electric fields strengths of E* = 0.95~1

become multi-valued in space near the middle of the flow channel (note that Q goes to zero for E* = 1 in Eq.

(2.57) or (5.12)).

conditions as discussed in Zahn and Pioch (1998, 1999). However, since multi-valued spin

velocity profiles will eventually lead to linear velocity profiles that are multi-valued in space, the

situation is less likely to be physical for steady, viscous, and fully developed fluid flows (Zahn &

Pioch, 1998, 1999). Therefore, resolution is made by requiring co -* -* =0 at z* = 1/2 and

discarding the and solutions in 0 - z* <1/2 and the c*2 and c~o solutions in
COPin thP3 OJ w s0P2 OP3

1/2 < z* <1, that is, use the negative valued w*, i.e., o* , in 0 z* <1/2 and the positive c*,

i.e., w*, in 1/2 < z* 1, so that the final solution is real valued, stable, symmetric, free-to-spin,

and more likely physical for F =2 x 104 (Pa/m) and E* = 0.95~1.0 conditions. Finally, for the

spin velocity profiles evaluated at F = 2 x 104 (Pa/m) and E* 0.9 as shown in Fig. 5.2(c), only

one root, cO)*, is found to be valid, that is, real valued and rotation direction in the vorticity

direction, throughout the spatial domain, 0<s z* 1.

By carefully examining Fig. 5.2 and applying all the above reasoning and conditions, the

explicit expressions of the final solution to the spin velocity of Poiseuille flow with internal

micro-particle electrorotation is obtained for E > E, as: (i) in 0.5< z *  1 (substitute positive

valued 0 of Eq. (5.12) in Eqs. (4.5)-(4.7)),
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* 2V*z* -V* F 2 \'1l24 / (7
cp = 12r* *+ (P, 6V4m* 9P2 + F 2+4 -P)j r*P 2 + P2 +4(P1 , (5.7)

1m12 '2m*

(ii) at z* = 0.5,

,3 = 0, (5.14)

and (iii) in 0 z* <0.5 (using negative valued Q of Eq. (5.12) in Eqs. (4.5)-(4.7)),

2 * -* * --I

, 2V -- V -q 1 (, 1+i3) 12 f-im* (P2 + (P2 ) (5.8)

- (5.8)3) + P

+ 9P (1-i ( 9P2 + qP2 +4 1
where

(p = 24m* (1+2m*)-(2V*z* - V*)2 , (5.10)

and

(P2 = -72m*V* + 288m*2 V* + 2V*3 + 144m*V*z*

-576m* 2V*z* -12V* 3z* +24V*3z* 2 -16V* 3z* 3 -864m*2 a*

As for electric field strengths below the critical electric field, i.e., EO < E, the micro-particle

rotation speed, Q , is set to zero in Eqs. (4.5)-(4.7), and Eq. (5.7) is generally valid throughout

0 ! z* 1 for the pressure gradients of interest with EO 0.9E,. For electric field strengths of

0.95E 5 EO < Er, Eqs. (5.7), (5.8), and (5.14) are used with Q = 0 in Eqs. (4.5)-(4.7) during the

evaluation of the spin velocity profile. The analytic expressions given above are obtained under

the "Solve" command using Mathematica.

Again notice that the solution or combination of solutions given to Eq. (5.6) need to satisfy

all the above conditions and reasoning within the parametric regimes of interest since it is less

likely to be physical for solutions being complex or multi-valued. The combination of solutions,

Eqs. (5.7), (5.8), and (5.14), presented herein is generally for the parametric range of

E* =EO/E, =1-3 with E =1.3x106 (V/m) and F* =1F/F, =0- 2 with F, =2 x10 4 (Pa/m)

in 0 < z* <1, whereas Eq. (5.7) is generally valid for E* 0.9 and 0 s F* 2 throughout

0 ! z* 1. For other parametric regimes of particular interests, the combination of solutions and

the parametric range where the solutions becomes multi-valued may be different from the ones

discussed herein. In this case, we need to start from Eq. (5.6) and solve for the three roots, then
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simultaneously apply the stability, symmetry, real valued, and "free-to-spin" conditions to the

roots to finally choose, select, or pick out the suitable and most physical combination for the

desired spin velocity field just like the procedure we have shown in this section. Also notice that

the jump or discontinuity made in the final spin velocity profile at z* = 0.5 is permitted self-

consistently by the "free-to-spin" condition for the zero spin viscosity cases studied herein. This

is an analogous situation to the "inviscid" parallel shear flow with the velocity field being

v = Ui, for z > 0 and v = -Ui, for z <0 as one of the possible base solutions to Kelvin-

Helmholtz instability studies (Kundu & Cohen, 2004).

We can always rewrite Eq. (5.6) and express the spatial coordinate, z*, as a function of the

spin velocity, 0*, (i.e., plot z* by varying co* instead of plot co* by varying z*) so as to avoid

encountering complex valued solutions or transition of the real valued solution from one root to

another as shown in Rosensweig (1997) for ferrofluid Couette flows subjected to uniform

magnetic fields. However, even by this method, we will still encounter the problem of multi-

valued solutions and of finding the most physically likely solution that satisfies the stable micro-

particle rotation requirement for the present electrorotation flows. Moreover, as will be shortly

shown in the following, since the linear velocity profile, u*, and the 2D volume flow rate, Q,

solutions depend on integrations of the spin velocity profile, co, it is much more straight

forward, in terms of performing the integrations with respect to z* without obscuring the

fundamental physical meanings, to express the spin velocity as a function of the spatial

coordinate, i.e., c = co* (z*), as compared to expressing the spatial coordinate as a function of

the spin velocity, z* = z* (*). This is why we have chosen a seemly more difficult way of

tackling Eq. (5.6) and explained in detail about the reasoning and conditions applied during the

solution process.

After substituting the spin velocity solutions, o* or Co, and C, = Fh/2 into Eq. (5.2) and

also noticing that for E* >1, co* is expressed by Eqs. (5.7) and (5.8) in the respective regions of

0.5 < z* 1 and 0 z* <0.5, we integrate Eq. (5.2) with respect to the spatial coordinate, z*, to

obtain the velocity field as: (i) for 0.5 < z* 1,
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U(z*)=-
7e

-z*_)+ 4

T hrm

and (ii) for 0<5 z* < 0.5,

UDN z *)
7e

P2 z dz,
T hrmw O2

where the velocity field, Eqs. (5.15) and (5.16), is made dimensionless by dividing with Fh2/277

(note: use y not ,), i.e., u* (z*) = 27u, (z*)Fh2, co, and W*2 are respectively defined in Eqs.

(5.7) and (5.8), and z* is a dummy index in both equations. For E* 0.9, use c*, i.e., Eq.

(5.7), in place of o*2, i.e., Eq. (5.8), in Eq. (5.16), that is, use Eq. (5.7) for the spin velocities

throughout 0 z* <1 in the integration of Eqs. (5.15) and (5.16). From general mathematical

point of views, the velocity field of the flow, u,, needs to be continuous and smooth (continuous

in du, /dz) throughout the channel because of finite ER fluid viscosities, 7. However, since we

have manually (with physical reasoning) made the spin velocity, co, discontinuous at the middle

of the channel, the smoothness of the velocity distribution near z* = 0.5 may not exactly be

preserved under the framework of zero spin viscosity limits-a cusp may arise at z* = 0.5 in the

velocity profile given by Eqs. (5.15) and (5.16) for certain parametric regimes of interest. This

issue will be further discussed in Section 5.2.

We next calculate the two dimensional volumetric flow rate, Q, by integrating the velocity

fields, i.e.,

Q= u,(z)dz = uD [ VuN (z*)dz* + fu* (z*)dz*], (5.17)

with Eq. (5.15) used for 0.5< z* 1 and Eq. (5.16) used for 0 ! z* <0.5. In terms of the spin

velocities, Eq. (5.17) is rewritten as, for E* >1,C~ ~~ '/' 1  ~£; 2 2 z.5 *2 (Z*
Q-12q 7 j)1 Fh.M [ L f* J3P (5.18)

where z* is the dummy index and Eqs. (5.7) and (5.8) are used in the integration ranges of

and 0 z* <0.5, respectively. Again, for E* 0.9, use

(5.15)

(5.16)
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Figure 5.3. The normalized Poiseuille spin velocity profile, co , plotted with respect to the spatial coordinate, z*,

evaluated at E' = 0, 0.4, 0.8, 1.0, 2.0, and 3.0, with F* =1. The gray curve denotes the zero electric field value

for the spin velocity, i.e., the vorticity of ordinary Poiseuille flow. Note that Eqs. (5.7) and (5.8), with the proper

selection of the micro-particle rotation speeds in Eq. (2.57) or (5.12), are used in the evaluation of the spin

velocity for E* > 1, whereas for E* 0.9, Eq. (5.7) (with Q =0 in Eqs. (4.5)-(4.7)) is used throughout the

spatial domain of interest.

throughout 0 5 z* 1 in the integration of Eq. (5.17) or (5.18). It is now obvious why we use q,

zero electric field ER fluid viscosity, instead of q, = q + 4 in non-dimensionalizing the velocity

field of Eqs. (5.15) and (5.16). The intention is to utilize the ordinary Poiseuille flow solution (no

electric field applied to the ER fluid) as a reference datum so that the variation and deviation in

the electrorotation modified Poiseuille velocities and flow rates from those of the zero electric

field solutions, i.e., u*(z*)=(2th2)u (z*) =z*(1-z*) and Q =Fh3/12, can be

respectively compared.

Results of the spin velocity profile, (linear) velocity profile, and the volume flow rate will be

respectively presented in the following subsection. The system parameters, physical constants,

and material properties used in the numeric evaluations can be found in Table 4.1 unless

otherwise specified.
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5.2.2 Modeling Results and Discussions

Before presenting the spin velocity profiles, we first normalize the Poiseuille spin velocity,

Eqs. (5.7), (5.8), and (5.14) by Fhr /27, namely, 0* =w* =27w*/Fhr, for 0.5< z* <1,

0 = CO = 2com2 /Fh-, for 0 z* <0.5 , and c = co = 2m*)3 /Fhrm = 0 for z* = 0.5.

Employing this normalization, we find that the zero electric field solution, co

Fhr, (z* 0.5)/2i1, becomes independent of the applied pressure gradient and only depends on

the spatial position in the channel, i.e., co = (z* 0.5). The zero electric field solution then

becomes a reference datum invariant of both the applied electric field strength and the driving

pressure gradient and facilitates a more physically meaningful comparison among the solutions.

Illustrated in Fig. 5.3 are the spatial variations of the electrorotation assisted Poiseuille spin

velocity profiles given by Eqs. (5.7), (5.8), (5.14) normalized by Phri /2q plotted with respect

to distinct strengths of the applied electric field, E* = EO/E . With the pressure gradient kept

constant, i.e., F* = F/Fr =1 where Fr = 2 x 104 (Pa/m), the normalized spin velocity O* is

evaluated at E* = 0, 0.4, 0.8, 1.0, 2.0, and 3.0 with E = 1.3 x 106 (V/m) (the critical electric field

strength is evaluated by substituting the numerical values of the physical parameters given in

Table 4.1 into Eq. (1.1)). The solid gray curve shown in Fig. 5.3 represents the zero electric field

solution, O = (z* - 0.5), or half of the Poiseuille vorticity when there is no electric field and

internal micro-particle electrorotation effects. From the figure, the positive and negative valued

spin velocities found in the respective regions of 0.5 < z* 1 and 0 ! z* < 0.5 (with co = O* = 0

at z* = 0.5) show that we have chosen, based on the macroscopic Poiseuille vorticity directions,

the combination of solutions that satisfies the symmetry, real valued, and stable micro-particle

rotation conditions. The apparent jump or discontinuity in the spin velocity profile at z* = 0.5 is

self-consistently permitted by the "free-to-spin" condition under the framework of the zero spin

viscosity limit as already mentioned in the previous sections.

As can be seen in Fig. 5.3, the magnitude of the normalized spin velocity of Poiseuille flow

with internal particle electrorotation increases as the applied DC electric field strength is

increased. If, on the contrary, we reduce the applied electric field strength from E* = 1.0, 0.8 to
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Figure 5.4. The normalized Poiseuille spin velocity profile, W , plotted with respect to the spatial coordinate,

z*, evaluated at F* = 1, 2, and 5, with E* = 2. The gray curve denotes the zero electric field value for the spin

velocity, i.e., the vorticity of ordinary viscous Poiseuille flow. Note that Eqs. (5.7) and (5.8), with the proper

selection of the micro-particle rotation speeds in Eq. (2.57) or (5.12), are employed in the evaluation of the spin

velocity shown in this figure.

0.4, we find that the spin velocity gradually approaches the zero electric field solution noted by

the gray curve in Fig. 5.3. Moreover, the strength of the jump or discontinuity at z* = 0.5 in the

normalized spin velocity field reduces and eventually smoothes out (see the smooth and

continuous curves for E* = 0.4 and 0.8) as the applied electric field is decreased. Note that in

this figure, the solutions to E* = 0.4 and 0.8 are fully represented by o = co, , i.e., Eq. (5.7),

throughout the spatial domain, 0<5 z* < 1, at F* =1. However, the spin velocity solutions to

E* = 1.0, 2.0, and 3.0 are represented by w = cop (Eq. (5.7)) for 0.5 < z* <1 al = d (Eq.

(5.8)) for 0 5 z* <0.5, and zero (Eq. (5.14)) for z* = 0.5 at F* =1. The transition among the

different roots verifies the cubic nature of the governing equation, Eq. (5.6).

Turning our attention to Fig. 5.4, we can also examine the responses of the normalized spin

velocity, co, with respect to the zero electric field solution, CO =z 0.5) (noted by the solid



gray line in Fig. 5.4), by varying the applied pressure gradient from F* = 1, 2, to 5 while keeping

the applied DC electric field strength constant at E* = 2. From this figure, it can be learned that

as the pressure gradient is increased while the applied DC field is kept constant, the normalized

spin velocity, w*, approaches back to the zero electric field solution, O =(z* -0.5). In

addition, it can also be seen that the severity or magnitude of the jump in the spin velocity profile

also reduces as the pressure gradient becomes large while the strength of the DC electric field is

fixed. This is not surprising since the pressure driving force becomes relatively more and more

important as F* becomes a very large value while the electric field is maintained constant, or

equivalently, the constant electric field strength and the associated electrorotation effects

relatively diminish as compared to the increasing driving pressure gradient. Therefore, the

mechanical (viscous and pressure) driving forces eventually dominate the flow responses, and

the ER fluid flow eventually behaves as if there were no electrical forces or torques applied to

the flow system, i.e., pure viscous flow as characterized by c = (z* -0.5). Remember that the

solutions shown in Fig. 5.4 are normalized values instead of actual "to scale" ones. The actual

spin velocity or ER fluid rotation still increases as the driving pressure gradient is increased.

Again, the normalized spin velocity field solutions for the Poiseuille ER fluid flow presented in

Fig. 5.4 are evaluated by using c* = o*1 (Eq. (5.7)) for 0.5 < z < 1 , * = 4 (Eq. (5.8)) for

0 ! z* < 0.5, and zero (Eq. (5.14)) for z* = 0.5.

After the spin velocity field is found, the linear velocity field, u*, is easily obtained by

integrating Eqs. (5.15) and (5.16). The results of the velocity field, u* (or u,), are plotted with

respect to the spatial coordinate z* in Fig. 5.5 for F* = 1 with E* = 0, 0.4, 0.8, 1.0, 2.0, and 3.0.

The gray solid curve represents the zero electric field solution, u* = z*(1-z*), i.e., the velocity

field of ordinary Poiseuille flow without internal micro-particle electrorotation. Recall that the

velocity field was already normalized by Th2 /2r/ in the non-dimensional definition of Eqs.

(5.15) and (5.16); hence, there is no more need to define a normalized velocity field as in the

previous case of the spin velocity.

Based upon the above convention, we find in Fig. 5.5 that with F* =1 kept constant, the flow

velocity is considerably enhanced and the cusp in the velocity profile at Z = 0.5 is sharpened as
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Figure 5.5. The normalized linear velocity profile, u', of Poiseuille flow with internal micro-particle

electrorotation plotted with respect to the spatial coordinate, z*, evaluated at E* = 0, 0.4, 0.8, 1.0, 2.0, and 3.0,

with F* = 1. The gray curve denotes the zero electric field velocity profile, which is the original Poiseuille

parabolic profile. Equations (5.7) (use positive Q from Eq. (2.57) or (5.12) in Eqs. (4.5)-(4.7)) and (5.8) (use

negative K2 from Eq. (2.57) or (5.12) in Eqs. (4.5)-(4.7)) are respectively employed in the integrals of Eqs.

(5.15) and (5.16) for E* >1. The evaluation of u* for E* 0.9 is done by employing Eq. (5.7) in both Eqs.

(5.15) and (5.16) with 2 = 0 in Eqs. (4.5)-(4.7).

the strength of the applied DC electric field is increased. If we reduce the strength of the electric

field while the pressure gradient is maintained constant, the cusp at z* = 0.5 becomes blunt and

the electrorotation enhanced velocity profile gradually reduces and converges back to the E* = 0

solution, i.e., the parabolic Poiseuille flow velocity field without internal particle electrorotation

as noted by the solid gray curve in the figure. The E* = 0.4 and 0.8 velocity fields shown are

evaluated by substituting Eq. (5.7), i.e., *, , into the integrals of both Eqs. (5.15) and (5.16) with

0 =0 in Eqs. (4.5)-(4.7) since in this parametric regime, wa*, assumes a real value and is valid

throughout the spatial domain of 0 s z* 1. As for E* = 1.0, 2.0, and 3.0, Eq. (5.7) is employed

in the integral of Eq. (5.15) whereas Eq. (5.8) is used in Eq. (5.16). The cusped velocity profile

shown in Fig. 5.5 is interestingly similar to the velocity profiles of a power law fluid in circular

pipe Poiseuille flow geometries for large power indices (Chhabra & Richardson, 1999) though,
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Figure 5.6. The normalized linear velocity profile, u*, of Poiseuille flow with internal micro-particle

electrorotation plotted with respect to the spatial coordinate, z*, evaluated at 1 * = 1, 2, and 5, with E* = 2. The

gray curve denotes the zero electric field velocity profile, which is the original Poiseuille parabolic profile.

Equations (5.7) (use positive Q from Eq. (2.57) or (5.12) in Eqs. (4.5)-(4.7)) and (5.8) (use negative 0 from Eq.

(2.57) or (5.12) in Eqs. (4.5)-(4.7)) are respectively employed in the integrals of Eqs. (5.15) and (5.16) for the

linear velocity profiles shown herein.

of course, the electrorotation and power law fluid flows work respectively on different

principles.

Similarly, Fig. 5.6 illustrates the spatial variations of the dimensionless linear velocity

profile, u*, evaluated at driving pressure gradients of F* = F/Fr = 1, 2, and 5 with E* = E /E, =

2 where Fr =2x10 4 (Pa/m) and E, =1.3x10 6 (V/m), which is the critical electric field

evaluated by substituting the numerical values of the physical parameters given in Table 4.1 into

Eq. (1.1). The solid gray curve shown in Fig. 5.6 represents zero electric field solution, i.e., pure

viscous Poiseuille flow, to the linear velocity profile, u* = z* (1- z*). It can be learned from Fig.

5.6 that the effect of electrorotation enhancement on the velocity field as well as the cusp

structure at z* = 0.5 diminish and approach the " E* =0 " Poiseuille velocity field as the driving

pressure gradient increases when the flow is subjected to a constant electric field, E* = 2 . In

other words, the relatively increasing pressure gradient gradually overcomes or dominates over
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Figure 5.7. The two dimensional Poiseuille volume flow rate, Q (m 2 /s), plotted with respect to the applied

pressure gradient, F*, evaluated at E* = 0, 0.4, 0.8, 1.0, 2.0, and 3.0. The gray curve represents the zero electric

field volume flow rate given by Q0 = Fh3 /127 .

the pumping of fluid due to the electrical torque input through the electrorotation of the

suspended micro-particles when the applied electric field is held constant. The opposite effect is

readily observed if we reduce the strength of the pressure gradient while maintaining the same

electric field strength, that is, internal particle electrorotation becomes more and more dominant

on the pumping of the fluid flow when the driving pressure gradient is relatively decreasing. In

this opposite case, the parabolic velocity profile sharpens and the cusp structure is formed at

z 0.5 as the strength of the pressure gradient is reduced. Again, notice that all the velocity

profiles presented in Fig. 5.6 are non-dimensionalized as well as normalized by Fh2/2q; the

actual magnitude of the velocity field at F* = 5 is still larger than that of the F* =1 solution.

Finally, using the physical parameters and material properties given in Table 4.1, the two

dimensional volume flow rate of Poiseuille flow with internal micro-particle electrorotation, Q

(m 2 /s), is plotted with respect to the driving pressure gradient, F* = F/,. with Fr =2 x 104

(Pa/m), at distinct values of the applied DC electric field strength, E* = E /E with

E = 1.3 x10 6 (V/m). The results are shown in Fig. 5.7 for E* =0, 0.4, 0.8, 1.0, 2.0, and 3.0 with



the solid gray curve noted by E* =0 corresponding to the two dimensional volume flow rate of

Poiseuille flow without internal micro-particle electrorotation, i.e., Q0 = Fh3/12q.

From Fig. 5.7, we find that the volume flow rate increases as the applied DC electric field

strength is increased while the driving pressure gradient is kept constant. On the other hand, the

electrorotation enhanced volume flow rate gradually reduces back to the zero electric field

solution, Q0 = Fh3/12q, as the applied electric field is reduced. These results are consistent with

our previous examination of the velocity fields shown in Fig. 5.5 and agree with the

experimental observations reported in Lemaire et al. (2006). Note that the flow rate solutions

evaluated at E* = 1.0, 2.0, and 3.0 suggest non-zero volume flow rates at zero driving pressure

gradients when the flow is subjected to an applied electric field strength greater than or equal to

the critical electric field for the onset of Quincke rotation. This result is particularly due to the

fact that we have used the combination of solutions to the spin velocity, Eqs. (5.7), (5.8), and

(5.14), that satisfies the symmetry, real valued, stable micro-particle rotation, and free-to-spin

conditions in the modeling and evaluation of the volume flow rate, Q, under zero spin viscosity

conditions, i.e., q'= 0. Nonetheless, we need to point out that unless there is some initial flow

(F* # 0) applied to give the suspended micro-particles a favorable direction for electrorotation,

the direction for Quincke rotation is merely a matter of chance with the particle rotation axis

either pointing into or out of the planes defined by the electric field under zero flow or

equivalently zero driving pressure gradient conditions. Up to this point, no experimental

evidence has observed a negative ER effect with zero initial flow when an electric field strength,

E0 > E , is applied (Lobry & Lemaire, 1999)-both initial vorticity and micro-particle Quincke

rotation are needed for the present negative ER effect. The finite jump of volume flow rate at

zero driving pressure gradients diminishes and eventually becomes zero, i.e., zero flow rate at

zero pressure gradient, as we reduce the applied electric field strength from E* = 1.0, 0.8, to 0.4

as can be found in Fig. 5.7. Again, for the E* 0.9 solutions, i.e., E* = 0.4 and 0.8, shown in

Fig. 5.7, we have used *1, Eq. (5.7), throughout the spatial domain, 0<s z* 1.

Summing up the findings from examining Figs. 5.3, 5.5, and 5.7, it is found that, in general,

the magnitude of the normalized spin velocity, the normalized flow velocity, and the 2D volume

flow rate is increased as the applied electric field, E*, is increased with the driving pressure
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gradient, 1-, kept constant. Moreover, increasing the applied electric field gives rise to a more

severe jump or discontinuity at z* = 0.5 in the normalized spin velocity profile, sharpens the

cusp structure at z* = 0.5 in the (normalized) velocity profile, and results in a finite value of

volume flow rate at zero pressure gradients. Contrarily, reducing the strength of the electric field

smoothes out the cusp in the velocity profile and reduces the severity of the discontinuity at

Z 0.5 in the spin velocity field while the pressure gradient is kept constant. The (normalized)

velocity and spin velocity profiles as well as the 2D volume flow rate gradually reduce back to

the zero electric field solutions as the applied electric field strength is reduced. Lastly, with the

applied electric field being fixed as in Figs. 5.4 and 5.6, a relatively increasing driving pressure

gradient gradually overcomes the pumping effects due to internal particle electrorotation, and

hence both the normalized velocity and spin velocity profiles converge back to the zero electric

field solutions, i.e., pure viscous flow solutions, which is a result consistent with the physical

picture we have already obtained from the discussions on Couette flow in Chapter 4.

As a general conclusion of the results presented in this section, we find that, in the zero spin

viscosity limit, the full continuum governing equations (from anti-symmetric stress theories)

employed in this section reduce to a "particulate limit" and predict similar trends of variation of

the effective viscosities for Couette flow and of the two dimensional volume flow rates for

Poiseuille flow as compared to the theoretical predictions from the two-phase volume averaged

effective continuum model (single particle dynamics based) found in the literature for describing

the internal micro-particle electrorotation modified flow phenomena (Brenner, 1970; Lobry &

Lemaire, 1999; Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al.,

2007a; Lemaire et al., 2008).

5.3 The Simplified Governing Equations with Finite Spin Viscosities in the Small Spin

Velocity Limit for Poiseuille Flow Geometries

Before presenting the simplified governing equations, we redefine the 2D Poiseuille flow

geometry as shown in Fig. 5.8 in which we have shifted the positions of the upper and lower

parallel plates to the respective coordinates of z = h/2 and z = - h/2 instead of those shown in

Fig. 5.1 of z =0 and z = h. We redefine the coordinates of the parallel plates so as to simplify
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Figure 5.8. The schematic diagram illustrating the new coordinate system employed for analyzing Poiseuille flow

with internal micro-particle electrorotation in the finite spin viscosity small spin velocity limit.

our following analysis and the final expressions of the analytical solutions to the spin velocity,

linear velocity, and 2D volume flow rate.

Using the new yet similar geometry defined in Fig. 5.8, we again assume that the flow is

steady, incompressible, two-dimensional, and fully developed so that the applied pressure

gradient, F = -dp/dy > 0 , is at most a constant for a fully developed flow, and that u, = 0 and

E, = 0 due respectively to the non-penetrating (impermeable walls) boundary condition and the

continuity of tangential electric field for perfectly conducting electrodes at z = h/2 and -h/2 .

The applied DC electric field is further approximated to be only in the z-direction, namely,

E =Ez iz, with E ~_EO and EO being a constant across the channel height, h , as we have

already discussed in Sections 4.1 and 5.1 (i.e., Eq.(4.8)). By employing these assumptions and

approximations, the linear momentum equation, Eq. (2.2), angular momentum equation, Eq.

(2.3), and the retarding polarization relaxation equation, Eq. (3.35), are simplified for finite spin

viscosity conditions, namely,

-gymPOJ -( P -Peyq =09, (4.1)

Z' _,,-( PM 0 (4.2)

MW 0/ /y-(P
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dco d2 u~

'+2 ' +77e dz 2 =0, (5.1)

and

PE +2 d 2 ' 0 (4.25)Pyz+I _dz - x)+7dz2

where the definitions of the variables shown in Eqs. (4.1), (4.2), (5.1), and (4.25) are the same as

those given in Section 5.1. Again, we have replaced the total ER fluid polarization, P,,, with the

retarding polarization, P,, in Eq. (4.25) since the DC electric field is applied in the z-direction

with E, = 0 and thus the polarization in the y-direction is basically due to the (retarding) dipole

moment tilt resulting from micro-particle electrorotation. The simplified version of the z-linear

momentum equation relates merely the z-pressure gradient to the z-component of the Kelvin

body force density, (P-V)ZE, and is treated apart (or neglected) from Eq. (4.1), (4.2), (5.1), and

(4.25).

Employing the equilibrium retarding polarization given in Eq. (3.33), we solve Eqs. (4.1) and

(4.2) to obtain

P n a, -zrmaaz EO (4.5)
I1+ xao

P =n azMWwxay EO (4.6)
1+ ,0'

where

T2 1 _l v2 - 1

M &2.1+a2 281+,2

[ay [a' -4cR3 1+2 24.7

az_ azz_ U2- _ _ -2-1 1

2a01 +o-2 
2e,+c2

with azz and az respectively defined in Eqs. (3.42) and (3.43), and the magnitude and direction

of the micro-particle rotation speed, Q, being respectively given in Eq. (2.57) and that of the

macroscopic flow vorticity. Based on the operating regimes of the applied electric field strengths
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as well as the stable micro-particle rotation requirement imposed by the macroscopic Poiseuille

flow vorticity, Eq. (2.57) (or Eq. (5.12)) can be re-written as

1 E, - z I
-li, 0<z =--

r, E r;T h 2

= 0, z. Z-0 >, for EO> E, (5.19)
h

2
-1 1 . z

L -li,, -- _z =-< 0

rm E, 2 h

and

Q = f2i, =0 , for -1/2 5 z* = z/h s 1/2 when EO < Ec, (5.13)

which are the micro-particle rotation speeds to be substituted into the polarizabilities a, and a.

in Eq. (4.7) in the following analysis.

After substituting E = E, i,- EO iz (see Eq. (4.8)) and Eq. (4.5) into Eq. (4.25), we obtain

a ' r d u d 2 ma -~' naEi +2{ du 2rJ, +' d|o =0 , (4.26)
1rfdz ) dz

where a* = a,/a, = -rwQ and the electrical body torque term, PE,, has been retained to the

first order of the particle solid volume fraction, #, for dilute suspensions, i.e., # < 1, since

nazEOEz e nazEO (EO +#e +- --) and naz - nR3 - nd3 - O(#) as in Eq. (3.31). Equation (4.26)

is further linearized by the condition of small spin velocities, i.e., ro <1, such that

du d2COX =0. (4.27)
(a -rmcox)nazE+2 -2coxj +7' 7 =(.dz dz

Together, Eqs. (5.1), (4.7), and (4.27) form the simplified governing equations for analyzing and

describing the continuum nER2 responses of the Poiseuille flow with internal micro-particle

electrorotation in the finite spin viscosity small spin velocity limit, i.e., q's4 0 and r « <1.

The criterion of rim «1 for linearization gives an estimate of the maximum range of spin

velocity valid for our analyses. Since the Maxwell-Wagner relaxation time has the order of

magnitude of 0(10-3) for the selected materials given in the present work (see Table 4.1), the
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dimensional spin velocity can at most be at the order of 0(100) to 0(101) so that

r 2 ~ O(10- 2 ) to O(104), which is roughly a general estimate for a physical value that is

much less than one.

The boundary condition on the linear velocity field, v = u, i, , is once again the no-slip

boundary condition, i.e., v =0 at z = h/2 and at z = -h/2. However, unlike the case of zero spin

viscosity conditions, Eq. (4.27) does not reduce to a cubic algebraic equation and the condition

of "free-to-spin" no longer applies to Eq. (4.27). For finite spin viscosity conditions, the

boundary condition on the continuum spin velocity field, co = o, i,, is given by

= - 2V x ), (4.28)

at z = h/2 and at z = -h/2, where 8 is a boundary condition selection parameter ranging from

zero to one, i.e.,

0 , p 61, (4.29)

as described in Kaloni (1992), Lukaszewicz (1999), Rinaldi (2002), and Rinaldi and Zahn

(2002). Kaloni (1992) has reported that the boundary condition of co = coi, =0 may give

theoretical predictions inconsistent with experimental observations for some micro-polar fluid

flow conditions. As will be discussed in the next section, inconsistency is also found between the

results predicted by our present continuum mechanical model when co = mi, =0 at the

boundaries and those experimentally observed in previous literature (Lobry & Lemaire, 1999;

Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et

al., 2008).

Generally speaking, the no-slip boundary condition and Eq. (4.28) give four conditions on

the Poiseuille flow boundaries and should be sufficient to completely solve the fourth order

coupled systems equations, i.e., Eqs. (5.1) and (4.27), that respectively describe the linear and

angular momentum balances in the Poiseuille ER fluid flow. However, due to the asymmetry of

the imposed Poiseuille flow vorticity between the upper and lower halves of the flow channel,

we find that the micro-particles belonging to the respective upper and lower halves of the

channel are actually rotating in opposite directions, i.e., a sign function nature as can be seen in

Eq. (5.19), which introduces further complexities to the mathematical analysis of the differential
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equations if we were to treat the whole flow channel as one computation domain by merely

applying the no-slip condition and Eq. (4.28) at z = h/2 and at z = -h/2. To resolve this

problem, we divide or split the whole Poiseuille flow channel into two computation domains,

namely, the upper half of the channel defined by 0 z h/2 and the lower half of the channel

defined by -h/2 z s 0, and solve for the spin and linear velocities separately in the two

respective computation domains. Hence, we solve Eqs. (4.7), (4.27), (5.1), and (5.19) for the

upper half of the channel, 0<s z < h/2, with the boundary conditions of

v=u,i,= h 1 =wi=0 (5.20)

-)= - p - pduY at z=- and du at z=0, (5.20)

2 2dz I dz

whereas we solve Eqs. (4.7), (4.27), (5.1), and (5.19) for the lower half of the channel,

-h/2 < z < 0, with the boundary conditions of

v=uyi,=0 h o=Coxi,=0

- - pV- p3du at z= and du at z=0, (5.21)
mOJ i= Vv ' 2 ' =0

2 2dz dz

with p given by Eq. (4.29). The c =0 and du,/dz =0 conditions shown in the above two

equations are stated by (i) recognizing the geometric symmetry conditions of c -+0 and Q -+0

(see Eqs. (5.13) and (5.19)) as z -+0 (coordinates defined in Fig. 5.8) as discussed in Section

5.1 and (ii) by substituting the symmetry conditions to Eq. (4.26) or (4.27), respectively.

5.4 Continuum Analysis with Finite Spin Viscosities in the Small Spin Velocity Limit

5.4.1 Solutions to the Spin Velocity, Linear Velocity, and Two Dimensional Volume Flow Rate

We first integrate Eq. (5.1) with respect to the spatial coordinate, z, and arrive at the

following relation,

du
Fz+2(o +r7, '=H 1 , (5.22)

dz

where TI, is a constant of integration. By using the following non-dimensionalization scheme,

namely,
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(5.23)co* = rmwoz =-, u* =-'-, and * = r -, 0
h V. h

and substituting Eq. (5.22) into Eq. (4.27), the linear momentum equation, Eq. (5.22), and the

angular momentum equation, Eq. (4.27) (combined with Eq. (5.22)), are respectively non-

dimensionalized as

du* z-,1fli Fhrm.
d z * qh 

* 

and

d2 * _ * = B - Az*,
dz*

2

where

_ I (5.24)

(5.25)

A = h2 na,E 0

B = iHmwh 2 iH -naE
)1' (Y77e

27r irmh'

77 1 77e

and

yo -0= Fh 2

h 12r;

where the stars "*" denote dimensionless variables (A,

(5.29)

B, and A also being dimensionless,

while n, has dimensions) and Q0 = h3/12r/ is simply the zero electric field 2D Poiseuille

volume flow rate based on the zero electric field viscosity, q ~ i/o (1+ 2.50) as defined in

Section 2.1. The general solution to Eq. (5.25) is

m* z* = scosh (Az*) + r 4 sinh (Az*) + ACO* Z* 1 3 14_7 +A (5.30)

in which 13 and H4 are constants. Equation (5.30) can then be substituted into Eq. (5.24), and

the linear momentum equation, Eq. (5.24), is integrated as

+ ,
ZMW 7leTMW)

(5.26)

(5.27)

(5.28)
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u*(z*)=j [ + B Kz*

We* 77e9 A2' 2 *2 +* A2)

24- 3sinh(Az*

qeo A

2) cosh(Az*)+H2
r7ie5 A

with H2 being a constant and B being related to H1 through Eq. (5.27). Since we are solving

for the continuum spin and linear velocity profiles for the two respective spatial regions of

0 5 z* 1/2 and -1/2 s z* < 0, we re-write Eqs. (5.30) and (5.31) in terms of the A and B

respectively defined in Eqs. (5.26) and (5.27) for the upper half of the flow channel, i.e.,

0 z* 1/2, as

*~ ~ (* = -,up s~h(A *'LfU (Aupz Bup +
co*, (z*)=HU'cosh (AUpz*+ Usn(Uz) + -Z* 9P3 4 2

U~ AP

(5.32)

and

.U ,1,Z % l

q7ei3 A PU

1 *2

2
h,

3 sinh
9e* AUP

~2A
+q2,15 4P)

and for the lower half of the flow channel, i.e., -1/2 z* < 0 , as

co* (z*)= H3DW cosh(A z*)+ HDW sinh(ADWz*)
_BDW

A 2DW

+ z,
A2

DW

and

u* (z* =IM W
DW (e

+2{ BDW
3e* ADW

1 *2

2
(hr

2{ A
W

(5.35)

4- rUDW DW W DW24 ADW DsinhW(Awz*) 4 Cosh(Awz*)±HIW
17( 5' ADW DW 1e3,5 ADW D

where the superscripts/subscripts of "UP" and "DW " denote the respective solutions to the

upper, 0 < z* 1/2, and lower, -1/2 z* <0, halves of the Poiseuille flow channel. The

boundary conditions given in Eqs. (5.20) and (5.21) can also be made dimensionless by the non-

dimensionalization scheme shown in Eq. (5.23). For the upper half of the flow channel,

0 ! z* 1/2, Eq. (5.20) becomes

(5.31)

.) 2 { HUP
z* U cosh (Aupz*)+ 2UAUP qg* UP2

(5.33)

(5.34)
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U =0

. 1 .du*

2 dz

at z* = and du*
2 =0

Idz*

at z* = 0, (5.36)

whereas for the lower half of the flow channel, -1/2 s z* < 0 , Eq. (5.21) becomes

U* =0 CO* = 0

du* 0

dz*dz *

at z* = 0. (5.37)

The four coefficients shown in Eqs. (5.32) and (5.33) for 0 s z* 1/2 can be solved by

applying Eq. (5.36) to Eqs. (5.32) and (5.33); they are

H f = 0, (5.38)

-, = Bu, (5.39)

fJup
2

+ Einayqe)+ A 2pf rer) coth U +

4APhg (hr 0 +2Einayre)+ AUP]F r7er'+16Eihnayre csc h
27

UK= UP1 -{hruw 4h
4A -4 A ( - pg Ir

(pg -7)(hv4 + E0nayr/) + A ,f rU r

(5.41)

+4E2hnar (r7, -6g)cosh ( Jjcsch CAu1
2

where "x " simply denotes multiplication instead of the vector cross product. Similarly, the four

coefficients shown in Eqs. (5.34) and (5.35) for -1/2 s z* 0 are solved by applying the

boundary conditions of Eq. (5.37) to Eqs. (5.34) and (5.35), i.e.,

Hf" =0,
nDW = ,

HIDW - BDw
3 AD W

(5.42)

(5.43)

hrMW

(q -'pg)(

and

(5.40)
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ri DW = Ie
2 8Aw 2 e

hrMw 4 -(4h(pg -iq,)(hIF- 2nayie)+ A 2 q q'th C AW (5.44)

--pg) 4Awh4 (2E na77, -hF()- A'wF Fe'+16E2hnayge esc h

and

nDW hr-8 4h(pg e-q)(hFr4 - E2nay7,) +A 2w8F lie7?

, (5.45)

-4E2hnaqe(77 -p;)cosh csch

where again "x " simply denotes multiplication instead of the vector cross product.

The 2D Poiseuille volume flow rate, Q, is next calculated by evaluating the following

integration, namely,

Q = u,(z) dz =VOhf/ u* (z*) dz* =Vh /u*,(z*)dz* + U*(z*)dz*). (5.46)

Substituting u*,, Eq. (5.33), and u*, Eq. (5.35), along with their corresponding coefficients,

Eq. (5.46) is explicitly written as

Q _ (H ri 2g Bu, 1 r hr, 2gA
Voh8 * 8 e*5A ,P 48 7e(* eL* -*

2,; I<'ih ( Aup~ 2,;HIj1u C P
- U2 cosh -14 sinh AP+ L

3* 4D [ -2177 * Ap s 2. (5.47)
1 DW 2gI BDW_ 1 (h +r 2 A

8 q7,S* 77,5* Aiw 48 77,.* 77,5* A,2

2 H3Dw -cosh (AD DW sinh ( ADw DW
ies AD w 2) + eS* A, 2 2

Note that for the present 2D Poiseuille geometry shown in Fig. 5.8 and the spatial

coordinates defined in both Figs. 2.1 and 5.8, the macroscopically "imposed" flow vorticity is in

the positive x-direction or counter clockwise direction pointing out of the plane for the upper half

of the channel, 0<5 z* < 1/2, and the imposed vorticity is in the negative x-direction or clockwise

direction pointing into the plane for the lower half of the channel, -1/2 z* 0. Therefore, in
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Figure. 5.9. (a) Spatial variations of the total spin velocity profile evaluated at E* = 1, 1.5, 2, 2.5, and 3 with

p8 =1, * = 1 , and F* = 0.125 (or F = 2500 (Pa/m )) kept constant. (b) Spatial variations of the differences in

total spin velocity, Aw* as defined in Eq. (5.49), evaluated at E* = 0, 0.2, 0.4, 0.6, 0.8, and 1 with p =1, =1 ,

and F* = 0.125 (or F = 2500 (Pa/m )) kept constant.

order to satisfy the stable micro-particle rotation requirement as discussed previously, we employ

a positively valued micro-particle rotation speed, i.e., choose C > 0 solution from Eq. (2.57) or
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(5.19), in the polarizabilities of a, and a, (given by Eq. (4.7)) found in Av,, Bu, Hve, Hu

4 , co,, u*,, and Q (i.e., Eqs. (5.26), (5.27), (5.40), (5.39), (5.41), (5.32), (5.33), and (5.47),

respectively), and employ a negatively valued micro-particle rotation speed, i.e., choose 2 < 0

solution from Eq. (2.57) or (5.19), in the polarizabilities of a, and a, (given by Eq. (4.7)) found

in ADW3, BDw HDW D DW , , , and Q (i.e., Eqs. (5.26), (5.27), (5.44), (5.43),

(5.45), (5.34), (5.35), and (5.47), respectively) for DC electric field strengths greater than the

Quincke rotation critical electric field, i.e., E0 > E,, with E, defined in Eq. (1.1). On the other

hand, for the cases of DC electric field strengths less than the critical electric field, i.e., E0 < E,

we employ the Q = 0 solution from Eq. (2.57) or (5.13) in the polarizabilities of a, and a.

found in Eqs. (5.26)-(5.27), (5.32)-(5.35), (5.39)-(5.41), (5.43)-(5.45), and (5.47) and require the

physically reasonable solutions to the spin velocity fields of * (as in Eq. (5.32)) and coD*w (as

in Eq. (5.34)) to rotate in the directions consistent with those of the macroscopically imposed

vorticity in the respective upper and lower halves of the flow channel. As will be seen in Section

5.4.2, the spin velocity solution automatically satisfies the above requirement of rotating in the

same direction as that of the imposed vorticity when Q = 0 in Eqs. (4.7), (5.26)-(5.27), (5.32)-

(5.35), (5.39)-(5.41), (5.43)-(5.45), and (5.47) for E0 < E, conditions in the 7' s0 1, r .co <<1

limit of the continuum governing equations.

5.4.2 Modeling Results and Discussions

This section presents the parametric study on the analytical solutions to the continuum spin

velocity profile, co* (or co), the continuum linear velocity profile, u* (or u,), and the 2D

volume flow rate, Q, as obtained in the previous section. We investigate the negative

electrorheological behavior and fluid flow phenomenon due to internal micro-particle

electrorotation in the 2D Poiseuille geometry defined in Fig. 5.8 by successively varying (while

the other variables are kept constant) the applied DC electric field strength, E0 , the Poiseuille

driving pressure gradient, F, the boundary condition selection parameter, p3, and the spin

viscosity, 1', so that changes and variations in the flow patterns or responses (with respect to the
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pertinent parameters) can be illustrated and compared systematically for the limit of q' w 0 and

To facilitate the presentation of our results and discussion, some of the above mentioned

physical parameters or variables are non-dimensionalized by the following scheme:

z* u* = , * E = F * = ,ff (5.48)

h VO ' EM W X , = -0an 1  (5.48)

where V is defined in Eq. (5.29), E, is defined in Eq. (1.1), F, = 2 x10 4 (Pa/m), 77 is the zero

electric field ER fluid viscosity given by q ~ q0 (1+2.5$), and q' =1.53x10~8 (N.s). Again,

the choice of the numerical value for 77'0 follows the physical argument presented in Section

4.4.2, or Eq. (4.47), by using the channel height of the 2D Poiseuille flow channel, h, as the

characteristic diffusion length for steady state fully developed internal flows under the

continuum mechanical framework. Numerical values for the material properties, physical

constants, and system dimensions used in our numerical evaluations of the analytical solutions

are generally summarized in Table 4.1 unless otherwise specified. The parametric regimes

employed in our results and discussions are chosen so that the criteria of r o 1 is generally

satisfied.

Figure 5.9(a) presents the spatial variations of the total spin velocity profiles, C0, evaluated

at distinct electric field strengths of E* = 1, 1.5, 2, 2.5, and 3 with p =1, q* =1, and F = 2500

(Pa/m) (or F* = 0.125). From the figure, it can be learned that as the applied electric field

strength is increased, the magnitude or strength of the spin velocity is increased, and that as the

DC field is decreased, the magnitude of the spin velocity is reduced. Moreover, it can also be

found that the total spin velocity in the upper half of the flow channel, 0 5 z* 1/2, is positively

valued (or rotating in the counter clockwise direction) and that the spin velocity in the lower half

of the channel, - 1/2 z* < 0 , is negatively valued (or rotating in the clockwise direction), which

is a result consistent with the direction of rotation of the macroscopically imposed Poiseuille

flow vorticity. On the other hand, the spatial variations of the differences in the total spin

velocity profiles, i.e.,

A (z*, E*, F* = 0.125,8 = 1, * =1>
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* (z*,E*,F*=0.125,8=1,* =1)-c*(z*,E* =0,F* =0.125,p6=1,* =1), (5.49)

are evaluated at E* =0, 0.2, 0.4, 0.6, 0.8, and 1, with p =1, q* =1, and F =2500 (Pa/m) (or

F* = 0.125) as shown in Fig. 5.9(b). Note that the micro-particle rotation speed, Q, found in the

expressions of the polarizabilities of a, and a, (as in Eq. (4.7)) and subsequently in those of the

A , B, and FI parameters equals to zero when E* =1 and thus is equivalent to letting Q =0 for

E* <1 conditions as described in Eq. (5.13). Similar to Fig. 5.9(a), the magnitude of the

differences in the total spin velocity profiles found in Fig. 5.9(b), Ac*, increases as the applied

electric field is increased and decreases as the DC electric field strength is gradually reduced to

zero. In other words, as compared to the zero electric field spin velocity profile (which is

generally the zero electric field pure viscous Poiseuille flow vorticity), the magnitude or strength

of the total spin velocity increases as the applied electric field strength is increased, and the

magnitude of c* is decreased as the applied DC electric field strength is reduced in the

parametric regime of E* <1. In addition, since Aco* is positively valued in the upper half of the

channel and negatively valued in the lower half as compared to the zero electric field spin

velocity, we can also verify that in the parametric regime of E* <1, the total spin velocity, c0* is

automatically rotating in the direction of the macroscopically imposed Poiseuille flow vorticity

without in advance assigning the proper micro-particle rotation directions as given in Eq. (5.19)

for the respective spatial regions of the upper and lower halves of the flow channel. Due to the

fact that half of the ER fluid rotates in one direction and the rest of the ER fluid rotates in the

other in our parallel plate channel, counter rotation of the ER fluids occurs in the midway of the

geometry, which consequently implies that the linear flow velocity in the middle of the channel

is likely to be accelerated. We shall come back and re-examine this physical picture later when

we evaluate the linear velocity profiles of this negative ER fluid flow.

Illustrated in Figs. 5.10(a) and 5.10(b) are the spatial variations of the total spin velocity

profiles, co, plotted for the respective electric field regimes of E* = 2 > 1 and E* = 0.6 <1. For

both figures, the total spin velocity profiles are evaluated at F = 1500, 2000, 2500, 3000, and

3500 (Pa/m) (corresponding to F* = 0.075, 0.1, 0.125, 0.15, and 0.175, respectively) while

p =1, q* =1, and the respective DC electric field strengths are maintained constant. It can be

found from the two figures that the magnitude of the total spin velocity profiles increases (or
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decreases) as the driving Poiseuille pressure gradient increases (or decreases), and that the

direction of rotation for the spin velocities are again consistent with that of the macroscopically

imposed Poiseuille vorticity. The order of magnitudes of the spin velocity profiles shown in Figs.

5.10(a) and 5.10(b) are roughly the same in spite of the respective different electric field strength

regimes of interest. However, the total spin velocity profiles for E* = 2 > 1 are more wiggled or

curved as compared to those for the regime of E* = 0.6<1. The results shown in these two

figures simply imply the fact that the larger the mechanical driving pressure force the greater the

resulting flow response observed. We can further normalize the total spin velocity, o* = r-az,

with the parameter of Fhr, /2q such that

O 2 o, (5.50)
Fh-r,

and that the normalized spin velocity profile at zero electric field strengths, i.e., half the vorticity

of the ER fluid flow when E* =0, becomes independent of the Poiseuille driving pressure

gradient, namely,

CO = =rw z,2 (5.51)

which is based on the zero electric field Poiseuille flow vorticity solution derived from the

coordinate system defined in Fig. 5.8. The spatial variations of the normalized spin velocity

solutions, c*, evaluated at F =1500, 2000, 2500, 3000, and 3500 (Pa/m) (corresponding to

F* =0.075, 0.1, 0.125, 0.15, and 0.175, respectively) with E* =2>1, 8=1, and * =1 kept

constant are given in Fig. 5.10(c). It can be learned from Fig. 5.10(c) that for electric field

strengths greater than the critical electric field, the normalized spin velocity profile, W*,

gradually approaches the zero electric field solution, co* = z* (or Eq. (5.51)), noted by the gray

line in the figure, as the applied Poiseuille driving pressure gradient is increased. This result

again implies that as the applied pressure gradient becomes large, the mechanical (viscous and

pressure) driving force dominates over the electrical body torque input such that the normalized

spin velocity solution becomes closer to the value found at zero electric field strengths, i.e., the

solution found only when viscous force is present, as we have already discussed in Chapter 4 and

in Section 5.2. This agreement between the solutions presented in Fig. 5.10(c) and the physical
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Figure 5.10. (a) and (b) show the spatial variations of the total spin velocity, o*, evaluated at F1= 1500, 2000,

2500, 3000, and 3500 (Pa/rm) (or F* = 0.075, 0.1, 0.125, 0.15, and 0.175, respectively) while p =1, q* = 1 and

the respective electric field strengths of E* =2 (Fig. 5.10(a)) and E* =0.6 (Fig. 5.10(b)) are maintained

constant. (c) Spatial variations of the normalized spin velocity, co* as defined in Eq. (5.50), evaluated at

F = 1500, 2000, 2500, 3000, and 3500 (Pa/rm) while p =1, * = 1 and E* = 2 are kept constant. (Cont.)

picture described previously also suggests that the spin velocity field solutions we have obtained

for the Poiseuille geometry are generally correct. Meanwhile, we show in Fig. 5.10(d) the spatial
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Figure 5.10. (Cont.) The solid gray line in Fig. 5.10(c) denotes the zero electric field solution of CO* =z* as given

in Eq. (5.51). (d) The spatial variations of the differences in the normalized spin velocity, AW * as defined in Eq.

(5.52), evaluated at F = 1500, 2000, 2500, 3000, and 3500 (Pa/m) while 8 =1, q =1 and E* = 0.6 are kept

constant. Note that all five profiles have merged into one curve at this electric field strength of interest.

variations of the differences between the normalized spin velocity, co*, and the zero electric field



solution, O = z* i.e.,

AcO* z*,E* =0.6,F*,8p=1,9* =1)= J(z*,E* =0.6,F*,p=1,9*, =I)-Zm
P , (5.52)

=* (z*,E* =0.6,*, 1 ,8 L,;=1)-z*

evaluated at F = 1500, 2000, 2500, 3000, and 3500 (Pa/m) (or IF* = 0.075, 0.1, 0.125, 0.15, and

0.175, respectively) while E* = 0.6 <1, p6 =1, and * = 1 are maintained constant. Note that as

compared to the results shown in Fig. 5.10(c), the Aco* solutions given in Fig. 5.10(d) for

E* = 0.6 <1 are independent of the applied driving pressure gradient and do not approach to zero

as the pressure gradient is increased. These Aco* profiles given by Eq. (5.52) have collapsed into

one curve with the numerical values of the differences among the Ao* profiles evaluated at their

respective pressure gradients being within 0(10 -7). Alternatively speaking, the normalized spin

velocity profiles, o*, evaluated at the electric field regime of E* = 0.6 <1 do not depend upon

the applied driving pressure gradient and do not approach to the zero electric field solution of

co* = z* (or Eq. (5.51)) when we gradually increase the driving pressure gradient. The

discrepancy between the results found in Fig. 5.10(d) and those given in Fig. 5.10(c) is basically

due to the different form of the polarizability (a, and a2 with the micro-particle rotation speed

being set to zero) used in the calculations for the E* = 0.6 <1 case as compared to the calculated

results obtained for Fig. 5.10(c), and does not necessarily suggest that the solutions given in Fig.

5.10(d) is incorrect. By comparing Figs. 5.10(c) and 5.10(d) as well as reviewing Figs. 4.5(c) and

4.5(d), we again note that there is a difference in the flow field responses when we employ

different forms of polarizabilities (a, and a) in regard of the different regimes of the applied

electric field strengths-the model of the polarizabilities (a, and az) and subsequently the

equilibrium retarding polarization, Eqs. (3.32) and (3.33), employed in the polarization

relaxation equation, Eq. (3.35), may generally have influence on the final negative

electrorheological response of the nER2 fluid flows.

Next, we examine the spatial variations of the total spin velocity profile, C*, with respect to

distinct values of the boundary condition selection parameter, p , in Figs. 5. 11(a) and 5.11(b) for
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Figure 5.11. The spatial variations of the total spin velocity evaluated at . = 0,

F* = 0.125, q;* = 1, and the electric field strengths of E* = 2 for Fig. 5.11(a) and

kept constant.

0.4

0.25, 0.5, 0.75, and 1 while

E* =0.6 for Fig. 5.11(b) are

the DC electric field strengths of E* =2>1 and E* = 0.6 <1, respectively. In both figures, the

spin viscosity, q;* =1, the Poiseuille driving pressure gradient, F = 2500 (Pa/m) (or

-2

-4

4
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1*= 0.125), and the respective electric field strengths are maintained constant while the

boundary selection parameter is varied from p = 0, 0.25, 0.5, 0.75, to 1. As can be seen from

both Figs. 5.11(a) and 5.11(b), the magnitude of the total spin velocity profiles decreases as the

value of 6 is reduced from one to zero. The directions of rotation of the spin velocity profiles

shown in the two figures are also consistent with the imposed Poiseuille vorticity direction, i.e.,

the total spin velocity being positively valued in the upper half of the flow channel, 0 z* 1/2,

and being negatively valued in the lower half of the channel, -1/2 s z* 0. Note however that

the strength of the total spin velocity is nearly zero as shown in Fig. 5.11(b) when p = 0 for the

electric field strength of E* = 0.6 < 1 suggesting that there is nearly zero spin velocity within the

flow field under low electric field strengths and zero-spin boundary conditions. Additionally, the

total spin velocity profiles for the electric field regime of E* = 2 > 1 as shown in Fig. 5.11 (a) are

much more wiggled or zigzag-shaped as compared to the linear profiles shown in Fig. 5.11(b) for

the DC field strength of E* = 0.6 <1. These results as illustrated in the two plots of Fig. 5.11

suggest that varying the boundary condition selection parameter, 8, gives rise to different

responses in the total spin velocity field, c*, when different polarizabilities (a, and a2 as in Eq.

(4.7)) are employed within the equilibrium polarization (Eq. (3.33)) for the respective (different)

regimes of electric field strengths of interest. Consequently, the negative electrorheological

responses of the nER2 effect are also dependent on the boundary condition selection parameter,

,p, and the different polarizabilities utilized for the different regimes of electric field strengths

applied since the linear velocity field, u*, and the 2D Poiseuille volume flow rate, Q, both

depend on the solutions of the total spin velocity field, c*.

Figure 5.12(a) presents the spatial variations of the dimensionless total spin velocity profiles,

c*, evaluated at q* =0.5, 0.65, 1, 2, and 10 while E* =2>1, $J=1, and F* =0.125 (or

F = 2500 (Pa/m)) are kept constant. From the figure, it can be seen that the spin velocity

profiles in the upper half of the flow channel, 0 < z* < 1/2, are positively valued (rotating counter

clockwise) and that the profiles in the lower half of the channel, -1/2 5 z* < 0, are negatively

valued (rotating clockwise), which is a result consistent with the direction of rotation of the

macroscopically imposed Poiseuille vorticity. The magnitude of the spin velocity profiles, c* or
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Figure 5.12. (a) Spatial variations of the total spin velocity evaluated at r/* = 0.5, 0.65, 1, 2, and 10 with E* = 2,

S= 1, and F* = 0.125 kept constant. (b) Spatial variations of the differences in the total spin velocity, Aa* as

defined in Eq. (5.53), evaluated at * = 0.5, 0.65, 1, 2, and 10 with E* = 0.6, p8=1, and F* = 0.125 kept

constant.

a),, increases as we reduce the magnitude or value of the spin viscosity, r* or r'. Alternatively,
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increasing the value of the spin viscosity, * , reduces the magnitude of the spin velocity and

flattens or smoothes out the spin velocity profiles as well. Once again, this result agrees with the

mathematical nature of the diffusive term, 82/az2 or d2/dz 2 , presented in the governing

equation, Eq. (4.27), of the spin velocity field, i.e., the presence of a diffusive term in the

governing equation tends to smooth out the concentrated values, or singularities, in our

calculation domain. Therefore, the larger the spin viscosity, the stronger the diffusive transport of

the ER fluid angular momentum (from the electrical body torque), and the total spin velocity

profile, c*, becomes smoother or flatter with a smaller magnitude regardless of the electric field

strengths of interest. Contrarily, the smaller the spin viscosity, the weaker the diffusive transport

of the angular momentum introduced by the external electric field through the electrical body

torque of the ER fluid, and the total spin velocity is then more concentrated or enlarged. Note

however that there is a limitation to the reduction of the spin viscosity in our present model since

as q' is gradually reduced, the spin velocity becomes large enough that it violates the

rco 2 1 criteria. Thus, our discussions are limited to the parametric range of q;,=0.510.

With the other pertinent parameters kept constant, the spin velocity profile, c*, show in Fig.

5.12(a) also gradually approaches the zero electric field solution of * = Fhrmz*/27 as the spin

viscosity is increased from q* =0.5 to 10. The zero electric field solution, * = hrmz*/2q7, is

not further shown in Fig. 5.12(a) since it falls very close to the spin velocity profile evaluated at

', = 10. As for the electric field strength of E* = 0.6 < 1, the spatial variations of the differences

in the total spin velocity field defined by

A* (z*, E* = 0.6,F* = 0.125, p=1, *)=
A d (P C * (z , * = .6,F 0 125 ,8 19 7* 10 , (5.53)

co* (z*, E* = 0.6, 1*- 0. 1259,8 p =1,7*) * (zEP.,*=015 19,=0

are evaluated at 7* = 0.5, 0.65, 1, 2, and 10 while E* = 0.6, p = 1, and F* = 0.125 (or F = 2500

(Pa/m)) are kept constant as shown in Fig. 5.12(b). From Fig. 5.12(b), it can be learned that the

magnitude of A* is increased as the magnitude or value of the spin viscosity, * , is reduced.

Thus, as compared to the total spin velocity profile, co*, evaluated at q =10, the magnitude of

the total spin velocity, o*, gradually increases as we gradually reduce the magnitude of the spin
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viscosity, 1* , in the governing angular momentum equation, Eq. (4.27) or in the subsequent

solutions. From examining both Figs. 5.12(a) and 5.12(b), we find that the trends of variation of

the magnitude of the total spin velocity profiles with respect to the spin viscosity are generally

the same regardless of the electric field strength regime of interest.

Before moving on to the discussions of the linear velocity profiles, we first define a micro-

particle Quincke rotation induced linear velocity, namely,

u* = u* -u* = u* -6(0.52 -z*2), (5.54)

where u* is the total linear velocity field and u* = 6(0.52 -z*2) is the zero electric field solution

(i.e., pure viscous Poiseuille flow) of the total linear velocity solved with respect to the spatial

coordinates defined in Fig. 5.8. Notice that an additional factor of "6" is present in the zero

electric field solution of u* = 6(0.52 - z*2) because of the fact that we have used V as defined in

Eq. (5.29) instead of h2 F/2q as employed in Section 5.2 when non-dimensionalizing the linear

velocity field, u,,. Hence, the zero electric field solution presented herein is different from that as

seen in Section 5.2 due to the differences arising from both the coordinate system and the non-

dimensionalization scheme. Again, since we have non-dimensionalized the linear velocity with

V0, the dimensionless linear velocity, u*, is also normalized and no further normalization of the

solutions is required in our following presentation of results.

Shown in Figs. 5.13(a) and 5.13(b) are the spatial variations of the Quincke rotation induced

linear velocity profiles, u*, evaluated respectively at E* = 1, 1.5, 2, 2.5, and 3 (Fig. 5.13(a)) and

at E* =0, 0.2, 0.4, 0.6, 0.8, and 1 (Fig. 5.13(b)) while the rest of the parameters p =1, rq* =1,

and F* = 0.125 (or F = 2500 (Pa/m)) are maintained constant. Note that we have plotted the

E* =1 solution in both figures because the micro-particle rotation speed equals to zero when

E* =1, and thus is equivalent to the case of setting Q =0 in the polarizabilities or the

equilibrium polarization for the electric field regime of E* <1. It can be found from both Figs.

5.13(a) and 5.13(b) that the magnitude of the induced linear velocity is enhanced as the applied

DC electric field strength is increased. However, the order of magnitude of the u* solutions

obtained in the E* >1 regime, as in Fig. 5.13(a), is much greater than that of the u* solutions
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Figure 5.13. Spatial distributions of the induced velocity, u*, evaluated at constant F* = 0.125, 6 =1, and

r* = 1 for electric field strengths of (a) E* = 1, 1.5, 2, 2.5, and 3 and (b) E* = 0, 0.2, 0.4, 0.6, 0.8, and 1. Note that

the zero electric field solution of "zero induced velocity" is noted by the solid gray line shown in Fig. 5.13(b).

found for the electric field regime of E* <1, as in Fig. 5.13(b). Furthermore, if we gradually

reduce the electric field strength from E* 1 to E* <1, and to E* =0, we find that the induced



linear velocity also decreases and eventually meets the zero electric field solution of zero

induced linear velocity, i.e., U* = 0, as denoted by the solid gray line in Fig. 5.13(b). In other

words, the total linear velocity profile, u*, of the negative ER Poiseuille flow approaches the

zero electric field solution, i.e., pure viscous Poiseuille flow solution of u* = 6(0.52 - z*2), as the

applied DC electric field strength is reduced to zero whereas the total linear velocity is enhanced

(based on Eq. (5.54)) as the applied DC field strength is increased. Also from examining the two

sets of linear velocity profiles shown in both Figs. 5.13(a) and 5.13(b), we find that the

magnitude or the strength of the induced linear velocity, u*, or equivalently the total linear

velocity, u*, is the greatest in the middle of the flow channel, i.e., z* = 0, based on the

coordinates defined in Fig. 5.8. This result is consistent with the physical picture (that we have

discussed earlier) of the spin velocity rotating counter clockwise (positively valued) in the upper

half of the channel and rotating clockwise (negatively valued) in the lower half of the channel

such that the ER fluid near the mid-plane of the flow channel experiences counter rotation from

both sides and is likely to be pushed forward or accelerated.

In Figs. 5.14(a) and 5.14(b), the spatial variations of the micro-particle Quincke rotation

induced linear velocity, u*, are respectively evaluated for the DC electric field regimes of

E*=2>1 and E* =0.6<1. For both figures, we vary the applied Poiseuille driving pressure

gradient from F =1500, 2000, 2500, 3000, and to 3500 (Pa/m) (or equivalently, F* = 0.075,

0.1, 0.125, 0.15, and 0.175) while keeping p =1, q* =1, and the respective electric field

strengths constant. Examining Fig. 5.14(a), it can be found that the induced linear velocity is

reduced as the applied Poiseuille driving pressure gradient is increased, and u* gradually

approaches the zero electric field solution of zero induced linear velocity, u* = 0, as the pressure

gradient becomes very large. Alternatively speaking, the total linear velocity field, u*, of the

present negative ER Poiseuille flow gradually approaches the zero electric field solution of u* =

6(0.52 - z*2), i.e., total linear velocity of pure viscous Poiseuille flow, as the applied pressure

gradient is increased to a very large value. This result agrees with that given in 5.10(c) for the

normalized spin velocity profiles, co*, and once again verifies the physical picture of the
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Figure 5.14. Spatial distributions of the induced linear velocity profile evaluated at F* = 1500, 2000, 2500, 3000,

and 3500 (Pa/rm) with constant p =1 and q* =1 for the electric field strengths of (a) E* = 2 and (b) E* = 0.6.

Note that all five profiles shown in Fig. 5.14(b) have collapsed into one curve for the electric field strength of

E* =0.6<1.

mechanical (viscous and pressure) driving forces gradually dominate over the electrical body

torque input as we gradually increase the pressure driving force while keeping the applied DC



electric field constant for our nER2 fluid flow. As for the electric field regime of E* = 0.6 < 1,

we find that all the induced linear velocity profiles, u*, have collapsed or merged into one curve

regardless of the magnitude of the driving pressure gradient applied to drive the Poiseuille flow,

i.e., the induced velocities shown in Fig. 5.14(b) are independent of the magnitude of the driving

pressure gradient, F*, with the differences among the induced velocities evaluated at their

respective pressure gradients being within the order of magnitude of 0(1 o-'5). Moreover, the

magnitude or strength of the single curve shown in Fig. 5.14(b) for E* = 0.6<1 is much less

than that of the induced linear velocity profiles as given in Fig. 5.14(a) for E* = 2 >1. The

discrepancy found between the sets of solutions obtained under the respective DC electric field

strengths, i.e., E* = 2 > 1 and E* = 0.6 <1, indicates that the negative electrorheological response

of the ER fluid flow will general be dependent upon the forms of the polarizabilities (a, and

a) or the equilibrium retarding polarization models employed in the analytical solutions for the

respective regimes of the DC electric field strengths applied to the flow.

We then consider the influences of different values of the boundary condition selection

parameter, p, on the spatial variations of the Quincke rotation induced linear velocity profile,

u*, as shown in Figs. 5.15(a) and 5.15(b) for the respective DC electric field regimes of

E* = 2 >1 and E* = 0.6 <1. In both plots, the boundary selection parameter, fp, is varied from 0,

0.25, 0.5, 0.75, and to 1 while the spin viscosity, q* =1, the pressure gradient, F = 2500 (Pa/m)

(or F* = 0.125), and the respective electric field strengths are kept constant. It can be found from

Fig. 5.15(a) that as p is reduced from I to 0, the induced linear velocity, u*, decreases from a

positively valued velocity profile to a negatively valued profile-a reversal of the induced linear

velocity field is obtained for the electric field strength of E* = 2 > 1. In other words, the

magnitude or strength of the total linear velocity, u*, is first enhanced (or accelerated) and then

suppressed (or decelerated) as the boundary condition selection parameter, p6, is reduced from 1

to 0. As for the spatial variations of the induced linear velocity profiles shown in Fig. 5.15(b), we

find that the induced linear velocity profiles are generally negatively valued when p is less than

one and that u* evaluated at p =1 is only slightly positively valued. Therefore, for the DC
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electric field strengths of E* = 2 in Fig. 5.15(a) and E* = 0.6 in Fig. 5.15(b) are kept constant.

electric field strength of E* = 0.6 < 1, it is learned that the total linear velocity, u*, is generally
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Figure 5.16. Spatial distributions of the induced linear velocity evaluated at 7, 0.5, 0.65, 1, 2, and 10 with

constant ['* = 0.125 and p = 1 for electric field strengths of (a) E* = 2 and (b) E* = 0.6. As can be seen from

the two figures, the induced linear velocity gradually reduces to zero as the spin viscosity is increased.

decelerated (or suppressed) when the value of 8 is less than one, and that the reduction in the

total linear velocity is increased as the value of the boundary selection parameter is decreased.



Comparing the respective results shown in Figs. 5.15(a) and 5.15(b), it can be seen that the shape

of the induced linear velocity profiles obtained with the electric field strength of E* = 2 > 1 are

much more wiggled or zigzag fashioned than the smooth parabolic profiles obtained with

E* =0.6<1. By further comparing the spin velocity results shown in Fig. 5.11 and the induced

velocity results given in Fig. 5.15, we learn that both the magnitudes of the total spin velocity

and the total linear velocity are decreased as the boundary condition selection parameter is

decreased and that the ER fluid flow responses obtained by varying p in the respective regimes

of electric field strengths are generally different due to the different forms of polarizabilities (a,

and a) employed in the governing equations and subsequently the A, B, and H1I coefficients

found in the analytical solutions for the respective electric field strengths.

Lastly, we study how the spatial variations of the Quincke rotation induced linear velocity,

Uq, change or behave by varying the spin viscosity from q* = 0.5, 0.65, 1, 2, and to 1 for the two

different electric field strengths of E* = 2>1 and E* = 0.6<1 in Figs. 5.16(a) and 5.16(b),

respectively. In both figures, 8 = 1, 17* = 0.125 (or F = 2500 (Pa/m)) and the respective

electric field strengths are kept constant. Though the order of magnitudes of the induced

velocities found in the two figures are different, the strengths of the induced linear velocities

found in both Figs. 5.16(a) and 5.16(b) are increased as the value of the spin viscosity is

decreased. Moreover, as we increase the value of the spin viscosity with the other parameters

kept constant, we find that the magnitudes of the induced linear velocity profiles, u*, are

decreased and eventually approach to the zero electric field solution of zero induced linear

velocity, u* = 0, that is, the total linear velocity solutions, u*, approach the zero electric field

solution of u* = 6(0.52 -z*2) for pure viscous Poiseuille flow regardless of the electric field

strengths of interest as we increase the value of the spin viscosity, *,. These results are

consistent with those obtained from examining the total spin velocity profile as discussed

previously in Figs. 5.12(a) and 5.12(b).

In order to facilitate the presentation of the 2D Poiseuille volume flow rate results, we now

define a micro-particle Quincke rotation induced volume flow rate for the 2D parallel plate

Poiseuille geometry shown in Fig. 5.8 as
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Fh' (5.55)
Q, Q - QO = Q , (5.55

127

where Q is the total 2D Poiseuille volume flow rate given by Eq. (5.46) or (5.47) and QO =

Fh3/12q is the zero electric field solution derived from purely viscous Poiseuille flows.

Illustrated in Figs. 5.17(a) and 5.17(b) are the Quincke rotation induced flow rates, Qq, plotted

with respect to the applied pressure gradient, F*, evaluated at E* = 1, 1.5, 2, 2.5, and 3 for Fig.

5.17(a) and at E* =0, 0.2, 0.4, 0.6, 0.8, and 1 for Fig. 5.17(b). The boundary condition selection

parameter, # =1, and the spin viscosity, q* =1, are kept constants in the two figures of Fig.

5.17. The E* =1 solution is given in both figures because the micro-particle rotation speed, Q,

goes to zero as evaluated by Eq. (5.19), and thus gives the same polarizabilities or equilibrium

polarization as the E* <1 solutions do by setting the micro-particle rotation speed to zero. For

both Figs. 5.17(a) and 5.17(b), the induced 2D volume flow rate, Q, , increases as the applied

DC electric field strength increases while the pressure gradient is maintained constant. If

contrarily, we reduce the DC electric field strength while keeping the pressure gradient constant,

the induced flow rate, Qq, decreases and eventually becomes zero, i.e., zero induced flow for

zero electric field conditions as noted by the solid gray line in Fig. 5.17(b). Equivalently, by

keeping the driving pressure gradient constant, the total 2D volume flow rate, Q, increases

(decreases) as the applied DC electric field is increased (decreased), and approaches to the zero

electric field solution of Qo = Jh 3/12q when the applied DC electric field goes to zero. On the

other hand, if we keep a constant value of the electric field strength and vary the driving pressure

gradient, it can be found that the induced flow rate solutions, Qq, obtained for the electric field

regime of E* 1 as shown in Fig. 5.17(a) are less dependent on the pressure gradient as

compared to the Qq solutions obtained for E* <1 in Fig. 5.17(b). Moreover, the induced volume

flow rates, Qq, obtained in the DC electric field regime of E* 1 are generally two orders of

magnitude greater than those found in the E* <1 regime. Note however that for the E* > 1

solutions found in Fig. 5.17(a), non-zero induced volume flow rates, Qq , at zero driving pressure

gradients are present when the ER fluid flow is subjected to an applied DC electric field. This

result suggests that there are non-zero total volume flow rate solutions, Q, present at zero
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E* >1, which is a situation very similar to what we have obtained from zero spin viscosity,

i7'= 0, analysis as shown in Fig. 5.7 of Section 5.2. Yet, as already discussed at the end of

Section 5.2, both initial flow vorticity and micro-particle Quincke rotation are generally required

to produce negative ER responses of the ER fluid flow. To this point, no experimental

observations have confirmed negative ER responses when the ER fluid flow is subjected to

electric field strengths of E* >1 without an initial imposed flow vorticity (Lobry & Lemaire,

1999). As for the induced flow rate solutions evaluated in the electric field regime of E* 1 as

shown in Fig. 5.17(b), we find that all the induced flow rate solutions become zero as the driving

pressure gradient is reduced to zero regardless of the applied DC electric field strength. It seems

true that the different forms of polarizabilities (a, and a, in Eq. (4.7)) employed in the

governing equations and the subsequent A, B, and 1, coefficients found in the analytical

solutions for the respective electric field regimes of E* > 1 and E* 1 give rise to different

negative ER responses of the fluid flow.

Figures 5.18(a) and 5.18(b) present the variations of the induced volume flow rate, Qq,

plotted with respect to the driving pressure gradient, J*, for the electric field strengths of

E* =2 > 1 and E* = 0.6 <1, respectively. For both figures, the induced flow rate solutions are

evaluated at 6 =0, 0.25, 0.5, 0.75, and 1 while the spin viscosity, * = 1, and the respective

electric field strengths are maintained constant. As can be learned from Figs. 5.18(a) and 5.18(b),

the induced flow rate, Qq, decreases as the value of the boundary condition selection parameter,

,p, is reduced from 1 to 0 when the driving pressure gradient is kept constant. Moreover, the

induced flow rate also decreases as the driving pressure gradient is increased for a constant value

of the boundary condition selection parameter, p8. Specifically, for the Qq solutions shown in

Fig. 5.18(a), it can be seen that all the induced flow rate solutions start as positive values and

then decrease as the pressure gradient is increased. However, the rate of reduction (or the

magnitude of the Q, to F* slope) of the induced flow rates increases as the value of 8

decreases, and for the Qq solutions evaluated at p=0, 0.25, and 0.5, the initially positively

valued induced flow rates eventually become negatively valued. Therefore, a reduction or

suppression of the total flow rate, Q, is eventually obtained for large enough driving pressure
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Figure 5.18. Variations of the induced volume flow rate, Qq , plotted with respect to the driving pressure gradient,

F* , evaluated at p8 = 0, 0.25, 0.5, 0.75, and 1 while q* = 1 and the respective DC electric field strengths in (a)

E' = 2 and (b) E' = 0.6 are maintained constant.

gradients when the boundary condition selection parameter is small or zero. For the solutions

shown in Fig. 5.18(b), we find that all but the p8=1 solution are negatively valued induced
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volume flow rates. Similarly, the rate of reduction (or the magnitude of the Q, to F* slope) of

the induced flow rates with respect to the increasing driving pressure gradient increases as the

boundary condition selection parameter decreases for the electric field strength of E* = 0.6 <1 as

shown in Fig. 5.18(b). Reviewing the results shown in both Figs. 5.18(a) and 5.18(b), it can be

learned that small or zero boundary condition selection parameters, p, give rise to negative

induced volume flow rates, Qq . In other words, as compared to the zero electric field solution of

Q0 = JTh 3/12q, the total 2D Poiseuille volume flow rate, Q, given by Eq. (5.46) or (5.47) is

reduced or suppressed instead of enhanced when the boundary condition selection parameter is

small or simply zero for moderate or large driving pressure gradients applied to the ER fluid

flow. This result implies the inconsistency between the experimental observations made by

Lemaire et al. (2006), i.e., enhancement of flow rate due to nER2 effect, and the theoretical

predictions based on our present continuum mechanical field equations in the finite spin

viscosity small spin limit when the boundary condition parameter, p, is very small or simply

zero, and once again verifies Kaloni's (1992) report of the inconsistency between theory and

experiments when the theoretical solutions are obtained with pf =0 for some flow situations.

Nevertheless, the degree of inconsistency between experimental observations (Lemaire et al.,

2006) and our present continuum theory when p is small or zero also depends on which DC

electric field strength regime of interest and subsequently which form of polarizabilities (a, and

a, in Eq. (4.7)) or equilibrium retarding polarization is employed in our analyses as indicated by

Figs. 5.18(a) and 5.18(b).

Finally, the effects of varying the spin viscosity, q* , on the Quincke rotation induced volume

flow rate, Qq , are studied in Figs. 5.19(a) and 5.19(b) for the respective electric field strengths of

E* =2>1 and E* =0.6<1. In both figures, the induced volume flow rate solutions are plotted

with respect to the applied pressure gradient, F*, and are evaluated at * = 0.5, 0.65, 1, 2, and 10

while the boundary condition selection parameter, 8 = 1, and the respective electric field

strengths are kept constant. As can be seen from both Figs. 5.19(a) and 5.19(b), positive induced

flow rates, Qq, are generally achieved for the spin viscosity values considered despite the fact

that the magnitude of the Qq solutions shown in Fig. 5.19(a) for E* = 2 >1 is two orders of
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magnitude greater than that of the induced flow rates found in Fig. 5.19(b) for E* = 0.6 <1. It

can also be learned from the two figures that for a given constant driving pressure gradient the

induced flow rate is increased as the value of the spin viscosity is reduced. If contrarily, we

increase the value of the spin viscosity, the induced flow rate is decreased and eventually

approaches the zero electric field solution, i.e., zero induced volume flow rate. Again, we find

that the negative ER effect or the enhancement of the Poiseuille ER fluid flow is more significant

when the value of the spin viscosity, r*, is small. On the other hand, if the driving pressure

gradient is varied while the value of the spin viscosity is kept constant, it can be found that the

induced flow rate solutions, Q,, obtained for the electric field strength of E* = 0.6 < 1 have a

stronger dependence on the driving pressure gradient, F*, as compared to those obtained for the

field strength of E* = 2 >1. The rate of increase (or Qq to F* slope) of the induced volume flow

rates with respect to the driving pressure gradient is also greater when the value of spin viscosity

is small as compared to that of the Qq solutions obtained with large spin viscosities as shown in

Fig. 5.19(b). Referring back to Fig. 5.19(a), it can also be seen that non-zero induced flow rates

at zero driving pressure gradients are present for the electric field strength of E* = 2 > 1, which is

a result similar to those found in Figs. 5.17(a) and 5.18(a) as well as in Fig. 5.7 when the spin

viscosity is zero. However, as can be learned from the results shown in Fig. 5.19(b) for

E* = 0.6 < 1, the induced flow rate is always zero when the driving pressure gradient is zero.

This difference found between the two figures is basically due to the different polarizabilities

employed in the governing equations as well as the subsequent analytical solutions for the

respective regimes of electric field strengths.

Similar to the effective viscosity results studied in Chapter 4, we find that the variations of

the induced flow rate, Qq, versus the applied driving pressure gradient, F*, as shown in Figs.

5.17(a), 5.18(a), and 5.19(a) obtained for the electric field regime of E* > 1 in the finite spin

viscosity small spin limit of our present continuum equations share some common features with

those of the total flow rate, Q, versus pressure gradient, IF, obtained in the zero spin viscosity

limit as shown in Fig. 5.7. Despite the fact that the two sets of results are obtained in the two

respective limits, the volume flow rates shown in Figs. 5.7, 5.17(a), 5.18(a), and 5.19(a) increase

as the DC electric field strength is increased while the pressure gradient is kept constant, and
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indicate finite volume flow rates at zero driving pressure gradients in the general parametric
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be learned that the non-linear feature of finite (or non-zero) flow rates at zero driving pressure

gradients is only present when we treat the continuum spin velocity, co, and the micro-particle

rotation speed, 92, as separate variables with the micro-particle rotation speed being non-zero. In

other words, as can be learned from examining Figs. 5.17(b), 5.18(b), and 5.19(b), it is not likely

that a finite value of flow rate at zero driving pressure gradients can be obtained (regardless of

whether the finite jump in flow rate is physical or not) with the micro-particle rotation speed

being set to zero, i.e., Q = 0, in the polarizabilities of a, and a, (given in Eq. (4.7)) and the

continuum spin velocity, co, being the only kinematic variable characterizing the rotational

effects on the relaxation process of the negative ER fluid flow.

These results once again suggest that even if the angular momentum equation given by Eq.

(4.27) is linearized for finite spin viscosity small spin velocities, it is still possible to capture

some of the non-linear features of the polarization relaxation of the ER fluid flow by the finite

micro-particle rotation speed built-in the polarizabilities of a, and a. given in Eq. (4.7) and the

subsequent A, B, and H1I coefficients found in the analytical solutions. It is likely that treating

the micro-particle rotation speed, Q), and the continuum spin velocity, co, as separate kinematic

variables at the respective microscopic and macroscopic levels preserves some of the non-linear

features or information of the polarization relaxation of the negative ER fluid flow through the

finite microscopic particle rotation speed for E* > 1 in the finite spin viscosity small spin

velocity limit of our present continuum mechanical model, and thus gives rise to the non-linear

responses or behavior as shown in Figs. 4.12(a), 4.13(a), and 4.14(a) for the effective viscosity

and in Figs. 5.17(a), 5.18(a), and 5.19(a) for the induced volume flow rate. These results also

suggest that a proper modeling of the polarization relaxation process consistent with both the

macroscopic and microscopic physical pictures is very crucial to analyzing ER fluid flows since

the polarization relaxation determines the body torque input to the flow field and the subsequent

macroscopic effective ER flow properties.
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Chapter 6

Comparison of Results

In this chapter, we compare the theoretical solutions to the spin velocity, linear velocity,

effective viscosity, as well as two-dimensional (2D) volume flow rate found in the previous

chapters from several different aspects. We first compare the similarities and the differences

between the set of solutions obtained in the respective zero spin viscosity limit and the finite spin

viscosity small spin velocity limit of the continuum mechanical modeling field equations

proposed in this thesis in Section 6.1. We identify and summarize the strengths and limitations of

the set of solutions obtained in the respective two limits. Next, in Section 6.2, the continuum

solutions to the Couette effective viscosity as derived in Chapter 4 for the respective two limits

are compared with the experimental results as reported in Lemaire et al. (2008) as well as with

the theoretical predictions obtained from the combined single particle dynamics and two-phase

effective medium theories as found in the literature (Brenner, 1970; Lobry & Lemaire, 1999;

Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et

al., 2008). Lastly, we compare the continuum solutions to the 2D Poiseuille volume flow rate

obtained in Chapter 5 for the respective two limits with the experimental results found in

Lemaire et al. (2006) and the single particle dynamics modeling predictions given in Cebers et

al. (2002) and Lemaire et al. (2006) in Section 6.3. Based on the comparisons made in Sections

6.2 and 6.3, we point out the agreement and the degree of consistency among our present

continuum theory, experimental observations found in the literature, and the combined single

particle dynamics two-phase effective medium theory.

Comparison of Results 201



202 Chapter 6

6.1 Comparison between Solutions Obtained from the Zero Spin Viscosity Limit and the

Finite Spin Viscosity Small Spin Velocity Limit

6.1.] Comparison of the Couette Results Found in Chapter 4

We first consider the continuum Couette spin velocity solutions, co* or Co, respectively

obtained in the zero spin viscosity limit, q'= 0, and the finite spin viscosity small spin velocity

limit, 7' w 0, rmw <1. In the zero spin viscosity limit, 7 1'= 0, it can be found that the spin

velocity is a constant value throughout the Couette flow channel and does not vary with respect

to the spatial coordinate of z*. The spin velocity, c*, assumes some finite value at the ER fluid-

solid interfaces due to the loss of the highest order differential, d2/dz2 , in the angular

momentum equations, and only depends on the applied DC electric field strength, E0 or E*, and

the Couette driving boundary velocity, U0 (or shear rate y*). Unlike the zero spin viscosity

solutions, we find that the continuum spin velocity solutions found in the finite spin viscosity

small spin velocity limit depend and vary with respect to the spatial coordinate of z* -the spin

velocity attains its greatest strength in the middle of the Couette flow channel and approaches to

the boundary values set by the boundary condition of c = 0.5/V x v . Therefore, in addition to

the applied DC electric field strength, E*, and the driving Couette boundary velocity, U0 , the

spin velocity solutions solved in the t'w 0, r «2 1 limit are also dependent on the value of

the boundary condition selection parameter, p, with 0 / p 1, and the magnitude of the spin

viscosity, 1', which is roughly defined to scale as 7'- h2 7 in the present thesis. Note however

that the order of magnitudes of the spin velocity solutions found in the 77'= 0 limit is generally

greater than that of the spin velocity solutions found in the 7'-t 0, r o < 1 limit, which is

readily understandable. The characteristics or features shared by the spin velocity solutions

obtained in both limits are that the magnitude of the spin velocity increases as the electric field

strength is increased while the driving shear rate (or boundary velocity) is kept constant, and that

the spin velocity solutions reduce to the zero electric field solution, i.e., w* = -y*/2 or half of

the purely viscous Couette flow vorticity, when the electric field strength is reduced to zero.

Chapter 6202



Secondly, we examine the total Couette linear velocity fields found in the respective 77'= 0

and 7' w 0, -rco <1 limits. From Eq. (4.12), it can be learned that the total linear velocity of

Couette flow with internal micro-particle electrorotation in the zero spin viscosity limit is simply

the ordinary solution of purely viscous Couette flow, i.e., u, = Uez/h. This solution does not

depend on the applied DC electric field strength but on the Couette boundary driving velocity,

UO, only and subsequently determines the characteristic shear rate of the flow field. As for the

total linear velocity, u, or u*, of the Couette ER fluid flow in the q' w 0, r 2 « 1 limit, it

can be found by examining the Quincke rotation induced linear velocity solutions, u, shown in

Figs. 4.8-4.11 that the linear velocity field depends on the applied DC electric field, the driving

shear rate (or boundary velocity), the boundary condition selection parameter, and the magnitude

of the spin viscosity. The total linear flow velocity is generally accelerated in the upper half of

the Couette flow channel and decelerated in the lower half of the channel. The magnitude of the

induced linear flow can be increased by increasing the applied DC electric field or reducing the

magnitude of the spin viscosity. Furthermore, the induced linear velocity, U*, approaches to the

zero electric field solution, i.e., zero induced flow, when the DC field is reduced to zero with the

shear rate kept constant, the driving shear rate is increased with the DC electric field strength

kept constant, or when the magnitude of the spin viscosity becomes very large. In this zero

induced linear flow case, the total linear velocity again becomes the purely viscous Couette flow

solution of u, = Uez/h.

Comparing the effective viscosity solutions, lff or 7*, found respectively in Fig. 4.3 for

7'= 0 conditions and in Figs. 4.11-4.13 for 7' 0, r 2 c« 1 conditions, we find that the

effective viscosity solutions obtained in the respective two limits behave similarly for DC

electric field strengths greater than E* = 1-the effective viscosities are reduced as the electric

field strength is increased while the shear rate is kept constant, and the reduction in the effective

viscosity is decreased as the applied shear rate (or boundary driving velocity) becomes large.

Nonetheless, note that for DC electric field strengths less than or equal to one, i.e., E* <1, the

effective viscosity solutions obtained in the q'# 0, r od <1 limit generally do not depend on

the driving shear rate or boundary velocity, which is a result considerably different from the
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Figure 6.1. Comparison of the two Couette effective viscosity solutions respectively obtained in the zero spin

viscosity, i7'= 0, and finite spin viscosity small spin velocity, t'# 0 , rmco « 1, limits. For both curves, we

have employed a DC electric field strength of E* =2. Also, we have used p=1 and 1, =1 for the 1'# 0,

r 2 w 2 «1 solution.

shear rate dependent solutions found in Fig. 4.3 for E* 1. This discrepancy is likely caused by

the different forms of polarizabilities (a, and a2 in Eq. (4.7)) and the subsequent equilibrium

retarding polarization (Eqs. (3.32) and (3.33)) employed in the governing equations and the

resulting solutions since the expressions of the micro-particle rotation speed, 0 , that enter Eq.

(4.7) or (3.33) are different for the DC electric field strengths of E* > 1 and E* <1, respectively.

Referring back to the total linear velocity field discussed in the previous paragraph, it can be

learned by examining the expressions of Eqs. (4.23) and (4.24) that the electrical dependence of

the effective viscosity in the zero spin viscosity limit generally comes from the spin velocity

solution, co*, instead of the total linear velocity (or its vorticity) since the linear velocity in the

zero spin viscosity limit is invariant of the DC electric field strength as can be seen in Eq. (4.12).

However, this is not the case for the effective viscosity obtained in the ' 0 , r «1 limit

as can be learned from the functional forms of Eqs. (4.44) and (4.45). In the q' 0, r co <2 <1

limit, we find that both the spin velocity field and the induced (or total) linear velocity field are
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dependent on the applied DC electric field strength and the Couette driving boundary velocity (or

shear rate), and thus the electrical dependence of the effective viscosity in this limit is

contributed by both the spin velocity and the linear velocity (or more specifically, the derivative

of the linear velocity).

Finally, using the material properties and physical constants given in Table 4.1, we plot the

effective viscosity solutions respectively obtained from the zero spin viscosity and finite spin

viscosity small spin velocity limits together in Fig. 6.1 to show the respective parametric regimes

in which they are valid or suitably applied. In Fig. 6.1, we plot the effective viscosity solution,

7*, obtained in the 7'= 0 limit with respect to the applied shear rate, r* at E* = 2 as noted by

the solid black curve, whereas the effective viscosity solution obtained in the 7'# 0, co <1

is plotted with respect to the shear rate evaluated at E* = 2, 6 = 1, and q* =1 as noted by the

solid gray curve. By examining the figure, it can be found that both of the effective viscosity

solutions start at small or negative (not shown) values at very small shear rates, then increase as

the shear rate, y*, is increased, and finally level out and approach to one as the shear rate

becomes very large. It can also be found that the t':# 0, r2 co2 «1 solution predicts an

additional leveled out or plateau region at small shear rates, which is a feature that cannot be

captured by the zero spin viscosity, 7'= 0, analysis. Notice that this leveled out or plateau region

predicted by the 17' w 0, rco <1 solution in Fig. 6.1 is similar to the low viscosity plateaus

theoretically predicted and experimentally observed in the work of Lemaire et al. (2008).

However, our theoretical basis is rooted in a continuum anti-symmetric/couple stress analysis in

the 7' w 0, rco <1 limit, which is completely different from the particle-liquid phase

separation arguments and particle rotation stability analysis in their work. We shall come back to

this comparison in Section 6.2.

6.1.2 Comparison of the Poiseuille Results Found in Chapter 5

We now examine the Poiseuille total spin velocity profiles shown in Figs. 5.3-5.4 and in

Figs. 5.9-5.12 obtained in the respective zero spin viscosity, 77'= 0, and finite spin viscosity

small spin velocity, 7's 0, r coq «1, limits. Identifying the common features of the two sets

of solutions, it can be found that the magnitude of the total spin velocity profiles increases as the
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applied DC electric field strength, E*, is increased while keeping the driving pressure gradient,

l'*, constant regardless of the limit from which they are obtained. Moreover, the total

(dimensionless and normalized) spin velocity profiles approach to the zero electric field solution

of half the vorticity of purely viscous Poiseuille flows as the applied DC electric field strength is

reduced while the driving pressure gradient is kept constant or as the driving pressure gradient is

increased to a large value while the DC field strength is maintained constant. On the other hand,

due to the lack of the viscous diffusion term in the angular momentum equation in the zero spin

viscosity limit, the governing angular momentum equation eventually reduces to an algebraic

cubic equation, and a finite jump in the total spin velocity profile at the center position of the

Poiseuille flow channel is produced in order the satisfy the stable micro-particle rotation

requirement imposed by the macroscopic vorticity directions. This finite jump in the spin

velocity profile is generally permitted since 77'=0 in the angular momentum equation, which is

an analogous situation to the case of inviscid flows for which the viscosity is zero in the linear

momentum equation. Nevertheless, the finite jump in the spin velocity profile as shown in Figs.

5.3-5.4 is not found in the spin velocity profiles obtained in the 77' 0, r 2 0 < 1, limit as

shown in Figs. 5.9-5.12 due to finite spin viscosities, i.e., 7' 0, and the finite couple stress or

diffusion transport of angular momentum in the flow system. Additional to the dependences of

the spatial coordinate, z*, the DC electric field strength, E*, and driving pressure gradient, I'*,

the 7' # 0, rim <1 spin velocity solutions also depend upon a boundary condition selection

parameter, 8, and the magnitude of the spin viscosity, 77', which is very much different from

the zero spin viscosity solutions. Lastly, the order of magnitude of the q'+ 0, -r,2 <1 spin

velocity solutions is generally less than that of the zero spin viscosity solutions due to the small

spin velocity condition that we have applied during the course of solution.

Comparing the total linear velocity profiles obtained in the 7'= 0 limit to the induced linear

velocity profiles found for the 1' s 0, rm <1 limit, it can be found that the general

difference between these two sets of solutions is the cusp structure observed near the middle

plane of the Poiseuille flow channel for the zero spin viscosity solutions when the applied DC

electric field strength is increased with a constant driving pressure gradient or when the driving

pressure gradient is reduced with the DC electric field strength kept constant. This cusp structure
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is basically related to the finite jump that is produced in the total spin velocity profile in order to

satisfy the stable micro-particle rotation direction in the zero spin viscosity limit. As can be seen

in the induced linear velocity profiles shown in Figs. 5.13-5.16 for the finite spin viscosity small

spin case, the cusp structure is generally less severe or eventually smoothed out due to the

additional diffusional transport mechanism introduced by a finite spin viscosity. This result is

consistent with the mathematical nature of the additional diffusion term, i.e., d 2/dz2 (which

tends to smooth out singular or concentrated physical values within the ER flow field), as

presented in the governing angular momentum equation of Eq. (4.27), and is not described or

captured by the zero spin viscosity analysis. Due to the additional dependence on the boundary

condition selection parameter, p, in the finite spin viscosity small spin velocity solutions, we

find that reduction (or suppression) in total linear velocity or equivalently a reversal of direction

in the induced linear flow field is predicted when p =0, i.e., zero spin boundary conditions at

the solid-ER fluid boundaries, even when a DC electric field strength greater than the critical

electric field strength for Quincke rotation is applied to the fluid flow. This result offers a new

case of flow conditions or situations that support the observation of experimental results being

inconsistent with theoretical continuum anti-symmetric/couple stress analyses with zero spin

boundary conditions as discussed in Kaloni (1992). Despite all the above differences between the

two sets of solutions obtained in their respective limits, the magnitudes of both sets of the linear

velocity solutions increase as the applied DC electric field strength is increased while the driving

pressure gradient is kept constant, and decrease as the driving pressure gradient is increased

when subjected to a constant DC electric field. The total linear velocities obtained in the q'= 0

and in the q'# 0, r-, og <1 limits both approach the zero electric field solution of the ordinary

parabolic profile of the purely viscous Poiseuille flow (or zero induced flow velocity) as the

applied DC electric field strength is reduced while keeping the driving pressure gradient constant

or the driving pressure gradient is increased to a very large value while the applied DC field

strength is kept constant.

Examining the total 2D flow rates shown in Fig. 5.7 and the induced 2D flow rates found in

Figs. 5.17-5.19, it can be learned that there are in general, non-zero "total" volume flow rates at

zero driving pressure gradients for the two sets of flow rate solutions found in the respective zero

spin viscosity and finite spin viscosity small spin velocity limits when the applied DC electric
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field is greater than one, i.e., E* > 1. However, the order of magnitude of the non-zero flow rate

at zero pressure gradients found in the z-' , r1  « 1 limit is generally less than that of the

non-zero flow rate obtained in the 77'= 0 limit. On the other hand, it can be found that the

induced volume flow rates shown in Figs. 5.17(b), 5.18(b), and 5.19(b) become zero when the

driving pressure gradient reduces to zero for electric field strengths of E* <1. In other words, the

2D Poiseuille total volume flow rate solutions obtained in the limit of q'+ 0, r <1 are

zero when the applied driving pressure gradient is zero in the DC electric field strength regime of

E* <1 since the total volume flow rate, Q, is related to the induced volume rate, Q , by

1,h3
Q=Q+Q =Qq+ 1  (6.1)

1277

A similar situation can also be found from the total flow rate solutions given in Fig. 5.7-the

total volume flow rates obtained in the zero spin viscosity limit, q'=0, also become zero when

the driving pressure gradient is reduced to zero at low DC electric field strengths (i.e., E* < 0.8).

Again, this particular difference of zero or non-zero volume flow rates found at zero driving

pressure gradients is generally due to the form or polarizabilities, i.e., a, and a, in Eq. (4.7),

and the subsequent equilibrium retarding polarization, P, given by Eqs. (3.32) and (3.33),

employed in the polarization relaxation equation, Eq. (3.35), when solving the governing

equations of motion in the respective two electric field strength regimes of interest. Additional to

the above common features, the 2D flow rate solutions respectively obtained in the zero spin

viscosity and finite spin viscosity small spin velocity limits are also similar in several ways such

as (i) with a given constant driving pressure gradient, the flow rate solutions increase as the

applied DC electric field increases and (ii) for a given DC electric field strength, the flow rate

solutions increase as the driving pressure gradient increases. Note however that the increase or

rate of increase with respect to the increasing pressure gradient of the induced flow rates found in

the q' 0 , rco< «1 limit is generally not very significant as can be seen in Fig. 5.17(a).

Lastly, similar to the development of the Couette flow case, we present the total volume flow

rate solutions, Q, obtained respectively in the zero spin viscosity, q'= 0, and finite spin

viscosity small spin velocity, q'w 0, r <1, limits together in Fig. 6.2 to show the

respective parametric regimes in which they are valid or suitably applied. In Fig. 6.2, we have
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Figure 6.2. Comparison of the two total volume flow rate solutions obtained in the zero spin viscosity, q'= 0,

and the finite spin viscosity small spin velocity, 1'# 0 , r « 1, limits, respectively. The solid black line

represents the q'= 0 solution evaluated at E* = 2, whereas the solid gray line represents the 7' s 0 , r <1

solution evaluated at E* =2, p = 1, and q* =1. The dash-dash line denotes the zero electric field solution, i.e.,

the total 2D flow rate of purely viscous Poiseuille flows, Q0 = Fh3/129 .

plotted the total volume flow rate solutions, Q, with respect to the driving pressure gradient, T*;

the back solid (long) line represents the q'=0 solution evaluated at an electric field strength of

E*=2, whereas the gray solid (short) line represents the q' 0, co <1 evaluated at

E* =2, p =1, and q* =1. The dash-dash line shown in Fig. 6.2 denotes the zero electric field

solution of the purely viscous 2D Poiseuille volume flow rate, i.e., Q = Fh3/12q . From this

figure, it can be learned that the zero spin viscosity solution generally applies to the whole

regime of pressure gradient of interest, but the finite spin viscosity small spin velocity solution

only applies to a small range of driving pressure gradients due to the limitation of r Co, <1 on

the linear solutions we have obtained. Also seen in Fig. 6.2, the 7' w 0, r co <1 solution falls

closely to the zero electric field solution and increases as the driving pressure gradient increases.

On the other hand, the zero spin viscosity solution starts from a non-zero total flow rate at zero
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driving pressure gradient and increases as the driving pressure gradient is increased (with the

trend of variation being almost parallel to that of the zero electric field solution) while the

applied DC electric field strength is maintained at E* = 2. Hence, it is evidently seen that the

zero spin viscosity, )'= 0, solution cannot capture the more physically reasonable picture of the

total flow rate being reduced to almost zero when the driving pressure gradient is reduced to

zero. As we further compare Fig. 6.2 to the experimental and theoretical flow rate results

reported in Lemaire et al. (2006), it can be found that our zero spin viscosity solutions obtained

from our proposed continuum mechanical modeling field equations predict similar trends of

variation as to those predicted by the combined single particle dynamics two-phase effective

medium model employed in Lemaire et al. (2006). Yet, only our finite spin viscosity small spin

velocity solutions are more capable of capturing the more physical picture of zero or almost zero

flow rates at small or zero pressure gradients, which is a result consistent with the experimental

observations done by Lemaire et al. (2006). Both zero spin viscosity analysis and the combined

single particle dynamics two-phase effective medium theory predict non-zero flow rates at zero

driving pressure gradients. This issue will be further addressed in Section 6.3.

6.1.3 The Eigen or Characteristic Parameter A for Finite Spin Viscosity Small Spin Velocity

Solutions

Before closing this section, it is insightful to point out a non-dimensional parameter which

characterizes the negative ER fluid flow phenomena in the finite spin viscosity small spin

velocity limit presented herein. By reviewing Sections 4.4.1 and 5.4.1, it can be learned that the

non-dimensional parameter, namely, A as defined in Eqs. (4.34) and (5.26), appears repeatedly

in the analytical solutions obtained in the finite spin viscosity small spin velocity limit. We can

further factor out the channel height of h in Eq. (4.34) or (5.26) and have

TMW 4( 4{ 2 hA=h jrMWnazEJ+ - , (6.2)
7 iMW le VMW

where

/=l narwr E + ], (6.3)
MW e MW

which generally represents a length scale, , characterized by the balance between the forcing or
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driving mechanism, i.e., the electrical body torque input, the internal angular momentum

conversion between the spin and linear velocity fields, and the diffusional transport of internal

angular momentum. By examining Eq. (6.3), we find that the greater the applied DC electric

field strength is, the smaller this length scale, t, becomes, and the greater the spin viscosity is,

the greater f becomes. The parameter A then becomes a ratio of the characteristic length

imposed by the geometry (h) to the characteristic length due to the angular momentum balance

or conversion (t) within the ER flow field. Reviewing the solutions and results given in

Chapters 4 and 5, it can be learned that in general, the smaller this characteristic length, t, is, the

greater the parameter A as well as the negative ER response become. Contrarily, the greater the

length scale f is, the smaller the parameter A and the negative ER response become. In the zero

spin viscosity limit, i.e., il'= 0, is simply zero, which most likely implies that the electrical

torque input and the angular momentum conversion occur at a very local length scale-the

particulate limit of our proposed continuum mechanical modeling field equations (as discussed at

the end of Section 5.2). This result explains why the present continuum mechanical formulation

in the zero spin viscosity limit predicts similar negative electrorheological responses of the

Couette effective viscosity and of the 2D Poiseuille volume flow rate as compared to those

obtained from the combined analysis of single particle dynamics and two-phase effective

medium theories as found in current literature (Brenner, 1970; Lobry & Lemaire, 1999; Cebers et

al., 2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et al., 2008).

In single particle dynamics, the electrical torque input and the angular momentum conversion

basically occurs in the microscopic particle scale (before taking macroscopic averages), which is

equivalent to the previously described physical picture of the characteristic length scale, f , being

very small or zero in the zero spin viscosity limit for our present continuum mechanical

formulation with finite spin viscosities. Note however that the A parameter generally cannot be

derived from the zero spin viscosity analysis.

6.2 Comparison of Couette Effective Viscosity Results Found in Chapter 4 with Those

Found in Current Literature

In this section, we compare the Couette effective viscosity results obtained by our proposed

continuum mechanical modeling field equations to the theoretical and experimental results
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reported in Figs. 7a and 7b of Lemaire et al. (2008). In the following figures and discussions, we



Figure 6.3. Comparison of the Couette effective viscosity results among the present continuum zero spin

viscosity modeling predictions (HT, solid curve), the experimental measurements (LE, dotted curve) reported in

Fig. 7a of Lemaire et al. (2008), and the combined single particle dynamics two-phase volume averaged effective

medium theory predictions (LT, dashed-dashed curve) employed in Fig. 7a of Lemaire et al. (2008). In this

figure, the ER fluid solid volume fraction is # = 0.05, and the solutions or measurements are obtained at DC

electric field strengths of (a) EO =1 (ky/mm), (b) E = 2 (kV/mm), and (c) E =3 (kV/mm). No fitting

parameters or procedures are used in evaluating the zero spin viscosity HT solutions.

shall denote the theoretical results predicted by the present continuum mechanical formulation as

HT (abbreviating Huang Theory), the theoretical results predicted by the combined single

particle dynamics and effective medium formulation as LT (abbreviating Lemaire Theory), and

the experimental results measured by Lemaire et al. (2008) as LE (abbreviating Lemaire

Experiments). Also, we shall plot the HT results with solid curves, the LT results with dashed-

dashed curves, and the LE results with dotted curves in the following figures. Due to the

different regimes of application as indicated in Fig. 6.1, we shall first present the comparison of

solutions obtained in the zero spin viscosity limit for the moderate to high shear rate regime, and

then present that of the solutions obtained in the finite spin viscosity small spin velocity limit for

the low shear rate regime.

By substituting the same material properties and system parameters, e.g., a carrier liquid

conductivity of o =1.5 x10-8 (S/m ) and an average micro-particle diameter of 56.5 (pm), etc.,

employed in Lemaire et al. (2008) into our zero spin viscosity solutions presented in Chapter 4,

i.e., Eqs. (4.23) and (4.24), we simultaneously plot the three sets of results (HT, LT, and LE) of

the Couette effective viscosity, q*, with respect to the applied shear rate, y*, in Figs. 6.3(a),

6.3(b), and 6.3(c) evaluated or measured respectively at E = 1, 2, and 3 (kV/mm) for the micro-

particle solid volume fraction of 5%, # = 0.05. Similarly, we plot the three HT, LT, and LE

results of the Couette effective viscosity, 7*, with respect to the applied shear rate, Y*, in Figs.

6.4(a), 6.4(b), and 6.4(c) evaluated or measured respectively at E = 1, 2, and 3 (kV/mm) for the

micro-particle solid volume fraction of 10%, #=0.1. Note that the critical electric field is

evaluated to be E, ~0.83 (kV/mm) when using the same material properties and system

parameters as in Lemaire et al. (2008), and that no other fitting parameters are employed when

evaluating our present continuum zero spin viscosity, HT, solutions.
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From the two sets of figures as respectively shown in Figs. 6.3 and 6.4, it can be seen that the



Figure 6.4. Comparison of the Couette effective viscosity results among the present continuum zero spin

viscosity modeling predictions (HT, solid curve), the experimental measurements (LE, dotted curve) reported in

Fig. 7b of Lemaire et al. (2008), and the combined single particle dynamics two-phase volume averaged effective

medium theory predictions (LT, dashed-dashed curve) employed in Fig. 7b of Lemaire et al. (2008). In this

figure, the ER fluid solid volume fraction is $ =0.1, and the solutions or measurements are obtained at DC

electric field strengths of (a) E0 = 1 (kV/mm), (b) E0 = 2 (ky/mm), and (c) E. =3 (kV/mm). No fitting

parameters or procedures are used in evaluating the zero spin viscosity HT solutions.

experimental effective viscosity data obtained by Lemaire et al. (2008), curve LE, fall closely to

both of the LT and HT theoretical predictions at moderate to high shear rates when the DC

electric field strength is at E0 = 1 (kV/mm) in Figs. 6.3(a) and 6.4(a). As the electric field

strength is increased to E0 =2 (kV/mm) as shown in Figs. 6.3(b) and 6.4(b), the continuum

predictions of HT come closer to the Lemaire measurements (Lemaire et al., 2008), LE, while

the single particle dynamics theory represented by LT over estimates the reduction in effective

viscosity as compared to LE. Finally, we find in Figs. 6.3(c) and 6.4(c) that the continuum

theory, HT, under estimates whereas the single particle dynamics, LT, over estimates the

reduction in the Couette effective viscosity as compared to the experimental measurements, LE,

found in Lemaire et al. (2008) when the DC electric field strength is E0 = 3 (kV/mm). Generally

speaking, it can be found that in the zero spin viscosity limit, our continuum model predicted

effective viscosity, rl*, varies in a similar trend with respect to y* and/or E* as compared with

the theoretical predictions from the single particle dynamics based two-phase volume averaged

model (Lemaire et al., 2008). However, unlike Lemaire et al.'s (2008) theoretical model which

always over estimates the reduction in effective viscosity (as compared to their experimental

data), our proposed continuum mechanical model under estimates the reduction in the effective

viscosity, r*, at high DC electric field strengths, but likely falls closer to the experimental

rheometer data of Lemaire et al. (2008) at low to moderate electric field strengths, i.e.,

E* = E0 /E, ~ 1.2~2.4.

On the other hand, we simultaneously plot the Couette effective viscosity results obtained

from the LE experimental measurements (Lemaire et al., 2008), the combined single particle

dynamics and effective medium theory predictions, LT, and the present continuum mechanical

solutions in the rl'#0, r q,2o «1 limit, i.e., Eqs. (4.44) and (4.45), denoted by HT with respect
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to the shear rate, Y* = 0 0.2, in Figs. 6.5 and 6.6 for the respective micro-particle solid volume

fractions of 5%, or = 0.05, and of 10%, or = 0.1. In Figs. 6.5 and 6.6, the HT solutions are

evaluated at DC electric field strengths of E = 1, 2, and 3 (kV/mm), the LE data (Lemaire et

al., 2008) are measured at E = 1, 2, and 3 (kV/mm), and the LT predictions are invariant of the

applied DC electric field strengths and depend only upon the micro-particle solid volume

fraction, # (Lemaire et al., 2008). Note that in the evaluation of the present continuum

mechanical solutions, HT, shown in Figs. 6.5 and 6.6, we have substituted the same material

properties and system parameters as employed in Lemaire et al. (2008) into Eqs. (4.44) and

(4.45) and evaluated the effective viscosity solutions at E0 = 1, 2, and 3 (kV/mm) with p =1

and i7'= h2q ~ h27 0 (1+ 2.5#) (N -s ), where h is the gap or spacing between the two electrodes,

77 is the carrier liquid viscosity, and # is the micro-particle solid volume fraction. The

numerical values employed for the spin viscosity, q', and the boundary condition selection

parameter, p, are based on physical arguments as discussed in Chapters 4 and 5 and no ad hoc

fitting is performed. By comparing the three sets of results, i.e., HT, LT, and LE, in the low shear

rate regime, y* = 0 - 0.2, it can be found that both our continuum mechanical predictions and the

combined single particle dynamics two-phase effective medium analyses (Lemaire et al., 2008)

predict similar plateau curves in the low shear rate, low effective viscosity regime. However, our

proposed continuum mechanical model in the 7' w 0, -raf <1 limit, HT, predicts a positively

valued leveled out or nearly plateau structure and likely falls closer to the experimental

rheometric data of LE (Lemaire et al., 2008) as compared to the negatively valued low shear rate

plateau predicted by the single particle dynamics model, LT (Lemaire et al., 2008). Notice that

the plateau predicted by LT is based on the theoretical formulation of allowing the suspended

micro-particles to rotate with the axis of rotation lying in the general x-y plane instead of only in

the x-direction with the coordinate system employed in the Lemaire et al. (2008) analysis being

the same as those defined in Figs. 2.1 and 4.1 of this thesis. Lemaire et al. (2008) also suggested

that an experimentally observed particle-liquid phase separation along the longitudinal axis of

the cylindrical Couette flow rheometer used in their experiments was responsible for their

experimental measured plateaus, LE, and advocated the existence of the class of solutions with

the suspended micro-particles rotating with the axis of rotation lying in the general x-y plane.
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Figure 6.5. Comparison of the Couette effective viscosity results in the low shear rate regime among the present

continuum finite spin viscosity small spin velocity modeling predictions (HT, solid curve), the experimental

measurements (LE, dotted curve) reported in Fig. 7a of Lemaire et al. (2008), and the combined single particle

dynamics two-phase volume averaged effective medium theory predictions (LT, dashed-dashed curve) employed

in Fig. 7a of Lemaire et aL. (2008). In this figure, the ER fluid solid volume fraction is $ = 0.05, and the solutions

or measurements are obtained at DC electric field strengths of EO = 1 (diamond), 2 (triangle), and 3 (box)

(kV/mm). Note that the LT theoretical prediction of the effective viscosity is invariant of the applied DC electric

field strength, and that the numerical values for the boundary condition selection parameter, p = 1, and the spin

viscosity, r1'= h2q, employed in the finite spin viscosity HT analysis are chosen by physical arguments discussed

in Chapters 4 and 5. No ad hoc fitting parameters or procedures are used in evaluating the finite spin viscosity HT

solutions.

Nevertheless, we should point out that the class of solutions with the suspended micro-particles

rotating with the axis of rotation lying in the general x-y plane only exists when the background

flow vorticity in the z-direction of the cylindrical Couette flow rheometer shown in Lemaire et

al. (2008) (or in the x-direction as defined by the coordinate system shown in Figs. 2.1 and 4.1 of

the present thesis) is zero, and that the longitudinal (cylindrical z-direction) particle-liquid phase

separation reported in Lemaire et al. (2008) is likely a moderate to high shear rate, i.e.,

* ~0.5-0.6 (Pannacci et al., 2007a), and long term or duration-at least 5 minutes after the

cylindrical rheometer starts to rotate-experimental observation (Pannacci et al., 2007a; Lemaire
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Figure 6.6. Comparison of the Couette effective viscosity results in the low shear rate regime among the present

continuum finite spin viscosity small spin velocity modeling predictions (HT, solid curve), the experimental

measurements (LE, dotted curve) reported in Fig. 7b of Lemaire et al. (2008), and the combined single particle

dynamics two-phase volume averaged effective medium theory predictions (LT, dashed-dashed curve) employed

in Fig. 7b of Lemaire et al. (2008). In this figure, the ER fluid solid volume fraction is # = 0.1, and the solutions

or measurements are obtained at DC electric field strengths of E =1 (diamond), 2 (triangle), and 3 (box)

(kV/mm ). Note that the LT theoretical prediction of the effective viscosity is invariant of the applied DC electric

field strength, and that the numerical values for the boundary condition selection parameter, p =1, and the spin

viscosity, 7'= h 2 , employed in the finite spin viscosity HT analysis are chosen by physical arguments discussed

in Chapters 4 and 5. No ad hoc fitting parameters or procedures are used in evaluating the finite spin viscosity HT

solutions.

et al., 2008). Therefore, the assumptions in their theoretical formulation are likely to be

inconsistent or contradictory to their actual experimental conditions.

As for the present analysis (HT) of the continuum mechanical modeling field equations in the

finite spin viscosity small spin velocity limit, we have, instead of using a two-phase volumetric

averaged model, utilized the continuum anti-symmetric/couple stress theories to describe the

negative ER fluid flow phenomenon with the elementary microscopic ER fluid parcel being

defined as consisting of a representative amount or ensemble of carrier liquid molecules and

rotating micro-particles under the framework of the continuum hypothesis. This approach is
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likely more capable of capturing the low shear rate macroscopic ER fluid flow dynamics

resulting from the averaged effects of the two competing microscopic physical mechanisms of

micro-particle chaining (dipole-dipole attraction) and the chained micro-particles being "ripped

out of the chains" by spontaneous micro-particle Quincke rotation (Pannacci et al., 2007a).

Despite the very different physical arguments and modeling theories employed in the two

respective models of HT and LT, the result of the above comparison is encouraging since it

suggests that our q's 0, r c« 1 solutions are capable of capturing a positively valued low

shear rate nearly plateau behavior and may offer some additional insights or possible physical

explanations in interpreting the experimentally observed low shear rate, low viscosity plateau in

the viscosity versus shear rate plots found in current literature (Lemaire et al., 2008).

6.3 Comparison of 2D Poiseuille Volume Flow Rate Results Found in Chapter 5 with Those

Found in Current Literature

This section compares the 2D Poiseuille volume flow rate solutions predicted by the present

continuum mechanical modeling field equations of this thesis to the experimental measurements

and the single particle dynamics theoretical predictions given in Figs. 5 and 6 of Lemaire et al.

(2006). A detailed theoretical development of the single particle dynamics based two-phase

volume averaged effective medium theory in modeling the 2D Poiseuille volume flow rate

response employed in Lemaire et al. (2006) is presented in Cebers et al. (2002). Again, we

denote the present continuum mechanical theoretical predictions as HT (abbreviating Huang

Theory), the single particle dynamics based theoretical predictions as LT (abbreviating Lemaire

Theory), and the experimental measurements done by Lemaire et al. (2006) as LE (abbreviating

Lemaire Experiments) in the following discussions. As for the figures presented in the following,

we plot the HT solutions in solid curves, the LT solutions in dashed-dashed curves, and the LE

data (Lemaire et al., 2006) in dotted curves. Referring to the different regimes of application of

the respective l' =0 and rl's 0 , rmcq2 «1 limits of the HT solutions as shown in Fig. 6.2, we

shall first present the comparison results for the zero spin viscosity 2D Poiseuille volume flow

rate solutions for moderate to high applied pressure gradients, and then present the results for the

finite spin viscosity small spin velocity solutions for low applied pressure gradients.
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Figure 6.7. Comparison of the 2D Poiseuille volume flow rate results among the present zero spin viscosity HT

(solid curve) predictions, the experimental measurements, LE (dotted curve), found in Fig. 5 of Lemaire et al.

(2006), and the single particle dynamics based predictions (dashed-dashed curve) found in Fig. 5 of Lemaire et al.

(2006). In this figure, the gray solid lines denote the zero electric field Poiseuille volume flow rate and the ER fluid

solid volume fraction is #= 0.05 . The HT and LT solutions and the LE measurements are obtained at DC electric

field strength of E0 = 2.7 (ky/mm ) in Fig. 6.7(a) and of Eo = 3.3 (kV/mm) in Fig. 6.7(b). No fitting parameters

or procedures are used in the evaluation of the HT results.

Substituting the same material properties and system parameters, e.g., h =750 (pmr),

d = 71.5 (pmn), and os = 4 x10-8 (S/mn), as employed in Lemaire et al. (2006) into the zero spin
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Figure 6.8. Comparison of the 2D Poiseuille volume flow rate results among the present zero spin viscosity HT

(solid curve) predictions, the experimental measurements, LE (dotted curve), found in Fig. 6 of Lemaire et al.

(2006), and the single particle dynamics based predictions (dashed-dashed curve) found in Fig. 6 of Lemaire et al.

(2006). In this figure, the gray solid lines denote the zero electric field Poiseuille volume flow rate and the ER

fluid solid volume fraction is $ = 0.1. The HT and LT solutions and the LE measurements are obtained at DC

electric field strength of EO = 2.7 (kV/mm) in Fig. 6.8(a) and of EO = 3.3 (kV/mm) in Fig. 6.8(b). No fitting

parameters or procedures are used in the evaluation of the HT results.

viscosity HT solutions, Eq. (5.17) or (5.18), we simultaneously plot the HT, LT, and LE results

of the 2D Poiseuille total volume flow rate, Q, with respect to the driving pressure gradient, F,
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in Figs. 6.7(a) and 6.7(b) for the respective applied DC electric field strengths of EO = 2.7 and

3.3 (kV/mm) with a micro-particle solid volume fraction of # = 0.05. Similarly, for an ER fluid

suspension with a micro-particle solid volume fraction of # = 0.1, we simultaneously plot the

HT, LT, and LE results of the 2D Poiseuille flow rate, Q, with respect to the driving pressure

gradient, F, in Figs. 6.8(a) and 6.8(b) for the respective applied DC electric field strengths of

E =2.7 and 3.3 (kV/mm). In these figures, the critical electric field is evaluated to be E, ~1.3

(kV/mm) when using the same material properties and system parameters as in Lemaire et al.

(2006) and the solid gray lines shown in both Figs. 6.7 and 6.8 denote the zero electric field flow

rate solutions of purely viscous Poiseuille flows. Also notice that the LE and LT results are given

in Figs. 5 and 6 of Lemaire et al. (2006), and that no other fitting parameters are employed when

evaluating the zero spin viscosity HT solutions.

Examining Figs. 6.7 and 6.8, we find that the theoretical predictions of HT and LT fall closer

to the experimental measurements done by Lemaire et al. (2006), i.e., LE, for micro-particle

solid volume fraction of # = 0.05 (Fig. 6.7) as compared to the comparisons shown in Fig. 6.8

for # = 0.1. In general, the theoretical results obtained from our proposed continuum model in

the zero spin viscosity limit, HT, slightly over estimate the volume flow rate as compared to the

experimental data shown in Figs. 5 and 6 of Lemaire et al. (2006), or LE. The flow rate results

predicted by the single particle dynamics two-phase volume averaged model employed in

Lemaire et al. (2006), LT, generally fall closer to the same set of experimental data, LE, given in

their work as compare to our present theoretical treatment, HT. Note however that the theoretical

predictions from both the present continuum model, HT, and the single particle dynamics based

model, LT, give similar variations of the 2D volume flow rate with respect to the applied electric

field strength and pressure gradient-the volume flow rate increases as the applied electric field

increases. Nonetheless, the two HT and LT models predict non-zero total volume flow rates at

zero driving pressure gradients which is a result inconsistent with the experimental observations

found in Lemaire et al. (2006), i.e., LE.

Finally, we compare our q' #0, r 0 <1 solutions (HT) to the experimental (LE) and

theoretical (LT) results given in Lemaire et al. (2006). Substituting the same material properties

and physical parameters employed in Lemaire et al. (2006) into the total volume flow rate

solutions given by Eq. (5.46) or (5.47), we simultaneously plot the HT, LT, and LE results of the
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Figure 6.9. Comparison of the 2D Poiseuille volume flow rate results in the low pressure gradient regime among

the present finite spin viscosity small spin velocity HT (solid curve) predictions, the experimental measurements,

LE (dotted curve), found in Fig. 5 of Lemaire et al. (2006), and the single particle dynamics based predictions

(dashed-dashed curve) found in Fig. 5 of Lemaire et al. (2006). In this figure, the ER fluid solid volume fraction is

= 0.05. The HT and LT solutions and the LE measurements are obtained at DC electric field strength of

E0 =2.7 (kV/mm) in Fig. 6.9(a) and of E =3.3 (ky/mm) in Fig. 6.9(b). In the evaluations of the HT

predictions, / =1 and q'= h2 q are chosen by physical arguments discussed in Chapters 4 and 5. No ad hoc

fitting parameters or procedures are used in the evaluation of the HT results.

2D Poiseuille volume flow rate, Q, with respect to the driving pressure gradient, F, in the low
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Figure 6.10. Comparison of the 2D Poiseuille volume flow rate results in the low pressure gradient regime among

the present finite spin viscosity small spin velocity HT (solid curve) predictions, the experimental measurements,

LE (dotted curve), found in Fig. 6 of Lemaire et al. (2006), and the single particle dynamics based predictions

(dashed-dashed curve) found in Fig. 6 of Lemaire et al. (2006). In this figure, the ER fluid solid volume fraction is

$= 0.1. The HT and LT solutions and the LE measurements are obtained at DC electric field strength of E = 2.7

(kV/mm) in Fig. 6.10(a) and of E, = 3.3 (kV/mm) in Fig. 6.10(b). In the evaluations of the HT predictions,

p8=1 and '= h27 are chosen by physical arguments discussed in Chapters 4 and 5. No ad hoc fitting parameters

or procedures are used in the evaluation of the HT results.

pressure gradient regime of F= 0 - 2000 (Pa/m) in Figs. 6.9(a) and 6.9(b) at the respective DC

(a)
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electric field strengths of E = 2.7 and 3.3 (kV/mm) with p =1, i'= h2q ~ h270 (±+2.5$)

(N -s ), and micro-particle solid volume fraction of $ = 0.05. As for the case with micro-particle

solid volume fraction of $ = 0.1, the same is done in Figs. 6.10(a) and 6.10(b) at the respective

DC electric field strengths of E = 2.7 and 3.3 (kV/mm) with p =1, i'= h2q ~ h2 70 (1+2.5$)

(N -s ). Note that the theoretical and experimental results denoted respectively by LT and LE are

from Figs. 5 and 6 of Lemaire et al. (2006), and that the choice of numerical values of the

boundary condition selection parameter, p =1, and the spin viscosity, 7'= h2q, is based on the

physical arguments previously discussed in Chapters 4 and 5. No other ad hoc fitting parameters

or procedures are used in our HT modeling.

By carefully examining Figs. 6.9 and 6.10, it can be found that the present HT 77'# 0,

r c 1 solutions fall much closer to the experimental measurements, LE, reported by

Lemaire et al. (2006) and are closer to the physical reality of zero (or nearly zero) volume flow

rates at zero driving pressure gradients as compared to the single particle dynamics based two-

phase volume averaged effective medium analysis, LT, employed in Lemaire et al. (2006). Since

Lobry and Lemaire (1999) have reported that up to this point, no negative ER response due to

micro-particle Quincke rotation, i.e., nER2, has been experimentally observed without an initial

macroscopically imposed flow vorticity, it is not likely physical to have a finite flow rate at zero

driving pressure gradients as predicted by the single particle dynamics based two-phase volume

averaged effective medium analysis, LT, and the zero spin viscosity, q7'= 0, analysis under the

continuum mechanical framework presented in this thesis. However, in the 7'# 0, r22 <1

limit, theoretical predictions obtained from our continuum mechanical modeling field equations

are capable of capturing the low pressure gradient behavior, namely, zero or nearly zero volume

flow rates at zero pressure gradients and bring the theoretical modeling of the present nER2

phenomenon more closer to physical reality. This result predicted by our i'# 0, CO <1

solutions is indeed very encouraging since both our present zero spin viscosity analysis and the

single particle dynamics model employed in literature (Lemaire et al., 2006) cannot capture this

low driving pressure gradient, low volume flow rate behavior and thus offers the possibility of

taking one more step closer to accurately predicting the 2D Poiseuille total volume flow rates

using continuum anti-symmetric/couple stress theories with finite spin viscosities.
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6.4 Comparison of 2D Poiseuille Flow Velocity Profile Results Found in Chapter 5 with

Those Found in Current Literature

We close this chapter by comparing the 2D Poiseuille velocity profiles predicted by the

continuum mechanical modeling field equations presented in this thesis with the experimental

ultrasound velocimetry velocity profile measurements reported in a very recent paper by Peters

et al. (2010). We shall first compare the continuum theory velocity profiles obtained in the zero

spin viscosity limit with the experimental measurements found in Fig. 9 of Peters et al. (2010),

and then compare the velocity profiles predicted in the finite spin viscosity small spin velocity

limit of our continuum mechanical equations with the measurements shown in Fig. 9 of Peters et

al. (2010). The relevant material properties and experimental conditions employed in the

experiments of Peters et al. (2010) are a micro-particle (PMMA particles) diameter of d = 6

(pm), a carrier liquid viscosity of qO = 0.0165 (Pa -s ), a liquid phase electrical conductivity of

og =5.4 x 10-8 (S/m ), and a particle-liquid suspension made with a micro-particle solid volume

fraction of 5%, i.e., $ = 0.05. The resulting critical electric field strength found in Peters et al.

(2010) is around E, =1.8 (kV/mm).

By substituting the above material and system parameters as well as a channel height (or

spacing between the two electrodes) of h = 1.15 (mm) into Eqs. (5.15) and (5.16), we plot the

zero spin viscosity total linear velocity profiles predicted by our present continuum model at

electric field strengths of E =0, 1.8483, 2, 2.1, 2.2, and 2.275 (kV/mm) with a pressure

gradient of F = 5974.6 (Pa/m) and compare these results with the ultrasound velocimetry

measurements reported in Fig. 9 of Peters et al. (2010) as shown in Fig. 6.11. In Fig. 6.11, the

gray solid curve represents the zero electric field solution, i.e., purely viscous Poiseuille flow, of

the velocity profile, whereas the black solid curves represent the zero spin viscosity velocity

profiles respectively evaluated at EO = 1.8483, 2, 2.1, 2.2, and 2.275 (kV/mm) with F = 5974.6

(Pa/m). The dots shown in Fig. 6.11 are the ultrasound velocity profiles as found in Fig. 9 of

Peters et al. (2010) measured at E = 0 (gray box), 1.8 (gray triangle), 2 (black star), 2.1 (black

diamond), 2.2 (black triangle), and 2.275 (black box) (kV/mm). Notice that we have shifted the
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Figure 6.11. Comparison of the electrorotation assisted 2D Poiseuille flow velocity profiles between the

ultrasound velocimetry experimental measurements as reported in Peters et al. (2010) and the theoretical

predictions obtained from the continuum mechanical modeling field equations in the zero spin viscosity limit as

presented in the present thesis.

spatial z-coordinate system from -0.575 z 0.575 (mm) as found in Fig. 9 of Peters et al.

(2010) to 0 5 z 1.15 (mm) as shown in our current Fig. 6.11 so as to satisfy the coordinate

system employed in our zero spin viscosity analysis given in Chapter 5. When plotting Fig. 6.11,

we have also discarded the ultrasound data points near the electrode or wall boundaries as

reported in Fig. 9 of Peters et al. (2010) due to ultrasound signal reflection and saturation reasons

(Chaves et al., 2006, 2007; Peters et al., 2010).

From the comparison shown in Fig. 6.11, it can be learned that the zero spin viscosity

solutions to the 2D Poiseuille velocity profiles predicted by the present continuum modeling

field equations do not agree very well with the ultrasound velocimetry measurements (Peters et

al., 2010)-particularly due to the cusp structure in the predicted velocity profiles at the mid-

plane of the flow channel resulting from a zero spin viscosity analysis. However, the zero spin

viscosity velocity profiles capture the right order of magnitude of the velocity profiles and the

increase of linear velocity with respect to the increase of the applied electric field strength as

compared to the experimental measurements reported by Peters et al. (2010). Again, we find that
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the zero spin viscosity results over estimates the magnitude of the linear velocity profiles as

compared to the experimental measurements found in current literature, which is consistent with

the previous comparisons of the 2D Poiseuille volume flow rate as discussed in Section 6.3.

Before proceeding to comparing the Poiseuille velocity profiles obtained in the finite spin

viscosity small spin velocity limit with the experimental results found in Peters et al. (2010), we

discuss the validity of the respective numerical values of the channel height, h, pressure

gradient, F, and electric field strength, EO (particularly near 1.8 (kV/mm)), used in our

calculations of our present continuum mechanical solutions in the zero spin viscosity limit, i.e.,

Eqs. (5.15) and (5.16). Firstly, although the designed value of the channel height is h = 1 (mm)

as given in Peters et al. (2010), we have used a channel height of h=1.15 (mm) in the

evaluation of our zero spin viscosity solutions for Fig. 6.11. We employ this h =1.15 (mm)

value instead of the designed h =1 (mm) value based on the direct measurements of the

positions of the Poiseuille flow channel wall boundaries as shown in Figs. 8 and 9 of Peters et al.

(2010). Next, due to the installation of the ultrasound probe that measures the flow velocity in

the Poiseuille flow channel, a differential pressure sensor that measures the pressure drop or

pressure gradient in the flow channel cannot be further installed to the experimental apparatus of

Peters et al. (2010). Thus, in their work (Peters et al., 2010), the true experimental values of the

pressure gradient were not directly and simultaneously measured along with the ultrasound

velocimetry and volume flow rate measurements. From the zero electric field velocity profile

measurements and the hydraulic resistance of the Poiseuille flow test channel (not the whole

flow circuit) reported in Peters et al. (2010), we can back out a pressure drop of Ap = 1508 (Pa)

and subsequently calculate a pressure gradient of Ap/L = 1508/0.22 = 6854.5 (Pa/m) for the

experimental measurements found in Figs. 8 and 9 of Peters et al. (2010). Note however that we

have used a pressure gradient of F = 5974.6 (Pa/m) in our evaluations of Eqs. (5.15) and (5.16)

as shown in Fig. 6.11 so as to achieve good agreement between the purely viscous Poiseuille

flow velocity profile and the ultrasound velocimetry measurements done by Peters et al. (2010)

at zero electric field. This discrepancy between the two values is within 15% and is likely due to

end effects or entry losses of a finite dimension Poiseuille flow channel. Lastly, we have used an

applied electric field strength of EO =1.8483 (kV/mm) in the theoretical evaluation of our zero

spin viscosity solutions, which were compared to the ultrasound velocity profiles measured
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around EO = 1.8 (kV/mm) by Peters et al. (2010) as shown in Fig. 6.11, so as to examine the

improvement of theory made by our proposed "rotating coffee cup model" for the polarization

relaxation of the ER fluid as discussed in Chapter 3 of this thesis. The difference between the

values of E0 = 1.8483 and 1.8 (kV/mm) is within 3% and the uncertainty in the electric field

strength measurement of EO =1.8 (kV/mm) is likely easily accounted for by measurement error

or contact resistance between the high voltage probe and the electrodes of the flow apparatus

used in the experiments of Peters et al. (2010). Based on the above discussions, it can be learned

that the numerical values of the channel height, h, pressure gradient, IF, and electric field

strength, E0 (near 1.8 (kV/mm)), we have substituted into our continuum mechanical theory in

the zero spin viscosity limit are generally reasonable and valid for the purposes of our

comparison. Hence, we shall employ a channel height of h =1.15 (mm), a pressure gradient of

F =5974.6 (Pa/m), and an applied electric field strength of EO =1.8483 (kV/mm) (to be

compared with the ultrasound results measured by Peters et al. (2010) at EO =1.8 (kV/mm)) in

the theoretical calculations of our continuum mechanical results obtained in the finite spin

viscosity small spin velocity limit for the comparison between our present theory and the

experimental measurements found in current literature as presented in the following.

Substituting the relevant experimental parameters of d=6 (pm), yo=0.0165 (Pa-s),

o = 5.4x10~' (S/m ), # = 0.05, and E, = 1.8 (kV/mm) as given in Peters et al. (2010) as well

as a channel height of h =1.15 (mm) and a pressure gradient of F = 5974.6 (Pa/m) into Eqs.

(5.33), (5.35), and (5.38)-(5.45), we evaluate the finite spin viscosity small spin velocity, i.e.,

7' 0, r~ c« 1, Poiseuille velocity profile solutions obtained from our present continuum

mechanical model at electric field strengths of EO = 0, 1.8483, 2, 2.1, 2.2, and 2.275 (kV/mm)

with p =1 and 7'~ 0.012h2 i = 0.012h2 q0 (1+2.5#) (N -s) and simultaneously plot our q'w 0,

r2<co2 «1 theoretical predictions with the experimental velocity profile measurements found in

Fig. 9 of Peters et al. (2010) in Fig. 6.12. In Fig. 6.12, similar to Fig. 6.11, the gray solid curve

represents the zero electric field solution, i.e., purely viscous Poiseuille flow, of the velocity

profile, whereas the black solid curves represent the q' w 0, r, a2 «1 Poiseuille velocity

profiles respectively evaluated at E = 1.8483, 2, 2.1, 2.2, and 2.275 (kV/mm) with F =5974.6
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Figure 6.12. Comparison of the electrorotation assisted 2D Poiseuille flow velocity profiles between the

ultrasound velocimetry experimental measurements as reported in Peters et al. (2010) and the theoretical

predictions obtained from the continuum mechanical modeling field equations in the finite spin viscosity small

spin velocity limit as presented in the present thesis.

(Pa/m), p8=1, and rl'~0.012h2q=0.012h 2 70 (1+2.50) (N-s). The dots shown in Fig. 6.12

are the ultrasound velocity profiles as found in Fig. 9 of Peters et al. (2010) measured at EO =0

(gray box), 1.8 (gray triangle), 2 (black star), 2.1 (black diamond), 2.2 (black triangle), and 2.275

(black box) (kV/mm). Again when plotting Fig. 6.12, we have discarded the ultrasound data

points near the electrode or wall boundaries as reported in Fig. 9 of Peters et al. (2010) due to

ultrasound signal reflection and saturation reasons (Chaves et al., 2006, 2007; Peters et al.,

2010). There is no need to shift the coordinate system in Fig. 6.12 as we did for Fig. 6.11 since

the spatial z-coordinate system shown in Fig. 9 of Peters et al. (2010) is defined in the same

manner as that shown in Fig. 5.8 (and Fig. 6.12) used for solving our finite spin viscosity small

spin velocity solutions, i.e., -0.575 5 z 0.575 (mm).

From the comparison shown in Fig. 6.12, it can be found that the finite spin viscosity small

spin velocity solutions to the Poiseuille velocity profile obtained from our present continuum

mechanical modeling field equations agree very well with the experimental ultrasound

velocimetry results as reported in Fig. 9 of Peters et al. (2010). This rare degree of agreement
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between theory and experiment is not only surprising, but also encouraging since this result once

again suggests that our continuum mechanical theory applied in the finite spin viscosity small

spin velocity limit as presented in this thesis is more capable of capturing the physical reality of

the Quincke rotation induced negative ER flow phenomenon as compared to the continuum zero

spin viscosity solutions. Although the application of the q'# 0, rwco2 <1 solutions introduces

two additional degrees of fitting freedom, namely the boundary condition selection parameter,

,p, and the spin viscosity, q', we did not actually fit the numeric value of p and set the

boundary condition selection parameter as = 1 based on the results discussed in the previous

Chapters of 4 and 5 as well as in the paper of Kaloni (1992). This situation leaves the spin

viscosity, 7', as the only degree of freedom to be determined in the finite spin viscosity small

spin velocity Poiseuille velocity profile solutions. From the work of Zaitsev and Shliomis (1969)

and the book by Rosensweig (1997) as well as our discussions given in Sections 4.4.2 and 5.4.2,

we know that the magnitude of the spin viscosity, q', generally scales as the suspension

viscosity, q, times the square of a characteristic angular momentum diffusion length, ID '

Although in both Zaitsev and Shliomis (1969) and Rosensweig (1997), the characteristic angular

momentum diffusion length, ID, has been set to equal the average particle-to-particle distance,

which scales as the micro-particle diameter, d, that is, lD~ d and subsequently q'- d2 q, we

have instead set the characteristic angular momentum diffusion length, 1D, to scale as the height

of the Poiseuille flow channel, h , i.e.,lD - h and subsequently 7'~ h2
7, throughout the present

thesis since we are considering a fully developed steady state internal fluid flow with the ER

fluid continuum being composed of an enormous amount of continuum ER fluid parcels which

consist of a representative amount or ensemble of rotating micro-particles and carrier liquid

molecules. Acknowledging both literature (Zaitsev & Shliomis, 1969; Rosensweig, 1997) and

the comparison results discussed in Sections 6.2 and 6.3, a general fitting range for the value of

the spin viscosity can be given as

d 29 q q'- h h217, (6.4)

which in terms of the numerical values from the experimental conditions described in Peters et

al. (2010) can be re-written as
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6.7 x10-' 3 _ q'< 2.5 x10-8 (N -s ). (6.5)

Nonetheless, as can be found from the comparison shown in Fig. 6.12, best fit is achieved

between our finite spin viscosity small spin velocity theory and the experimental measurements

of Peters et al. (2010) when the value of the spin viscosity is around

17'- 0.012h 2 77 = 0.012h 2q 0 (1+2.5#)= 2.96x10-1 4 (N-s), (6.6)

which is a value that not only falls within the range given by Eqs. (6.4) and (6.5), but also agrees

with the best fit values of the spin viscosity (between theory and experiment) reported for

ferrofluid spin-up flows in cylindrical geometries as discussed in Elborai (2006) and He (2006).

Therefore, our choice of the value of the spin viscosity and subsequently the good agreement

between our present continuum theory and the experimental measurements of Peters et al. (2010)

shown in Fig. 6.12 are, rigorously speaking, not merely ad hoc or arbitrary fitting results, but still

supported by physical arguments as well as previous experimental measurements as found in

current literature. Note however that care must still be exercised when applying the finite spin

viscosity small spin velocity solutions to predicting the negative ER (nER2) responses

characterized by the 2D Poiseuille flow velocity profile. This is because with the pressure

gradient of F = 5974.6 (Pa/m) employed in evaluating the continuum solutions shown in Fig.

6.12, the value of the resulting dimensionless spin velocity, i.e., co* = r'W,, is roughly around

co, ~ 0.7 (or . cof 0.49), which is a situation that requires relaxing the small spin limit

constraint on or extending the range of application of the analytical continuum solutions, Eqs.

(5.33), (5.35), and (5.38)-(5.45), as presented in Section 5.4.

Although it may be argued that the velocity profiles obtained from the combined single

particle dynamics two-phase volume averaged effective medium theory as shown in Fig. 9 of

Peters et al. (2010) are also in good agreement with their ultrasound experimental measurements,

the success of the single particle dynamics based theory as described in Peters et al. (2010) is

basically due to a combined effort of theoretical modeling, experimental rheometric data

utilization, and numerical solution methods, whereas the success of applying the present

continuum mechanical modeling field equations in the finite spin viscosity small spin velocity

limit is merely based on a "plug-and-play" effort of substituting the required material properties

or system parameters (with minimal fitting of the spin viscosity based on information available

in the literature) and plotting the resulting electrorotation assisted 2D Poiseuille flow velocity
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profiles. Hence, the continuum theory in the finite spin viscosity small spin velocity limit as

presented in this thesis not only improves the zero spin viscosity continuum modeling, but also is

easier and more straightforward in terms of practical implementation and engineering analysis.

The implications and assumptions inherent in a "finite spin viscosity (additional dissipation

mechanisms) rotating coffee cup (treating the continuum spin velocity and the averaged micro-

particle rotation speed as two different variables in the ER fluid polarization relaxation)"

modeling approach may also suggest further physical insights and ideas to the research fields of

negative ER effects induced by micro-particle Quincke rotation as well as ferrofluid spin-up

flows in magnetorheology.
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Chapter 7

Concluding Remarks,

Contributions, and Future Work

7.1 Summary of Thesis and Concluding Remarks

The negative electrorheological responses (nER2) of two dimensional Couette and Poiseuille

flows with internal, spontaneous micro-particle electrorotation, or Quincke rotation, are modeled

and analyzed through a "fully continuum mechanical modeling field equations" formulation in

this thesis. Combining the theories of particle electromechanics and continuum anti-

symmetric/couple stresses, general governing equations are developed and presented to describe

the physical aspects of mass conservation, linear momentum balance, angular momentum

balance, and electro-quasi-static (EQS) field of this novel negative electrorheological fluid flow

phenomenon. A "rotating coffee cup model" is also developed to derive the retarding

polarization relaxation equation along with its accompanying equilibrium retarding polarization

in order to characterize the non-equilibrium motion effects of the continuum spin velocity, Co,

continuum linear velocity, v, and micro-particle rotation speed, Q , on the polarization responses

as well as the electrical body torque inputs of the negative ER fluid flow. Using the general

assumptions of steady, incompressible, fully developed, and two dimensional flows, we reduce

and simplify the full general governing equations in the zero spin viscosity, q'=0, and the finite

spin viscosity small spin velocity, q'# 0, rw co« 1, limits for both Couette and Poiseuille

flow geometries.
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In the zero spin viscosity limit, 77'=0, the two sets of simplified governing equations for the

respective Couette and Poiseuille flow geometries are further reduced into two respective

algebraic, cubic equations of the ER fluid flow spin velocity, 0*. Symmetry, "free-to-spin," and

stable micro-particle rotation conditions are then applied to the two cubic spin velocity equations

to choose, select, or pick out the real valued solution or combination of solutions consistent with

the physical assumptions and phenomena of interest. Expressions for the spin velocity, co*, and

effective viscosity, q*, of Couette flow as well as the spin velocity field, 0*, linear velocity

field, u*, and the 2D volume flow rate, Q, of Poiseuille flow are further derived in terms of the

applied DC electric field strength, E*, shear rate, y* (for Couette flow), driving pressure

gradient, F* (for Poiseuille flow), or spatial coordinate, z*, by respectively substituting the most

physically suitable and meaningful solution or combination of solutions to the spin velocity, *,

into the linear momentum equation with the no-slip boundary conditions on the velocity field

being applied at the spatial boundaries.

As for the limit of finite spin viscosity small spin velocity, i.e., 7' w 0 , rcg «1, the

governing equations are further simplified into two sets of linearized coupled ordinary

differential equations for the Couette and Poiseuille flow geometries, respectively. Combining

the physical arguments of symmetry and stable micro-particle rotation, we solve the linearized

coupled equations by applying the no-slip boundary condition to the linear velocity field, v, and

the boundary condition of co= 0.5pV x v with 8 being the boundary condition selection

parameter to the spin velocity field, co. Analytical solutions of the spin velocity, *, linear

velocity, u*, and effective viscosity, *, to Couette flow as well as solutions of the spin velocity,

O* , linear velocity, u*, and two dimensional volume flow rate, Q, to Poiseuille flow are

obtained and expressed in terms of the applied DC electric field strength, E*, boundary

condition selection parameter, p, spin viscosity, 7' or q*, and driving shear rate, y* (for

Couette flow), or pressure gradient, F* (for Poiseuille flow).

After obtaining the solutions in the respective zero spin viscosity and finite spin viscosity

small spin velocity limits, a series of parametric studies are then performed on these solutions via

varying the pertinent physical parameters involved in several parametric regimes of interest so as
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to illustrate the negative electrorheological behavior and fluid flow response due to internal

micro-particle electrorotation. The principle results and findings of this thesis are given in the

following:

Zero Spin Viscosity Results

(i) With internal micro-particle electrorotation, the spin velocity, co*, increases as either the

applied electric field strength, E*, or the shear rate, y*, is increased for Couette flow.

Contrarily, the spin velocity reduces back to the zero electric field solution (E* = 0, no

micro-particle electrorotation), i.e., o* = - 7*/2, or half of the flow vorticity of purely

viscous Couette flow, as the applied electric field strength is decreased. In the limit of zero

spin viscosities, the linear Couette velocity profile, u, (z) = Uz/h, remains invariant

regardless of the applied electric field strength.

(ii) The effective viscosity, 7*, is found to decrease as the applied DC electric field strength

increases for Couette flow with internal micro-particle electrorotation. However, as the

driving shear rate becomes large, the amount of reduction in the effective viscosity is reduced

regardless of the applied electric field strength. For a decreasing electric field strength, the

effective viscosity goes back to the zero electric field solution, r* = 1, i.e., the zero field

viscosity of the ER fluid (or particle-liquid mixture), q ~ r/o (1+ 2.5#), as given by the

Einstein relation.

(iii)With a constant driving pressure gradient, F*, the magnitude of the normalized Poiseuille

spin velocity, co*, as well as the jump or discontinuity in the spin velocity profile increases as

the applied electric field, E*, increases whereas the spin velocity reduces back to the zero

field solution, =(z* = 0.5), and the discontinuity in the spin velocity profile diminishes as

E* is reduced. The normalized spin velocity solution also approaches back to the zero

electric field solution, or half the vorticity of purely viscous Poiseuille flow, when the driving

pressure gradient becomes very large while the DC electric field strength is kept constant.

(iv)With a constant driving pressure gradient, F*, the magnitude of the dimensionless (and

normalized) Poiseuille linear velocity, u*, as well as the sharpness of the cusp in the velocity



profile increases as the applied electric field, E*, increases. On the contrary, the velocity

profile reduces back to the zero field solution, u* = z (1 - z*), and the cusp in the velocity

profile becomes blunt as E* is reduced. The linear total velocity, u*, also approaches back to

the zero electric field solution when the driving pressure gradient is increased with the

applied DC electric field strength being kept constant.

(v) The two dimensional Poiseuille volume flow rate, Q, increases as the applied DC electric

field strength increases whereas the electrorotation enhanced flow rate solution reduces back

to the zero electric field solution, Q0 = Fh3/12q, as the applied electric field is decreased. At

zero driving pressure gradients, the electrorotation enhanced volume flow rate assumes some

finite value because of the fact that we have employed the spin velocity solution that satisfies

the symmetry, real valued, stable micro-particle rotation, and free-to-spin conditions in the

evaluation of Q in the zero spin viscosity limit.

(vi)Comparing the results of effective viscosity and volume flow rate obtained in the present

thesis with the theoretical and experimental results found in current literature (Lemaire et al.,

2006, 2008), it can be found that both the single particle dynamics based two-phase volume

averaged model and our present continuum mechanical modeling field equations in the zero

spin viscosity limit qualitatively predict the same trends of variation for the effective

viscosity with respect to the electric field strength and average shear rate, and for the volume

flow rate with respect to the field strength and driving pressure gradient. Using the same

material properties and system parameters as found in current literature (Lemaire et al., 2006,

2008), the Couette effective viscosity solutions predicted by our proposed continuum

mechanical model generally fall closer to the experimental observations as reported in

current literature (Lemaire et al., 2008).

Finite Spin Viscosity Small Spin Velocity Results

(i) The magnitude of the Couette total spin velocity profile, c, generally increases as the

applied DC electric field strength, E*, is increased while the shear rate, y*, spin viscosity,

q* , and boundary condition parameter, 86, are kept constant, or when the spin viscosity, r*,

is reduced while the electric field strength, E*, the shear rate, y*, and boundary condition
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parameter, p, are kept constant. By reducing the applied electric field strength (with other

parameters kept constant) or increasing the spin viscosity, the magnitude of the spin velocity

profile reduces back to the zero electric field solution of half the vorticity of purely viscous

Couette flow, i.e., * = -y*/2. The normalized spin viscosity, co, also approaches the zero

electric field value as the driving shear rate or Couette boundary driving velocity is increased

while the other parameters are maintained constant. As for the variations of the spin velocity

profile with respect to the boundary condition selection parameter, p,8 the exact value of the

spin velocity slightly decreases as the value of p is reduced for general electric field

strengths greater than one, i.e., E* > 1. On the other hand, for electric field strengths less than

one, E* <1, the exact values of the spin velocity increases as the value of p is reduced. This

result is generally due to the different forms of polarizabilities (Eq. (4.7), which depends on

the micro-particle rotation speed given in Eq. (2.57)) or equilibrium polarization (Eq. (3.32)

and (3.33)) employed in the governing equations and the subsequent analytical solutions for

the respective regimes of the applied electric field strengths.

(ii) The magnitude of the micro-particle Quincke rotation induced linear velocity, u*, is

increased as the applied electric field strength, E*, is increased (with other parameters kept

constant) or as the spin viscosity, r* , is decreased while the other parameters are maintained

constant. The induced linear velocity approaches to the zero electric field solution of "zero

induced linear velocity" as the applied electric field is decreased, as the driving shear rate is

increased (for the electric field regime of E* > 1), and the spin viscosity is increased while

their respective complementary parameters are held constant. Increasing or reducing the

boundary condition selection parameter, p, generally has very little influence on the

variations of the induced linear velocity profile in the electric field strength regime of E* >1.

However, the magnitude of the induced linear velocity increases as the value of p8 decreases

when the ER fluid flow is subjected to a DC electric field strength of E* <1. Again, this

result is due to the different forms of polarizabilities (Eq. (4.7), which depends on the micro-

particle rotation speed given in Eq. (2.57)) employed in the governing equations and the

subsequent analytical solutions for the respective regimes of the applied electric field

strengths.
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(iii)For the electric field strength regime of E* > 1, it can be found that the variations of the

Couette effective viscosity solutions with respect to the applied shear rate obtained in the

m' 0 , o «1 limit behave similarly to those found in the zero spin viscosity limit,

77'= 0, i.e., the exact value of the effective viscosity decreases as the applied electric field

strength increases (with y*, p, and r* kept constant), and the reduction in the effective

viscosity decreases and approaches to the zero electric field solution as the driving shear rate

increases regardless of the electric field strength applied. Moreover, with y*, p8, and E* >1

being kept constant, the exact value of the Couette effective viscosity decreases as the spin

viscosity is reduced, and the reduction in the effective viscosity is decreased and approaches

to the zero electric field solution as the driving shear rate becomes very large regardless of

the value of the spin viscosity. The reduction in the effective viscosity is also decreased as

the value of the boundary condition selection parameter, 8, is reduced while the other

parameters are kept constant. On the other hand, for the electric field strength regime of

E* <1, we find that the Couette effective viscosity solutions are generally independent or

invariant of the driving shear rate or boundary velocity. The exact value of effective viscosity

generally decreases as the applied DC electric field is increased, as the boundary condition

selection parameter is increased, and as the spin viscosity is decreased while their respective

complementary parameters are held constant. Note that for the electric field regime of

E* <1, effective viscosities greater than one, i.e., positive ER effect, instead of effective

viscosities less than one, i.e., negative ER effect, are predicted for boundary condition

selection parameters generally less than one. Yet, this prediction is not likely a valid

explanation or interpretation of the viscosity increase due to particle chaining and structure

formation as observed at low shear rates and low electric field strengths in Lemaire et al.

(2008), and is generally inconsistent with the experimentally observed negative ER

phenomenon considered herein.

(iv)Regardless of the electric field strength regimes of interest, the total spin velocity profiles,

co* obtained for the Poiseuille geometry generally increases as the applied electric field

strength is increased, as the spin viscosity is decreased, or as the boundary condition

selection parameter is increased while their respective complementary parameters are

maintained constant. The total spin velocity profile approaches to the zero electric field
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solution of half the vorticity of purely viscous Poiseuille flow as the electric field strength is

reduced or as the spin viscosity is increased. The normalized spin velocity profile also

reduces to the zero electric field value as the driving pressure gradient increases while the

applied DC electric field (in the regime of E* > 1) and the rest of the parameters are kept

constant.

(v) The micro-particle Quincke rotation induced linear velocity of Poiseuille flow, u*, generally

increases as the applied electric field strength is increased while the pressure gradient, the

spin viscosity, and the boundary condition selection parameter is held constant. The induced

velocity also increases as the spin viscosity is reduced with the rest of the parameters being

constant. By reducing the electric field strength or increasing the value of the spin viscosity

while keeping their respective complementary parameters constant, the induced linear

velocity approaches the zero electric field solution of zero induced linear velocity, or

equivalently the total linear velocity of purely viscous Poiseuille flow. The dimensionless as

well as normalized induced velocity also approaches its zero electric field value as the

driving pressure gradient is increased to a large value while the electric field strength (for the

regime of E* > 1), the spin viscosity, and the boundary condition selection parameter is kept

constant. As we decrease the value of the boundary condition selection parameter, p, it can

be found that reversal of the induced linear velocity, or a decrease in the total linear velocity,

is obtained for both electric field strength regimes, i.e., E* > 1 and E* <1, of interest. This

result again suggests an inconsistency between the experimentally observed phenomena

(Lemaire et al., 2006) and the theoretical predictions obtained by the continuum anti-

symmetric/couple stress theory with a zero or nearly zero spin boundary condition on the

spin velocity field.

(vi)Following the previous discussion on the induced linear velocity field, a negatively valued

induced volume flow rate, Qq , or decreased total volume flow rate, Q, is generally obtained

regardless of the electric field strength of interest when the value of the boundary condition

selection parameter, p, is reduced, which is a result inconsistent with the experimental

observations reported in Lemaire et al. (2006). Meanwhile, the variations of the induced

volume flow rate, Qq, with respect to the driving pressure gradient generally increases as the

applied electric field strength is increased (with p = 1 and r* held constant) or as the value
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of the spin viscosity is reduced while the rest of the parameters are maintained constant. Note

however that for the induced flow rate solutions obtained in the electric field strength regime

of E* >1 with P =1, the dependence on the driving pressure gradient is in general not very

strong, that is, the induced flow rate increases only slightly as the driving pressure gradient is

increased in the electric field strength regime of E* > 1 while the rest of the complementary

parameters being held constant.

(vii) Substituting the same material properties and system parameters as employed in Lemaire

et al. (2006, 2008) into our continuum mechanical solutions obtained in the finite spin

viscosity small spin velocity limit, the Couette effective viscosity and 2D Poiseuille volume

flow rate results predicted by our present continuum model are compared to the theoretical

and experimental results reported in current literature (Lemaire et al., 2006, 2008). The

comparisons indicate that both the Couette and Poiseuille solutions predicted by our present

continuum model in the q'# 0, z, co<1 limit are likely capable of capturing the

experimentally observed negative ER behavior, i.e., the respective low viscosity plateau and

zero-flow rate at zero driving pressure gradients, as well as fall relatively closer to the

experimental data (Lemaire et al., 2006, 2008) in the respective low shear rate and low

pressure gradient regimes as compared to the solutions obtained from single particle

dynamics two-phase effective medium modeling (Lemaire et al., 2006, 2008) and our present

continuum model in the zero spin viscosity limit.

(viii) Using the same material properties and system parameters, we compared the

electrorotation assisted 2D Poiseuille flow velocity profiles predicted by the present

continuum mechanical modeling field equations in the finite spin viscosity small spin

velocity limit with the experimental ultrasound velocimetry measurements as reported in

Peters et al. (2010) and found that our present finite spin viscosity continuum theory is in

good agreement with the experimental measurements obtained by Peters et al. (2010).

Additional to the respective comparisons of Couette effective viscosity and Poiseuille

volume flow rate, this good agreement in the Poiseuille velocity profile between our present

theory and the experimental measurements as found in current literature suggests that the

implications and assumptions inherent in a "finite spin viscosity (additional dissipation

mechanisms) rotating coffee cup (treating the continuum spin velocity and the averaged

micro-particle rotation speed as two different variables in the ER fluid polarization
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relaxation)" modeling approach may likely bring further physical insights and ideas to the

research fields of negative ER effects induced by micro-particle Quincke rotation as well as

ferrofluid spin-up flows in magnetorheology.

7.2 Contributions of Thesis

The contributions made by the present thesis to the current negative ER literature are

summarized as follows:

(i) In this thesis, we have developed and presented a "continuum mechanical modeling field

equations" formulation to analyze and study the nER2 effect. The present treatment should

likely be the first to investigate the nER2 phenomenon from a more field theory based

continuum mechanical perspective as compared to the single particle dynamics based two-

phase effective medium theory employed in current literature (Brenner, 1970; Lobry &

Lemaire, 1999; Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al.,

2007a; Lemaire et al., 2008).

(ii) Additional to our continuum analysis in the zero spin viscosity limit, we have presented a

first analysis to investigate finite spin viscosity effects on the negative electrorheological

fluid flow phenomenon in both Couette and Poiseuille geometries in the small spin velocity

limit.

(iii) As compared to previous literature (Cebers, 1980; Shliomis, 1972, 2002), a "rotating coffee

cup model" is firstly proposed in this thesis to account for the non-equilibrium motion effects

of the continuum spin velocity, O, the continuum linear velocity, v, and the micro-particle

rotation speed, Q, on the (retarding) polarization relaxation process of the negative ER fluid

flow.

(iv) From the finite spin viscosity small spin velocity analysis, we have identified a

dimensionless parameter, A as given in Eq. (6.2), which characterizes the ratio of the length

scale of the flow geometry, h, to a length scale (t in Eq. (6.3)) determined by the balance

between the electrical body torque input and the angular momentum conversion between the

linear and spin velocity fields. In the zero spin viscosity limit, i.e., q'= 0, goes to zero,

which likely implies that the balance between the electrical body torque input and the angular

momentum conversion between the linear and spin velocity fields occurs at a very local or
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concentrated microscopic scale-the particulate limit of the present continuum mechanical

modeling field equations. This result supports the observation that the theoretical solutions

predicted by our present continuum model in the zero spin viscosity limit generally varies in

a similar manner as compared to those obtained from "single particle dynamics" two-phase

effective medium theories.

(v) In this thesis, we offer a new (if not arbitrarily dismissed in the past) perspective of treating

the continuum spin velocity and the (averaged) micro-particle rotation speed as separate

physical variables. This perspective is equivalent to the question of whether should we treat

the spin viscosity and the micro-particle rotation speed as exactly the same (or exactly

different) physical variables. With the implementation of the polarization relaxation equation

along with its accompanying equilibrium polarization as derived from the "rotating coffee

cup model," we treat the spin velocity and the micro-particle rotation speed as different

variables and find that the linear governing equations derived in the finite spin viscosity

small spin velocity limit are capable of capturing the non-linear negative ER behavior or

features similar to those obtained by the zero spin viscosity analysis. Moreover, by treating

the spin velocity and the micro-particle rotation speed as different variables, the rl'w 0,

ro~ <1 solutions are also capable of capturing the experimentally observed (Lemaire et

al., 2006, 2008) negative ER behavior in the low shear rate or low pressure gradient regimes,

which likely suggests that the spin velocity may not be physically exactly the same as the

(averaged) micro-particle rotation speed.

(vi) By varying the boundary condition selection parameter, p, we find that our theoretical

predictions obtained in the finite spin viscosity small spin velocity limit is generally

inconsistent with the experimental observations reported in Lemaire et al. (2006, 2008) when

p8 =0, i.e., zero spin conditions on the solid-ER fluid boundary. This result offers additional

support to Kaloni's (1992) report of theoretical predictions and experimental observations

being inconsistent when the zero spin boundary condition, p = 0, is applied to micro-polar

flow fields governed by equations of motion based upon continuum mechanical anti-

symmetric/couple stress theories.
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7.3 Directions for Future Work

Future work includes a more advanced modeling of the polarization relaxation processes in

the negative electrorheological fluid flow, the full non-linear analysis of finite spin viscosity

effects on the angular momentum balances within the ER flow field without the restriction of

r c 1, and the search of possible applications of our proposed continuum mechanical

modeling field equations theory for this novel negative electrorhological phenomenon, i.e., nER2

effect. Potential applications of the theory presented in this thesis may include design of

electrically actuated dampers, clutches, and smart materials (Espin et al., 2005; Esmonde et al.,

2009) as well as in modeling or analyzing the electrorheological or magnetorheological

responses of physiological and human blood flows (Happel & Brenner, 1983; Larson, 1998;

Lukaszewicz, 1999; Haik et al., 2001; Khashan & Haik, 2006).
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Appendix

Experimental Considerations

This appendix presents the synthesis, electrical impedance characterization, and rheological

viscosity characterization of an electrorheological fluid, namely, a mixture of polyethylene

micro-particles and Silicone oil DC 200/Shell DIALA* AX oil liquid, as preparations for the

negative electrorheological flow experiments analyzed by our present continuum mechanical

model in the previous chapters. We shall also consider the construction of a Poiseuille flow

electrorotation testing apparatus and subsequently the electrorotation modified Poiseuille flow

rate experiment to demonstrate the experimental methods and procedures in obtaining flow rate

measurements via the constructed electrorotation testing apparatus. The purpose of this appendix

is to bridge the gap between theoretical analysis and actual experimental measurements since

even for similar experiments, the material properties and ER flow responses are generally quite

case specific depending on which combination of materials are selected or chosen to synthesize

the ER fluid employed in the experiments. For example, two kinds of ER fluid were considered

in the experiments done by Boissy et al. (1995) to examine the negative ER effect of the first

kind (nER1), they are: (i) a mixture of poly(methyl methacrylate) (PMMA) particles and Ugilec

T/mineral oil TF 50 (Elf-Atochem) liquid and (ii) a mixture of polyethylene (PE) particles and

silicone oil liquid. However, the nERI effects observed using the PMMA/Ugilec T/TF 50

suspension are generally more significant as compared to the nER1 results obtained from the

PE/silicone oil suspension. Perhaps this is likely the reason why later experiments designed and

performed to examine the negative ER effect of the second kind (nER2) are generally based on a
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PMMA/Ugilec/Dielec suspension (Lobry & Lemaire, 1999; Cebers et al., 2000; Cebers et al.,

2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et al., 2008). Note however that

Ugilec* (tetrachlorobenzyltoluenes) is a known carcinogen and has been restricted for use in the

United States. Thus an alternative as well as environment friendly particle-liquid mixture or

blend is required if nER2 experiments were to be performed and studied herein. We offer this

possible alternative as the mixture of PE micro-particles and Silicone oil DC 200/Shell DIALA*

AX oil liquid and present its synthesis process, electrical and rheological material property

characterization measurements, and finally electrorotation modified flow rate experiments.

Hopefully, the experimental measurements presented in this appendix promote more

environment friendly ER fluids as better candidates for future negative ER fluid flow studies.

In the following sections, we first start with the material selection and the preparation for

synthesizing the electrorheological fluid proposed in the present work. After the material and the

relative composition of the blend is determined or identified, both the electrical, i.e., dielectric

constant and electric conductivity, and the rheological, i.e., viscosity, properties of the ER fluid

blend are to be measured and characterized. The construction of the Poiseuille flow channel and

the whole electrorotation testing apparatus are then outlined and summarized. We close this

appendix by presenting the measurements obtained from the electrorotation modified Poiseuille

flow rate experiments performed on the constructed apparatus and the synthesized ER fluid.

A.1 Synthesis and Preparation of Electrorheological Fluid

A. 1.1 Criteria of Material Selection for Electrorheological Fluid Synthesis

Although micro-particle Quincke rotation can be observed in both aqueous (Jones, 1984) and

non-aqueous particle-liquid suspensions, the negative ER effects discussed in this thesis are

generally observed in or designed to operate on transformer oil-particle suspension systems due

to the higher dielectric breakdown strengths that can be offered by such non-aqueous liquids

when subjected to strong high voltage electric fields. In order to prepare for the negative

electrorheological experiments considered in the previous chapters, the synthesis of the non-

aqueous liquid-solid particle mixture (or ER fluid) needs to satisfy the following criteria:

(i) The density of the liquid phase should be roughly the same as that of the solid micro-

particles so that the suspended particles become neutrally buoyant and are less likely to
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sediment through time. For this reason, a blend of two types of oil liquids is generally

required since it is less likely to find "one" specific oil that is dense enough to match the

density of the insulating dielectric, usually plastic, particles.

(ii) The chemical substance used cannot be extremely toxic. In the past, transformer oils and

other dielectric liquids found in high power electrical applications contained

polychlorinated biphenyl (PCBs), which is a carcinogen that has been banned in the United

States for over three decades. Previous experiments on negative electrorheological flow

with internal micro-particle Quincke rotation (Lobry & Lemaire, 1999; Cebers et al., 2000;

Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a; Lemaire et al., 2008) were

done using a blend of transformer oil, Ugilec* (tetrachlorobenzyltoluenes), and

poly(methyl methacrylate) (or PMMA with a mass density around 1.18 (g/mL )) micro-

particles. However, Ugilec* is also extremely toxic and is regulated or banned in the

United States. Considering the density matching requirement, and the toxicity of the liquid

to be used in the experiments, we find that the selection of the liquid limits the dielectric

(plastic) particles being used and vice versa.

(iii) Chemical compatibility of the suspending oil and the suspended solid plastic particles is

necessary. Since we are mixing at least two different oils so that the density of the liquid

mixture matches that of the added insulating dielectric plastic particles, the two different

oils need to be miscible so that a homogeneous oil solution can be obtained, and the oils

need to be chemically compatible with the solid plastic particles so that the particles will

not dissolve into the liquid phase while they are undergoing Quincke rotation. The

chemical compatibility is important because some plastic materials can be dissolved by

several common lab hydrocarbons such as toluene (methylbenzene).

(iv) The electrical conductivity modifier must be soluble in the blend of transformer oils. In

order to boost up the liquid conductivity of the transformer oil blend (dielectrically

insulating) so that the charge relaxation time of the liquid phase is much less than that of

the solid phase, a conductivity modifier needs to be added to the liquid phase. This is

generally done by adding docusate sodium salt (an organic salt or surfactant, also called

Aerosol OT or AOT) into the liquid blend. Note, however, that AOT is generally not

soluble in silicone oils (Pannacci, 2006), which is a type of oil now used to replace

transformer oils containing PCBs, and is also an oil that possesses a relatively high mass
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Figure A.1. The critical electric field strength for the onset of micro-particle Quincke rotation plotted with respect

to the carrier liquid viscosity. E, is evaluated by substituting material parameters given in Table A.9 into Eq.

(1.1).
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Figure A.2. The critical electric field strength for the onset of micro-particle Quincke rotation plotted with respect

to the carrier liquid electrical conductivity. E, is evaluated by substituting material parameters given in Table A.9

into Eq. (1.1).

density as compared to most transformer oils and solid plastics. Here, we consider silicone

oil as a potential candidate to perform the Quincke rotation and negative electrorheological

flow experiments.

(v) The viscosity of the liquid phase needs to be low enough so that the critical electric field

strength for the onset of micro-particle Quincke rotation is controlled around the order of



magnitudes of ~ O(10 ~ 106) (V/m) but not too high as compared with the range of

voltage achievable by the high voltage amplifier. The critical electric field strength for the

onset of Quincke rotation is plotted with respect to the viscosity of the suspending liquid as

shown in Fig. A. 1. The desired viscosity for our negative ER experiments should be around

0 ( 10-2) (Pa -s ) considering typical values of oil viscosities.

(vi) Finally, we also plot the critical electric field strength for the onset of Quincke rotation

with respect to the electrical conductivity of the liquid phase as shown in Fig. A.2. From

the figure, we find that the higher the liquid electric conductivity, the higher the critical

electric field strength. Moreover, previous negative ER experiments (Lobry & Lemaire,

1999; Cebers et al., 2000; Cebers et al., 2002; Lemaire et al., 2006; Pannacci et al., 2007a;

Lemaire et al., 2008) done in transformer oil/Ugilec*/PMMA particle systems have shown

that the actual critical electric field strength for the onset of micro-particle electrorotation is

higher than the theoretically predicted value. This is due to the particle chain formation

when the electric field is initially applied-a higher electric field strength as compared to

the theoretical value is required so that the electrical torque on the micro-particles is strong

enough to overcome the initial chaining process (or simply "rip off' the particles from the

chains). Nevertheless, some researchers (Shulman & Nosov, 1996) have also suggested that

the liquid electrical conductivity cannot be too low (yet, still high compared to the

insulating micro-particles) in order to observe significant Quincke rotation responses.

Therefore, with the technical requirements and literature review, we choose a liquid

electrical conductivity around - O(10-8) (S/m ) for this work.

A. 1.2 The Preparation and Synthesis of the Electrorheological Fluid

With all the above requirements considered, the type of dielectric insulating solid micro-

particles used in the experiments presented in this thesis was chosen to be polyethylene (PE)

micro-particles (Aldrich, ultra-high molecular density, surface modified, 53-75 (pm) particle

size powder) with a mass density around 0.94 (g/mL) at 250 C (Sigma-Aldrich material data

sheet, 2008), a dielectric constant of 2.25-2.28 (between 100 Hz and 3 GHz) (Von Hippel, 1954;

Shugg, 1995), and an electric conductivity around 10-16 (S/m ) (Adamec and Calderwood, 1981;
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Material Mass density Dielectric constant Conductivity Viscosity

PE micro-particles 0.94 (g/rmL) @ 25-C 2.25-2.28* 1 -16 (S/m) ~~~

Shell DIALA* AX Oil 0.886 (g/mL) @ 151C 2.2-2.3 ---- -20 (cSt)

Silicone Oil DC 200 1.0 (g/mL ) @ 20'C 2.5-2.6 - -10(mPa.s )@250 C

Table A.1. Summary of the micro-particle and carrier liquid (blend of two oils) selected for the proposed ER fluid

flow experiments. *Measurement frequency ranging from 100 Hz to 3 GHz (Von Hippel, 1954; Shugg, 1995).

Shugg, 1995). The liquid phase was designed to be a mixture of two oils, namely, the Shell

DIALA* Oil AX with a mass density of 0.886 (g/mL) at 15'C, a dielectric constant of 2.2-2.3,

a dielectric breakdown voltage of at least 28 (kV), and a liquid kinematic viscosity around 20

(cSt) (Shell material data sheet, 2005), and the Silicone oil DC 200 (polydimethylsiloxane;

Aldrich, neat (25 C)) with a mass density around 1 (g/mL) at 20'C (Sigma-Aldrich material

data sheet, 2009), a liquid viscosity around 10 (mPa -s ) at 25'C (Sigma-Aldrich material data

sheet, 2009), and a dielectric constant around 2.5-2.6 (Wu et al., 1996a, b; Wu & Conrad, 1997;

Wu et al., 1998). All the above material properties are summarized in Table A. 1.

Using the following relation, namely,

PPE =PAX r +PDC ( fr ), (A.1)

where ppE is the mass density of the polyethylene micro-particles, p, is the mass density of

the Shell DIALA* Oil AX, PDC is the mass density of the Silicone oil DC 200, and f, is the

volume fraction of the DIALA* oil, we blended the two oils with a volume fraction ratio of

DIALA* : DC 200 = 0.526 : 0.474 so as to match the liquid density to the density of the solid PE

micro-particles. The two oils were miscible forming a transparent clear lightly yellow colored

solution and the PE material and micro-particles were not dissolved in the oil blend.

Arbitrary concentrations of docusate sodium salt or AOT (Sigma, SigmaUltra, >99%,

C2 0 H37NaO 7S, M, = 444.56) was respectively added into pure DIALA® oil, pure Silicone oil

DC 200, and pure blend of the two oils (all without particles). We found that AOT can be

completely dissolved in pure DIALA® oil and the pure blend of the two oils for the AOT

concentrations of interest. However, we again confirm that AOT cannot be dissolved in silicone

oil as previously reported by Pannacci (2006). Since addition of AOT also changes the total

volume of a given oil blend solution, the PE micro-particles were added into the mixture after the

blend of DIALA* oil, silicone oil, and AOT salt was prepared. We shall determine the
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concentration of AOT salt added to the pure oil mixture in Section A.2.1 so that the desired

liquid phase conductivity, o, can be obtained. The final solid volume fraction of the PE micro-

particles in our synthesized ER fluid was about 5%.

Before the PE micro-particles can be added into the DIALA* oil/silicone oil/AOT salt blend,

dehydration of the micro-particles is required so that the conductivities of the respective solid

and liquid phases are not considerably affected by the presence of moisture in the ER fluid. In

our preparation of the solid phase, polyethylene micro-particle powder was spread out on a

rectangular aluminum baking pan forming a not too thick sheet of powder above the surface of

the pan. The particles were heated to 132*C (below the melting point of PE around 144*C) for

six hours and then taken out of the oven at around 80'C. The PE micro-particles were added to

the DIALA* oil, pure Silicone oil DC 200, and AOT salt blend within three hours after being

taken out of the oven.

Due to the mixture nature of the ER fluid we have prepared, both the fluid electrical and

rheological properties need to be characterized in order to find the dielectric constant, e,, electric

conductivity, o,, and viscosity, yo, of the liquid phase (mixture of AOT salt, DIALA* oil, and

silicone oil) so that the theoretical value of the critical electric field strength, E , can be

calculated. Measurements of the viscosity of the liquid-particle suspension, q, i.e., mixture of

PE micro-particles, AOT salt, DIALA* oil, and silicone oil, are also required so as to serve as

the viscosity reference datum at zero electric field strengths. The characterization of the ER fluid

electrical and rheological properties are given in the following section.

A.2 Characterization of Electrorheological Fluid Electrical and Rheological Properties

A.2.1 Impedance Measurements of the Suspending Liquid Phase of the Electrorheological Fluid

As discussed in Section A. 1.1, the dielectric constant, or equivalently the dielectric

permittivity, 61, and the electrical conductivity, o, of the suspending liquid phase, i.e., the

blend of Shell DIALA* AX oil, Silicone oil DC 200, and AOT salt play important roles in

determining the critical electric field strength, E, for the onset of micro-particle Quincke

rotation. However, adding AOT salt into the mixture of the two oils changes both the dielectric

constant and the electric conductivity of the whole blend, and neither of these electrical
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properties, especially conductivity, a,, has been characterized as a function of the concentration

of the AOT salt added for the specific mixture of the pair of oils employed herein. Therefore, a

crucial step in the preparation and characterization of our ER fluid is to measure both the

dielectric permittivity and the electric conductivity of the liquid phase so as to find a suitable

value of conductivity or concentration of AOT salt that induces a significant micro-particle

Quincke rotation effect in the final suspension without drastically boosting the required critical

electric field strength (see Fig. A.2) required to induce Quincke rotation.

We measured the electrical conductivity, a,, as a function of the concentration of AOT salt

added for the liquid blend of the Shell DIALA* AX oil and Silicone oil DC 200 by a high-

accuracy, calibration technique developed by Schiefelbein (1996) and Schiefelbein et al. (1996).

The technique utilizes a coaxial cylindrical electrode that is immersed into the subject liquid

solution and that is connected to an impedance meter or analyzer giving the desired data

readouts. Measurements of the impedances respectively obtained at distinct electrode immersion

depths are taken, and the electrical conductivity of the liquid can be calculated by taking the

differences in conductivity of the distinct measurements, dG, and dividing the conductivity

differences with the corresponding differences in the electrode immersion depths, dg , i.e.,

ln (b/a) dG (A.2)
2T d(

where G represents the measured conductance, represents the electrode immersion depth, b

is the inner diameter of the outer ring of the coaxial cylinder electrode, and a is the outer

diameter of the middle rod of the coaxial cylindrical electrode. The dielectric permittivity, ci, (or

the dielectric constant) of the liquid blend can also be calculated from the impedance

measurements via a similar procedure through the following relation,

si= Si+ In (b/a) dC (A.3)
2T d

where 6, is the permittivity of air and C is the measured capacitance. Note that the coaxial

cylindrical electrode technique was originally designed to measure the liquid conductivities of

electrolytes and molten oxides (Schiefelbein, 1996; Schiefelbein et al., 1996), and thus this is

perhaps the first time that this technique is applied to measuring the liquid impedances of

insulating dielectric oils.
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(a)

(b)

Figure A.3. The coaxial cylindrical electrode and liquid impedance measuring equipment. (a) Global over view

of the experimental setup. (b) Zoom-in view of the coaxial cylinder electrode and test leads.

An impedance testing apparatus was built for the impedance measurements of the liquid

phase as shown in Fig. A.3 with Fig. A.3(a) showing a global view of the equipment and Fig.

A.3(b) showing the zoom in features of the coaxial cylindrical electrode. As can be seen in Fig.

A.3, a standard chemistry laboratory stand was used to hold the coaxial cylindrical electrode, a

glass vial (roughly 25 (mL) in volume) was used to contain samples of the liquid blend, a

mechanical jack was used to adjust the relative elevation or height of the glass vial among
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distinct measurements, a ruler tightly attached to the vertical rod of the chemical laboratory stand

was used to read out the specific numerical values of the height at which a specific impedance

measurement was taken, a mirror was used for constantly evaluating whether the concentric

geometry of the coaxial cylindrical electrode was maintained throughout the measurements, and

an impedance meter, ESI Impedance Meter 252 (Electro Scientific Industries, Portland, OR), was

used to read out the numerical values of the capacitance and conductance all measured at 1 kHz.

The coaxial cylindrical electrode was machined at the Central Machine Shop of MIT.

Oil samples were contained in the glass vials as shown in Fig. A.3(b). The initial oil sample

volume was 15 (mL). For a given AOT salt concentration, the initial oil sample volume cannot

be too large to conserve AOT material, and yet cannot be too small due to the resolution of the

electronic scale (A&D Engineering Top loading electronic balance) 0.01 (g). To avoid fringing

field interactions between the tip of the coaxial cylindrical electrode and the free liquid surface

inside the electrode, the electrode needs to be immersed into liquid for at least 0.75 (in) -1.9

(cm) (Schiefelbein, 1996). To avoid the electrode tip fringing fields from hitting the glass wall at

the bottom of the glass vial, the electrode tip needs to be at a distance of 2 (b - a) - 1.6 (cm) away

from the bottom of the vial (Schiefelbein, 1996). However, for the initial volume of 15 (mL), the

liquid height inside the vial was not enough to provide the two length scales required above, and

some overlap of the two lengths were present causing the measurement results to be a bit

unstable in the first liquid conductivity test. The oil sample volume was increased to 20.5 (mL)

to provide the safety distance in our second and third liquid conductivity tests. To minimize all

possible fringing field and unstable effects during the measurement, three immersion depths

were employed for each of the oil samples. For 15 (mL) samples, they are: one slightly above the

immersion level limit defined by the boundary of the bottom of the vial, one around this limit,

and one slightly below. For 20.5 (mL) samples, they are: one slightly above the immersion level

limit defined by the bottom boundary, one slightly below the immersion level limit defined by

the upper liquid free surface, and one around the middle distance between these two boundary

limits. The capacitance and conductance measurements were respectively taken at the three

immersion depths, and the final results were taken to be the averaged value of the results

obtained at the three immersion depths for each of the oil samples. By almost touching or

touching the free liquid surface in the vial with the tip of electrode, a numerical value for the free

surface liquid level of each of the oil samples was also taken to serve as the reference datum for
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Literature Measured

Shell DIALA* Oil AX 2.2-2.3 2.25

Silicone Oil DC 200 2.5-2.6 2.67

Table A.2. Comparison of the dielectric constants of the two pure liquid oils used in the present study between the

given literature values and the measured experimental data by the coaxial cylindrical electrode method

(Schiefelbein, 1996). The value of 2.5-2.6 shown in the table is the literature value specifically for Dow Corning

200 Silicone Oil (Wu et al., 1996a, b; Wu & Conrad, 1997; Wu et al., 1998). Our measurements were taken at 1

kHz and between 17-27 0 C.

the subsequent three immersion depths. The coaxial cylindrical electrode was rinsed with

DIALA* : DC 200 = 0.526 : 0.474 pure base oil solution ([AOT] = 0 (M)) between subsequent

measurements of different oil samples. Also, notice that the immersion depths of the electrode as

observed from the outside, ,, is different from that, , within the coaxial cylindrical electrode

due to the volume exclusion effects resulting from the presence of the electrode immersed in the

liquid samples. Schiefelbein (1996) has offered a general relation to correct for this volume

exclusion effect on the immersion depth measurements. For our particular electrode setup with

the outer diameter of the outer ring of the coaxial cylinder electrode being 1.27 (cm), the inner

diameter of the outer ring of the coaxial cylinder electrode, b = 1.11 (cm), the outer diameter of

the middle rod of the coaxial cylindrical electrode, a= 0.32 (cm), and the inner radius of the

glass vial shown in Fig. A.3(b) being 1.26 (cm ), a simple correction relation can be obtained as

# ~-1.083#,, (A.4)

by substituting all the required information into the correction relation, Eq. (E.0-6), derived in

Appendix E of Schiefelbein (1996).

Before measuring the conductivity of the oil blend as a function of AOT concentration, we

first measured the respective dielectric constants (or permittivities) of pure Shell DIALA* oil

AX and pure Silicone oil DC 200 and compared the measured results with the known values

found in vendor material data sheets and current literature serving as a confidence or validation

test of the equipment. The measured results are shown and compared with the given values found

in literature in Table A.2. As can be found from the table, the data obtained from the impedance

measurement apparatus agree closely with those found in the literature. Note that rigorously

speaking, a short circuit measurement of the coaxial cylindrical electrode should be performed to

obtain the impedances of the metal electrode and the test leads of the impedance meter by
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[AOT] (M) loglo[AOT] o (S/m) log10 o

0.0915 -1.03858 3.06E-08 -7.51428

0.123 -0.91009 5.41E-08 -7.2668

0.165 -0.78252 7.87E-08 -7.10403

0.306 -0.51428 2.53E-07 -6.59688

Table A.3. Summary of results from our first carrier liquid electric conductivity test. The measurements were

taken by the coaxial cylindrical electrode method at 1 kHz around 270 C.

immersing the electrode into highly conducting liquid metals (Schiefelbein, 1996). The

impedances of the electrode and test leads are to be subtracted from the measured impedance of

the subject liquids. Despite the satisfactory results shown in Table A.2, we did not perform the

short circuit test as mentioned in Schiefelbein (1996) in this work. Nevertheless, we chose a

highly conducting electronic grade copper (as compared with the highly insulating oils being

measured) as the material for the coaxial cylindrical electrode and carefully maintained the

relative positions of the test leads of the impedance meter between subsequent measurements

(the capacitance measured by the impedance meter is maintained at 2.8-2.9 pF at 1 kHz and

around 21-270 C when the electrode is totally drawn out of the liquid and exposed in air) so as to

minimize the error introduced without performing the short circuit measurements. The electrode

polarization effects or double layer impedances (Bard and Faulkner, 2001; Morgan and Green,

2003; Ma, 2007) were not considered in the post processing of our measurements.

A first conductivity measurement was done by performing a conductivity sweep of oil blends

with AOT salt concentrations ranging across two decades (from 0(10-3) to 0(10-1) molars)

with the base oil being the DIALA* : DC 200 = 0.526 : 0.474 mixture; no PE micro-particles

were included. The tested oil sample volumes contained inside the glass vials were all controlled

at 15 (mL). The aim of this first conductivity test was to find out the AOT salt concentration that

gives liquid electrical conductivities closest to the desired value of ~10-8 (S/rm). Due to the

highly insulating liquids being measured and the resolution of the ESI Impedance Meter 252

employed herein, we were only able to obtain electrical conductivity data for oil samples with

AOT salt concentrations greater than [AOT] = 0.09 M. These results are summarized in Table

A.3, and the log-log plot of the liquid phase conductivity versus the AOT salt concentration is

given in Fig. A.4. By examining Table A.3, it is found that the measured liquid conductivity
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Conductivity Test I; 2009/09/13

-- log c--log sigma - Linear (log c--log sigma)

Figure A.4. The log-log plot of the measured carrier liquid (oil blend + AOT salt) electric conductivity versus the

AOT salt concentration added to the oil blend.

closest to the desired value of ~10-8 (S/rm) is o =3.06 x 10-8 (S/rm) with the corresponding

AOT salt concentration being [AOT] = 0.0915 (M) whereas the highest liquid conductivity of all

the samples prepared was found to be a, = 2.53 x 10-7 (S/rm) with the corresponding AOT salt

concentration being [AOT] = 0.306 (M). The order of magnitude of the sample with a liquid

conductivity of o = 2.53 x 10- (S/m ) with the corresponding AOT salt concentration of [AOT]

= 0.306 (M) is consistent with an even earlier measurement done by a parallel plate electrode

fixture (not presented herein). Moreover, from examining Fig. A.4, we find the log-log plot of

the liquid conductivity versus the AOT salt concentration is essentially linear, which is a result

consistent with those obtained from mixtures of Dielec, Ugilec*, and AOT salts as found in

Pannacci (2006). The figure also shows a linear fitting equation, i.e.,

log 0 a, =1.7277log 1O[AOT]-5.7187, (A.5)

that relates the liquid conductivity, o, as a function of AOT salt concentration, [AOT]. Using

Eq. (A.5), we find that in order to achieve a liquid conductivity of o =1.48 x 10-8 (S/m), the

corresponding AOT salt concentration for a prepared sample of the oil mixture should be [AOT]

= 0.06 (M). A second liquid conductivity test was then performed to verify this finding.

log c
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[AOT] (M) oi (S/m) Dielectric constant

Base oil blend 0 ---- 2.5

Oil blend & AOT #1 0.03182 N/A 2.3-2.6

Oil blend & AOT #2 0.06254 N/A 2.5-2.7

Oil blend & AOT #3 0.09053 3.36E-08 2.5

Table A.4. Results from the second and third liquid conductivity and dielectric constant (permittivity)

measurements. The measurements were made by the coaxial cylinder electrode method and the data were taken at

1 kHz and 17-21'C. Note that in our third liquid conductivity test, the carrier liquid conductivity of Oil blend &

AOT #3, i.e., DIALA* : DC 200 = 0.526 : 0.474 base oil with [AOT] = 0.09053 (M), was measured to be 1.93E-

08. This result is probably due to the cold temperature around 17'C the day the measurement was made.

In our second liquid conductivity test, we prepared four oil samples with respective AOT

concentrations of [AOT] = 0, 0.03182, 0.06254, and 0.09053 (M) with the oil mixture sample

volumes (before the addition of AOT) being -20.5 (mL). We increased the sample volume so as

to minimize the possible fringing field interactions between the tip of the coaxial cylindrical

electrode and the free liquid surface inside the coaxial cylinder geometry (Schiefelbein, 1996) as

found in the not quite stable measurement results from our first liquid conductivity test. A second

reason for increasing the oil sample volume was to increase the contact area between the

electrodes and the liquid phase so as to possibly push down the lower limit set by the instruments

employed when measuring the conductances of the oil samples prepared. Unfortunately, none of

the conductances were successfully obtained for oil samples with AOT salt concentrations less

than [AOT] = 0.09053 (M)-we have reached the limits of the equipment. The liquid

conductivity of the oil sample with the AOT salt concentration of [AOT] = 0.09053 (M) was

obtained to be o, = 3.36 x10~' (S/m ), which is within 8% as compared with the a, = 3.06 x 10-'

(S/m) at [AOT] = 0.0915 (M) found from our first test. The results of our second liquid

conductivity test are summarized in Table A.4. From the table, we find both the oil samples with

a zero AOT concentration and [AOT] = 0.09053 (M) have roughly the same dielectric constant

being 2.5. However, for oil samples with [AOT] = 0.03182 and 0.06254 (M), the result of the

dielectric constant fluctuates between 2.3-2.6 and 2.5-2.7, respectively. Finally, a third liquid

conductivity test was performed to again verify the conductivity and dielectric constant

(permittivity) measurements found in the first and second tests for the pure Shell DIALA* oil
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Figure A.5. The experimental setup for measuring the viscosity of the proposed ER fluid and other related liquid

samples. The basic components of the experimental setup are a standard 600 (mL) beaker and a Brookfield Model

DV-l+ viscometer along with an accompanying Brookfield Model LV-1 spindle (Brookfield Engineering

Laboratories, Middleboro, MA).

AX, pure Silicone oil DC 200, the DIALA* : DC 200 = 0.526: 0.474 base oil mixture with zero

AOT concentration, and the DIALA* : DC 200 = 0.526 : 0.474 base oil with [AOT] = 0.09053

(M) with all oil sample volumes being 20.5 (mL). The results of the third test generally agree

with those obtained from the first and second tests except for the DIALA* : DC 200 = 0.526 :

0.474 base oil with [AOT] = 0.09053 (M) sample. For this concentration, the liquid conductivity

was measured to be a, =1.93 x 10-8 (S/n ) ( or = 3.06 x10-' (S/n ) in the first test and

a, = 3.36 x 10-8 (S/n ) in the second test). This is probably due to the low temperature, 170C, on

the day of measurement as compared to the 21-270 C for the previous measurements.

From all the obtained results of our three liquid conductivity tests, the liquid phase

conductivity for the ER fluid used in the following experiments was determined to be

a = 3.36x10~' (S/rn) with the corresponding oil and salt blend being DIALA® : DC 200 =

0.526: 0.474 base oil with [AOT] = 0.09053 (M).
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Liquid/oil Standard value Measured value

Shell DIALA* AX 15.5 (mPa s )at 23'C 15.9 (mPa s )

Silicone oil DC 561 50.6 (mPa s )at 23*C 41.3 (mPa s)

Silicone oil DC 200 1-0 (mPa.s) at 25*C 10.4 (mPa s)

Table A.5. Summary of the measured and standard viscosity values of the liquids employed in the calibration test

of the viscometer. The standard values of the liquid viscosities were obtained from manufacturer material data

sheets (Shell material data sheet, 2005; Sigma-Aldrich material data sheet, 2009) and literature (Elborai, 2006;

Khushrushahi, 2010). The measured viscosities were all obtained at a spindle rotation speed of 60 rpm.

A.2.2 Viscosity Measurements of the Electrorheological Fluid

Viscosity measurements of the liquids and ER fluid considered in this appendix were done by

a Brookfield Model DV-1+ viscometer (Brookfield Engineering Laboratories, Middleboro, MA)

as shown in Fig. A.5. The type of spindle chosen for measuring all the oil or liquid samples was

the Brookfield Model LV-1 (spindle code: S61). All measurements were done without the

presence of the spindle guard.

The procedure of measuring the liquid viscosity is relatively straightforward. We first filled a

standard 600 (mL) beaker with liquid samples of volumes ranging roughly from 520 to 550

(mL). The size of the beaker and the amount of liquid used were chosen so as to minimize the

boundary or size effects of the beaker on the end results of the viscosity measurements. We

attached the Brookfield LV-1 spindle to the Brookfield DV-i+ viscometer after the DV-l+

viscometer has finished its auto-calibration. The LV- 1 spindle was then totally immersed into the

liquid samples till the liquid surface reaches the notch position as indicated on the LV-1 spindle

rod. After switching on the motor to drive the spindle, viscosity and torque measurement

readouts were recorded at their respective assigned spindle rotation speeds. All measurements

were performed within a room temperature range of 21~25'C.

Calibration tests were first performed to verify the correctness of the viscometer viscosity

and torque readouts. Three viscosity standards were employed, i.e., the Shell DIALA* AX oil,

Silicone oil DC 561, and Silicone oil DC 200. Respective measurements were taken at three

spindle rotation speeds, namely, 50, 60, and 100 rpm. A common result irrespective of the liquid

sample tested during the measurements was that viscosity values tend to be a little bit higher

when measured at a spindle rotation speed of 100 rpm as compared to those obtained at 50 or 60

262 Appendix



Experimental Considerations 263

Base pure oil blend @ 50 rpm @ 60 rpm

Shell DIALA* AX: Silicone oil DC 200 = 0.526: 0.474 ---- 10.95 (mPa -s)

Table A.6. Summary of viscosity results of the base pure oil blend respectively measured at spindle rotation

velocities of 50 and 60 rpm.

Liquid phase of ER fluid (viscosity: 7o) @ 50 rpm @ 60 rpm

DIALA*/DC 200 = 0.526/0.474 & [AOT]= 0.09053 (M) 13.2 (mPa -s) 13 (mPa -s)

Table A.7. Summary of measured viscosity results for the liquid phase of the proposed ER fluid. Measurements

were performed at spindle rotation speeds of 50 and 60 rpm, respectively.

Final ER fluid blend (viscosity: q7) @ 50 rpm @ 60 rpm

Theoretical calculation by Einstein relation 14.9 (mPa -s ) 14.7 (mPa s )

7 ~ q o (1+2.5#)

DIALA*/DC 200 = 0.526/0.474 & [AOT] = 0.09053 (M) 15.4 (mPa s ) 15.5 (mPa s )

& 5% solid volume fraction of PE micro-particles

Table A.8. Comparison between the theoretically predicted and experimentally measured values of the proposed

ER fluid viscosity, q , i.e., the zero electric field viscosity of the ER fluid.

rpm. Since the viscosity values measured at 50 or 60 rpm agree better with the viscosity

standards obtained from material data sheets (Shell material data sheet, 2005; Sigma-Aldrich

material data sheet, 2009) or literature (Elborai, 2006; Khushrushahi, 2010), we shall only

consider and present the viscosity measurements performed at spindle rotations speeds of 50 or

60 rpm. Shown in Table A.5 are the viscosity values of the viscosity standards and the viscosity

measurement results obtained from our calibration tests. As can be seen from the table, our

measurements closely agree with the viscosity standards of the Shell DIALA* AX oil and

Silicone oil DC 200. However, the test result for Silicone oil DC 561 is lower by roughly 20%

from the viscosity standard possibly due to the aging process or inhomogeneity of the viscosity

standard Silicone oil DC 561. With the results of this calibration test, we have gained confidence

in our viscosity measurements and are now ready to measure the viscosities of our proposed ER

fluid and other related liquid samples considered herein.



The final formula of the proposed electrorheological fluid blend:

Shell DIALA* AX: Silicone oil DC 200 = 0.526: 0.474 & Aerosol OT salts at 0.09053 (M)

concentration & 5% solid volume fraction of polyethylene micro-particles (53-75 microns)

Properties of the ER fluid liquid phase:

DIALA* AX/DC 200 = 0.526/0.474 & [AOT] = 0.09053 (M)

Viscosity, lO Conductivity, o Permittivity, 6,

-13.1 (mPa-s) 3.36x10~8 (S/rm) 2.21x10-" (C 2 /N m 2 )

Properties of the ER fluid solid phase (Adamec & Calderwood, 1981; Shugg, 1995):

5% solid volume fraction of polyethylene micro-particles (53-75 microns)

Viscosity Conductivity, o2  Permittivity, c2

-- 0-16 (S/m) 2.02x10-" (C 2 /N. M2 )

Table A.9. Summary of the final formula and material properties of the proposed ER fluid considered in this

appendix.

We next performed viscosity measurements on three liquid samples, they are: (i) the base oil

blend of Shell DIALA* AX/Silicone oil DC 200 with the ratio of the oil mixture being Shell

DIALA* AX : Silicone oil DC 200 = 0.526 : 0.474, (ii) the liquid blend of AOT salt and Shell

DIALA* AX/Silicone oil DC 200 with the oil mixture ratio being 0.526/0.474 and the AOT

concentration being [AOT] = 0.09053 (M), and (iii) the electrorheological fluid (or particle-

liquid suspension) of Shell DIALA* AX/Silicone oil DC 200 = 0.526/0.474 with additives of

[AOT] = 0.09053 (M) and 5% solid volume fraction of polyethylene (PE) micro-particles. The

test results of the above three liquid samples (i), (ii), and (iii) are presented in Tables A.6, A.7,

and A.8, respectively.

As can be learned from comparing Tables A.6 and A.7, the viscosity of the liquid increases

as we add AOT salts into the pure oil mixture of Shell DIALA* AX : Silicone oil DC 200 =

0.526 : 0.474. Moreover, by further adding solid PE micro-particles into the blend of AOT salt

([AOT] = 0.09053 (M)) and Shell DIALA® AX/Silicone oil DC 200 = 0.526/0.474, it can be

found by comparing Tables A.7 and A.8 that the ER fluid (particle-liquid suspension) viscosity,

rq, increases roughly according to the Einstein relation, i.e., 7 ~r (1+2.5#), where r/ is the
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Figure A.6. The Poiseuille electrorheological fluid flow and electrorotation testing channel.

viscosity of the blend of AOT salt ([AOT] = 0.09053 (M)) and Shell DIALA* AX/Silicone oil

DC 200 = 0.526/0.474 and # =5% is the solid volume fraction of the PE micro-particles.

Finally, with the electrical and rheological properties obtained in Sections A.2.1 and A.2.2,

we determine the theoretical value of the critical electric field strength for the onset of single

micro-particle Quincke rotation, i.e., E,, for our proposed electrorheological fluid, namely, Shell

DIALA* AX : Silicone oil DC 200 = 0.526 : 0.474 added with Aerosol OT salts at 0.09053 (M)

concentration and 5% solid volume fraction of polyethylene micro-particles, by substituting the

material properties shown in Table A.9 into Eq. (1.1), that is,

E, 2) 8o 1  :1.62x10 6 (V/m). (A.6)
201) 3e-1 272(r2 -r 1 )

A.3 The Poiseuille Flow Electrorotation Testing Apparatus

The experimental design of our Poiseuille flow electrorotation testing apparatus generally

follows those presented in Lemaire et al. (2006) and Pannacci (2006). Here, we briefly

summarize the procedure and important steps of constructing the testing apparatus. Shown in

Fig. A.6 is a rectangular Poiseuille flow cell. This is where we stress the electrorheological fluid
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flow with a high voltage electric field and is the primary component of the testing apparatus. The

pair of electrodes of the Poiseuille test cell, i.e., the upper and lower parallel plates, was made

using transparent indium tin oxide (ITO) coated glass (30 Ohms/sq.), Bayview Optics, Dover-

Foxcroft, ME) as shown in Fig. A.6. The raw ITO glasses were machined (by Bayview Optics)

into roughly 35.6 (cm) long and 6.93 (cm) wide rectangular electrodes with the glass thickness

being 1.1 (mm). Two one eighth inch (1/8" or 3.2 (mm)) through holes were drilled onto one of

the pair of ITO glasses serving as the upper plate electrode of the Poiseuille flow channel while

the other piece of glass without through holes becomes the lower plate electrode of the channel.

The transparent ITO glass electrodes were chosen because of the need to carefully distinguish

whether the observed negative ER effect is nER1 or nER2, i.e., it is desirable to know whether

the ER fluid flow within the channel is a sediment phase-separated flow or a homogeneous

suspension. Moreover, judging from the observed micro structure of the ER fluid flow, i.e.,

chained particles or a homogeneous suspension, we can also determine whether the stressed high

voltage electric field has reached the experimental value of the critical electric field for the onset

of micro-particle Quincke rotation, which usually is a value greater than the theoretical predicted

E as given by Eq. (1.1). ITO coated transparent plastics were also considered during the

process of development. However, the surface resistivity of ITO coated plastics is found to be

higher than that of the ITO coated glasses.

The pair of ITO glasses shown in Fig. A.6 were spaced apart by insulating electrical grade

Teflon® PTFE films. We bonded the ITO glasses and the PTFE films together by an oil resistant

Permatex Ultra-blue RTV gasket maker. The ITO coated side of the glass electrodes was bonded

to copper foils by silver filled conducting epoxy such that the copper foils can be further

connected to the external high voltage power supply. The ER fluid enters and exits the channel

space (indicated by the rectangular transparent region shown in Fig. A.6) through PTFE

microbore tubings which have inner diameter of 0.022 (in.) and outer diameter of 0.042 (in.).

The channel space in which the ER fluid flows as indicated by the rectangular transparent region

in the figure was made to be 30 (cm) long by 2 (cm) wide, and the thickness of the channel, h

(or spacing between the two electrodes), is to be carefully controlled to roughly 1.1 (mm). With a

channel height of h=1.1 (mm), the required high voltage drop in order to produce the

theoretical electric field strength as calculated in Eq. (A.6) is at least 1.8 (kV). The schematic
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Figure A.7. Zoom-in view of the Poiseuille flow channel testing section of the whole completed electrorotation

testing apparatus. The dimension of channel height, h, of Poiseuille flow channel is restrained by plastic C-

clamps as shown holding the test cell in the figure.

diagram and the designed dimensions of the Poiseuille flow test cell as shown in Fig. A.6 are

given at the end of this appendix.

Lastly, we present the final constructed Poiseuille flow electrorotation testing apparatus.

Figure A.7 shows a zoom-in view of the final Poiseuille test cell (thin rectangular object in the

middle of the figure). Due to the flexibility of the bonding Permatex Ultra-blue RTV gasket

maker adhesive between the ITO glass and the PTFE films as previously described, the

dimension of the channel height, h =1.1 (mm), may vary, when hydrodynamic pressure builds

up due to the ER fluid flow within the flow channel, and thus may change the high voltage

electric field stressed across the channel. Therefore, the original Poiseuille test cell as shown in

Fig. A.6 was further carefully clamped and restrained to the dimension of h =1.1 (mm) by use

of plastic C-clamps (Carr Lane Mfg. Co., St. Louis, MO) so as to maintain constant channel

geometry and the subsequent electric field strengths applied. Plastic tubings with outer diameter

of 1/8" (in.) were used to connect the two 1/8" (in.) through holes in the upper ITO glass

electrode and a differential pressure sensor (model 216-D-XF-LB, GP:50 Co., Grand Island, NY)

such that the pressure drop along the stream wise direction can be measured and recorded. One

of the microbore tubings of the Poiseuille test cell was connected to a fluid reservoir upstream

while the other serves as an outlet to a beaker receiving the ER fluid discharge.
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The whole global view of the electrorotation testing apparatus setup is illustrated in Fig. A.8.

As can be seen from the figure, the upstream of the Poiseuille test cell was connected to a four

liter carboy made of high density polyethylene serving as the ER fluid reservoir. We controlled

the fluid pressure head or vertical distance between the ER fluid liquid surface in the reservoir

and the horizontal position of the Poiseuille test cell by adjustable jacks that are positioned

beneath the reservoir. Since the ER fluid flow is designed as an open loop circuit, i.e., fluid does

not recirculate between upstream and downstream, the loss of pressure head within the reservoir

was compensated by inert nitrogen gas coming from the compressed nitrogen gas cylinder

(Airgas, Salem, NH) as shown on the left of the figure. The amount and the outlet pressure of the

nitrogen gas released into the fluid reservoir were regulated by an electro-pneumatic proportional

valve (model: ED02, Bosch Rexroth Corp.: Pneumatics, Lexington, KY) as shown right above

the carboy in Fig. A.8. A computer program is required to monitor the change in pressure drop in

the flow channel and send control signals to the electro-pneumatic valve so that a suitable

amount of nitrogen gas is released into the reservoir to compensate for the loss of pressure head

in the reservoir and to maintain a constant pressure drop within the Poiseuille flow channel

downstream. A closed loop or recirculating design of the ER fluid flow was not considered

because of the particle-liquid suspension nature of the ER fluid-the size of the micro-particles

suspended in our proposed ER fluid are generally too large to smoothly flow within commercial

pneumatic or gear pumps without jamming the equipment. As for the receiving end or

downstream of our ER fluid flow, a 2 liter glass beaker was used to receive the ER fluid

discharge from the Poiseuille flow channel. The top loading electronic balance (A&D

Engineering Inc., San Jose, CA) beneath the 2 liter glass beaker was employed to measure the

change in the amount of liquid mass in the beaker with respect to time. The actual values of the

voltage stressed and the current passing through the Poiseuille test cell were to be measured by a

Fluke multimeter (accompanied with Fluke high voltage probe) and a Keithley 614 electrometer.

Direct current (DC) power was supplied to the differential pressure sensor and the electro-

pneumatic valve by an HP 0-40 V dual channel power supply. The DC high voltage power

supply was manufactured by Hipotronics. In the following, we summarize some further

experimental aspects not discussed or considered in detail in our present treatment:

(i) De-gassing of insulating liquid oils: de-gassing is a procedure performed on insulating oils

before their application to high power or high voltage equipment. The reason for this
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Figure A.8. Global view of the whole completed Poiseuille flow electrorotation testing apparatus and equipment.

procedure is to remove micro or nano gas bubbles trapped within the insulating oils so that

the presence of the micro/nano bubbles does not locally distort the electric field distribution

within the liquids (Crowley, 1999). However, since we are actually mixing two types of

insulating oil as well as AOT salt and polyethylene micro-particles all together, it is almost

impossible to perform a de-gassing procedure on the liquid phase. The trapped micro or

nano air bubbles may then serve as additional insulating sites or spots within the liquid

phase, which may be equivalently considered as additional insulating micro-particles

suspended within the liquid phase, and may change the actual fraction of insulating volume

as compared to the fraction of slightly conducting liquid volume. The presence of

micro/nano air bubbles also lowers the dielectric breakdown strength of the liquid.

(ii) Moisture control of the electrorheological fluid: although we have performed a moisture

control on the solid micro-particles before adding them into the liquid phase, moisture

control is again a somewhat case specific procedure depending on the material combination

employed for synthesizing the ER fluids as well as practical experimental experiences. In

spite of the data available in the literature (Boissy et al., 1995; Wu & Conrad, 1997), it is
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less likely to find a general measure or rule-of-the-thumb that may indicate or show whether

our dehydration procedure is complete or incomplete. Moreover, moisture may still diffuse

into the ER fluid and change the conductivity of the whole suspension as time progresses.

All these variables add further complexities to the ER fluid system and may cause potential

high voltage breakdown phenomena to occur in the synthesized ER fluid-a phenomenon

which may damage our Poiseuille test cell and other experimental equipment. Therefore, it

is still likely an open question of finding a suitable way to control the moisture within the

ER fluid and to eliminate the possibility of high voltage breakdown.

(iii) Despite the theoretically estimated value of the critical electric field strength for the onset of

Quincke rotation as given in Eq. (A.6), the actual experimental critical electric field is

usually much greater than the theoretical value (Lemaire et al., 2006; Pannacci et al., 2007a)

due to chaining of micro-particles at high field low shear rate conditions. Hence, it is usually

favorable to lower the theoretically estimated critical electric field, based on the measured

electrical and rheological properties of the solid and liquid phases, to roughly 7x1O

(V/m); a critical electric field of 1.62 x 106 (V/m) as calculated by Eq. (A.6) is generally

still too high. Also, the association and dissociation processes of salts within non-polar

liquids are field dependent (Onsager, 1934; Castellanos, 1998), and thus the liquid phase

conductivity becomes a function of the applied electric field, i.e., o = o (E0 ). The theory

of Quincke rotation discussed in this thesis does not account for such field dependences of

the liquid phase conductivity.

(iv) High voltage safety: when working with voltage strengths greater than 600 (V), workers are

always required to work in pairs. It is also necessary to have suitable grounding equipment

or facilities, such as discharge rods and metallic fiber woven stripes, designed and integrated

to the primary experimental apparatus. Lockout procedures of energized equipment must

also be practiced so as to ensure the safety of both workers and non-essential personnel.

A.4 The Electrorotation Modified Poiseuille Flow Rate Experiment

A. 4.1 Some Revisions to the Experimental Design and Conditions of the Experiments

Before proceeding onto the details of the micro-particle electrorotation modified Poiseuille

flow rate experiment, some revisions were made to the original experimental design and
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conditions as discussed in the previous sections of this appendix. These revisions are

summarized as follows:

(i) The two 1/8"-through hole junctions connecting the upper ITO glass electrode to the flexible

PVC tubing (to the differential pressure sensor) originally made by the Permatex Ultra-blue

RTV gasket making adhesive were not gas tight, and thus the fluid within the Poiseuille flow

channel may leak through the junctions resulting in erroneous differential pressure sensor

measurements. To solve this problem, we replaced the original RTV gasket junctions with

Upchurch* NanoPorts (Upchurch Scientific, Inc., Oak Harbor, WA) (Greener et al., 2008)

model N-333 along with P-663 adapters, which connect the PVC tubing with the N-333

NanoPorts. With the combined N-333 and P-663 NanoPorts module, robust and gas tight

junctions were made to connect the 1/8"-through hole junctions on the upper ITO glass

electrode to the flexible PVC tubings (to the differential pressure sensor) so that no

suspension fluid within the Poiseuille flow channel leaks out through the junctions and that

the differential pressure measurements taken by the differential pressure sensor are more

stabilized.

(ii) In our original design, the suspension fluid leaks through the tiny gaps or pockets trapped in-

between the bonding surfaces of the ITO glass electrodes and the PTFE film spacers (to keep

the two electrodes apart) from the Poiseuille flow test cell. This problem was solved by

replacing the PTFE film spacers with the Permatex Ultra-blue RTV gasket making adhesive

so that tiny gaps or pockets are eliminated from the bonding surfaces of the ITO glass

electrodes and the RTV gaskets as was done in Pannacci (2006). All the corners or edges of

the new Poiseuille flow test cell were then completely sealed with the Permatex Ultra-blue

RTV gasket making adhesive to eliminate all possible leakage of ER fluid from the Poiseuille

flow test cell. The channel height of the new Poiseuille flow test cell was maintained at

h ~1.1 (mm).

(iii)The originally proposed formula for the ER fluid suspension as discussed in Sections A. 1 and

A.2 suffers from micro-particle sedimentation (despite our efforts of matching the densities

of the solid and liquid phases); the PE micro-particles sediment in the blend of

AOT/DIALA/SILICONE oil and electrorotation flow rate experiments cannot be conducted.

We modified the ER fluid suspension by replacing the PE particles with glucose powder
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(Sigma-Aldrich) in the original oil blend such that the suspension phase or state of the ER

fluid can be maintained long enough for flow rate measurement purposes.

A. 4.2 The Experimental Procedure

As described in the previous Section A.3, the upstream of the ITO glass Poiseuille flow test

cell was connected to a 4 liter carboy serving as an ER fluid reservoir. We varied the

gravitational pressure head by adjusting the vertical height of the carboy reservoir to generate

different pressure gradients in the Poiseuille flow test cell driving the fluid flow. The pressure

gradient within the Poiseuille flow test cell was measured by a GP:50 differential pressure sensor

(model 216-D-XF-LB, GP:50 Co., Grand Island, NY), which was excited with 24-25 Vdc

voltage by the HP 0-40 V dual channel DC power supply. Measurement signals generated by the

differential pressure sensor were collected by a data acquisition system consisting of a National

Instruments NI USB-6221 BNC data acquisition (DAQ) card and a DELL Optiplex 760 desktop

PC installed with LabVIEW 2009. A simple LabVIEW program, as shown in Fig. A.9, was

coded so that a virtual instrument was developed to monitor the pressure gradient measured by

the differential pressure sensor as well as take average over the pressure gradient measurements

recorded over a specific period of time. Confidence tests were performed on the differential

pressure sensor and the data acquisition system (including LabVIEW coding) by hydrostatic

pressure tests. During our hydrostatic pressure tests, two 1/8" OD PVC tubings both filled with a

certain amount of Shell DIALA AX oil were connected to the GP:50 differential pressure sensor.

We then varied the vertical distance between the two liquid surfaces within the two respective

PVC tubings to generate different values of hydrostatic pressure head. By measuring the vertical

distances between the two liquid surfaces in the respective PVC tubings and converting these

measurements of hydrostatic pressure differences into proper units, we can compare the pressure

difference measurements obtained by measuring the vertical distances between the two liquid

surfaces with the pressure differences measured by the LabVIEW DAQ system. Both the

LabVIEW DAQ system and the GP:50 differential pressure sensor were verified to give reliable

measurements.
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fla

Figure A.9. Simple LabVIEW program used for monitoring the driving pressure gradient within the Poiseuille

flow channel. (a) Front panel. (b) Block diagram.

A WinCT software (A&D Engineering Inc., San Jose, CA), including RSKEY and RSCOM

programs, was also installed into our desktop PC to record the liquid mass measurements

obtained by the A&D top loading electronic balance through an RS-232C interface. The software

records the liquid mass within the 2 liter beaker on top of the electronic balance at the fluid

receiving end of the electrorotation testing apparatus as well as records the time at which each

mass measurement was taken. Therefore, by measuring and recording the increase of fluid mass

El
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within the beaker with respect to time, we can calculate the mass flow rate (of volume flow rate)

of the ER fluid being discharged out of the ITO glass Poiseuille flow test channel. The sensitivity

of the electronic balance used in our experiments had a minimum measureable unit mass of 0.01

g and a maximum sampling rate (with respect to time) of one measurement every 0.2 seconds.

As shown in Figs. A.8 and A. 10(a), we energized the Poiseuille flow electrorotation test cell

with a Hipotronics R10B high voltage DC power supply (Hipotronics, Inc., Brewster, NY). The

actual voltage stressed between the two ITO glass electrodes of the test cell were measured by a

Fluke 45 dual display multimeter connected to a Fluke 80k-40 high voltage probe (Fluke Co.,

Everett, WA) with a voltage division ratio of 1000:1 as shown in Fig. A.10(b). The voltage

measurements were cross checked between the voltage measured by the Fluke meter and that

found from the voltage indicator on the high voltage power supply. During our experimental

measurements, the current indicator on the high voltage power supply showed that there is

indeed current (- 0.1 mA) passing through the Poiseuille flow electrorotation test cell when the

test cell is stressed by high voltage.

Before energizing the test cell and taking actual measurements of mass or volume flow rates,

we need to make sure that there are indeed particles present within the test cell and that the fluid

inside the test cell is indeed a suspension. This can be easily done by looking through the ITO

glass electrodes of the Poiseuille flow test cell and see if the fluid inside the test cell is

transparent or relatively fuzzy (opaque for high concentrations of particles). Since the flow being

discharged out of the Poiseuille flow test cell was observed to be dripping flow during all our

measurements, the liquid surface level in the 4 liter carboy ER fluid reservoir basically doesn't

change within the duration of each measurement, and thus there is no need to compensate the

loss of pressure head (due to the loss of liquid) within the fluid reservoir by additional nitrogen

gas input into the carboy reservoir (Peters et al., 2010). After energizing the Poiseuille flow

electrorotation test cell, we measured the mass flow rate of the fluid suspension, or ER fluid,

being discharged out of test cell with respect to the driving pressure gradient (setup by

gravitational pressure head) at applied DC electric field strengths of E0 = 0.018, 0.7, 1.43, and

2.06 (kV/mm). Using an infrared thermometer, the temperature of the test cell was measured to

be within 22-24'C throughout all our flow rate measurements.

A.4.3 Results and Discussions
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(a)

(b)

Figure A.10. (a) Experimental setup of the Poiseuille flow electrorotation testing apparatus when the apparatus is

energized with high voltage by the Hipotronics R10B high voltage DC power supply. (b) A Fluke 80k-40 high

voltage probe (connected to a Fluke 45 dual display multimeter) with a voltage division ratio of 1000:1 is used to

measure the actual voltage stressed within the ITO glass Poiseuille flow test cell.

Shown in Fig. A. 11 are the mass flow rates of the ER fluid suspension being discharged out

of the Poiseuille flow electrorotation test cell measured with respect to the driving pressure

gradient at applied DC electric field strengths of E0 = 0.0 18 (box), 0.7 (star), 1.43 (triangle), and
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Figure A.11. Mass flow rate of the suspension fluid (or ER fluid) measured with respect to the driving pressure

gradient at applied DC electric field strengths of E0 = 0.018 (box), 0.7 (star), 1.43 (triangle), and 2.06 (diamond)

(kV/mm). Each data point shown in the figure is the averaged result of 2-3 measurements.

2.06 (diamond) (kV/mm). Each data point shown in Fig. A. 11 is the average result of 2-3

measurements. As can be seen from Fig. A. 11, measurements of the mass flow rate of the

suspension fluid generally increased as the driving pressure gradient was increased while the

applied electric field strength was maintained at a certain value. On the other hand, by keeping

the driving pressure gradient within a specific range, we found that the mass flow rate of the

suspension very slightly increased as the applied electric field strength was raised to E0 = 0.7

(star) (kV/mm) as compared to the flow rate measured at E0 =0.018 (box) (kV/mm). As we

continued to raise the field strength to E =1.43 (triangle) (kV/mm), an apparent increase in the

mass flow rate of the suspension was measured. Finally, the mass flow rates of the suspension

dropped to relatively low values as compared to the other measurements when we increased the

DC electric field strength to E0 = 2.06 (diamond) (kV/mm). These measurement results as

shown in Fig. A. 11 were generally likely to be qualitatively consistent with the experimental

measurements reported in Cebers et al. (2002), Lemaire et al. (2006), and Pannacci (2006) as
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well as the theoretical predictions given by the present thesis. The sudden drop in mass flow rate

of the suspension measured at E = 2.06 (diamond) (kV/mm) was possibly likely due to the loss

of applied electric field strength resulting from dielectric breakdown of small air pockets or

bubbles trapped within the RTV gasket making adhesives (spacing the ITO electrodes apart)

since sparks were observed in the RTV region of the electrorotation test cell when the applied

electric field strength was raised to near E = 2.27 (kV/mm). Nonetheless, no apparent drop in

the applied electric field strength or voltage strength was measured by the Fluke meter during the

flow rate measurements conducted at E = 2.06 (diamond) (kV/mm).

Also found from Fig. A. 11 was the respective parametric ranges of the driving pressure

gradients and the measured mass flow rates were quite limited. This limitation was likely due to

several reasons. The first reason was that the hydraulic resistance of the whole flow circuit of the

electrorotation testing apparatus (Poiseuille flow test cell and connections to the carboy

reservoir) is likely to be too large leading to the only result of dripping flow observed throughout

our flow rate experiments. Secondly, since our driving pressure gradient within the ITO glass

Poiseuille flow test cell was generated by gravitational pressure heads, the vertical linear distance

available for adjusting the gravitational pressure head was limited by the linear height or distance

from the table surface to the floor ceiling in the lab space. This reason may also lead to the result

of a very low mass flow rate due to a dripping flow. Lastly, due to the very small inner diameter

(0.022 in., or 0.56 mm) of the micro tubing employed for our fluid outlet of the ITO glass

Poiseuille flow electrorotation test cell, surface tension effects were likely to be significant and

thus were likely responsible for a limited dripping flow mass flow rate and undesired variations

in the differential pressure measurements taken by the pressure sensor. To eliminate or minimize

the effects of the above three factors in our experiments, re-design and reconstruction of the

electrorotation testing apparatus is likely needed and thus requires further future experimental

efforts in improving the hardware as well as the resulting measurement results. Despite the

limitations imposed by the hardware, the measurement results shown in Fig. A. 11 surprisingly

agreed with the common intuition of "a stronger driving pressure gradient gives rise to a greater

mass flow rate" as well as with our experimental expectations of what we would observe in an

electrorotation modified fluid flow.

One final comment to the experiments discussed in this Appendix is the need of identifying a

better blend of suspension fluid or ER fluid in which the suspended micro-particles will not
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sediment. If micro-particle sedimentation occurs relatively quickly, a greater part of the

suspended micro-particles will sediment in the fluid reservoir well before entering the high

voltage electrorotation testing section, i.e., the ITO glass Poiseuille flow test cell, and thus

rendering the electrorotation modified flow rate measurements less meaningful while jamming

the flow circuit of the experimental equipment. The measurement results shown in Fig. A. 11 was

due to the modified suspension blend of replacing the PE particles with glucose. We have also

attempted to use the original ER fluid of PE micro-particles suspended within the mixture of

AOT/DIALA/SILICONE oil for our electrorotation modified flow rate experiments. However,

the PE micro-particles sediment relatively quickly (despite our efforts of matching the densities

of the solid and liquid phases) in the fluid reservoir and were not able to enter the Poiseuille flow

test cell for further high voltage testing measurements.
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