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ABSTRACT

A study was carried out to develop a typology of urban metabolic (or resource consumption)
profiles for 155 globally representative cities. Classification tree analysis was used to develop a
model for determining how certain predictor (or independent) variables are related to levels of
resource consumption. These predictor variables are: climate, city GDP, population, and
population density.

Classification trees and their corresponding decision rules were produced for the following major
categories of material and energy resources: Total Energy, Electricity, Fossil fuels, Industrial
Minerals & Ores, Construction Minerals, Biomass, Water, and Total Domestic Material
Consumption. A tree was also generated for carbon dioxide emissions. Data at the city level
was insufficient to include municipal solid waste generation in the analysis. Beyond just
providing insight into the effects of the predictor variables on the consumption of different types
of resources, the classification trees can also be used to predict consumption levels for cities
that were not used in the model training data set.

Urban metabolic profiles were also developed for each of the 155 cities, resulting in 15
metabolic types containing cities with identical or almost identical levels of consumption for all of
the 8 resources and identical levels of carbon dioxide emissions. The important drivers of the
differences in profile for each type include the dominant industries in the cities, as well as the
presence of abundant natural resources in the countries in which the cities are the main
economic centers.
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Title: Associate Professor of Architecture and Building Technology
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Chapter 1. Introduction and Background of the Study

1.1 Problem Statement
Modern society is faced with both resource scarcity and accumulating local, regional, and

global pollutants. The most pressing pollution challenge is that of climate change, which

will bring about temperature changes to which ecosystems (including human ones) will

have to adapt. On the other hand, the resource scarcity challenge involves the rising

demand for multiple resources, under a finite supply.

This work, and the field of urban metabolism in general, focuses on cities because the

human population is undergoing intense and rapid urbanization, resulting in cities of

unprecedented size and geographical distribution. It is, by now, an often-stated fact that

over half of the world's population lives in cities. In particular, developing countries are

predicted to experience the most significant urban growth in the next 50 years (United

Nations, 2007), and this can be expected to result in shortages of basic social services, a

significant increase in the demand for urban infrastructure, air and water pollution, and an

ever-growing impact of cities on climate change. As cities grow, the flow of energy and

material through them increases, and the different ways in which cities consume resources

is as yet understudied. Here we examine the energy and material consumption of 155 cities

of the world, spanning all geographical regions and levels of development.

Bigio and Dahiya (2004) articulated the concept of "livable cities" as a necessary partner of

economic growth in successful urban development. The move toward these so-called

livable cities necessitates development policies that promote efficiency in the use of water,

materials, and energy, as well as waste reduction. Furthermore, Bigio and Dahiya (2004)

state three broad goals of the urban environmental agenda: "improving the quality of life,

improving the quality of growth, and protecting the quality of the regional and global

commons from the spillover of pollution originating in urban areas".

The underlying hypothesis of this work is that it is possible to arrive at a typology or

categorization of the world's cities based on their resource consumption (or metabolic)

profiles. In other words, cities can be classified to one of a number of types of resource
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consumption, in which between-type differences among cities are significantly greater than

within-type differences. The aim is to find independent variables that have the ability to

predict the consumption type to which a city will belong. This understanding will aid the

urban environmental agenda by informing the design of policies specifically targeted to the

resource efficiency concerns of different types of cities.

The development of a "typology of cities" will be based on a finding of distinct metabolic

profiles related to a limited number of attributes. These attributes (independent variables)

will include those that most influence the consumption of urban residents: affluence,

population, climate, and density. Krausmann et al (2008) have found that development

status and population density are key variables that impact the metabolic profile, and

climate certainly has an established effect on levels of energy consumption. Together these

attributes substantially determine the bulk and character of urban resource consumption as

driven by socio-economic activities.

In this work, a representative set of the world's cities will be classified to a number of urban

metabolic profiles using classification trees. Classification is a classic data-mining task

involving, in this case, data on consumption (dependent variables) that is divided into three

consumption types (i.e., low, medium, and high for each dependent variable). Consumption

data was used to train the classification model using known values of the independent (or

predictor) variables. A representative sample of the world's cities that run the gamut of

population, level of development, climate, and geography was selected as the training (and

validation) set. The resulting model can thus be used to predict the consumption types into

which other cities of the world will. This predictive capacity of the model will allow for

typological classification of cities, even if consumption data for them is not directly available.

By giving simple characterizations of the conditions that predict when a city falls within one

consumption category or another, we can arrive at a typology of urban resource

consumption.



1.2 Background of the Study
The urban sustainability movement is fundamentally concerned with securing the delivery of

the quality of life that people desire when living in cities, while exceeding neither the

carrying capacity of their hinterlands nor that of their regional and global resource supply

networks. At the same time, a compromised urban environment and the vulnerability

brought about by global climate change will themselves decrease the very standard of living

that society seeks to achieve. Historically, quality of life in the developed world has been

achieved by means of increased resource throughput. It is evident that as human society

comes up against the 'limits to growth', resource throughput can no longer be the yardstick

by which development is measured.

Progress toward sustainable cities requires the measurement of the current resource inputs

and outputs of cities around the world. Cities are also well situated to gather and use this

information in support of greater resource efficiency; both economic power and political

decision-making are concentrated in urban areas. To enable policy-making in aid of urban

sustainability, it is necessary to consider the different levels at which cities utilize resources.

In this work, we posit that particular types of cities have different resource consumption

profiles that support the economy and human activity. The various metabolic profiles

distinguish the groups that make up the typology of cities.

The typology of cities is based on two primary ideas: first, that it is possible to track some of

the most important of the resources that urban dwellers consume; and second, cities can be

classified to different types based on their metabolic profiles. An understanding of which

type a city belongs to can help urban planners and managers assess the population's

ecological impact and focus on the resources that are consumed with greater intensity. By

allowing for the comparison of a particular city's metabolic profile with that of other city

types, especially at a similar or higher level of development, this typology offers a

benchmark for ecological performance and identifies the greatest challenges to making a

city more resource-efficient. Documentation of the current consumption profiles of different

categories of cities also provides a baseline from which scenario-building can proceed.

The motivation of this study is the idea that if cities gather the proper data and these are

used to inform resource management policy, their metabolic profiles may become less



intensive with respect to the provision of a desired urban quality of life. In other words, the

challenge is to find cities' strategic leverage points: rather than planning around the

continuous growth of urban resource throughput, the city's metabolic character can provide

an indicator to point to inefficiencies on which policy must focus.

1.3 Study Objectives
The objective of this thesis is to contribute to the efforts toward a comprehensive and

holistic approach to the characterization of urban resource consumption, leading to better-

informed urban development strategies. The optimization of resource consumption in cities

has as its goals the improvement of the quality of life, efficiency of growth, maintenance of

the quality of regional and global resources, and protection of the regional and global

environmental sinks.

Urban environmental agendas can no longer be restricted to the so-called "brown agenda"

(United Nations, 1992) of protecting urban water, soil, and air quality from contamination

and pollution. Development objectives cannot be restricted to providing water supply and

sanitation, upgrading slum neighborhoods, and introducing industrial pollution

management, although these are important urban environmental concerns. Urban

development scenarios that aim towards sustainability must also ensure minimized impact

on natural resources at the regional and global scales, as well as prevent and mitigate

cities' aggregate impact on climate change.

This work is motivated by the lack of understanding regarding categorical differences

among cities in terms of energy and material fluxes. Most studies of material and energy

use refer to the country level. However, this level of resolution of information fails to fully

tap into to the capacity of cities to take action with regard to the resource efficiency of

businesses, industries, and the populations that are concentrated in urban agglomerations.

Progress in urban resource efficiency depends upon effective management and targeted

policy making. As cities continue to grow and become more complex, a typology of cities

will become increasingly important for effective urban data collection and indicator

evaluation. The classification of cities' resource consumption provides support for sound



policies, allowing for more efficient performance evaluation. City 'sustainability indicators'

have emerged as a core requirement for effective city management. While some indicators

of consumption are already being used to measure city performance, they are not yet

standardized, targeted, or comparable across cities and over time. Because municipalities'

resources for collecting indicator data may be limited, a lack of focus on the most pressing

resource inefficiencies limits the ability of cities to observe trends, share best practices and

target their most pressing consumption issues. In recognition of this need, this work was

carried out to provide cities with a standardized system for the estimation and prediction of

their resource consumption typology. The intention is that this will allow cities to identify

what data should be collected on a regular basis, and focus policy-making on the resources

that the city uses most intensively.

Specifically, this thesis aims to specify and characterize the different types of urban

metabolic profiles to which the cities of the world belong. It describes the resource

consumption and carbon dioxide emissions of 155 globally representative cities and

attempts to formulate a typology of cities based on their metabolic character. The different

types can also be seen as representing cities in various stages of industrialization and

development, and give valuable insight into the associated resource utilization of different

modes of economic production.

In addition to providing a rational typology of urban metabolic profiles, this research also

has as its objective the development of classification trees that can serve as predictive

models to assist the urban metabolism research community when resource consumption

data gaps exist at the city level. Based on the decision rules that emerged from the

classification tree analysis for each distinct resource, the different levels of predictor

variables that suggest low, medium, or high consumption were determined. Thus, cities

whose predictor variable characteristics fall within certain ranges are expected to have

certain levels of consumption of each resource.



1.4 Scope of Work

1.4.1 Metabolic profiles
This thesis uses classification tree analysis as a data-mining tool to categorize 155

representative cities' annual per capita consumption of the following:

i. Total Energy
ii. Electricity

iii. Fossil fuels
iv. Industrial Minerals & Ores
v. Construction Minerals

vi. Biomass
vii. Water

viii. Total Materials (DMC)

as well as their emissions of carbon dioxide. For the limited subset of cities for which

municipal solid waste data are available, observations were made, but the sample was

not large enough to allow for the construction of a classification tree.

Four of the materials groups that are included in this study (fossil fuels, industrial

minerals and ores, construction minerals, and biomass) are in accordance with the main

groups that are included in economy-wide material flow accounts (Eurostat, 2001).

Water is not included in material flow analyses because the quantities of per capita

water consumption tend to be orders of magnitude larger than all other flows. From an

accounting perspective, this would reduce the granularity of material flow indicators with
respect to all the other material groups. However, since this work is not concerned with

accounting, but rather with disaggregated metabolic profiles, water is an essential

material that must be included to give a comprehensive picture of the urban resource

burden. The Total Direct Material Consumption category in this study excludes water,

as in the Eurostat (2001) methodology.

Furthermore, because we are concerned with the aggregate impact of cities on global

climate change, total energy consumption, electricity, and carbon dioxide emissions are

also included in the metabolic profiles that define each city type. High values for one or

a combination of the three aforementioned categories may indicate leverage points on

which cities falling into a particular typology can focus their policy efforts. For example, if



a certain city type has low total energy consumption but high carbon dioxide emissions,

then this would be suggest that the energy supply mix that these cities rely on are

carbon-intensive. Cleaner, alternative energy policies may then be indicated as a

priority for these cities, as opposed to reduction in energy consumption.

1.4.2 Classification trees
Classification tree analysis is a primary method used in data mining. Trees are used to

predict membership of cases (in this work, cities) in the classes of a categorical

dependent variable, based on their measurements of one or more predictor variables.

The classification tree method has much in common with the techniques used in the

more traditional data mining methods of discriminant analysis, cluster analysis,

nonparametric statistics, and nonlinear estimation. This study makes use only of

classification trees. The more traditional data mining methods typically have more

stringent theoretical and distributional assumptions; however, as an exploratory

technique, classification trees are far more flexible since they are distribution-free and

non-parametric.

Classification trees are widely used in applied fields as diverse as medicine (diagnosis),

computer science (data structures), botany (classification), and psychology (decision

theory). Classification trees readily lend themselves to being displayed graphically,

helping to make them easy to interpret. The binary recursive portioning format of the

trees also provides insight into the structure of the data without requiring assumptions

about distribution to be made.

Breiman et al. (1984) give a number of examples of the use of classification trees. The

classic example is that of medical diagnosis. When heart attack patients are admitted to

a hospital, dozens of tests are often performed to obtain physiological measures such as

heart rate, blood pressure, and so on. A wide variety of other information is also

obtained, such as the patient's age and medical history. These are the predictor (or

independent) variables. Patients subsequently can be tracked to see if they survive the

heart attack for at least 30 days. This outcome is the dependent variable. It is useful in

developing treatments for heart attack patients, and in advancing medical theory on
15



heart failure, if measurements taken soon after hospital admission can be used to

identify high-risk patients (those who are not likely to survive at least 30 days). One

classification tree that Breiman et al. (1984) developed to address this problem was a

simple, three question decision tree (Figure 1.4.1). Verbally, the binary classification tree

was described by the decision rule, "If the patient's minimum systolic blood pressure

over the initial 24 hour period is greater than 91, then if the patient's age is over 62.5

years, then if the patient displays sinus tachycardia, then and only then the patient is

predicted not to survive for at least 30 days." Classification trees were selected for this

study precisely because such decision rules would be valuable in predicting what

typology a city belongs to, based solely on readily available predictor variables.

Node 4 .-

Class

"If the patient's minimum systolic blood
pressure over the initial 24 hour period is
greater than 91 (split node in the first
predictor variable), then if the patient's age
is over 62.5 years (split node in the second
predictor variable), then if the patient
displays sinus tachycardia (split node in the
third predictor variable), then and only
then is the patient is predicted not to
survive for at least 30 days."

<(- Node

Class 4 . Class- -%

Figure 1.4.1 Breiman et al (1984) classification tree for heart-attack survival

Another aspect of the flexibility of classification trees is that they can be computed for

categorical predictors (independent variables), continuous predictors, or any mix of the

two types of predictors. In this study, population, density, and city GDP are all
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continuous variables. On the other hand, climate type is a categorical predictor.

Additionally, any monotonic transformation of the predictor variables (i.e., any

transformation that preserves the order of values on the variable) will produce splits

yielding the same predicted classes for the cases or objects (Breiman et al, 1984). This

makes classification trees robust to the assumptions that were necessary to estimate the

values of predictor variables.

At this point it is useful to emphasize that the strength of city typology classifications is

not their precision of measuring the quantities of particular resources that are consumed

by cities. The typology's main motivation is to summarize the consumption of a variety

of resources, provide an understanding of their relative magnitude and allow for a

comparison of metabolic profiles across city types. The findings presented here, built

exclusively on readily available data (both city-level and national), are primarily a first-

order approximation of city types and metabolic profiles; however, they point to a method

for more reliable assessment and application as a planning tool.

Classification trees are easy both to update as more refined training data become

available, and to use when classifying cities that were not used as part of the model

training set.
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Chapter 2. Literature Review

2.1 Urban Metabolism
Urban metabolism as a research area has been building on the field of industrial metabolism

since the mid-1960s, when Abel Wolman (1965) first applied the biological concept of

metabolism to a hypothetical U.S. city of 1 million inhabitants. "Industrial metabolism" is a

field of study in which the flow of materials and energy through a chain of extraction,

production, use, and disposal are analyzed in order to arrive at some measure of the

impacts of anthropogenic activity on the environment (Fischer-Kowalski, 1998).

The biological definition of metabolism refers to the biochemical reactions that living cells

carry out in order to sustain the processes of life. These reactions convert raw materials

from the environment into energy, proteins and other substances that living things need to

maintain their bodily functions, grow and reproduce. Furthermore, metabolic reactions

proceed down what are known as 'metabolic pathways', sequences of reactions that are

ordered such that the product of a reaction is the input to the succeeding one (Odum, 1971).

This concept heavily influenced the field of industrial metabolism, and was first applied in the

development of eco-industrial parks, which are industrial complexes in which companies are

co-located such that the product and even the waste of one manufacturing or industrial

process is the input to another.

Fischer-Kowalski (1998) argues that 'societal metabolism' is the sum total not only of

individual human beings' biological metabolic processes, but also of the collective effort of

human communities to ensure their survival and growth. Under this definition the total

material and energy throughput of societies, as well as the self-organization that governs

these flows, is then what constitutes societal metabolism.

In terms of urban metabolism, it has always been the surplus borne of human self-

organization that has historically allowed for the formation of cities. When agricultural

surpluses were great enough to allow for differentiation and the division of labor, urban

agglomerations formed, in which workers involved in industry and non-farm work could be

supported by the food grown in the surrounding rural areas.



In 2008, Krausmann et al stated that socio-ecological systems with similar energy sources

and conversion technologies also share patterns and levels of resource use (metabolic

profiles). In fact they termed these classes of systems with a common energy system as

socio-metabolic regimes. They also posit that specific environmental impacts are attached

to particular regimes. Hence it is clear that, for over two centuries, energy and the

conversion technologies that various societies use to harness it have been important

concepts in the analysis of societal metabolism.

Ayres and Kneese (1969) presented the argument that modern economies draw heavily on

free environmental goods such as air and water, and that this results in market externalities,

at the expense of environmental quality. They also presented the first material flow analysis

of the United States, carried out for the years 1963 through 1965; they based the concept of

material flow analysis on the fundamental law of the conservation of mass. In terms of

socioeconomic systems, conservation of mass leads to the following equation:

Material and Energy Inputs = Outputs + Net Additions to Stock

In the previously mentioned work, Ayres and Kneese also presented the only conditions

under which the aforementioned environmental externalities would not occur: (1) all inputs to

production are fully converted into outputs, with no unused residuals that are not

permanently stored (at the expense of the producer); (2) all final outputs disappear when

consumed; or (3) property rights are such that all affected environmental goods are privately

owned, and these rights are tradable in competitive markets. Since full consumption and

recycling of all matter are not achievable, materials balances are essential to determining

anthropogenic impact on the environment, and are even useful in allocating responsibility for

the flows that are extracted from and released to nature. Ayres and Kneese's work may be

considered one of the pillars of industrial ecology, and certainly the fundamental basis of the

industrial and urban metabolism fields.



2.1.1 Eurostat (2001) Material Flow Accounts Methodology
The Eurostat methodology for material flow accounting is the most widely used and

standardized guide available, focusing on material flow accounts (MFA) and balances for

a whole country or economy. Economy-wide material flow accounts and balances show

the amounts of material inputs into a country, net additions to stock, and outputs to other

economies or back to nature (Figure 2.1.1).

Figure 2.1.1 Scope of economy-wide material flow accounts (Eurostat, 2001)

input

domestic
extraction:
* fossil fuels
* minerals
e biomass

unused domestic
extraction

imports

indirect flows
:associated to.
imports

economy
material accumulation

(net addition to stock)

material throughput
(per year)

output

to nature:z emissions to air
*0 waste landfilled
*0 emissions to wate~r
*dissipative flows

unused domestic
extraction

exports

iindirect flows /
associated to.
exports

Research from the past two decades resulted in the publication of 'Resource Flows: the

material basis of industrial economies' (Adriaanse et al, 1997) and 'The Weight of

Nations - material outflows from industrial economies' (Matthews et al, 2000), which

were major moves toward harmonizing the approach to material flow analysis, and the

works upon which much of the Eurostat methodology is based.

The need for material flow indicators on the national level came to the fore with the rise

in prominence of eco-efficiency as a major environmental concern. In the United

recycling



Nations initiative on indicators for sustainable development, the material balance

approach supports the derivation of material and resource consumption indicators. This

is part of a long-standing push to integrate environmental and natural resource accounts

with economic accounts, in order to arrive at a more holistic picture of national

development. The rationale behind this is that if a country's economic growth is

predicated on the exhaustion of national capital and the fouling of its environment by
emissions and other types of output, then economic indicators alone will not reflect the

tradeoff that has occurred with respect to long-term sustainability. Furthermore, MFAs

can assist in providing indicators for resource productivity by relating aggregate resource

use to GDP and other economic and social indicators. That is, what are the resources

requirements associated with delivering a certain level of development, affluence, or

lifestyle to a particular country, region, or society? The resource use indicators can also

be used directly to inform resource and waste management policy-making.

Economy-wide MFA and balances are the primary analytical framework of societal

metabolism. Material flow analyses are an established way to provide an aggregate

overview of annual material inputs and outputs of an economy, including imports and

exports. Various material flow-based indicators can be derived from the analysis. One of

the most important of these indicators is Total Material Consumption (TMC), which is

analogous to the national economic accounts indicator GDP.

Material inputs are classified into three main material groups:

- fossil fuels

- minerals (further subdivided into industrial minerals & ores, and construction

minerals)

- biomass (from agriculture, forestry, fishing or hunting).

Material flow analyses that have been carried out to date have shown that water flows

are typically one order of magnitude larger than all other materials. In order to deal with

this issue, flows of water are calculated and presented separately.

Defining the system boundary is one of the most important issues in economy-wide

material flow accounting. Because the focus is on national resource consumption and

impacts, the convention has been to define the system boundary as follows:



a. by the extraction of raw, crude or virgin materials from the national environment

and the discharge of materials to the national environment;

b. by the political (administrative) borders that determine imports and exports;

c. natural flows into and out of a country's geographical territory are excluded.

Material flows within the economy are not presented in economy-wide MFA and

balances, although such flows would be of interest in industrial or urban metabolism

studies that examine particular chains of production or specific cities, respectively.

The guiding principle of economy-wide material flow methodology is that the accounts

and balances should be consistent with national economic accounts. These define the

national economy as the "activities and transactions of producer and consumer units that

are resident (i.e. have their center of economic interest) on the economic territory of a

country". In order to maintain the consistency of physical accounts with economic

accounts, the same residence principle is applied in material flow analyses. Thus,

materials purchased (or extracted for use) by 'resident units' of a particular country, such

as tourists abroad, are considered material inputs (and emissions abroad are considered

material outputs) of the economy in which the tourists permanently reside. In practice,

however, the Eurostat methodological guide suggests that information relating to tourism

and international transport are disproportionately difficult to obtain. Thus, it is suggested

that readily available national data should be used instead.

The following is a list of the aggregate resource indicators that are calculated based on

material flow accounts and balances:

- Direct Material Input (DMI) - measures the input of materials for use in the
economy, i.e. all materials that have economic value and are used in production
and consumption

DMI (direct material input) = Domestic extraction (used) + Imports
= DMO + NAS (net additions to stocks)

- Total Material Input (TMI) - includes DMI as well as unused domestic
extraction, i.e. materials that are moved by economic activities but that do not
serve as input for production or consumption activities (mining overburden,
etc.). Unused domestic extraction is also referred to as 'domestic hidden flows'.

- Total Material Requirement (TMR) - includes TMI as well as the (indirect)
material flows that are associated with imports but that take place in other

23



countries.

TMR (total material requirement) = Domestic extraction (used+unused) +
Imports + indirect flows imported

* Domestic Total Material Requirement (domestic TMR) - includes domestic
used and unused extraction, i.e. the total of material flows originating from the
national territory.

Domestic TMR = TMI - Imports

- Domestic material consumption (DMC) - measures the total amount of material
directly used in an economy (i.e. excluding indirect flows)

DMC (domestic material consumption) = Domestic extraction (used) +
Imports - Exports

- Total material consumption (TMC) - measures the total material use associated
with domestic production and consumption activities

TMC (total material consumption) = TMR - Exports - indirect flows exported

- Net Additions to Stock (NAS) - measures the 'physical growth of the economy',
i.e. the quantity (weight) of new construction materials used in buildings and
other infrastructure, and materials incorporated into new durable goods such as
cars, industrial machinery, and household appliances.

- Domestic Processed Output (DPO) - the total weight of materials, extracted
from the domestic environment or imported, which have been used in the
domestic economy, before flowing to the environment. Included in DPO are
emissions to air, industrial and household wastes deposited in landfills, material
loads in wastewater and materials dispersed into the environment as a result of
product use (dissipative flows). Recycled material flows in the economy (e.g. of
metals, paper, glass) are not included in DPO. This indicator represents the
total quantity of material leaving the economy after use either towards the
environment or towards the rest of the world.

DMO (direct material output) = DPO (domestic processed output to nature) + Exports

In sum, the input indicators arising from material flow accounts and balances measure

the physical bases that sustain a country's economic activity, including production for

exports. These indicators reflect the dominant modes of economic production. As

important as being able to show absolute amounts of input and consumption is the ability

of indicators to express material efficiency (unit of GDP per unit of material indicator) or

material intensity (material indicator per GDP).



2.1.2 Existing urban metabolism studies
Material flow analyses and balances for cities are rare and, as yet, unstandardized.

There are some notable examples of urban metabolism studies that have been carried

out to date, one case being that of Hong Kong. Warren-Rhodes and Koenig (2001)

updated the pioneering Newcombe et al. (1978) study of Hong Kong's metabolism,

analyzing trends in material consumption and waste discharges. Hong Kong is an

extremely dense, highly developed coastal city whose economic base transitioned in the

1960s from being a major trading post, to light industry, and finally to service and

financial industries in the 1990s. Rapid industrial and economic growth during these

decades resulted in high pollution levels and resource intensity. The results of the Hong

Kong study showed that per capita food consumption grew 20% from 1971 to 1997,

water consumption increased by 40% during the same time period, and materials

consumption grew 149%. On the output side, the 10% annual increase in per capita

GDP was accompanied by 30% growth in total air emissions, 250% in C02, 245% in

municipal solid waste, and 153% increase in sewage discharge. Regardless of these

increases Warren-Rhodes and Koenig point out that, in comparison to other developed

economies, Hong Kong has lower per capita infrastructure stock, and lower energy and

materials use. The analysis of trends' in Hong Kong's urban metabolism laid the

foundation for speculating on the patterns of metabolism that other rapidly growing cities

in China would experience.

Kennedy et al (2007) compiled data from eight urban metabolism studies to examine

how the metabolism of cities has been changing over time. Material flow analyses from

Brussels, Tokyo, Hong Kong, Sydney, Toronto, Vienna, London, and Cape Town

revealed that metabolic rates have generally been increasing in these areas. There are

some exceptions, however; per capita energy and water consumption in Toronto

plateaued in the 1990s. Recycling programs in cities resulted in decreases in residential

waste, but similar decreases were not experienced in the commercial and industrial

sectors. Most notably, Kennedy et al called for research to be carried out to identify

different classes of urban metabolism. They suggested that climate is a likely

determinant of particular types of metabolism, along with a city's stage of development,

among other factors. The identification of such a typology would assist urban policy

makers in understanding the metabolism of the cities for which they are responsible.



Kennedy et al (2007) state that "It is practical for them to know if they are using water,

energy, materials, and nutrients efficiently, and how this efficiency compares to that of

other cities". This is a major motivating factor for the research that was conducted in the

current work.

2.2 Existing typologies for the classification of countries and cities
A review of existing literature on typologies reveals that most of the research is based on

categorizations at the national level, as opposed to the city level. A more urban-focused

analysis is necessary to assist in finding solutions for municipal decision makers.

Furthermore, typologies of countries and cities are not typically defined based on common

patterns of resource consumption.

2.2.1 International development classifications
International development and multilateral agencies have historically developed very

simple classifications for countries. They use these for operational, research, and

lending purposes, and the groupings are based primarily on geographical regions and

per capita income levels. The World Bank, for instance, classifies every economy based

on its Gross National Income (GNI) per capita; countries are classified as low income,

lower middle income, upper middle income, or high income. Table 2.2.1 shows the three

groupings by which the World Bank classifies countries.

Table 2.2.1 World Bank country classifications
By Region By Income (2008 GNI per capita) By Lending

East Asia and Pacific Low-income economies ($975 or less) IDA

Lower-middle-income economies

Europe and Central Asia ($976-$3855) Blend

Upper-middle-income economies

Latin America & the Caribbean ($3856-$11905) IBRD

Middle East and North Africa High-income economies ($11906 or more)

South Asia High-income OECD members

Sub-Saharan Africa



A country's lending classification defines the arm of the World Bank from which it is

eligible to borrow. The IDA (International Development Association), for example, lends

only to the world's poorest countries, including those that are at risk of debt distress. It

provides interest-free credits and grants for programs that boost economic growth and

living conditions in eligible countries (GNI per capita below an established threshold of

US$1135 in fiscal year 2010), and is the major source for donor funds for projects that

provide countries with basic social services. This service works in tandem with the

International Bank for Reconstruction and Development (IBRD), which provides middle-

income countries with capital investment and advisory services. In order to borrow from

the IBRD, a certain level of creditworthiness is required. Blend countries including India,

Indonesia and Pakistan, are those that are IDA-eligible based on per capita income

levels, but are also creditworthy for some IBRD loans. The income categories also

inform the operational lending preferences of the World Bank, for instance, certain

income groups are preferentially given funding for civil works.

Classifications according to geographic regions are made only for low- and middle-

income economies, also referred to as developing economies. However, development

status does not correspond to particular income levels in all cases, and certainly can

have many possible types of associated metabolic profiles.

The United Nations uses a similar classification system to the World Bank, in that it

groups countries according to continental regions, geographical sub-regions, and

selected economic and other groupings (Table 2.2.2).

Table 2.2.2 Selected economic and other United Nations country groupings

Developed regions In common practice, Japan, Canada and the United States, Australia

Developing regions and New Zealand, and Europe are considered "developed".

Least developed countries

Landlocked developing countries

Small island developing States

Transition countries Countries in transition from centrally planned to market economies.



It is clear that international development classifications are used primarily for economic

analysis, lending, and operational purposes. They do not reflect the metabolic

properties associated with countries at particular levels of income or development.

Although these groupings may be a starting point for considering the characteristics that

countries have in common, they have limited usefulness in the attempt to classify the

material and energy requirements of different types of economies.

2.2.2 Evolutionary approaches to classification
Bai and Imura (2000) presented a model of urban environmental evolution that aimed to

serve as an analytical framework for the comparison of East Asian cities. As a model of

environmental evolution, four sequential stages were described: the poverty stage

(poverty-associated issues), the industrial pollution stage (production-associated issues),

the mass consumption stage and the eco-city stage (has neither poverty-related

environmental problems nor production-related problems; minimal external

environmental impacts related to consumption). These stages are not so much city

types as they are descriptions of the major environmental problems confronting cities at

different stages of urban development. The authors argue that for a particular city at a

given time, one of these three types of issues gains dominance, until another group of

issues becomes prominent in the succeeding stage of development. The eco-city stage

is merely conceptual, and assumes that as the level of economic development

increases, citizens will adopt more resource-efficient lifestyles and develop greater

environmental consciousness. Bai and Imura (2000) conducted case studies on eight

cities in order to present a stage model of urban environmental evolution in East Asian

cities, but did not extend the work to the classification of a broader set of urban areas to

each of the four stages.

Krausman et al (2008) likewise presented work that may be described as an

evolutionary approach to the classification of national resource consumption profiles, i.e.

from agrarian to industrial. They posit that the transition from agrarian to industrialized

society is a process that is accompanied by distinct biophysical characteristics. They

describe agrarian societies as those that are fueled by a solar-based energy system and

rely on the energy conversion provided by plant biomass. In other words, solar energy

flows are the main energy source, as opposed to fossil fuels. Conversion of solar
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energy into plant mass resulted in the availability of biomass to support human

metabolism (as food), as construction material, and as the primary energy supply.

Because of the constraints imposed by "bioconverters" (such as people and animals),

the amount of useful energy that could be extracted from biomass was low, and this

resulted in limited development within the agrarian regime. In agriculture-based

economies, the main resource for production is human labor to cultivate food, animal

feed, fibers, and biomass fuel. The sustainability issues that agrarian societies face are

primarily related to long-term soil fertility and the sufficiency of food supply in the face of

rapid population growth, as well as the effects of climate change on agricultural

production.

Population growth is a major element in the positive feedback loop of labor-agriculture-

population since the agricultural production process is labor-intensive, resulting in the

encouragement of large family sizes and high birth rates.

Disruptive technological change came about due to the ascendance of coal as the main

energy carrier in historical industrialization (Freese, 2008). The use of other fossil fuels

and types of energy conversion gradually changed the metabolic profiles of transitioning

industrial societies, e.g, in the case of England during the Industrial Revolution.

Krausmann et al (2008) describe the transition to full industrialization as still being

dependent on urban centers existing within a rural periphery. The rapidly growing

population relied on the delivery of food from the agricultural hinterlands. The physical

linkages between the rural farm areas and the urban/industrial centers were in the form

of farm-to-market roads, which necessitated the increased use of construction materials.

The basis of the entire industrial economy, therefore, is fossil-fuel energy and the levels

of manufacturing and long-distance transport that are made possible by this system.

These lead to significant growth in per capita material and energy use, as compared to

that of agrarian societies.

Characteristic socio-metabolic profiles for industrialized societies were also described by

Krausmann et al (2008), showing tremendous energy and materials usage. There is

also a succeeding ("mature industrial") phase in which the service sector dominates

national economies. At this later stage, resource- and emissions-intensive activities are



shifted to countries that are entering or are in the industrialization phase, and this results

in an apparent leveling off of energy and material use in the service economies, although

absolute consumption remains high.

In their clustering analysis, Krausmann et al (2008) grouped 175 countries according to

their stages in the transition process from the agrarian to the industrial regime (which

essentially amounts to the country's development status - industrialized or developing).

Population density is the other dimension along which countries were classified; it is a

variable that reflects the per capita material and energy intensity of a given level of

service delivery, and hence impacts an economy's metabolic profile. Low population

density clusters were then subdivided into 'Old World' and 'New World' countries. This

resulted in six contemporary "subtypes" of sociometabolic regimes: (1) High Density-

Industrialized, (2) High Density-Developing, (3) Low Density-Industrialized-Old World, (4)

Low Density-Industrialized-New World, (5), Low Density-Developing-Old World, and (6)

Low Density-Developing-New World. Headline indicators of the metabolic profiles of

these subtypes include Domestic Energy Consumption and Domestic Material

Consumption, both measured on a per capita basis. General results were that

developing countries derive a majority of their energy supply from biomass; for industrial

countries approximately 75% of primary energy is fossil fuel-based. Most notably,

average per capita material and energy consumption was found to be on the order of

three to four times higher in industrialized countries than in the developing world.

The work of Krausmann developed a clustering based on the dimensions of level of

industrialization and population density, and then examined metabolic characteristics

based on those assumed clusters. It did not attempt to perform a clustering analysis a

priori to determine whether the six groups were in fact those that resulted in the most

significant metabolic differences across types. Furthermore, countries were allocated to

particular clusters based on the independent variables of level of industrialization and

population density, and then the variability of resource consumption profiles within each

cluster was merely observed after the fact, to determine whether the countries grouped

together in each cluster were reasonably similar in terms of resource consumption.



Chapter 3. Methodology

3.1 Data collection and sources
The aim of this work is to present an analysis addressing the differences in consumption

levels across the world's cities, and to discuss the predictive applications of the resulting

classification trees. Though the classification is supported with actual data indicated below,

the resource consumption profiles and classification trees are not based on a rigorous data

analysis at this time, but rather present a theoretical basis for doing subsequent statistical

data analysis. Furthermore, the classification tree method is robust to variations in the

magnitudes of observations, as long as the ordering across cases is maintained (Breiman et

al, 1984).

3.1.1 Predictor (independent) variables
The basic assumption underlying this approach is that different levels of development,

population size, density, and climate are indicators of different types of resource

consumption. For the most part, these predictor variables are available for most cities in

the world. Each of the following four independent (predictor) variables were gathered for

the 155 cities in question:

- Population

- Population density

- Climate

- City GDP per capita.

The first two variables are readily available from UNdata, which is a data access system

to United Nations statistical databases, which can be reached through a single entry

point (http://data.un.org/). City population size and population density are available in

the Population of capital cities and cities of 100 000 or more inhabitants: latest available

year (1988 - 2007) document.

The climate type of each city was taken from the world map of the K6ppen-Geiger

Climate Classification, a Google Earth layer generated from shape files downloaded

from http://koeppen-geiqer.vu-wien.ac.at/ from the Department of Natural Sciences,

University of Veterinary Medicine, Vienna.
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The KOppen climate classification is one of the most widely used climate classification

systems, first published in 1884 by the German climatologist Wladimir K6ppen. Later

changes to the system resulted from a collaboration with the German climatologist

Rudolf Geiger. The system is based on the idea that native vegetation is the best

expression of climate differences across the world. Hence, climate types are

differentiated based on a combination of precipitation, average annual and monthly

temperatures, as well as the seasonality of precipitation, which in turn are the major

determinants of the dominant types of native vegetation in a region.

The Kcppen climate classification scheme divides climates into five main groups and

several types and subtypes. In this work, I used only the five main groups to differentiate

cities (although none of the selected cities fall under fifth climate type, Polar).

- GROUP A: Tropicall/megathermal climates - these are

constant high temperature (at sea level and low elevations).

of the year have average temperatures of 18 *C (64 *F)

examples of Tropical cities are:

o Kuala Lumpur, Malaysia

o Honolulu, Hawaii, United States

o Conakry, Guinea

o Mumbai, India

o Jakarta, Indonesia

o Lagos, Nigeria

characterized by

All twelve months

or higher. Some

- GROUP B: Dry (arid and semiarid) climates - these are characterized by the

fact that precipitation is less than potential evapo-transpiration. Some

examples of Arid cities are:

o Dubai, United Arab Emirates

o Niamey, Niger



- GROUP C: Temperate/mesothermal climates- these climates have an

average temperature above 10 0C (50 *F) in their warmest months, and a

coldest month average between -3 OC (26.6 *F) and 18 OC (64 "F). Some

examples of Temperate cities are:

o Athens, Greece

o Cape Town, South Africa

o Lisbon, Portugal

o Los Angeles, California, United States

o Madrid, Spain

o Santiago, Chile

o Tel Aviv, Israel

o Victoria, Canada

o Tbilisi, Georgia

o Buenos Aires, Argentina

o Durban, South Africa

o Sao Paulo, Brazil

o Melbourne, Australia

o Curitiba, Brazil

o Addis Ababa, Ethiopia

o Bogota, Colombia

o Mexico City, Mexico

o Johannesburg, South Africa

- GROUP D: Continental/Snow climate - these climates have an average

temperature above 10 0C (50 *F) in their warmest months, and a coldest month

average below -3 *C. These cities are usually located in the interiors of

continents, or on their east coasts, north of 400 North latitude. In the Southern

Hemisphere, Group D climates are extremely rare due to the smaller land

masses in the middle latitudes and the almost complete absence of land south

of 400 South latitude, existing only in some highland locations. Some examples

of Snow cities are:

o Chicago, Illinois, United States

o Toronto, Canada



o Belgrade, Serbia

o Bucharest, Romania

o Seoul, South Korea

o Beijing, China

o Minsk, Belarus

o Helsinki, Finland

o Boston, Massachusetts, United States

- GROUP E: Polar climates - these climates are characterized by average

temperatures below 10 0C (50 *F) in all twelve months of the year.

City GDP values, on the other hand, were taken from various sources, including the

Global City Indicators Program. The Program encourages member cities to measure and

report a core set of indicators through the web-based database found at

http://cityindicators.org. Global City Indicators provides a set of city indicators based on

a globally standardized methodology, allowing for comparability of city performance and

knowledge sharing. Other sources for city GDP values include individual municipal

websites. Where the GDP data was not directly available at the city level, GDP of the

urban population of each particular country was used.

3.1.2 Consumption (dependent) variables
In 2003, Myers & Kent discussed the influence of a newly affluent middle class on

growing consumption in the developing world, as well as in newly industrialized

countries. In their work, they pointed out what is one of the major bases of contemporary

urban metabolism research: that "growing consumption can cause major environmental

damage". They estimate that there are over 1 billion "new consumers", defined as

people in developing and transition countries with an aggregate spending capacity equal

to that of the United States, which equates to at least US$2,500 per capita at purchasing

power parity. In particular, the new consumers possessed twenty percent of the world's

cars in 2003, and that proportion is growing rapidly, an observation that is borne out by

the acute and rapidly worsening road congestion in cities of the developing world. The

dramatic rise in usage of personal automobiles is accompanied by significant growth in

carbon dioxide emissions. It is, therefore, beneficial to characterize this and other
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environmental impacts in cities that have not historically been long-established centers

of consumption.

The degree of affluence being discussed in Myers & Kent appears to be the threshold at

which purchases of household appliances and televisions, air conditioners, personal

computers, and other consumer electronics, a meat-based diet, and cars becomes

widespread. Because of increased usage of household appliances and electronics,

electricity use (generally fossil-based) in new consumer cities is also growing apace.

The incomes of these so-called 'new consumers' are significantly greater than national

averages, income skewedness being a particularly pronounced phenomenon in

developing countries. Furthermore, this rise consumption can be directly associated

with urban areas, since cities tend to be where the upwardly-mobile professionals reside.

The more sophisticated lifestyle, with the corresponding purchase of the symbols of

affluence, is also more prevalent in the major cities. Thus, this growth in consumption is

directly relevant to the study and characterization of the different types of urban

metabolism throughout the world. This also underscores the need to include a

significant number of developing and transition cities in the model training sample.

In the following paragraphs, I discuss the data sources for the per capita consumption

values of each of the eight resources that are being tracked in this work, as well as

carbon dioxide emissions.

i. Total Energy

ii. Electricity

iii. Fossil fuels

iv. Industrial Minerals & Ores

v. Construction Minerals

vi. Biomass

vii. Water

viii. Total Materials (DMC)

Data used for the dependent (consumption) variables consist of country-level data and



individual city-level data. Country-level data for 175 countries from the Institute of Social

Ecology Vienna (www.uniklu.ac.at/socec/inhalt/1088.htm) were used out of necessity to

provide a general picture of the resource consumption of each city. A major obstacle in

conducting this cross-city comparison was lack of complete consumption data at the city

level and the comparability of the available data.

The national figures from the Institute of Social Ecology were the starting point for

assessing city-level resource consumption. These national estimates are quite reliable,
as official data on national production and the import and export of all major resources

and goods are readily available.

Bettencourt et al (2007) presented analyses showing that certain processes (like

consumption) related to urbanization are similar among cities, even across different

countries. They show that power law functions of population size describe different

urban phenomena. In their work, empirical evidence was presented regarding important

socioeconomic and consumption indicators as scaling functions of city size that are

quantitatively consistent. The most popular example of such a scaling function is Zipf's

Law for the rank-size distribution of city population sizes.

Bettencourt et al (2007) gathered an extensive set of data, across various national urban

systems, on phenomena that include energy consumption, economic activity, and

infrastructure, among others. The power scaling laws take the form of (Bettencourt et al,
2007):

Y(t) = YoN(t)p

where N(t) = city population at time t

Y(t) = consumption of resources (such as energy, infrastructure, others),
measures of social activity (such as pollution)

YO = normalization constant

p = scaling exponent governing the relationship between population size and the

behavior, Y(t).

Bettencourt et al found robust scaling exponents across different countries, levels of

development, and time periods for a variety of indicators, including various consumption
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measures. This implies that cities that appear very different in form and geographic

location are actually scaled versions of one another. The scaling relationship that I

make use of in the present work is that associated with total electrical consumption (P =

1.07), a superlinear phenomenon that takes into account not only personal or household

consumption, but also increasing returns with population size that reflect industrial and

commercial consumption in cities. Because we adopt the P = 1.07 relationship for total

consumption of particular resources by a city of population size N(t), then this leads us to

the following method of estimating consumption at the city level based on national

consumption values.

- For every city i, it is possible to determine how the consumption of a particular

resource scales as a function of the city's Population, Ni(t):

aD = (Ni(t)I3)/Ni(t)

- For every city within a particular country, a varies from the largest value for the

city with the highest population to the smallest value for the city with the lowest

population. If ao signifies the scaling ratio for the largest city, then for all other

cities i in the same country, ai/ao is the ratio of consumption in city i to

consumption in the largest city. This is how differences in consumption among

cities in the same country were derived.

The method above was used for all of the resources (and carbon dioxide emissions)

except Water. For water, per capita consumption data at the city level were extracted

from http://www.ib-net.orq, the website for the International Benchmarking Network for

Water and Sanitation Utilities (IBNET). IBNET is an initiative to encourage water and

sanitation utilities to compile and share a set of core cost and performance indicators,

including consumption data for the water utilities serving most cities in the world.

Indirect assessments were necessary for resources other than water because the

collection of local material consumption data is limited. Nevertheless, it is sufficient for a

first-order approximation that can later lead to a more detailed analysis using the same

methodology presented here.

After an extensive search for urban consumption data was carried out, it became evident

that the sources listed above are the most reliable information sources available for a
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broad range of cities. It is recognized that not all data are as definitive as would be

ideal. However, the degree of credibility must be balanced against the need to address

the phenomenon of growing consumption that has great significance for the

environmental sustainability and the quality of life in the cities of the world. The author

believes that the development of a resource consumption typology and the methods of

analysis that were used to arrive at the prediction model are useful in and of themselves,
even though the data at the present time are not as accurate as would be ideal.

The data used for each of the classification trees are shown in Appendix A.

3.2 Classification tree analysis

The classification tree analysis in this work was carried out using R, a language and

environment for statistical computing and graphics (http://www.r-project.org/). Using the

rpart programs in R, I built classification models using a two-stage procedure; the resulting

models are represented as binary trees. A tree-structured classifier is a decision tree for

predicting a dependent variable from one or more predictor variables. In a typical

classification problem (Breiman et al, 1984), there is a training sample L = {(X1, Y1), (X2 , Y2),
... , (XN, YN)} of N observations, where each Xi = (Xa, . . Xk) is a k-dimensional vector of

predictor variables and Y is an independent variable that takes one of j values. The goal of

classification methods is to construct a rule for predicting the Y value of a new observation

given the values of the vector X. If the predictor variables are all ordered, i.e., non-

categorical, some popular classifiers are linear discriminant analysis (LDA), nearest

neighbor, and support vector machines. Although these classification algorithms often

possess good prediction accuracy, they act like black boxes, in that they do not provide

much insight into the roles of the predictor variables in determining the dependent variable.

A classification tree is an attractive alternative because it is easy to interpret. It is a decision

tree obtained by recursive partitioning of the X-space, where an observation in a partition is

predicted to belong to the Y class with minimum estimated misclassification cost.

Classification trees have been demonstrated to possess high prediction accuracy compared

to many other methods; see, e.g., Perlich et al. (2003), and Loh (2009). They do not require

categorical predictor variables to be transformed.



All classification tree algorithms have to address two common problems: how to split a node

in the tree and when to stop splitting it. The first problem is usually solved by means of a

node impurity function, with the best split being the one that minimizes a function of the

impurities in the subnodes. The second problem is addressed by first growing a large tree

and then using cross-validation to 'prune' it to a smaller size.

One advantage of classification trees over traditional data mining techniques is that we can

infer from the trees some insights about the importance of the predictor variables. For

interpretability, the most desirable tree is one that is neither too small (because it provides

little information) nor too big (because it can be challenging to follow the logic contained in

several levels of splits).

A classification tree is built by the following process: first, the single independent variable is

found which best splits the data into two groups. The data is separated, and then this

process is applied recursively to each sub-group, and so on until no further improvement

can be made. This results in a model that is almost certainly too complex, therefore, the

second stage of the procedure consists of using cross-validation to trim back the full tree

(Figure 3.2.1).
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Figure 3.2.1 Flow diagram for building

Set of cities for which only data on
Predictor variables is available

City Typology classification trees

The sample population consists of n observations (n=155 cities) from 3 classes of

consumption of each type of resource (Low, Medium, High). A tree for a given resource breaks

these cities into g terminal groups; to each of these groups is assigned a predicted class (this is

the dependent variable, which takes on a value of consumption, either Low, Medium, or High).

3.2.1 Splitting criterion
Classification tree analysis uses one of several measures of impurity, or diversity, of a

node as a splitting criterion (Breiman et al, 1984). We let f be some impurity function

and define the impurity of a node A as

1(A) = If(piA) from i=1 to C

where piA = the proportion of cases in node A that belong to class i. The goal is for 1(A)

= 0, indicating that node A is pure, or contains cases that all belong to a single class.



The Gini Index for a given node, A, is:

GINI(A) = 1 - I[p(i|A)]2 over all classes i

where p(i|A) = the relative frequency of class i at node A

The maximum value of the Gini index is (1 - 1/nc), when observations are equally

distributed among all classes (in our case, Low, Medium, or High). This implies the

worst possible split, where no denotes the number of classes (in our case, 3). The

minimum possible value of the Gini Index, on the other hand, is 0 when all observations

belong to a single class. This implies that the split reveals the most amount of

information about the data at that node.

When a node A is split into k partitions (child nodes), the quality of the split is evaluated

as

GINlspili = 1(nj/n)GINI(j) from j = 1 to k

Where nj = number of observations at child j
n = number of records at the parent node A

Again, the goal is to minimize the Gini Index of a particular split in order to obtain the

purest child nodes. The Gini Index is the preferred splitting criterion for growing

classification trees because it focuses less on reducing the misclassification rate of a

data set, and more on the creation of pure nodes.

3.2.2 Cross validation
Using the Gini splitting criterion, I built classification trees to their entirety, for each

resource under consideration. Complete trees are usually quite large and/or complex,

and it is sometimes necessary to trim the nodes of the tree in a bottom-up fashion. The

pruning process is a tradeoff between misclassification error in the validation data set

and the size of the tree (number of terminal nodes).

Realistic estimates of the predictive capacity of a classification tree-based model must

take account of the extent to which the model has been selected from a wide range of

candidate models. I used the cross-validation approach to determine unbiased



assessments of predictive accuracy.

The cross-validation error is relevant to predictions for the population from which the

data were sampled. Cross-validation requires the splitting of the data into s subsets (in

this case, s = 10). In building the classification trees, each of the 10 subsets of the data

was left out in turn, the model was fitted to the remaining data, and the results were used

to predict the outcome for the subset that was left out. One such division of the data is

known as a fold, for each of the 10 subsets. At the sth fold, the sth subset has the role of

test data, with the remaining data having the role of training data.

In a classification model, prediction error is usually determined by counting each

incorrectly classified record. Cross-validation is an unbiased estimate of predictive

power, because the model was developed independently of the data to which it is

applied (the sth excluded subset). However, the estimate is for a model that uses, on

average, a fraction (k - 1)/k of the data. An estimate of average error is found by

summing up the measure of error over all observations and dividing by the number of

observations. Once predictions are available for each of the subsets, the average error

is taken as (total error)/total number of observations.

Cross-validation provides an evaluation of the variation in prediction error associated

with various tree sizes. This is why it is typical to build a tree that has the maximum

number of splits (or is over-fitted), and then to prune to a tree size that has close to the

minimum cross-validated prediction error.

3.2.3 The cost-complexity parameter
Rather than controlling the number of splits directly, this parameter is controlled

indirectly, via the quantity cp (complexity parameter) that imposes a penalty for each

additional split. Further splitting stops when increases in cost outweigh the reduction in

lack of fit. A high value of the complexity parameter leads to a small tree (additional cost

rapidly offsets additional increases in fit), while a low value leads to a complex tree.

Thus, the choice of cp is a proxy for the number of splits.

For each resource, I fitted a tree that was complete, i.e., one for which the Gini Index
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could not be improved by adding more splits. The cross-validated relative error was

then plotted against cp, and then the value of cp for which the tree was optimal was

determined. Having identified the optimal tree (with minimum cross-validation error

rate), succeeding splits were then pruned off. The optimal tree is the smallest tree

whose error is less than (minimum error + 1 standard deviation) (Breiman et al, 1984).

3.3 Categorization of urban metabolic profiles
The goal of this work is to find evidence showing that differences do exist in urban metabolic

profiles, and to present a typology of cities based on the differences in these profiles. The

following approach was adopted in developing the typology of cities:

- First, the levels of consumption (Low, Medium, and High) were taken for the

eight resources, as well as carbon dioxide emissions, for every city under

consideration.

- The resource consumption profile was developed for each city, reflecting the

levels of consumption of the eight resources and carbon dioxide emissions.

- The 155 profiles of the cities were compared and grouped according to which

profiles were either identical or without major differences in the consumption

levels for each of the resources, and for carbon dioxide emissions. Note that

only similarities in level of consumption of each type of resource were

considered, without regard for the independent variables used in the

classification tree analysis.

- Each group with identical resource consumption profiles constitutes one type of

city, and the drivers that generate each distinct type of profile were analyzed.

The results of this categorization, as well as those of the classification tree analysis, are

shown in Chapter 4.
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Chapter 4. Results

4.1 Map of the 155 Representative Cities
The initial phase of this work involved the selection of a set of cities that spanned the entire

range of the world's geography, affluence/level of development, population size, population

density, and climate. Priority was given to selecting national capitals and major cities,

although this set includes smaller cities as well.

Figure 4.1.1 situates these cities on a 'map', relating the Human Development Index (HDI)

of the country in which a city is found to the city's population density, population size, and

Koppen climate classification. At this point, no consumption variables have yet been

introduced. We are merely observing which cities are similar, in terms of the selected

predictor variables. The goal of the 155 Representative Cities Map is to visualize the way

cities can be grouped based on the following variables:

- Population

- Population density, persons/sq.km

- Human Development Index

- Climate

I took a sample of 155 cities that run the gamut of these four characteristics, proportionally

representing geographical regions according to the percentage of the world urban

population residing there. Based on this representative sample, it was possible to discern a

number of city types. In the interests of arriving at a limited number of groups, and

recognizing that there may be significant variability among the cities in each group, the HDI

- Population Density space was divided into Low, Lower Middle, Upper Middle, and High

HDI, as well as Low, Medium, High, and Very High population density (Table 4.1.1). This

division appears to reasonably capture the major concentrations of the cities on the map,

whether by population size or climate. Figure 4.1.1 shows the map containing all the cities

and their respective populations (denoted by the size of the circles), population density,

Human Development Index, and climate (denoted by the color of the circles).

Figures 4.1.1a, 4.1.1b, 4.1.1c and 4.1.1d show the distribution of cities in this space

according to climate type. Tropical cities are the most widely dispersed, appearing in all



zones in which any city can be found; Temperate cities (although comprising the largest

fraction of the 155 Cities) are found in slightly fewer groups. Arid cities are not represented

in the Mid to Very High density - High HDI region, while cities with the Snow climate appear

to be concentrated in the Low to Mid density - Upper Middle to High HDI area.

From Figure 4.1.1 it may be noted that in the High Density - High HDI region the cities are

all Temperate, with the exception of Seoul (the most populous city in this group), which has

a Snow climate. The Very High Density cities are all Tropical (and Middle HDI), with the

exception of Cairo, which is an Arid city. Upon examination of the upper left and lowest left

regions, we see that the High HDI - Low Density space is dominated by Temperate cities,

while the Low HDI - Low Density space has almost exclusively Tropical cities. For the Low

HDI range, the cutoff population density for this set of cities is approximately 15,000 persons

per square kilometer; the maximum density for the High HDI range is approximately

20,000/sq.km. Two thirds of the cities in this sample (6 out of 9) with population 10 million

people are located in the Middle density - Upper Middle HDI region, none of which are Arid.
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Figure 4.1.1. Map of 155 representative cities on the Human Development Index - Population - Population Density space
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POPULATION DENSITY, PERSONS/SQ.KM
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Mostly Temperate, Some
Snow, Troj pical;
Interquartile Population
Range: 600 thousand -
4.7M

0.91 1 1
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Tropi at and
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Some cities-10M

0.51 1 1
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30000 35000
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Table 4.1.1. Description of city groups on the Human Development Index - Population - Population Density space
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Representation of Tropical cities in the High HDI range is limited, and occurs at densities below

10,000 per square kilometer. The majority of Tropical cities are found in the Lower Middle and

Upper Middle HDI range, and span densities from Low to Very High. Three out of four of the

Very High Density cities are Tropical. The Tropical cities with population 5 million are also

concentrated in the Middle HDI - Middle to Very High density band. This suggests that the least

developed countries in the tropics are still in the opening stages of large-scale urbanization,
while the absence of Tropical cities with population 5 million in the High HDI band implies that

there may be some factor that limits city size in highly developed countries. The upper left

region of the map (Low Density - High HDI) contains Tropical cities with population less than

500,000. Detailed population distributions within each city group are shown in Figure 4.1.2.

Figure 4.1.1b shows the majority of Arid cities in the Low Density band (with HDI ranging from

Low to High). As we observed with the Tropical cities, the largest of the Arid cities (population

5 million) are found in the Lower Middle to Upper Middle HDI range, across all population

densities. Despite containing the fewest cities among the four climate types, Arid cities have

greater dispersal across both population density and HDI than do the cities with Snow climates.

Figure 4.1.1c maps Temperate cities on the HDI - Population density space. These cities are

concentrated in the Upper Middle to High HDI - Low to Middle density region, although

dispersal of Temperate cities across this map is second only to that of Tropical cities. With the

exception of Addis Ababa, there are no Temperate cities to be found in the Low HDI band (in

this sample). Approximately half of the representative cities with population 5 million are
temperate, and the largest city (Shanghai) is Temperate. Furthermore, half the representative

cities with population 10 million are also Temperate; these cities are concentrated in the

Upper Middle HDI - Middle density region. The Upper Middle to High HDI band is also

dominated by Temperate cities.

In Figure 4.1.1d we see that the Snow climate cities are almost entirely in the Upper Middle to

High HDI - Low to Middle density region, with the exception of Seoul, which is in the High

density - High HDI space. Seoul is one of three Snow climate cities in the sample with

population 10 million; the other two are Beijing and Moscow. In the Low density - Upper

Middle to High HDI region, almost all of the Snow climate cities have population under 1 million.
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Figure 4.1.2 shows the population size distribution of cities within each of the 12 Population

Density - HDI groups. The box plots show the interquartile population range of cities across the

different combinations of Population density and HDI, as well the maximum and minimum city

populations for each group. A box plot is a convenient way of graphically depicting the

populations of the cities in each group through their five-number summaries: the smallest

observation (minimum population), lower quartile (Q1), median, upper quartile (Q3), and largest

observation (maximum population). A box plot may also indicate which cities, if any, might be

considered outliers. The interquartile range (difference between Q1 population and Q3

population) shows the population range into which the middle 50% of the cities fall. This is a

robust statistic that helps indicate the degree of dispersion in the group.

The Middle density - Low HDI, Middle density - Lower Middle HDI, and High density - Lower

Middle HDI groups have interquartile ranges that are approximately equal distances away from

the minimum and the maximum populations in the group. This suggests minimal skewness in

the populations of the cities in these groups. The Middle density - Low HDI group's cities have

populations that are tightly clustered between 700,000 and 1.4 million people.

The rest of the groups' interquartile ranges (the middle 50% of the cities) are significantly

skewed toward the smallest city population in the group, suggesting that the largest 25% of the

cities are significantly larger than all the rest of the cities. All of the groups in the Low density

band, regardless of HDI, have interquartile ranges less than 2 million, and their largest cities

have populations between 7 million and 10 million. Furthermore, over 75% of the cities in the

Groups 1 through 5 in Figure 7 have population under 2 million people. The High Density -

High HDI group also has 75% of its cities with population and interquartile range under 2 million

but its largest city, Seoul, has population of 10.02 million.

Groups 6, 8, and 10 have interquartile ranges between 2 million and 4 million, implying a larger

spread in city population in these groups. Seventy five percent of the cities in these three

groups have population under 5 million. Groups 7, 9, and 12 have the widest interquartile

ranges and also the largest cities, with 75% having population under 9 million, and largest cities

all with population greater than 10 million. Furthermore, Group 7 (Middle Density - Upper

Middle HDI) contains the majority of cities with population of 10 million or greater.



4.2 Classification trees and decision rules for the 9 resources
Figures 4.2.1 through 4.2.9 present the results of the classification tree analyses that were

conducted on the 155 Cities, for each of the 8 resources and 1 output (carbon dioxide)

under consideration, as well as the decision rules that can be used to classify cities that

were not included in the training and validation data sets.

Recall that the objective is to classify each city as a Low, Medium, or High per capita

consumer of each of the resources in question and a Low, Medium, or High per capita

emitter of carbon dioxide. Taking the Total energy consumption tree as an example (Figure

4.2.1), we consider the top node: the label above it indicates the variable represented at

this node (i.e. the variable selected for the first split). In this case, that variable is GDP per

capita. The value indicates the split threshold -- the value that splits the records entering

that node, or US$13,480 in this case. Any city where GDP per capita < 13,480 goes to the

left. Any city where GDP per capita the split threshold goes to the right. The cities going

to the left (the ones with lower GDP per capita) then get split up further according to climate

(where a = Tropical, b = Arid, c = Temperate, d = Snow). When the condition a, b, or c

holds true, the city goes to the left. Otherwise, if it is a Snow city (with GDP per capita <
13,480), it is classified as having Medium total energy consumption per capita. The rest of

the tree is read in a similar manner, with cities being classified to the left of a node if the
condition at that node is satisfied, or to the right if the city does not satisfy the condition.



4.2.1 Total Energy consumption
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Figure 4.2.1 Total Energy consumption classification tree

The decision rule for the Total Energy consumption classification tree will be described as
follows. I will describe the rule that results in classification to the leftmost node first, and
proceed from left to right.
- IF GDP per capita is less than 13,480 (2000US$), climate classification is Tropical, Arid, or

Temperate, and GDP per capita of the cities satisfying the second condition is less than 8,526
(2000US$), THEN Total Energy consumption is LOW.

- IF GDP per capita is less than 13,480 (2000US$), climate classification is Tropical, Arid, or
Temperate, GDP per capita of the cities satisfying the second condition is greater than 8,526
(2000US$), and population is greater than or equal to 2.265 million, THEN Total Energy
consumption is LOW.

- IF GDP per capita is less than 13,480 (2000US$), climate classification is Tropical, Arid, or
Temperate, GDP per capita of the cities satisfying the second condition is greater than or equal to
8,526 (2000US$), and population is less than 2.265 million, THEN Total Energy consumption is
MEDIUM.

- IF GDP per capita is less than 13,480 (2000US$), and climate classification is Snow, THEN Total
Energy consumption is MEDIUM.

- IF 13,480 GDP per capita < 43,410 (2000US$), and climate classification is either Tropical or
Temperate, THEN Total Energy consumption is MEDIUM.

- IF 13,480 GDP per capita < 43,410 (2000US$), and climate classification is either Arid or Snow,
THEN Total Energy consumption is HIGH.

- IF GDP per capita 43,410 (2000US$), THEN Total Energy consumption is HIGH.



4.2.2 Electricity consumption
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Figure 4.2.2 Electricity consumption classification tree

The decision rule for the Electricity consumption classification tree is as follows:
- IF GDP per capita is less than 10,190 (2000US$), THEN Electricity consumption is LOW.
- IF 10,190 GDP per capita 24,960 (2000US$), and population is greater than or equal to 2.056

million, THEN Electricity consumption is LOW.
- IF 10,190 GDP per capita 24,960 (2000US$), and population is less than 2.056 million, THEN

Electricity consumption is MEDIUM.
- IF 24,960 GDP per capita < 33,420 (2000US$), and climate is temperate, THEN Electricity

consumption is MEDIUM.
- IF GDP per capita 33,420 (2000US$), climate is temperate, and 4108 population density <

10,430 per sq.km, THEN Electricity consumption is MEDIUM.
- IF GDP per capita 33,420 (2000US$), climate is temperate, and population density < 4108 per

sq.km, THEN Electricity consumption is HIGH.
- IF GDP per capita 33,420 (2000US$), climate is temperate, and population density 10,430 per

sq.km, THEN Electricity consumption is HIGH.
- IF 24,960 5 GDP per capita, and climate is tropical, arid, or snow, THEN Electricity consumption is

HIGH.



4.2.3 Fossil fuel consumption
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Figure 4.2.3 Fossil fuel consumption classification tree

The decision rule for the Fossil fuel consumption classification tree is as follows:
- IF GDP per capita is less than 10,610 (2000US$), THEN Fossil fuel consumption is

LOW.
- IF 10,610 : GDP per capita < 44,300 (2000US$), and climate is tropical, THEN Fossil

fuel consumption is LOW.
- IF 10,610 s GDP per capita < 44,300 (2000US$), and climate is arid, THEN Fossil fuel

consumption is HIGH.
- IF 10,610 GDP per capita < 44,300 (2000US$), and climate is either temperate or

snow, THEN Fossil fuel consumption is MEDIUM.
- IF 44,300 (2000US$) s GDP per capita, THEN Fossil fuel consumption is HIGH.



4.2.4 Industrial minerals & ores consumption
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Figure 4.2.4 Industrial minerals & ores consumption classification tree

The decision rule for the Industrial minerals & ores consumption classification tree is as
follows:
- IF GDP per capita is less than 17,860 (2000US$), THEN Industrial minerals & ores

consumption is LOW.
- IF GDP per capita 17,860 (2000US$), climate is either tropical, arid, or temperate, and

population is less than 747,600, THEN Industrial minerals & ores consumption is LOW.
- IF GDP per capita 17,860 (2000US$), climate is either tropical, arid, or temperate, and

747,600 5 population < 3.442 million, THEN Industrial mineral & ore consumption is MEDIUM.
- IF GDP per capita 17,860 (2000US$), climate is either tropical, arid, or temperate, and

population 3.442 million, THEN Industrial minerals & ores consumption is HIGH.
- IF GDP per capita 17,860 (2000US$), and climate is snow, THEN Industrial minerals & ores

consumption is HIGH.

Low

Low



4.2.5 Construction minerals consumption
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Figure 4.2.5 Construction minerals consumption classification tree

The decision rule for the Construction mineral consumption tree is as follows:
- IF GDP per capita < 10,490 (2000US$), THEN Construction mineral consumption is LOW.
- IF 10,490 : GDP per capita < 24,960 (2000US$), population 2.056 million, and GDP per

capita is less than 15,580, THEN Construction mineral consumption is LOW.
- IF 10,490 GDP per capita < 24,960 (2000US$), population 2.056 million, and GDP per

capita is greater than or equal to 15,580, THEN Construction mineral consumption is MEDIUM.
- IF 10,490 s GDP per capita < 24,960 (2000US$), population < 2.056 million, and population

density < 1,878 per sq.km, THEN Construction mineral consumption is LOW.
- IF 10,490 s GDP per capita < 24,960 (2000US$), population is less than 2.056 million, and

population density 1,878 per sq.km, THEN Construction mineral consumption is MEDIUM.
- IF GDP per capita 2 24,960 (2000US$), THEN Construction mineral consumption is HIGH.



4.2.6 Biomass consumption
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Figure 4.2.6 Biomass consumption classification tree

The decision rule for the Biomass consumption classification tree is as follows:
- IF GDP per capita is less than 44,130 (2000US$), and population density is greater than or

equal to 15,900 per sq.km, THEN Biomass consumption is LOW.
- IF GDP per capita is less than 44,130 (2000US$), and 544.5 s population density < 15,900 per

sq.km, THEN Biomass consumption is MEDIUM.
- IF GDP per capita is less than 44,130 (2000US$), and population density < 544.5 per sq.km,

THEN Biomass consumption is HIGH.
- IF GDP per capita is greater than or equal to 44,130 (2000US$), THEN Biomass consumption

is HIGH.

High

High



4.2.7 Water consumption
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Figure 4.2.7 Water consumption classification tree

High

The decision rule for the Water consumption classification tree is as follows:
- IF GDP per capita is less than 10,610 (2000US$), and climate is either tropical or arid,

THEN Water consumption is LOW.
- IF GDP per capita is less than 10,610 (2000US$), and climate is either temperate or

snow, THEN Water consumption is MEDIUM.
- IF 15,580 s GDP per capita < 33,350 (2000US$), THEN Water consumption is

MEDIUM.
- IF 10,610 5 GDP per capita < 15,580 (2000US$), THEN Water consumption is HIGH.
- IF GDP per capita is greater than or equal to 33,350 (2000US$), THEN Water

consumption is HIGH.

Low High



4.2.8 Total Domestic Material consumption
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Figure 4.2.8 Total Domestic Material Consumption classification tree

The decision rule for the Total Domestic Material consumption classification tree is as
follows:
- IF GDP per capita is less than 7,190 (2000US$), THEN Total Domestic Material Consumption is

LOW.
- IF 7,190 GDP per capita < 17,860 (2000US$), and population is greater than or equal to

2.836 million, THEN Water consumption is LOW.
- IF 7,190 GDP per capita < 17,860 (2000US$), and population is less than 2.836 million,

THEN Water consumption is MEDIUM.
- IF 17,860 5 GDP per capita < 24,960 (2000US$), THEN Water consumption is MEDIUM.
- IF GDP per capita is greater than or equal to 24,960 (2000US$), THEN Water consumption is

HIGH.

Low



4.2.9 Carbon dioxide emissions
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Figure 4.2.9 Carbon dioxide emissions classification tree

The decision rule for the Carbon dioxide emissions classification tree is as follows:
- IF GDP per capita < 8,526 (2000US$), THEN Carbon dioxide emissions are LOW.
- IF 8,526 : GDP per capita < 17,580 (2000US$), population density < 14,260 per sq.km, and

population is less than 1.122 million, THEN C02 emissions are LOW.
- IF 8,526 s GDP per capita < 17,580 (2000US$), population density < 14,260 per sq.km, and

population > 2.056 million, THEN C02 emissions are LOW.
- IF 8,526 s GDP per capita < 17,580 (2000US$), population density < 14,260 per sq.km, and

1.122 million population < 2.056 million, THEN C02 emissions are MEDIUM.
- IF 8,526 s GDP per capita < 17,580 (2000US$), population density is greater than or equal to

14,260 per sq.km, THEN C02 emissions are MEDIUM.
- IF 17,580 s GDP per capita < 44,130 (2000US$), and climate is either tropical or temperate,

THEN carbon dioxide emissions are MEDIUM.
- IF 17,580 GDP per capita < 44,130 (2000US$), and climate is either arid or snow, THEN

carbon dioxide emissions are HIGH.
- IF GDP per capita is greater than or equal to 44,130 (2000US$), THEN carbon dioxide

emissions are HIGH.



4.3 Municipal Solid Waste
Fischer-Kowalski and Huttler (1999) stated that estimates of wastes, emissions, and other

outputs from a society are difficult to estimate. This is because the residues of metabolic

processes are both physically and chemically complex. Furthermore, there are relatively

few countries in the world with municipal solid waste collection services. More often that

not, there is either no solid waste collection service, or collection is contracted out to private

companies that are not mandated to record the quantities that they collect. In The Weight of

Nations (Matthews et al, 2000) the dearth of available primary data for compilation of output

indicators was noted, especially in comparison to input indicators. Because of this lack of

cross-sectional output or waste data across the range of world cities, I discuss municipal

solid waste generation separately, and present figures from cities with available data.

Local governments and agencies, in both developing and developed countries, can

influence the city's solid waste generation, reuse, and recycling rates by providing material

recovery and recycling facilities at strategic locations. Other output reduction measures

could include offering incentives to neighborhoods with low quantities of collected solid

waste or high quantities of recovered materials. Businesses that reuse recycled or

recovered materials could also be given incentives for contributing to a circular economy.

All of these initiatives would require basic data on the quantities and types of collected solid

waste, as well as the locations of households that generated the waste.

Solid waste also indirectly contributes to greenhouse gas emissions, in the form of methane

gas released by landfills. Accurate measurement and prediction of landfilling rates can

enhance the design of methane capture interventions, thereby facilitating emissions

reductions. Another way in which the measurement and reuse of wastes can contribute to

reductions in greenhouse gas emissions is through initiatives to use biomass waste as fuel.

As part of their climate action plans, some cities explicitly state strategies to reduce waste

generation. For example, the City of Chicago Climate Action Plan (2008) has, as one of five

primary goals, the reduction of the amount of waste sent to landfills. Proposed strategies for

achieving the city's 90 percent landfill waste reduction goal (by 2020) include encouraging

consumers to recycle packaging material and carry out home composting. This would

involve awareness and education programs for residents. In addition, Chicago developed a



"Waste to Profit Network", which diverted waste from landfills by encouraging companies to

develop new products that use recovered materials as inputs.

Much can be done with information regarding solid waste generation, as well as other types

of residues and emissions. In this section, I present the findings of a survey of available

data on cities' solid waste collection (Figure 4.3.1). Cities are placed on a chart that

compares per capita solid waste generation with population density, population, and climate.
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Although data is not available for enough cities to carry out a classification tree analysis of

waste per capita in relation to the predictor variables, by situating the cities on this chart,

some interesting relationships can be gleaned.

First, it is difficult to comment on solid waste generation in tropical cities, since Honolulu is

the only available sample city in that climate group. Most of the cities in temperate climates

fall in the 0.5 - 1.0 tons per capita band, along with all but one of the snow climate cities,

regardless of population density. Both of the arid cities also have between 0.7 - 0.8 tons of

waste generation per capita. Falling below the 0.5 tons per capita level are ten temperate

cities. The highest levels are observed in snow city Chicago, and temperate cities Sydney,

Melbourne, Hong Kong, and Dublin.

Tables 4.3.1a through 4.3.1f show the characteristics of the cities falling into each level per

capita solid waste generation. Although these are not numerous enough to be considered

representative samples, it is useful to make observations about this particular set of cities.

Table 4.3.1a Characteristics of cities with per capita solid waste generation < 0.5 tons

CITIES Waste per GDP per Population Population density, Koppen Climate
capita,tons capita per sq.km. Classification

Bucharest 0.3 11,500 1,931,838 8,121 Temperate
Nagoya 0.3 34,811 2,215,062 6,785 Temperate
Osaka 0.3 36,922 2,628,811 11,836 Temperate

Yokohama 0.3 37,054 3,579,628 8,184 Temperate
Tokyo 0.3 41,456 8,489,653 13,663 Temperate

Guadalajara 0.4 18,837 1,640,589 10,865 Temperate
Prague 0.4 25,500 1,188,126 9,741 Temperate
Athens 0.4 26,042 789,166 20,235 Temperate
Geneva 0.4 44,017 178,574 10,829 Temperate

New York, NY 0.4 56,149 8,274,527 10,350 Temperate
Minimum 11,500 178,574 6,785

Median 35,867 2,073,450 10,590
Maximum 56,149 8,489,653 20,235

Std deviation 13,042 2,945,486 3,787

The cities shown in Table 4.3.1a have a number of notable characteristics. Although we

cannot establish a correlation due to the small sample size, we note that the median GDP

per capita is the second lowest of all the groups, with a standard deviation on the order of



the minimum GDP value in the group. The range and variance of city sizes, on the other

hand, is very large. This suggests that population level may not directly influence the

amount of per capita waste generation. However, these cities also have the highest median

population density, with a standard deviation lower than the minimum value. This implies

that there may be gains to be derived from higher density, in terms of reducing solid waste

generation. This could be a result of smaller living spaces, which could lead to lower rates

of both disposable and durable material consumption, and thus less solid waste.

Construction and demolition (C&D) debris, in particular, represents a significant portion of

the waste stream in many urban areas. Smaller living spaces, brought about by increased

population density, therefore have a great impact on overall solid waste reduction.

Interestingly, if C&D waste generation is tracked, it may be possible to develop new and

profitable markets for it (e.g., sheetrock).

Table 4.3.1 b Characteristics of cities with per capita solid waste generation of 0.5 tons
CITIES Waste per GDP per Population Population Koppen Climate

capita,tons capita density,per sq.km. Classification
Vilnius 0.5 17,400 543,494 1,379 Snow

Warsaw 0.5 17,977 1,704,717 3,297 Temperate
Mexico City 0.5 20,496 11,285,654 7,600 Temperate

Berlin 0.5 28,529 3,386,667 3,801 Temperate
Seoul 0.5 29,706 10,020,123 16,553 Snow
Bern 0.5 41,900 122,256 2,368 Temperate

Brussels 0.5 45,355 144,784 899 Temperate
Amsterdam 0.5 60,514 742,884 4,467 Temperate

Luxembourg-Ville 0.5 70,597 84,644 1,660 Temperate
Minimum 17,400 84,644 899

Median 29,706 742,884 3,297
Maximum 70,597 11,285,654 16,553

Std deviation 19,101 4,411,694 4,897



Table 4.3.1 c Characteristics of cities with per capita solid waste generation of 0.6 tons

CITIES Waste per GDP per Population Population Koppen Climate
capitatons capita density,per sq.km. Classification

Ankara 0.6 15,608 3,517,182 1,398 Temperate
Stockholm 0.6 34,668 789,024 4,219 Snow
Barcelona 0.6 35,976 1,605,602 516 Temperate

London 0.6 41,271 7,421,209 10,505 Temperate
Madrid 0.6 41,315 3,128,600 19,509 Temperate
Milan 0.6 46,180 1,306,086 7,174 Temperate

Vienna 0.6 53,776 1,664,146 4,013 Temperate
Seattle, WA 0.6 56,788 594,210 2,733 Temperate

Minimum 15,608 594,210 516
Median 41,293 1,634,874 4,116

Maximum 56,788 7,421,209 19,509
Std deviation 12,811 2,240,265 6,241

Table 4.3.1d Characteristics of cities with per capita solid waste generation of 0.7 tons

CITIES Waste per GDP per Population Population Koppen Climate
capitatons capita densityper sq.km. Classification

Istanbul 0.7 18,090 11,174,257 6,103 Temperate
Budapest 0.7 19,876 1,699,213 3,237 Temperate

Rome 0.7 43,127 2,626,640 2,009 Temperate
Honolulu, HI 0.7 45,444 375,571 1,692 Tropical
Denver, CO 0.7 55,700 588,349 1,558 Arid

Paris 0.7 57,027 2,125,017 20,238 Temperate
Boston, MA 0.7 58,686 599,351 4,783 Snow

Anchorage, AK 0.7 63,549 279,671 64 Snow
Minimum 18,090 279,671 64

Median 50,572 1,149,282 2,623
Maximum 63,549 11,174,257 20,238

Std deviation 17,523 3,639,372 6,466

Table 4.3.1e Characteristics of cities with per capita solid waste generation between
0.8 - 0.9 tons

CITIES Waste per GDP per Population Population Koppen Climate
capitatons capita density,per sq.km. Classification

Lisbon 0.8 27,292 504,726 5,954 Temperate
Phoenix, AZ 0.8 41,260 1,552,259 1,168 Arid

Helsinki 0.8 44,249 566,526 3,040 Snow
Detroit, Ml 0.8 44,344 916,952 2,552 Snow
Hamburg 0.8 54,103 1,704,735 2,258 Temperate

Los Angeles, CA 0.9 48,896 3,834,340 1,616 Temperate
Copenhagen 0.9 71,164 505,141 5,740 Temperate

Minimum 27,292 504,726 1,168
Median 44,344 916,952 2,552

Maximum 71,164 3,834,340 5,954
Std deviation 13,374 1,194,832 1,915



Table 4.3.1f Characteristics of cities with per capita solid waste generation > 1.0 tons

CITIES Waste per GDP per Population Population Koppen Climate
capita,tons capita density,per sq.km. Classification

Dublin 1.2 36,721 495,781 4,202 Temperate
Hong Kong 1.4 42,700 6,925,900 6,421 Temperate
Chicago, IL 2.0 48,840 2,836,658 4,819 Snow
Melbourne 2.1 46,137 3,806,092 495 Temperate

Sydney 2.1 49,226 4,336,374 357 Temperate
Minimum 36,721 495,781 357

Median 46,137 3,806,092 4,202
Maximum 49,226 6,925,900 6,421

Std deviation 5,181 2,336,293 2,710

The summary of solid waste generation and median values of GDP per capita, population,

and population density are shown in Table 4.3.2 below:

MEDIAN

Solid waste per GDP per Population density, Number Percentage
capita, tons capita Population per sq.km of cities of Total

<0.5 35867 2073450 10590 10 21%
0.5 29706 742884 3297 9 19%
0.6 41293 1634874 4116 8 17%
0.7 50572 1149282 2623 8 17%

0.8-0.9 44344 916952 2552 7 15%
>1.0 46137 3806092 4202 5 11%

Table 4.3.2 Summary of solid waste generation and city characteristics

It is clear that useful relationships between the predictor variables and per capita solid waste

generation cannot be derived from the small sample size of cities with available data.

However, from Figure 4.3.1 and Table 4.3.2, we can see that approximately 20% of the

sample cities have solid waste generation below 0.5 tons per capita. A mere 11 % have

waste generation rates above 1.0 tons per capita, while approximately 2/3 of the sample

cities have solid waste output between 0.5 - 1.0 tons per capita. Seventy-five percent of the

0.5 - 1.0 ton per capita waste generating cities have a population density 8,000 persons per

square meter. The cities with the lowest per capita solid waste are clustered around 10,000

per sq. m population density. The two cities with two of the lowest population densities in

the sample (Sydney and Melbourne) also have the highest waste generation rates (greater

than 2.0 tons per capita).



The observations that were mentioned above suggest relationships that would be interesting

to investigate further. In order to carry out the classification in a more rigorous manner (e.g.

using classification trees), data regarding solid waste generation needs to be made

available for more cities spanning different geographical locations, climates, levels of

affluence, population size, and population density. Most notably, there is a degree of bias in

the solid waste data that is currently available, since a minimum level of affluence is

necessary for cities to have widespread municipal solid waste collection and data gathering.

For the poorest cities in developing countries, it is likely that a very small percentage of

households and neighborhoods are actually served by local government-run garbage

collection.

Once such data is available, actions can be taken to reduce the environmental impact of

solid waste outputs, including their impact on greenhouse gas emissions. Recycling

programs, for example, would reduce C02 emissions by avoiding the use of energy during

the extraction and processing of virgin raw materials to manufacture new products. Also,

reducing the quantities of solid waste that are diverted to landfills reduces the amount of

methane released into the atmosphere. Finally, if extensive data on biomass waste

generation and collection is available, biomass energy initiatives could be supported and the

city level.

Municipal programs could include expanding recycling and composting programs to more

sectors of the city; encouraging recycling of construction and demolition debris; and

increasing recycling in city departments. Supporting data regarding the amount of collected

recyclable and compostable solid waste, for example, could assist in demonstrating the cost

effectiveness of such programs. In particular, if reductions in solid waste generation or

diversion to landfills can be expressed in terms of reduction in greenhouse gas generation

attributable to an urban area, these suggested actions could be packaged as carbon offset

programs, further increasing the desirability of the initiatives.

On the other hand, source reduction, reuse and other waste prevention programs could be

strengthened by the availability of status quo generation rates. Incentives could be put in

place to encourage producers to be responsible for the waste associated with the products

they manufacture and distribute - during production, packaging and at the end of the



product's life. Increasing the recyclability or compostability of selected product types and

securing producer participation and/or funding to collect and divert wastes from landfills

could also be encouraged. Waste audits are the first step to increasing waste prevention.

4.4 Typology of urban metabolic profiles
Figures 4.4.1 and 4.4.2 show the results of the resource consumption typology analysis.

Types I and 11 contain cities for which all elements of the metabolic profile are low, with the

exception of water in Type I (low to medium) and biomass in Type II (medium).

Types Ill and V represent categories of cities whose metabolic profiles show two similar

consumption types. For type IlIl, the first 5 components of the profile (carbon dioxide

emissions, total energy, electricity, fossil fuels, and industrial minerals & ores) are all low,

and then we see an increase to low-medium beginning at construction minerals, medium for

biomass, peaking at water, and finally a medium level for total domestic material

consumption. Type V is similar in that biomass dominates the metabolic profile. However,

instead of construction minerals leading the first five components (as in type Ill), total

energy, electricity, fossil fuels, industrial minerals & ores and construction minerals are all at

the low-medium level, with only carbon dioxide emissions at low.

Type IV has medium to high consumption of industrial minerals and ores, followed by

medium consumption of biomass and water, and low to medium consumption of

construction minerals. Carbon dioxide, total energy, electricity, and fossil fuel consumption

for these cities are all low.

Cities that belong to type VI have a biomass material component that is higher than both

construction minerals and industrial minerals & ores, which are at low consumption levels.

Total domestic material consumption is low, as is total energy, electricity, and fossil fuel

consumption. On the other hand, carbon dioxide emissions are at the medium level.

Japanese cities comprise type VII, most notable for its high industrial mineral & ore,

construction mineral, and total domestic material consumption. Biomass consumption is low.

Carbon dioxide emissions and fossil fuel consumption are at the medium level, while total



energy consumption is low. On the other hand, electricity consumption is high.

Type Vill consists of cities for which all metabolic components are at the medium level, with

the exception of electricity consumption, which is low.
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Figure 4.4.2 shows metabolic types IX through XV. Type IX has medium to high levels of

biomass consumption. Construction minerals and ores are at the medium level, while

consumption of industrial minerals and ores lags at the low level. Carbon dioxide emissions,

total energy, electricity, and fossil fuels are all at the medium level.

For type X, all components of the resource consumption profile are at the medium level,

except for industrial minerals and ores, water, and total domestic material consumption,

which are at the medium to high level.

Type XI cities have medium levels of carbon dioxide emissions, medium to high levels of

total energy and fossil fuel consumption, but high electricity consumption. Medium to high

biomass consumption can also be observed. Consumption of industrial metals and ores is

at the medium level.

For Type XII, carbon emission levels are high. Industrial minerals and ores are consumed

at higher levels than either construction minerals, or biomass. Electricity consumption, on

the other hand, is only at the low to medium level; total energy consumption is at the

medium level.

The biomass and construction minerals consumption in Type XIII is higher than that of

industrial minerals and ores; carbon dioxide emissions per capita are High.

Type XIV consists of cities in which per capita consumption of industrial minerals & ores is

negative to very low. Biomass consumption in these cities is also very low, domestic use of

construction materials is at the medium to high level. Water and Total Domestic Material

Consumption are also medium to high. Most notably, the three energy-related components

are all high (fossil fuels, total energy and electricity). Finally, carbon dioxide emissions per

capita are also high.

Cities in the High Consumption type (XV) type exhibit high consumption levels for all of the

eight resources, as well as carbon dioxide, which are under consideration.



0B C02
s Total Energy

- Electricity
u Fossil Fuels

Industrial Minerals & Ores
U Construction Minerals

0g Biomass
' U Water
2 *Total DMC

li
0'

Belgrade
TripolI

Sarajevo
Bucharest

0 Tehran
Minsk

Budapest
Lisbon

Buenos Aires

3.0

2.0

1.0

0.0

City Resource Consumption Profiles (ii)

London

Milan
Caracas

Barcelona

Madrid
Kuala Lumpur

Rome
Kingston

Kiev

Vladivostok
Santiago

Warsaw
Sof i

Dublin

Athens

Prague
Berlin

Geneva

Bern
Vienna

Ljutbana

Paris
Seoul

Stockholm
Dubal

Brusseis
Victoria, 5C

Ottawa

J ohannesburg
Guangzhou
Shanghai

Tashkent

Tel Aviv

Cape Town

st. Petersburg

Jerusalem
Hamburg

Copenhagen
Moscow

Seattle, WA

Port-of-Spain
Amsterdam

Los Angeles, CA
New York, NY

Helsinki

BS Begawan

Riyadh

Manama

Abu Dhabi

Kuwait City

Doha

Anchorage, AK

Boston, MA

Phoenix, AZ

Montreal

Detroit, MI

Vancouver, BC

Honolulu, HI

Toronto
Melbourne

Chicago, IL
Sydney

Denver, CO

Figure 4.4.2 Typology of urban metabolic profiles (b)



Chapter 5. Discussion of Results

5.1 Map of the 155 representative cities
The map of the 155 cities was created in order to examine the way cities are clustered with

respect only to the predictor, or independent, variables of affluence (represented on the Map

by the Human Development Index, or HDI), population density, population size, and climate.

The discussion in Chapter 4 showed some patterns and general characteristics of the cities

under consideration. In this section, I will discuss one possible application of the 155

representative cities map that considers the relationship of the predictor variables to one

dependent variable, greenhouse gas emissions.

In their recent urban greenhouse gas inventory research, Kennedy et al [11,12] illustrate

how and why urban greenhouse gas emissions differ, and these distinctions are potentially

useful in relation to the 155 Representative Cities Map. Comparing the ten global cities

studied in the greenhouse gas inventory in light of the city types proposed in the

Representative Cities Map can add a layer of information to the types. Table 5.1 shows the

ten cities that were included in the greenhouse gas inventory study. Climate, population,

population density, and HDI are the predictor variables that were used for classifying cities

in the 155 Cities representative map.

Table 5.1.1 Cities used by Kennedy et al [11,12] for greenhouse gas inventorying
CITIES Climate Population Urban density, persons/sq.km HDI

Bangkok Tropical 5658953 8084 0.783
Barcelona Temperate 1605602 19509 0.955

Cape Town Temperate 3497097 12059 0.683
Denver Arid 579744 1558 0.956
Geneva Temperate 432,058 10829 0.960
London Temperate 7364100 10505 0.947

Los Angeles Temperate 9519338 1616 0.956
New York Temperate 8170000 10350 0.956
Prague Temperate 1181610 9741 0.903
Toronto Snow 5555912 3677 0.966

Table 5.1.2 shows the total greenhouse gas emissions of the ten cities, in tons of carbon

dioxide equivalent per capita. The components of the emissions contributed by the end-



uses electricity, heating and industrial fuels, ground transportation, and waste (methane

emissions from landfills) are also shown in Table 5.2.

CITIES Total, tons CO2e/cap Electricity Heating! Ground WasteIndustrial transport
Bangkok 10.70 2.77 2.49 2.27 1.23

Barcelona 4.20 0.67 0.85 0.77 0.24
Cape Town 11.60 3.38 1.15 1.44 1.78

Denver 21.50 9.10 4.12 6.31 0.59
Geneva 7.80 0.35 3.45 1.85 0.38
London 9.60 2.50 2.58 1.22 0.21

Los Angeles 13.00 2.46 1.37 4.92 0.49
New York 10.50 3.01 3.13 1.53 0.35

Prague 9.40 3.31 3.2 1.44 0.11
Toronto 11.60 2.47 3.3 4.05 0.33

Table 5.1.2 Total GHG emissions and emissions by sector, tons CO2 equiv. per capita
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Figure 5.1.1 shows the total end-use greenhouse gas emissions for the ten cities studied by

Kennedy et al [12], versus population density. In general, the total GHG emissions per

capita are inversely proportional to urban population density. However, examining the

breakdown of urban emissions by sector provides additional illumination and further

information for grouping the cities together.

We note from Table 5.1.2 that Denver, Bangkok, Prague, and Cape Town's total emissions

are dominated by electricity use. However, Denver's total emissions are over 60% larger

than the next city, Los Angeles. Denver's emissions due to electricity are also nearly three

times that of Cape Town, the city with the next highest magnitude of electricity-related GHG

emissions. Ground transportation follows electricity as Denver's second-largest source of

emissions, which may be a result of the fact that Denver has the lowest urban density

among the ten cities. I thus separate Denver, but group Bangkok, Prague and Cape Town

together. The latter three cities are within the Medium density range.

Los Angeles and Toronto, the cities with the lowest urban population densities after Denver,
have their end-use emissions primarily composed of greenhouse gases related to ground

transportation. Los Angeles, having a temperate climate, has the second-largest

percentage of its emissions as a result of electricity use. On the other hand, the highest

fraction of Toronto's emissions after ground transportation is due to heating fuels,
presumably because of its snow climate. It is important to note that the greenhouse gas

intensity of electricity use is highly dependent on the fuel mix used for generation, and the

level of emissions would be related to this mix as well as to demand.

The next group is Medium density - High HDI with emissions dominated by heating and

industrial fuels (New York, London, and Geneva). However, the emissions due to electricity

for both New York and London are only one percentage point lower than those due to

heating and industry. Geneva's electricity generation is almost entirely from hydropower

(Kennedy et al [12]), resulting in emissions from electricity that are a mere 4% of total, due

to the extremely low greenhouse gas intensity of hydropower generation. The grouping of

these three cities is based on their similarities in population density, level of development,

climate, and major emissions source.



Finally the High density - High HDI city of Barcelona, with the lowest total greenhouse gas

emissions out of the ten cities (a mere 20% of Denver's total emissions), owes most of its

emissions to heating and industrial fuels (20%). These are followed closely by ground

transportation (18%) and electricity (16%). The smallest component of Barcelona's

emissions is waste-related emissions, at 6% of total.

Cape Town is unique among the ten cities in that it is the only city at the Lower HDI level.

Heating and industrial fuels make up the smallest component of Cape Town's total

emissions, making it one of only two cities for which waste-related emissions are not the

smallest fraction. (The other city is Geneva, whose low GHG-intensity hydropower

electricity generation makes that the smallest component of its total emissions.) In fact, the

second-largest component of greenhouse gas emissions for Cape Town is from waste,

suggesting that land-filling of waste is still extremely common in this city.

Figure 5.1.1 also shows the difference in trends across cities for the four end-use sectors.

The electricity (red) and ground transportation (violet) trend lines follow the total emissions

(black) trend line in that all three generally decrease with increasing population density. On

the other hand, the trends for emissions due to heating & industrial fuels as well as waste

are relatively constant across all cities and levels of population density. These observations

are consistent with the hypotheses that efficiencies in electricity distribution and

consumption arise in more densely populated areas, and that less driving (with the

associated motor gasoline emissions arising from private, low-occupancy transport) occurs

in less sprawling cities. Furthermore, the level of industrial activity and land-filling of waste

are not usually correlated to residential population density, but rather to the level of

development of a city. Thus, the flat trend lines for heating & industrial emissions and waste

emissions across population densities are consistent with theory about the drivers of

greenhouse gas generation.

Superimposing the greenhouse gas emissions groups from Figure 5.1.1 onto the 155

Representative Cities Map gives us Figure 5.1.2, shown below.
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The combination of the greenhouse gas emissions grouping of the ten global cities from

Kennedy et al [11,12] are relatively consistent with the groupings that are proposed in the

155 Representative Cities Map. In the High HDI (horizontal) band, the differences in

dominant emissions component follow differing climate and population density. On the other

hand, in the Medium density (vertical) band, the difference in the dominant emissions

component appears to be related to differing climate and level of development.

5.2 Analysis of the drivers of metabolic profiles
Growing cities in industrializing countries (for example, in Asia) are experiencing a "building

up" of a modern infrastructure that is necessary to support the growth of industrial

production. This infrastructure includes both residential and commercial buildings; roads

and transportation systems; utility networks; water supply and sewerage systems.

Developing country cities are also where the most rapid and widespread urbanization is

predicted to occur in the foreseeable future. An understanding of the character of

metabolism in this type of city as well as other types is, therefore, essential to good urban

resource management and policy.

The main goals of urban metabolism research include the observation of available natural

and anthropogenic resources and, importantly, levels of human consumption with respect to

this availability. These observations fall under the broader objectives of sustainable urban

development. Brunner (2007) cautions against "seeking uniform solutions" to problems of

inefficient urban resource consumption, since the resource context varies across cities.

Urban resource management priorities therefore differ, and the satisfaction of these needs

must be based on reasonable observations of the most pressing metabolic issues.

Furthermore, it is productive to examine the metabolic profiles of various types of cities in

the industrialized world. If a high level of economic development (and the associated

increase in human welfare) is the major goal of urban policy, then the type of cities that have

less resource-intensive metabolism for a given level of affluence should be the benchmark.

Teasing out these typologies is therefore a useful exercise. The contrast between Types X

and XV (Fig. 5.2.1b) illustrate this idea.

Krausman et al (2008) hypothesize that the transition from agrarian to industrialized society
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is a process that is accompanied by distinct biophysical characteristics. Since the different

countries of the world began this process at different periods in history, they are at different

points along the transformation, with some economies still in the early or agrarian phase.

Furthermore, because the technological mechanisms and processes underlying

industrialization vary, countries that are at the same levels of economic or industrial

development may have different associated metabolic profiles.

In the analysis of the various metabolic profiles associated with each city type, we focus less

on particular components or resources, but on the 'shape' of the overall resource

consumption. We assume that the transformation from an agrarian to industrial to service

economy is ongoing for the cities that we examined, and that they can be categorized based

on the metabolic profiles associated with each of these stages. Furthermore, although cities

in the same type may differ significantly in their culture and social structure, this does not

preclude them from having similar resource consumption profiles.

Krausman et al (2008) enumerate key factors that determine the metabolic patterns that are

typically associated with industrialized economies, namely: material- and energy-intensive

production systems (including agriculture); the construction, operation, and maintenance of

infrastructure; the mobility of goods due to improvements in transportation infrastructure;

and a high material standard of living with the associated increases in energy and electricity

consumption (e.g. for heating and cooling). In the following sections, I describe the fifteen

Urban Resource Consumption Profiles shown in Fig. 5.2.1a and Fig. 5.2.1b.
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Types I and 11 contain cities in very low to lower-middle income developing countries. All

elements of the metabolic profile are low, with the exception of water in Type I (low to

medium) and biomass in Type II (medium). A low standard of living is associated with these

2 metabolic profiles, with type 11 economies being heavily agricultural.

It is useful to discuss Types Ill and V together, as they represent categories of cities whose

metabolic profiles shows two similar consumption types that can be associated with areas in

the process of industrialization. For type Ill, the first 5 components of the profile (carbon

dioxide emissions, total energy, electricity, fossil fuels, and industrial minerals & ores) are all

low, and then we see an increase to low-medium beginning at construction minerals,

medium for biomass, peaking at water, and finally a medium level for total domestic material

consumption. This shape is reflective of largely agricultural economies whose infrastructure

is growing to accommodate industrial development, which lags construction. Major

industries are biomass- and water-intensive: food processing, beverages, textiles, rice, jute,

sugar, wood, and fishing. Type V is similar in that biomass dominates the metabolic profile.

This is due to the major industries of food and beverages, processing of animal products,

natural fibers, textiles, wood and furniture products, and sugar. However, instead of

construction leading the first five components (as in type 111), total energy, electricity, fossil

fuels, industrial minerals & ores and construction minerals are all at the low-medium level,

with only carbon dioxide emissions at low. Carbon dioxide is at a lower level compared to

energy, electricity, and fossil fuels because hydroelectric power and oil are the major

sources of energy for most of the cities in type V.

Type IV has medium to high consumption of industrial minerals and ores, followed by

medium consumption of biomass and water, and low to medium consumption of

construction minerals. Carbon dioxide, total energy, electricity, and fossil fuel consumption

for these cities are all low. Mining and refining of minerals, steel, metal fabrication, and light

manufacturing are major industries for type IV, and construction supports this industrial

activity. A profile like this accompanies this set of developing countries due to the

abundance of minerals and other natural resources, allowing for the growth of the mining

industry, as well as light manufacturing based on the availability of industrial minerals and

ores. However, biomass-based industries are still a major part of the economy (textiles,

agribusiness, beverages, fishing and fish processing, textiles, clothing, food processing,



sugar processing, wood, agricultural processing, and leather goods).

Cities that belong to type VI are all in countries at the early stages of industrialization, with a

still relatively low standard of living. The biomass material component (linked to textiles,
food, wood, and paper industries) is higher than both construction minerals and industrial

minerals & ores, which are at low consumption levels. Total domestic material consumption

is low, as is total energy, electricity, and fossil fuel consumption. On the other hand, carbon

dioxide emissions are at the medium level, brought about by the mix of coal and oil as main

energy sources in these cities.

Japanese cities comprise type VII, most notable for its high industrial mineral & ore,

construction mineral, and total domestic material consumption. Japan is one of the world's

largest and most technologically advanced producers of motor vehicles, electronic

equipment, machine tools, steel and nonferrous metals, ships, and chemicals. Biomass

consumption is low, reflecting an absence of major agro-industries. Despite this extremely

high level of industrialization, carbon dioxide emissions and fossil fuel consumption are at

the medium level, while total energy consumption is low; this indicates a relatively low

energy intensity of industry. Main energy sources consist of natural gas, oil, and

hydropower. Electricity consumption is high, associated with affluence and a high standard

of living, but the relatively clean energy mix keeps carbon dioxide emissions at the medium

level.

Type VIII consists of industrializing cities for which all metabolic components are at the

medium level, with the exception of electricity consumption, which is low. Low electricity

consumption is an indicator of lower standards of living associated with personal income or

affluence. Major industries for this group include textiles, agricultural processing,
beverages, and tobacco, which account for the medium levels of biomass consumption.

Light manufacturing, metals, electronics, and mining are reflected in medium levels of

industrial mineral and ore consumption. The construction and cement industries result in

medium levels of construction mineral consumption. Oil and natural gas are the dominant

energy sources, as reflected in the medium levels of carbon dioxide emissions.

Type IX is composed exclusively of cities in transition/industrializing countries. Although the



term "transition economies" usually covers the countries of Central and Eastern Europe and

the Former Soviet Union, this term may have a wider context. There are countries emerging

from a socialist-type command economy; moreover, in a wider sense the definition of

transition economy refers to all countries that attempt to change their basic constitutional

elements towards market-style fundamentals. Their origin could also be an economically

underdeveloped country in Africa, such as Libya. In addition, in 2002 the World Bank

defined Bosnia and Herzegovina, as well as Serbia and Montenegro as transition

economies. Iran is also a current example, demonstrating early stages of a transition

economy (Iranian Economic Reform Plan, 2010). Food processing, textiles, wood and cork,

paper, dairy products, and timber, tobacco products are major industries in Type IX, and

explain the medium to high levels of biomass consumption. Construction minerals and ores

are at the medium level, reflecting the growth of infrastructure that leads full industrialization,

while consumption of industrial minerals and ores lags at the low level. Carbon dioxide

emissions, total energy, electricity, and fossil fuels are all at the medium level. Oil and

natural gas are the main energy sources for this group.

For type X, all components of the resource consumption profile are at the medium level,

except for industrial minerals and ores, water, and total domestic material consumption,

which are at the medium to high level. These cities are located in highly developed

countries with a mix of diverse services and industry, as well as transition/industrializing

economies with some metal and machinery industries. Despite the high affluence, total

domestic material consumption, and strong industrial base of these cities, their carbon

dioxide emissions, total energy, electricity, and fossil fuel emissions are only at the medium

level. The relatively low carbon dioxide intensity can be explained by the dominance of

natural gas, hydroelectric power, and oil in the energy supply. It is, however, useful to

contrast the relative lower intensity of the other components with the intensity of the High

Consumption type XV.

Type XI cities have medium levels of carbon dioxide emissions, medium to high levels of

total energy and fossil fuel consumption, but high electricity consumption. Wood and paper

products, food, and the textile industries result in medium to high biomass consumption.

Consumption of industrial metals and ores is at the medium level, due to the significance of

metal, equipment, and machinery industries. Oil, hydroelectric, and nuclear are the main



sources of energy in this type, resulting in medium levels of carbon dioxide emissions

despite the medium to high total energy and fossil fuel components, and the high electricity

consumption. High electricity consumption is associated with high levels of personal

affluence, leading to high residential and commercial energy consumption.

Type XII cities are found in South Africa, China, Uzbekistan, Israel, and the Russian

Federation. For this group, the energy sector is critical to the economy, as the countries rely

heavily on their energy-intensive mining industries. Coal is used for most of their energy

needs; as a result, carbon emission levels are high. Russia's primary energy supply

consists mainly of natural gas, followed by coal and oil. The broad range of mining and

extractive industries in these countries results in industrial minerals and ores being

consumed at higher levels than either construction minerals, or biomass. Electricity

consumption, on the other hand, is only at the low to medium level, reflecting lower levels of

personal affluence; total energy consumption is higher due to the energy intensity of

industry.

Cities in Type XIII are found in countries that are among the world's largest and most

technologically advanced producers of coal, cement, food and beverages, and textiles.

Agro-industries, wood and paper, and construction are also major components of the

economy in these countries. Accordingly, the biomass and construction minerals

consumption in this group is higher than that of industrial minerals and ores. Coal and oil

are major sources of energy, as reflected in the high carbon dioxide emissions per capita.

Type XIV consists exclusively of cities found in some of the world's major petroleum-

producing countries (Saudi Arabia, United Arab Emirates, Kuwait, Bahrain, Qatar, and

Brunei). Per capita consumption of industrial minerals & ores is negative to very low,
indicating that exports from industries such as aluminum, iron, and steel are much greater

than domestic use. Furthermore, economic activity is concentrated in the petroleum

industry rather than in manufacturing or processing of other goods. Biomass consumption

in these cities is also very low, an effect of the arid climates that make irrigation difficult. The

levels of affluence in these cities also contribute, in particular, to massive construction

projects, resulting in medium to high domestic use of construction minerals. Water and

Total Domestic Material Consumption are also medium to high, reflecting the standard of



living in these cities, including the importation of water for personal consumption. Most

notably, the three energy-related components are all high (fossil fuels, total energy and

electricity), an effect of the abundance of petroleum as a resource. Finally, carbon dioxide

emissions per capita are also high. This is a reflection both of the oil-based energy supply

and high levels of personal consumption (as opposed to industrial- or manufacturing-related

emissions).

Cities in the High Consumption type (XV) can be found in the leading industrial powers of

the world. These countries (the United States, Canada, and Australia) are highly diversified

and technologically advanced; major industries that comprise the bulk of these national

economies include petroleum, steel, motor vehicles, telecommunications, chemicals,

electronics, food processing, consumer goods, lumber, mining, transportation equipment,

steel, processed and unprocessed minerals, as well as wood and paper products. These

industries are both material- and energy-intensive, and manufacturing and processing

operations are usually concentrated in the urban areas that are found in group XV. High

levels of affluence elevate the standard of living, which leads to high residential material and

energy consumption as well.
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Chapter 6. Conclusions

6.1 Relation of findings to the study objectives
A major challenge to urban sustainability researchers today is to understand and predict

how cities with differing socio-economic, demographic, and geographic characteristics will

interact with the natural environment in which they exist. The increasing concentration of

people in cities presents both opportunities and challenges with regard to optimizing

resource consumption while providing urban dwellers with the quality of life that they seek in

cities. On the one hand, cities are the loci of industry, commerce, and employment, and

certain economies of scale are gained with respect to infrastructure and delivery of social

services. On the other hand, the sophistication of urban living has led to changes in

consumption and human behavior, which tend to increase rather than decrease the

metabolism of contemporary cities.

These complex urban socio-economic phenomena make it necessary to gain a quantitative

understanding of the different forms of resource consumption and intensity in cities. This

understanding of the typology of urban metabolic profiles is a significant step toward

creating policies that reduce excesses of consumption where these excesses exist, and

could help prevent the development of blanket initiatives that do not address where the true

problems lie in each particular type of city.

At the beginning of this thesis, we stated the goal of contributing to current research efforts

to develop a comprehensive and holistic approach to the characterization of urban resource

consumption. The practical implications of such an approach would include better-informed

urban development strategies based on a framework of urban metabolism. The optimization

of resource consumption in cities, however, is not the end goal in itself. Instead, resource

efficiency should ultimately lead to the improvement of the urban quality of life and efficiency

of growth. An important result was to differentiate between more- and less-resource

intensive urban metabolic profiles for cities that are at similarly high levels of economic

development and affluence. The lower-intensity metabolic profile that simultaneously

delivers the desired quality of life is a useful benchmark for cities in developing countries.



The major motivation of this work is the lack of understanding regarding typological

differences among cities in terms of energy and material fluxes. Most studies of material and
energy use refer to the country level, whereas most relevant policy decisions are made and
implemented at the local level. The methods discussed here could potentially bridge the

gap between the scale at which information is available, and the level at which urban

development and planning is conducted. The urban scale, being the level at which

economic activity is concentrated, has great potential for more resource-efficient industry as

well as household and personal consumption.

Targeted policy making is perhaps one of the best ways to address the myriad

environmental and sustainability concerns of cities, and a typology of cities will become

increasingly important for effective urban data collection and indicator evaluation. The

classification of cities' resource consumption provides support for sound policies, allowing

for more efficient performance evaluation. The most relevant city 'sustainability indicators'

can be determined based on particular urban metabolic types, and initiatives can be put in
place to collect this data, leading to fact-based urban resource management and allocation.

Indicators of both consumption and outputs need to be measured, standardized, targeted,
and compared across cities and over time. Because municipalities' resources for collecting

indicator data may be limited, a lack of focus on the most pressing resource inefficiencies

limits the ability of cities to observe trends, share best practices and address their most

significant consumption issues.

This work is a first step toward providing cities with a standardized system for the estimation
and prediction of their resource consumption typology. The intention is that this will allow
cities to identify what data should be collected on a regular basis, and focus policy-making

on the resources that the city uses most intensively. Improved data collection at the urban

scale will create a positive feedback loop, in that better data can be used to improve the

next generation of classification tree analysis and city typology refinement.

This thesis specifies and characterizes the different types of urban metabolic profiles to

which the cities of the world belong. It describes the resource consumption and carbon

dioxide emissions of 155 globally representative cities and attempts to formulate a typology



of cities based on their metabolic character. The different types can be interpreted as

representing cities in various stages of industrialization and development, and gives

valuable insight into the associated resource utilization of different modes of economic

production.

In addition to providing a rational typology of urban metabolic profiles, this research also

developed classification trees that can serve as predictive models to assist the urban

metabolism research community when resource consumption data gaps exist at the city

level. Any city that was not included in the model training set used in this study can be

described by "dropping" it through each of the resource classification trees. Based on a

city's GDP per capita, population, population density, and climate, predictions can be made

of its levels of consumption of the resources for which trees were built in this study. The

municipality can then verify whether its resource intensity is, in fact, weighted toward the

particular resources suggested by the classification trees, and act accordingly.

In this work, I measured the materials used/mobilized for sustaining economic activity as

well as household consumption in cities. A major finding was that the urban metabolic

profiles of different types of cities appear to be intimately related to the dominant industries

in the country. This is reasonable, given that industries and centers of commerce and

production are often located in the major cities of each country. Consumption indicators are

also sensitive to specific factors, for example, whether a country is a major source of natural

resources such as oil, gas, or particular minerals and metal ores.

Output indicators, such as municipal solid waste generation per capita, are important

components of a city's metabolic profile. However, available data are usually significantly

less complete than for other indicators such as material or energy consumption. In the next

iteration of this work, it is essential that outputs be explicitly included in the urban metabolic

profiles. In fact, the absence of data regarding output generation rates suggests that waste

management is lagging in all but a few cities in the representative set.

This assessment of the resource consumption profile of 155 cities throughout the world is a

rough estimate of the actual per capita quantities that are consumed. The analysis was

based on a narrow set of local data and many admittedly crude assumptions. However, the



work already provides us with an insight into the typological differences among different

groups of cities.

The typology of cities addresses the need to evaluate current situations and future trends for

certain critical resources and to take policy measures to prevent their inefficient usage.

Because municipalities are often overwhelmed by the complexity and difficulty of the urban

environmental issues they face, problems are often not dealt with in a focused manner. The

typology of cities can help municipalities identify their most important resource consumption

issues and their current metabolic type, and take countermeasures as appropriate. For

example, a Type XII city must make more effort to promote a cleaner energy mix, and

decouple the link between economic development and the consumption of fossil fuels and

industrial minerals & ores.

The city typology can also help predict urban environmental issues from the experiences of

cities at more affluent stages of economic development, and allow developing cities to take

preventative measures or institute policies that will lead to a less intensive metabolic profile,

even in the face of high levels of industrialization. With strong leadership and planning, a

city can take an alternative evolutionary path by identifying relative strengths and
constraints, and avoiding unfavorable types of metabolism. In this context, the global

typology of cities provides a useful tool for municipalities, because it can help identify

challenges to long-term urban resource planning with a view towards economic
development.



6.2 Recommendations for future research
The present assessment could be improved in various steps: first, the city-level assessment

could be reworked using a more complete set of urban statistics, rather than depending on

the more general country-level data. Second, local data on solid waste and wastewater

generation would allow the inclusion of outputs in the urban metabolic profiles. Third, if

standardized consumption and output data are collected by local governments on a regular

basis, the change in urban metabolic profiles and groupings over time could provide insight

into the transitions of different cities toward or away from resource efficiency as they

proceed along the trajectory of industrialization and economic growth. Historical

developments or the effects of policy changes could be traced and associated with

metabolic trends.

This work illustrates a method to document and classify cities' use of resources. This first

assessment is still quite simple because of a limited amount of local data that we were able

to gather for this project. However, the usefulness of this method lies in the fact that, using

a richer data set, the typology could serve as a base-line analysis for planners and the

public to identify potential means of optimizing resource consumption, measuring progress

toward sustainability and comparing trends and scenarios for the future.

The typology has the potential to show to what extent a given level of quality of life will

require higher or lower resource consumption in cities, and what determines the differences

in different categories of cities. In addition, the typology can point out what opportunities

intelligent urbanization offers to reduce and balance out the resource profiles associated

with the urban lifestyle. In this way, the city typology identifies core sustainability challenges

and helps find ways to secure people's quality of life while simultaneously taking advantage

of opportunities to de-materialize urban development.

Future research topics should include rigorous data-based analyses, such as quantitative

cross-city analyses and chronological analyses of more cities; and the presentation of policy

recommendations based on these analyses.

Finally, perhaps the most important question for researchers to answer is: how can city-

dwellers in different types of cities be persuaded and motivated to reduce their



environmental impacts and move toward more responsible consumption? The need to make

consumption more efficient applies even more to the long-established industries in urban

areas, as personal and household decisions cannot have their desired impact until modes of

production and energy provision have themselves become less resource-intensive. The

urban metabolism research community is faced with the task of establishing what

sustainable consumption is, and assisting in making it a norm. This will involve not only

quantitative reductions in cities' use of materials and energy; it will also require urban

development practitioners to develop practical, implementable ways by which an acceptable

quality of life may be achieved for city dwellers.
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APPENDIX A

APPENDIX A.1 Total Energy Consumption data set

CITIES energy per energy population GDP per cap, population climatecap, kgoe class 2000US$ density/sq.km

Kinshasa 289 1 7785965 300 955 1
Addis Ababa 290 1 2646000 800 4992 3
Kathmandu 339 1 671846 1100 13711 3
Yangon 298 1 4477638 1200 7488 1

Dar es
Salaam 492 1 1360850 1300 856 1
Accra 406 1 1658937 1400 8967 1
Durban 905 1 669242 1483 1513 3
Dakar 270 1 1075582 1700 2151 1
Nairobi 483 1 2948109 1700 4236 3
Phnom Penh 344 1 703963 1900 33522 1
Chisinau 944 1 660726 2400 5372 3
Sana'a 328 1 954448 2500 3864 2
Mumbai 492 1 11978450 3598 19865 1
Lagos 743 1 5195247 3697 5200 1
Colombo 462 1 615000 4200 880 1
Asuncion 674 1 513399 4200 4388 3
Tbilisi 714 1 1108600 4600 2038 3
Damascus 961 1 1658000 4700 2894 3
Guatemala
City 638 1 1022001 5300 4482 1
Naihati 371 1 215303 6046 18641 1
Dhaka 158 1 10356500 6095 34067 1
Karachi 489 1 9339023 6430 2648 2
Surabaya 733 1 2611506 6811 7440 1
Kolkata 460 1 4572876 7033 24718 1
Islamabad 400 1 529180 7181 4410 3
San Salvador 764 1 507665 7300 573 1
Quito 789 1 1559295 7300 9172 3
Tunis 843 1 702330 7700 19847 3
Santo
Domingo 825 1 913540 8000 10030 1
Rabat 401 1 642000 8175 5321 3
Florianopolis 924 1 406564 8253 924 3
Amman 1,294 2 1204110 5100 717 2
Sarajevo 1,334 2 527049 6300 3738 3
Bujumbura 235440 300 2738 1

Bangui 1 451690 700 6742 1
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Niamey 707951 700 2962 2
Freetown 802639 900 5859 1
Antananarivo 1015140 1000 14099 3
Conakry 1091500 1100 2426 1
Bamako 1297281 1100 13374 1

Ouagadougou 1475839 1200 6739 2
Banjul 42326 1300 3527 1
Male 103693 4500 17884 1
Panama City 800 1 484261 11100 4526 1
Cebu 472 1 718821 11371 2558 1
Montevideo 875 1 1345010 11600 2538 3
Manila 499 1 1581082 13423 2575 1
Beirut 1,390 2 361366 10700 18437 3
Kingston 1,448 2 579137 8800 26324 1
Sofia 2,593 2 1155403 12300 859 3
Belgrade 2,161 2 1313994 10300 3379 3
Bucharest 1,775 2 1931838 11500 8121 3
Caracas 2,274 2 1975294 10915 4562 1
Tashkent 1,796 2 2137218 11600 7124 3
Dubai 11,133 3 1089000 11400 846 2
Cali 618 1 2392877 12741 4372 1
Casablanca 447 1 2995000 10374 9244 3
Ho Chi Minh
City 617 1 3015743 13200 21541 1
Hyderabad 453 1 3637483 9538 21065 1
Chennai 458 1 4343645 8902 24963 2
Bangalore 463 1 5104047 10514 7199 1
Cairo 794 1 6758581 12192 31582 2
Bogota 667 1 7102602 11960 4467 3
Lima 498 1 8445211 12864 10557 2
Jakarta 798 1 8820603 10082 13284 1
Delhi 485 1 9879172 10486 22922 3
Shenzhen 1254 2 7008831 11047 17744 3
Bishkek 542 1 798300 2100 6271 4
Ulaanbaatar 1,024 2 1012733 3000 5038 4
Kiev 3,041 2 2676789 7200 3210 4
Riga 1,946 2 719928 10499 2376 4
Minsk 2,746 2 1789098 10800 5847 4
Vladivostok 3745 2 579811 12207 966 4
Beijing 1299 2 11509595 13325 8413 4
Quezon City 510 1 2173831 14080 12661 1
Abuja 566 1 107069 24411 1091 1
Porto Alegre 746 1 19089 16667 45 3

Johannesburg 912 1 752349 32023 2364 3
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Nagoya 537 1 2215062 34811 6785 3
Osaka 544 1 2628811 36922 11836 3
Yokohama 555 1 3579628 37054 8184 3
Tokyo 590 1 8489653 41456 13663 3
Kuala
Lumpur 2,570 2 1551306 15000 6384 1
Bangkok 1,526 2 5658953 17751 8084 1
Brasilia 1046 2 2383784 30564 411 1
Guangzhou 1272 2 8524826 14044 2218 3
Shanghai 1,319 2 14348535 15547 7442 3
Ankara 1,108 2 3517182 15608 1398 3
Tehran 2,288 2 7088287 16131 9327 3
Warsaw 2,429 2 1704717 17977 3297 3
Istanbul 1,201 2 11174257 18090 6103 3
Guadalajara 1497 2 1640589 18837 10865 3
Budapest 2,757 2 1699212.5 19876 3237 3
Mexico City 1,713 2 11285654 20496 7600 3
Sao Paulo 1,164 2 11016703 20589 7234 3
Santiago 1,813 2 4960815 20979 6823 3
Curitiba 1025 2 1788559 23268 4189 3
Belo
Horizonte 1046 2 2399920 24317 7164 3
Prague 4,418 2 1188126 25500 9741 3

Athens 2,794 2 789166 26042 20235 3
Lisbon 2,574 2 504725.5 27292 5954 3
Buenos Aires 1639 2 2965403 28292 51 3
Berlin 4,187 2 3386667 28529 3801 3
Ljubljana 3,629 2 250953 28900 1530 3
Cape Town 1016 2 3497097 32037 12059 3
Barcelona 1227 2 1605602 35976 516 3
Dublin 3,647 2 495781 36721 4202 3
Tel Aviv 2923 2 387233.5 39003 7476 3
London 3,894 2 7421209 41271 10505 3
Madrid 1286 2 3128600 41315 19509 3
Bern 3535 2 122256 41900 2368 3
Jerusalem 3,059 2 740475 42432 5914 3
Hong Kong 2,653 2 6925900 42700 6421 3
Rome 3,169 2 2626640 43127 2009 3
Port-of-Spain 9,624 3 43396 23100 3616 1
Victoria, BC 6977 3 289625 13539 15243 3
Tripoli 2,999 2 1500000 13900 4205 2
Vilnius 2,543 2 543494 17400 1379 4
St.
Petersburg 4328 2 4569616 19987 7541 4
Seoul 4,415 2 10020123 29706 16553 4
Moscow 4,586 2 10456490 30712 9673 4
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Riyadh 6,077 3 4087152 23964 5109 2
Manama 11,232 3 176909 36100 5897 2
Phoenix, AZ 6262 3 1552259 41260 1168 2
Ottawa 7500 3 812129 19402 292 4
St. John's 6473 3 99182 27646 222 4
Stockholm 5,784 3 789024 34668 4219 4
Montreal 8267 3 3268513 40709 8955 4
Geneva 3,630 2 178574 44017 10829 3
Milan 3018 2 1306086 46180 7174 3
Vienna 4,135 2 1664146 53776 4013 3
Hamburg 3991 2 1704735 54103 2258 3
Seattle, WA 3556 2 594210 56788 2733 3
Paris 4,537 2 2125017 57027 20238 3
Copenhagen 1042 2 505141 71164 5740 3
Abu Dhabi 10581 3 527000 43700 293 2
Helsinki 6,554 3 566526 44249 3040 4
Detroit, MI 7596 3 916952 44344 2552 4
Vancouver,
BC 7941 3 1837969 44884 16123 3
Brussels 5,889 3 144784 45355 899 3
Honolulu, HI 6786 3 375571 45444 1692 1
Toronto 8,469 3 4612191 45537 3677 4
Melbourne 5866 3 3806092 46137 495 3
Chicago, IL 7949 3 2836658 48840 4819 4
Los Angeles,
CA 5886 3 3834340 48896 1616 3
Sydney 5920 3 4336374 49226 357 3
Singapore 7,260 3 4588600 51656 6582 1
Bandar seri
begawan 7,014 3 27285 53900 272 1
Kuwait City 11,102 3 32403 55600 11900 2
Denver, CO 7704 3 588349 55700 1558 2
New York, NY 5276 3 8274527 56149 10350 3
Boston, MA 5906 3 599351 58686 4783 4
Amsterdam 5,048 3 742884 60514 4467 3
Anchorage,
AK 26790 3 279671 63549 64 4
Luxembourg-
Ville 10,134 3 84644 70597 1660 3
Doha 18,123 3 344939 100300 2174 2
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APPENDIX A.2 Electricity Consumption data set

CITIES Electricity electricity GDP per cap, population climate Pop.density
per cap, kWh class 2000US$ /sq.km

Kinshasa 91 1 300 7785965 1 955
Addis Ababa 34 1 800 2646000 3 4992

Kathmandu 79 1 1100 671846 3 13711

Yangon 82 1 1200 4477638 1 7488

Dar es
Salaam 65 1 1300 1360850 1 856

Accra 261 1 1400 1658937 1 8967

Nairobi 138 1 1700 2948109 3 4236

Dakar 158 1 1700 1075582 1 2151
Phnom Penh 55 1 1900 703963 1 33522

Bishkek 1842 1 2100 798300 4 6271

Chisinau 1472 1 2400 660726 3 5372

Sana'a 175 1 2500 954448 2 3864
Ulaanbaatar 1272 1 3000 1012733 4 5038
Mumbai 476 1 3598 11978450 1 19865
Lagos 127 1 3697 5195247 1 5200

Colombo 378 1 4200 615000 1 880
Asuncion 849 1 4200 513399 3 4388
Tbilisi 1672 1 4600 1108600 3 2038
Damascus 1394 1 4700 1658000 3 2894

Guatemala
City 522 1 5300 1022001 1 4482
Naihati 359 1 6046 215303 1 18641
Dhaka 136 1 6095 10356500 1 34067

Karachi 455 1 6430 9339023 2 2648

Surabaya 467 1 6811 2611506 1 7440
Kolkata 445 1 7033 4572876 1 24718
Islamabad 372 1 7181 529180 3 4410
Quito 714 1 7300 1559295 3 9172
San Salvador 733 1 7300 507665 1 573
Tunis 1205 1 7700 702330 3 19847

Santo
Domingo 1277 1 8000 913540 1 10030
Rabat 573 1 8175 642000 3 5321
Florianopolis 1600 1 8253 406564 3 924

Chennai 443 1 8902 4343645 2 24963
Hyderabad 438 1 9538 3637483 1 21065

Jakarta 509 1 10082 8820603 1 13284
Durban 4327 2 1483 669242 3 1513

Amman 2160 2 5100 1204110 2 717

Sarajevo 2387 2 6300 527049 3 3738

Kiev 3246 2 7200 2676789 4 3210
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Kingston 2478 2 8800 579137 1 26324
St. John's 13233 3 6374 99182 4 222
Bujumbura 300 235440 1 2738

Bangui 700 451690 1 6742

Niamey 700 707951 2 2962

Freetown 900 802639 1 5859

Antananarivo 1000 1015140 3 14099

Conakry 1100 1091500 1 2426

Bamako 1100 1297281 1 13374

Ouagadougou 1200 1475839 2 6739

Banjul 1300 42326 1 3527
Male 4500 103693 1 17884
Abuja 97 1 24411 107069 1 1091
Panama City 1500 1 11100 484261 1 4526

Cebu 539 1 11371 718821 1 2558
Manila 569 1 13423 1581082 1 2575
Port-of-Spain 5038 2 23100 43396 1 3616

Kuala
Lumpur 3174 2 15000 1551306 1 6384
Caracas 2928 2 10915 1975294 1 4562
Porto Alegre 1292 1 16667 19089 3 45
Guadalajara 1719 1 18837 1640589 3 10865
Curitiba 1775 1 23268 1788559 3 4189
Tripoli 3327 2 13900 1500000 2 4205
Beirut 2242 2 10700 361366 3 18437
Sofia 4122 2 12300 1155403 3 859
Belgrade 3922 2 10300 1313994 3 3379
Montevideo 2007 2 11600 1345010 3 2538
Budapest 3771 2 19876 1699213 3 3237
Warsaw 3437 2 17977 1704717 3 3297
Bucharest 2331 2 11500 1931838 3 8121
Vilnius 3104 2 17400 543494 4 1379
Vladivostok 4725 2 12207 579811 4 966
Riga 2702 2 10499 719928 4 2376
Minsk 3208 2 10800 1789098 4 5847
Dubai 13708 3 11400 1089000 2 846
Victoria, BC 14264 3 13539 289625 3 15243
Ottawa 15332 3 19402 812129 4 292

Casablanca 638 1 10374 2995000 3 9244
Delhi 470 1 10486 9879172 3 22922

Bangalore 448 1 10514 5104047 1 7199

Shenzhen 1696 1 11047 7008831 3 17744
Tashkent 1659 1 11600 2137218 3 7124
Cairo 1235 1 12192 6758581 2 31582
Cali 475 1 12741 2392877 1 4372
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Lima 831 1 12864 8445211 2 10557
Ho Chi Minh
City 573 1 13200 3015743 1 21541
Beijing 1756 1 13325 11509595 4 8413
Guangzhou 1719 1 14044 8524826 3 2218

Quezon City 582 1 14080 2173831 1 12661

Shanghai 1783 1 15547 14348535 3 7442

Ankara 1772 1 15608 3517182 3 1398

Bogota 2053 2 11960 7102602 3 4467

Bangkok 1899 1 17751 5658953 1 8084

Istanbul 1921 1 18090 11174257 3 6103

Mexico City 1968 1 20496 11285654 3 7600

Belo
Horizonte 1812 1 24317 2399920 3 7164

Tehran 2117 2 16131 7088287 3 9327

St.
Petersburg 5459 2 19987 4569616 4 7541

Sao Paulo 2016 2 20589 11016703 3 7234

Santiago 3074 2 20979 4960815 3 6823

Riyadh 6813 2 23964 4087152 2 5109

Prague 6342 2 25500 1188126 3 9741

Athens 5242 2 26042 789166 3 20235

Lisbon 4663 2 27292 504726 3 5954

Buenos Aires 2418 2 28292 2965403 3 51
Ljubljana 6918 2 28900 250953 3 1530

Johannesburg 4363 2 32023 752349 3 2364

Cape Town 4858 2 32037 3497097 3 12059

Berlin 7113 3 28529 3386667 3 3801

Barcelona 5867 2 35976 1605602 3 516

Los Angeles,
CA 6905 2 48896 3834340 3 1616
Rome 5852 2 43127 2626640 3 2009

Hamburg 6779 2 54103 1704735 3 2258

Sydney 11265 3 49226 4336374 3 357

Melbourne 11163 3 46137 3806092 3 495

Brussels 8510 3 45355 144784 3 899

Luxembourg-
Ville 15681 3 70597 84644 3 1660

Bern 8088 3 41900 122256 3 2368

Seattle, WA 11268 3 56788 594210 3 2733

Vienna 7886 3 53776 1664146 3 4013

Dublin 6234 2 36721 495781 3 4202

Amsterdam 6988 2 60514 742884 3 4467

Copenhagen 6665 2 71164 505141 3 5740

Jerusalem 6750 2 42432 740475 3 5914
Hong Kong 5878 2 42700 6925900 3 6421
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Milan 5572 2 46180 1306086 3 7174
Tel Aviv 6451 2 39003 387234 3 7476
New York, NY 6680 2 56149 8274527 3 10350
Nagoya 7465 3 34811 2215062 3 6785
Yokohama 7720 3 37054 3579628 3 8184
London 6233 2 41271 7421209 3 10505
Madrid 6147 2 41315 3128600 3 19509
Geneva 8305 3 44017 178574 3 10829
Osaka 7555 3 36922 2628811 3 11836
Tokyo 8201 3 41456 8489653 3 13663
Vancouver,
BC 16234 3 44884 1837969 3 16123
Paris 7945 3 57027 2125017 3 20238
Brasilia 1811 1 30564 2383784 1 411
Stockholm 399 1 34668 789024 4 4219
Moscow 5785 2 30712 10456490 4 9673
Honolulu, HI 10912 3 45444 375571 1 1692
Singapore 8507 3 51656 4588600 1 6582
Bandar seri
begawan 8424 3 53900 27285 1 272
Manama 11401 3 36100 176909 2 5897
Phoenix, AZ 12051 3 41260 1552259 2 1168
Abu Dhabi 13029 3 43700 527000 2 293
Kuwait City 15345 3 55600 32403 2 11900
Denver, CO 11260 3 55700 588349 2 1558
Doha 15108 3 100300 344939 2 2174
Seoul 7804 3 29706 10020123 4 16553
Montreal 16902 3 40709 3268513 4 8955
Helsinki 16120 3 44249 566526 4 3040
Detroit, MI 11615 3 44344 916952 4 2552
Toronto 17314 3 45537 4612191 4 3677
Chicago, IL 12571 3 48840 2836658 4 4819
Boston, MA 11275 3 58686 599351 4 4783
Anchorage,
AK 10689 3 63549 279671 4 64
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APPENDIX A.3 Fossil Fuels Consumption data set

CITIES fossil fuels fossil population GDP per cap, population climate
per cap, tons class 2000US$ density/sq.km

Kinshasa 0.01 1 7785965 300 955 1
Bujumbura 0.01 1 235440 300 2738 1
Phnom Penh 0.02 1 703963 1900 33522 1
Addis Ababa 0.02 1 2646000 800 4992 3
Bamako 0.02 1 1297281 1100 13374 1
Dar es
Salaam 0.03 1 1360850 1300 856 1
Bangui 0.03 1 451690 700 6742 1

Ouagadougou 0.03 1 1475839 1200 6739 2
Niamey 0.04 1 707951 700 2962 2
Antananarivo 0.05 1 1015140 1000 14099 3
Kathmandu 0.05 1 671846 1100 13711 3
Conakry 0.05 1 1091500 1100 2426 1
Yangon 0.07 1 4477638 1200 7488 1
Freetown 0.07 1 802639 900 5859 1
Banjul 0.08 1 42326 1300 3527 1
Dhaka 0.08 1 10356500 6095 34067 1
Accra 0.1 1 1658937 1400 8967 1
Nairobi 0.11 1 2948109 1700 4236 3
Abuja 0.12 1 107069 24411 1091 1
Dakar 0.16 1 1075582 1700 2151 1
Lagos 0.16 1 5195247 3697 5200 1
Colombo 0.19 1 615000 4200 880 1
Sana'a 0.2 1 954448 2500 3864 2
Asuncion 0.21 1 513399 4200 4388 3
Islamabad 0.23 1 529180 7181 4410 3
Ho Chi Minh
City 0.23 1 3015743 13200 21541 1
Karachi 0.28 1 9339023 6430 2648 2
Guatemala
City 0.29 1 1022001 5300 4482 1
San Salvador 0.3 1 507665 7300 573 1
Tbilisi 0.31 1 1108600 4600 2038 3
Cebu 0.33 1 718821 11371 2558 1
Rabat 0.34 1 642000 8175 5321 3
Manila 0.35 1 1581082 13423 2575 1
Quezon City 0.36 1 2173831 14080 12661 1
Naihati 0.36 1 215303 6046 18641 1
Lima 0.37 1 8445211 12864 10557 2
Casablanca 0.38 1 2995000 10374 9244 3
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Bishkek 0.43 1 798300 2100 6271 4
Hyderabad 0.44 1 3637483 9538 21065 1
Surabaya 0.44 1 2611506 6811 7440 1
Chennai 0.45 1 4343645 8902 24963 2
Kolkata 0.45 1 4572876 7033 24718 1
Bangalore 0.45 1 5104047 10514 7199 1
Porto Alegre 0.45 1 19089 16667 45 3
Cali 0.45 1 2392877 12741 4372 1
Delhi 0.47 1 9879172 10486 22922 3
Mumbai 0.48 1 11978450 3598 19865 1
Jakarta 0.48 1 8820603 10082 13284 1
Bogota 0.49 1 7102602 11960 4467 3
Florianopolis 0.56 1 406564 8253 924 3
Chisinau 0.6 1 660726 2400 5372 3
Quito 0.62 1 1559295 7300 9172 3
Montevideo 0.62 1 1345010 11600 2538 3
Curitiba 0.62 1 1788559 23268 4189 3
Brasilia 0.63 1 2383784 30564 411 1

Belo
Horizonte 0.64 1 2399920 24317 7164 3
Panama City 0.64 1 484261 11100 4526 1
Cairo 0.67 1 6758581 12192 31582 2
Tunis 0.69 1 702330 7700 19847 3
Sao Paulo 0.71 1 11016703 20589 7234 3
Santo
Domingo 0.74 1 913540 8000 10030 1
Damascus 0.99 1 1658000 4700 2894 3
Riga 0.99 1 719928 10499 2376 4
Amman 1.04 2 1204110 5100 717 2
Santiago 1.04 2 4960815 20979 6823 3
Shenzhen 1.08 2 7008831 11047 17744 3
Guangzhou 1.09 2 8524826 14044 2218 3
Beijing 1.11 2 11509595 13325 8413 4
Shanghai 1.13 2 14348535 15547 7442 3
Bangkok 1.15 2 5658953 17751 8084 1
Vilnius 1.32 2 543494 17400 1379 4
Beirut 1.39 2 361366 10700 18437 3
Kingston 1.45 2 579137 8800 26324 1
Buenos Aires 1.47 2 2965403 28292 51 3
Tehran 1.63 2 7088287 16131 9327 3
Caracas 1.67 2 1975294 10915 4562 1
Ankara 1.71 2 3517182 15608 1398 3
Guadalajara 1.85 2 1640589 18837 10865 3
Istanbul 1.85 2 11174257 18090 6103 3
Tashkent 1.93 2 2137218 11600 7124 3
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Kuala
Lumpur 2.04 2 1551306 15000 6384 1
Mexico City 2.11 2 11285654 20496 7600 3
Minsk 2.15 2 1789098 10800 5847 4
Ulaanbaatar 2.17 2 1012733 3000 5038 4
Bern 2.23 2 122256 41900 2368 3
Geneva 2.29 2 178574 44017 10829 3
Stockholm 2.31 2 789024 34668 4219 4
Bucharest 2.44 2 1931838 11500 8121 3
Lisbon 2.45 2 504725.5 27292 5954 3
Sarajevo 2.52 2 527049 6300 3738 3
Paris 2.55 2 2125017 57027 20238 3
Kiev 2.74 2 2676789 7200 3210 4
Milan 2.9 2 1306086 46180 7174 3
Rome 3.05 2 2626640 43127 2009 3
Vienna 3.14 2 1664146 53776 4013 3
Barcelona 3.16 2 1605602 35976 516 3
Budapest 3.2 2 1699212.5 19876 3237 3
Nagoya 3.31 2 2215062 34811 6785 3
Madrid 3.31 2 3128600 41315 19509 3
Osaka 3.35 2 2628811 36922 11836 3
Tripoli 3.37 2 1500000 13900 4205 2
Yokohama 3.43 2 3579628 37054 8184 3
Durban 3.49 2 669242 1483 1513 3

Johannesburg 3.52 2 752349 32023 2364 3
Tel Aviv 3.55 2 387233.5 39003 7476 3
Tokyo 3.64 2 8489653 41456 13663 3
London 3.66 2 7421209 41271 10505 3
Vladivostok 3.68 2 579811 12207 966 4
Jerusalem 3.71 2 740475 42432 5914 3
Belgrade 3.73 2 1313994 10300 3379 3
Dublin 3.8 2 495781 36721 4202 3
Seoul 3.91 2 10020123 29706 16553 4
Cape Town 3.92 2 3497097 32037 12059 3
Helsinki 3.93 2 566526 44249 3040 4
Copenhagen 4.03 2 505141 71164 5740 3
Ljubljana 4.15 2 250953 28900 1530 3
Port-of-Spain 4.25 2 43396 23100 3616 1
St.
Petersburg 4.25 2 4569616 19987 7541 4
Warsaw 4.35 2 1704717 17977 3297 3
Moscow 4.5 2 10456490 30712 9673 4
Sofia 4.59 2 1155403 12300 859 3
St. John's 4.77 2 99182 27646 222 4
Hamburg 4.95 2 1704735 54103 | 2258 3
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Brussels 5.09 3 144784 45355 899 3
Victoria, BC 5.14 3 289625 13539 15243 3
Riyadh 5.14 3 4087152 23964 5109 2
Berlin 5.2 3 3386667 28529 3801 3
Amsterdam 5.32 3 742884 60514 4467 3
Bandar seri
begawan 5.4 3 27285 53900 272 1
Ottawa 5.53 3 812129 19402 292 4
Vancouver,
BC 5.85 3 1837969 44884 16123 3
Montreal 6.09 3 3268513 40709 8955 4
Toronto 6.24 3 4612191 45537 3677 4
Anchorage,
AK 6.38 3 279671 63549 64 4
Honolulu, HI 6.52 3 375571 45444 1692 1
Denver, CO 6.72 3 588349 55700 1558 2
Seattle, WA 6.73 3 594210 56788 2733 3
Boston, MA 6.73 3 599351 58686 4783 4
Detroit, MI 6.94 3 916952 44344 2552 4
Prague 7 3 1188126 25500 9741 3
Phoenix, AZ 7.2 3 1552259 41260 1168 2
Chicago, IL 7.51 3 2836658 48840 4819 4
Los Angeles,
CA 7.67 3 3834340 48896 1616 3
New York, NY 8.09 3 8274527 56149 10350 3
Athens 8.2 3 789166 26042 20235 3
Manama 8.63 3 176909 36100 5897 2
Melbourne 9.58 3 3806092 46137 495 3
Sydney 9.66 3 4336374 49226 357 3
Kuwait City 10.99 3 32403 55600 11900 2
Abu Dhabi 15 3 527000 43700 293 2
Dubai 15.78 3 1089000 11400 846 2
Doha 21.41 3 344939 100300 2174 2
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APPENDIX A.4 Industrial Minerals & Ores Consumption data set

industrial GDP per
minerals per industrial cap, population

CITIES cap, tons class population 2000US$ density/sq.km climate
Port-of-Spain -3.18 1 43396 23100 3616 1
Doha -2.42 1 344939 100300 2174 2
Manama -0.69 1 176909 36100 5897 2
Kuwait City -0.35 1 32403 55600 11900 2
Tbilisi -0.1 1 1108600 4600 2038 3
Vilnius 0 1 543494 17400 1379 4
Dhaka 0 1 10356500 6095 34067 1
Bandar seri
begawan 0 1 27285 53900 272 1
Tripoli 0 1 1500000 13900 4205 2
Sana'a 0 1 954448 2500 3864 2
Kathmandu 0 1 671846 1100 13711 3
Freetown 0 1 802639 900 5859 1
Yangon 0.01 1 4477638 1200 7488 1
Bangui 0.01 1 451690 700 6742 1
Antananarivo 0.01 1 1015140 1000 14099 3
Colombo 0.01 1 615000 4200 880 1
Addis Ababa 0.01 1 2646000 800 4992 3
Banjul 0.01 1 42326 1300 3527 1
Nairobi 0.01 1 2948109 1700 4236 3
Dar es
Salaam 0.01 1 1360850 1300 856 1
Abuja 0.02 1 107069 24411 1091 1
Lagos 0.02 1 5195247 3697 5200 1

Ouagadougou 0.02 1 1475839 1200 6739 2
Phnom Penh 0.03 1 703963 1900 33522 1
Bujumbura 0.03 1 235440 300 2738 1
Islamabad 0.03 1 529180 7181 4410 3
Abu Dhabi 0.03 1 527000 43700 293 2
Dubai 0.03 1 1089000 11400 846 2
Kinshasa 0.04 1 7785965 300 955 1
Karachi 0.04 1 9339023 6430 2648 2
Minsk 0.04 1 1789098 10800 5847 4
Sarajevo 0.05 1 527049 6300 3738 3
Chisinau 0.05 1 660726 2400 5372 3
Ho Chi Minh
City 0.05 1 3015743 13200 21541 1
Naihati 0.06 1 215303 6046 18641 1
Asuncion 0.07 1 513399 4200 4388 3
Hyderabad 0.08 1 3637483 9538 21065 1
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Guatemala
City 0.08 1 1022001 5300 4482 1
Chennai 0.08 1 4343645 8902 24963 2
Kolkata 0.08 1 4572876 7033 24718 1
Bangalore 0.08 1 5104047 10514 7199 1
Delhi 0.08 1 9879172 10486 22922 3
Mumbai 0.08 1 11978450 3598 19865 1
Cairo 0.1 1 6758581 12192 31582 2
San Salvador 0.12 1 507665 7300 573 1
Niamey 0.13 1 707951 700 2962 2
Cebu 0.14 1 718821 11371 2558 1
Riga 0.14 1 719928 10499 2376 4
Manila 0.15 1 1581082 13423 2575 1
Quito 0.15 1 1559295 7300 9172 3
Quezon City 0.15 1 2173831 14080 12661 1
Riyadh 0.16 1 4087152 23964 5109 2
Panama City 0.17 1 484261 11100 4526 1
Surabaya 0.18 1 2611506 6811 7440 1
Bangkok 0.18 1 5658953 17751 8084 1
Jakarta 0.19 1 8820603 10082 13284 1
Belgrade 0.19 1 1313994 10300 3379 3
Cali 0.19 1 2392877 12741 4372 1
Dakar 0.2 1 1075582 1700 2151 1
Bogota 0.21 1 7102602 11960 4467 3
Damascus 0.21 1 1658000 4700 2894 3
Montevideo 0.23 1 1345010 11600 2538 3
Bamako 0.23 1 1297281 1100 13374 1
Vienna 0.26 1 1664146 53776 4013 3
Budapest 0.34 1 1699212.5 19876 3237 3
Amsterdam 0.36 1 742884 60514 4467 3
Shenzhen 0.36 1 7008831 11047 17744 3
Guangzhou 0.37 1 8524826 14044 2218 3
Beijing 0.37 1 11509595 13325 8413 4
Shanghai 0.38 1 14348535 15547 7442 3
Accra 0.39 1 1658937 1400 8967 1
Bucharest 0.4 1 1931838 11500 8121 3
Buenos Aires 0.4 1 2965403 28292 51 3
Tehran 0.41 1 7088287 16131 9327 3
Beirut 0.42 1 361366 10700 18437 3
Porto Alegre 0.44 1 19089 16667 45 3
Tel Aviv 0.44 1 387233.5 39003 7476 3
Jerusalem 0.46 1 740475 42432 5914 3
Bern 0.46 1 122256 41900 2368 3
Ankara 0.47 1 3517182 15608 1398 3
Geneva 0.48 1 178574 44017 10829 3
Lisbon 0.49 1 504725.5 27292 5954 3
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Santo
Domingo 0.5 2 913540 8000 10030 1
Istanbul 0.51 2 11174257 18090 6103 3
Florianopolis 0.54 2 406564 8253 924 3
Prague 0.54 2 1188126 25500 9741 3
London 0.58 2 7421209 41271 10505 3
Curitiba 0.6 2 1788559 23268 4189 3

Kuala
Lumpur 0.61 2 1551306 15000 6384 1
Brasilia 0.61 2 2383784 30564 411 1
Belo
Horizonte 0.61 2 2399920 24317 7164 3
Hamburg 0.64 2 1704735 54103 2258 3
Rabat 0.66 2 642000 8175 5321 3
Caracas 0.67 2 1975294 10915 4562 1
Berlin 0.68 2 3386667 28529 3801 3
Copenhagen 0.68 2 505141 71164 5740 3
Sao Paulo 0.68 2 11016703 20589 7234 3
Casablanca 0.73 2 2995000 10374 9244 3
Paris 0.75 2 2125017 57027 20238 3
Bishkek 0.81 2 798300 2100 6271 4
Brussels 0.83 2 144784 45355 899 3
Ljubljana 0.83 2 250953 28900 1530 3
Milan 0.86 2 1306086 46180 7174 3
Barcelona 0.89 2 1605602 35976 516 3
Athens 0.89 2 789166 26042 20235 3
Rome 0.9 2 2626640 43127 2009 3
Madrid 0.93 2 3128600 41315 19509 3
Tunis 1 3 702330 7700 19847 3
Nagoya 1 3 2215062 34811 6785 3

Osaka 1.01 3 2628811 36922 11836 3
Yokohama 1.04 3 3579628 37054 8184 3
Vladivostok 1.07 3 579811 12207 966 4
Tokyo 1.1 3 8489653 41456 13663 3
Warsaw 1.2 3 1704717 17977 3297 3
Conakry 1.22 3 1091500 1100 2426 1
St.
Petersburg 1.23 3 4569616 19987 7541 4
Moscow 1.31 3 10456490 30712 9673 4
Guadalajara 1.52 3 1640589 18837 10865 3
Mexico City 1.74 3 11285654 20496 7600 3

Stockholm 1.77 3 789024 34668 4219 4

Seoul 1.77 3 10020123 29706 16553 4

Kiev 1.86 3 2676789 7200 3210 4

Durban 1.94 3 669242 1483 1513 3
Tashkent 1.95 3 2137218 11600 7124 3
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Johannesburg 1.95 3 752349 32023 2364 3
Ulaanbaatar 2.06 3 1012733 3000 5038 4
Amman 2.12 3 1204110 5100 717 2
Cape Town 2.18 3 3497097 32037 12059 3
Lima 2.34 3 8445211 12864 10557 2
Helsinki 2.42 3 566526 44249 3040 4
Dublin 2.49 3 495781 36721 4202 3
St. John's 2.64 3 99182 27646 222 4
Sofia 2.72 3 1155403 12300 859 3
Victoria, BC 2.84 3 289625 13539 15243 3
Anchorage,
AK 2.96 3 279671 63549 64 4
Honolulu, HI 3.02 3 375571 45444 1692 1
Ottawa 3.06 3 812129 19402 292 4
Denver, CO 3.12 3 588349 55700 1558 2
Seattle, WA 3.12 3 594210 56788 2733 3
Boston, MA 3.12 3 599351 58686 4783 4
Detroit, MI 3.22 3 916952 44344 2552 4
Vancouver,
BC 3.24 3 1837969 44884 16123 3
Phoenix, AZ 3.34 3 1552259 41260 1168 2
Montreal 3.37 3 3268513 40709 8955 4
Toronto 3.45 3 4612191 45537 3677 4
Chicago, IL 3.48 3 2836658 48840 4819 4
Los Angeles,
CA 3.55 3 3834340 48896 1616 3
Kingston 3.61 3 579137 8800 26324 1
New York, NY 3.75 3 8274527 56149 10350 3
Melbourne 7.44 3 3806092 46137 495 3
Sydney 7.51 3 4336374 49226 357 3
Santiago 7.67 3 4960815 20979 6823 3
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APPENDIX A.5 Construction Minerals consumption data set

const. GDP per pop.
minerals per construction cap, density

CITIES cap, tons class population 2000US$ /sq.km climate
Abuja 0.76 1 107069 24411 1091 1

Ouagadougou 1 1 1475839 1200 6739 2
Bujumbura 1 1 235440 300 2738 1
Phnom Penh 1 1 703963 1900 33522 1
Bangui 1 1 451690 700 6742 1
Kinshasa 1 1 7785965 300 955 1
Addis Ababa 1 1 2646000 800 4992 3
Banjul 1 1 42326 1300 3527 1
Nairobi 1 1 2948109 1700 4236 3
Antananarivo 1 1 1015140 1000 14099 3
Bamako 1 1 1297281 1100 13374 1
Ulaanbaatar 1 1 1012733 3000 5038 4

Niamey 1 1 707951 700 2962 2
Lagos 1 1 5195247 3697 5200 1
Freetown 1 1 802639 900 5859 1
Dar es
Salaam 1 1 1360850 1300 856 1
Sana'a 1 1 954448 2500 3864 2
Cairo 1.12 1 6758581 12192 31582 2
Durban 1.15 1 669242 1483 1513 3

Johannesburg 1.16 1 752349 32023 2364 3
Cape Town 1.29 1 3497097 32037 12059 3
Islamabad 1.64 1 529180 7181 4410 3
Dhaka 2 1 10356500 6095 34067 1
Tbilisi 2 1 1108600 4600 2038 3
Accra 2 1 1658937 1400 8967 1
Conakry 2 1 1091500 1100 2426 1
Bishkek 2 1 798300 2100 6271 4

Kathmandu 2 1 671846 1100 13711 3
Karachi 2 1 9339023 6430 2648 2
Chisinau 2 1 660726 2400 5372 3
Dakar 2 1 1075582 1700 2151 1

Tashkent 2 1 2137218 11600 7124 3

Ho Chi Minh
City 2 1 3015743 13200 21541 1
Naihati 2.22 1 215303 6046 18641 1
Hyderabad 2.71 1 3637483 9538 21065 1
Chennai 2.74 1 4343645 8902 24963 2
Kolkata 2.75 1 4572876 7033 24718 1
Surabaya 2.75 1 2611506 6811 7440 1
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Bangalore 2.77 1 5104047 10514 7199 1
Delhi 2.9 1 9879172 10486 22922 3
Mumbai 2.94 1 11978450 3598 19865 1
Quito 3 1 1559295 7300 9172 3
Jakarta 3 1 8820603 10082 13284 1
Damascus 3 1 1658000 4700 2894 3
Rabat 3.59 1 642000 8175 5321 3
Shenzhen 3.8 1 7008831 11047 17744 3
PortoAlegre 3.84 1 19089 16667 45 3
Guangzhou 3.86 1 8524826 14044 2218 3
Beijing 3.94 1 11509595 13325 8413 4
Shanghai 4 1 14348535 15547 7442 3
Guatemala
City 4 1 1022001 5300 4482 1
Kingston 4 1 579137 8800 26324 1
Amman 4 1 1204110 5100 717 2
Casablanca 4 1 2995000 10374 9244 3
Yangon 4 1 4477638 1200 7488 1
Belgrade 4 1 1313994 10300 3379 3
Colombo 4 1 615000 4200 880 1
Kiev 4 1 2676789 7200 3210 4
Riyadh 4.24 1 4087152 23964 5109 2
London 4.26 1 7421209 41271 10505 3
Cali 4.63 1 2392877 12741 4372 1
Florianopolis 4.76 1 406564 8253 924 3
Milan 4.79 1 1306086 46180 7174 3
Amsterdam 4.8 1 742884 60514 4467 3
Vladivostok 4.9 1 579811 12207 966 4
Minsk 5 2 1789098 10800 5847 4
Sarajevo 5 2 527049 6300 3738 3
Sofia 5 2 1155403 12300 859 3
Bogota 5 2 7102602 11960 4467 3
Santo
Domingo 5 2 913540 8000 10030 1
San Salvador 5 2 507665 7300 573 1
Tehran 5 2 7088287 16131 9327 3
Beirut 5 2 361366 10700 18437 3
Tripoli 5 2 1500000 13900 4205 2
Panama City 5 2 484261 11100 4526 1
Asuncion 5 2 513399 4200 4388 3
Lima 5 2 8445211 12864 10557 2
Bucharest 5 2 1931838 11500 8121 3
Tunis 5 2 702330 7700 19847 3
Caracas 5 2 1975294 10915 4562 1
Rome 5.03 2 2626640 43127 2009 3
Cebu 5.11 2 718821 11371 2558 1

122



Curitiba 5.28 2 1788559 23268 4189 3
Brasilia 5.39 2 2383784 30564 411 1
Belo
Horizonte 5.39 2 2399920 24317 7164 3
Manila 5.4 2 1581082 13423 2575 1
Quezon City 5.52 2 2173831 14080 12661 1
Ankara 5.53 2 3517182 15608 1398 3
St.
Petersburg 5.66 2 4569616 19987 7541 4
Sao Paulo 6 2 11016703 20589 7234 3
Riga 6 2 719928 10499 2376 4
Vilnius 6 2 543494 17400 1379 4
Moscow 6 2 10456490 30712 9673 4
Istanbul 6 2 11174257 18090 6103 3
Guadalajara 6.12 2 1640589 18837 10865 3
Athens 6.63 2 789166 26042 20235 3
Paris 6.81 2 2125017 57027 20238 3
Santiago 7 2 4960815 20979 6823 3
Kuala
Lumpur 7 2 1551306 15000 6384 1
Mexico City 7 2 11285654 20496 7600 3
Warsaw 7 2 1704717 17977 3297 3
Port-of-Spain 7 2 43396 23100 3616 1
Montevideo 7 2 1345010 11600 2538 3
Dublin 7.1 2 495781 36721 4202 3
Barcelona 7.32 2 1605602 35976 516 3
Brussels 7.41 2 144784 45355 899 3
Madrid 7.67 2 3128600 41315 19509 3
Bangkok 7.91 2 5658953 17751 8084 1
Anchorage,
AK 7.96 2 279671 63549 64 4
Buenos Aires 8 3 2965403 28292 51 3
Manama 8 3 176909 36100 5897 2
Bandar seri
begawan 8 3 27285 53900 272 1
Prague 8 3 1188126 25500 9741 3
Budapest 8 3 1699212.5 19876 3237 3
Seoul 8 3 10020123 29706 16553 4
Honolulu, HI 8.12 3 375571 45444 1692 1
Lisbon 8.18 3 504725.5 27292 5954 3
Denver, CO 8.38 3 588349 55700 1558 2
Seattle, WA 8.39 3 594210 56788 2733 3
Boston, MA 8.39 3 599351 58686 4783 4
Hamburg 8.45 3 1704735 54103 2258 3
Tel Aviv 8.6 3 387233.5 39003 7476 3
Detroit, MI 8.65 3 916952 44344 2552 4
Berlin 8.86 3 3386667 28529 3801 3
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Phoenix, AZ 8.97 3 1552259 41260 1168 2
Jerusalem 9 3 740475 42432 5914 3
Kuwait City 9 3 32403 55600 11900 2
Ljubljana 9 3 250953 28900 1530 3
Nagoya 9.3 3 2215062 34811 6785 3
St. John's 9.34 3 99182 27646 222 4
Chicago, IL 9.36 3 2836658 48840 4819 4
Osaka 9.41 3 2628811 36922 11836 3
Vienna 9.46 3 1664146 53776 4013 3
Abu Dhabi 9.5 3 527000 43700 293 2
Los Angeles,
CA 9.56 3 3834340 48896 1616 3
Yokohama 9.61 3 3579628 37054 8184 3
Bern 9.74 3 122256 41900 2368 3
Melbourne 9.91 3 3806092 46137 495 3
Stockholm 9.94 3 789024 34668 4219 4
Sydney 10 3 4336374 49226 357 3
Doha 10 3 344939 100300 2174 2
Geneva 10 3 178574 44017 10829 3
Dubai 10 3 1089000 11400 846 2
Victoria, BC 10.07 3 289625 13539 15243 3
New York, NY 10.09 3 8274527 56149 10350 3
Tokyo 10.21 3 8489653 41456 13663 3
Ottawa 10.82 3 812129 19402 292 4
Vancouver,
BC 11.46 3 1837969 44884 16123 3
Montreal 11.93 3 3268513 40709 8955 4
Copenhagen 12.17 3 505141 71164 5740 3
Toronto 12.22 3 4612191 45537 3677 4
Helsinki 18.44 3 566526 44249 3040 4
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Appendix A.6 Biomass Consumption data set

biomass per biomass GDP per cap, Pop. density
CITIES cap, tons class population 2000US$ /sq.km climate
Sana'a 0.89 1 954448 2500 3864 2
Manama 0.95 1 176909 36100 5897 2
Amman 0.97 1 1204110 5100 717 2
Bandar seri
begawan 1.16 1 27285 53900 272 1
Kuwait City 1.22 1 32403 55600 11900 2
Dhaka 1.25 1 10356500 6095 34067 1
Riyadh 1.26 1 4087152 23964 5109 2
Nagoya 1.35 1 2215062 34811 6785 3
Colombo 1.35 1 615000 4200 880 1
Osaka 1.36 1 2628811 36922 11836 3
Yokohama 1.39 1 3579628 37054 8184 3
Tokyo 1.48 1 8489653 41456 13663 3
Beirut 1.51 1 361366 10700 18437 3
Naihati 1.54 1 215303 6046 18641 1
Tbilisi 1.57 1 1108600 4600 2038 3

Freetown 1.61 1 802639 900 5859 1
Seoul 1.64 1 10020123 29706 16553 4
Rabat 1.66 1 642000 8175 5321 3

Port-of-Spain 1.67 1 43396 23100 3616 1

Damascus 1.68 1 1658000 4700 2894 3
Tashkent 1.69 1 2137218 11600 7124 3
Kinshasa 1.76 1 7785965 300 955 1
Surabaya 1.77 1 2611506 6811 7440 1
Islamabad 1.79 1 529180 7181 4410 3
Doha 1.82 1 344939 100300 2174 2
Ho Chi Minh
City 1.84 1 3015743 13200 21541 1
Bujumbura 1.84 1 235440 300 2738 1
Casablanca 1.85 1 2995000 10374 9244 3
Phnom Penh 1.86 1 703963 1900 33522 1
Hyderabad 1.88 1 3637483 9538 21065 1
Shenzhen 1.88 1 7008831 11047 17744 3
Banjul 1.88 1 42326 1300 3527 1
Chennai 1.9 1 4343645 8902 24963 2
Guangzhou 1.9 1 8524826 14044 2218 3
Kolkata 1.91 1 4572876 7033 24718 1
Bangalore 1.92 1 5104047 10514 7199 1
Jakarta 1.93 1 8820603 10082 13284 1
Beijing 1.94 1 11509595 13325 8413 4
Tunis 1.94 1 702330 7700 19847 3
Tripoli 1.95 1 1500000 13900 4205 2
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Shanghai 1.97 1 14348535 15547 7442 3
Tel Aviv 1.99 1 387233.5 39003 7476 3
Delhi 2.01 2 9879172 10486 22922 3
Cairo 2.04 2 6758581 12192 31582 2
Mumbai 2.04 2 11978450 3598 19865 1
Cebu 2.05 2 718821 11371 2558 1
Jerusalem 2.09 2 740475 42432 5914 3
Tehran 2.09 2 7088287 16131 9327 3
Abuja 2.13 2 107069 24411 1091 1
Manila 2.17 2 1581082 13423 2575 1
Karachi 2.19 2 9339023 6430 2648 2
Quezon City 2.22 2 2173831 14080 12661 1
Yangon 2.23 2 4477638 1200 7488 1
Sarajevo 2.3 2 527049 6300 3738 3
Chisinau 2.37 2 660726 2400 5372 3
Nairobi 2.47 2 2948109 1700 4236 3
Kathmandu 2.5 2 671846 1100 13711 3
Dar es
Salaam 2.53 2 1360850 1300 856 1
Santo
Domingo 2.54 2 913540 8000 10030 1
Belgrade 2.57 2 1313994 10300 3379 3
Accra 2.63 2 1658937 1400 8967 1
Dakar 2.63 2 1075582 1700 2151 1
Niamey 2.65 2 707951 700 2962 2
Ankara 2.66 2 3517182 15608 1398 3
Vladivostok 2.69 2 579811 12207 966 4
San Salvador 2.71 2 507665 7300 573 1
Kingston 2.76 2 579137 8800 26324 1

Lagos 2.79 2 5195247 3697 5200 1
Istanbul 2.89 2 11174257 18090 6103 3
Conakry 2.89 2 1091500 1100 2426 1
Abu Dhabi 2.97 2 527000 43700 293 2

Ouagadougou 3.01 2 1475839 1200 6739 2
Bern 3.04 2 122256 41900 2368 3
Sofia 3.05 2 1155403 12300 859 3
Riga 3.05 2 719928 10499 2376 4
Antananarivo 3.06 2 1015140 1000 14099 3

Bangkok 3.08 2 5658953 17751 8084 1
Bucharest 3.1 2 1931838 11500 8121 3
St.
Petersburg 3.11 2 4569616 19987 7541 4
Dubai 3.12 2 1089000 11400 846 2
Geneva 3.12 2 178574 44017 10829 3
London 3.16 2 7421209 41271 10505 3
Addis Ababa 3.16 2 2646000 800 4992 3
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Lima 3.18 2 8445211 12864 10557 2
Guadalajara 3.3 2 1640589 18837 10865 3
Moscow 3.3 2 10456490 30712 9673 4
Milan 3.34 2 1306086 46180 7174 3
Bishkek 3.38 2 798300 2100 6271 4
Durban 3.49 2 669242 1483 1513 3
Rome 3.5 2 2626640 43127 2009 3

Johannesburg 3.51 2 752349 32023 2364 3
Bamako 3.54 2 1297281 1100 13374 1
Quito 3.54 2 1559295 7300 9172 3
Barcelona 3.64 2 1605602 35976 516 3
Guatemala
City 3.67 2 1022001 5300 4482 1
Athens 3.73 2 789166 26042 20235 3
Caracas 3.75 2 1975294 10915 4562 1
Panama City 3.75 2 484261 11100 4526 1
Mexico City 3.77 2 11285654 20496 7600 3
Madrid 3.81 2 3128600 41315 19509 3
Santiago 3.81 2 4960815 20979 6823 3
Cape Town 3.91 2 3497097 32037 12059 3
Cali 4.01 2 2392877 12741 4372 1
Warsaw 4.1 2 1704717 17977 3297 3
Kiev 4.12 2 2676789 7200 3210 4
Bogota 4.33 2 7102602 11960 4467 3
Ljubljana 4.46 2 250953 28900 1530 3
Bangui 4.47 2 451690 700 6742 1
Prague 4.62 2 1188126 25500 9741 3
Kuala
Lumpur 4.72 2 1551306 15000 6384 1
Vilnius 4.9 2 543494 17400 1379 4
Hamburg 4.91 2 1704735 54103 2258 3
Berlin 5.15 3 3386667 28529 3801 3
Anchorage,
AK 5.15 3 279671 63549 64 4
Honolulu, HI 5.26 3 375571 45444 1692 1
Stockholm 5.36 3 789024 34668 4219 4
Vienna 5.37 3 1664146 53776 4013 3
Denver, CO 5.43 3 588349 55700 1558 2
Seattle, WA 5.43 3 594210 56788 2733 3
Boston, MA 5.44 3 599351 58686 4783 4
Amsterdam 5.47 3 742884 60514 4467 3
Budapest 5.47 3 1699212.5 19876 3237 3
Porto Alegre 5.47 3 19089 16667 45 3
Lisbon 5.54 3 504725.5 27292 5954 3
Detroit, MI 5.6 3 916952 44344 2552 4
Minsk 5.61 3 1789098 10800 5847 4
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St. John's 5.63 3 99182 27646 222 4
Phoenix, AZ 5.81 3 1552259 41260 1168 2
Chicago, IL 6.06 3 2836658 48840 4819 4
Victoria, BC 6.06 3 289625 13539 15243 3
Los Angeles,
CA 6.19 3 3834340 48896 1616 3
Brussels 6.35 3 144784 45355 899 3
Helsinki 6.51 3 566526 44249 3040 4
Ottawa 6.52 3 812129 19402 292 4
New York, NY 6.53 3 8274527 56149 10350 3
Paris 6.71 3 2125017 57027 20238 3
Florianopolis 6.78 3 406564 8253 924 3
Vancouver,
BC 6.9 3 1837969 44884 16123 3
Montreal 7.18 3 3268513 40709 8955 4
Toronto 7.36 3 4612191 45537 3677 4
Curitiba 7.52 3 1788559 23268 4189 3
Brasilia 7.67 3 2383784 30564 411 1
Belo
Horizonte 7.67 3 2399920 24317 7164 3
Sao Paulo 8.54 3 11016703 20589 7234 3
Copenhagen 10.99 3 505141 71164 5740 3
Buenos Aires 12.02 3 2965403 28292 51 3
Dublin 13.02 3 495781 36721 4202 3
Ulaanbaatar 14 3 1012733 3000 5038 4
Melbourne 15.9 3 3806092 46137 495 3
Sydney 16.05 3 4336374 49226 357 3
Montevideo 18.26 3 1345010 11600 2538 3
Asuncion 21.56 3 513399 4200 4388 3
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APPENDIX A.7 Water Consumption data set

water per water GDP per cap, pop. density
CITIES cap, m3 class population 2000US$ /sq.km climate
Freetown 7 1 802639 900 5859 1

Bangui 7 1 451690 700 6742 1

Conakry 8 1 1091500 1100 2426 1

Ouagadougou 11 1 1475839 1200 6739 2

Yangon 14 1 4477638 1200 7488 1
Male 18 1 103693 4500 17884 1
Sana'a 19 1 954448 2500 3864 2

Addis Ababa 19 1 2646000 800 4992 3
Accra 19 1 1658937 1400 8967 1

Banjul 21 1 42326 1300 3527 1
Niamey 21 1 707951 700 2962 2

Colombo 21 1 615000 4200 880 1
Dakar 23 1 1075582 1700 2151 1

Dar es
Salaam 23 1 1360850 1300 856 1
Kinshasa 25 1 7785965 300 955 1
Naihati 27 1 215303 6046 18641 1

Bujumbura 28 1 235440 300 2738 1

Bamako 28 1 1297281 1100 13374 1

Tunis 32 1 702330 7700 19847 3
Kolkata 34 1 4572876 7033 24718 1

Dhaka 34 1 10356500 6095 34067 1

Bangalore 34 1 5104047 10514 7199 1

Chennai 35 1 4343645 8902 24963 2

Delhi 36 1 9879172 10486 22922 3

Guatemala
City 36 1 1022001 5300 4482 1
Mumbai 36 1 11978450 3598 19865 1

Bogota 37 1 7102602 11960 4467 3

Hyderabad 37 1 3637483 9538 21065 1

Abuja 37 1 107069 24411 1091 1

Tripoli 38 1 1500000 13900 4205 2

Surabaya 41 1 2611506 6811 7440 1
Jakarta 45 1 8820603 10082 13284 1
Montevideo 48 1 1345010 11600 2538 3

Lagos 49 1 5195247 3697 5200 1

Ho Chi Minh
City 49 1 3015743 10915 21541 1
Durban 50 2 669242 1483 1513 3
Rabat 50 2 642000 8175 5321 3

Quezon City 53 2 2173831 14080 12661 1
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Curitiba 54 2 1788559 23268 4189 3
Lima 54 2 8445211 12864 10557 2
Belo
Horizonte 55 2 2399920 24317 7164 3
Islamabad 55 2 529180 7181 4410 3
Casablanca 56 2 2995000 10374 9244 3
Hamburg 57 2 1704735 54103 2258 3
San Salvador 58 2 507665 7300 573 1
Athens 58 2 789166 26042 20235 3
Damascus 59 2 1658000 4700 2894 3
Berlin 60 2 3386667 28529 3801 3
Brussels 61 2 144784 45355 899 3
Vilnius 61 2 543494 17400 1379 4
Florianopolis 64 2 406564 8253 924 3
Copenhagen 64 2 505141 71164 5740 3
Brasilia 65 2 2383784 30564 411 1
Quito 65 2 1559295 7300 9172 3
Cebu 65 2 718821 11371 2558 1
Porto Alegre 66 2 19089 16667 45 3
Nairobi 66 2 2948109 1700 4236 3
Karachi 67 2 9339023 6430 2648 2
Phnom Penh 68 2 703963 1900 33522 1
Antananarivo 68 2 1015140 1000 14099 3
Warsaw 70 2 1704717 17977 3297 3
Bangkok 71 2 5658953 17751 8084 1
Caracas 71 2 1975294 13200 4562 1
Guadalajara 72 2 1640589 18837 10865 3
Cape Town 72 2 3497097 32037 12059 3
Barcelona 72 2 1605602 35976 19509 3
Santo
Domingo 74 2 913540 8000 10030 1
Sarajevo 76 2 527049 6300 3738 3
Helsinki 76 2 566526 44249 3040 4
Chisinau 76 2 660726 2400 5372 3
Sao Paulo 78 2 11016703 20589 7234 3
Vienna 79 2 1664146 53776 4013 3
Santiago 80 2 4960815 20979 6823 3
Bucharest 80 2 1931838 11500 8121 3
Madrid 80 2 3128600 41315 516 3
Kingston 81 2 579137 8800 26324 1
Mexico City 82 2 11285654 20496 7600 3
Ulaanbaatar 84 2 1012733 3000 5038 4
Seoul 85 2 10020123 29706 16553 4
Istanbul 85 2 11174257 18090 6103 3
Prague 86 2 1188126 25500 9741 3
Ljubljana 87 2 250953 28900 1530 3
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Ankara 88 2 3517182 15608 1398 3
Riyadh 89 2 4087152 23964 5109 2

Johannesburg 89 2 752349 32023 2364 3
Asuncion 90 2 513399 4200 4388 3
Budapest 91 2 1699213 19876 3237 3
Kuwait City 95 2 32403 55600 11900 2
Amman 95 2 1204110 5100 717 2
Bishkek 96 2 798300 2100 6271 4
London 96 2 7421209 41271 10505 3
Paris 98 2 2125017 57027 20238 3
Tehran 99 2 7088287 16131 9327 3
Singapore 99 2 4588600 51656 6582 1
Riga 100 3 719928 10499 2376 4
Luxembourg-
Ville 102 3 84644 70597 1660 3
Boston, MA 115 3 599351 58686 4783 4
Detroit, MI 118 3 916952 44344 2552 4
Minsk 118 3 1789098 10800 5847 4
Seattle, WA 118 3 594210 56788 2733 3
Bandar seri
begawan 119 3 27285 53900 272 1
Sofia 119 3 1155403 12300 859 3
Rome 120 3 2626640 43127 2009 3
Tel Aviv 122 3 387234 39003 7476 3
Melbourne 123 3 3806092 46137 495 3
Manila 123 3 1581082 13423 2575 1
Lisbon 123 3 504726 27292 5954 3
Sydney 124 3 4336374 49226 357 3
Chicago, IL 124 3 2836658 48840 4819 4
Amsterdam 126 3 742884 60514 4467 3
Jerusalem 128 3 740475 42432 5914 3
Bern 130 3 122256 41900 2368 3
Beirut 134 3 361366 10700 18437 3
Doha 134 3 344939 100300 2174 2
Kuala
Lumpur 138 3 1551306 15000 6384 1
Buenos Aires 140 3 2965403 28292 14608 3
Panama City 142 3 484261 11100 4526 1
Anchorage,
AK 147 3 279671 63549 64 4
New York, NY 149 3 8274527 56149 10350 3
Geneva 149 3 178574 44017 10829 3
Shenzhen 151 3 7008831 11047 17744 3
Guangzhou 153 3 8524826 14044 2218 3
Kiev 153 3 2676789 7200 3210 4
Beijing 156 3 11509595 13325 8413 4
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Los Angeles,
CA 157 3 3834340 48896 1616 3
Cali 158 3 2392877 12741 4372 1
Shanghai 158 3 14348535 15547 7442 3
Tashkent 165 3 2137218 11600 7124 3
Milan 167 3 1306086 46180 7174 3
St.
Petersburg 171 3 4569616 19987 7541 4
Moscow 188 3 10456490 30712 9673 4
Manama 192 3 176909 36100 5897 2
Phoenix, AZ 209 3 1552259 41260 1168 2
Abu Dhabi 215 3 527000 43700 293 2
St. John's 218 3 99182 6374 222 4
Port-of-Spain 227 3 43396 23100 3616 1
Dubai 227 3 1089000 11400 846 2
Honolulu, HI 228 3 375571 45444 1692 1
Denver, CO 232 3 588349 55700 1558 2
Vladivostok 233 3 579811 12207 966 4
Victoria, BC 234 3 289625 13539 15243 3
Nagoya 241 3 2215062 34811 6785 3
Osaka 244 3 2628811 36922 11836 3
Yokohama 249 3 3579628 37054 8184 3
Ottawa 252 3 812129 19402 292 4
Tokyo 264 3 8489653 41456 13663 3
Vancouver,
BC 267 3 1837969 44884 16123 3
Montreal 278 3 3268513 40709 8955 4
Toronto 285 3 4612191 45537 3677 4
Dublin 297 3 495781 36721 4202 3
Stockholm 303 3 789024 34668 4219 4
Tbilisi 304 3 1108600 4600 2038 3
Kathmandu 319 3 671846 1100 13711 3
Cairo 355 3 6758581 12192 31582 2
Belgrade 1313994 10300 3379 3
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APPENDIX A.8 Total Domestic Material Consumption data set

Tot. DMC per Tot. DMC GDP per cap, pop. density
CITIES cap, tons class population 2000US$ /sq.km climate
Sana'a 2.09 1 954448 2500 3864 2
Freetown 2.68 1 802639 900 5859 1
Kinshasa 2.81 1 7785965 300 955 1
Bujumbura 2.89 1 235440 300 2738 1
Phnom Penh 2.9 1 703963 1900 33522 1
Banjul 2.97 1 42326 1300 3527 1
Abuja 3.02 1 107069 24411 1091 1
Dhaka 3.33 1 10356500 6095 34067 1
Dar es
Salaam 3.57 1 1360850 1300 856 1
Nairobi 3.6 1 2948109 1700 4236 3
Islamabad 3.69 1 529180 7181 4410 3
Tbilisi 3.78 1 1108600 4600 2038 3
Niamey 3.82 1 707951 700 2962 2
Cairo 3.93 1 6758581 12192 31582 2
Lagos 3.97 1 5195247 3697 5200 1

Ouagadougou 4.06 1 1475839 1200 6739 2
Antananarivo 4.12 1 1015140 1000 14099 3
Ho Chi Minh
City 4.13 1 3015743 13200 21541 1
Naihati 4.18 1 215303 6046 18641 1
Addis Ababa 4.19 1 2646000 800 4992 3
Karachi 4.51 1 9339023 6430 2648 2
Kathmandu 4.55 1 671846 1100 13711 3
Bamako 4.79 1 1297281 1100 13374 1
Dakar 4.98 1 1075582 1700 2151 1
Chisinau 5.02 1 660726 2400 5372 3
Hyderabad 5.1 1 3637483 9538 21065 1
Accra 5.12 1 1658937 1400 8967 1
Surabaya 5.15 1 2611506 6811 7440 1
Chennai 5.16 1 4343645 8902 24963 2
Kolkata 5.18 1 4572876 7033 24718 1
Bangalore 5.22 1 5104047 10514 7199 1
Delhi 5.47 1 9879172 10486 22922 3
Bangui 5.51 1 451690 700 6742 1
Mumbai 5.54 1 11978450 3598 19865 1
Colombo 5.55 1 615000 4200 880 1
Jakarta 5.6 1 8820603 10082 13284 1
Damascus 5.88 1 1658000 4700 2894 3
Conakry 6.16 1 1091500 1100 2426 1
Rabat 6.25 1 642000 8175 5321 3
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Yangon 6.3 1 4477638 1200 7488 1
Bishkek 6.62 1 798300 2100 6271 4
Casablanca 6.96 1 2995000 10374 9244 3
Shenzhen 7.12 1 7008831 11047 17744 3
Guangzhou 7.22 1 8524826 14044 2218 3
Quito 7.31 1 1559295 7300 9172 3
Beijing 7.37 1 11509595 13325 8413 4
Shanghai 7.48 1 14348535 15547 7442 3
Tashkent 7.58 1 2137218 11600 7124 3
Cebu 7.63 1 718821 11371 2558 1
Guatemala
City 8.04 2 1022001 5300 4482 1
Manila 8.06 2 1581082 13423 2575 1
Amman 8.12 2 1204110 5100 717 2
San Salvador 8.13 2 507665 7300 573 1
Quezon City 8.24 2 2173831 14080 12661 1
Beirut 8.31 2 361366 10700 18437 3
Tunis 8.64 2 702330 7700 19847 3
Santo
Domingo 8.79 2 913540 8000 10030 1
Tehran 9.13 2 7088287 16131 9327 3
Cali 9.29 2 2392877 12741 4372 1
Panama City 9.56 2 484261 11100 4526 1
Port-of-Spain 9.73 2 43396 23100 3616 1
Sarajevo 9.86 2 527049 6300 3738 3
Bogota 10.02 2 7102602 11960 4467 3
Durban 10.06 2 669242 1483 1513 3

Johannesburg 10.14 2 752349 32023 2364 3
Riga 10.18 2 719928 10499 2376 4
Porto Alegre 10.21 2 19089 16667 45 3
Tripoli 10.32 2 1500000 13900 4205 2
Ankara 10.38 2 3517182 15608 1398 3
Belgrade 10.49 2 1313994 10300 3379 3
Riyadh 10.81 2 4087152 23964 5109 2
Lima 10.89 2 8445211 12864 10557 2
Bucharest 10.94 2 1931838 11500 8121 3
Caracas 11.09 2 1975294 10915 4562 1
Istanbul 11.25 2 11174257 18090 6103 3
Cape Town 11.3 2 3497097 32037 12059 3
London 11.66 2 7421209 41271 10505 3
Kingston 11.82 2 579137 8800 26324 1
Milan 11.88 2 1306086 46180 7174 3
Vilnius 12.22 2 543494 17400 1379 4
Bangkok 12.32 2 5658953 17751 8084 1
Vladivostok 12.34 2 579811 12207 966 4
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Rome 12.48 2 2626640 43127 2009 3
Florianopolis 12.64 2 406564 8253 924 3
Kiev 12.73 2 2676789 7200 3210 4
Guadalajara 12.78 2 1640589 18837 10865 3
Minsk 12.8 2 1789098 10800 5847 4
Curitiba 14.02 2 1788559 23268 4189 3
St.
Petersburg 14.26 2 4569616 19987 7541 4
Brasilia 14.31 2 2383784 30564 411 1
Belo
Horizonte 14.32 2 2399920 24317 7164 3
Kuala
Lumpur 14.37 2 1551306 15000 6384 1
Bandar seri
begawan 14.56 2 27285 53900 272 1
Tel Aviv 14.58 2 387233.5 39003 7476 3
Mexico City 14.62 2 11285654 20496 7600 3
Nagoya 14.96 2 2215062 34811 6785 3
Barcelona 15 3 1605602 35976 516 3
Moscow 15.11 3 10456490 30712 9673 4
Osaka 15.14 3 2628811 36922 11836 3
Jerusalem 15.26 3 740475 42432 5914 3
Seoul 15.33 3 10020123 29706 16553 4
Sofia 15.36 3 1155403 12300 859 3
Yokohama 15.47 3 3579628 37054 8184 3
Bern 15.47 3 122256 41900 2368 3
Madrid 15.72 3 3128600 41315 19509 3
Geneva 15.89 3 178574 44017 10829 3
Sao Paulo 15.93 3 11016703 20589 7234 3
Amsterdam 15.93 3 742884 60514 4467 3
Tokyo 16.43 3 8489653 41456 13663 3
Warsaw 16.64 3 1704717 17977 3297 3
Lisbon 16.66 3 504725.5 27292 5954 3
Paris 16.82 3 2125017 57027 20238 3
Manama 16.89 3 176909 36100 5897 2
Budapest 17.01 3 1699212.5 19876 3237 3
Vienna 18.23 3 1664146 53776 4013 3
Ljubljana 18.44 3 250953 28900 1530 3
Hamburg 18.95 3 1704735 54103 2258 3
Ulaanbaatar 19.23 3 1012733 3000 5038 4
Stockholm 19.38 3 789024 34668 4219 4
Athens 19.45 3 789166 26042 20235 3
Santiago 19.53 3 4960815 20979 6823 3
Brussels 19.68 3 144784 45355 899 3
Berlin 19.88 3 3386667 28529 3801 3
Prague 20.16 3 1188126 25500 9741 3
Kuwait City 20.86 3 32403 55600 11900 2
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Buenos Aires 21.88 3 2965403 28292 51 3
St. John's 22.38 3 99182 27646 222 4
Anchorage,
AK 22.45 3 279671 63549 64 4
Honolulu, HI 22.92 3 375571 45444 1692 1
Denver, CO 23.65 3 588349 55700 1558 2
Seattle, WA 23.67 3 594210 56788 2733 3
Boston, MA 23.68 3 599351 58686 4783 4
Victoria, BC 24.12 3 289625 13539 15243 3
Detroit, MI 24.4 3 916952 44344 2552 4
Phoenix, AZ 25.31 3 1552259 41260 1168 2
Ottawa 25.93 3 812129 19402 292 4
Montevideo 26.11 3 1345010 11600 2538 3
Chicago, IL 26.4 3 2836658 48840 4819 4
Dublin 26.41 3 495781 36721 4202 3
Asuncion 26.85 3 513399 4200 4388 3
Los Angeles,
CA 26.97 3 3834340 48896 1616 3
Vancouver,
BC 27.45 3 1837969 44884 16123 3
Abu Dhabi 27.5 3 527000 43700 293 2
Copenhagen 27.87 3 505141 71164 5740 3
New York, NY 28.46 3 8274527 56149 10350 3
Montreal 28.58 3 3268513 40709 8955 4
Dubai 28.93 3 1089000 11400 846 2
Toronto 29.28 3 4612191 45537 3677 4
Doha 30.81 3 344939 100300 2174 2
Helsinki 31.29 3 566526 44249 3040 4
Melbourne 42.83 3 3806092 46137 495 3
Sydney 43.22 3 4336374 49226 357 3
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APPENDIX A.9 Carbon dioxide emissions data set

CO2 per GDP per cap, pop. density
CITIES cap, tons CO2 class population 2000US$ /sq.km climate
Bujumbura 0.02 1 235440 300 2738 1
Kinshasa 0.04 1 7785965 300 955 1
Bamako 0.05 1 1297281 1100 13374 1
Bangui 0.06 1 451690 700 6742 1

Ouagadougou 0.06 1 1475839 1200 6739 2
Niamey 0.08 1 707951 700 2962 2
Addis Ababa 0.09 1 2646000 800 4992 3
Kathmandu 0.13 1 671846 1100 13711 3
Conakry 0.15 1 1091500 1100 2426 1
Dar es
Salaam 0.16 1 1360850 1300 856 1
Antananarivo 0.17 1 1015140 1000 14099 3
Yangon 0.2 1 4477638 1200 7488 1
Banjul 0.23 1 42326 1300 3527 1
Freetown 0.26 1 802639 900 5859 1
Phnom Penh 0.35 1 703963 1900 33522 1
Dakar 0.39 1 1075582 1700 2151 1
Nairobi 0.4 1 2948109 1700 4236 3
Accra 0.47 1 1658937 1400 8967 1
Colombo 0.66 1 615000 4200 880 1
Asuncion 0.7 1 513399 4200 4388 3
Sana'a 1.11 1 954448 2500 3864 2
Guatemala
City 1.15 1 1022001 5300 4482 1
Bishkek 1.28 1 798300 2100 6271 4
San Salvador 1.32 1 507665 7300 573 1
Lagos 1.39 1 5195247 3697 5200 1
Dhaka 1.45 1 10356500 6095 34067 1
Durban 1.47 1 669242 1483 1513 3
Tbilisi 1.47 1 1108600 4600 2038 3
Florianopolis 1.77 1 406564 8253 924 3
Mumbai 2.03 1 11978450 3598 19865 1
Chisinau 2.11 1 660726 2400 5372 3
Panama City 2.22 1 484261 11100 4526 1
Bogota 2.29 1 7102602 11960 4467 3
Riga 2.33 1 719928 10499 2376 4
Montevideo 2.38 1 1345010 11600 2538 3
Cali 2.44 1 2392877 12741 4372 1
Santo
Domingo 2.49 1 913540 8000 10030 1
Quito 2.5 1 1559295 7300 9172 3
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Karachi 2.54 1 9339023 6430 2648 2
Tunis 2.61 1 702330 7700 19847 3
Lima 2.62 1 8445211 12864 10557 2
Male 2.81 1 103693 4500 17884 1
Islamabad 2.84 1 529180 7181 4410 3
Cebu 2.95 1 718821 11371 2558 1
St. John's 2.98 1 99182 6374 222 4
Surabaya 3.06 1 2611506 6811 7440 1
Rabat 3.18 1 642000 8175 5321 3
Naihati 3.41 1 215303 6046 18641 1
Manila 3.48 1 1581082 13423 2575 1
Porto Alegre 3.57 1 19089 16667 45 3
Quezon City 3.65 1 2173831 14080 12661 1
Ulaanbaatar 3.92 1 1012733 3000 5038 4
Kolkata 3.96 1 4572876 7033 24718 1
Casablanca 4.04 1 2995000 10374 9244 3
Damascus 4.05 1 1658000 4700 2894 3
Amman 4.13 1 1204110 5100 717 2
Beirut 4.31 1 361366 10700 18437 3
Sao Paulo 4.42 1 11016703 20589 7234 3
Jakarta 4.52 1 8820603 10082 13284 1
Vilnius 4.73 1 543494 17400 1379 4
Curitiba 4.99 1 1788559 23268 4189 3
Chennai 5.02 2 4343645 8902 24963 2
Ankara 5.04 2 3517182 15608 1398 3
Bucharest 5.19 2 1931838 11500 8121 3
Belo
Horizonte 5.21 2 2399920 24317 7164 3
Hyderabad 5.38 2 3637483 9538 21065 1
Kingston 5.59 2 579137 8800 26324 1
Cairo 5.72 2 6758581 12192 31582 2
Stockholm 5.82 2 789024 34668 4219 4
Istanbul 5.84 2 11174257 18090 6103 3
Delhi 5.91 2 9879172 10486 22922 3
Bangalore 5.93 2 5104047 10514 7199 1
Guadalajara 6.06 2 1640589 18837 10865 3
Santiago 6.08 2 4960815 20979 6823 3
London 6.1 2 7421209 41271 10505 3
Victoria, BC 6.34 2 289625 13539 15243 3
Bern 6.39 2 122256 41900 2368 3
Caracas 6.44 2 1975294 10915 4562 1
Budapest 6.45 2 1699212.5 19876 3237 3
Brasilia 6.55 2 2383784 30564 411 1
Mexico City 6.59 2 11285654 20496 7600 3
Geneva 6.71 2 178574 44017 10829 3
Sarajevo 6.91 2 527049 6300 3738 3
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Copenhagen 7.1 3 505141 71164 5740 3
Dubai 7.27 2 1089000 11400 846 2
Ho Chi Minh
City 7.28 2 3015743 13200 21541 1
Lisbon 7.43 2 504725.5 27292 5954 3
Sofia 7.76 2 1155403 12300 859 3
Belgrade 7.9 2 1313994 10300 3379 3
Minsk 8.1 2 1789098 10800 5847 4
Kiev 8.15 2 2676789 7200 3210 4
Berlin 8.63 2 3386667 28529 3801 3
Athens 8.67 2 789166 26042 20235 3
Ljubljana 8.83 2 250953 28900 1530 3
Kuala
Lumpur 8.85 2 1551306 15000 6384 1
Ottawa 9.09 2 812129 19402 292 4
Abuja 9.15 2 107069 24411 1091 1
Dublin 9.53 2 495781 36721 4202 3
Tripoli 9.87 2 1500000 13900 4205 2
Warsaw 10.25 2 1704717 17977 3297 3
Barcelona 10.28 2 1605602 35976 516 3
Vladivostok 10.48 2 579811 12207 966 4
Buenos Aires 10.81 2 2965403 28292 51 3
Bangkok 10.86 2 5658953 17751 8084 1
Tehran 11.06 2 7088287 16131 9327 3
Nagoya 11.36 2 2215062 34811 6785 3
Paris 11.45 2 2125017 57027 20238 3
Madrid 11.81 2 3128600 41315 19509 3
Shenzhen 11.96 2 7008831 11047 17744 3
Osaka 12.05 2 2628811 36922 11836 3
Yokohama 12.1 2 3579628 37054 8184 3
Rome 12.19 2 2626640 43127 2009 3
Seoul 12.25 2 10020123 29706 16553 4
Milan 13.06 2 1306086 46180 7174 3
Prague 13.17 2 1188126 25500 9741 3
Vienna 13.52 2 1664146 53776 4013 3
Tokyo 13.53 2 8489653 41456 13663 3
Brussels 14.1 2 144784 45355 899 3
Singapore 14.37 2 4588600 51656 6582 1
Beijing 14.43 2 11509595 13325 8413 4
Guangzhou 15.21 3 8524826 14044 2218 3
Tel Aviv 16.26 3 387233.5 39003 7476 3
Hamburg 16.37 3 1704735 54103 2258 3
Shanghai 16.84 3 14348535 15547 7442 3
St.
Petersburg 17.16 3 4569616 19987 7541 4
Bandar seri
begawan 17.39 3 27285 53900 272 1
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Amsterdam 17.45 3 742884 60514 4467 3
Helsinki 17.5 3 566526 44249 3040 4
Jerusalem 17.69 3 740475 42432 5914 3
Riyadh 18.08 3 4087152 23964 5109 2
Phoenix, AZ 18.66 3 1552259 41260 1168 2
Montreal 19.06 3 3268513 40709 8955 4
Detroit, MI 20.05 3 916952 44344 2552 4
Honolulu, HI 20.55 3 375571 45444 1692 1
Vancouver,
BC 21.02 3 1837969 44884 16123 3
Toronto 21.32 3 4612191 45537 3677 4

Chicago, IL 22.09 3 2836658 48840 4819 4

Los Angeles,
CA 22.11 3 3834340 48896 1616 3
Tashkent 23.9 3 2137218 11600 7124 3

Luxembourg-
Ville 23.9 3 84644 70597 1660 3
Denver, CO 25.19 3 588349 55700 1558 2
New York, NY 25.39 3 8274527 56149 10350 3
Seattle, WA 25.68 3 594210 56788 2733 3
Melbourne 25.8 3 3806092 46137 495 3
Moscow 26.38 3 10456490 30712 9673 4
Boston, MA 26.54 3 599351 58686 4783 4
Manama 27.1 3 176909 36100 5897 2
Sydney 27.52 3 4336374 49226 357 3
Port-of-Spain 27.7 3 43396 23100 3616 1
Abu Dhabi 27.85 3 527000 43700 293 2

Anchorage,
AK 28.74 3 279671 63549 64 4

Johannesburg 31.65 3 752349 32023 2364 3
Cape Town 31.66 3 3497097 32037 12059 3

Kuwait City 41.06 3 32403 55600 11900 2
Doha 56.3 3 344939 100300 2174 2
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