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ABSTRACT
Digital sound synthesizers, ubiquitous today in sound cards, software and dedicated hardware,
use algorithms (Sound Synthesis Techniques, SSTs) capable of generating sounds similar to those
of acoustic instruments and even totally novel sounds.
The design of SSTs is a very hard problem. It is usually assumed that it requires human ingenuity
to design an algorithm suitable for synthesizing a sound with certain characteristics. Many of the
SSTs commonly used are the fruit of experimentation and a long refinement processes.
A SST is determined by its "functional form" and "internal parameters". Design of SSTs is
usually done by selecting a fixed functional form from a handful of commonly used SSTs, and
performing a parameter estimation technique to find a set of internal parameters that will best
emulate the target sound.
A new approach for automating the design of SSTs is proposed. It uses a set of examples of the
desired behavior of the SST in the form of "inputs + target sound". The approach is capable of
suggesting novel functional forms and their internal parameters, suited to follow closely the given
examples.
Design of a SST is stated as a search problem in the SST space (the space spanned by all the
possible valid functional forms and internal parameters, within certain limits to make it practical).
This search is done using evolutionary methods; specifically, Genetic Programming (GP). A
custom language for representing and manipulating SSTs as topology graphs and expression trees
is proposed, as well as the mapping rules between both representations. Fitness functions that use
analytical and perceptual distance metrics between the target and produced sounds are discussed.
The AGeSS system (Automatic Generation of Sound Synthesizers) developed in the Media Lab is
outlined, and some SSTs and their evolution are shown.
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Automatic Generation of Sound Synthesis Techniques

1 INTRODUCTION

1.1 CONTRIBUTIONS
This thesis describes the concepts needed to develop an approach for automating the design of
Sound Synthesis Techniques (SSTs). Key ideas introduced with this research include:

A custom developmental representation of a Sound Synthesis Technique: Sound synthesis
Techniques are usually represented as topology graphs (cyclic graphs). A mapping from an
expression tree (acyclic graph) that encodes the "development" of an embryonic topology is
proposed and used. This representation allows easy management and manipulation of SSTs,
especially when used in conjunction with evolutionary methods.

Design as a search in the SST space: The space spanned by all the possible functional forms
and internal parameters for SSTs is introduced. Design is treated as a search in the SST space.

Evolutionary methods to search the SST space: The advantage of using evolutionary methods
to search the SST space is analyzed. A Genetic Programming technique is outlined and used as
the core search method in the developed system.

Analytical and perceptual fitness Functions: The performance of suggested SSTs is measured
using custom fitness functions. Two analytical and one perceptual fitness function are suggested
and used.

Automatic Generation of Sound Synthesizers (AGeSS) system: A set of computer programs
and scripts termed AGeSS was developed to show an empirical proof of the concepts introduced
in this research. Different experiments and their results are outlined.

1.2 MOTIVATION
In a very general sense, a sound synthesizer is regarded as any device capable of producing
sound. Digital computers can be used to produce digital sound samples using digital to analog
converters (DAC). In electronic music parlance, a digital sound synthesizer is an algorithm
implemented in a digital computer, with the goal of producing digital sound samples
(waveforms). These algorithms for sound generation are termed Sound Synthesis Techniques
(SSTs).

An SST can be decomposed into a functional form and internal parameters. The functional form
describes the relationship between the functions and elements in the algorithm, while the internal
parameters are variables that take a particular value at the moment of implementation of the
algorithm (depending on the desired behavior). SSTs are usually represented using instruction
lists or topology graphs (flow diagrams). "Classic" SSTs are a set of algorithms that have been
used through the years in digital and analog synthesizers for emulating the sound of classical
instruments, or to create totally novel sounds. Some of them have been studied in depth by
researchers and musicians.
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Design of a SST is customarily limited to the selection of a functional form from a set of
algorithms (i.e. "classic" SSTs) followed by application of a mathematical technique for
estimation of the internal parameters to match a target sound. The design of SSTs, more
specifically their functional form, is a very hard problem. It is usually assumed that it requires
human ingenuity to design an algorithm suitable for synthesizing sound with certain
characteristics. Many of the SSTs commonly used are the fruit of experimentation and a long
refinement processes.

The design of a SST is driven by the design specifications. They usually include a desired
configuration for the number and type of inputs, some kind of error metric to measure the
performance of the SST, and some implementation considerations (i.e. complexity of the
algorithm). One of the most important aspects in design of a SST is the number and type of
inputs. Some SST algorithms perform well in theory, but require a high amount of control
information that makes them not very practical. Also, the meaning of the inputs plays an
important role when using a SST. It makes more sense to use inputs related to "real world"
parameters like brightness, or depth, than more obscure and difficult to understand parameters.

Our goal is to propose a general approach capable of suggesting valid functional forms and
internal parameters for a SST to synthesize a target sound, using a known set of inputs (time
varying signals). This problem is related to the system identification, or symbolic regression
problem stated in control theory. The inputs and outputs of the system are known, but the system
is unknown.

1.3 BACKGROUND AND RELATED WORK
Horner et al. (Horner, Beauchamp et al. 1993) proposed an approach for automating the internal
parameter estimation of FM synthesizers using evolutionary methods, in particular Genetic
Algorithms (GA). Before this approach, the selection of parameters for FM synthesizers was
usually realized by trial and error, using some analysis methods to compare (by a human) the
sounds produced by the synthesizer and the target. The goal of the algorithm is to find parameters
for a fixed functional form synthesis technique (single modulator, multiple carriers FM synthesis)
to match the spectrum of a target sound with harmonic partials. The search for the parameters was
done using a genetic algorithm, that represented them as a fixed length bitstring, and using
genetic operations it was possible to explore the parameter-space of the problem.
A fitness metric that calculated the Least Squared error between the magnitude spectrums of the
output and target sounds was used. This measure was performed in selected frames across the
duration of the sound, usually with more frames in the attack section.

This research is of relevance to us in indicating the possibilities of using evolutionary methods for
exploring complex spaces; more specifically, sound spaces. The fitness metric proposed is also of
interest for us. It was the original fitness function used in the first stages of our research. Also,
this study shows in an indirect way the limitations when using a single functional-form when
designing SSTs.

Johnson (Johnson 1999) proposed an interesting approach to use evolutionary methods and
human listeners in an interactive system to explore the parameter space of (Fonction d'Onde
Formantique) FOF synthesis. In his research, he proposes an interactive interface that lets the
1 A



Automatic Generation of Sound Synthesis Techniques

user select the "best" synthesizers from a population, and the system "proposes" new individuals
for the next population. This approach proved to be efficient for problems involving the
estimation of many complex parameters (FOF synthesis has many non-intuitive parameters to
explore).

Wehn (Wehn 1998) has an approach that includes part of the functional form of the synthesis
techniques in the search space. His approach describes a set of basic functional elements (noise,
sinusoid, filter) and a connection matrix that 'will ultimately outline the functional form of the
synthesizers. The fitness function is similar to the one used by Homer. A GA is used to explore
the connections and their weights between elements. In part, the goals of When's research are
shared with our research, but the methodology is very different. The representation of the
problems is the main difference, followed by the type of manipulations done to the individuals
and the usage of the fitness functions.

1.4 APPROACH
For us, the space of the SSTs is defined as the space of all the possible combinations of a given
set of functional elements and their connections. Design of a SST is regarded as a search in the
SST space. The goal is to "find" a point in the SST space that minimizes the error in the fitness
function, and therefore, satisfies the specifications of design. Points in the SST space define a
functional form and internal parameters for a specific SST.

The search in this space is performed using a class of evolutionary computation method called
Genetic Programming (GP). GP has shown outstanding empirical performance in searching
complex multidimensional spaces (Koza 1992; Koza 1994; Koza 1999).

Custom SST representations in the form of topology graphs and expression trees are developed
along with their required mapping rules. Topology graphs are the most widely used representation
for SST, but they are difficult to manipulate. Expression trees facilitate the level of manipulation
required to use GP for exploring the SST space.

Different types of fitness functions are analyzed, and a perceptual fitness function is proposed to
guide the search in the SST space.

An implementation of the approach called AGeSS (Automatic Generation of Sound Synthesizers)
is outlined. The main software elements and their relationships are described. Experiments with
AGeSS and their results are explained.
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2 SOUND SYNTHESIS TECHNIQUES (SST)

2.1 SOUND SYNTHESIS
In the most general terms, to synthesize a sound is to produce a sound using artificial means.
When speaking in the context of electronic music and sound production, a sound synthesizer is
usually regarded as an electromechanical device capable of producing sound in a controlled
manner. The most generic device capable of doing this is a loudspeaker connected to an amplifier
and a sound source. In the early days, sound synthesizers were comprised of analog electronic
circuits that exchanged voltage and current signals between filters, amplifiers, oscillators and
other simple (but powerful) components. Even though analog synthesizers could emulate just
partially the sound of classic acoustic instruments, artists have used their distinctive sound in very
creative ways (Roads 1994).

In more recent years, with the advent of inexpensive and ubiquitous digital computers, a whole
new trend of digital music synthesizers has flourished. A digital computer can manipulate sound
in the form of "sound samples". Sound is sampled into digital form using an Analog to Digital
Converter (ADC), and converted back to analog audio using a Digital to Analog Converter
(DAC). This process (sampling) creates a stream of digital audio samples (waveform) that can be
modified using computer programs.

2.1.1 Algorithms
"A procedure consisting of a finite set of unambiguous rules, which specify a finite sequence of
operations that provides the solution to a problem, or to a specific class of problems, is called an
algorithm" (Kronsju 1987). Algorithms (or techniques) are usually implemented as computer
programs in digital computers. With all this in mind, it is straightforward to define a Sound
Synthesis Technique (SST) as: "a step-by-step set of instructions designed to produce sound
samples."

2.1.2 Functionalform and internal parameters:
The functional form (structure) of an algorithm is defined by the characteristic relationship
between its constitutive functional elements. The internal parameters are the numbers that could
take a different value for a specific implementation of an algorithm, but their change doesn't alter
the functional form of the algorithm. This can be better seen with one example. In the simple
relation:

y = 2sin(x)+0.5 (1)

The functional form is given by y = Asin(x) + B, and the internal parameters are A and B, that

in the particular example have the value of 2 and 0.5 respectively.
Usually, the functional form of an algorithm is specified at design time, but the internal
parameters are left to be specified at implementation time with values that will fulfill the
requirements of the particular problem. During this research, the term SST will refer mainly to
the actual functional form of the algorithm, without concern about whether or not the value of the
internal parameters is known.
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2.1.3 Inputs and outputs:
Every meaningful algorithm has zero or more inputs and one or more outputs. The inputs are
defined as known quantities that are given to the algorithm, and the outputs are quantities that are
computed when executing it. For the particular case of SSTs, the outputs are usually in the form
of digital sound samples. Inputs of SST are divided in these two types:

- Static: Fed into the algorithm at initialization time, and kept unaltered during the
operation of the SST. Internal parameters will be treat as part of the input given to a SST.

- Time varying: Change their value during the execution of the SST. Usually called control
signals.

One of the biggest challenges in the field of sound synthesis is to devise SSTs where the inputs
are related to "real world" parameters, and have an intuitive meaning of their function (and
effects) in the operation of an SST.

INPUTS OUTPUT

Static

SST
Time . target
Varying 7] j

Figure 1 Inputs (static and time varying) and outputs (target) for a SST

2.2 LANGUAGE AND REPRESENTATION
Algorithms are meant to be conceptually transparent to humans until translated into a format that
can be understood by a machine for execution. It is assumed that human-level abstractions are
"easy" for manipulation by humans, and later, can be implemented easily on a machine. That is,
the language for an algorithm that a human designs is intuitive for humans.

An algorithm language must express functional form and functional elements. It is composed of
primitive elements that isolate levels of detail away from the actual user. These primitive
elements can be combined to create compound and hierarchical representations of functional form
and functional elements. In choosing (or creating) a language, one has to draw a line demarking
primitive elements and hidden details from higher level composable elements, while
understanding that this line influences the nature of the functional form and functional elements
in an algorithm. Later in this chapter we will analyze some functional form and functional
elements used in several SSTs and propose a set of "general functional elements" that could be
used in the design and description of SSTs.

2.2.1 Instruction list (pseudocode) and formulas:
The definition of algorithm suggests that it can be represented as an ordered list of instructions. It
is important to remember that each instruction should have a defined meaning (an specific action
associated with it). If the instructions are in plain written English, the representation is usually
called "pseudocode" (Juliff 1986). If the instructions are in a computer language it is called
10
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"source code", and they have to be pass thru a "compiler" that will translate them into a computer
program that can be run in a digital computer. Mathematical formulas are special cases of this
type of representation. They express a step-by-step procedure that can be unambiguously
evaluated to get an answer. This is a highly symbolic representation, but the meaning of each
element and the rules of evaluation are defined beforehand as mathematical operations.
In example, the formula of equation ( 1 ) can be expressed with the instruction list:

evaluate sin(x)
assign result to P
evaluate 2*P
assign result to Q
evaluate Q+0.5
assign result to Y
output Y

Often, the evaluation rules for formulas are not completely specified, making some evaluations
ambiguous. In the previous example, the formula doesn't specify the evaluation order of the two
addends; but this is completely specified in the instruction list.

2.2.2 Topology graph (flow diagram):
Graphic representations of algorithms are always an invaluable tool for representing them. They
are easy to manipulate and present a lot of information in a compact way. One of their strongest
assets is that the relationship between elements is clearly shown. The functional elements are
represented by boxes, and the data flow (execution order) is represented by directed arrows
connecting the boxes.

0.5 - Y

X --- sin( )X

2
Figure 2 Flow diagram (topology graph) for equation ( 1)

Flow diagrams are often called topology graphs in the sound synthesis world, and we will employ
this terminology from now on. The reason is because in the early days, the sound synthesizers
were implemented with physical devices interconnected using patch cords, and their
configuration was recorded as a "topology" or "patch". An advantage is that the topographical
distribution of functional elements and their connections offers an intuitive approach for working
with SSTs.
In this document, the term SST and topology would refer to the same concept and they could be
used interchangeably.

1 O
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2.2.3 Equivalence in representations:
The above two types of algorithm representations are equivalent: they are simply different
schemes to represent the same information. Any algorithm expressed in terms of one can be
mapped to the other without lost of information.
The manipulations that are possible in one representation have their equivalent counterparts in the
other representations, but usually some manipulations are easier to perform in one of them.

2.3 "CLASSIC" SOUND SYNTHESIS TECHNIQUES:
So far we have established that SSTs are algorithms that produce sound samples, implemented in
digital computers, and are represented by instruction lists, formulas or topology graphs. Now, we
can focus on more detail in the functional elements that compose a SST. A good starting point is
to analyze the termed classic SST. They are a set of techniques that have been used in the
computer music field for many years, and some of them studied in depth by researchers and
musicians.

It is important to be clear about the intentions with this analysis: the goal is to describe the
functional form of each SST family and the main functional elements that compose them. The
suggested taxonomy tries to organize them in families that share functional forms and functional
elements. The goal is not at any time to make an exhaustive bibliographical research in the
theory, uses and implementation of the mentioned SSTs, neither to have a comprehensive
taxonomy with all the SSTs available in the literature.
The analyzed SSTs are not usually used in isolation. Commercial (practical) sound synthesizers
employ a mixture of these techniques to improve the sound quality and performance. For a more
complete taxonomy and explanation on the SST it is useful to read (Depoli 1983; Roads 1994;
Boulanger 2000).

Some concepts that should be explained before the proposed taxonomy are:
Sound source: an object or functional element that "produces" a sound output.
Digital oscillator: a particular type of source that creates an output that repeats itself over time
(oscillates). The origin of the sound samples in an oscillator can come from a mathematical
formula that is evaluated every time that an output is needed, or from reading a wavetable stored
in memory.
Wavetable oscillator: this is the most common way of implementing a digital oscillator. A
wavetable with the desired output values is stored in memory. The process of reading it is called
"indexing", and involves knowledge about what was the previous sample index read, and the
"update" for the next index to be read. The indexing update can change over time.
Digital filter: a particular operation on a waveform that alters the magnitude of the frequencies
present in the input.

The following SSTs are described using topology graphs, and mathematical formulas when
possible.
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2.3.1 Additive techniques:
Any method that synthesizes sound by adding different sound source objects together can be
considered under the category of additive synthesis. There are three main aspects that help to
differentiate the many types of additive synthesis methods: type of objects to add, role and type of
inputs/internal parameters and finally, the analysis technique used to derive the actual objects and
the internal parameters.

inputs 1 object 1

inputs 2 object 2 output

0
0

inputs n object n

Figure 3 General Additive synthesis

2.3.1.1 Fourier:

One of the most important and used tools in sound synthesis comes from the so called Fourier
Transform (Oppenheim, Schafer et al. 1999). The Fourier transform states that any sequence
(digital sound samples in our case) can be fully represented as a superposition of infinitesimally
small complex sinusoids of different frequency, amplitude and phase. The synthesis formula for
the Fourier transform is given by:

x[n] = 1f" X (e' j)e'dW (2)
2)7 -"

where the X (e ") are complex coefficients that state magnitude and phase for the corresponding

sinusoid of frequency (o. This synthesis formula can be represented by a topology graph as
shown in Figure 4.
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Figure 4 Fourier Synthesis. Additive synthesis with fixed frequency sinusoidal oscillators.

The sound sources are sinusoidal oscillators with fixed frequency and phase. The amplitude of the
oscillators is usually varied over time to simulate the varying characteristics of the spectra of real
acoustic instruments.
The importance of Fourier synthesis/analysis is related with the fact that there are very efficient
tools (mathematically and computationally) to realize direct and inverse Fourier transformations.

The types of functional elements present in Fourier synthesis are:
e Sinusoidal oscillators with variable amplitude and fixed phase and frequency
* Addition
* Multiplication

2.3.1.2 Peak Tracking and Spectral Modeling Synthesis:
Unlike Fourier analysis where the goal is to represent a time signal with fixed frequency
sinusoids, peak tracking finds a representation of a signal as the sum of sinusoids that vary their
amplitude and frequency over time. The synthesis formula is very similar to Fourier synthesis, but
the sinusoids are allowed to change their frequency over time. Usually, the number of sinusoids
required to represent a given signal is significantly lower than in Fourier synthesis.

s(t)= I Ar(t)cos(,(t)) (3)
r=1

A variant of peak tracking called Spectral Modeling Synthesis (SMS) (Serra and Smith 1990),
includes some components that are difficult to express as a sum of sinusoids. This approach
represents a signal as a sum of sinusoids that vary their amplitude and frequency over time, plus a
time-varying stochastic component (noise).

s(t) = $A,(t)cos(O(t))+e(t) (4)
r=1
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These types of synthesis can be represented by the topology graph:
A1(t)

Figure 5 Peak tracking and SMS synthesis

The types of functional elements present in peak tracking and SMS techniques are:
e Sinusoidal oscillators with variable amplitude, frequency, initial phase.
" Addition
e Multiplication
e Stochastic signal (noise generator) (SMS)
e Time varying filter (to shape the noise) (SMS)

2.3.1.3 Sampling, Multiple wavetable, wavestacking:

Sound sources have been so far represented as simple oscillators (sinusoids) with fixed or
variable frequency, amplitude and phase. A source can be thought as a function that returns a
value every time that is executed. This value is usually calculated in one of two ways: evaluating
a mathematical function (i.e. sin(x)) or by reading from a table stored in memory (usually called
wavetable)

-Sampling
The process of recording a sound into a waveform is termed Sampling. As a synthesis technique,
sampling reproduces the waveform stored in memory using a source that reads a wavetable. This
source can be implemented as a wavetable oscillator that reads the wavetable just one loop. An
advantage of sampling is that it can reproduce "any" waveform, as long as it is stored in memory.

A(t)

index(t) --- pX output

Figure 6 Sampling as a controlled reading from a wavetable
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-Wavestacking
This technique is built on the concept of sampling, but relies on the addition of multiple
waveforms to form the final output. For our purpose it can be regarded as a similar method to
Fourier synthesis, but having sources with waveforms of different types (not just sinusoids).

- Multiple wavetable

The idea here is to have "chunks" of sound that play in succession one after the other. To achieve
this effect the amplitude of several sources is cross-faded to allow just one wavetable to be played
at a given time.

Ai(t)

index1(t) a wavetable 1

A2(t)

index2(t) X +wavetable 2

Anex(t)

index~t) M wavetable n

Figure 7 Multiple wavetable, wavestacking and ICA. Multiple Wavetable simply adds together
different wavetables. Wavestacking incorporates more complex time envelopes. In ICA, each
wavetable was extracted from an optimization procedure that separated a waveform in several
"independent" components.

-Independent Component Analysis ICA:
Several mathematical analysis tools aim to decompose a sound in elements that can be added,
multiplied or used to re-create the original sound (or a close approximation). From all these tools,
ICA is one of the most commonly used (Casey 1998). Its most attractive feature is that it can
decompose a sound in statistically "independent" components (this translates perceptually as
elements "belonging together"). These components can be added together to form the
reconstructed sound. It is possible to modify some aspects of some of the components in ways
that preserve the structure of the original sound.
ICA synthesis is a straightforward additive synthesis, using the "objects" that were found in the
analysis stage as sources in the wavestacking method. The analysis for ICA requires an iterative
optimization process that can lead to diverse results.
Equation ( 5 ) shows a signal X formed by the additive sum of some independent components Zi
and some noise components y .
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X z+ y'i 
(5)

i=1 j=1

The main types of functional elements present in additive synthesis techniques are:
* Wavetable oscillators: Instead of a sinusoidal oscillator, these read from a wavetable with

"any" waveform stored in memory.
" Addition
" Multiplication.

2.3.2 Subtractive Methods:
The previous methods used addition of "simple" waveforms to form the desired sound.
Subtractive synthesis uses the opposite principle: it creates a very complex sound, and removes
unwanted elements from it. It makes heavy use of digital filters to shape the frequency content of
a complex source signal (usually rich in frequencies). The frequency response of the filters is
selected to match the spectrum of the desired sound, and the source is driven to generate a rich
spectrum. The types of sound sources found in Subtractive Synthesis techniques have the special
characteristic that produce complex waveforms rich in frequencies. Subtractive Synthesis usually
follows the source + filter model. The filters that are proposed are linear, and quite simple in the
case of the vocoder, and more complex (more poles/zeros) in the LPC case, but they can be
decomposed into a system of simple filters in series or parallel (Oppenheim, Schafer et al. 1999).

2.3.2.1 Vocoders:

A bank of narrow band-pass filters (distributed along the frequency axis) is excited with a
broadband signal (i.e. white noise, a square wave, a train of pulses, etc). The gain value in each
filter is controlled and varied over time. With the right set of parameters this gives a very good
approximation of the spectrum of the desired signal (Rabiner and Schafer 1978).

A(t)
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Figure 8 Simple vocoder. A source signal (rich in frequencies) is filtered by controlled bandpass
filters.

2.3.2.2 Linear Predictive Coding (LPC)) synthesis

LPC implements a vocoder but replaces the narrow band-pass filter bank with a single and more
complex filter that approximates the frequency response of some instrument (usually human
voice, or an instrument with resonant cavities). The coefficients of this filter vary over time, and
are updated to follow the changes in the spectrum of the original instrument. The types of sound
sources employed to excite it vary from a pitched pulse train, to broadband noise (Rabiner and
Schafer 1978)

source 1 coefficients
f -- pulse train

Complex
Filter

source 2
noise

Figure 9 LPC synthesizer. Two types of sources can fed a complex filter, whose coefficients vary over
time.

The main types of functional elements present in subtractive synthesis techniques are:
e Time varying sound sources: sometimes complex waveforms stored in a wavetable

source.
* Filters: From simple narrowband filters with controlled gain, to more complex filters with

coefficients that vary over time.
* Addition.
* Multiplication.

2.3.3 Modulation Methods:
Any property of a SST that can be varied over time is regarded as a modulation. In classic
techniques, modulation has been used mainly to change amplitude, frequency or phase of a
simple oscillator, with the objective of creating a rich and complex set of frequencies that vary
over time. Most of the architecture of the modulation methods involves two (or more)
controllable oscillators (usually with sinusoidal waveforms, but other simple waveforms are
common: square, triangular, sawtooth).

2.3.3.1 Amplitude Modulation (AM) and Ring Modulation (RM):

As its name indicates, Amplitude Modulation modulates the amplitude of an oscillator with an
unipolar time varying signal. Ring Modulation uses the same architecture, but the modulating
signal used is bipolar.

114
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s(t) = A(t)sin(#)

with: A(t) 0 (unip

A(t) (bipc

(6)

olar) Amplitude Modulation (AM)

olar) Ring Modulation (RM)

A(t)

control

Figure 10 Amplitude and Ring Modulations (AMIRM)

2.3.3.2 Frequency Modulation (FM):

The frequency of an oscillator varies as a function of time. This synthesis technique (and its
variants) have been deeply explored. Summaries of these can be found in (Roads 1994;
Boulanger 2000).

s(t) = A sin(C(t) + I sin(M (t))) (7)

M(t) sink) "'

C(t)

Figure 11 Frequency Modulation (FM) synthesis. One of the most used synthesis methods

FM has proved to be a very powerful (and computationally inexpensive) method for creating
complex waveforms that offer very simple but meaningful controls.

2.3.3.3 Waveshaping:

This method uses a wavetable oscillator to control another wavetable oscillator. If both
wavetables are sinusoids, this reduces to simple FM, but the more complex the wavetables, the
more complex the produced sounds.

index,(t) - - - -
wavetable 1 index2(t) wavetable 1 output

Figure 12 Waveshaping: controlled wavetable oscillators in series. Generalization of modulation
techniques.

Waveshaping can include also a non-linear function instead of a wavetable module.
The main types of functional elements found in Modulation Synthesis techniques are:

')7
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* Simple wavetable oscillators (with simple waveforms like sinusoidal, square, etc) in
series or parallel.

* Controlled wavetable oscillators (allow control of the way the wavetable is accessed).
* Non-linear function
* Addition
e Multiplication

2.3.4 Physical Modeling:
Physical models are mathematical models that describe the behavior of physical systems. They
are used to model the behavior of the air and some mechanical elements in acoustic systems.
Because of the vast field of mathematical modeling, it is not feasible to encapsulate all the
possible models under one category, but it is possible to outline some of the most common
techniques and tools.

2.3.4.1 Waveguides:

Waveguides are based on the solution of the wave equation, that describes the behavior of a wave
in a given medium. Their implementation usually involves a delay line that simulates the
transmission and reflection of a wave in a given direction of a medium.
A very basic waveguide instrument, Karplus-Strong model (Boulanger 2000), is implemented
using a delay line, filters and feedback.

... delay -- > filter F_
input routput

Figure 13 Generic Karplus-Strong string physical model.

2.3.4.2 Difference equations:

Physical systems are often described using differential equations, that ultimately describe the
relationship between the inputs and outputs of a system. Symbolic solution of many of these
equations is often very expensive computationally, not general enough, or simply not possible.
Numerical methods based on difference equations give an accurate approximation of the behavior
of these systems. Vibrating objects and their interaction are represented by a set of difference
equations that are evaluated to produce sound samples. (Roads 1994). Difference equations are
commonly used in fields like model analysis and signal processing. A common class of systems
analyzed using difference equations are the Linear-Time Invariant systems where the input x(n)
and the output y(n) satisfy a linear constant-coefficient difference equation of order N.

N M (8)
1 ak y[n-k]= Eb 1x[n-m]
k=O m=O
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Vast amounts of research in the analysis and use of these types of systems has been done
(Oppenheim, Schafer et al. 1999). A first order system described by a simple difference equation
is shown in equation ( 9 ) and Figure 14.

y[n] = 2y[n -1] + x[n] - 3x[n -1] (9)

-ydelay X -3

x[n] *+ 0 y[n]

2X delayH

Figure 14 First order difference equation depicted as a topology graph.

The most common functional elements found in physical modeling are:
* Delay by one sample (multiple samples delays are done using several one-sample

delays).
" Addition
* Multiplication

2.3.5 Summary offunctional elements
This is a list of the main types of functional elements found in our taxonomy:

e Sinusoidal oscillators (variable amplitude, frequency, phase over time)
* Wavetable oscillator (variable amplitude, read index)
* Delay (memory) for one or more samples
* Controlled gain filter
" Noise generator
" Time varying filters (coefficients can change over time)
" Addition
" Multiplication
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3 DESIGN OF SOUND SYNTHESIS TECHNIQUES

3.1 DESIGN:
Lets us define the design of an algorithm as "the process that conceives the structural form and
internal parameters of an algorithm, capable of producing a desired set of outputs, using a
known set of inputs". For SSTs, which are algorithms for audio synthesis, the outputs are usually
in the form of digital sound samples (waveforms), and the inputs in the form of time varying
control signals and static parameters.

3.1.1 Specifications of design for SSTs:
Different elements should be specified when designing a new SST. The final design has to follow
strictly some of them but it can have more error tolerance than some others.

3.1.2 Inputs
The type and number of inputs essential. The number and type of inputs can be given as part of
the design specifications (i.e. the SST is a sub-module from a bigger design). The inputs to a SST
can be of many types, but they are usually classified in two main groups: static parameters
(updated at initialization time) and control signals (time varying signals that change their value
during the evaluation of the algorithm).

One of the goals of SST design is to conceive algorithms where the inputs have "meaning" for the
users. If a musician is using a SST that simulates the sound of a piano, it makes sense to have
inputs that relate to the control of the "brightness" of the sound, the weight of the keys, or other
piano-related variables that are present in the real world.

3.1.3 Outputs (TARGET)
For SSTs, the type of output is usually a sequence of digital audio samples (waveform), but other
types of outputs could be easily specified if needed. The desired output is called TARGET, while
the obtained output from any stage during the design is simply called output.

3.1.4 Error metric
All design processes need to measure the difference between desired and obtained results. In SST
design the error is measured between the output and target waveforms in a given design. The
error is usually measured using an error function, also called fitness function during this paper.
This function computes some kind of "distance metric" between both waveforms and returns a
value related to this distance. Because is a distance metric, it has the convention of being zero if
both waveforms are identical, and a number greater than zero if they differ.
Human hearing is far from perfect, and it has been shown that very different waveforms (in a
sample by sample sense) could sound "identical" or "similar" for a majority of listeners.

This redundancy can be exploited in the fitness function, and allow some "non perceived error" to
be present in the output. In a future section we will discuss in detail some proposed fitness
metrics. Therefore, the error metric (fitness function) should be completely described in the
specifications of design. This is the "ruler" that will be used to decide if a design fulfills the
requirements.

11



Automatic Generation of Sound Synthesis Techniques

3.1.5 Implementation/algorithmic constraints:
Because SSTs are usually implemented in a digital computer that has limited resources, it is
normal to include some implementation constraints in the specifications of design. Some of the
constraints take the form of maximum allowed number of functional elements, size of the
algorithm, execution time, real time capabilities, etc. Regardless of the platform where the SST
will be implemented, all the designs have some boundaries and restrictions (i.e. an SST that
requires infinite or too much memory is not realizable)

3.2 PROPOSED APPROACH FOR DESIGN OF SSTS
Design of an SST usually requires of two stages: first selection of a functional form for the SST,
and then parameter estimation to find the right internal parameters for matching the performance
of the SST to the desired target sound.

3.2.1 Classic design
In classic Sound Synthesis design a human realizes the first stage of the process. Functional forms
are usually never conceived from scratch for a particular target sound. Instead, the designer
selects one "template" from a set of known functional forms (i.e. the classic synthesis techniques)
based on the characteristics of the target sound, and the known capabilities of the tentative
functional forms.
In the second stage, the designer selects an approach for parameter estimation, and uses it to find
the internal parameters that better "fit" the selected functional form to produce a sound "close" to
the target sound. This part of the process has been automated with high success. (Homer,
Beauchamp et al. 1993). The designer usually tries a handful of functional forms to select the one
that results in a better match to the target sound.

In practice, it is common to find simple mixes of two or more synthesis techniques in a design.
For example, to simulate the transient part of a sound is very complex with most of the synthesis
techniques, but the steady state (sustained) part of the sound is fairly simple, so, a "hybrid"
synthesis method could use sampling for the first part of the sound, and FM synthesis for the
sustained. But is important to note that these kind of hybrid functional forms don't fuse in an
intimate way, they just do a simple mix (usually additive) of their produced outputs.

Figure 15 Classic design of SST. Human selects a fixed Functional Form from a pre-defined set (i.e.
"classic" SST) and uses a parameter estimation method. Human judges if the results are satisfactory
or repeats process with new functional form



Automatic Generation of Sound Synthesis Techniques

A notable exception for this classic design process occurs in physical modeling, where a
functional form is derived for each type of sound. The resulting functional form is usually related
to the physical dimensions and properties of the system being emulated. But this physical model
has to be as well handcrafted by a human designer.

3.2.2 Proposed approach for design
Our proposed approach tries to remove as much human intervention from the design process as
possible. The first change (and maybe the most important) is to replace the first stage of selection
of a pre-made functional form, by a "functional-form suggesting mechanism". This mechanism
will suggest valid functional forms that can be tested to see if they are good or not for the desired
goal. The second stage remains the same, and it consists in the parameter estimation for the
"selected" functional form to try to match the target sound. Another point where the human
intervention can be reduced is in the "error comparison" between the output sound and the target
sound. This comparison (error function) will return a value that will be used for suggesting a new
functional form, and that will try to minimize this error function. The procedure is repeated until
the error falls within acceptable limits.

S ST suggestion aramete
func tion ed "funEtio m tion ---- could use SST
imitial parameters

functional "error"
elemnents

function

C-3 target

INPUTS OUTPUT

Figure 16 Suggested approach for design. Automated suggestion of Functional Forms, parameter
estimation, and automated comparison of target/output sounds fed back in suggestion block.

It is important to note that the mentioned "functional-form suggestion mechanism" could operate

in many forms, as long as the functional-forms that it suggests are valid. A simplistic approach
could use a database of functional-forms, and just simply select one by one and wait for results.
In this research, we decided to take a more adventurous path and elaborate a real "suggestion"
mechanism that doesn't know precisely about the classic functional-forms, but it knows how to
assemble many functional forms (classic and novel). This mechanism will be described later.

3.3 PARAMETER ESTIMATION
This stage has been extensively researched. We will give an overview of the techniques usually
employed and their main goals. After this, we will introduce our approach for automation of the
functional-form suggestion.

'22



Automatic Generation of Sound Synthesis Techniques

Once a functional-form has been selected (or suggested), the number and type of internal
parameters remains fixed. A technique for parameter estimation can be used to find a set of
values for those parameters that will reduce the error between the produced output and the target
sound. This can be done using one of two approaches: mathematical analysis or optimization
methods. The approach selected depends mainly in the type of functional form to be optimized
and in the precision needed for its internal parameters. The fitness function (error metric) is used
to guide the optimization process.

3.3.1 Mathematical analysis:
Many of the mathematical tools used to analyze signals can be used to extract meaningful
information about our target waveforms, and in some cases that information can be used to infer
the value of the internal parameters of a given SST. It is usual to find these tools in couples called
transforms (Lindquist 1989). Transforms are couples of mathematical procedures that transform
information (waveforms for us) from one domain into another. When they don't lose information
in the process, it is possible to go from one domain into another and back without altering the
original signal. When this is the case, the couple of procedures to go back and forth are called
analysis/synthesis formulas.

3.3.1.1 Fourier:

Some functional-forms (SSTs) are intimately related to mathematical analysis/synthesis methods.
The most notorious example is Fourier synthesis. The internal parameters for this SST are the
same parameters returned by a Fourier analysis: magnitude and phase of the composing sinusoids.
But Fourier analysis is a very valuable tool that can be used in conjunction with others to
facilitate the parameter estimation process. A modification of Fourier analysis called Short Time
Fourier tranform (spectrogram) (Rabiner and Schafer 1978) can be useful for analyzing frequency
variations over time, onset/offset of components, and relative amplitudes of different components
in frequency and time.
One example of the usefulness of Fourier analysis is when deciding the value of some filters to be
used in subtractive methods, where a Fourier analysis can give an initial estimate of the desired
frequency contour.

3.3.1.2 Cepstral Analysis:
Another popular analysis tool is called Cepsrtal Analysis. It gives an estimate of the broadband vs
narrowband energy in the spectrum of a signal. (Rabiner and Schafer 1978) This analysis is useful
to "isolate" the effects produced by a source, from the effects produced by a resonant system. It is
often used in synthesis techniques that follow the source + filter model (i.e. LPC, Physical
Modeling). Even though the results are just approximations of the real values, they are very good
estimates.

3.3.2 Optimization methods:
Many interesting functional-forms of SSTs have no associated mathematical analysis tool that
could be used to estimate their parameters. In these cases, optimization methods borrowed from
systems, signals and control theory are useful. They are sometimes referred to as search methods,
because they search for an optimal set of parameters in the parameter space associated with the
SST. (Gershenfeld 1999).
I A
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3.3.2.1 Parameter space:

Because the number of parameters is fixed (once the functional form of the SST has been
selected), the space spanned by these parameters is fixed.
The size of this space (total number of different possible combinations) can be computed as
follows. It is assumed that the SST will be implemented in a digital computer and the parameters
will be represented by a fixed bit-size word. Then, the total number of possible different
combinations C of parameters is given by:

C=2 BP (10)

with P number of parameters, and B the number of bits per parameter.

Using equation ( 10 ), for a SST with 10 parameters, and each parameter with 12 bits, a total of

21IX12 = 2120 1.3x 1036 combinations can be found in the space.

3.3.2.2 Fitness Function (error function):

Each point in parameter space corresponds to a set of parameters that can be used with the
selected SST to produce an output sound. This output can be fed into the fitness function
specified for the optimization (error function) and compared to the desired target sound to
compute an error value. This value is an indirect measure of the performance of the SST in that
particular point of the parameter space. The task of the optimization method can be seen as "to
find a point in parameter space where the related error value is minimal". If we map all the points
of the parameter space into the related space of the error values, the resulting is called "fitness
landscape" or "error landscape"(Press 1992; Gershenfeld 1999). It is possible to use the value of
the error in the fitness landscape to decide where in the space are better points, and in that way
guide the optimization process. But this is only possible if the fitness landscape is smooth. If the
fitness landscape is rough, no inference can be done about the error value of the neighbors in any
given point. This can be seen in the Figure 17 where three types of fitness landscapes (one-
dimensional) are plotted.

a) b) c)

Figure 17 Fitness Landscapes. a) smooth, easy to be searched using an iterative method like gradient
descent. b) medium, more difficult for normal iterative methods. c) rough, iterative methods fail
completely here. Parallel methods are necessary
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3.3.2.3 Enumeration:

Enumeration has to evaluate the fitness value for each point in the parameter space. This is
equivalent to running the SST and fitness functions as many times as points in this space. The
"best" error value can be found by comparing all of them and selecting the lowest one. This is a
very expensive method and usually impossible to compute, because the number of possible
combinations even in a small parameter space are too big. A more clever way to explore this
space has to be devised. The only advantage of this method is that it guarantees that the lowest
error value and its associated parameters will be found.

Iterative methods:
These methods start in a randomly selected point in the parameter space and evaluate the fitness
function in some neighboring points. With this information, they select a new set of points, and
keep doing this until they advance into a region where the fitness specifications are satisfied.

Iterative methods are numerical methods that rely on evaluation of a formula, instead on solving
it symbolically. All these methods start in a "random" point in the parameter space, and evaluate
the error value of some neighboring points. With this information they make an "educated guess"
of the direction that they should take to start "walking" on this space towards a minimum. The
process is repeated iteratively until no step improves the error value.

3.3.2.4 Gradient descent, simplex, downhill:

The common idea of these methods is to take two or more points in the parameter space, evaluate
their fitness functions, and with this information suggest a new point to be evaluated. Usually, the
new point is evaluated and accepted only if it has a lower error value than the old point.
These methods perform well when applied in cases where the fitness landscape is smooth,
"convex", or moderate Figure 17 a). If the fitness landscape presents too many local minima, it is
possible that they get stuck in one of these and never find the global minima. If the search allows
a "good" solution, but doesn't requires "the best" solution, they perform a good job. If the fitness
landscape is rough, these methods don't work at all.

3.3.2.5 Simulated Annealing:

Simulated Annealing can be thought of as an "extension" or improvement over one of the
classical methods like gradient descent.
The main idea is to accept sometimes some points with "poor performance" in the update
procedure of a given iteration. The acceptance of "bad choices" is regulated by a probabilistic
factor that decreases over time, accepting more wrong choices at the beginning and just accepting
good ones at the end. The effect of this is that the method can sometimes "climb up" some deep
valleys in the fitness landscape. This decision allows better exploration of more regions of the
space, and at the end, the solution will converge in a valley, hopefully one that is "very deep"
compared with others (and therefore, a better solution).

3.3.2.6 Evolutionary methods:

Many good methods used to search large and complicated spaces borrow concepts from real,
natural systems. While these methods lack some of the mathematical rigor that characterizes more
classic techniques, their empirical performance has shown that they are apt to solve many
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problems that otherwise would go unsolved. The field of evolutionary computation is based on
concepts found in the natural systems like reproduction and "survival of the fittest".

3.3.2.6.1 Genetic algorithms:

Genetic Algorithms (GA) borrow from the idea of Darwinian evolution of the "survival of the
fittest" (Koza 1992; Gershenfeld 1999). The parameter space is represented as a fixed length
bitstring. A random population of individuals (bitstrings) is created for the first generation. The
population is then evaluated and a fitness value assigned to each individual. A new population is
created using genetic operations in randomly selected individuals from the actual generation. The
process is repeated until an individual that fulfills the specifications is found or a maximum
number of generations are reached.
Genetic operations are performed in randomly selected individuals. The selection probability is
based on the fitness value of that individual (the better the fitness, the more probability of being
selected). The genetic operations create new individuals using: copy (exact copy of the bitstring),
mutation (mutation of randomly selected bits) and crossover (copy of different bits from different
bitstrings).

GAs have shown outstanding empirical performance in optimization problems where the fitness
landscape is very rough Figure 17 c). The reason is because it starts exploring in parallel many
different points in the parameter space, and has a higher probability of finding one of the many
local minima that are present, but selecting the best option of all of them.

3.4 DESIGN AS A SEARCH IN THE TOPOLOGY SPACE

3.4.1 Automated functional-form suggestion mechanism

The core of our research lies in the automation of the functional-form suggestion mechanism. The
goal of this module in the proposed SST design approach is to suggest valid functional-forms that
will go through a process of parameter estimation, and then feed back the error information to
suggest a new (and hopefully improved) functional-form. The process for suggesting functional-
forms has been traditionally done by a human with knowledge in the field of sound synthesis,
who selects a functional-form from a set of "classic" SST based on the known properties of the
SST and the desired properties of the target sound. Our goal is to automate this suggestion
mechanism, and to integrate it in a completely automated approach for SST design.

The functional forms are particular compositions of functional elements. We propose a set of
"basic functional elements" that we believe are general enough to express many possible SSTs.
They were derived from our analysis of the "classic SST" (see section 2.3).

The SSTs are represented as topology graphs (interconnected functional blocks). The selected
functional blocks include:

- Controlled Wavetable oscillator (simple waveforms: sinusoid, triangular, square)
- Addition
- Multiplication
- Simple controlled filter (2 poles 2 zeros)
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- Delay by one sample

All of these functional blocks represent linear elements, with the exception of the controlled
wavetable oscillator. This means that all of the traditional linear Digital Signal Processing (DSP)
systems can be incorporated as a set on our representations. The more complex elements like the
wavetable oscillator and the simple filter are ubiquitous in the electronic music synthesis field.

3.4.2 SST space:
All the possible valid combinations of functional elements, connections and internal parameters
compose the SST space. Each point in this space could be thought of as a different topology.

3.4.3 Hypothesis:
Given a set of inputs, a target sound and an error metric, it is possible to find the functional-form
and internal parameters of a SST capable of synthesizing an output sound "close" to the target
sound.

3.4.4 Design as a Search:
Our original goal of designing a SST (functional form and internal parameters) can then be stated
as a search problem in the SST space. The next step is to define a search strategy to efficiently
and adaptively explore this space and find an acceptable solution to our problem.

3.4.5 Size of the SST space:
The size of the SST space is related to the types of functional elements, the valid ways of
interconnecting them, the total number of functional elements allowed, and their internal
parameters. The numbers are huge, but a simple example will help to see the kind of spaces that
we are dealing with. Assume that the topology representation will use 2 types of functional
elements (x,y), with a total of three functional elements that can be interconnected in any order
(A,B and then C).

S x A B C

4 bits

a) b) c)

Figure 18 Functional blocks and their combinations. a) two types of blocks: x,y. b) three ordering
schemes (connection) ABC, BAC, CBA, etc. c) Internal parameters quantization, in this case is 4 bits
per parameter, 1 parameter per block.

The number of possible groups of blocks G, regardless of their ordering is given by the total
number of types of blocks T, and the total number of blocks N:

G=TN (11)
In the example, T=2, N=3, using equation ( 11 ), G=8.
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The possible number of ways of connecting N elements is given by
M =N! (12)

In our example, the possible number of ways of connecting 3 elements M=6.

The total number of possible different combinations of types of functional elements and their
connections is given by the multiplication of equations ( 11 ) and ( 12).

top =T N N! (13)

In our example, top=6x8= 48. This is the total number of possible topologies that can be
composed with this simple set of functional elements.
If now, we allow each functional block to have one internal parameter represented by a 4 bit
word, that is a total of 12 bits per topology (3 parameters * 4 bits). The total number of possible

parameters is given by equation ( 10 ) C = 24x3 = 4096

Finally, the total number of "points" in the SST space will be formed by the total of "all" possible
topologies times the total of "all" possible parameters. Multiplying equations ( 10 ) and ( 13 ):

size _SST _space = 2BP T N N! (14)

For our simple example, there are in total 196.608 different SSTs that span the space. In contrast,
for a more realistic setup: 5 types of functional elements, 10 functional elements in total, 2

internal parameters per element, 10 bits per parameter there are approximately 5.7 x 1073

possible SSTs in the space.

3.4.6 Design as a search:
We will approach our problem of suggesting valid functional-forms and internal parameters as a
search in the SST space. For the moment, we will try to search for both, the functional form and
its internal parameters in the same problem, but in a later section we show a way to split this into
two interleaved tasks that could be easily separated for improved performance.

3.4.6.1 Searching the SST space:

As was mentioned in the optimization of internal parameters, there are several methodologies that
are usually employed to search in a parameter space to find a suitable solution. The main problem
here is that our space is not composed of normal "models", but each point in space represents a
different topology or SST (Functional Form + Internal Parameters).
This search space is complex in nature because of its high multidimensionality and non-linearity.

3.4.6.1.1 Exhaustive search:

This search method requires the evaluation of all the points in the search space. It ensures that the
best point in the space will be found, but given the large number of possible points in these spaces
it is not even remotely practical to try this approach.

3.4.6.1.2 Gradient descend, simplex, downhill:

Ila
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As we know, the fitness landscape for this space is a very complex. Neighboring points in the
space can represent radically different topologies. As a consequence, there is no guarantee that
this complex search space has an acceptable local optima that this method can trap itself in.

3.4.6.1.3 Simulated Annealing:

The implementation of this search method requires working in conjunction with one of the
methods of the previous section. As seen, these methods are not good for the kind of fitness
landscapes with which we are dealing.

3.4.6.1.4 Evolutionary methods:

Evolutionary methods have been shown to perform very well in complex fitness landscapes.
(Koza 1992; Gershenfeld 1999). The reason for this is that usually they perform a search in
parallel, with simultaneous (and different) candidate solutions, that are usually located in different
points in the fitness landscape. New individuals (candidate solutions) are evaluated based on the
performance of the old ones, hence the better a solution, the higher probability of trying candidate
solutions in that neighborhood.

The reason for this good performance is mainly because the search is in parallel at different points
of the fitness landscape, and therefore, has higher probability of finding good global minima than
other methods; but the cost is an increase in computation and memory requirements.

In any case, no guarantees about an exhaustive search can be done. The space is so huge that the
kinds of solutions that are found are optimal in a local sense, but there is no guarantee that the
global minima can be found.
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4 SEARCHING THE SST SPACE

4.1 GENETIC PROGRAMMING
Genetic Programming (GP) is an optimization/search method that has been gaining popularity in
the last decade. It is an extension of Genetic Algorithms, and both belong to the field of
Evolutionary Computation. The idea with GP is to have a population of candidate solutions (in
our case, suggested SST) that will be evaluated and a fitness value assigned to each.
The fitness function gives an analytical measure of the performance of the individual and its
output. Once all the individuals in the population have computed their fitness value, a new
population of candidate solutions is created by probabilistically selecting individuals and
performing genetic operations on them. The probability of being selected to be part of a genetic
operation is directly related to the fitness of the individual: the better the fitness, the higher the
probability.
The genetic operations will create new individuals by: copy (identical copy of an individual),
mutation (random alteration of an individual functional form and/or internal parameters), and
crossover (characteristics of two individuals are fused together to create a new one).
The process is repeated until a candidate solution that shows a fitness value that fulfills the
specifications is found, or a maximum allowed number of generations have been tested.

4.1.1 The genetic programming loop:

Figure 19 Genetic Programming loop
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4.1.2 About the individuals, populations and candidate solutions:
A candidate solution can be seen as a particular point in our search space. For a SST this will
represent exactly a particular Functional Form and a set of parameters.
For sake of clarity, we will discuss genetic programming as it was originally explained by Koza
(Koza 1992), with individuals that represented simple computer programs (not our more complex
SST).
A candidate solution is also called individual, and a group of candidate solutions or individuals is
called population.
Every cycle in the GP loop is known as a generation. The influence of natural systems and
biology is evident in all the terms used in the field of GP.

The individuals in GA were fixed length bitstrings, that could be easily mapped into a set of
parameters to be plugged directly into the model that was being optimized. In GP individuals are
computer programs (or executable sequences). They are not easily represented by a bitstring of
fixed size. Computer programs are commonly represented by an expression tree. (Koza 1999).
Expression trees are usually depicted as a rooted point-labeled tree with ordered branches, as
shown in Figure 20. The trees are parsed from the upper node (root), and the branches from each
node are evaluated from left to right.

0.3y + x(O. 1+0.34) (15)

* *

y 0.3 X +

0.1 0.34

Figure 20 Expression Tree for equation ( 15)

This notation follows closely the one used in LISP programming (Steele 1984). We recommend
the reader unfamiliar with representation and parsing of expression trees to read the references
(Koza 1992). In the GP literature it is common to find the names non-terminals for the nodes in
the tree that represent operations, and terminals for the nodes (leaves) in the tree that represent
data (variables or constants), and have no further branches.
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The rules that specify the types of nodes and connections that are allowed in an expression tree
are called production rules (Marcotty and Ledgard 1987). A set of production rules has to be
fully specified before generating or manipulating any tree, to keep it valid in any imaginable case.
The advantage of using trees as representation for the individuals in GP is evident at the time of
manipulation. Any manipulation requires the resulting individual to be compliant (valid). In the
case of a computer program, valid means that the program can be executed in a digital computer.
Non-valid individuals can slow down the process of convergence of a GP run, and add extra load
in the housekeeping for testing individuals.

The manipulations that can be done to individuals are usually called genetic operations.
- Random creation of expression trees: A single expression tree is created from scratch.

Some parameters such as tree depth and tree size can be specified. It is possible to assign
some kind of repetition probability to each type of node or connection to shape the
content of the tree.

- Copy: A copy of the individual into the next generation is made (see Figure 21).
- Mutation: This usually comes in two flavors: node mutation and branch mutation. Node

mutation randomly selects a node in the tree, and changes the value or meaning of that
node. If the node is a non-terminal, it is exchanged with an equivalent function. If the
node is terminal, the variable or constant represented changes its value. Branch mutation
randomly selects a node in the tree, and using the same algorithm as for random tree
creation, it replaces everything below the selected node with a random branch (see Figure
22)

- Crossover: Two individuals, usually called parents, are used in this operation. A random
node is selected in each parent (checking for compatibility of types) Once a pair of
compatible type nodes is selected, a new individual (offspring) is created by taking all but
the branch rooted in the selected node from parent number 1, and just the branch rooted
in the selected node from parent number 2. This creates a new individual that has parts
that belonged to two different expression trees, but still is guaranteed to be valid (because
of the type check). It is usual to create a second different offspring by reversing the role
of the parents (see Figure 23).

Parent

* X * X

New individual
y 0.3 y 0.3

Figure 21 Genetic operations: Copy
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New individual

Figure 22 Genetic operations: Mutation

Figure 23 Genetic operations: Crossover

4.1.3 Execution and evaluation
Every individual (expression tree) has to be evaluated using the fitness function. But the fitness
function takes information from the output produced by the individual (execution of the program)
44
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and the program itself. Every individual has to be run, and this requires the expression tree to be
compiled in an executable form. This compiled program is then run in a digital computer using
the specified inputs and recording the produced output.

Fitness evaluation:
Once the output is computed for an individual, this output is then given to the fitness function to
grade the performance of the individual. The fitness value will give an analytical measure of the
"distance" between the desired target and the produced output. Ideally, a perfect match will give a
distance of zero. As discussed before, for our goal of designing SSTs, and taking into account that
our target and outputs are sounds that are meant to be heard by human beings, it is possible to use
to our advantage the redundancy inherent in the human hearing mechanism, such as frequency
masking, producing a more "flexible" target.

4.2 SST SPACE: TOPOLOGIES AND FUNCTIONAL ELEMENTS
4.2.1 Sound Synthesis Engines (SSE)
Our goal in designing a SST is to find a functional form and internal parameters that
accomplishes our design specifications. Because of the nature of the problem and the GP
approach, it is necessary to "suggest" possible solutions (in the form of SST topologies) and
actually implement and run them on a digital computer to produce a sound output. A Sound
Synthesis Engine is a platform dedicated to producing synthesized sound. The instructions are
usually given in the form of instructions or opcodes that are assembled into programs to be run in
a digital computer. There are several Sound Synthesis Engines that are popular in the electronic
music field. Csound (Boulanger 2000) is one of the most powerful ones. It gives the user a very
complete set of instructions for manipulating digital audio samples, and produces completely
synthetic sounds from scratch. But Csound presents the problem that its grammar is too complex
for being used in a GP approach. Other sound synthesis engines such as Cmusic (Moore 1990),
FX2 (Jones 1998), MAX (Puckette and Zicarelli 1991), PD (Puckette 1996), are also very
powerful, but all of them sacrifice simplicity for performance.

Because the SST that we are dealing with will be evolved by an autonomous entity (a computer
program) it is better to opt for the simpler evaluation of the SST. For doing this (and to have
control over all the unpredictables) we decided to implement a custom Sound Synthesis Engine.
(see section 8.2).
The most relevant aspect of our synthesis engine at this point, is how the functional elements are
encapsulated in functional blocks.

We need a Synthesis Engine that:
- Gives consistent results
- Is generic enough to implement the "classic" SST and many more
- Has no pre-built SSTs (we are trying to explore new SSTs, we don't want our GP to find

answers using pre-fabricated modules).

In short, we need a very robust, very simple Sound Synthesis Engine.
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Instead of taking one of the "commercial" SSE in the field, and reducing its capabilities (to fit our
necessities), we decided to create our own SSE, based in a model of "connected blocks and
messaging system".

4.2.2 Proposed Topology Graph: Compatible Blocks
Our SSE was standardized to encapsulate the functional elements in "compatible blocks" that
have a standard number of inputs and outputs. This has the extra advantage of facilitating the
manipulation of the topologies. The types of compatible blocks are:

Block Inputs outputs elements
Source 0 1 SOURCE
Render 1 0 RENDER
Type A 2 1 ADD,MULT, FILT,DELAY
Type B 1 2 KOSCIL,SPLIT

The rules of connection for valid topologies are:
- Outputs are connected to inputs
- Only a single connection is allowed for eac

one connection.
- All inputs/outputs in a topology have to be c

h output or input. Neither one can have more than

onnected (no dangling connections).

No other restrictions are enforced.

The functional elements are encapsulated to have one-input/two-outputs or two-inputs/one-
output. We are using a set of blocks derived from the summary of functional elements from the
"Classic" SST analysis done in a section 2.3. A quick summary of the elements and their function
follows.

FILT: (TYPEA) A second order filter, whose coefficients are set at init time. One of the
coefficients can be time varying.

KOSCIL: (TYPEB) Encapsulates two functional blocks: a constant source (k), and a controlled
wavetable oscillator. The type of wavetable, phase and k (constant) value are set at init time. The
wavetable uses phase increment to calculate the next index value to read, but the increment can
vary over time.

ADD: (TYPEA) Adds two inputs and produces an output.

MULT: (TYPEA) Multiplies two inputs and produces an output.

SPLIT: (TYPEB) Splits an input into two identical outputs.

DELAY: (TYPEA) Variable delay line. It delays the input by a variable amount of time.

With these proposed blocks, it is possible to implement most of the classic SSTs. An example
using a few of them is in Figure 24 and Figure 25.
Af-4
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Figure 24 Additive synthesis using compatible blocks TYPEA, TYPEB, SOURCE and RENDER

Figure 25 FM synthesis using compatible blocks TYPEA, TYPEB, SOURCE and RENDER

4.3 MAPPING EXPRESSION TREES TO TOPOLOGY GRAPHS:

Topology graphs are a good representation for SSTs, especially at the moment of design
(conceptual relationship between functional elements) and implementation (many digital
computer architectures work in an object-like fashion). But topology graphs are not a suitable
representation when using genetic operators (copy, crossover, mutation) that are "blind" to
structure and meaning. This can be shown with a simple example. Imagine a simple valid SST
with few functional elements all interconnected. If a new functional element wants to be added,
some existing connections have to be broken to "insert" the new element. In addition, it is
possible that the number of connections (inputs and outputs) is not equal anymore and a
"dangling" connection would be left. This would render the topology invalid. If we remember in
addition that the goal is to have an automated system doing the manipulations, it is easy to see the
magnitude of the problem. Our solution is to find a way of representing topology graphs by
expression trees. Given an established mapping between the two, it is thus possible to use a GP
for searching the SST space.

A '7
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An ingenious idea borrowed from developmental biology suggests a way of mapping a topology
graph representation into an expression tree representation. The idea is to encode in the
expression tree the instructions for the "development" of an embryonic topology. The process
begins with a very simple embryo, and following the instructions, it "grows" the fully developed
topology. It can even include the development for the internal parameters associated with the
functional blocks.

4.3.1 Background:

4.3.1.1 Automated Synthesis ofAnalog Electrical Circuits:

Koza et al. (Koza, Bennett et al. 1997; Koza 1999) proposed a representation for developing
topologies of analog circuits, that later were used for a genetic program to evolve the functional
form (topology) and the internal parameters (sizing of elements) of the analog circuits. The
expression trees are called "circuit-constructing program trees" and have four kinds of functions
on them: 1) connection-modifying functions (CMF's), that alter the topology of the circuit; 2)
component-creating functions (CCF's), that insert components into the circuit; 3) arithmetic-
performing functions that appear in subtrees as arguments for the CCF's and specify the
numerical value (size) of a component; and 4) Automatically-defined functions (ADF's) that have
the role of sub-programs within the tree.
A constrained syntactic structure is also proposed to regulate the creation and usage of the
functions in the circuit-constructing program tree.
The embryo circuit is composed of one or more "modifiable wires". These wires can change their
points of connection, or become new electrical components.When the expression tree was
executed, the modifiable wires changed into a fully developed circuit. The different types of
embryos are selected to match the number of inputs and outputs of the problem at hand.

The process for evaluating the individuals comprised some steps:
- Use circuit-constructing tree in the embryonic circuit (evolve a circuit)
- Translate circuit in a NETLIST (list of nodes, components and connections)
- Purge NETLIST of dangling components, isolated subcircuits, grounding isolated nodes, etc
(cleaning elements that would render impossible to simulate circuit)
- Run the SPICE simulating software on the simplified NETLIST.
- Calculate fitness using output of SPICE program.

The electrical behavior of the system was simulated using the SPICE electrical circuit simulating
software (Quarles, Newton et al. 1994). The fitness measure used is the absolute sum of the
weighted deviation between the target and produced output, with different grades of penalization
for small and big deviations from the target output.

4.3.1.2 Cellular Encoding of Genetic Neural Networks:

Gruau (Gruau 1992; Gruau 1993) faced the problem of encoding the topology for Neural
Networks. In his approach he also choose to represent the development of an embryonic Neural
Network topology (NN topology) by development instructions in an expression tree. In this
research, seven theoretic properties to grade the efficiency of encoding schemes for neural
networks topologies are proposed. An encoding scheme that satisfies all of the requirements was
A 0
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studied. The most important point reinforced by Gruau's research is the usefulness of
representing a topology graph (or topology-like problem) with an expression tree that encodes the
development of an embryonic topology. It is possible to develop mappings from expression trees
to topologies that satisfy a set of properties that allow for a great deal of manipulation and
flexibility, especially if the expression trees will be suggested and manipulated by an autonomous
entity (a computer program).

4.3.2 Proposed Mapping
The execution of the instructions on the expression tree will result in a fully developed topology
graph. The initial topology graph is called embryo, and in our case it is a simple topology with
four blocks, as seen in Figure 26.

The embryo has a single modifiable object TYPEA with no functional element assigned yet, and
connected to two sources and one renderer. The sources and the renderer will remain the same
during the whole development process, but the modifiable object will change and new blocks and
connections will be created. This configuration of the embryo could be different (to suit the
design specifications, i.e. the number of time varying inputs), but has been chosen for explicatory
purposes here. Figure 26 shows a simple expression tree, embryo and first steps of development
of a topology. The first node of the expression tree is the START node, and this is ignored during
the development process. The second node is "pointing" to the modifiable object number 1. When
executed, this node will change the topology graph, more specifically the object that is pointed to
in some way. In this case, the node has the instruction MULT, so the type MULT is assigned to
the particular block in the topology graph.
The next node has the instruction SERIES1. The effect of this instruction is to add some new
blocks and connections to our topology graph, and to create more "pointers" to different nodes in
different new branches of the expression tree. After executing this Topology Modifying Function,
several new blocks and connections are introduced into the topology graph. Each one of the new
objects is modifiable, and has an associated node pointing to it. The rest of the nodes are
executed, and this add, modify, or change blocks and their connections into the topology graph.
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EMBRYO |SOURCE 0
Step 0 RENDER 0

SOURCE1

SOURCE 0
Step 1 MULT RENDER 0

SOURCE 1

Step 2

Step 3

Step 4

Figure 26 Embryo and example of development

4.3.2.1 Development process:

Every node in the expression tree has a function associated with it. At the beginning, a single
node is pointing to the modifiable block of the topology graph. After this, all the remaining nodes
on the expression tree are executed, one by one, in breadth-first order, to produce intermediate
topologies. When the last node is executed, the final topology is the result of the development of
the embryo with the particular expression tree.
The topology-creating functions are defined in a way that preserve the validity of the topology
after their execution. This ensures that any valid expression tree will produce a valid topology
graph.

4.3.2.2 A simple repertoire of topology developing functions:
For more information, please refer to section 8.1 that explains the creation rules, precedence
procedure, and more details about this proposed set of functions.
Cn

Tota Nodes i3

. . . . . . . . . . . . . . . . . .
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- Each node in the expression tree has a related function, that somehow affects the topology
graph.

- Each node is "pointing" to one modifiable object or wire.
- Some functions assign types to the related modifiable object (i.e. MULT, ADD), while some

others change the topology and add new objects and connections (i.e. SERIES1,
PARALLEL1), or just control the execution of the actual expression tree.

TYPE functions: assign a type to the object they point to. Also, if the related functional block has
internal parameters, they are found in the next level after the type node.

TYPEA = ADD,MULT,FILTER;
TYPEB=SPLIT,KOSCIL

Topology Modifying Functions (TMF): break existent connections, add new objects, and re-
connect them to accomplish a valid topology. Every node of the next level is pointing to the
newly created objects or the wires.

TMFA= SERIES1_A, SERIES2_A, PARALLEL1_A, PARALLEL2_A
TMF_B= SERIES1_B, SERIES2_B, PARALLELl_B, PARALLEL2_B
TMF_W= RECONNECT 1, RECONNECT2, RECONNECT3

Development Control Functions (DCF): don't alter the topology in any way, but delay or stop the
execution of one branch in the expression tree.

DCFA = NOPA, ENDA
DCF_B = NOPB, ENDB
DCFW = NOP_W, ENDW

Construction Continuing Subtrees (CCS): As the DCF don't alter the topology, but are in charge
of selecting one of the previous sets of functions to execute.

CCSA=TYPEA, TMFA, DCF_A
CCSB=TYPE_B, TMF_B, DCF_B
CCSW=TMFW, DCFW

4.4 INTRODUCING HYBRID-OPTIMIZATION: LAMARCKIAN
EVOLUTION

A biology theory called Lamarckism, proposes that individuals evolve by the inheritance of traits
that were acquired or modified through the use or disuse of body parts. A parallel to Lamarckism
can be introduced into Genetic Programming, by allowing the individuals (programs) to locally
optimize their internal parameters after a functional form has been suggested and then use the
optimized values as inherited traits.
This can also be seen as the independent task of sub-optimization or parameter estimation using
any of the previously discussed techniques. The approach uses GP to suggest a functional form,
and then it uses any of the discussed techniques to optimize the internal parameters of the
suggested functional form. The optimized set of internal parameters is put back in the original
individual used by the GP. These parameters will be inherited by future generations.
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This can be seen in Figure 27, where an extra step for optimization of only the internal parameters
for each individual is added. The optimization technique used can be any of the previously
discussed.

First population
Random individuals Initial parameters

Optimize internal Individual ... Optimization
parameters

--... -New parameters
Execute individuals

Calculate fitness value
for each individual

acceptable solution ys fins
found?

no

calculate probability
for each individual

Create new population:
Use probability to select

and perform
Genetic Operations

Figure 27 Hybrid optimization (Lamarckism): internal parameters have an extra optimization
routine after a functional form has been selected.

It is important to note that the fitness function or error metric used during the optimization of the
parameters should be the same used to guide the GP loop. If a different metric is employed, it is
possible to stray too far from previous "good" solutions. The use of a sub-optimization stage has
been demonstrated to give good empirical results, because in this way the burden of estimating an
optimal set of parameters doesn't fall completely to the GP. Without it, GP may reject "good"
suggested functional forms because they happen to have very bad parameters associated with
them. If an optimization procedure is used, the probabilities of selecting at least a better set of
parameters increases.
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4.5 FITNESS FUNCTIONS
In any kind of optimization or search method, it is fundamental to have a way to measure the
performance of the candidate solution. This performance metric is usually called afitness function
or error metric. Fitness functions (FF) give some numerical grade to the difference between the
outputs of the system compared to a desired target. The features that are measured in a fitness
function vary from application to application. In our case, for sound synthesis techniques and
sound sample sequences (waveforms) as targets, it is usual to define fitness functions that
measure the distance between two sounds, or how "similar" they are.
But that doesn't mean that the only fitness functions used have to measure how similar two
sounds are. It is possible to fashion a FF that looks for certain features in a sound, For example, it
is possible to design a FF that measures the spectral centroid, and penalizes the deviations from it.
Even more, the FF is not limited to using the output and target information only, but can use any
desired metric on the candidate solutions. It is possible to include implementation "desires" on
the FF, i.e., "size" of the algorithm, complexity, memory requirements, etc.
Because of the characteristics of "distance metrics" it is accustomed to give a value of zero to a
"perfect match", and a positive number to worse matches. The bigger the FF value, the farther
away from a perfect match.
For our research towards the goal of assisting the design of sound synthesis techniques, it makes
sense to define a FF that measures the distance between sounds. This then could be used to search
for SST capable of producing sounds "similar" to the target.

4.5.1 Analytical vs Perceptual:
An analytical FF will use an objective measurement of the selected feature. Perceptual FFs will
incorporate a subjective model of the selected feature. For example, an analytical measure would
be the fundamental frequency of a signal, and the perceptual measure would be the perceived
pitch of the signal. While the former has a very simple analytical form to be computed (and will
always give the same type of results), the latter requires a model of how humans perceive pitch.
This subjectivity can cause discrepancies between different models employed.
In any case, the FF has to return a numeric value associated with the "performance" of the sound
related to the target. Subjective grades like: "good", "better", "bright", "dark" are not allowed,
and have to be converted to a numerical value.

4.5.2 Analytical FF: Least Squared Error (LSE)
The LSE of a given sound and target is usually computed in one of two domains: time or
frequency. In the time domain, the sum of the squares of the difference of the signals is calculated
using equation ( 23 ):

N (16)
FLSE _TIME 2 on ~~

n=1

with:
o(n)= output waveform from SST under test.
t(n)= target waveform
N = number of samples to measure

This measures the sum of the square of the error between both waveforms. The closer to zero, the
less the error between waveforms.
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A somewhat more complex measure, but at the same time more useful can be acquired using a
time-frequency distribution of the waveforms. One of the most used time-frequency distributions
is the spectrogram. To compute the spectrogram, the desired time sequence (waveform) is
windowed in short segments, and a DFT is computed ever each one of them. It is common to
have some overlap between segments. The spectrogram is a 2 dimensional representation, were
one axis spans the frequency, and the other spans the frames (time). The spectrogram can be a
"magnitude" spectrogram (throwing away the phase information on the DFTs), or a "complex"
spectrogram that also takes into account the phase.
The LSE is measured after computing the spectrograms for both signals (with exactly the same
parameters), and comparing frame by frame, and bin by bin each of them. The squared error is
computed for all the components and added together to give the total error. The analytical fitness
function using magnitude spectrograms is then calculated using equation ( 17):

F1 FB(17)
FLSE_ FREQMAG =-IiYO(i, j)|-|T(i,j)|YWM,)] 

F j7_ -1
where:
F = Number of frames in the spectrogram
B = Number of frequency bins in each frame

O(i, j) = Magnitude of the complex spectrogram of o(n)

T(i, j) = Magnitude of the complex spectrogram of t(n)

WM (i, j) = Weight matrix for each component (ij). It's value ranges from [0.1]

This fitness function has been used successfully by Homer et a. (Homer, Beauchamp et al. 1993)
to optimize the parameters of a FM sound synthesizer.

A logical enhancement is to include phase information along with the magnitude. Another FF
used during this research computed the fitness for the magnitude and phase spectrograms, and
combined them in a linear fashion to achieve the final fitness. The fitness function for the phase
spectrogram is calculated using equation ( 18):

Sangeo B) anl (i, j)))2W(, j] (18)
FLSE _FREQ PHASE iF j=1 W1

where:
F = Number of frames in the spectrogram
B = Number of frequency bins in each frame
angle(O(ij)) = Phase component of the complex spectrogram of o(n)
angle(T(ij) = phase component of the complex spectrogram of t(n)
W, (i, j) = Weight matrix for each component (ij). It's value ranges from [0.1]

And combined linearly gives:

FLSE _ FREQ =FLSE _ FREQ _MAG +FLESE _ FREQ _PHASE

4 A
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This kind of FF ensures that the components of the output waveform are aligned in phase with the
components of the target.

4.5.3 Perceptual FF: Simultaneous Frequency Masking (SFM)
SFM is used to analyze a frame of sound (usually 5-15 ms long) and determine the "threshold of
masking" (TM) (Pohlmann 1995; Roederer 1995; Cook 1999; Garcia 1999). This is a value that
determines which frequency components are "heard" by an average human listener (above the
TM), and which components are "meaningless" for the same (below the TM). Encoders usually
eliminate the components below the TM, and achieve a data reduction of up to 15 times the
original data rate. In our case, our goal is to create a sound synthesizer that will "produce" a
sound in which:
- The components in the output sound that corresponds to the components above the TM in the

target are as similar as possible to the target.
- The components in the output sound that correspond to the components below the TM in the

target are also below the TM in the target, but don't have to be identical to the components in
the target. (this is a subtle but important point).

In summary, our perceptual fitness metric will:
- Calculate the spectrogram of the target and output sounds
- Calculate the TM of the target sound
- Find the components above the TM of the target (frame, freq. bin)
- Calculate the full error between the components from previous step.
- Calculate a partial error between the components not used in the previous step. Partial error is

the difference between the output sound component and the TM in that component (not the
target sound).

- If an output component is below the TM, the error is zero

Figure 28 shows the graphic interpretation of these rules, and their computation is outlined in
equations ( 20 ) to ( 22 ).
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T(ij) O(i,j)
a)

full error

error up to TM(ij)

T(ij) O(ij)
b)

TM(i,j) ----

}no error

T(i,j) O(i,j)

c)

Figure 28 Computation of the perceptual fitness value: three cases a) T(ij)>TM(ij), full error
calculated; b) T(ij)<TM(ij) and O(ij) > TM(ij), error up to TM(ij); c) T(ij) and O(ij) <TM(ij),
error is zero.

T(ij) = Complex spectrogram of t(n)
O(ij) = Complex spectrogram of o(n)

TM(ij) = Threshold of Masking for target sound, calculated from T(ij).

MASK,) T(i, j) > TM (i, j)
0 otherwise

M1(.\ O(i, j) > TM (i, j)
0 otherwise

(20)

(21)

1 FIB

FLSESFM =-11
F j--1

(22)
1O(i, j)| - T(i, j)|YMASK(i, j)]

+ kO(i, j)| - TM (i, j)jY MASK2(i, j)

TM(ij)
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This process calculates the spectrogram of target and output sounds T(ij) and O(ij) respectively.
Then, it calculates the threshold of masking for the target TM(ij). The next step is to calculate the
components above the TM of the target MASK, and the components above the TM of the output
MASK2. Note that we are using the same TM for both calculations, the TM obtained from the
target.
The fitness is then calculated as the sum of the squares of the differences of the components
above TM of the target (MASK), plus the sum of the squares of the differences of the components
that are both below TM for the target (1-MASK) and above TM for the output (MASK2). For the
components that don't fit in any category (below TM for target and output (1-MASK, and 1-
MASK2), the error contribution is zero. A similar FF is proposed by (Wun and Homer 2001).
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5 DEVELOPED SYSTEM
A system implementing the proposed approach called AGeSS (Automatic Generation of Sound
Synthesizers) has been developed and tested.

One goal of the AGeSS system is to be a platform for exploring the potential of this approach and
allow some kind of isolation from some of the most repetitive and computationally hard
problems, while allowing easy access to other modules. The system is implemented as a set of
binaries (compiled for ANSI C++) and Matlab scripts.

5.1 USER:
The user is required to supply the parameters for the GP run, as well as the examples for the
system.

AGeSS
USER SYSTEM

Inputs Output
- Run parameters Suggested expression tree
- Examples

Figure 29 AGeSS system: user input (parameters, examples of control signals and Target). Output
(suggested expression tree)

5.1.1 Inputs:
* Number of individuals: This is the size of the population. The bigger, the more SST space

that could be explored in parallel, but more computation time and memory are required.
" Random Seed: A number selected by the user to seed the random number generator used

for the runs.
* Input/output folders: A folder is created for every generation, and all the individuals of

that generation are saved to the folder. This permits later recovery of information and
individuals. Statistics of all the run (best individuals, best fitness, generation number) are
stored for later retrieval. Initialization information, target files, rules files are stored in the
input folder.

* Name of the experiment: To identify all the files created for the particular experiment.
* Target/inputfile(s): It is possible to use one or more sets of control inputs/target files.
e Tree max levels and max nodes: Maximum allowed number of levels and nodes in the

individuals (trees). Once the maximum is reached, the termination rules are employed to
"gracefully" terminate the tree (to keep validity). This doesn't guarantee that the total
number of nodes or levels will be the specified, but will control the growth of the tree.

* Probability for Genetic Operations: Genetic Operations are selected randomly, and they
can have different probabilities.

* Sub-optimization parameters: Once a functional form is suggested, the suboptimization
can be done using any of the techniques described in the parameter estimation section.
This can be selected here, as well as the specific parameters for each type of
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optimization. Not all the individuals in a population have to be optimized, and this can be
controlled using a probability of optimization.

* Rule files: The creation rules that the trees follow are specified in a set of rules, and
endrules files. The generation rules file (see section 8.1) can be edited to select the
probability that each terminal and non-terminal will have. If any of them needs to be left
out of the run, it is assigned a probability of zero. The termination rules file is another file
that decides how to "terminate" a branch once the maximum number of levels or nodes is
reached (to terminate gracefully). These rules files don't have to change from run to run,
and are actually passed as a default parameter to the system.

5.1.2 Output:
* output tree: The output of the system is in the form of the "best" individual found during

all the generations. In the actual implementation the best individual of the last generation
is also the best individual of all the run. But it is important to note that because of the
differences found in the fitness function, it is possible to have "desirable" individuals
along the run, without them achieving the best scores in their fitness value.

5.2 SOFTWARE:
The AGeSS system was implemented as a set of ansi C++ binaries, and Matlab scripts. Many of
the stages were divided into smaller but significant procedures that were executed upon need. The
structure of the system can be seen in Figure 30 C++ binaries have the extension *.exe, Matlab
scripts have the extension *.m.
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all individuals i

Hybrid Optimization
(Lamarckism)

Target Calculate Fitness Value

Figure 30 AGeSS system: Internal modules and their relationship

k generations
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5.2.1 Tree manipulation:
Tree files have the extension *.tre.
treerules.exe : Reading and management of rules using BNF notation.
treerandom.exe : Creation of random expression trees, with size, node and rules control.
treescopy.exe: Copy of actual tree to next population.
treecross.exe: Crossover of two trees to form a new tree in next population.
treemutate.exe : Mutation of one tree to form a new tree in next population

5.2.2 Topology:
Topology files have the extension *.td (topology description).
growjtree.exe : Development of a given tree into a topology. The input is a tree file (*.tre) and
the output is a topology file (*.td).
tdrun.exe : Execution of a topology file. It is necessary to specify the input files (sources) and
the output file. The output is a file with sound samples, or a standard *.wav wavefile.

5.2.3 Fitness function:
fitness.m : It takes an output waveform (from tdrun.exe) and a target waveform, and performs a
fitness calculation. This calculation could include extra information taken from the original *.tre
file like size, number of elements, etc.
Our approach included three types of fitness functions: regular LSE on the magnitude
spectrogram, LSE of magnitude and phase spectrograms, and the perceptual simultaneous
frequency masking fitness function.

5.2.4 Genetic Programming Loop:

AGeSS.m : This is the main script, in charge of calling all the other programs and scripts. The
main GP loop is here, as well as the initialization calls and result outputs. The initial user
parameters are specified here.

lamarck.m : This is a script that takes a particular *.tre file, a set of inputs and a target, and uses a
technique to do parameter estimation of the internal parameters. The selected technique in this
implementation is a Genetic Algorithm, but any other parameter estimation technique could be
used.

5.2.5 Edition and visualization:
A set of tools to edit and visualize the expression trees and topologies was developed or adapted
for research purposes.

treeedit.exe : Command line based editor to add, delete, and modify nodes in expression trees.
Several options are included such as: verification of validity on the tree, printing (to PostScript
file), Development of tree, Execution of topology.

411'
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treeprint.exe : Utility to produce a PostScript drawing of the tree. It uses a custom tree drawing
algorithm tailored to minimize space for the printing of nodes in multiple levels.

dot.exe : Software from AT&T (Koutsofios and North 1996) designed for "clean printing" of
graphs. In our case it was adapted to print topology graphs, focusing on the connections between
objects. The output is a PostScript graphic file.

growtreedot.exe : Utility to develop a tree into a grown topology, and produce a dot script file
that can be interpreted by dot.exe to produce a PostScript graphic file of the topology.

The waveforms produced by the topologies are recorded as standard way files (Microsoft
exchange format way). This allows using any standard audio editor software package to open,
visualize, play and edit the produced waveforms.
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6 EXPERIMENTATION AND RESULTS
The developed AGeSS system was used to perform a series of experiments to explore the
potential of the suggested approach.
Each experiment is divided in the following stages:

- Selection of a target SST.
- Creation of inputs/target sound using the selected SST
- Definition of fitness function
- Selection of parameters for AGeSS system
- Use parameters, inputs, target to feed the AGeSS
- Analysis of selected "best of generation" individuals
- Analysis of "final" SST suggested by system.

All of the experiments were run using a Pentium III dual processor 733 MHz with 256 MB in
ram. For experiment number 1, the run time was 22 hours (using about 50% of processing power)
for 220 generations and a population of 50 individuals. For experiment number 2, the run time
was 100 hours (using about 50% of the processing power) for 1600 generations and a population
of 50 individuals. For experiment number 3, the run time was 36 hours (using about 100%
processing power) for 200 generations and a population of 40 individuals.

6.1 EXPERIMENT 1. FM SYNTHESIS (CHOW727)

6.1.1 Selection of a target SST:
A simple FM synthesis formula was chosen for this experiment (Roads 1994; Boulanger 2000),
as shown in equation ( 23 ). This SST has been explored in depth by many researchers and
musicians. The value of the internal parameters was taken from the original values suggested by
Chowning for simulating a woodwind sound (Chowning 1973).

( C (M y (23 )
s(t) = A(t)sin 21r - +21rIMf sin 21r f

FS FS

With: Cf = Carrier frequency = 880, 988 =f(t)

Mf = Modulator frequency = 880/3, 988/3 =f(t)/3

I = index of modulation = 2
FS = sampling frequency = 8000
A(t) = time varying envelope

6.1.2 Inputs/target:
This SST uses two time varying inputs: A(t) and f(t) and 3 internal parameters I, D, M. For the
generation of the Target sound, two time varying signals were generated (using Matlab) to
simulate the brass sound of two distinct notes (A880, B988) of 0.3 seconds each. These can be
seen in Figure 31.
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Figure 31 Input signals for experiments 1 and 2. (top) Envelope for two notes. (bottom) Normalized
pitch for two notes (A880, B988).

6.1.3 Fitness function:
The selected fitness function uses the SFM LSE fitness function explained in section 4.5.3. It
calculates the spectrogram of the target sound and uses this to calculate the threshold of masking
of the target. This information, along with the spectrogram of the output sound is used to
calculate a distance metric.

TARGET chow727

0) 0.5

0

C-0.5

0 0.1 0.2 0.3 0.4
Time [secl

0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 32 Spectrogram
notes (A880, B988).

and waveform of TARGET signal for experiments 1 and 2, formed by two

6.1.4 AGeSS parameters:
Experiment name: chow727
Allowed functional blocks: SPLIT, KOSCIL, ADD, MULT
Number of individuals: 50
Tree max levels: 10
Tree max nodes: 60
Probabilities for G.O: copy 10%, mutation 60%, crossover 25%, new random individual 5%;

4000

3500

3000

72500

2000

1500

1000

500

0



Automatic Generation of Sound Synthesis Techniques

Sub-optimization parameters: G.A. with 7 individuals max, 5 generations max.

6.1.5 Analysis of best of generation individuals:
Figure 33 shows the fitness of the "Best of generation" individuals across 220 generations. As
expected, the fitness value of earlier individuals is higher than subsequent ones. It can be seen
that the exploration stalls for several generations at a steady value, until a better functional form
is suggested, then rapidly the fitness value decreases. It is said that the system "converged" to a
topology when the fitness value stalls for a long time (preferably at a low fitness value).

x 104 Experiment chow727 Fitness Best of Generation

5 --- -- -
-- 

--- --
3

b ------------------- ---------------------------

5 ----- ----- -- ---------- ------------- -------------------

2 ------------- ------------ ------------- ------------------

0
50 100 150 200

Generation #

Figure 33 Fitness value for the "best of generation" individuals for experiment 1.

Generation 1 has a good match for a single frequency, that follows the original change in pitch.
chow727_001_016 x 104
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Figure 34 Spectrogram, waveform and topology for best individual of Generation 1, experiment 1.

Generation 10 presents a more complex topology, that produces a set of harmonics of different
frequencies, and some of them are very close to the desired frequencies in the target. Note also
the use of the pitch input to actually control the pitch change. This relationship was "found" by
the algorithm, and it was never explicitly defined. The same applies to the envelope, is just used,
but never enforced in a particular way.
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Figure 35 Spectrogram, waveform and topology for best individual of Generation 10, experiment 1.

Generation 15 has a "better" set of harmonics, but note that a frequency around 300 Hz stays
fixed during tedrto ftetonts ept hs ti eygo ac o h agt
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Figure 36 Spectrogram, waveform and topology for best individual of Generation 15, experiment 1.

Generations 20 to 95 explore the space without too much improvement of the "best individual".
The produced sound has many of the characteristics of the one in Generation 15 with some extra
harmonics, and the tuning improves over time, but with the steady 300 Hz tone present as well.
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Figure 37 Spectrogram, waveform and topology for best individual of Generation 20, experiment 1.
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Figure 38 Spectrogram, waveform and topology for best individual of Generation 40, experiment 1.

chow727_080_002 6x 104

4------------ -------- ------

2-----------------------------

n
50 100

Generation #

0.2
- 0

2 -0.2

* -0.4

-0.8
0 0.1 0.2 0.3 0.4

Time [secl

50 200

0.1 0.2 0.3 0.4 0.5 0.6

Figure 39 Spectrogram, waveform and topology for best individual of Generation 80, experiment 1.

Generation 96 has an interesting change in the topology suggested. Even thought that it is simpler
(less functional elements), the spectrum produced is richer in harmonics. A very important feature
is that there are no "constant" tones during the whole duration of the sound. In addition, all the
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harmonics "change" at the same instant. This can be interpreted as being controlled in some way
by the pitch information.
The number of harmonics in this spectrogram is higher than desired, but some of the harmonics
lay at the right frequencies on the spectrum.
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Figure 40 Spectrogram, waveform and topology for best individual of Generation 96, experiment 1.

Generation 98 preserves the same topology as 96, but the internal parameters were changed
(during the optimization and selection procedures), and the double set of harmonics were "fine
tuned" to be at the right place. The position of the harmonics compared with the target is very
accurate, but some of their magnitudes are not correct.
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Figure 41 Spectrogram, waveform and topology for best individual of Generation 98, experiment 1.

At Generation 99 and in all subsequent generations the actual topology of the SST is preserved,
but the exploration now "focuses" on the internal parameters.
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Figure 42 Spectrogram, waveform and topology for best individual of Generation 99, experiment 1.

Generation 100 - 220: During this interval the topology never changed, and the exploration was
focused into finding a good set of parameters for fine tuning the frequency and amplitude of the
harmonics.
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Figure 43 Spectrogram, waveform and topology for best individual of Generation 100, experiment 1.
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Figure 45 Spectrogram, waveform and topology for best individual of Generation 110, experiment 1.
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Figure 46 Spectrogram, waveform and topology for best individual of Generation 114, experiment 1.
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Figure 48 Spectrogram, waveform and topology for best individual of Generation 220, experiment 1.
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Figure 48 Spectrogram, waveform and topology for best individual of Generation 220, experiment 1.

Note that the final spectrum agrees with the target in all the frequencies of the harmonics. But the
final spectrum has higher energy at the high end of the spectrum.

The "meaning" or right use for the inputs (in our case: envelope and pitch) was "found" by the
system. This information is never fed into the system in any way. Evolution finds that the changes
in the input are correlated to changes in the output, and finds a way of using these changes in a
productive way.
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6.1.6 Functionalform analysis.
The topology evolved in generation 220 is shown in Figure 48. It is possible to analyze the
functional elements and their connections to find the close form formula representation of the
topology. In this case, it is represented in equation ( 24 ).

s(t) = k1A(t)oscil 2 (k0 f (t) + f (t)oscilo (f (t))Xoscil (ko f (t))+ k2 ) (24)

Comparison between equations ( 23 ) and ( 24 ) shows a close similarity in their functional form.
The functional form of FM synthesis is characterized by a sinusoidal modulating the frequency of
another sinusoidal. This structure is present in both equations. Focusing on equation ( 24 ), note
how the envelope A(t) is used to actually serve as an envelope. Inside of oscil2, it is possible to
see a linear term controlled by the frequency (pitch), and oscillator oscilO controlled by the
frequency signal as well. There is a third oscillator oscil1 that multiplies the whole system, but a
closer analysis shows that it is also controlled by the frequency signal, and varies at the same rate
as the first part of the oscillator, reinforcing the effect of the first.
This leads us to the conclusion that the AGeSS system found a solution that shares many of the
elements of the original SST; entirely WITHOUT having information about the functional form
of the original SST, but using a set of known inputs and the target sound. This is usually known
as "system identification" or "system regression".

AGeSS used only the known inputs, target and fitness function to explore the SST space and
suggest the aforementioned SST. The target and inputs contained information about only two
pitches (A880, B988). An interesting test would be to try the evolved SST with different pitches.
Figure 49 shows a target scale (C523, D587, E659, F698, G784, A880 and B988) played with the
original FM formula for experiments 1 and 2.
This test measures to some extent the capabilities of the evolved SST to extrapolate with the
control signals, and produce good outputs. A good result would show a similar spectrogram
between target and produced sound, as is the case in Figure 50, that was produced using the
topology of the best individual of generation 220 from experiment 1.
With the results here, it is possible to say that the functional form evolved really captured the
properties of the system, and using only 2 pitches was possible to reverse engineer the system and
find a suitable model, capable of extrapolating to a broader set of pitches.
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Figure 49 Waveform and spectrogram of scale produced with the FM synthesizer of experiments 1
and 2
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Figure 50 Waveform and spectrogram of scale produced using topology for best individual of
Generation 220, experiment 1.

6.2 EXPERIMENT 2. FM SYNTHESIS (CHOW727B)

6.2.1 Selection of a target SST:
The target SST used is identical than the one employed in experiment 1 (section 6.1); a FM
synthesizer simulating the sound of a woodwind instrument.

6.2.2 Inputs/target:
The same inputs/target from experiment 1 were used.

6.2.3 Fitness Function:
The same fitness function, SFM LSE than experiment 1 was used.

-YO
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6.2.4 AGeSS parameters:
Experiment name: chow727b
Allowed functional blocks: SPLIT, KOSCIL, ADD, MULT
Number of individuals: 50
Tree max levels: 15
Tree max nodes: 80
Probabilities for G.O: copy 20%, mutation 40%, crossover 20%, new random individual 20%;
Sub-optimization parameters: G.A. with 7 individuals max, 5 generations max.

6.2.5 Analysis of best of generation individuals:
Figure 51 shows the fitness of the "Best of Generation" individuals across 1600 generations. Note
the number of generations before the dramatic improvement in the fitness value, around 700,
while this kind of improvement was noticed around only 100 generations during experiment 1.

This kind of behavior is common in genetic programming. There is no guarantee that a solution
with the desired performance will be found, neither is possible to estimate the number of
generations for having a particular fitness value. This is because the first populations are random
individuals, that belong to different parts of the SST space, but there is no guarantee that they are
uniformly distributed in this space, neither that they sample the most relevant sections of the
space.

x 104 Experiment chow727b Fitness Best of Generation

2 -- --- --- ---- - - ---- ------- -- --

1 -------------- -------- ------- ------ -------

0
200 400 600 600 1000 1200 1400 1600

Generation #

Figure 51 Fitness value for the "best of generation" individuals for experiment 2.

Following, we will show the waveform and spectrograms of some selected individuals during the
run, and the topology of the last selected individual.
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Figure 52 Spectrogram and waveform for best individual of Generation 1, experiment 2.
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Figure 53 Spectrogram and waveform for best individual of Generation 14, experiment 2.
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Figure 54 Spectrogram and waveform for best individual of Generation 45, experiment 2.
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Figure 55 Spectrogram and waveform for best individual of Generation 150, experiment 2.
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Figure 56 Spectrogram and waveform for best individual of Generation 300, experiment 2.
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Figure 57 Spectrogram and waveform for best individual of Generation 450, experiment 2.
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Figure 58 Spectrogram and waveform for best indivi
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Figure 59 Spectrogram and waveform for best indivi
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Figure 60 Spectrogram and waveform for best indivi
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chow727b_1000_001 X 104
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Figure 62 Spectrogram, waveform and topology for best individual of the Generation 1400,
experiment 2.

6.3 EXPERIMENT 3. PIANO (DES44)

6.3.1 Selection of a target SST:
For this experiment there is no know target SST. The target sound was recorder from a
commercial sound synthesis module.
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Figure 61 Spectrogram and waveform for best individual of Generation 1000, experiment 2.
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6.3.2 Inputs/target:
The selected target was a piano note (C261) of about 1 second of duration. The note was sampled
from a synthesis module, and the source algorithm was not know.
The inputs were computed from the actual target, as the envelope and extracted pitch.

6.3.3 Fitness Function:
A simple LSE fitness functions was used for this experiment, as discussed in section 4.5.2.

6.3.4 AGeSS parameters:
Experiment name: des44
Allowed functional blocks: SPLIT, KOSCIL, ADD, MULT
Number of individuals: 60
Tree max levels: 30
Tree max nodes: 300
Probabilities for G.O: copy 20%, mutation 60%, crossover 20%,
Sub-optimization parameters: G.A. with 10 individuals max, 4 generations max.

6.3.5 Analysis of best of generation individuals:
Figure 63 shows the fitness of the "Best of Generation" individuals across 120 generations.

In this experiment, the improvement is gradual, and not as sudden as in the first two experiments
experiment 1.

Experiment des44 Fitness Best of Generation

jk

2 ---- j- - -

1 --- - - - - -- - - - - -- - -

0
20 40 60 80 100 120 140 160 180 200

Generation #

Figure 63 Fitness value for the "best of generation" individuals for experiment 3.

A short summary of spectrograms and waveforms of some of the best individuals of some
generations will follow:
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gure 64 Spectrogram and waveform for best individual of Generation 1, experiment 3.
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Figure 65 Spectrogram and waveform for best individual of Generation 71, experiment 3.
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Figure 66 Spectrogram and waveform for best individual of Generation 118, experiment 3.
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6.4 SUMMARY OF EXPERIMENTS
The first two experiments provided good insight of the potential of the approach, as well as the
kind of results that can be expected with the AGeSS system.
The functional form of the SSTs suggested by AGeSS shows that the approach is capable of
finding suitable algorithms capable of synthesizing a given target sound. In informal listening
tests, the sounds produced by the first two experiments were remarkably close to the target sound
(Chowning's FM instrument). The ability of play a scale, that also keeps the similitude between
the example and the produced sound is a very important suggestion; but is important to note that
there is no evidence that is the case in all the experiments.
The third experiment, based on an unknown source (piano), gave good results. The sound
synthesized with the evolved SSTs had some of the characteristics that a sound designer will look
for in a piano: a string hit by a hard object, and the string vibrating in a resonant enclosure. The
high harmonics die faster than lower harmonics.
Even though that this experiment was based on examples of a single note (therefore, extrapolation
was not enforced by the examples), the results are very encouraging.
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7 CONCLUSIONS

Sound synthesizers are computer programs that are designed to produce digital sound samples
that can (bur are not limited to) emulate the sound of a given musical instrument. The driving
questions of this research were how are these sound synthesis algorithms conceived? Can this
design process be automated? The goal was to explore the fundamentals of SSTs and propose an
approach for automating their design.

This exploration started by analyzing a set of the so-called "classic SSTs" for regularities in their
functional elements and functional form. Then, a representation for SSTs was proposed, capable
of representing many of the classic SSTs and even novel ones. With this representation, the SST
space is defined as the space spanned by "all" the possible SSTs capable of being represented
using a given set of functional elements.
Finally, design is stated as a search in the multidimensional space of the SSTs.

This search is done using evolutionary methods, in particular Genetic Programming, which has
proven useful to explore complex spaces like this one.

The following requirements are essential for using GP as a search tool in the SST space:
- A representation of the search space, in this case, the SST space
- A way of manipulating the selected representation.
- A function to evaluate the performance of each SST with regard to an example response.

Representation:

SSTs are algorithms for producing sound. Their representation should have the form of a
language capable of expressing their constitutive parts, such as functional elements and functional
form. For this language, it is desired that it exhibits the closure property, which states that any
SST can be expressed using elements from this language. For our research it is very difficult to
probe a closure on the SST space, but it is possible to define a general enough set and language
that spans over many possible SSTs.

Another property that is desired is manipulability. SSTs will be "suggested" by an autonomous
algorithm. The more structured their representation and ability of being manipulated, the easier it
is for the algorithm to keep their validity across manipulations.

Design as a search in the SST space:

Design is stated as a search in the multidimensional SST space. Each point in this space will
represent a different functional form and set of internal parameters.
The goal is then to find a point in the SST space that will fulfill the specifications of design. It is
not clear how neighboring points are related in this representation. In addition, the number of
possible points in this space is huge, making it impossible to do a thorough search of the space.
These characteristics make the search of the SST space a very complex problem. Evolutionary
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methods, such as Genetic Programming, have proved satisfactory when dealing with these types
of problems.

Fitness Function (FF):

This is a measure of the performance of the SST. The FF should return an analytical value that
reflects how the measured features in a SST follow a desired set of features in a target example.
These features can be measured on the SST itself or in the results (sound samples) produced by
the SST.

The analyzed FF measured a set of features extracted from the sound produced by the SST and
the target sound from the training examples. Some of them were completely analytical (like the
Least Squared Error magnitude spectrogram), but one of them included perceptual criteria by
including a model of the human hearing and the simultaneous frequency masking phenomena.

It is possible to fashion different FFs that measure other features as well on the sound produced
by the SST or even on the SST itself. An example of the latter is to measure the complexity or
efficiency of the produced algorithm, memory requirements, etc.
It is even possible to mix these two (or more) types of FFs to achieve a meta-FF capable of
measuring SSTs for an assorted variety of features.

Automatic Generation of Sound Synthesizers (AGeSS) system:

The developed AGeSS system shows the suggested approach for automatic design of SSTs to be
practical and feasible.

The experiments show that the selected set of functional elements and the representation scheme
are effective for the automated design of some common synthesis algorithms, especially the
frequency modulation techniques.
But the major drawback of our implementation was the excessive computation time for each
example (from 20 - 200 hours per experiment). This made the development process of the actual
system a very extenuating procedure, from simple operations such as bug tracking, to major trials
of different sets of functional elements, rules of assembling or number of training examples. A
priority in the list for required improvements is the optimization of the system for lower
computation times.

7.1 FUTURE DIRECTIONS

One of the most necessary improvements is the optimization of the code of the AGeSS system.
This system accomplished the goal of showing the possibilities of the suggested approach, but at
this stage is not very practical as a research tool, especially because of the long computation time
that it is required for every run.

QQ
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This can be accomplished using the parallelism inherent in the evolutionary methods. A
population of SSTs can be distributed over many processors/computers and run independently for
a while, and then exchange results to create a new population and distribute it on different
processors.

As far as user interface is concerned, it is desirable to improve the means of parameter entry, pre-
processing of the examples and visualization of results.

The experiments outlined in this research cover only some basic aspects of the many possibilities
with this approach. New sets of experiments should be tried, such as:

- Evolution of SSTs for more complex sounds, i.e., natural acoustic instruments.
- Multi target evolution: evolution using different number (and type) of targets.
- Exploration with different functional elements: analyze if the type and number of basic

functional elements is optimal. Realize experiments evolving SSTs with different types of
elements and compare results.

The sets of examples (inputs/target pairs) can be seen as constraints that should be met by the
evolved SST. In evolutionary computation, it is possible to change the number and type of
constraints over the course of the run. Analysis of the type and number of constraints that could
better guide the search in the SST space is needed. For example, some the experiments outlined in
this research used constraints (examples) in the form of two pitches. A SST was evolved for these
two pitches. It would make sense after having a "good" model for these two pitches, to change
the constraints to three or four pitches. In that way, the search in the SST space starts from a point
that is "optimal" for at least two pitches.
The point here is that the constraints can be given at a rate that helps to guide the search process
in the SST space. If too many constraints are given from the beginning, it is possible that the
search is not as successful.

Another course of research that merits attention is the expansion of the developed theory into a
more general DSP framework. Even thought the used functional elements and their relationship
can comprise the linear, time invariant DSP techniques, they were used from a generative
viewpoint. It could be interesting to apply these methods to processing-like problems numerous in
DSP.
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8 APPENDIX

8.1 SYNTAX RULES FOR EXPRESSION TREES
These rules follow the Backus Naur Form (BNF) (Marcotty and Ledgard 1987). They are used by
the proposed Expression Tree representation scheme.
The meta-symbols used are:

meaning "is defined as"

I meaning "'or"9
<> angle brackets used to surround category names (non-terminals, syntax rules names)
AA hat used to surround terminals

0 parentheses used to surround the probability of a given rule (in percentage, from 0 to 100)

RULES 10.txt
(100) ASTARTA<START>

<CCSA>

<TYPEA>

(33) <TYPEA>
(33) <TMFA>
(34) <DCFA>

<TYPEA> (50) AA

(50) A

(0) AF
<NUMVAL> <NUMVAL> <NUMVAL>

1 (0) AF

DDA <CCSA>
ULTA <CCSA>
LTOA <DCFA>

ILTERA

<NUMVAL> <NUMVAL> <NUMVAL>

<DCFA> <NUMVAL> <NUMVAL>
<NUMVAL> <NUMVAL> <NUMVAL> <NUMVAL>

<TMFA>
<CCS W>

<CCS_W>

<CCS W>

<TYPEB><CCS_

<TYPEB><CCS_

<TYPEB><CCS_

(50) ASERIES 1_AA

(0) ASERIES2_AA

(0) ASERIES3_AA

<CCSA> <TYPEA> <TYPEB> <CCSW> <CCSW>

<CCSA> <TYPEA> <TYPEB> <CCSW> <CCSW>

<CCSA> <TYPEA> <TYPEB> <CCSW> <CCSW>

(50) APARALLEL1_AA <CCSA> <TYPEA>
W> <CCS_W> <CCSW> <CCSW> <CCSW> <CCSW>

(0) APARALLEL2_AA <CCSA> <TYPEA>
W> <CS_W> <CCSW> <CCSW> <CCSW> <CCSW>

(0) APARALLEL3-AA <CCSA> <TYPEA>
W> <CCS_W> <CCSW> <CCSW> <CCSW> <CCSW>

<TYPEA> <TYPEB>

<TYPEA> <TYPEB>

<TYPEA> <TYPEB>

(50) ANOP_A A
(50) AEND_AA

(33) <TYPEB>

<DCFA>

<CCSB>

<CCSA>
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<TMFB>
<DCFB>

ASPLITA <CCSB>
^KOSCILA <DCFB> <NUMVAL> <NUMVAL>
^KOSCIL2A <DCFB> <NUMVAL> <NUMVAL> <NUMVAL>

(50) ASERIESl1_BA <CCSB> <TYPEB> <TYPEA> <CCSW> <CCSW>

(0) ASERIES2_BA <CCSB> <TYPEB> <TYPEA> <CCSW> <CCSW>

(0) ASERIES3_BA <CCSB> <TYPEB> <TYPEA> <CCSW> <CCSW>

APARALLELl_BA <CCSB> <TYPEB>
<CCSW> <CCSW> <CCSW> <CCSW>

APARALLEL2_BA <CCSB> <TYPEB>
<CCSW> <CCSW> <CCSW> <CCSW>

APARALLEL3_BA <CCSB> <TYPEB>
<CCSW> <CCSW> <CCSW> <CCSW>

<TYPEB> <TYPEA>

<TYPEB> <TYPEA>

<TYPEB> <TYPEA>

1 (50)
<TYPEA> <CCSW> <CCSW>

1 (0)
<TYPEA> <CCS_W> <CCSW>

(0)
<TYPEA> <CCS_W> <CCSW>

(50) ANOP_B A
(50) AEND_BA

(50) <TMFW>
(50) <DCFW>

(33)
(33)
(34)
(0)
(0)

^RECONNECT A
^RECONNECT2 A
^RECONNECT3 A
^RECONNECT4 A
^RECONNECT5A

(50) ANOP_WA

(50) AEND_WA

(100) ACONSTANTA

<CCSB>

<CCSW>
<CCSW>
<CCSW>
<CCSW>
<CCS_W>

<CCSW>

End rules:
The size of the trees was controlled by restricting the maximum allowed number of levels (depth)
and the maximum allowed number of nodes. These values are difficult to follow strictly, but it is
possible to use them as general guidelines. The suggested tree generation algorithm was taken
from (Koza 1992), and it was slightly modified to use two creation rules files. The firs file was
used at the "beginning" of the tree, when no limit in nodes or depth has been reached. When any
of these limits is reached, the end-rules file is used. This file is conceived in a way that will

n-)

(33)
(34)

(50)
(0)
(50)

<TYPEB>

<TMFB>
<CCS W>

<CCS W>

<CCS W>

<DCFB>

<CCSW>

<TMFW>

<DCFW>

<NUMVAL>
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"gracefully" terminate the branch of the tree. In short: no nodes with further branches will be
allowed there.

End Rules 1O.txt

<CCSA> (100) <DCFA>

<TYPEA> (50) AADDA <CCSA>
| (50) AMULTA <CCSA>

(0) AFLTOA <DCFA> <NUMVAL> <NUMVAL> <NUMVAL> <NUMVAL>
<NUMVAL> <NUMVAL>

1 (0) ^FILTER^
<NUMVAL> <NUMVAL> <NUMVAL> <NUMVAL>

<DCFA>

<CCSB>

<TYPEB>

<DCFA> <NUMVAL> <NUMVAL>

: (100) ^ENDA^

: (100) <DCFB>

(50) "SPLIT" <CCSB>
(0) "KOSCIL" <DCFB> <NUMVAL> <NUMVAL>
(50) ^KOSCIL2^ <DCFB> <NUMVAL> <NUMVAL> <NUMVAL>

<DCFB> (100) AENDBA

<CCSW> (100) <DCFW>

<DCFW> (100) ^END_ W

<NUMVAL> (100) "CONSTANT"

By following these rules, it is possible to keep validity of the trees even under strong
manipulation, or random generation.
An example of a tree generated using these rules can be seen in Figure 67.
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-- RagoTreePlot 2001 -
Output file: develop.ps
Total Nodes: 18

Figure 67 Example of expression tree using syntax rules from rules1O.txt

8.2 SOUND SYNTHESIS ENGINE

Messaging System
A custom engine for sound synthesis was developed. It uses an object-oriented approach of
interconnected functional elements, which exchange sound samples.
Each functional element (block) encapsulates all the functionality required by a functional
element drawn from the analysis of the SSTs performed in section 2.3. The communication
between functional elements is done using a central messaging loop. Every time that a block has
"all new" inputs in its input pins, the processing procedure is performed (using the inputs) and a
new output is processed. Outputs are posted into the message loop to be delivered to their block
destinations.
This type of system was inspired by Microsoft's Component Object Model (COM) (Rogerson
1997) used in technologies as Directshow and DirectX, but is important to note that the system
was developed from scratch, without using any proprietary library or resource.

The types of blocks used where:

SOURCE BLOCK
With no inputs and one or more outputs. This block usually reads information in a file (sound
samples) and output them.



Automatic Generation of Sound Synthesis Techniques

PROCESSING BLOCK
One or more inputs and one or more outputs.
These blocks (most blocks are of this type) have the ability of reading sound samples at their
inputs, and when "all" of the inputs have "new" information, a processing function is called. The
processing function can perform any desired operation on the input samples, and produces output
samples.

RENDERER BLOCK
One or more inputs and no outputs. These blocks write the sound samples that are input into a
file.
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