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ABSTRACT
Patients who have had an acute coronary syndrome (ACS) are at a relatively high risk of

having subsequent adverse cardiac events. Several electrocardiographic (ECG) measures such as
heart rate variability, heart rate turbulence, deceleration capacity, T-wave altemans, and
morphologic variability have been used to identify patients at an increased risk of recurrent
myocardial infarctions and cardiovascular death.

In this work, we develop a new ECG-based measure for patient risk stratification called
weighted morphologic variability. This measure is based on assessment of beat-to-beat changes
in the morphology of consecutive beats. Weighted morphologic variability identifies patients
who are at more than four-fold risk for cardiovascular death, which is an improvement in ECG-
based risk stratification. The body of this work suggests that prognosticating patients based on
electrocardiographic measures is an effective way of identifying those at risk of adverse
cardiovascular outcomes.

Thesis Supervisor: Collin M. Stultz
Title: Associate Professor of Electrical Engineering and Computer Science

and Health Sciences Technology
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Chapter I:
INTRODUCTION

Approximately 3.5 million people in the United States are hospitalized every year due to

an acute coronary syndrome [1]. An acute coronary syndrome (ACS) is a broad term that

describes clinical events characterized, in part, by myocardial ischemia, which is characterized

by decreased blood flow to the heart. Patients with an ACS often enter the hospital complaining

of chest discomfort that may be accompanied with shortness of breath. ACS can be grouped into

two categories: unstable angina and myocardial infarction (MI). Unstable angina is due to

ischemia without evidence of infarction, or death of the heart muscle (myocardium). A

myocardial infarction, more commonly referred to as a heart attack, is the condition when

ischemia leads to death of the myocardium.

Patients who are diagnosed with an ACS are more likely to have other adverse

cardiovascular events. The GUSTO-Ib trial followed 12,142 patients post-ACS to determine the

effects of recurrent ischemia [2]. Patients with a non-ST segment elevation MI (NSTEMI) had a

5.7% 30-day mortality rate and an 11.1% 1-year mortality rate. Patients with an unstable angina

had a 2.4% 30-day mortality rate and a 7.0% 1-year mortality rate. 7.5% of NSTEMI patients

and 4.8% of unstable angina patients had a myocardial (re)infarction within 30 days. Post-ACS

patients are also likely to have congestive heart failure (CHF), a disease in which failure of the

heart to adequately pump blood to vital organs leads to increased pressure in the pulmonary

vasculature. The increased pulmonary vasculature pressure results in shortness of breath. The

accurate identification of high risk patients is of importance because once these patients are
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detected, doctors can offer them treatments that may decrease their risk of future adverse

outcomes.

Typically, an acute coronary syndrome (ACS) is caused by atherosclerosis, a potentially

dangerous disease characterized by the accumulation of plaques in blood vessels. Atherosclerosis

is very common-nearly all adults have some plaque amassment in their blood vessels [3].

However, not everyone is aggressively treated for atherosclerosis because they are not at high

risk of adverse cardiovascular outcomes. Patients may be at high risk due to hereditary factors or

their lifestyle choices. The extent of an ACS may also vary widely. Therefore, doctors are keen

on understanding the likelihood and type of adverse cardiovascular event that a post-ACS patient

may have.

Currently, there are several techniques that are used to predict adverse cardiovascular

outcomes. The Thrombolysis in Myocardial Infarction (TIMI) risk score is computed from

various clinical factors observed at the initial admission of a patient. Cardiac catheterization is a

helpful invasive test; however, indiscriminate use on all patients may lead to unnecessary

complications on patients who are at low-risk. Many non-invasive tests are used to risk stratify

patients, such as echocardiography, cardiac magnetic resonance imaging (MRI), and cardiac x-

ray computed tomography (CT), but these are expensive and not readily available in many

communities. In contrast, electrocardiographic (ECG) -based measures are inexpensive, non-

invasive, and are easily obtained. We propose the use of a novel ECG-based metric to predict

adverse cardiovascular outcomes in post-ACS patients.

This thesis is organized as follows: the remainder of this chapter is devoted to

background information on electrocardiograms and other risk-stratification techniques. Chapter 2

describes a specific electrocardiographic technique in detail, called morphologic variability
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(MV). Chapter 3 explains the novel electrocardiographic risk-stratification technique called

weighted morphologic variability (WMV) in association with mortality and myocardial

infarctions. Chapter 4 evaluates the performance of WMV. Finally, chapter 5 ends with a

summary of WMV with a hypothesis about its physiological basis.

A. Background

1. Physiology of the Heart

The heart is a pump that transports blood, carrying essential nutrients and oxygen,

throughout the body. The heart consists of four chambers: the left and right upper atria, and the

left and right lower ventricles (Figure 1-1). The left atrium collects oxygenated blood from the

lungs and delivers it to the left ventricle. The left ventricle then pumps this oxygenated blood to

the rest of the body. After blood has been dispersed through the body, and oxygen and nutrients

have been taken up, the deoxygenated blood flows into the right atrium. The right atrium delivers

this blood to the right ventricle, which pumps the blood to the lungs to be oxygenated. A full

heart beat consists of a simultaneous contraction of the atria, followed by a simultaneous

contraction of the ventricles.

2. Electrocardiograms

Electrocardiograms (ECGs) measure surface electrochemical potential differences that

result from signals that originate in the heart (Figure I-2a). Portable Holter monitors can collect

ECGs from patients for at least 24 hours. Between 3 to 12 leads are placed in various locations

on the body to measure surface potential differences arising from the heart. Many

electrocardiographic risk stratification metrics only require information from a single channel
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(consisting of three leads) to predict a patient's cardiovascular health. The work in this thesis is

developed on the information from a single channel.

lft
Atrium

Right
Atrium

Ieft
f7Ve ntricle4a

Right
Ventricle

Figure I-1. Physiology of the heart. The heart has four chambers: the left and right atria, and left

and right ventricles. Image courtesy of Hartzog [4].

At rest, a myocardial cell, or myocyte, remains at a negative potential relative to the

outside of the cell. If the myocyte is stimulated, it becomes depolarized as positive ions flow into

the cell. The cell then repolarizes and returns to its normal, resting state. In the heart, the

electrical stimulation begins at the sinoatrial node (Figure I-2a). This stimulation spreads through

the atria, then through the septum that separates the two ventricles, and finally along the outer

sides of the ventricles. After the initial electrical stimulation, the myocytes all repolarize in order

to return to their resting potential.

An electrocardiogram measures the sum of the potential differences of all of the

myocytes of the heart. Several leads are placed in different locations on the thorax. Each pair of
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leads records the morphology of the voltage changes along a particular axis in the heart. By

analyzing all of the recordings from the leads together, one can determine how the electrical

impulse travels through the heart. Physicians typically identify different parts of the conduction

path with the names "P wave," "PR segment," "QRS complex," "ST segment," and "T wave"

(Figure I-2b). The P wave represents right and left atrial depolarization, the QRS complex

represent ventricular depolarization, and the T wave represents ventricular repolarization.

Sinoatrial Node

R

S

(a) (b)

Figure 1-2. Electrophysiology of the heart. Figure I-2a depicts the electrical impulses travelling

through the heart, and Figure I-2b shows the corresponding ECG signal recorded. Images

courtesy of Lemkin [5].
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B. Risk Stratification Measures

Various techniques are used to risk stratify patients for adverse cardiovascular outcomes.

The following section will describe a few methods in detail. In particular, the TIMI risk score

and echocardiograms are used to noninvasively risk-stratify patients. Also, various

electrocardiographic techniques can be used to predict if post-ACS patients will have a future

adverse cardiovascular outcome.

1. Non ECG-Based Risk-Stratification Measures

A TIMI risk score was developed to assess a patient's risk of death, recurrent MI, or

ischemia, thereby allowing doctors to make better therapeutic decisions. The score is tabulated

based on seven independent factors, which are all associated with poor cardiac outcomes: age >

65 years, the presence of at least three risk factors for cardiac heart disease, prior coronary

stenosis of> 50%, the presence of ST segment deviation on admission ECG, at least two angina

episodes in the prior 24 hours, elevated serum cardiac biomarkers, and the use of aspirin in the

prior seven days [6]. While the TIMI risk score is a useful predictor of future cardiac events,

some patients who do not have a high risk score may still suffer from cardiovascular events and

other patients with a low risk score may have adverse cardiovascular sequelae. Therefore,

additional methods for accurate risk stratification are needed.

An echocardiogram is an ultrasound study of the heart, and can reveal information about

blockages and blood flow within the heart. Other imaging techniques can provide similar

information. Clinicians often use the left ventricular ejection fraction (LVEF) as a measure of the

health of the heart, which can be calculated using an echocardiogram. The LVEF is the fraction

of blood in the left ventricle that is pumped out of the heart during systole, when the left
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ventricle contracts. Typically, a healthy patient has an LVEF of 55-75% [7]. The Candesartan in

Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) Program found

that adverse cardiovascular outcomes were minimal in patients with LVEF higher than 45% [8].

Clinicians typically aggressively treat patients with LVEF lower than 40%.

2. Electrocardiographic Risk-Stratification Measures

Damaged myocardium conducts electrochemical impulses differently than normal

myocardium. As a result, the morphology of ECG signals may look very different in diseased

hearts. The morphology of the ECG can therefore give insight to the health of the cardiovascular

system. By observing the shape of a patient's ECG, physicians can gain insight into the problems

a patient may have. Heart rate variability (HRV), deceleration capacity (DC), and T-wave

alternans (TWA)-quantities that are calculated from the ECG-can provide information on the

"electrical health" of the heart, thereby identifying patients at potential risk.

Heart rate variability (HRV) is a measure of small differences in the heart rate. Since the

heart rate is largely determined by the autonomic nervous system, HRV is an indirect measure of

the health of the cardiovascular and autonomic nervous systems. In some people, either the

autonomic nervous system does not function properly or the heart does not respond appropriately

to the autonomic stimuli. An unhealthy patient's heart rate exhibits relatively small beat-to-beat

variations in measured Holter recordings.

HRV is based on an analysis of the RR time series. The RR series is a sequence of times

between successive R-waves in an ECG. The NN series (for normal-to-normal) is defined as the

RR time series for "normal beats; i.e., beats representing normal conduction through the

myocardium. Time-domain metrics commonly include the SDNN (standard deviation of the NN

19



series) and the SDANN (standard deviation of the mean NN series in a five-minute window).

Frequency-domain metrics use the power spectral density (PSD) of the RR interval time series.

One frequency metric includes LF/HF, which is the ratio of the power in the low frequency band

(0.04 - 0.15 Hz) to the power in the high frequency band (0.15 - 0.40 Hz). The LF/HF ratio is

computed for 5-minute windows. Patients with a LF/HF ratio < 0.95 are considered to be at risk

[9]. Frequency-domain metrics correlate well with in-hospital mortality independently of other

commonly-used predictors such as left ventricular ejection fraction [10]. Low HRV also

correlated with death within 30 days and death within a year after admission to a hospital for an

unstable angina or acute MI [11]. Combined with other risk factors, HRV increases the

predictability of cardiac events [10].

Heart rate turbulence (HRT) is an electrocardiographic measure that is also based on

changes in the heart rate. In particular, HRT assesses the response of the heart rate following

premature ventricular complexes (PVCs). The premature beat causes less blood than normal to

eject from the heart, resulting in a lower blood pressure than expected. The autonomic nervous

system maintains homeostasis by increasing the heart rate in order to increase the blood pressure.

Usually, the autonomic nervous system over-regulates and the blood pressure increases too

much. The heart rate is then decreased in order to bring the blood pressure back to homeostatic

levels.

HRT quantifies the heart rate fluctuations with two ECG metrics: the turbulence onset

(TO) and the turbulence slope (TS). TO is the percentage change, expressed as a ratio, in the first

RR interval after PVC to the last RR interval before PVC, to quantify the increasing heart rate

changes. This is shown in (Equation I-1), where RR 1 and RR 2 are the first two normal intervals



following a PVC, and RR -2 and RR -1 are the first two normal intervals preceding a PVC

(Figure 1-3, Figure 1-4).

(RR1+RR 2)- (RR-2+RR-1)
(RR - 2 + RR - 1)

(Equation I-1)

RR-2 RR-1 RR 1 RR2

Figure 1-3. RR interval discretization for heart rate turbulence. RR -2 and RR -l are the first

two normal intervals preceding a PVC and RR 1 and RR 2 are the first two normal intervals

following a PVC. Figure adapted from Biocom Technologies [12].

The turbulence slope (TS) measures the slowing of the heart rate as it returns to its

baseline value. TS is the maximum regression slope of any five consecutive RR interval values

following a PVC (Figure 1-4). A lower slope means the heart takes longer to return to the

baseline value, indicating an unhealthy heart or an unhealthy autonomic nervous system.

Patients are scored 0 for normal HRT values, 1 for either an abnormal TS or abnormal

TO, and 2 for abnormal TS and TO. Patients who are in the HRT category 2 are more likely to

die following a myocardial infarction (MI) [13]. The baroreflex function activates the

parasympathetic nervous system, which lowers blood pressure within the body and is found to

correlate with HRT [14].

...............
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-1 1 5 10 15

# of RR interval

Figure 1-4. Heart rate turbulence calculation. Heart rate turbulence (HRT) is calculated by the

turbulence onset (TO) metric and the turbulence slope (TS) metric. The PVC is identified as beat

'0'. TO is the ratio between the average of the two RR intervals preceding a PVC to the average

of the two RR intervals following a PVC. TS is the maximum regression slope of 5 consecutive

RR intervals within the first 15 RR intervals after the PVC. The light blue lines indicate all of the

possible regression slopes, and the dark blue line indicates the maximum regression slope. Figure

courtesy of Bauer [15].

Deceleration capacity (DC) has also been associated with undesired cardiac events [16].

This work has been developed as an extension to the work on HRT, but no PVC is required for

the calculations. First, anchors are identified in which one long RR interval follows a shorter RR

interval. The anchor is defined as the longer RR interval. The computation for DC is similar to

that of TO calculated in HRT. The lengths of the two RR intervals before (RR -2 and RR -1) the

anchor, the length of the anchor (RR 0), and the length of the interval after the anchor (RR 1) are

recorded (Figure 1-5). The average of all of the lengths of the RR -2 intervals, RR -1 intervals,

...... . . ........



RR 0 intervals, and RR 1 intervals are denoted by X[-2], X[-l], X[O], and X[l], respectively.

Then, the DC calculation is as follows:

DC = (X[0] + X[1]) - (X[-2] + X[-1])
4

(Equation 1-2)

Low DC values were found to be more predictive of mortality than LVEF in post-myocardial

infarction patients [16].

RR -2 RR -1 RR 0 RR I

Figure 1-5. RR interval discretization for deceleration capacity. The anchor is the identified as

the long RR intervals where one long RR interval precedes a shorter one. RR -2 and RR -l are

the first two RR intervals preceding the anchor, RR 0 is the long RR interval anchor, and RR 1 is

the first normal interval following the anchor. Figure adapted from Biocom Technologies [12].

Finally, T-wave alternans (TWA) is another ECG-based analytical technique used to risk

stratify patients. In some patients, the T-wave varies in magnitude from beat-to-beat, usually

alternating between two morphologies. TWA measures these variations. TWA has been

associated with ventricular arrhythmias [17] and may be correlated with sudden cardiac death

(SCD) [14]. However, TWA is often difficult to measure from standard ECGs because it

operates in the range of microvolts while standard ECG recordings are on a milivolt scale.

Therefore, sensitive equipment is required to measure TWA.

23
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HRV, HRT, DC, and TWA all correlate with poor outcomes such as death and

ventricular arrhythmias. However, none of these measures are able to identify all patients who

are at risk of adverse cardiac events. Therefore, improved risk-stratification measures are still

required.



Chapter II:
MORPHOLOGIC VARIABILITY

Morphologic variability (MV) measures the underlying beat-to-beat changes in the shape

of an ECG. To calculate the MV of a patient, the ECG first needs to be segmented into the

individual beats. Then, an intermediate time series called the morphologic distance (MD) is

calculated using a technique called dynamic time warping (DTW) that measures the difference

between two successive beats. Finally, the MD is analyzed in the frequency domain to determine

the MV value for a patient.

A. Patient Population

The goal of this work is to identify patients who are high risk of cardiovascular death and

recurrent myocardial infarction after an ACS. To accomplish this, we developed and tested the

WMV method using data from the DISPERSE-2 (TIMI 33) trial and MERLIN (TIMI 36) trial.

The MERLIN trial followed 6560 post-non-ST segment elevation ACS (NSTEACS)

patients for a median follow up period of 348 days, and the DISPERSE-2 (TIM133) trial

followed 990 post-NSTE ACS patients for 90 days for clinical drug studies [18, 19]. ECG data

were sampled at 128 Hz for a portion of those patients, and data with too much noise were

discarded.

The ECGs from these patients were pre-processed for calculating MV [20]. Patients with

less than 24 hours of continuous ECG data were excluded from the study. Noise was removed

from the signals in two steps. First, the ECG signal was median filtered to estimate the amount of



baseline wander. This estimated baseline wander was subtracted from the ECG signal. Second,

additional noise was removed by applying a wavelet denoising filter with a soft threshold [21].

Afterwards, parts of the ECG signal were rejected if the signal-to-noise ratio was still small post-

noise-removal. The Physionet Signal Quality Index (SQI) package removed portions of the ECG

with a high signal-to-noise ratio and ectopic beats [22]. This was to ensure that the actual

morphology of the beats was being analyzed instead of the length of the beats. Finally, the ECG

signal was divided into 30-minute segments. For each segment, if the standard deviation of the

R-wave amplitude was greater than the standard deviation for a uniform distribution between 0.5

and 1.5, the segment was removed [20]. The reasoning behind this is that, physiologically, it is

unlikely for the R-wave to change uniformly by more than 50% of its mean value. Therefore, a

maximum standard deviation of 0.2887 was chosen for the R-wave amplitudes in each 30-minute

interval.

Data from a total of 764 DISPERSE patients (14 cardiovascular deaths, 28 post-ACS

myocardial infarctions) and 4555 MERLIN patients (230 cardiovascular deaths, 347 myocardial

infarctions) were observed. 2254 of the MERLIN patients were given a trial drug called

ranolazine. A placebo was administered on the rest of the MERLIN patients. The patients were

given Holter monitors to continuously record their ECGs for 7 days after a hospitalization

occurred within 48 hours of an ACS.

B. Dynamic Time Warping

To calculate morphologic variability, the energy difference between each pair of

consecutive beats first needs to be found. If the beats were strictly subtracted from each other

however, samples from one beat may be compared with samples from another beat that are part
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of different waves or intervals. For example, in Figure II-1, the end of the T-wave in the blue

ECG corresponds to the middle of the T-wave in the red ECG. To determine the difference

between two beats based on morphology, we wanted to ensure that appropriate segments of each

beat were being compared. Dynamic time warping (DTW) measures the morphologic similarity

between two heart beats (Figure II-1). The two beats are "warped" in the time domain to reveal

the underlying morphological differences in the beats. One sample in a beat can match with

several samples in another beat.

Figure 11-1. Alignment of heart beats using dynamic time warping. The two beats on the left

depict a comparison of the beats using strictly the Euclidean distance. The vertical lines show

that the sample from a given time in the red beat is compared to a sample at the same time from

the blue beat, though the beats may be at different phases on conduction at that time. The end of

the T-wave in the blue beat is being compared to the middle of the T-wave in the red beat. The

figure on the right shows how DTW can align two beats so that relevant conduction phases are

compared. Relevant points in the conduction path of the two beats are evaluated. This figure

depicts the variability in the T-wave. However, DTW can capture differences along the entire

conduction cycle. Image courtesy of Syed, et al. [20].
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DTW is an alignment of two time series, A and B, of length m and n, respectively. An

m x n distance matrix is constructed, where the (ij) element of the matrix is the distance

between the ith element of A and the h element of B. The distance metric used is the Euclidean

distance, (A (i) - Bqj))2 . A warping path, (p, of length K is found from this distance matrix. An

alignment of the two beats is simply the warping path. p(k) is defined as:

P(k) = (9A(k), (PB(k)), 1 < k < K,
(Equation 11-1)

where pA represents the row index of the distance matrix and (pB represents the column index of

the distance matrix.

The dynamic time warping alignment is the path that has the minimum cost associated

with it. The cost, C, for a particular path is defined as the sum of the squares of the differences

between the pairs of matched elements (Equation 11-2).

K

Ce(A,B) = (AOA(k)] - B[VB(k)])2
k=1

(Equation 11-2)

The cost to align two successive beats is the energy difference between the two beats. Therefore,

the dynamic time warping alignment between the two beats can be used as a metric for how

much the two beats differ (Equation 11-3).

DTW(A, B) = min C.(A, B)

(Equation 11-3)

Thus, the final alignment of the two beats depends both on the amplitude alignment of the beats,

and temporal aspect of the beats, as reflected in the length of the alignment, K.



C. Morphologic Distance

The morphologic distance (MD) is a measure of the difference in the morphology of two

heart beats. DTW aligns two heart beats by their morphology. The MD value for two beats is

defined as the energy difference, or cost, for the DTW alignment of those two beats. An ECG

signal is converted to an MD time series by comparing each beat with its previous beat in a pair-

wise manner (Figure 11-2). This MD series is then smoothed using a median filter of length 8 for

further analysis [20].

(a) Beat Time: to ti t2 t3 ...

ECG:

Dynamic Time Warping
(b) (DTW) Alignment:

(c) MD Series: DTW(beat 0, beat 1) DTW(beat 1, beat 2) DTW(beat 2, beat 3)
MD Times: ti t2  t3

Figure 11-2. MD time series. The successive beats of an ECG (a) are aligned using dynamic time

warping (DTW) (b). Vertical lines connect data that correspond to each other in the red and blue

heart beats. After using DTW, related portions of a beat are mapped to correspond to each other.

The morphologic distance (MD) is the sum-of-squares energy difference between aligned beats,

or the DTW cost (c). DTW image courtesy of Syed, et al. [20].
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D. Morphologic Variability

Commonly used electrocardiographic risk-stratification measures observe variations in

the heart rate of a patient. Morphologic variability (MV) observes changes in the shapes of the

heart beats in an ECG [20]. These changes in the morphology of the heart beat may indicate

some underlying problem with the conduction path of the electrical signal through the heart. The

problem in the conduction pathway could be due to ischemia or myocardial infarction.

MV is computed from the morphologic distance time series. First, the ECG signal for a

patient is divided into 5-minute intervals. Only the first 24 hours of the signal are used. Then, the

DTW distance between each pair of consecutive beats is computed and recorded as the MD time

series. Using the rationale from HRV, the frequency domain of the MD time series can also

characterize the variability in the ECG morphology. Therefore, the power spectral density of the

MD series is computed. To compute the MV, the sum of the power over a particular diagnostic

frequency band is found for all five-minute intervals for each patient (Equation 11-4).

HF

MV6 = Power (v)
v = LF

(Equation 11-4)

where 0 represents a particular 5 minute interval, v is the frequency, LF is the low frequency

bound, and HF is the high frequency bound. The final MV value is the 90th percentile value of all

of the sums, or 90th percentile value of the MVe's.

The choice of the optimal frequency band in the computation of MV is a key component

of the analysis. To find an optimal diagnostic frequency band, the subsequent procedure is

followed. For all combinations of low and high threshold frequencies between 0.10 Hz and 0.60

Hz in intervals of 0.01 Hz, MV values are calculated for each patient. The correlation of the MV

values and certain cardiovascular outcomes are then measured based on a receiver operating
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characteristic (ROC) curve. The optimal frequency band is found from this ROC analysis, as

described in the following section.

E. Receiver Operating Characteristic

The receiver operating characteristic (ROC) is a measure of the predictive capability of a

metric. Specifically, the ROC measures the true positive, hit rate of correctly identifying patients

at high risk of adverse cardiovascular outcomes versus the false positive rate of incorrectly

identifying patients at high risk. The area under the ROC curve is the c-statistic. A c-statistic of

0.5 indicates that the true positive rate is equivalent to the false positive rate, meaning the

predictor cannot distinguish between high risk and low risk patients. The larger the area under

the ROC curve, the larger the true positive rate. Generally, a c-statistic of 0.7 or greater is

considered to adequately distinguish between two outcomes.

By computing ROC curves for many different frequency bands, we identify the

frequency range that is best able to differentiate between low risk and high risk patients. Based

on the MV values, a frequency band that correlates the most with a certain outcome is identified.

For each combination of frequency bands from 0.10 Hz to 0.60 Hz, with a resolution of 0.01 Hz,

a c-statistic is computed. These c-statistics are then combined graphically to form a 'heat map.'

A heat map shows which frequency ranges provide the highest c-statistic, or the best predictive

value (Figure 11-3).

Previous work suggests that patients in the upper quartile of MV values (> 52.5) had a c-

statistic of 0.72 for a frequency range between 0.30-0.55 Hz when calculated to predict death.

This diagnostic frequency of MV values was found to have a hazard ratio for death of 8.46 post-

ACS, indicating that MV was predictive of death [20].
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Figure 11-3. Heat map of morphologic variability. The best c-statistic for MV was 0.774 in the

0.35-0.36 Hz frequency range. However, the diagnostic frequency was generalized to 0.30-0.55

Hz.
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Chapter III:
WEIGHTED MORPHOLOGIC VARIABILITY

In this chapter, a new method, called weighted morphologic variability (WMV), will be

introduced that uses electrocardiographic morphologic information to predict post-ACS adverse

cardiovascular outcomes. This chapter is organized as follows. First, we will describe the patient

populations we used to evaluate WMV. Next, the calculation of WMV will be presented. WMV

weights various frequencies according to their importance in risk stratification. We end by

describing the simulated annealing algorithm that was used to find the best set of weights for risk

stratifying patients.

A. Weighted Morphologic Variability

Weighted morphologic variability (WMV) is an extension of the work on morphologic

variability. Morphologic variability uses one frequency band to estimate a given patient's risk of

subsequent adverse cardiac event. WMV uses multiple frequency bands to estimate risk factors.

Recall that the MV was found by initially calculating the power spectral density of the

MD series, divided into 5-minute intervals. The MV for a particular 5 minute interval was found

as the sum of the power over a particular frequency band (Equation III-1). A patient's MV was

then the 90th percentile value of the entire individual 5-minute interval MVs. The 90th percentile

value was chosen maximize information, but minimize noise [23]. Thus, the steps for finding

MV are:

1. Compute the MD time series and divide the MD time series into 5 minute intervals.
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2. Compute the MV0 for each 5-minute interval over a particular frequency band (Equation

III-1).

HF

MV0 = Power (v)
v = LF

(Equation 111-1)

3. MV is the 9 0 th percentile MVe value.

Weighted morphologic variability similarly uses the MD time series, divided into 5-

minute intervals. However, WMV associates a weight with each frequency interval. WMV is

computed as following:

1. The MD series is calculated and divided into 5 minute intervals.

2. The maximum frequency band is divided into n intervals.

3. For each interval, WMV, is the 9 0 th percentile value of the sum of the power in that

particular frequency band (Equation 111-2).

HFi

WMV = Powero (v)
v = LFj

(Equation 111-2)

4. WMV is the sum of the weighted WMVe's (Equation 111-3).

n

WMV= a- WMV

n HFi

= a Power0 (v)
i=1 v=LFi

(Equation 111-3)

where n is the number of intervals into which the complete frequency range is divided into, a, is

the weight associated with a particular frequency band, LFn is the lower bound frequency of a

particular frequency band, and HFn is the upper bound frequency of the frequency band. Power9

34



is the sum of the power over the specified frequency range for a particular 5-minute interval. To

give the weights a bound, the sum of ai's are set to be 1 (Equation 111-4).

n

ai= 1
i=1

(Equation 111-4)

MV is a special case of WMV. If n = 1 and a = 1, (or ifa1 = 1, and all other a, = 0) then:

1 HFi

WMV = I 1_ Powere (v)
i=1 v=LFi

HF

= Powero(v) = MV

v = LF

(Equation 111-5)

However, it is important to note that extracting the 90% value when computing MV and WMV

occur at different points in the calculation. When calculating MV, the 9 0th percentile value of the

sums is found last. In WMV calculations, the 90th percentile values are found first, before

weighting the WMVi's.

Two tests were performed on the various datasets to determine the best set of weights, or

ai's, and the robustness of WMV in predicting death and myocardial infarction. First, the

maximum frequency range was divided into three intervals, where n = 3. Then several sets of

weights were tested to determine the importance of WMV. Afterwards, simulated annealing was

used to find the best set of alphas with n = 600, the largest possible n, given the data. The

following two subsections detail these two processes.



1. WMV with 3 Frequency Bands

WMV was first tested using three frequency bands. The power spectral density of the

MD time series was computed from 0.00 Hz to 0.60 Hz. First, the 0.001Hz to 0.600 Hz

frequency spectrum was divided into three segments. The spectrum had two variable cutoff

points, si and 02. The P's were iterated through all possible values from 0.00 to 0.60 Hz in 0.01

Hz intervals. A weighting, aj, was assigned to each band. The data were iterated through all of

the possible weights from 0 to 1 in intervals of 0.1 for the three segments, and through all of the

possible cutoffs for the division into the three segments. The WMV over these ranges were

calculated, and weighted according to the possible a's (Equation 111-6).

i P2 0.6 Hz

WMV = a1  Power0 (v) + a 2  Powere (v) +a1  Power6 (v)
v =0Hz V= V= 2

(Equation 111-6)

Again, the sum of the ai's was set to 1. The sum of these weighted MVs was then used to find a

c-statistic. The combination of the best cutoffs and best weights was subsequently analyzed. The

best c-statistic would have to perform at least as well as the value determined from MV because

if 01 and p2 were set to 0.30 Hz and 0.55 Hz, respectively, and only a2 = 1, the resulting c-

statistic would be exactly that computed from MV in previous studies. The results from this

experiment are shown in Table 111-1. Indeed, the best c-statistic using WMV was 0.785 for death,

compared to that of 0.771 using MV. For myocardial infarctions, the best c-statistic using WMV

was 0.610, an improvement from a c-statistic of 0.488 using MV.

The results from this experiment indicated that data from multiple frequencies contain

predictive value. Thus, we performed an annealing algorithm to determine which set of weights

for the various frequencies would best predict various cardiac outcomes.



DISPERSE-2 a1  a2  a3 Pi 02 c-statistic
Death

(c-statistic for 0.0 0.9 0.1 0.350 Hz 0.360 Hz 0.785
0.3-0.55 Hz = 0.771)

MI
(c-statistic for 1 0 0 0.100 Hz 0.110 Hz 0.610

0.3-0.55 Hz = 0.488)

Table III-1. C-statisticsfrom weighting various MV values. MV values derived from three

frequency bands (0.1Hz - p1 Hz, $1 Hz - p2 Hz, p2 Hz - 0.6 Hz) were weighted according to

various a's. The combination of cutoffs (O's) and weights (a's) that produced the best c-statistics

are shown. The best c-statistic for predicting cardiovascular death, given MV in the 0.3-0.55 Hz

frequency range was 0.771. The best c-statistic for predicting myocardial infarction (MI)

previously was 0.488.

2. WMV with 600 Frequency Bands

We further investigated optimal weighting by finding the best possible combination of

weights for the smallest frequency bands allowed. The power spectral density of the MD time

series was created from 0.001 to 0.600 Hz, in 0.001 Hz intervals. Therefore, 600 weights for

each 'band' (0-0.100 Hz, 0.001-0.002 Hz, etc.) needed to be determined (Equation 111-7). The

morphologic variability for a single frequency (MVSF) is the 90th percentile power from the MD

time series for a particular frequency (Equation 111-8).

600

WMV = a - MVSFj

(Equation 111-7)

MVSFj = Power0 (v), where v = i - 10-3

(Equation 111-8)



After determining the MVSF's, a set of weights for the various frequencies that best

predict various cardiac outcomes needed to be found. Finding the optimal alphas in a high

dimensional space is an NP-hard optimization problem. For such problems, one can use a

commonly-used method to find the solutions. We used simulated annealing to determine the set

of weights that best predict adverse cardiovascular outcomes. A simulated annealing run

randomly samples various sets of weights and finds the lowest energy point in an energy

landscape. For our purpose, the energy landscape was the set of possible negative of the c-

statistics found from calculating the WMV of all possible sets of weights. Therefore, the

minimum in the negative c-statistic landscape actually found the set of weights that produced the

best c-statistic.

The simulated annealing algorithm, as described in the following section, is performed to

find a set of weights that produce the best c-statistic for a particular set of training data on a

particular outcome.

B. Simulated Annealing

Simulated annealing is a popular method of optimizing complex functions [24]. The

formulation for this method is analogous to crystal optimization. One way to perfect

crystallization is to heat the crystals and allow them to slowly cool. Similarly, the simulated

annealing algorithm searches through space, randomly sampling, in order to find the global

minimum. A control parameter, 'temperature', is used to determine the annealing schedule. This

term does not have any physical meaning, and should not be confused with our standard notion

of temperature. The temperature begins at a very high level. At each temperature, several points

in global space are randomly sampled, and their energies are compared. Some samples are
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accepted, based on a Metropolis criterion. As the temperature decreases, samples are accepted

only if their energies are lower. The temperature is decreased until some stopping criterion is

reached. For our purpose, the energy space for the simulated annealing algorithm was the set of

c-statistics produced from computing the WMV for all possible sets of weights. In actuality,

because we want to optimize the maximum c-statistic, and simulated annealing finds the

minimum of a global space, we use the negative of the c-statistics to determine the global energy

space.

An annealing schedule is fully described by the following steps:

1. Choice of the initial temperature

2. Choice of the temperature decrement function

3. Number of perturbations at each temperature

4. Stopping criterion

The remainder of this chapter details the annealing schedule selected to determine the best set of

weights for WMV.

1. Choice of Initial Temperature

The initial temperature is set high, such that most perturbations of the weights will be

accepted. This ensures that a large energy space is sampled. For this simulation, a temperature

was selected that had > 97% acceptance. This ensured that c-statistics had a large variation in the

first step (between 0.3 and 0.8). As temperature decreases, the percentage of acceptances

decreases.



2. Choice of Temperature Decrement Function

The temperature is decremented slowly to ensure that energy space is sampled

adequately. However, the annealing run needs to complete in finite time. Therefore, the

temperature decrementing function needs to be set to optimize the annealing schedule.

The decrementing function used in this simulation is a modified, slower version of the

function described in Stultz, et al. [25]. For the annealing step, Tan+, the temperature is

decremented by the minimum of AT, and T,/8 (Equation 111-9).

Tan = Tn - min(A Tn, Tn/8),

(Equation 111-9)

ST
if lstsq (T) < tolerance

where ATn = * T2)
Tn if lstsq (Tn) > tolerance

4 - o(EO)

The relaxation time, Tn, is the time required for the energy perturbations to reach equilibrium at a

given temperature. v is the 'thermodynamic distance,' or how close the set of perturbations are to

equilibrium. Eo is the mean energy, or the mean of the negative of the c-statistics, for a set of

perturbations at a given temperature. o(Eo) is the standard deviation of the fluctuations in the

mean energy over the perturbations.

This annealing schedule is desirable because variable temperature decrements can be

made. When the temperature is low, relaxation is very long and small temperature decrements

are taken to ensure the global minimum is reached. However, once the system has reached

equilibrium, larger temperature decrements may be taken in order to complete the simulation.



3. Number of Perturbations at Each Temperature

In order to anneal to the best set of weights, a random set of weights that varied between

0 and 1, with the sum equal to 1, was created. First, all weights were set to 0. Then, a random

alpha, ak, was selected to be set between 0 and 1. Another random zeroed alpha was then set to

between 0 and (1 - ak). This was repeated so that each subsequent alpha was set to some random

value between 0 and(1 - Z0 a1 ). Thus, the initial set of alphas varied from 0 to 1, summing to

1.

A perturbation was made to each set of alphas. A random alpha, ak, was chosen to be

perturbed. This ak was set to a random number between a lower bound and an upper bound. The

bounds were set as following:

upper bound = minimum (ak + rand, 1)

lower bound = maximum (a - rand, 0)

The new alpha, au', then determined the values of the remaining alphas. All of the alphas were

renormalized, such that the sum of the weights equals to 1, as shown in (Equation III-10).

1 - al
a= ai k where a' = new alpha

1 a a
(Equation III-10)

After each perturbing a single alpha value, and renormalizing the rest of the weights on

the frequencies, the Metropolis criterion is tested. Each weight, ai, is used to scale the MVSF

value at each frequency for each patient. The total WMV value is the sum of the weighted MVSF

values. A c-statistic is calculated from the sensitivity and specificity of the WMV values of each

patient. The Metropolis criterion uses the negative of the c-statistic to decide whether to accept

or reject the set of weights. The Metropolis criterion accepts the weights that meet one of two

requirements:



1. The current c-statistic is larger than the previous perturbation's c-statistic. Equivalently, the

negative of the current c-statistic is less than the negative of the previous perturbation's c-

statistic.

2. A proposal Gaussian density, centered at the negative c-statistic of the current set of

weights, is greater than some random number in (0, 1). Formally, this is written as

E-E
e T > p

where E is the old c-statistic, E' is the new c-statistic, T is the temperature, and p is a

random value between 0 and 1.

All of the accepted c-statistics for the current temperature are then fit to an exponential

curve. The time constant, z, of the curve is determined, and is defined as the relaxation time. The

temperature is decremented either if more than 3T perturbations have been made or if the

maximum number of perturbations, set by the user, has been reached. For our purposes, the

maximum number of perturbations was 100x the degrees of freedom, or 60,000 maximum

perturbations.

4. Stop Criterion

The entire annealing is considered complete when the c-statistic value is not changing

significantly. At high temperatures, perturbations occur far way from each other on an energy

landscape. However, at lower temperatures, accepted a perturbations have c-statistics near each

other. At very low temperatures, the c-statistics of the a perturbations should occur right next to

each other on an energy landscape. Therefore, when the c-statistic does not vary much, the

annealing run is thought to have found the global energy minimum. To determine if the

annealing run has reached this minimum, the standard deviation of the c-statistics calculated at
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the end of each temperature. If the standard deviation of the last 10% of the c-statistics is smaller

than some c, the run is considered complete. F was set to 5 x 10-5.

The final product of the simulated annealing run is a set of weights that produce the

highest c-statistic, or the lowest negative of the c-statistic, for a particular adverse cardiovascular

outcome. The next chapter will evaluate the performance of the weights found for WMV using

simulated annealing. The results will be assessed for both cardiovascular death and myocardial

infarctions post-ACS.
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Chapter IV:
EVALUATION OF WEIGHTED MORPHOLOGIC
VARIABILITY

We assessed the performance of weighted morphologic variability (WMV) using patients

from both the MERLIN and DISPERSE-2 data sets.

To ensure that small variations in the sizes of the weights would not drastically affect the

performance of WMV, we performed a smoothing of the weights from the simulated annealing

run. A running average of various window sizes was performed on the alphas. A window size of

0.007 Hz was chosen to compute a running average on the weights, when computing WMV.

These smoothed weights were used for the remainder of this work.

This chapter outlines how to separate individuals at low risk of adverse cardiovascular

outcomes from high risk individuals, how we validated our data, and the performance of WMV

in prognosticating.

A. Determining Cutoffs for High and Low Risk

WMVs for all of the patients were calculated using the method described in chapter 3.

Our aim was to determine a low risk and a high risk group of patients for complete risk

stratification. The hazard ratio, sensitivity, and specificity of the test could thus be calculated.

The hazard ratio is a measure of risk. We used Cox proportional hazards model to estimate the

hazard ratio, which compares the rates of death for the high risk and low risk patients [26].

Sensitivity is the true positive rate of the test, or the ratio of true positives to the total number of
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positives in a test. Specificity is the true negative rate. A high sensitivity and specificity suggests

that a test is accurate at predicting risk. In order to determine the risk, the WMV values for all of

the patients are sorted, and a cutoff was determined that separated a low risk group from a high

risk group. This cutoff was determined in one of three ways: using the quartile as a cutoff,

maximizing the hazard ratio, and maximizing sensitivity and specificity values. These three

methods are described in detail below.

1. Cutoffs Using Quartile Values

The first method of determining a risk cutoff was using the quartile as a marker. In Syed,

et al. [20], the upper quartile of MV values was considered high risk, and the lower three

quartiles of MV values were considered low risk. Similarly, the upper quartile of WMV values

was determined to be high risk. The hazard ratio, sensitivity, and specificity for this cutoff were

calculated using the training and testing sets, as shown in Table IV-1. Using quartiles as the

difference between low and high risk groups was typically used for research in MV; however, a

more data-driven approach to determining a cutoff was desired.



Dataset Hazard Sensitivity SpecificityRatios
Best Fit Weights MERLIN, placebo 6.61 0.559 0.764
(Cutoff =1.3794) DISPERSE 6.37 0.714 0.717

MERLIN, ranolazine 3.68 0.429 0.806
Running Average MERLIN, placebo 6.03 0.539 0.764
(Cutoff =1.3778) DISPERSE 6.21 0.714 0.711

MERLIN, ranolazine 3.70 0.429 0.791

Table IV-1. Hazard ratio, sensitivity, and specificity using quartile cutofffor cardiovascular

death. The DISPERSE testing dataset contained 764 patients (14 cardiovascular deaths), the

MERLIN placebo training group included 2301 patients (102 cardiovascular deaths), and the

MERLIN ranolazine testing group had 2254 patients (91 cardiovascular deaths).

2. Cutoffs Using Hazard Ratios

The second method of determining a risk cutoff was using hazard ratios. The WMV

values were sorted from lowest to highest value. Then, the hazard ratios for all of the possible

cutoffs between two WMV values were calculated. The cutoff that maximized the hazard ratio

was used to determine the difference between high and low risk. These results are shown in

Table IV-2. However, these results were not used for a final cutoff because the results over-fit

for a high hazard ratio. The high hazard ratio used for one set of data performed poorly on other

sets of data. Therefore, this method of finding a cutoff was not used for the final results.



Dataset Hazard Sensitivity SpecificityDatasetRatios

Best Fit Alphas MERLIN, placebo 1366302.55 0.990 0.054
(Cutoff= 1.1816) DISPERSE 1347131.55 1.000 0.039

MERLIN, ranolazine 1.09 0.967 0.048
Running Average MERLIN, placebo 7.98 0.912 0.254
(Cutoff = 1.2448) DISPERSE 3.14 0.929 0.196

MERLIN, ranolazine 3.47 0.846 0.250

Table IV-2. Hazard ratio, sensitivity, and specificity using maximum hazard ratio cutofffor

cardiovascular death. This technique of determining cutoffs tends to produce high hazard ratios

for the testing data, seemingly over-fitting the data. The sensitivity (true positive rate) is nearly

100%. However, the specificity (true negative rate) is very poor. This suggests that most of the

patients are classified as high risk, and few are classified as low risk. This method of determining

a cutoff does not discriminate between high and low risk well, and, therefore, a better method is

required.

3. Cutoffs Using Sensitivity and Specificity

Sensitivity and specificity are measures of the predictive ability of a particular test.

Sensitivity is the true positive, hit rate of correctly identifying patients at high risk. Specificity is

the true negative rate, the rate at correctly identifying low-risk patients. Our final metric of

determining the cutoff was finding a point which corresponded to the maximum specificity and

sensitivity of the training set. Typically, the apex of the receiver operating characteristic (ROC)

curve is chosen. However, the ROC curve for this particular dataset does not have a natural apex

point, as shown in Figure IV-1. Therefore, we chose the cutoff point that maximized the sum of

the sensitivity and specificity. The results for this chosen cutoff are shown in Table IV-3 and

Table IV-4.
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Figure IV-1. Receiver operating characteristic curve for WM

Dataset

V and cardiovascular death.

Hazard Sensitivity Specificity
Ratios

Best Fit Alphas MERLIN, placebo 8.91 0.833 0.560
(Cutoff= 1.3037) DISPERSE 3.59 0.786 0.492

MERLIN, ranolazine 3.78 0.648 0.577
Running Average MERLIN, placebo 6.24 0.618 0.717
(Cutoff = 1.3564) DISPERSE 7.15 0.786 0.659

MERLIN, ranolazine 4.32 0.516 0.741

Table IV-3. Hazard ratio, sensitivity, and specificity using maximum sensitivity and specificity

cutofffor cardiovascular death. Based on these results, the highlighted cutoff used for further

studies was found by maximizing sensitivity and specificity, using a running window size of

0.007 Hz.

Dataset
Hazard
Ratios

Sensitivity Specificity

Best Fit Alphas MERLIN, placebo 2.35 0.489 0.696
(Cutoff = 2.392) DISPERSE 0.54 0.250 0.602

MERLIN, ranolazine 1.16 0.360 0.673
Running Average MERLIN, placebo 2.37 0.532 0.620
(Cutoff = 2.357) DISPERSE 0.73 0.392 0.510

MERLIN, ranolazine 1.11 0.453 0.585

Table IV-4. Hazard ratio, sensitivity, and specificity using maximum sensitivity and specificity

cutofffor myocardial infarction. The highlighted cutoff was used for further studies.



As shown in these results, the sensitivity and specificity cutoff perform better, based on

hazard ratios, than using a cutoff based on hazard ratios or on quartile values. Using sensitivity

and specificity to determine cutoffs is standard practice [27]. Therefore, the remainder of this

chapter will use the sensitivity and specificity cutoff for determining high or low risk.

B. Cross-Validation

In order to show that the hazard ratios produced from our WMV values are relatively

consistent, we performed a cross-validation. The MERLIN placebo group was randomly divided

into two evenly-sized groups, with approximately equal numbers of patients who had a

cardiovascular death in each group. Simulated annealing was performed on one of the groups, in

order to find a set of weights and a cutoff. These weights and cutoffs were then tested on the

second group, as well as the DISPERSE patients and MERLIN ranolazine patients to see if the

hazard ratios were consistently high. This validation was performed 10 times. The results for the

cross-validation on cardiovascular death are shown in Table IV-5, and the results for myocardial

infarction are shown in Table IV-6. For posterity, only the MERLIN placebo training and testing

group results were considered, so our final testing groups would truly be testing groups. The

performance of WMV of the DISPERSE and MERLIN ranolazine groups were included in Table

IV-5 and Table IV-6 for completeness, but were not considered when evaluating the WMV

cross-validation results.



Dataset Mean Maximum Minimum
MERLIN placebo, training set 11.01 ± 6.10 21.43 5.02
(n = 1146 +22, cvd = 52 5)

MERLIN placebo, testing set 4.47 +2.22 10.12 2.04
(n = 1155 +22, cvd = 50 5)

DISPERSE 5.54+1.81 8.12 2.77
(n = 764, cvd = 14)

MERLIN ranolazine 3.66i0.81 5.37 2.04
(n = 2254, cvd = 91)

Table IV-5. Cross-validation hazard ratios using WMV to risk stratify for cardiovascular

death. The average number of patients in the MERLIN placebo training group was 1146, with a

standard deviation of 22. The group had an average of 52 + 5 cardiovascular deaths. The

MERLIN placebo test group had, on average, a patient population of size 1155 +22, with 50 + 5

cardiovascular deaths. The standard deviation of the hazard ratios are shown next to the mean

hazard ratios. The maximum and minimum values of the hazard ratios found during the cross-

validation are also shown for comparison.

Dataset Mean Maximum Minimum
MERLIN placebo, training set 2.61 +0.59 4.11 1.76

(n = 1146 +22, MI = 92 6)
MERLIN placebo, testing set 1.93 0.33 2.60 1.32

(n = 1155 22, MI = 94 6)
DISPERSE 0.72_0.23 1.15 0.44

(n = 764, MI = 28)
MERLIN ranolazine 1.15+0.19 1.51 0.85

(n = 2254, MI = 161)

Table IV-6. Cross-validation hazard ratios using WMV to risk stratify for myocardial

infarction. The same groups of patients were sampled for cross-validation for myocardial

infarctions as for cardiovascular death.



Based on the cross-validation results of Table IV-5 and Table IV-6, we used the entire

MERLIN placebo group as a training set. For cardiovascular death, the variation in the hazard

ratios was high in both the training and test sets. However, since the minimum hazard ratios were

greater than 1, some useful information remained when risk-stratifying cardiovascular patients.

For myocardial infarction, the variations in the hazard ratios were small, but the hazard ratios

were also close to 1. We found a set of hazard ratios based on training WMV on all of the

MERLIN placebo patients to risk stratify for myocardial infarctions, as well.

C. Risk Stratifying Cardiovascular Death

The variables that characterize WMV in its role of risk stratification are the weights for

associated frequencies and the cutoff point that determines low versus high risk. The final WMV

cutoff point determined from the sensitivity and specificity for cardiovascular death was found to

be 1.356. Patients with WMV > 1.356 are at a higher risk of cardiovascular death. The weights

that are associated with high risk are shown in Figure IV-2.

The hazard ratios for various risk stratifying measures for cardiovascular death are shown

Table IV-7. The morphologic methods do not seem to perform as well on patients who were

given ranolazine. HRV performs approximately equally well on all three groups. However, MV

and WMV perform better on placebo groups than patients given ranolazine. The weights and

cutoff found for WMV were trained on the MERLIN placebo group and tested on the

DISPERSE and MERLIN ranolazine groups. MV was trained on DISPERSE patients [20].

Therefore, the true group used for comparison of performance is the MERLIN ranolazine group,

in which WMV has a higher risk stratification capability. The associated Kaplan-Meier hazard

curves are shown in Figure IV-3.
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Figure IV-2. Weights for various frequencies in WMV risk stratification of cardiovascular

death. This figure depicts the smoothed version of the weights, using a window size of 0.007 Hz.

Risk Stratification MERLIN placebo DISPERSE MERLIN ranolazine

Mercgroup (n=764, cvd =14) groupMek triicato (DISPERSEd
(n = 2301ocvd = 102) (n = 2254, cvd = 91)

HRV (LF/HF) < 1.2 3.03 2.83 2.91
MV > 52.5 5.12 8.46 3.85

WMV > 1.356 6.24 7.15 4.32

Table IV-7. Hazard ratio for risk stratification measures of cardiovascular death on MERLIN

and DISPERSE patients. For each column, the number of patients (n) and the number of

cardiovascular deaths (cvd) are listed for the populations.
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WMV> 1.356. Figure IV-3a is the Kaplan Meier curve based on the MERLIN placebo

population, Figure IV-3b is based on the DISPERSE population, and Figure IV-3c is based on

the MERLIN ranolazine population.
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D. Risk Stratifying Myocardial Infarction

Though the cross-validation results for WMV and myocardial infarction (MI) did not

show good risk stratification, the results of risk stratification of MI using WMV are shown

below. Patients with WMV > 2.357 are at higher risk for myocardial infarctions. The associated

weights are shown in Figure IV-4.
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Figure IV-4. Weights for various frequencies in WMV risk stratification of myocardial

infarction. This figure depicts the smoothed version of the weights, using a window size of 0.007

Hz.

Table IV-8 shows the hazard ratios associated with various electrocardiographic risk

stratification metrics for MIs. Most of these electrocardiographic metrics do not predict risk of

MI. HRV predicts MI risk with a hazard ratio of about 1.5. However, MV does not perform as

well. WMV was trained on the MERLIN placebo group. WMV predicts the DISPERSE and
55
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MERLIN ranolazine testing groups worse that MV predicts. The associated Kaplan-Meier hazard

curves are shown in Figure IV-5.

Risk Stratification MERLIN placebo DISPERSE MERLIN ranolazine

Metric group (n = 764, MI= 28) group
(n = 2301, MI = 186) (n = 2254, MI = 161)

HRV (LF/HF) < 1.2 1.58 1.48 1.67
MV > 52.5 1.28 1.02 1.17

WMV > 2.357 2.37 0.73 1.11

Table IV-8. Hazard ratio for risk stratification measures of myocardial infarction on

MERLIN and DISPERSE patients. For each column, the number of patients (n) and the number

of myocardial infarctions (MI) are listed for the populations. It is important to note that the MV

cutoff of 52.5 was found based on risk stratification of cardiovascular death. Therefore, an MV

cutoff of 52.5 is not appropriate. For the purposes of this table, however, the 52.5 cutoff is used.

Based on these results, weighted morphologic variability is a new electrocardiographic

method that is able to risk stratify patients for cardiovascular death better than current

electrocardiographic risk-stratification methods. Weighted morphologic variability is not a good

risk stratification method for myocardial infarctions, however. We will discuss the implications

of the results and derive a physiological explanation for this work in Chapter 5.
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Figure IV-5. Kaplan Meier hazard curves for MERLIN and DISPERSE populations using

WMV> 2.357. Figure IV-5a is based on the MERLIN placebo training population, Figure IV-5b

is based on the DISPERSE population, and Figure IV-5c is based on the MERLIN ranolazine

population.
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Chapter V:
SUMMARY AND CONCLUSIONS

A. Summary

Patients who have had an acute coronary syndrome remain at risk for future adverse

cardiovascular events. Electrocardiographic and other types of risk stratification metrics may aid

in the identification of patients who are at high risk of cardiovascular death. However, better risk

stratification metrics are needed. Weighted morphologic variability is an inexpensive and

accurate way of risk stratifying patients for cardiovascular death that outperforms other ECG-

based risk stratification methods.

This thesis derived the calculation of weighted morphologic variability (WMV) and

evaluated its performance on risk stratifying for adverse cardiovascular events. WMV is based

on an electrocardiographic technique called morphologic variability (MV), which risk stratifies

based on subtle changes in the beat-to-beat morphology of an ECG-signal. MV uses a technique

called dynamic time warping to quantify beat-to-beat morphologic differences. These beat-to-

beat differences yield a morphologic distance (MD) time series. MV is the sum of the power

over a particular frequency band within the power spectral density of the MD time series.

Weighted morphologic variability uses the MD time series, as well, to predict

cardiovascular death. Instead of using the power of one particular frequency band, WMV uses a

combination of frequency bands, where a weight is associated with the various frequency bands.



Each weight reflects the importance of that particular frequency band on the predictive ability of

WMV. WMV is the sum of the weighted sums of the power found in various frequency bands.

In order to find the optimum set of weights and frequency bands to compute weighted

morphologic variability, we used a technique called simulated annealing. First, we discretized

the frequency band 0.001 Hz-0.600 Hz into 0.001 Hz intervals. Then, simulated annealing was

performed to find the optimal weights that accurately distinguish high risk from low risk

patients. Simulated annealing randomly samples an energy space to find the global minimum of

the energy. For our purposes, the negative of the c-statistic was used as a measure of energy. The

c-statistic describes the probability of correctly identifying the patient with a disease given two

patients, where one has the disease and the other does not. Therefore, a c-statistic of 0.5 indicates

that the test is no better than random guessing. For each simulated annealing random sampling, a

set of weights were generated. The WMV for all training patients were computed, and a c-

statistic was produced. Simulated annealing converged on a solution of weights that produced the

highest c-statistic, or the lowest negative of the c-statistic. These weights were then smoothed

and used to evaluate the risk stratification performance of WMV on various adverse

cardiovascular events.

In order to evaluate cardiovascular performance, we first created a cutoff to determine

high and low risk individuals. The maximum sum of sensitivity and specificity was found to

determine the difference between high and low risk individuals. A hazard ratio is a ratio of the

death rates of high risk individuals compared to low risk individuals and was calculated

comparing the two groups based on the WMV cutoff. A cross-validation was performed to

ensure that the hazard ratio for the training group was valid. The WMV hazard ratio for risk

stratifying cardiovascular death was found to be 7.15 on the test group of 764 patients, including
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14 cardiovascular deaths. WMV produced a higher hazard ratio for cardiovascular death than

morphologic variability and heart rate variability hazard ratios. However, the hazard ratio for

myocardial infarctions using WMV was 0.73 on the same group, with 28 myocardial infarctions.

Thus, WMV is a novel electrocardiographic metric that risk stratifies patients for cardiovascular

death, but not myocardial infarctions.

B. Physiological Basis

In this section, we propose a physiological interpretation of the weights in WMV

associated with high risk of cardiovascular death. The peaks in the weights for weighted

morphologic variability may coincide with particular changes in the conduction path of the

myocardium. We propose evidence for these conduction path changes, and future work that may

improve the prognostic ability of WMV.

In certain types of arrhythmias, the heart conducts in an unusual path in fixed intervals.

T-wave alternans is a phenomenon where the T-wave of the ECG exhibits beat-to-beat changes

in amplitude. More precisely, in T-wave alternans, a beat with a relatively high amplitude T-

wave is followed by a beat with relatively low amplitude; e.g., in an ABABAB fashion.

Ventricular bigeminy and trigeminy are arrhythmias characterized by a premature ventricular

contraction (PVC) every second or third beat, respectively, thus following an ABABAB or

AABAABAAB pattern. In Sung [23], a physiological rationale is discussed for why this may

occur. A myocardial cell or a group of cells may take longer to depolarize or repolarize

compared to the rest of the heart, and may only depolarize every N heartbeats. The heart

depolarizes along a typical conduction path, but when a group of cells takes longer to depolarize,

the heart may depolarize along an alternate conduction path. Thus, the ECG may depict two
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morphologies: one morphology associated with the typical conduction path, and another

morphology associated with the abnormal conduction path. Thus, a morphologic pattern may

occur.

WMV weights different frequencies of the ECG based on its importance in risk

stratification. The WMV weights that are most associated with cardiovascular death were

described in this thesis. We propose that the peaks in the weights are associated with frequencies

that may be typical of some sort of alternans, where the ECG morphology follows a pattern of

switching between two morphologies. A typical heart rate is somewhere between 60-100 beats

per minute. 100 beats per minute is equivalent to 0.6 Hz, which was the maximum frequency we

tested. A true beat-to-beat altemans, following an ABABAB pattern, would show morphology

differences once every two beats, or between 0.3-0.5 Hz. An anomaly that occurs every third

beat, or following an AABAABAAB pattern, would show morphology differences in the 0.2-0.33

Hz range. As shown in Figure IV-2 on page 53, peaks in the weights occur at 0.2 Hz, 0.34 Hz,

and 0.5 Hz, suggesting that the above physiological explanation is plausible. Based on this

concept, one can extend the idea of WMV by weighting frequencies that correspond to half or a

third of the heart rate more heavily as a risk-stratification tool.

C. Conclusions

Weighted morphologic variability is a new electrocardiographic prognostic tool that

outperforms other electrocardiographic risk-stratification methods. WMV is better at identifying

high risk patients than MV and HRV. These electrocardiographic tools are helpful to physicians

to identify which patients to aggressively treat to prevent adverse cardiovascular outcomes.

Along with the results from imaging tests, the presence of certain biomarkers, and catheterization
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tests, doctors can use WMV and other ECG methods to gather a holistic view of the cardiac

health of a patient. Physicians can then use these results to perfect a patient's initial prognosis

and treatment options.

Electrocardiographic risk-stratification metrics present an inexpensive, effective, and

efficient way of prognosticating patients. ECGs are easily recorded from a patient, and are

essentially free and minimally invasive. The WMV can be quickly calculated from the ECG at

essentially no additional cost. In contrast, biomarker tests require time for a lab to process the

results. Imaging tests require an expert for analysis. Catheterization is invasive, can pose a risk to

the patient, and requires a skilled clinician to perform the procedure. WMV and other

electrocardiographic metrics, on the other hand, only have a numerical cutoff that determines

whether a patient is at high risk or low risk for a cardiovascular event. Based on ECG metrics,

patients who are determined to be low risk for cardiovascular events can be spared from invasive

and more expensive tests, and patients who are at high risk for cardiovascular events can undergo

further risk stratification that may not have been considered otherwise.

WMV is a powerful prognostic tool that can be integrated into hospitals to risk stratify

patients for cardiovascular death. WMV can be easily implemented in a computer or an ECG-

recording device. The results can also be readily interpreted by a clinician. This simple, cost-

effective metric should help improve the care for the millions of people who are admitted to a

hospital with an acute coronary syndrome each year. This body of work demonstrates why ECG-

based risk-stratification metrics should be widely and commonly implemented in clinical

practice.
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