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Abstract. A class of non-local boundary value problems for linear fractional dif-
ferential equations with Caputo-type differential operators is considered. By using
integral equation reformulation of the boundary value problem, we study the exis-
tence and smoothness of the exact solution. Using the obtained regularity properties
and spline collocation techniques, we construct two numerical methods (Method 1
and Method 2) for finding approximate solutions. By choosing suitable graded grids,
we derive optimal global convergence estimates and obtain some super-convergence
results for Method 2 by requiring additional assumptions on equation and collocation
parameters. Some numerical illustrations for verification of theoretical results is also
presented.
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1 Introduction

Fractional differential equations arise in various areas of science and engineering
and have been proven to be a valuable tool in modelling various phenomena
in physics, astrophysics, chemistry, geology, bioengineering, medicine, atmo-
spheric science, material science, optics, mechanics and many other fields. For
a more comprehensive list of applications of fractional calculus to science and
engineering, we refer to [7] and the references cited therein. The mathematical
aspects of fractional differential equations and various numerical methods for
such equations are studied in the monographs [7, 11, 16, 27]. A great deal of
papers have been devoted to the numerical solution of initial value problems
for fractional differential equations - some more recent results can be found
in [6,18,21,23]. A smaller but growing number of papers concern the numerical
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solution of boundary value problems (see, e.g., [1,4,13,14,15,22,24,25,26,30]).
However, these papers are only concerned with local boundary value condi-
tions. While non-local boundary conditions are widely researched for differen-
tial equations with integer order (see, e.g., [9,10]), less attention has been paid
for fractional differential equations with non-local boundary conditions. We re-
fer to papers [2,3,5,29], which are concerned with various existence results for
fractional boundary value problems with non-local conditions. It is known that
we usually cannot expect the solution of a fractional differential equation to be
smooth on the whole interval of integration (see, e.g., [22, 23]). In collocation
methods the singular behaviour of the exact solution can be taken into account
by using polynomial splines and suitable graded grids (see, e.g., [21, 24]). In
the case of integral equations and integer order differential equations, a similar
approach has been exploited by many authors (see, e.g., [12, 17,19,20]).

In the present paper we construct two high-order collocation type methods
for the numerical solution of the fractional differential equation with non-local
boundary values in the following form:

(Dα
∗ y)(t) + h(t)y(t) = f(t), 0 ≤ t ≤ b, b > 0, (1.1)

γ0y(0) + γ1y(b1) + γ2

∫ b2

0

y(s)ds+ γ3

∫ b3

0

(Dβ
∗ y)(s)ds = γ, (1.2)

where b1, b2, b3 ∈ (0, b], γ0, γ1, γ2, γ3, γ ∈ R := (−∞,∞) and Dα
∗ is the Caputo

differential operator of order α. We assume that 0 < β ≤ α < 1 and h, f ∈
C[0, b]. By C[0, b] we denote the Banach space of continuous functions u :
[0, b] → R with the norm ‖u‖∞ = sup{|u(t)| : 0 ≤ t ≤ b}. The Caputo
differential operator Dδ

∗ of order δ ∈ (0, 1) can be defined by formula (see,
e.g, [11])

(Dδ
∗y)(t) := (Dδ[y − y(0)])(t), 0 ≤ t ≤ b.

Here Dδy is the Riemann–Liouville fractional derivative of y :

(Dδy)(t) :=
d

dt
(J1−δy)(t), 0 ≤ t ≤ b, δ ∈ (0, 1)

with Jδ, the Riemann–Liouville integral operator, defined by

(Jδy)(t) :=
1

Γ (δ)

∫ t

0

(t− s)δ−1 y(s) ds, t > 0, δ > 0; J0 := I, (1.3)

where I is the identity mapping and Γ is the Euler gamma function. In the
definition of Dδ

∗y we assume that y ∈ C[0, b] and J1−δ[y − y(0)] ∈ C1[0, b].
It is well known (see, e.g. [8]) that Jδ, δ > 0, is linear, bounded and compact

as an operator from L∞(0, b) into C[0, b], and we have for any y ∈ L∞(0, b)
that (see, e.g. [16])

Jδy ∈ C[0, b], (Jδy)(0) = 0, δ > 0, (1.4)

DδJηy = Dδ
∗J

ηy = Jη−δy, 0 < δ ≤ η. (1.5)

We note that the problem (1.1)–(1.2) includes initial value problems (γ0 6= 0,
γ1 = γ2 = γ3 = 0) and local boundary value problems (γ1 6= 0, γ2 = γ3 = 0).
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The rest of our paper is arranged as follows. In Section 2 we reformulate
the problem (1.1)–(1.2) into two different integral equations. In Section 3,
with the help of results obtained from the previous section, we study the ex-
istence and regularity of the exact solution to problem (1.1)–(1.2). Next, by
using the integral equations obtained in Section 2, we construct two modified
piecewise polynomial collocation schemes on graded grids for finding approxi-
mations to the exact solution. In Section 5, we study the attainable order of
proposed algorithms. In particular, we show that, by using specific collocation
parameters and graded grids, it is possible for one method to attain a global
super-convergence rate. Finally, in Section 6 we test the theoretical results of
both methods by a numerical example. The main results of the paper are given
by Theorem 1, Theorem 2 and Theorem 3. In Theorem 1, the existence and
regularity results of the exact solution of problem (1.1)–(1.2) are presented. In
Theorems 2 and 3 the convergence rates of the proposed algorithms are given.

2 Integral equation reformulation

First, let y ∈ C[0, b] be an arbitrary function such that Dα
∗ y ∈ C[0, b], where

0 < α < 1. We denote z := Dα
∗ y. Then (see [11,16])

y(t) = (Jαz)(t) + c, (2.1)

where Jα is defined in (1.3) and c is a constant. Due to (1.4) and (1.5) a
function in the form (2.1) satisfies the boundary conditions (1.2) if and only if

γ0c+γ1c+γ2b2c = γ−γ1(Jαz)(b1)−γ2
∫ b2

0

(Jαz)(s)ds−γ3
∫ b3

0

(Jα−βz)(s)ds.

We simplify the double integrals in the previous equation as follows. By chang-

ing the order of integration in the integral
∫ b2
0

(Jαz)(s)ds we find

1

Γ (α)

∫ b2

0

∫ s

0

(s− τ)α−1z(τ)dτds =
1

Γ (α)

∫ b2

0

z(s)

∫ b2

s

(τ − s)α−1dτds.

It is easy to see that ∫ b2

s

(τ − s)α−1dτ =
(b2 − s)α

α

and, by using the recurrence relation αΓ (α) = Γ (α+ 1), we can write∫ b2

0

(Jαz)(s)ds = (Jα+1z)(b2).

In an analogous way we find that∫ b3

0

(Jα−βz)(s)ds = (Jα+1−βz)(b3).
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Using these expressions we can see that y(t) is determined by the formula

y(t) = (Jαz)(t) + (γ0 + γ1 + γ2b2)−1

×
[
γ − γ1(Jαz)(b1)− γ2(Jα+1z)(b2)− γ3(Jα+1−βz)(b3)

]
, 0 ≤ t ≤ b. (2.2)

We now show two alternative integral equation reformulations of problem
(1.1)–(1.2).

2.1 Integral equation for y

Let y ∈ C[0, b] be a solution to problem (1.1)–(1.2) so that z = Dα
∗ y ∈ C[0, b].

From (1.1) we see that z(t) = f(t)−h(t)y(t) and by substituting this equation
into (2.2), we obtain that y is also a solution of an integral equation of the form

y = Tyy + gy, (2.3)

where

(Tyy)(t) = −(Jα(hy))(t) + (γ0 + γ1 + γ2b2)−1

×
[
γ1(Jα(hy))(b1) + γ2(Jα+1(hy))(b2) + γ3(Jα+1−β(hy))(b3)

]
, (2.4)

gy(t) = (Jαf)(t) + (γ0 + γ1 + γ2b2)−1

×
[
γ−γ1(Jαf)(b1)− γ2(Jα+1f)(b2)− γ3(Jα+1−βf)(b3)

]
, 0 ≤ t ≤ b. (2.5)

2.2 Integral equation for z

Let y ∈ C[0, b] be a solution to problem (1.1)–(1.2) so that Dα
∗ y ∈ C[0, b].

By substituting (2.2) into (1.1) and using (1.5), we obtain that z = Dα
∗ y is a

solution of an integral equation in the form

z = Tzz + gz, (2.6)

where

(Tzz)(t) = −h(t)(Jαz)(t) + (γ0 + γ1 + γ2b2)−1h(t)

×
[
γ1(Jαz)(b1) + γ2(Jα+1z)(b2) + γ3(Jα+1−βz)(b3)

]
, 0 ≤ t ≤ b, (2.7)

gz(t) = f(t)− (γ0 + γ1 + γ2b2)−1γ h(t), 0 ≤ t ≤ b. (2.8)

Conversely, it is easy to see that if z ∈ C[0, b] is a solution to (2.6), then y
determined by formula (2.2) is also a solution to (1.1)–(1.2). In this sense
equation (2.6) is also equivalent to problem (1.1)–(1.2).

3 Existence and smoothness of the solution

In order to study the existence and regularity properties of the exact solution
of problem (1.1)–(1.2) we first present some auxiliary results. In what follows,
for Banach spaces E and F , by L(E,F ) we denote the Banach space of linear
bounded operators A : E → F with the norm ‖A‖L(E,F ) = sup{‖Ax‖F : x ∈
E, ‖x‖E ≤ 1}.

Math. Model. Anal., 22(5):654–670, 2017.
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For given q ∈ N and ν ∈ R, ν < 1, by Cq,ν(0, b] we denote the set of
continuous functions y : [0, b]→ R which are q times continuously differentiable
in (0, b] and such that for all t ∈ (0, b] and i = 1, . . . , q the following estimates
hold (cf. e.g. [8]):

∣∣y(i)(t)∣∣ ≤ c
 1, if i < 1− ν ,

1 + | log t|, if i = 1− ν ,
t1−ν−i, if i > 1− ν .

Here c = c(y) is a positive constant. In other words, y ∈ Cq,ν(0, b] if y ∈
C[0, b] ∩ Cq(0, b] and

|y|q,ν :=

q∑
i=1

sup
0<t≤b

ωi−1+ν(t)
∣∣∣y(i)(t)∣∣∣ <∞,

where, for t > 0,

ωρ(t) :=


1, if ρ < 0,

1
1+| log t| , if ρ = 0,

tρ, if ρ > 0.

Equipped with the norm ‖y‖Cq,ν(0,b] := ‖y‖∞+|y|q,ν , the set Cq,ν(0, b] becomes
a Banach space. Note that

Cq[0, b] ⊂ Cq,ν(0, b] ⊂ Cm,µ(0, b] ⊂ C[0, b], q ≥ m ≥ 1, ν ≤ µ < 1.

In particular, a function of the form y(t) = g1(t) tµ + g2(t) is included in
Cq,ν(0, b] if µ ≥ 1− ν > 0 and gj ∈ Cq[0, b] , j = 1, 2.

The two following lemmas are based on the corresponding results of [8].

Lemma 1. If y1, y2 ∈ Cq,ν(0, b], q ∈ N, ν < 1, then y1y2 ∈ Cq,ν(0, b], and

‖y1y2‖Cq,ν(0,b] ≤ c‖y1‖Cq,ν(0,b]‖y2‖Cq,ν(0,b],

with a constant c which is independent of y1 and y2.

Lemma 2. Let Jδ be defined by (1.3) for δ > 0. Then Jδ is compact as an
operator from L∞(0, b) into C[0, b]. Moreover, Jδ : Cq,ν(0, b] → Cq,ν(0, b] is
compact for q ∈ N, 1− δ ≤ ν < 1.

The existence and regularity of a solution to (1.1)–(1.2) can be characterized
by the following theorem.

Theorem 1. (i) Assume that 0 < β ≤ α < 1, b1, b2, b3 ∈ (0, b] and h, f ∈
C[0, b]. Moreover, let γ0 + γ1 + γ2b2 6= 0 and assume that the boundary value
problem (1.1)–(1.2) with f = 0 and γ = 0 has in C[0, b] only the trivial solution
y = 0.

Then problem (1.1)–(1.2) has a unique solution y ∈ C[0, b]. Moreover, we
have Dα

∗ y ∈ C[0, b].
(ii) Assume that (i) holds and let h, f ∈ Cq,µ(0, b], q ∈ N, µ ∈ R, µ < 1.

Then problem (1.1)–(1.2) possesses a unique solution y such that y ∈ Cq,ν(0, b]
and Dα

∗ y ∈ Cq,ν(0, b], where

ν := max{1− α, µ}. (3.1)
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Proof. (i) We first note that due to f ∈ C[0, b] and (1.3) the forcing function
gy of equation y = Tyy + gy (see (2.3) and (2.5)) belongs to C[0, b]. Further,
due to (2.4) operator Ty can be rewritten in the form

Ty = −JαH + (γ0 + γ1 + γ2b2)−1 (γ1T1H + γ2T2H + γ3T3H) (3.2)

with H, T1, T2 and T3 defined by the following formulas:

(Hy)(t) = h(t)y(t), (T1y)(t) = (Jαy)(b1),

(T2y)(t) = (Jα+1y)(b2), (T3y)(t) = (Jα+1−βy)(b3), t ∈ [0, b].

Clearly, H is bounded as an operator from C[0, b] into C[0, b]. It follows
from Lemma 2 that Jα, T1, T2 and T3 are compact operators from C[0, b] into
C[0, b]. Therefore JαH, T1H, T2H and T3H are also compact operators from
C[0, b] into C[0, b] and, due to (3.2), operator Ty is compact as an operator from
C[0, b] into C[0, b]. Furthermore, we have gy ∈ C[0, b] and the homogeneous
equation y = Tyy has in C[0, b] only the trivial solution y = 0. This together
with Ty ∈ L(C[0, b], C[0, b]) yields that y = Tyy possesses in C[0, b] only the
trivial solution y = 0. Thus, by Fredholm alternative theorem, we have for
equation y = Tyy + gy with gy ∈ C[0, b] a unique solution y ∈ C[0, b]. From
this and (1.1) we obtain that also Dα

∗ y ∈ C[0, b].
(ii) Let us prove that y belongs to Cq,ν(0, b] (with q ∈ N and ν given by

(3.1)) for h, f ∈ Cq,µ(0, b], µ ∈ R, µ < 1. We first note that gy, the forcing
function of equation y = Tyy + gy, belongs to Cq,ν(0, b]. This clearly follows
from f ∈ Cq,µ(0, b], (2.5), (3.1) and Lemma 2.

With the help of Lemma 1 we obtain that H is bounded as an operator from
Cq,ν(0, b] into Cq,ν(0, b]. Further, due to (3.1) we have 1−α ≤ ν. Therefore, it
follows from Lemma 2 that Jα is compact as an operator from Cq,ν(0, b] into
Cq,ν(0, b]. Thus, JαH is linear and compact as an operator from Cq,ν(0, b] into
Cq,ν(0, b].

Linear operators (functionals) T1, T2, T3 : Cq,ν(0, b] → R are bounded
and consequently compact in Cq,ν(0, b]. Since H is bounded as an operator
Cq,ν(0, b] into Cq,ν(0, b], we obtain that T1H, T2H and T3H are linear and
compact as operators from Cq,ν(0, b] into Cq,ν(0, b]. Thus, Ty defined by (3.2)
is linear and compact as an operator from Cq,ν(0, b] into Cq,ν(0, b]. Since the
homogeneous equation y = Tyy has in Cq,ν(0, b] ⊂ C[0, b] only the trivial so-
lution y = 0, it follows from the Fredholm alternative theorem that equation
y = Tyy + gy has a unique solution y ∈ Cq,ν(0, b]. This yields that prob-
lem (1.1)–(1.2) possesses a unique solution y ∈ Cq,ν(0, b] ⊂ C[0, b]. Since
y, h, f ∈ Cq,ν(0, b] we obtain from equation (1.1) that Dα

∗ y ∈ Cq,ν(0, b]. ut

Remark 1. If h, f ∈ Cq[0, b] (q ∈ N), then we may in Theorem 1 set ν = 1− α.

4 Numerical method

Let N ∈ N and let ΠN := {t0, . . . , tN} be a partition (a graded grid) of the
interval [0, b] with the grid points

tj := b (j/N)
r
, j = 0, 1, . . . , N, (4.1)

Math. Model. Anal., 22(5):654–670, 2017.
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where the grading exponent r ∈ R, r ≥ 1. If r = 1, then the grid points (4.1)
are distributed uniformly; for r > 1 the points (4.1) are more densely clustered
near the left endpoint of the interval [0, b].

For given integer k ≥ 0 by S
(−1)
k (ΠN ) is denoted the standard space of

piecewise polynomial functions:

S
(−1)
k (ΠN ) :=

{
v : v

∣∣
[tj−1,tj ]

∈ πk, j = 1, . . . , N
}
.

Here v
∣∣
[tj−1,tj ]

is the restriction of v : [0, b] → R onto the subinterval [tj−1, tj ]

⊂ [0, b] and πk denotes the set of polynomials of degree not exceeding k. Note

that the elements of S
(−1)
k (ΠN ) may have jump discontinuities at the interior

points t1, . . . , tN−1 of the grid ΠN .
In every interval [tj−1, tj ], j = 1, . . . , N , we define m ∈ N collocation points

tj1, . . . , tjm by formula

tjk := tj−1 + ηk(tj − tj−1) , k = 1, . . . ,m, j = 1, . . . , N, (4.2)

where η1 . . . , ηm are some fixed (collocation) parameters which do not depend
on j and N and satisfy

0 ≤ η1 < η2 < . . . < ηm ≤ 1 . (4.3)

In the following we describe two different numerical methods for solving the
problem (1.1)–(1.2), based on the integral equations found in Section 2.

4.1 Method 1 (method based on the integral equation for y)

We look for an approximate solution yN ∈ S
(−1)
m−1(ΠN ) (m,N ∈ N) to (1.1)–

(1.2), where yN is determined by the following collocation conditions:

yN (tjk) = (TyyN )(tjk) + gy(tjk), k = 1, . . . ,m, j = 1, . . . , N. (4.4)

Here Ty, gy and tjk are defined by (2.4),(2.5) and (4.2), respectively. If η1 = 0,
then by yN (tj1) we denote the right limit limt→tj−1,t>tj−1

yN (t). If ηm = 1,
then yN (tjm) denotes the left limit limt→tj ,t<tj yN (t).

The collocation conditions (4.4) form a system of equations whose exact

form is determined by the choice of a basis in S
(−1)
m−1(ΠN ). If η1 > 0 or ηm < 1

then we can use the Lagrange fundamental polynomial representation:

yN (t) =

N∑
λ=1

m∑
µ=1

cλµϕλµ(t) , t ∈ [0, b] , (4.5)

where ϕλµ(t) := 0 for t 6∈ [tλ−1, tλ] and

ϕλµ(t) :=

m∏
i=1,i6=µ

t− tλi
tλµ − tλi

for t ∈ [tλ−1, tλ], µ = 1, . . . ,m, λ = 1, . . . , N.
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Then yN ∈ S(−1)
m−1(ΠN ) and yN (tjk) = cjk, k = 1, . . . ,m, j = 1, . . . , N . Search-

ing the solution of (4.4) in the form (4.5), we obtain a system of linear algebraic
equations with respect to the coefficients cjk = yN (tjk):

cjk =

N∑
λ=1

m∑
µ=1

(Tyϕλµ)(tjk)cλµ + gy(tjk), k = 1, . . . ,m, j = 1, . . . , N. (4.6)

4.2 Method 2 (method based on the integral equation for z)

We look for an approximate solution ȳN to (1.1)–(1.2) in the form (see (2.2))

ȳN (t) = (JαzN )(t) + (γ0 + γ1 + γ2b2)−1

×
[
γ − γ1(JαzN )(b1)− γ2(Jα+1zN )(b2)− γ3(Jα+1−βzN )(b3)

]
, (4.7)

where 0 ≤ t ≤ b and zN ∈ S
(−1)
m−1(ΠN ) (m,N ∈ N) is determined by the

collocation conditions

zN (tjk) = (TzzN )(tjk) + gz(tjk) (k = 1, . . . ,m, j = 1, . . . , N) (4.8)

with Tz, gz and tjk defined by (2.7),(2.8) and (4.2), respectively. If η1 = 0,
then by zN (tj1) we denote the right limit limt→tj−1,t>tj−1

zN (t). If ηm = 1,
then zN (tjm) denotes the left limit limt→tj ,t<tj zN (t).

Similarly to previous subsection, the collocation conditions (4.8) form a sys-
tem of equations whose form we determine by using the Lagrange fundamental
polynomial representation, this time for zN :

zN (t) =

N∑
λ=1

m∑
µ=1

cλµϕλµ(t) , t ∈ [0, b]. (4.9)

With this we have zN ∈ S(−1)
m−1(ΠN ), zN (tjk) = cjk (k = 1, . . . ,m, j = 1, . . . , N)

and by searching for the solution of (4.8) in the form (4.9), we obtain a system
of linear algebraic equations with respect to the coefficients cjk = zN (tjk):

cjk =

N∑
λ=1

m∑
µ=1

(Tϕλµ)(tjk)cλµ + g(tjk), k = 1, . . . ,m, j = 1, . . . , N. (4.10)

After solving this system of equations, we can find the approximate solution
yN of y by substituting (4.9) into the equation (4.7):

ȳN (t) =

N∑
λ=1

m∑
µ=1

cλµ(Jαϕλµ)(t) + (γ0 + γ1 + γ2b2)−1
[
γ −

N∑
λ=1

m∑
µ=1

× cλµ
(
γ1(Jαϕλµ)(b1) + γ2(Jα+1ϕλµ)(b2) + γ3(Jα+1−βϕλµ)(b3)

) ]
.

Note that both methods can also be used in the case equation (4.3) has
η1 = 0 and ηm = 1. We then have tjm = tj+1,1 = tj , cjm = cj+1,1 (j =
1, . . . , N −1), and hence in the systems (4.6) and (4.10) there are (m−1)N +1
equations and unknowns.

Math. Model. Anal., 22(5):654–670, 2017.
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5 Convergence estimates

In this section we study the convergence and convergence order of the proposed
Method 1 and Method 2. For this we need Lemmas 3–6 presented below. The
proofs of Lemmas 3–5 follow from the results of [8,28]. The proof of Lemma 6
can be found in [21].

We define an interpolation operator PN : C[0, b] → S
(−1)
m−1(ΠN ) for any

v ∈ C[0, b] by the following conditions:

PNv ∈ S(−1)
m−1(ΠN ), (PNv)(tjk) = v(tjk), k = 1, . . . ,m, j = 1, . . . , N. (5.1)

If η1 = 0, then by v(tj1) we denote the right limit limt→tj−1,t>tj−1
v(t). If

ηm = 1, then v(tjm) denotes the left limit limt→tj ,t<tj v(t).

Lemma 3. Let PN : C[0, b] → S
(−1)
m−1(ΠN ) (N ∈ N) be defined by (5.1).

Then PN ∈ L(C[0, b], L∞(0, b)) and the norms of PN are uniformly bounded:
‖PN‖L(C[0,b],L∞(0,b)) ≤ c, N ∈ N, with a positive constant c which is indepen-
dent of N . Moreover, for every y ∈ C[0, b] we have

‖y − PNy‖L∞(0,b) → 0 as N→∞.

Lemma 4. Let S : L∞(0, b) → C[0, b] be a linear compact operator. Let PN :

C[0, b]→ S
(−1)
m−1(ΠN ) (N ∈ N) be defined by (5.1). Then

‖S − PNS‖L(L∞(0,b),L∞(0,b)) → 0 as N→∞.

Lemma 5. Let y ∈ Cm,ν(0, b], m ∈ N, ν ∈ (0, 1). Let PN : C[0, b] →
S
(−1)
m−1(ΠN ) (N ∈ N) be defined by (5.1). Then

‖y − PNy‖∞ ≤ c
{
N−r(1−ν), for 1 ≤ r < m

1−ν ,

N−m, for r ≥ m
1−ν ,

where r ∈ [1,∞) is the grading exponent in (4.1) and c is a positive constant
not depending on N .

Lemma 6. Let y ∈ Cm+1,ν(0, b], m ∈ N, ν ∈ (0, 1). Let Jα (α ∈ (0, 1))
and PN (N ∈ N) be defined by (1.3) and (5.1), respectively. Assume that
the collocation points (4.2) with grid points (4.1) and parameters η1, . . . , ηm
satisfying (4.3) are used. Moreover, assume that η1, . . . , ηm are such that a
quadrature approximation∫ 1

0

F (x)dx ≈
m∑
k=1

wkF (ηk), 0 ≤ η1 < η2 < . . . < ηm ≤ 1 (5.2)

with appropriate weights {wk} is exact for all polynomials of degree m.
Then we have

‖Jα(y − PNy)‖∞ ≤ c
{
N−r(1+α−ν), for 1 ≤ r < m+α

1+α−ν ,

N−m−α, for r ≥ m+α
1+α−ν ,

where r ∈ [1,∞) is the grading exponent in (4.1) and c is a positive constant
not depending on N .



Two Collocation Methods for Fractional Differential Equations 663

Theorem 2. (i) Let the assumptions introduced in the part (i) of Theorem 1
be fulfilled. Moreover, let m ∈ N and assume that the collocation points (4.2)
with arbitrary parameters η1, . . . , ηm satisfying (4.3) and grid points (4.1) are
used.

Then problem (1.1)–(1.2) has a unique solution y ∈ C[0, b] such that Dα
∗ y ∈

C[0, b]. Moreover, there exists an integer N0 such that, for N ≥ N0, equations
(4.4) and (4.7) possess unique solutions yN and ȳN , respectively. We have for
y, the solution of (1.1)–(1.2), that

‖y − yN‖∞ → 0, ‖y − ȳN‖∞ → 0 as N →∞. (5.3)

(ii) Assume that (i) holds and let h, f ∈ Cm,µ(0, b], µ ∈ R, µ < 1. Then for
all N ≥ N0 the following error estimates hold:

max{‖y−yN‖∞, ‖y−ȳN‖∞} ≤ c
{
N−r(1−ν), for 1 ≤ r < m

1−ν ,

N−m, for r ≥ m
1−ν .

(5.4)

Here ν is defined by (3.1), r ∈ [1,∞) is the grid parameter in (4.1) and c is a
positive constant which does not depend on N .

Proof. We present the proof only for Method 1. In a similar way we can
construct the proof for Method 2.

(i) First we prove the convergence (5.3). Consider equation y = Tyy+gy (see
(2.3)), with Ty and gy given by (2.4) and (2.5), respectively. We already know
that equation y = Tyy+ gy is uniquely solvable in C[0, b]. We now show that it
is also uniquely solvable in L∞(0, b). Proceeding as in the proof of Theorem 1,
operator Ty can be rewritten in the form (3.2). It follows from Lemma 2 that
Jα, T1, T2 and T3 are compact operators from L∞(0, b) into C[0, b]. Therefore,
due to (3.2), operator Ty is compact as an operator from L∞(0, b) into C[0, b],
thus also from L∞(0, b) into L∞(0, b). Further, gy ∈ C[0, b] ⊂ L∞(0, b) and the
homogeneous equation y = Tyy has in C[0, b] only the trivial solution y = 0.
This together with Ty ∈ L(L∞(0, b), C[0, b]) yields that y = Tyy possesses also
in L∞(0, b) only the trivial solution y = 0. Consequently, by Fredholm alter-
native theorem, equation y = Tyy + gy with gy ∈ L∞(0, b) possesses a unique
solution y ∈ L∞(0, b). In other words, operator I − Ty is invertible in L∞(0, b)
and its inverse (I − Ty)−1 is bounded: (I − Ty)−1 ∈ L(L∞(0, b), L∞(0, b)).
Conditions (4.4) have an operator equation representation

yN = PNTyyN + PNgy (5.5)

with the interpolation operator PN defined in (5.1). Since Ty as operator
from L∞(0, b) into L∞(0, b) is compact, it follows from Lemma 4 and from the
boundedness of (I − Ty)−1 in L∞(0, b) that I − PNTy is invertible in L∞(0, b)
for all sufficiently large N , say N ≥ N0, and

‖(I − PNTy)−1‖L(L∞(0,b),L∞(0,b)) ≤ c, N ≥ N0, (5.6)

where c is a constant not depending on N . Thus, for N ≥ N0, equation (5.5)
provides a unique solution yN ∈ S−1m−1(ΠN ). We have for it and y, the solution
of equation y = Tyy + gy, that

(I − PNTy)(y − yN ) = y − PNy, N ≥ N0.

Math. Model. Anal., 22(5):654–670, 2017.
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Therefore, by (5.6),

‖y − yN‖∞ ≤ c ‖y − PNy‖∞ , N ≥ N0, (5.7)

where c is a positive constant not depending on N . This, together with y ∈
C[0, b] and Lemma 3, yields the convergence (5.3).

(ii) If h, f ∈ Cm,µ(0, b], m ∈ N, µ ∈ R, µ < 1, then it follows from the part
(ii) of Theorem 1 for q = m that y ∈ Cm,ν(0, b], with ν given by (3.1). This
together with (5.7) and Lemma 5 yields the estimate (5.4). ut

It follows from Theorem 2 that in the case of sufficiently smooth h and f ,
using sufficiently large values of the grid parameter r in (4.1), for both first and
second method by every choice of collocation parameters 0 ≤ η1 < · · · < ηm ≤ 1
a convergence of order O(N−m) can be expected.

The following result shows that by a careful choice of parameters η1, . . . , ηm
and with a slightly higher requirement for the smoothness of functions h and
f it is possible to establish a faster convergence rate for Method 2.

Theorem 3. Let m ∈ N and let the assumptions (ii) of Theorem 1 be fulfilled
with q := m + 1. Let PN (N ∈ N) be defined by (5.1). Assume that the collo-
cation points (4.2) with grid points (4.1) and parameters η1, . . . , ηm satisfying
0 ≤ η1 < · · · < ηm ≤ 1 are used in Method 2. Moreover, assume that η1, . . . , ηm
are such that a quadrature approximation (5.2) with appropriate weights {wk}
is exact for all polynomials of degree m.

Then problem (1.1)–(1.2) has a unique solution y ∈ C[0, b] such that Dα
∗ y ∈

Cm+1,ν(0, b]. There exists an integer N0 such that, for N ≥ N0, equation (4.8)

possesses a unique solution zN ∈ S
(−1)
m−1(ΠN ), determining by (4.7) a unique

approximation ȳN to y, the solution of (1.1)–(1.2), and the following error
estimate holds:

‖y − ȳN‖∞ ≤ c
{
N−r(1+α−ν), for 1 ≤ r < m+α

1+α−ν ,

N−m−α, for r ≥ m+α
1+α−ν .

(5.8)

Here ν is defined by (3.1), r ∈ [1,∞) is the grading exponent in (4.1) and c is
a positive constant not depending on N .

Proof. We follow the approach given in [25]. From Theorem 2 it follows that
problem (1.1)–(1.2) possesses a unique solution y ∈ Cq,ν(0, b] and thus equa-
tion (2.6) has a unique solution z = Dα

∗ y ∈ Cq,ν(0, b], where q = m + 1 and
ν = max{1 − α, µ}. We note that conditions (4.8) have an operator equation
representation

zN = PNTzzN + PNgz (5.9)

with the interpolation operator PN defined in (5.1). It follows from Theorem
2 that there exists an integer N1 > 0 such that for N ≥ N1 equation (5.9) has

a unique solution zN ∈ S(−1)
m−1(ΠN ). We denote

ẑN := TzzN + gz , N ≥ N1, (5.10)
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where Tz and gz are defined by (2.7) and (2.8), respectively. By substituting
zN = PN ẑN into (5.10) we see that ẑN is a solution of the equation

ẑN = TzPN ẑN + gz, N ≥ N1. (5.11)

It can be shown (see [25]) that there is an integer N0 ≥ N1 such that, for
N ≥ N0, equation (5.11) is uniquely solvable and that

(I − TzPN )(z − ẑN ) = Tz(z − PNz), N ≥ N0.

Therefore, we have

‖z − ẑN‖∞ ≤ c0‖Tz(z − PNz)‖∞ ≤ c1‖Jα(z − PNz)‖∞ + c2|Jα(z − PNz)(b1)|
+ c3|Jα+1(z − PNz)(b2)|+ c4|Jα+1−β(z − PNz)(b3)|

with some positive constants ci (i = 0, . . . , 4), which are independent of N . We
observe that

|Jα(z − PNz)(b1)| ≤ ‖Jα(z − PNz)‖∞, |Jα+1(z − PNz)(b2)|
≤ c1‖Jα(z−PNz)‖∞, |Jα+1−β(z−PNz)(b3)| ≤ c2‖Jα+1−β(z − PNz)‖∞,

for some positive constants c1 and c2, which are independent of N . Therefore,
since Jα ∈ L(L∞(0, b), C[0, b]) and Jα+1−β ∈ L(L∞(0, b), C[0, b]), we obtain
with the help of Lemma 6 for N ≥ N0 the following estimate:

‖z − ẑN‖∞ ≤ c0 ‖Jα(z − PNz)‖∞ + c1 ‖Jα+1−β(z − PNz)‖∞

≤ c2
{
N−r(1+α−ν), 1 ≤ r < m+α

1+α−ν ,

N−m−α, r ≥ m+α
1+α−ν ,

(5.12)

with some constants c0, c1 and c2 which are independent of N . Further, for
N ≥ N0 we have z − zN = (z − PNz) + PN (z − ẑN ), and thus, by (2.2) and
(4.7)

‖y − ȳN‖∞ ≤ c0‖Jα(z − zN )‖∞ ≤ c0‖Jα(z − PNz)‖∞ + c1 ‖z − ẑN‖∞,

where c0 and c1 are positive constants not depending on N . This together with
(5.12) and Lemma 6 yields the estimate (5.8). ut

6 Numerical illustration

Let us consider the following boundary value problem:

(D
1
3
∗ y)(t) + t

1
3 y(t) =

5Γ ( 29
12 )

8Γ ( 29
12 ) + 5Γ ( 5

3 )

(
1 + 2

Γ ( 2
3 )

Γ ( 1
3 )
t
1
3

)
, 0 ≤ t ≤ 1, (6.1)

y(0) + y(1) +

∫ 1

0

y(s)ds+

∫ 1

0

(D
1
4
∗ y)(s)ds = 1. (6.2)

This is a special problem of (1.1)–(1.2) with the parameters

α = 1/3, β = 1/4, b = 1, b1 = 1, b2 = 1, b3 = 1, γ0 = γ1 = γ2 = γ3 = γ = 1.
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The exact solution y(t) and its Caputo derivative z(t) := (D
1
3
∗ y)(t) are given

by the following formulas:

y(t) =
5Γ ( 29

12 )

8Γ ( 29
12 ) + 5Γ ( 5

3 )
t
2
3 , z(t) =

10Γ ( 29
12 )Γ ( 2

3 )

8Γ ( 29
12 )Γ ( 1

3 ) + 5Γ ( 5
3 )Γ ( 1

3 )
t
1
3 , 0 ≤ t ≤ 1.

Clearly, h, f ∈ Cq,µ(0, 1] with µ = 2
3 and arbitrary q ∈ N. Therefore, by (3.1),

ν = max{1 − α, µ} = 2/3. For a numerical comparison between Method 1
and Method 2 we find the approximate solutions yN and ȳN using collocation
points (4.2) with the collocation parameters

η1 = 1/3, η2 = 2/3 (m = 2) (6.3)

and Gauss points

η1 = (3−
√

3)/6, η2 = 1− η1 (m = 2). (6.4)

We point out that collocation parameters (6.4) satisfy the assumptions set in
Theorem 3, while collocation parameters (6.3) do not.

Table 1. Numerical results for problem (6.1)–(6.2) using Method 1, with collocation points
(6.3) and m = 2.

r = 1 r = 3 r = 6
N εN %N εN %N εN %N

8 2.12 · 10−2 1.592 2.46 · 10−3 3.887 6.45 · 10−3 3.899
16 1.34 · 10−2 1.586 6.10 · 10−4 4.036 1.55 · 10−3 4.173
32 8.45 · 10−3 1.585 1.50 · 10−4 4.068 3.95 · 10−4 3.912
64 5.33 · 10−3 1.585 3.69 · 10−5 4.065 9.89 · 10−5 3.999
128 3.36 · 10−3 1.586 9.10 · 10−6 4.055 2.44 · 10−5 4.058
256 2.12 · 10−3 1.586 2.25 · 10−6 4.044 5.98 · 10−6 4.076
512 1.34 · 10−3 1.587 5.58 · 10−7 4.035 1.47 · 10−6 4.076

1.260 2.000 4.000

In Tables 1 and 2 we display some results from numerical experiments for
Method 1 with different values of N and r. The results in Table 1 and Table 2
correspond to collocation parameters (6.3) and (6.4), respectively. Similarly,
in Tables 3 and 4 we display the numerical results for Method 2 with different
values of N and r, using collocation parameters (6.3) and (6.4). The errors εN
in Tables 1 and 2 and errors ε̄N in Tables 3 and 4 are calculated as follows:

εN := max
j=1,...,N

max
k=0,...,10

|y(τjk)− yN (τjk)|,

ε̄N := max
j=1,...,N

max
k=0,...,10

|y(τjk)− ȳN (τjk)| ,

where τjk := tj−1 + k(tj − tj−1)/10, k = 0, . . . , 10, j = 1, . . . , N , yN is the
approximation to y given by (4.4), ȳN is the approximation to y given by (4.8),
and the gridpoints tj are defined by (4.1). The ratios

%N := εN/2/εN , %̄N := ε̄N/2/ε̄N
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Table 2. Numerical results for problem (6.1)–(6.2) using Method 1, with Gauss collocation
points (6.4) and m = 2.

r = 1 r = 3 r = 6
N εN %N εN %N εN %N

8 1.83 · 10−2 1.579 1.70 · 10−3 3.942 4.56 · 10−3 3.976
16 1.16 · 10−2 1.581 4.19 · 10−4 4.051 1.13 · 10−3 4.029
32 7.33 · 10−3 1.583 1.03 · 10−4 4.073 2.95 · 10−4 3.829
64 4.62 · 10−3 1.584 2.53 · 10−5 4.068 7.43 · 10−5 3.976
128 2.92 · 10−3 1.585 6.24 · 10−6 4.056 1.84 · 10−5 4.037
256 1.84 · 10−3 1.586 1.54 · 10−6 4.045 4.54 · 10−6 4.058
512 1.16 · 10−3 1.587 3.82 · 10−7 4.036 1.12 · 10−6 4.061

1.260 2.000 4.000

Table 3. Numerical results for problem (6.1)–(6.2) using Method 2, with collocation points
(6.3) and m = 2.

r = 1 r = 3 r = 6
N ε̄N %̄N ε̄N %̄N ε̄N %̄N

8 6.78 · 10−3 1.417 8.56 · 10−4 4.071 2.68 · 10−3 3.449
16 4.57 · 10−3 1.483 2.01 · 10−4 4.253 6.61 · 10−4 4.050
32 3.01 · 10−3 1.522 4.70 · 10−5 4.278 1.55 · 10−4 4.267
64 1.94 · 10−3 1.546 1.11 · 10−5 4.254 3.59 · 10−5 4.318
128 1.25 · 10−3 1.561 2.62 · 10−6 4.216 8.34 · 10−6 4.304
256 7.93 · 10−4 1.571 6.28 · 10−7 4.178 1.95 · 10−6 4.266
512 5.03 · 10−4 1.577 1.51 · 10−7 4.144 4.63 · 10−7 4.224

1.260 2.000 4.000

Table 4. Numerical results for problem (6.1)–(6.2) using Method 2, with Gauss collocation
points (6.4) and m = 2.

r = 1 r = 3 r = 6
N ε̄N %̄N ε̄N %̄N ε̄N %̄N

8 5.60 · 10−3 1.503 4.77 · 10−4 4.075 1.46 · 10−3 3.726
16 3.65 · 10−3 1.536 1.11 · 10−4 4.287 3.22 · 10−4 4.530
32 2.35 · 10−3 1.555 2.79 · 10−5 3.998 6.65 · 10−5 4.850
64 1.50 · 10−3 1.567 7.43 · 10−6 3.749 1.34 · 10−5 4.978
128 9.51 · 10−4 1.574 1.95 · 10−6 3.813 2.65 · 10−6 5.030
256 6.02 · 10−4 1.579 5.05 · 10−7 3.860 5.26 · 10−7 5.050
512 3.81 · 10−4 1.582 1.30 · 10−7 3.894 1.04 · 10−7 5.058

1.587 4.000 5.040
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characterizing the observed convergence rate, are also presented.

In the case of collocation points (6.3), it follows from (5.4) with α = 1
3 and

ν = 2
3 that, for sufficiently large N ,

max{εN , ε̄N} ≤ c0
{
N−

1
3 r, if 1 ≤ r < 6,

N−2, if r ≥ 6,
(6.5)

where c0 is a positive constant not depending on N . Due to (6.5), the ratios

%N and %̄N for r = 1, r = 3 and r ≥ 6 ought to be approximatively 2
1
3 ≈ 1.26,

21 = 2 and 22 = 4, respectively. These values are given in the last row of
Table 1, Table 2 and Table 3. As the results show, for both methods the
collocation points (6.3) are in agreement with the theoretical estimates given
by Theorem 2. Actually, we can see that for small values of r the actual
convergence rate is faster.

In the case of collocation points (6.4), it follows from the estimates in (5.8)
of Theorem 3 with α = 1

3 and ν = 2
3 that, for sufficiently large N ,

ε̄N ≤ c0
{
N−

2
3 r, if 1 ≤ r < 7

2 ,

N−
7
3 , if r ≥ 7

2 ,
(6.6)

where c0 is a positive constant not depending on N . Due to (6.6), the ratios

%̄N for r = 1, r = 3 and r ≥ 6 ought to be approximatively 2
2
3 ≈ 1.58, 22 = 4

and 2
7
3 ≈ 5.04, respectively. These values are given in the last row of Table 4.

As we can see, the numerical results are in good agreement with theoretical
estimates. We note that only for Method 2 a global super-convergence for
special collocation parameters has been observed. Moreover, it follows from
Table 4 that, in general, the attainable order of global convergence of Method
2 on the conditions of Theorem 3 cannot be improved. Finally, from Tables 1–
3 we see that for problem (6.1)–(6.2) the actual convergence rate with small
values of r for both methods is better than the theoretical convergence rate
given by Theorem 2.

Conclusions

In the present work we have studied a class of non-local boundary value prob-
lems for linear fractional differential equations involving Caputo-type fractional
derivatives. Using two different integral equation reformulations of the bound-
ary value problem, the existence and regularity of the exact solution has been
investigated. With the help of the obtained integral equations, we have con-
structed two numerical schemes which are based on collocation techniques and
graded grids. We have studied the attainable order of prepared algorithms and
shown the convergence of these schemes. In particular, we have shown that by
using specific collocation parameters and graded grids, one method attains a
global super-convergence rate.
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