
Application of stochastic grammars to
understanding action

by
Yuri A. Ivanov

M.S., Computer Science
State Academy of Air and Space Instrumentation, St. Petersburg, Russia

February 1992

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES

at the
Massachusetts Institute of Technology

February 1998

@ Massachusetts Institute of Technology, 1998
All Rights Reserved

Signature of Author
Program in Media

A
Arts and
January

Sciences
23, 1997

Certified by
Aaron F. Bobick

LG Electronics Inc., Career Development
Assistant Professor of Computational Vision

Progra n Media Arts and Sciences
I Thesis Sufervisor

V~v StehenA. Benton
Chairperson

Departmental Committee on Graduate Students
Program in Media Arts and Sciences

Accepted by

FEB1 11998
LleARES

Application of stochastic grammars to understanding action

by
Yuri A. Ivanov

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on January 23, 1997
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

This thesis addresses the problem of using probabilistic formal languages to describe and
understand actions with explicit structure. The thesis explores several mechanisms of pars-
ing the uncertain input string aided by a stochastic context-free grammar. This method,
originating in speech recognition, lets us combine a statistical recognition approach with a
syntactical one in a unified syntactic-semantic framework for action recognition.

The basic approach is to design the recognition system in a two-level architecture. The
first level, a set of independently trained component event detectors, produces the likeli-
hoods of each component model. The outputs of these detectors provide the input stream
for a stochastic context-free parsing mechanism. Any decisions about supposed structure of
the input are deferred to the parser, which attempts to combine the maximum amount of the
candidate events into a most likely sequence according to a given Stochastic Context-Free
Grammar (SCFG). The grammar and parser enforce longer range temporal constraints, dis-
ambiguate or correct uncertain or mis-labeled low level detections, and allow the inclusion
of a priori knowledge about the structure of temporal events in a given domain.

The method takes into consideration the continuous character of the input and performs
"structural rectification" of it in order to account for misalignments and ungrammatical
symbols in the stream. The presented technique of such a rectification uses the structure
probability maximization to drive the segmentation.

We describe a method of achieving this goal to increase recognition rates of complex
sequential actions presenting the task of segmenting and annotating input stream in various
sensor modalities.

Thesis Supervisor: Aaron F. Bobick
Title: Assistant Professor of Computational Vision

Application of stochastic grammars to understanding action

by
Yuri A. Ivanov

The following people served as readers for this thesis:

Alex Pentland
Toshiba Professor of Media Arts and Sciences

Media Laboratory, Massachusetts Institute of Technology

Walter Bender
Associate Director for Information Technology

Media Laboratory, Massachusetts Institute of Technology

Reader:

Reader:

Acknowledgments

First and foremost I would like to thank my advisor, professor Aaron Bobick, for giving me

the opportunity to join his team at MIT and introducing me to machine vision. I really

appreciated his open-mindedness, readiness to help and listen and giving me the freedom

to see things my own way. Every discussion with him taught me something new. I consider

myself very fortunate to have him as my advisor - both personally and professionally he has

given me more than I could ever ask for. Thanks, Aaron.

I would like to thank my readers, Walter Bender and Sandy Pentland, for taking the

time from their busy schedules to review the thesis and for their comments and suggestions.

This work would not be possible without the input from all members of the High Level

Vision group (in no particular order - Drew, Stephen, Lee, Claudio, Jim, John, Chris

and Martin). My special thanks to Andrew Wilson, who had the misfortune of being my

officemate for the last year and a half and who had the patience to listen to all my ramblings

and answer all my endless questions to the degree I never expected.

But I guess this whole thing wouldn't even have happen if George "Slowhand" Thomas

hadn't come along and told me that while I am looking for better times, they pass. Thanks,

bro.

Thanks to Mom and Dad for giving me all their love and always being there for me,

regardless what mood I was in.

Thanks to Margie for going the extra ten miles every time I needed it.

And, finally, thanks to my wife of "has it been that long already?" years, Sarah. Thank

you for being so supportive, loving, patient and understanding. Thank you for putting up

with all my crazy dreams and making them all worth trying. For you, I only have one

question: "You know what?"

Contents

1 Introduction and Motivation

1.1 Motivation

1.1.1 Structure and Content

1.1.2 Bayesian View

1.1.3 AI View .

1.1.4 Generative Aspect

1.2 Example I: Explicit Structure and Disambiguation

1.3 Example II: Choosing the Appropriate Model . . .

1.4 Approach .

1.5 Outline of the Thesis

2 Background and Related Work

2.1 Motion Understanding

2.2 Pattern Recognition

2.3 Methods of Speech Recognition...

2.4 Related Work .

3 Stochastic Parsing

3.1 Grammars and Languages

3.1.1 Notation .

3.1.2 Basic definitions

3.1.3 Expressive Power of Language Model

3.2 Stochastic Context-Free Grammars

3.3 Earley-Stolcke Parsing Algorithm

3.3.1 Prediction

9

. . 10

. . 10

. . 11

. . 13

. . 14

. . 15

. . 17

. . 19

. . 19

28

. 28

. 28

. 28

. 29

. 31

. 32

. 33

3.4

3.5

3.3.2 Scanning .

3.3.3 Completion .

Relation to HMM .

Viterbi Parsing .

3.5.1 Viterbi Parse in Presence of Unit Productions . .

. . . . 37

. . . . 37

. . . . 39

. . . . 40

. . . . 41

44

. 45

. 45

. 46

. 46

. 49

. 51

. 5 1

. 51

. 5 1

4 Temporal Parsing of Uncertain Input

4.1 Terminal Recognition

4.2 Uncertainty in the Input String

4.3 Substitution .

4.4 Insertion .

4.5 Enforcing Temporal Consistency

4.5.1 Misalignment Cost

4.6 On-line Processing .

4.6.1 Pruning .

4.6.2 Limiting the Range of Syntactic Grouping . . .

5 Implementation and System Design

5.1 Component Level: HMM Bank

5.2 Syntax Level: Parser

5.2.1 Parser Structure

5.2.2 Annotation Module

6 Experimental Results

6.1 Experiment I: Recognition and Disambiguation

6.2 Recognition and semantic segmentation

6.2.1 Recursive Model

7 Conclusions

7.1 Sum m ary .

7.2 Evaluation .

7.3 Extensions. .

7.4 Final Thoughts

66

66

66

68

68

List of Figures

1-1 Example: Parsing strategy. 13

1-2 Error correcting capabilities of syntactic constraints 14

1-3 Simple action structure . 16

1-4 "Secretary" problem . 17

3-1 Left Corner Relation graph . 35

3-2 Viterbi parse tree algorithm . 43

4-1 "Spurious symbol" problem . 47

4-2 Temporal consistency . 49

5-1 Recognition system architecture . 54

5-2 Example of a single HMM output . 55

5-3 Component level output . 56

6-1 SQUARE sequence segmentation . 60

6-2 STIVE setup . 61

6-3 Output of the HMM bank . 62

6-4 Segmentation of a conducting gesture (Polhemus) 63

6-5 Segmentation of a conducting gesture (STIVE) 63

6-6 Recursive model . 64

List of Tables

1.1 Complexity of a recursive task . 19

3.1 Left Corner Relation matrix and its RT closure 36

3.2 Unit Production matrix and its RT closure 39

Chapter 1

Introduction and Motivation

In the last several years there has been a tremendous growth in the amount of computer

vision research aimed at understanding action. As noted by Bobick [5] these efforts have

ranged from the interpretation of basic movements such as recognizing someone walking

or sitting, to the more abstract task of providing a Newtonian physics description of the

motion of several objects.

In particular, there has been emphasis on activities or behaviors where the entity to be

recognized may be considered as a stochastically predictable sequence of states. The greatest

number of examples come form work in gesture recognition [30, 6, 28] where analogies to

speech and handwriting recognition inspired researchers to devise hidden Markov model

methods for the classification of gestures. The basic premise of the approach is that the

visual phenomena observed can be considered Markovian in some feature space, and that

sufficient training data exists to automatically learn a suitable model to characterize the

data.

Hidden Markov Models ([22]) have become the weapon of choice of the computer vision

community in the areas where complex sequential signals have to be learned and recognized.

The popularity of HMMs is due to the richness of the mathematical foundation of the model,

its robustness and the fact that many important problems are easily solved by application

of this method.

While HMMs are well suited for modeling parameters of a stochastic process with as-

sumed Markovian properties, their capabilities are limited when it comes to capturing and

expressing the structure of a process.

If we have a reason to believe that the process has primitive components, it might

be beneficial to separate the interrelations of the process components from their internal

statistical properties in the representation of the process. Such a separation lets us avoid

over-generalization and employ the methods which are specific to the analysis of either the

structure of the signal or its content.

1.1 Motivation

Here we establish the motivation for our work based on four lines of argument. First we show

how the separation of structural characteristics from statistical parameters in a vision task

can be useful. Then we proceed to discuss the proposed approach in Bayesian formulation,

in Al framework and, finally, present the motivation in context of recognition of a conscious

directed task.

1.1.1 Structure and Content

Our research interests lie in the area of vision where observations span extended periods

of time. We often find ourselves in a situation where it is difficult to formulate and learn

parameters of a model in clear statistical terms, which prevents us from using purely sta-

tistical approaches to recognition. These situations can be characterized by one or more of

the following properties:

" complete data sets are not always available, but component examples are easily found;

e semantically equivalent processes possess radically different statistical properties;

" competing hypotheses can absorb different lengths of the input stream raising the

need for naturally supported temporal segmentation;

" structure of the process is difficult to learn but is explicit and a priori known;

" the process' structure is too complex, and the limited Finite State model which is

simple to estimate, is not always adequate for modeling the process' structure.

Many applications exist where purely statistical representational capabilities are limited

and surpassed by the capabilities of the structural approach.

Structural methods are based on the fact that often the significant information in a

pattern is not merely in the presence, absence or numerical value of some feature set.

Rather, the interrelations or interconnections of features yield most important information,

which facilitates structural description and classification. One area, which is of particular

interest is the domain of syntactic pattern recognition. Typically, the syntactic approach

formulates hierarchical descriptions of complex patterns built up from simpler sub-patterns.

At the lowest level, the primitives of the pattern are extracted from the input data. The

choice of the primitives distinguishes the syntactical approach from any other. The main

difference is that the features are just any available measurement which characterizes the

input data. The primitives, on the other hand, are sub-patterns or building blocks of the

structure.

Superior results can be achieved by combining statistical and syntactical approaches

into a unified framework in a statistical-syntactic approach. These methods have already

gained popularity in Al and speech processing (Eg. [17]).

The statistical-syntactic approach is applicable when there exists a natural separation

of structure and contents. For many domains such a division is clear. For example, consider

ballroom dancing. There are a small number of primitives (e.g. right-leg-back) which

are then structured into higher level units (e.g. box-step, quarter-turn, etc.). Typically

one will have many examples of right-leg-back drawn from the relatively few examples

each of the higher level behaviors. Another example might be recognizing a car executing

a parallel parking maneuver. The higher level activity can be described as first a car

executes an pull-along-side primitive followed by an arbitrary number of cycles through

the pattern turn-wheels-left, back-up, turn-wheels-right, pull-forward. In these

instances, there is a natural division between atomic, statistically abundant primitives and

higher level coordinated behavior.

1.1.2 Bayesian View

Suppose we have a sequence of primitives composing the action structure S and the obser-

vation sequence 0. We assume a simple probabilistic model of an action where particular

S produces some 0 with probability P(S,0). We need to find 5 such that P(SIO) =

maxs P(SIO).

Using Bayes rule:

P(SIO) = P(OIS)P(S)(1.1)
P(O)

The MAP estimate of S is, therefore,

S = arg max P(OIS)P(S)
S

The first term, P(OIS), is a component likelihood (termed acoustic model in speech

recognition), representing probability of the observation given the sequence of primitives.

It is obtained via recognition of the primitive units according to some statistical model.

The second term, P(S) is a structure model (also called a language model) as it describes

the probability associated with a postulated sequence of primitives.

Typically, when neither term is known they are assumed to be drawn from a distribution

of some general form and their parameters are estimated.

The motivation of this work arises from the need to model action-based processes where

the structure model can be arbitrarily complex. While the component likelihood is based

on variations in the signal and a statistical model is typically appropriate, the structure

model in our context is based on behavior, or directed task. The corresponding probability

distribution is often non-trivial and difficult to model by purely statistical means.

De-coupling between statistical models of the structure and the underlying primitives is

desirable in our context, since it makes it possible to deploy the appropriate machinery at

each level. In order to do that we need to develop a mechanism for independent estimation

of models at each level and propagation of constraints through such a two-level structure.

There have been attempts to de-couple structural knowledge from component knowledge

and express the structure via establishing interrelations of the components, realizing them

in the architecture of the recognition system. For instance, in speech recognition, grammar

networks are widely used to impose syntactic constraints on the recognition process. One

such example is the parsing strategy employed by an HMM Tool Kit, developed by Entropic

Research Lab. Individual temporal feature detectors can be tied together according to the

expected syntax. The syntactic model is expressed by a regular grammar in extended

Backus-Naur form. This grammar is used to build a network of the detectors and perform

long sequence parse by a Viterbi algorithm based on token passing.

The resulting grammar network is shown in figure 1-1a. The structure of the incoming

Parser ab
c d

ab

d
a) e b)

Figure 1-1: Illustration of different parsing strategies. a) Example of HTK - individual temporal
feature detectors for symbols a, b, c, d and e are combined into a grammar network. b) Proposed
architecture which achieves de-coupling between the primitive detectors and the structural model
(probabilistic parser in this case).

string can be described by a non-recursive, finite state model.

Our approach goes further in de-coupling the structure from content. We do not impose

the structural constraints on the detectors themselves. Instead we run them in parallel,

deferring the structural decisions to the parser, which embodies our knowledge of the action

syntax. A clear advantage of this architecture is that the structural model can take on

arbitrary complexity, not limited by an FSM character of the network, according to our

beliefs about the nature of the action.

1.1.3 AI View

Al approaches to recognition were traditionally based on the idea of incorporating the

knowledge from a variety of knowledge sources and bringing them together to bear on the

problem at hand. For instance, the Al approach to segmentation and labeling of the speech

signal is to augment the generally used acoustic knowledge with phonemic knowledge, lexical

knowledge, syntactic knowledge, semantic knowledge and even pragmatic knowledge.

Rabiner and Juang ([23]) show that in tasks of automatic speech recognition, the word

correcting capability of higher-level knowledge sources is extremely powerful. In particular,

they illustrate this statement by comparing performance of a recognizer both with and

without syntactic constraints (figure' 1-2). As the deviation (noise) parameter SIGMA

gets larger, the word error probability increases in both cases. In the case without syntactic

'Reprinted from [23]

>- 0.7

D
-D 0 .6
4

o 0.5-
0.

I 0.4-
0

0 0.3-

0.1-

0.0 V - I I I - - - I I I I

0.0 0.5 1.0 1.5 2.0 2.5
SIGMA

Figure 1-2: Error correcting capabilities of syntactic constraints

constraints, the error probability quickly leads to 1, but with the syntactical constraints

enforced, it increases gradually with an increase in noise.

This is the approach to recognition of structured visual information which we take in

this work. It allows us to not only relieve the computational strain on the system, but also

to make contextual decisions about likelihoods of each of the model as we parse the signal.

1.1.4 Generative Aspect

In problems of visual action recognition we deal with problems which originate in task-

based processes. These processes are often perceived as a sequence of simpler semantically

meaningful sub-tasks, forming the basis of the task vocabulary.

As we speak of ballet ([11]), we speak of pli6 and arabesque and how one follows another 2

as we speak of tennis or volleyball, we speak of backhand and smash and of playing by the

rules. This suggests that when we turn to machines for solving the recognition problems

in higher level processes which we, humans, are used to dealing with, we can provide the

machines with many intuitive constraints, heuristics, semantic labels and rules which are

based on our knowledge of the generation of the observation sequence by some entity with

2Coincidentally, Webster's dictionary defines ballet as "dancing in which conventional poses and steps are

combined with light flowing figures and movements"

predictable behavior.

As we attempt to formulate algorithms for recognition of processes which are easily

decomposed into meaningful components, the context, or the structure of it can be simply

described rather than learned, and then used to validate the input sequence.

In cognitive vision we can often easily determine the components of the complex behavior-

based signal. The assumption is perhaps more valid in the context of conscious directed

activity since the nature of the signal is such that it is generated by a task-driven system,

and the decomposition of the input to the vision system is as valid as the decomposition of

the task, being performed by the observed source, into a set of simpler primitive subtasks

(eg. [9, 19, 12]).

1.2 Example I: Explicit Structure and Disambiguation

Consider an example: we will attempt to build a model which would let us perform recog-

nition of a simple hand drawing of a square as the gesture is executed. Most likely, the

direction in which "a square" is drawn will depend on whether the test subject is left- or

right- handed. Therefore, our model will have to contain the knowledge of both possible ver-

sions of such a gesture and indicate that a square is being drawn regardless of the execution

style.

This seemingly simple task requires significant effort if using only the statistical pattern

recognition techniques. A human observer, on the other hand, can provide a set of useful

heuristics for a system which would model the human's higher level perception. As we

recognize the need to characterize a signal by these heuristics, we turn our attention to

syntactic pattern recognition and combined statistical-syntactic approaches, which would

allow us to address the problem stated above.

Having a small vocabulary of prototype gestures right, left, up and down, we can

formulate a simple grammar Gsquare describing drawing a square:

a) b) c)

Right

Down Up

Left

d) e) f)

Figure 1-3: Example of the action structure. (a) - (e) Frames 278, 360, 415, 457 and 613 of a
sequence showing a square being drawn in the air. (f) shows the motion phases.

Grammar Gquare:

SQUARE - RIGHT.SQ

- LEFTSQ

RIGHTSQ -+ right down left up

- left up right down

LEFT.SQ - left down right up

right up left down

We can now identify a simple input string as being "a square" and determine if this

particular square is "right handed" or "left handed".

Humans, having observed the video sequence presented in Figure 1-3(a)-(e) have no

problem discerning a square. Furthermore, it becomes fairly clear somewhere in the middle

of the gesture that the figure drawn will be a square and not something else. This demon-

strates the fact that the expected (predicted) structure is based on the "typicality" of the

whole gesture and, after the whole gesture has been seen, helps us interpret the arcs in

Figure 1-3(f) as straight lines rather than semi-circles.

Now imagine that we are asked to identify the top side of the square. The task has to

deal with inherent ambiguity of the process - in our case we cannot really determine if a

particular part of the gesture is the top or the bottom because it can be implemented by

either left or right component gestures, depending on which version of the square is being

c)

Figure 1-4: Realization of a recursive problem using finite state network. EN - enter, GP -
give-pen, WTS - wait-till-signed, TP - take-pen, EX - exit. a) initial topology, b) added
links to take into account the case where boss uses her own pen, c) redundant network to eliminate
the invalid paths - EN-GP-*WTS--+EX and EN-*WTS-*TP-+EX.

drawn. For such locally ambiguous cases disambiguation by context is easily performed in

the setting of syntactic recognition. We will revisit this example towards the end of this

document.

1.3 Example II: Choosing the Appropriate Model

For the sake of illustration, suppose that an absent-minded secretary keeps losing his pens.

Once a day he brings a pile of papers into his boss' office to sign. Quite often he gives the

boss his pen to sign the papers and sometimes forgets to take it back. We want to build

a system which reminds the secretary that the boss did not return the pen. We can de-

scribe the behavior as a sequence of primitive events: enter, give-pen, wait-till-signed,

take-pen and exit. We build a simple sequential network of recognizers which detect the

corresponding actions, which is shown in figure 1-4a. Now, if the break in the sequence is

detected, we will sound an alarm and remind the secretary to take his pen back.

One complication to the task is that the boss occasionally uses her own pen to sign the

documents. At first sight it does not seem to present a problem - we just add two extra

arcs to the network (figure 1-4b). But on closer inspection, we realize that the system no

longer works. There is a path through the network which will allow the boss to keep her

secretary's pen.

In order to fix the problem we rearrange the network, adding one more recognizer

(wait-till-signed) and two extra links (figure 1-4c). However, the performance of the

original network will slightly drop due to a repeated wait-till-signed detector.

A case similar to the "secretary" problem that is of particular importance is the mon-

itoring of assembly-disassembly tasks. The problems of this category possess the property

that every action in the beginning of the string has an opposite action in the end. The lan-

guages describing such tasks are often referred to as "palindrome" languages. The strings

over the "palindrome" language can be described as L, : { xy I s.t. y is a mirror image of

x}. It should be clear by now that general palindromes cannot be generated by a finite state

machine. However, the bounded instances of such strings can be accepted by an explicit

representational enumeration, as was shown above, where the state (wait-till-signed)

was duplicated. The resulting growth of a finite state machine-based architecture can be

prohibitive with increase of the counted nesting.

To substantiate this claim let us look at the relation of the depth of the nesting and

the amount of the replicated nodes necessary to implement such a structure. The number

of additional nodes (which is proportional to the decrease in performance) required to

implement a general recursive system of depth d can be computed by a recurrent relation:

d

Na = 2Z(d-i+1)Ni

i= d
Ni =

(d -i +1

No = 0

where lAd is a total number of nodes in the network. The table 1.1 shows how much

larger the network3 has to be (and, correspondingly, how much slower) to accommodate the

"secretary"-type task with increasing value of d.

3We assume a simple two-node architecture as a starting point.

d Ad
2 2
3 16
4 40
5 96
6 224
7 512
8 1,152
9 2,560

10 5,632

20 11,010,048

Table 1.1: Number of additional nodes for a finite state network implementing recursive system of
depth d.

1.4 Approach

In this thesis we focus our attention on a mixed statistical-syntactic approach to action

recognition. Statistical knowledge of the components is combined with the structural knowl-

edge expressed in a form of grammar. In this framework, the syntactic knowledge of the

process serves as a powerful constraint to recognition of individual components as well as

recognition of the process as a whole.

To address the issues raised in the previous sections, we design our recognition system

in a two-level architecture, as shown in figure 1-1b. The first level, a set of independently

trained component event detectors, produces likelihoods of each component model. The

outputs of these detectors provide the input stream for a stochastic context-free parsing

mechanism. Any decisions about supposed structure of the input are deferred to the parser,

which attempts to combine the maximum amount of the candidate events into a most likely

sequence according to a given Stochastic Context-Free Grammar (SCFG). The grammar

and parser enforce longer range temporal constraints, disambiguate or correct uncertain or

mis-labeled low level detections, and allow the inclusion of a priori knowledge about the

structure of temporal events in a given domain.

1.5 Outline of the Thesis

The remainder of this thesis proceeds as follows: the next chapter establishes relations of the

thesis to previous research in the areas of pattern recognition, motion understanding and

speech processing. Chapter 3 describes the parsing algorithm which is used in this work.

Necessary extensions and modifications to the algorithm, which allow the system to deal

with uncertain and temporally inconsistent input, are presented in Chapter 4. Chapter 5

gives an overview of the system architecture and its components. Chapter 6 presents some

experimental results which were achieved using the method described in this document,

and, finally, Chapter 7 concludes the thesis with a brief outline of strong and weak points

of the proposed technique.

Chapter 2

Background and Related Work

Inspiration for this work comes primarily from speech recognition, which covers a broad

range of techniques. The thesis builds upon research in machine perception of motion and

syntactic pattern recognition. This chapter establishes relations of the thesis work to each

of the above areas.

2.1 Motion Understanding

In [5] Bobick introduces a taxonomy of approaches to the machine perception of motion.

The necessity of such a classification arises from the breadth of the tasks in the domain

of motion understanding. The proposed categorization classifies vision methods according

to the amount of knowledge which is necessary to solve the problem. The proposed tax-

onomy makes explicit the representational competencies and manipulations necessary for

perception.

According to this classification, the subject of the recognition task is termed movement,

activity or action. Movements are defined as the most atomic primitives, requiring no con-

textual or sequence knowledge to be recognized. Activity refers to sequences of movements

or states, where the only real knowledge required is the statistics of the sequence. And,

finally, actions are larger scale events which typically include interaction with the environ-

ment and causal relationships.

As the objective of the system being developed in this thesis, we define the recognition of

complex structured processes. Each of the components of the structure is itself a sequential

process, which according to the above taxonomy belongs to the category of activities. Ac-

tivity recognition requires statistical knowledge of the corresponding subsequence, modeled

in our case by a Hidden Markov Model.

The probabilistic parser performing contextual interpretation of the candidate activities

essentially draws upon the knowledge of the domain, which is represented by a grammar.

The grammar is formulated in terms of primitive activities (grammar terminals) and their

syntactic groupings (grammar non-terminals). Although no explicit semantic inferences are

made and no interactions with the environment are modeled in the current implementation

of the system, for the scope of this work they were not necessary, implicitly we allow more

extensive information to be included in the representation with minimal effort.

In the proposed taxonomy, the complete system covers the range between activities and

actions, allowing for cross-level constraint propagation and easy transition from one level

to the other.

2.2 Pattern Recognition

The approach to pattern recognition is dictated by the available information which can be

utilized in the solution. Based on the available data, approaches to pattern recognition

loosely fall into three major categories - statistical, syntactic or neural pattern recognition.

In the instances where there is an underlying and quantifiable statistical basis for the

pattern generation statistical or decision-theoretic pattern recognition is usually employed.

Statistical pattern recognition builds upon a set of characteristic measurements, or features,

which are extracted from the input data and are used to assign each feature vector to one

of several classes.

In other instances, the underlying structure of the pattern provides more information

useful for recognition. In these cases we speak about syntactic pattern recognition. The

distinction between syntactic and statistical recognition is based on the nature of the primi-

tives. In statistical approaches, the primitives are features which can be any measurements.

In syntactic recognition, the primitives must be sub-patterns, from which the pattern, sub-

ject to recognition, is composed.

And, finally, neural pattern recognition is employed when neither of the above cases

hold true, but we are able to develop and train relatively universal architectures to correctly

associate input patterns with desired responses. Neural networks are particularly well suited

for pattern association applications, although the distinction between statistical and neural

pattern recognition is not as definite and clearly drawn as between syntactical and statistic

recognition techniques.

Each of these methodologies offers distinctive advantages and has inevitable limitations.

The most important limitations for each of the approaches are summarized in the table

below.

Statistical recognition Syntactic recognition Neural recognition

Structural information Structure is difficult to Semantic information

is difficult to express learn is difficult to extract

from the network

The technique developed in this thesis is a version of a mixed statistical-syntactic ap-

proach. Low level statistics-based detectors utilize the statistical knowledge of the sub-

patterns of the higher level, syntax-based recognition algorithm, which builds upon our

knowledge of the expected structure. This approach allows to integrate the advantages

of each of the employed techniques and provides a framework for a cross-level constraint

propagation.

2.3 Methods of Speech Recognition

Speech recognition methods span an extremely broad category of problems ranging from

signal processing to semantic inference. Most interesting and relevant for our application

are the techniques used for determining word and sentence structure.

Most often the N-gram models are used to combine the outputs of word detectors into

a meaningful sentence. Given a word sequence W, mutual occurrence of all the words of W

is modeled by computing the probabilities:

P(W) = P(w1w 2 -- -wI) = P(w 1)P(w 2 |w 1)P(W 3jw1,w 2) -- -P(wIwi1 . .-w- 1)

Such a model essentially amounts to enumeration of all the word sequences and com-

puting their probabilities, which is computationally impossible to do. In practice it is

approximated by 2-3 unit long conditional probabilities and the resulting estimation P(W)

is interpolated if the training data set is limited [23].

Context-free grammars are rarely employed in moderate to large vocabulary natural lan-

guage tasks. Instead the bi- or tri-gram grammars are used to provide the language model.

Perhaps the main reason for that is the fact that CFGs are only a crude approximation of

the spoken language structure and CFG statistics are difficult to obtain. N-gram statistics,

on the other hand, are relatively straight-forward to compute and to use in practice.

The CFG model assumes a significantly greater role in small to moderate vocabulary

tasks, where the domain is more constrained and the task of recognition is to detect relatively

short and structured command sequences. In such a setting, the units of recognition are

the words of the limited vocabulary1 and a syntactical description can be formulated with

relative ease.

The latter category of speech recognition tasks is where we find the inspiration for

our work. Arguably, CFGs are even more attractive in the vision domain since recursive

structures in vision are more often the case than in speech.

2.4 Related Work

The proposed approach combines statistical pattern recognition techniques in a unifying

framework of syntactic constraints. Statistical pattern recognition in vision has a long

history and well developed tools. It is most relevant to the thesis in its application to

activity recognition.

One of the earlier attempts to use HMMs for recognition of activities is found in the

work by Yamato et al ([37]) where discrete HMMs are used to recognize six tennis strokes,

performed by three subjects. A 25 x 25 sub-sampled camera image is used as a feature

vector directly.

Activity, as defined above, was the focus of the research where the sequential character

of the observation was reflected in the sequential structure of a statistical model, such as

work by Darrell ([14]), where the recognition task is performed by a time-warping technique,

closely related to HMM methodology.

Examples of statistical representation of sequences are seen in the recent work in un-

derstanding human gesture. For instance, Schlenzig et al ([28]) describe the results of their

'At present time large vocabulary tasks cannot be accomplished on the basis of word primitives due to
computational constraints.

experiments of using HMMs for recognition of continuous gestures, which show to be a

powerful gesture recognition technique.

Starner and Pentland ([29]) propose an HMM-based approach to recognition of visual

language. The task is performed by a set of HMMs trained on several hand signs of American

Sign Language (ASL). At run time HMMs output probabilities of the corresponding hand

sign phrases. The strings are optionally checked by a regular phrase grammar. In this work

the authors fully utilize the advantages of the architecture presented in figure 1-la.

Wilson, Bobick and Cassell ([35]) analyzed explicit structure of the gesture where the

structure was implemented by an equivalent of a finite state machine with no learning

involved.

Syntactic pattern recognition is based on the advances of the formal language theory

and computational linguistics. The most definitive text on these topics still remains [1]. The

authors present a thorough and broad treatment of the parsing concepts and mechanisms.

A vast amount of work in syntactic pattern recognition has been devoted to the areas

of image and speech recognition. A review of syntactic pattern recognition and related

methods can be found in [27].

Perhaps the most noted disadvantage of the syntactical approach is the fact that the

computational complexity of the search and matching in this framework can potentially

grow exponentially with the length of the input. Most of the efficient parsing algorithms

call for the grammar to be formulated in a certain normal form. This limitation was

eliminated for context-free grammars by Earley in the efficient parsing algorithm proposed

in his dissertation ([16]). Earley developed a combined top-down/bottom-up approach

which is shown to perform at worst at O(N 3) for an arbitrary CFG formulation.

A simple introduction of probabilistic measures into grammars and parsing was shown

by Booth and Thompson ([7]), Thomason ([33]), and others.

Aho and Peterson addressed the problem of ill-formedness of the input stream. In

[2] they described a modified Earley's parsing algorithm where substitution, insertion and

deletion errors are corrected. The basic idea is to augment the original grammar by error

productions for insertions, substitutions and deletions, such that any string over the terminal

alphabet can be generated by the augmented grammar. Each such production has some

cost associated with it. The parsing proceeds in such a manner as to make the total cost

minimal. It has been shown that the error correcting Earley parser has the same time and

space complexity as the original version, namely O(N 3) and O(N 2) respectively, where N

is the length of the string. Their approach is utilized in this thesis in the framework of

uncertain input and multi-valued strings.

Probabilistic aspects of syntactic pattern recognition for speech processing were pre-

sented in many publications, for instance in [18, 15]. The latter demonstrates some key

approaches to parsing sentences of natural language and shows advantages of use of prob-

abilistic CFGs. The text shows natural progression from HMM-based methods to proba-

bilistic CFGs, demonstrating the techniques of computing the sequence probability char-

acteristics, familiar from HMMs, such as forward and backward probabilities in the chart

parsing framework.

An efficient probabilistic version of Earley parsing algorithm was developed by Stolcke

in his dissertation ([31]). The author develops techniques of embedding the probability

computation and maximization into the Earley algorithm. He also describes grammar

structure learning strategies and the rule probability learning technique, justifying usage of

Stochastic Context-Free Grammars for natural language processing and learning.

The syntactic approach in Machine Vision has been studied for more than thirty years

(Eg. [20, 4]), mostly in the context of pattern recognition in still images. The work by

Bunke and Pasche ([10]) is built upon the previously mentioned development by Aho and

Peterson ([2]), expanding it to multi-valued input. The resulting method is suitable for

recognition of patterns in distorted input data and is shown in applications to waveform

and image analysis. The work proceeds entirely in non-probabilistic context.

More recent work by Sanfeliu et al ([26]) is centered around two-dimensional grammars

and their applications to image analysis. The authors pursue the task of automatic traffic

sign detection by a technique based on Pseudo Bidimensional Augmented Regular Expres-

sions (PSB-ARE). AREs are regular expressions augmented with a set of constraints that

involve the number of instances in a string of the operands to the star operator, alleviating

the limitations of the traditional FSMs and CFGs which cannot count their arguments.

More theoretical treatment of the approach is given in [25]. In the latter work, the au-

thors introduce a method of parsing AREs which describe a subclass of a context-sensitive

languages, including the ones defining planar shapes with symmetry.

A very important theoretical work, signifying an emerging information theoretic trend

in stochastic parsing, is demonstrated by Oomen and Kashyap in [21]. The authors present

a foundational basis for optimal and information theoretic syntactic pattern recognition.

They develop a rigorous model for channels which permit arbitrary distributed substitution,

deletion and insertion syntactic errors. The scheme is shown to be functionally complete

and stochastically consistent.

There are many examples of attempts to enforce syntactic and semantic constraints

in recognition of visual data. For instance, Courtney ([13]) uses a structural approach to

interpreting action in a surveillance setting. Courtney defines high level discrete events,

such as "object appeared", "object disappeared" etc., which are extracted from the visual

data. The sequences of the events are matched against a set of heuristically determined

sequence templates to make decisions about higher level events in the scene, such as "object

A removed from the scene by object B".

The grammatical approach to visual activity recognition was used by Brand ([8]), who

used a simple non-probabilistic grammar to recognize sequences of discrete events. In his

case, the events are based on blob interactions, such as "objects overlap" etc.. The technique

is used to annotate a manipulation video sequence, which has an a priori known structure.

And, finally, hybrid techniques of using combined probabilistic-syntactic approaches

to problems of image understanding are shown in [34] and in pioneering research by Fu

(eg.[17]).

Chapter 3

Stochastic Parsing

3.1 Grammars and Languages

This section presents brief review of grammar and language hierarchy as given by Chomsky.

We discuss the complexity of the model at each level of the hierarchy and show the inherent

limitations.

3.1.1 Notation

In our further discussion we will assume the following notation:

Symbol Meaning Example

Capital Roman letter Single non-terminal A, B, ...

Small Roman letter Single terminal a, b, ...

Small Greek letter String of terminals and non-terminals A, y, ...

Greek letter e Empty string C

A minor exception to the above notation are three capital Roman literals N, T and P

which we will use to denote non-terminal alphabet, terminal alphabet and a set of produc-

tions of a grammar, respectively.

3.1.2 Basic definitions

A Chomsky grammar is a quadruple G = {N, T, P, S}, where N is a nonterminal alphabet,

T is an alphabet of terminals, P is a set of productions, or rewriting rules, written as A - p,

and S E N is a starting symbol, or axiom. In further discussion VG will denote T U N, and

V6 will stand for (T U N)* (zero or more elements of VG). The complexity and restrictions

on the grammar are primarily imposed by the way the rewriting rules are formulated.

By Chomsky's classification, we call a grammar context-sensitive (CSG) if P is a set of

rules of the form AAp - Awy and A, p, w being strings over VG, A E N, W E.

A grammar is context-free (CFG) when all its rules are of the form A -* A, where A E N,

A E V6.

A context-free grammar that has at most one non-terminal symbol on the right hand

side, that is if JAIN < 1 it is called linear. Furthermore, if all rules A -+ A of a context-free

grammar have A E T* or A E T*N, that is, if the rules have non-terminal symbol in the

rightmost position, the grammar is said to be right-linear.

And, finally, a grammar is called regular (RG) when it contains only rules of form A -+ a

or A -- aB, where A,B E N, a E T.

The language generated by the grammar G is denoted by L(G). Two grammars are

called equivalent if they generate the same language.

Rules of CFGs and RGs are often required to be presented in a special form - Chomsky

Normal Form (CNF). CNF requires for all the rules to be written as either A -+ BC or

A -+ a. Every CFG and RG has a corresponding equivalent grammar in Chomsky Normal

Form.

There exist many modifications to the Context-Free Grammars in their pure form, which

allow the model designer to enforce some additional constraints on the model, typically avail-

able in the lower Chomsky level grammar mechanism 1 . Often, these extensions are employed

when only limited capabilities of the less constrained grammar are needed, and there is no

need to implement the corresponding machine, which is in general more computationally

complex and slow.

3.1.3 Expressive Power of Language Model

The complexity and efficiency of the language representation is an important issue when

modeling a process. If we have reasons to believe that the process under consideration bears

features of some established level of complexity, it is most efficient to choose a model which

'Chomsky classification assigns level 0 to the least constrained free form grammar, realized by a general
Turing Machine. More constrained grammars and languages, such as CSG, CFG, and RG are assigned to

higher levels of the hierarchy (1, 2 and 3, respectively).

is the closest to the nature of the process and is the least complex. Chomsky language

classification offers us an opportunity to make an informed decision as to what level of

model complexity we need to employ to successfully solve the problem at hand.

Regular grammars

The regular grammar is the simplest form of language description. Its typical realization

is an appropriate finite state machine which does not require memory to generate strings of

the language. The absence of memory in the parsing/generating mechanism is the limiting

factor on the language which the regular grammar represents. For instance, recursive struc-

tures cannot be captured by a regular grammar, since memory is required to represent the

state of the parser before it goes into recursion in order to restore the state of the parsing

mechanism after the recursive invocation. As was mentioned above, regular productions

have the form: A -- aB or A -* a. This form generates a language L, : ab'm..., where

n and m are independent. In other words, knowing the value of one does not improve the

knowledge of the other.

A finite automaton is not able to count, or match, any symbols in the alphabet, except

to a finite number.

Context-free grammars

CFGs allow us to model dependencies between n and m in the language Lf consisting

of strings like anb'..., which is generally referred to as counting. Counting in Lf should

not be confused with counting in mathematical sense. In linguistics it refers to matching

as opposed to some quantitative expression. That is, we can enforce a relation between n

and m in L1 , but we cannot restrict it to have some fixed value, although it can be done by

enumeration of the possibilities. Another subtle point of the CFG model is that the counting

is recursive, which means that each symbol b matches symbols a in reverse order. That is,

by using subscripts to denote order, Lf is, in fact, aia2 ... anb ... b2bi Typically, CFG

is realized as a push-down automaton (PDA), allowing for recursive invocations of the

grammar sub-models (non-terminals).

Push-down automata cannot model dependencies between more than two elements of

the alphabet (both terminal and non-terminal), that is, a language anbnc" is not realizable

by a PDA.

Context-sensitive grammars

The main difference between CFGs and CSGs is that no production in a CFG can

affect the symbols in any other non-terminal in the string2. Context-sensitive grammars

(CSG) have an added advantage of arbitrary order counting. In other words, a context-

sensitive language L, is such that anbm ... can be matched in any order. It is realizable by

linearly-bound automaton3 and is significantly more difficult to realize than CFG. Due to

computational complexity associated with LBAs, limited context sensitivity is often afforded

by extended, or special forms of CFG.

Examples

Let us, without further explanations, list some examples of languages of different levels

of Chomsky hierarchy:

Regular L, = {anbm}

L2 = {p1ay- 1}, where p- designates reverse order of p

Context-Free L3 = {anbmcmdn}

L4 = {a b"}

L5 = { pap}

Context-Sensitive L6 = {anbmcndm}

L7 = {anbnc"}

3.2 Stochastic Context-Free Grammars

The probabilistic aspect is introduced into syntactic recognition tasks via Stochastic Context-

Free Grammars. A Stochastic Context-Free Grammar (SCFG) is a probabilistic extension of

a Context-Free Grammar. The extension is implemented by adding a probability measure

to every production rule:

A -+ A [p]

The rule probability p is usually written as P(A --+ A). This probability is a conditional

2In probabilistic framework, context freeness of a grammar translates into statistical independence of its
non-terminals.

3Essentially, a Turing machine with finite tape.

probability of the production being chosen, given that non-terminal A is up for expansion

(in generative terms). Saying that stochastic grammar is context-free essentially means

that the rules are conditionally independent and, therefore, the probability of the complete

derivation of a string is just a product of the probabilities of rules participating in the

derivation.

Given a SCFG G, let us list some basic definitions:

1. The probability of partial derivation v = p = ... A is defined in inductive manner as

(a) P(v)= 1

(b) P(v y p: :> ... A) = P(A -+ w)P(p = ... A), where production A -+ w is a

production of G, p is derived from v by replacing one occurrence of A with w,

and v, p,, A E V6*.

2. The string probability P(A '* A) (Probability of A given A) is the sum of all left-most

derivations A => ... =: A.

3. The sentence probability P(S =>* A) (Probability of A given G) is the string probability

given the axiom S of G. In other words, it is P(A|G).

4. The prefix probability P(S =** A) is the sum of the strings having A as a prefix,

P(S =*A)= P(A #* Aw)

In particular, P(S =** e) = 1.

3.3 Earley-Stolcke Parsing Algorithm

The method most generally and conveniently used in stochastic parsing is based on an

Earley parser ([16]), extended in such a way as to accept probabilities.

In parsing stochastic sentences we adopt a slightly modified notation of [31]. The notion

of a state is an important part of the Earley parsing algorithm. A state is denoted as:

i : Xk - A.Yp

where '.' is the marker of the current position in the input stream, i is the index of the

marker, and k is the starting index of the substring denoted by nonterminal X. Nonterminal

X is said to dominate substring Wk...Wi...Wl, where, in the case of the above state, wj is the

last terminal of substring p.

In cases where the position of the dot and structure of the state is not important, for

compactness we will denote a state as:

S = i : Xk - A.Yp

Parsing proceeds as an iterative process sequentially switching between three steps -

prediction, scanning and completion. For each position of the input stream, an Earley

parser keeps a set of states, which denote all pending derivations. States produced by each

of the parsing steps are called, respectively, predicted, scanned and completed. A state is

called complete (not to be confused with completed), if the dot is located in the rightmost

position of the state. A complete state is the one that "passed" the grammaticality check

and can now be used as a "ground truth" for further abstraction. A state "explains" a string

that it dominates as a possible interpretation of symbols Wk ... wi, "suggesting" a possible

continuation of the string if the state is not complete.

3.3.1 Prediction

In the Earley parsing algorithm the prediction step is used to hypothesize the possible

continuation of the input based on current position in the parse tree. Prediction essentially

expands one branch of the parsing tree down to the set of its leftmost leaf nodes to predict

the next possible input terminal. Using the state notation above, for each state S' and

production p of a grammar G = {T, N, S, P} of the form

Sk i : Xk --+ A.Yp p31
i:Xk-4 ~(3.1)

p : Y -+ V

where Y E N, we predict a state

si : i : Yi .V

Prediction step can take on a probabilistic form by keeping track of the probability of

choosing a particular predicted state. Given the statistical independence of the nontermi-

nals of the SCFG, we can write the probability of predicting a state S' as conditioned on

probability of S'. This introduces a notion of forward probability, which has the interpre-

tation similar to that of a forward probability in HMMs. In SFCG the forward probability

a; is the probability of the parser accepting the string w1...w(i-1) and choosing state S

at a step i. To continue the analogy with HMMs, inner probability, 7/, is a probability of

generating a substring of the input from a given nonterminal, using a particular production.

Inner probability is thus conditional on the presence of a nonterminal X with expansion

started at the position k, unlike the forward probability, which includes the generation

history starting with the axiom. Formally, we can integrate computation of a and -/ with

non-probabilistic Earley predictor as follows:

i : Xk --+ A.Yp [a,] . ['
Y ->+ V

where a' is computed as a sum of probabilities of all the paths, leading to the state

i : Xk -> A.Yp multiplied by the probability of choosing the production Y -> v, and 7' is

the rule probability, seeding the future substring probability computations:

a' = Ev, a(i : Xk -- A.Ypt)P(Y --+ v)

7 = P(Y - v)

Recursive correction

Because of possible left recursion in the grammar the total probability of a predicted state

can increase with it being added to a set infinitely many times. Indeed, if a non-terminal

A is considered for expansion and given productions for A

A -+Aa

-> a

we will predict A -> .a and A -> .Aa at the first prediction step. This will cause the

predictor to consider these newly added states for possible descent, which will produce the

same two states again. In non-probabilistic Earley parser it normally means that no further

expansion of the production should be made and no duplicate states should be added. In

G1:
A - BB [p1] 0 P P2

->CB [p2] P 0 P4

B - AB [3] 0 0 0
-*C [P4]

C - a [P5]

Figure 3-1: Left Corner Relation graph of the grammar G1. Matrix PL is shown on the right of
the productions of the grammar.

probabilistic version, however, although adding a state will not add any more information

to the parse, its probability has to be factored in by adding it to the probability of the

previously predicted state. In the above case that would mean an infinite sum due to

left-recursive expansion.

In order to demonstrate the solution we first need to introduce the concept of Left

Corner Relation.

Two nonterminals are said to be in a Left Corner Relation X -+L Y iff there exists a

production for X of the form X --> Y A.

We can compute a total recursive contribution of each left-recursive production rule

where nonterminals X and Y are in Left Corner Relation. The necessary correction for

non-terminals can be computed in a matrix form. The form of recursive correction matrix

RL can be derived using simple example presented in Figure 3-1. The graph of the relation

presents direct left corner relations between nonterminals of G1. The LC Relationship

matrix PL of the grammar G1 is essentially the adjacency matrix of this graph. If there

exists an edge between two nonterminals X and Y it follows that the probability of emitting

terminal a, such that

X -> Yv

Y -+ ar

[Pi]

[P2]

[P3]

[P4]
[P5]

[P6]

[P7]
[P8]

[P9]
[P10]

PL S A B C
S P1 P2

A P4
B
C P8+99

G2:

S-

-+4

-4A -+

-+4B -

->

-+4

Table 3.1: Left Corner (PL) and its Reflexive Transitive Closure (RL) matrices for a simple SCFG.

(from which follows that X - ayv) is a sum of probabilities along all the paths connecting

X with Y, multiplied by probability of direct emittance of a from Y, P(Y -> ay).

Formally,

P(a) = P(Y -+ ay)

= P(Y -> aq)

EVx P(X ** Y)

(Po(X * Y)+

P1(X - Y)+

P2(X =*Y) + ...

where Pk(X => Y) is probability of a path from X to Y of length k = 1,..., 00

In matrix form all the k-step path probabilities on a graph can be computed from its

adjacency matrix as PL. And the complete reflexive transitive closure RL is a matrix of

infinite sums, that has a closed form solution:

00

RL = P l+ P+PL+ -2 - (- -L
k=O

Thus, the correction to the completion step should be applied as first, descending the chain

of left corner productions, indicated by a non-zero value in RU:

i: Xk -+ A.Zp [ay]

VZ s.t. RL(Z,Y) # 0
Y -> v

RL S A B C

S 1 _ P2P8+P2P9 P2

A -1

B 1

C P8 + P9

AB
C
d
AB
a
bB
b
BC
B
C

--=> i : Y -+ .V [a', -']

and then correcting the forward and inner probabilities for the left recursive productions

by an appropriate entry of the matrix RL:

a' = EVA, a(i : Xk -4 A.Zp)RL(Z, Y)P(Y -- v)

7 = P(Y - v)

Matrix RL can be computed once for the grammar and used at each iteration of the

prediction step.

3.3.2 Scanning

Scanning step simply reads the input symbol and matches it against all pending states for

the next iteration. For each state Xk -+ A.ap and the input symbol a we generate a state

i + 1 : Xk - Aa.p:

i : Xk -+ A.ap -> i + 1 : Xk -+ Aa.y

It is readily converted to the probabilistic form. The forward and inner probabilities remain

unchanged from the state being confirmed by the input, since no selections are made at this

step. The probability, however, may change if there is a likelihood associated with the

input terminal. This will be exploited in the next chapter dealing with uncertain input. In

probabilistic form the scanning step is formalized as:

i : Xk - A.ap [a,7-] -=:> i + 1 : Xk - Aa.p [a, 7]

where a and y are forward and inner probabilities.

Note the increase in i index. This signifies the fact that scanning step inserts the states

into the new state set for the next iteration of the algorithm.

3.3.3 Completion

Completion step, given a set of states which just have been confirmed by scanning, updates

the positions in all the pending derivations all the way up the derivation tree. The position

in expansion of a pending state j : Xk -+ A.Yp is advanced if there is a state, starting at

position j, i : Y -+ v., which consumed all the input symbols related to it. Such a state

can now be used to confirm other states, expecting Y as their next non-terminal. Since the

index range is attached to Y, we can effectively limit the search for the pending derivations

to the state set, indexed by the starting index of the completing state, j:

j:Xk --+ A.Y p
-> iZ: Xk --> AY.yi :KY ->v.

Again, propagation of forward and inner probabilities is simple. New values of a and -

are computed by multiplying the corresponding probabilities of the state being completed

by the total probability of all paths, ending at i :Y -+ v. . In its probabilistic form,

completion step generates the following states:

j: Xk --+ A.Yp [a,-/]
-=:> i : Xk - AY.y [a',70y

i :Y ->* v. [a", 7"]/

a' = EyA,4 a(i : Xk -- A.Yp)-y"(i : Y- v.)

7 = EyA,47(i : Xk -- A.Yp)-"(i : Y- v.)

Recursive correction

Here, as in prediction, we might have a potential danger of entering an infinite loop. Indeed,

given the productions

A - B

-> a

B - A

and the state i : A3 -+ a., we complete the state set j, containing:

j : A - B

j:A -- . a

j : B - A

Among others this operation will produce another state i : A3 -- a. , which will cause

the parse to go into infinite loop. In non-probabilistic Earley parser that would mean that

we just simply do not add the newly generated states and proceed with the rest of them.

However, this will introduce the truncation of the probabilities as in the case with prediction.

It has been shown that this infinite loop appears due to so-called unit productions ([32]).

Pu S A B C

S P2
A
B

C p 1

IRu 1[S IA IB IC I

S 1 p2p9 P2
A1
B1
C pg 1

Table 3.2: Unit Production (Pu) and its Reflexive Transitive
SCFG.

Closure (Ru) matrices for a simple

Two nonterminals are said to be in a Unit Production Relation X -+u Y iff there exists

a production for X of the form X -- Y.

As in the case with prediction we compute the closed-form solution for a Unit Produc-

tion recursive correction matrix Ru (figure 3.2), considering the Unit Production relation,

expressed by a matrix Pu. RU is found as RU = (I - Pu)-1 . The resulting expanded

completion algorithm accommodates for the recursive loops:

j : X -+ A.Zp [a, 7]

VZ s.t. Ru(Z, Y) -4 0 => i : Xk - AZ. [', y']

i : Y -+ v. [a", 7"]

where computation of a' and y' is corrected by a corresponding entry of RU:

SEvA, a(i : Xk -> A.Zp)Ru(Z, Y)7"(i : Y- v.)

- EVApy (i : Xk -+ A.Yp)Ru(Z, Y)7"(i : Yj - v.)

As RL, unit production recursive correction matrix Ru can be computed once for each

grammar.

3.4 Relation to HMM

While SCFGs look very different from HMMs, they have some remarkable similarities.

In order to consider the similarities in more detail, let us look at a subset of SCFGs -

G2:
S -

A -

B -

C -+

AB
C
d
AB
a
bB
b
BC
B
c

[pi]

[P2]

[P3]
[p4]
[P5]
[P6]

[P7]
[P8]

[p9]
[pio]

Stochastic Regular Grammars. SRG, as defined above (section 3.1, page 28), is a 4-tuple

G = N, T, P, S, where the set of productions P is of the form A -+ aB, or A -- a. If

we consider the fact that HMM is a version of probabilistic Finite State Machine, we can

apply simple non-probabilistic rules to convert an HMM into an SRG. More precisely, taking

transition A - B, with probability Pm of an HMM, we can form an equivalent production

A -+ aB [Pm]. Conversion of an SCFG in its general form is not always possible. An

SCFG rule A -+ aAa, for instance cannot be converted to a sequence of transitions of an

HMM. Presence of this mechanism makes richer structural derivations, such as counting

and recursion, possible and simple to formalize.

Another, more subtle difference has its roots in the way HMMs and SCFGs assign

probabilities. SCFGs assign probabilities to the production rules, so that for each non-

terminal, the probabilities sum up to 1. It translates into probability being distributed

over sentences of the language - probabilities of all the sentences (or structural entities) of

the language sum up to 1. HMMs in this respect are quite different - the probability gets

distributed over all the sequences of a length n ([15]).

In the HMM framework, the tractability of the parsing is afforded by the fact that

the number of states remains constant throughout the derivation. In the Earley SCFG

framework, the number of possible Earley states increases linearly with the length of the

input string, due to the starting index of each state. This makes it necessary in some

instances to employ pruning techniques which allow us to deal with increasing computational

complexity when parsing long input strings.

3.5 Viterbi Parsing

Viterbi parse is applied to the state sets in a chart parse in a manner similar to HMMs.

Viterbi probabilities are propagated in the same way as inner probabilities, with the ex-

ception that instead of summing the probabilities during completion step, maximization is

performed. That is, given a complete state St, we can formalize the process of computing

Viterbi probabilities vi as follows:

v-(S) = maxsj(vi(Sj)vj(Si))

and the Viterbi path would include the state

= argmaxs:(v(S)v;(S))

The state S' keeps a back-pointer to the state Si, which completes it with maximum

probability, providing the path for backtracking after the parse is complete. The computa-

tion proceeds iteratively, within the normal parsing process. After the final state is reached,

it will contain pointers to its immediate children, which can be traced to reproduce the max-

imum probability derivation tree.

3.5.1 Viterbi Parse in Presence of Unit Productions

The otherwise straight forward algorithm of updating Viterbi probabilities and the Viterbi

path is complicated in the completion step by the presence of the Unit productions in the

derivation chain. Computation of the forward and inner probabilities has to be performed

in closed form, as described previously, which causes the unit productions to be eliminated

from the Viterbi path computations. This results in producing an inconsistent parse tree

with omitted unit productions, since in computing the closed form correction matrix, we

collapse such unit production chains. In order to remedy this problem, we need to consider

two competing requirements to the Viterbi path generation procedure.

1. On one hand, we need a batch version of the probability calculation performed, as

previously described, to compute transitive recursive closures on all the probabilities,

by using recursive correction matrices. In this case, Unit productions do not need

to be considered by the algorithm, since their contributions to the probabilities are

encapsulated in the recursive correction matrix Ru.

2. On the other hand, we need a finite number of states to be considered as completing

states in a natural order so that we can preserve the path through the parse to have

a continuous chain of parents for each participating production. In other words, the

unit productions, which get eliminated from the Viterbi path during the parse while

computing Viterbi probability, need to be included in the complete derivation tree.

We solve both problems by computing the forward, inner and Viterbi probabilities in

closed form by applying the recursive correction RU to each completion for non-unit com-

pleting states and then, considering only completing unit production states for inserting

them into the production chain. Unit production states will not update their parent's prob-

abilities, since those are already correctly computed via Ru. Now the maximization step

in computing the parent's Viterbi probability needs to be modified to keep a consistent

tree. To accomplish this, when using the unit production to complete a state, the algorithm

inserts the Unit production state into a child slot of the completed state only if it has the

same children as the state it is completing. The overlapping set of children is removed from

the parent state. It extends the derivation path by the Unit production state, maintaining

consistent derivation tree.

Pseudo-code of the modifications to the completion algorithm which maintains the con-

sistent Viterbi derivation tree in presence of Unit production states is shown in Figure

3-2.

However, the problem stated in subsection 3.3.3 still remains. Since we cannot compute

the Viterbi paths in closed form, we have to compute them iteratively, which can make

the parser go into an infinite loop. Such loops should be avoided while formulating the

grammar. A better solution is being sought.

function StateSet.Complete()

if(State.IsUnitO)
State.Forward = 0;
State.Inner = 0;

else

State.Forward = ComputeForward(;
State.Inner = ComputelnnerO;

end

NewState = FindStateToCompleteO;
NewState.AddChild(State);
StateSet.AddState(NewState);

end

function StateSet.AddState(NewState)

if(StateSet.AlreadyExists(NewState)
OldState = StateSet.GetExistingState(NewState);
CompletingState = NewState.GetChildo;
if(OldState.HasSameChildren(CompletingState))

OldState.ReplaceChildren(CompletingState);
end
OldState.AddProbabilities(NewState.Forward, NewState.Inner);

else
StateSet.Add(NewSt ate);

end

end

Figure 3-2: Simplified pseudo-code of the modifications to the completion algorithm.

Chapter 4

Temporal Parsing of Uncertain

Input

The approach described in the previous chapter can be effectively used to find the most likely

syntactic groupings of the elements in a non-probabilistic input stream. The probabilistic

character of the grammar comes into play when disambiguation of the string is required

by the means of the probabilities attached to each rule. These probabilities reflect the

"typicality" of the input string. By tracing the derivations, to each string we can assign a

value, reflecting how typical the string is according to the current model.

In this chapter we to address two main problems in application of the parsing algorithm

described so far to action recognition:

* Uncertainty in the input string.

The input symbols which are formed by low level temporal feature detectors are

uncertain. This implies that some modifications to the algorithm which account for

this are necessary.

o Temporal consistency of the event stream.

Each symbol of the input stream corresponds to some time interval. Since here we

are dealing with a single stream input, only one input symbol can be present in the

stream at a time and no overlapping is allowed, which the algorithm must enforce.

4.1 Terminal Recognition

Before we proceed to develop the temporal parsing algorithm, we need to say a few words

about the formation of the input. In this thesis we are attempting to combine the detection

of independent component activities in a framework of syntax-driven structure recognition.

Most often these components are detected "after the fact", that is, recognition of the activity

only succeeds when the whole corresponding sub-sequence is present in the causal signal.

At the point when the activity is detected by the low level recognizer, the likelihood of the

activity model represents the probability that this part of the signal has been generated by

the corresponding model. In other words, with each activity likelihood, we will also have

the sample range of the input signal, or a corresponding time interval, to which it applies.

This fact will be the basis of the technique for enforcing temporal consistency of the input,

developed later in this chapter. We will refer to the model activity likelihood as a terminal,

and to the length of corresponding sub-sequence as a terminal length.

4.2 Uncertainty in the Input String

The previous chapter described the parsing algorithm, where no uncertainty about the

input symbols is taken into consideration. New symbols are read off by the parser during

the scanning step, which changes neither forward nor inner probabilities of the pending

states. If the likelihood of the input symbol is also available, as in our case, it can easily be

incorporated into the parse during scanning by multiplying the inner and forward probability

of the state being confirmed by the input likelihood. We reformulate the scanning step as

follows: having read a symbol a and its likelihood P(a) off the input stream, we produce

the state

i : Xk - A.ap [a,7-] ==- i + 1 : Xk - Aa.p [a', 71

and compute new values of a' and y' as:

a' = a(i : Xk -+ A.ap)P(a)

7 = 7(i : Xk - A.ap)P(a)

The new values of forward and inner probabilities will weigh competing derivations not

only by their typicality, but also by our certainty about the input at each sample.

4.3 Substitution

Introducing likelihoods of the terminals at the scanning step makes it simple to employ

the multi-valued string parsing ([10]) where each element of the input is in fact a multi-

valued vector of vocabulary model likelihoods at each time step of an event stream. Using

these likelihoods, we can condition the maximization of the parse not only on frequency of

occurrence of some sequence in the training corpus, but also on measurement or estimation

of the likelihood of each of the sequence component in the test data.

The multi-valued string approach allows for dealing with so-called substitution errors

which manifest themselves in replacement of a terminal in the input string with an incor-

rect one. It is especially relevant to the problems addressed by this thesis where sometimes

the correct symbol is rejected due to a lower likelihood than that of some other one. In the

proposed approach, we allow the input at discrete instance of time to include all non-zero

likelihoods and to let the parser select the most likely one, based not only on the correspond-

ing value, but also on the probability of the whole sequence, as additional reinforcement to

the local model estimate.

From this point and on, the input stream will be viewed as a multi-valued string (a

lattice) which has a vector of likelihoods, associated with each time step (e.g. figure 4-1).

The length of the vector is in general equal to the number of vocabulary models. The model

likelihoods are incorporated with the parsing process at the scanning step, as was shown

above, by considering all non-zero likelihoods for the same state set, that is:

i : Xk -+ A.ap [a, 7] = i+I:X - a, a,-'
Va, s.t. P(a) > 0

The parsing is performed in a parallel manner for all suggested terminals.

4.4 Insertion

It has been shown that "while significant progress has been made in the processing of correct

text, a practical system must be able to handle many forms of ill-formedness gracefully"

[3]. In our case, the need for this robustness is paramount.

Indeed, the parsing needs to be performed on a lattice, where the symbols which we need

to consider for inclusion in the string come at random times. This results in appearance

0.5-

0
1~ ------

00 1 4 56

Figure 4-1: Example of the lattice parse input for three model vocabulary. Consider a grammar
A - abc I acb. The dashed line shows a parse acb. The two rectangles drawn around samples 2
and 4 show the "spurious symbols" for this parse which need to be ignored for the derivation to
be contiguous. We can see that if the spurious symbols are simply removed from the stream, an
alternative derivation for the sequence - abc, shown by a dotted line, will be interrupted. (Note the
sample 3 which contains two concurrent symbols which are handled by the lattice parsing.)

of "spurious" (i.e. ungrammatical) symbols in the input stream, a problem commonly

referred to as insertion. We need to be able to consider these inputs separately, at different

time steps, and disregard them if their appearance in the input stream for some derivation

is found to be ungrammatical. At the same time, we need to preserve the symbol in the

stream for considering it in other possible derivations, perhaps even of a completely different

string. The problem is illustrated by figure 4-1. In this figure we observe two independent

derivations on an uncertain input stream. While deriving the string acb, connecting samples

1, 3 and 5, we need to disregard samples 2 and 4, which would interfere with the derivation.

However we do not have an a priori information about the overall validity of this string,

that is, we cannot simply discard samples 2 and 4 from the stream, because combined with

sample 1, they form an alternative string, abc. For this alternative derivation, sample 3

would present a problem if not dealt with.

There are at least three possible solutions to the insertion problem in our context.

* Firstly, we can employ some ad hoc method which "synchronizes" the input, presenting

the terminals coming with a slight spread around a synchronizing signal, as one vector.

That would significantly increase the danger of not finding a parse if the spread is

significant.

* Secondly, we may attempt gathering all the partially valid strings, performing all the

derivations we can on the input and post-processing the resulting set to extract the

most consistent maximum probability set of partial derivations. Partial derivations

acquired by this technique will show a distinct split at the position in the input where

the supposed ungrammaticality occurred. Being robust for finding ungrammatical

symbols in a single stream, in our experiments, this method did not produce the

desired results. The lattice extension, extremely noisy input and a relatively shallow

grammar made it less useful, producing large number of string derivations, which

contained a large number of splits and were difficult to analyze.

* And, finally, we can attempt to modify the original grammar to explicitly include the

ERROR symbol (e.g. [2]).

In our algorithm the last approach proved to be the most suitable as it allowed us to

incorporate some additional constraints on the input stream easily, as will be shown in the

next section.

We formulate simple rules of the grammar modifications and perform the parsing of the

input stream using this modified grammar.

Given the grammar G, robust grammar G is formed by following rules:

1. Each terminal in productions of G is replaced by a pre-terminal in G:

G : -:> G :

A - bC A - BC

2. For each pre-terminal of G a skip rule is formed:

B b | SKIP b | b SKIP

This is essentially equivalent to adding a production B - SKIP b SKIP if

SKIP is allowed to expand to c.

3. Skip rule is added to G, which includes all repetitions of all terminals:

SKIP - b c ... b SKIP c SKIP |...

Again, if SKIP is allowed to expand to E, the last two steps are equivalent to

adding:

0 21

0.8-

lb 0.6 /

0.4-

0.2-

0
0 2 4 6 8 10 12 14 16 18 20

t

Figure 4-2: Example of temporally inconsistent terminals. Given a production A - ab I abA un-
constrained parse will attempt to consume maximum amount of samples by non-SKIP productions.
The resulting parse, ababab, is shown by the dashed line. The solid line shows the correct parse,
abab, which includes only non-overlapping terminals (horizontal lines show the sample range of each
candidate terminal).

G:

B ,' SKIP b SKIP

SKIP -> E | b SKIP ...

This process can be performed automatically as a pre-processing step, when the grammar

is read in by the parser, so that no modifications to the grammar are explicitly written.

4.5 Enforcing Temporal Consistency

Parsing the lattice with the robust version of the original grammar results in the parser

consuming a maximum amount of the input. Indeed, the SKIP production, which is

usually assigned a low probability, serves as a function that "penalizes" the parser for each

symbol considered ungrammatical. This might result in the phenomenon where some of the

"noise" gets forced to take part in a derivation as a grammatical occurrence. The effect of

this can be relieved if we take into account the temporal consistency of the input stream,

that is, only one event happens at a given time. Since each event has a corresponding

length, we can further constrain the occurrence of the terminals in the input so that no

"overlapping" events take place. The problem is illustrated in figure 4-2.

In Earley framework, we can modify the parsing algorithm to work in incremental fashion

as a filter to the completion step, while keeping track of the terminal lengths during scanning

and prediction.

In order to accomplish the task we need to introduce two more state variables - h for

"high mark" and I for "low mark". Each of the parsing steps has to be modified as follows:

1. Scanning

Scanning step is modified to include reading the time interval associated with the

incoming terminal. The updates of I and h are propagated during the scanning as

follows:

i : Xk -* A.ap [1, h] ->i +1I : Xk -+ Aa.y [1, ha]

where ha is a high mark of the terminal. In addition to this, we set the time-stamp of

the whole new (i + 1)-th state set to ha: St = ha, to be used later by prediction step.

2. Completion

Similarly to scanning, completion step advances the high mark of the completed state

to that of the completing state, thereby extending the range of the completed non-

terminal.

j:Xk -> .Y y [l1,hl]
-- >1 i : Xk --> AY.y [11 , h 2]

i : Y --> v. [12,h2]

This completion is performed for all states i : Y -> v. subject to constraints 12 > h1

and Y, X 5 SKIP.

3. Prediction

Prediction step is responsible for updating the low mark of the state to reflect the

timing of the input stream.

i : Xk -+ A.YP p: -+v S~

Y - V

Here, St is the time-stamp of the state set, updated by the scanning step.

The essence of this filtering is that only the paths that are consistent in the timing of

their terminal symbols are considered. This does not interrupt the parses of the sequence

since filtering, combined with robust grammar, leaves the subsequences which form the

parse connected via the skip states.

4.5.1 Misalignment Cost

In the process of temporal filtering, it is important to remember that the terminal lengths

are themselves uncertain. A useful extension to the temporal filtering is to implement

a softer penalty function, rather than a hard cut-off of all the overlapping terminals, as

described above. It is easily achieved at the completion step where the filtering is replaced

by a weighting function f(6), of a parameter 6 = hi - 12, which is multiplied into forward

and inner probabilities. For instance, f(0) = e where ? is a penalizing parameter, can

be used to weigh "overlap" and "spread" equally. The resulting penalty is incorporated

with computation of a and -y:

a' = f(0) EyA,, a(i : Xk - A.Zpt)R(Z, Y)y"(i : Y -+ v.)

7 = f(0) EA,p _Y(i :X -+ A.Yp)Ru(Z, Y)-l"(i :Y -+ v.)

More sophisticated forms of f(6) can be formulated to achieve arbitrary spread balancing

as needed.

4.6 On-line Processing

4.6.1 Pruning

As we gain descriptive advantages with using SCFGs for recognition, the computational

complexity, as compared to Finite State Models, increases. The complexity of the algorithm

grows linearly with increasing length of the input string. This presents us with the necessity

in certain cases of pruning low probability derivation paths. In Earley framework such a

pruning is easy to implement. We simply rank the states in the state set according to

their per sample forward probabilities and remove those that fall under a certain threshold.

However, performing pruning one should keep in mind that the probabilities of the remaining

states will be underestimated.

4.6.2 Limiting the Range of Syntactic Grouping

Context-free grammars have a drawback of not being able to express countable relation-

ships in the string by a hard bound by any means other than explicit enumeration (the

situation similar to the "secretary problem" with finite state networks). One implication

of this drawback is that we cannot formally limit the range of the application of a SKIP

productions and formally specify how many SKIP productions can be included in a deriva-

tion for the string to still be considered grammatical. When parsing with robust grammar

is performed, some of the non-terminals being considered for expansion cover large por-

tions of the input string consuming only a few samples by non-SKIP rules. The states,

corresponding to such non-terminals, have low probability and typically have no effect on

the derivation, but are still considered in further derivations, increasing the computational

load. This problem is especially relevant when we have a long sequence and the task is

to find a smaller subsequence inside it which is modeled by an SCFG. Parsing the whole

sequence might be computationally expensive if the sequence is of considerable length. We

can attempt to remedy this problem by limiting the range of productions.

In our approach, when faced with the necessity to perform such a parse, we use implicit

pruning by operating a parser on a relatively small sliding window. The parse performed

in this manner has two important features:

* The "correct" string, if exists, ends at the current sample.

" The beginning sample of such a string is unknown, but is within the window.

From these observations, we can formalize the necessary modifications to the parsing

technique to implement such a sliding window parser:

1. Robust grammar should only include the SKIP productions of the form A -+ a | SKIP a

since the end of the string is at the current sample, which means that there will not

be trailing noise, which is normally accounted for by a production A -* a SKIP.

2. Each state set in the window should be seeded with a starting symbol. This will

account for the unknown beginning of the string. After performing a parse for the

current time step, Viterbi maximization will pick out the maximum probability path,

which can be followed back to the starting sample exactly.

This technique is equivalent to a run-time version of Viterbi parsing used in HMMs ([14]).

The exception is that no "backwards" training is necessary since we have an opportunity

to "seed" the state set with an axiom at an arbitrary position.

Chapter 5

Implementation and System

Design

The recognition system is built as a two-level architecture, according to the two-level

Bayesian model described in section 1.1.2, page 11. The system is written in C++, using

a LAPAC-based math library. It runs on a variety of platforms - the tests were performed

in HPUX, SGI IRIX, Digital UNIX, Linux and, in a limited way, MS Windows95/NT. The

overall system architecture is presented in figure 5-1.

5.1 Component Level: HMM Bank

The first level of the architecture is an HMM bank, which consists of a set of independent

HMMs, running in parallel on the input signal. To recognize the components of the model

vocabulary, we train one HMM per primitive action component (terminal), using the tradi-

tional Baum-Welch re-estimation procedure. At run-time each of these HMMs performs a

Viterbi parse ([23]) of the incoming signal and computes the likelihood of the action prim-

itive. The run-time algorithm used by each HMM to recognize the corresponding word of

the action vocabulary is a version of [14] which performs a "backward" match of the signal

over a window of a reasonable size.

At each time step the algorithm performs the Viterbi parse of the part of the input

signal covered by the window. The algorithm first inserts a new sample of the incoming

signal into the first position of the input FIFO queue, advancing the queue and discarding

the oldest sample. The Viterbi trellis is then recomputed to account for the new sample.

HMM Bank

Figure 5-1: Architecture of the recognition system developed in the thesis. The system consists
of an HMM bank and a parsing module. HMM bank contains the model HMMs (H1, H2, ...),
operating independently on their own input queues (Q1, Q2, ...). The parsing module consists of a

probabilistic parser, Viterbi parser, which performs segmentation and labeling (output data stream
D1), and an annotation module (output data stream D2).

To find the maximum probability parse the trellis search is performed. Since the likelihood

of the model decreases with the length of the sequence, the likelihood values in the trellis

need to be normalized to express a per sample likelihood. This is expressed by a geometric

mean, or, in case when the computations are performed in terms of log-likelihood, by a log

geometric mean.

The maximum likelihood, found in the trellis, has a corresponding range of the input

signal to which it applies. This value is easily extracted from the trellis length and the

position of the maximum likelihood value in it. Figure 5-2 shows the output of a single

HMM in a bank, illustrating the relation between output probabilities and sequence lengths.

All the HMMs are run in parallel, providing the parser with maximum normalized

probability and the corresponding sequence length at each time step.

Event generation

The continuous vector output of the HMM bank is represented by a series of "events"

which are considered for probabilistic parsing. It is in terms of these events, that the action

grammar is expressed. In this step, we do not need to make strong decisions about discarding

any events - we just generate a sufficient stream of evidence for the probabilistic parser such

that it can perform structural rectification of these "suggestions". In particular the SKIP

states allow for ignoring erroneous events. As a result of such a rectification the parser

0.4 -
Output probability
Sequence length

0.35-

0.25

0.2 -

0.1

0.05 -

0 5 10 15 20 25 30 35
t

Figure 5-2: HMM output plot. Each point of the probability plot is the normalized maximum
likelihood of the HMM at the current sample of the input signal. This value is found as a result of
the backwards search on the FIFO queue, and corresponds to a sequence of a certain length. The
plot shows those lengths as horizontal lines ending at the corresponding sample of the probability
plot.

finds an interpretation of the stream which is structurally consistent (i.e. grammatical),

is temporally consistent (uses non-overlapping sequence of primitives) and has maximum

likelihood given the outputs of the low level feature detectors.

For the tasks discussed here, a simple discretization procedure provides good results.

For each HMM in the bank, we select a very small threshold to cut off the noise in the

output, and then search each of the areas of non-zero probabilities for a maximum'. Refer

to figure 5-3a, for an example of the output of the HMM bank, superimposed with the

results of discretization.

After discretization we replace the continuous time vector output of the HMM bank

with the discrete symbol stream generated by discarding any interval of the discretized

signal in which all values are zero. This output is emitted at run time, which requires a

limited capability of the emitter to look back at the sequence of multi-valued observations.

It accumulates the samples of each of the HMMs in a FIFO queue until it collects all the

samples necessary to make the decision of the position of a maximum likelihood in all the

model outputs. When the maxima are found, the corresponding batch of values is emitted

into the output stream and the FIFO queue is flushed.

Figure 5-3b displays an example of the resulting event sequence generated.

'Alternatively, we can search the areas of non-zero likelihood for the position where the product of the

probability and the sequence length is maximal. This will result in finding the weighted maximum, which
corresponds to the maximum probability of the sequence of the maximum length.

0.
50
0.4? 50 190 1,% 290 2W 30 350 400

0.2

0.40 50 190 150 200 250 390 350 400

0-

0.4? 50 190 150 290 2 W 390 3
0.2 J\T

01
0.4 5P 190 139 0 23Q9W 39 339 0

0.2-

0 o 5P 1o 1so 200 2I0 35 b
0.4 0 0 190 139 290 239 390 3 _

a) 0 50 100 150 200 250 300 350 400 b)

0.4 .I

0-2

0 2 4 6 a 10 12 14 16 18 200.2

0.40 2 4 6 8 1 .0 1 .2 1 .4 1 16 18 20

0 2 - -
0 2 4 6 a 10 12 14 16 18 20

0.4

0.2

01

0 2 4 6 10 12 14 16 18 20

0.2

0 2 4 6 8 10 12 14 16 18 20

Figure 5-3: Example of the output of the HMM bank. a) Top plot shows the input sequence. Five
plots below it show output of each HMM in the bank superimposed with the result of discretization.
b) Corresponding discretized "compressed" sequence. Input vectors for the probabilistic parser are
formed by taking the samples of all sequences for each time step.

5.2 Syntax Level: Parser

The probabilistic parser accepts input in form of an "event" sequence, generated by the

HMM bank just described. Each sample of that sequence is a vector containing likelihoods

of the candidate terminals and their corresponding lengths for the current time step.

5.2.1 Parser Structure

The parser encapsulates its functionality in three complete levels. The lowest base level

is a complete non-probabilistic Earley parser which accepts an input string and parses it

according to a given Context-Free Grammar. It implements all the basic functionality of

the parsing algorithm in non-probabilistic setting.

A stochastic extension to the parser is built upon the basic Earley parser as a set of child

classes, which derive all the basic functionality, but perform the parse according to a given

Stochastic Context-Free Grammar. After the grammar is read and checked for consistency,

the algorithm computes its recursive correction matrices RL and RU as was described in

chapter 3. The parser implemented on this level is capable of performing a probabilistic

parse of a string, which can be presented in either probabilistic or non-probabilistic form.

Optionally, the parser can perform a partial parse where the most likely partial derivations

are found if the string is ungrammatical.

A multi-valued constrained parser is derived from the stochastic extension and imple-

ments robust temporally consistent lattice parsing algorithm as described in chapter 4. It

is at this level sliding window algorithm is also implemented.

5.2.2 Annotation Module

Annotation module is built into a Viterbi backtracking step. After the parse, the final state,

if found, contains a back-pointer to the immediate children in a most likely derivation tree.

Recursively traversing the tree in a depth-first manner, we essentially travel from one non-

terminal to another in a natural order. This can be used for attaching an annotation to

each of the non-terminals of interest.

The annotation is declared in the grammar file after each production for a non-terminal

of interest. Annotation consists of text with embedded commands and formatting symbols

and is emitted during the traversal of the Viterbi tree after the parse is completed. Every

time a nonterminal which has an attached annotation is encountered, the annotation text

is formatted according to the format specifications of the annotation block and is sent to

the output.

A special mode of the annotation module implements the representative frame selection

out of the video sequence, based on results of segmentation. When the range of a nonter-

minal is determined, the module computes frame indices for its starting and ending frames,

after which it selects a representative frame based on the minimum distance to the mean

image of the range.

Chapter 6

Experimental Results

The recognition system described in this thesis has been used to recognize several complex

hand gestures. Each gesture has distinct components, forming its vocabulary, for which we

trained the low-level temporal feature detectors (HMMs). The training data set consisted

of 20 examples of gesture primitives. The resulting HMM bank was run on several test

gestures, not present in the training set. For run time, each of the HMMs in the bank had

its window and threshold parameters set manually. Output of the HMM bank is piped to

the parser, which performed the parse and output the resulting Viterbi trace and annotated

segmentation.

The rest of this section presents three types of experiments which were performed using

the system.

6.1 Experiment I: Recognition and Disambiguation

The first experiment is simply a demonstration of the algorithm successfully recognizing a

hand gesture and disambiguating its components in the global context. We define a SQUARE

gesture as either left-handed (counterclockwise) or a right-handed (clockwise). The gesture

vocabulary consists of four components - left-right, up-down, right-left and down-up.

The interpretation of the gesture components is dependent on the global context. For

instance, in the right-handed square, the left-right component is interpreted as the top

of the square, whereas in the case of the left-handed square it is the bottom. We formulate a

grammar for this model by introducing an additional non-terminal - TOP. This non-terminal

well provide a label for left-right and right-left gestures based on the global context.

The grammar Gsquare provides a model which recognizes a SQUARE regardless of the fact

that it can be either the right-handed or a left-handed square (with skip rules omitted for

simplicity):

Gsquare

SQUARE -+ RH [0.5]

LH [0.5]

RH -+ TOP up-down right-left down-up [0.25]

up-down right-left down-up TOP [0.25]

| right-left down-up TOP up-down [0.25]

| down-up TOP up-down right-left [0.25]

LH - left-right down-up TOP up-down [0.25]

| down-up TOP up-down left-right [0.25]

TOP up-down left-right down-up [0.25]

| up-down left-right down-up TOP [0.25]

TOP - left-right [0.5]

right-left [0.5]

We run the experiments first using the data produced by a mouse gesture, and then

repeat the approach using the data from Polhemus sensor attached to the hand, and the

data collected from the STIVE vision system ([36]). For each of the variations of the

experiment we use separately trained set of HMMs.

Training data in all cases consists of 20 examples of each of the component gestures. 3-

state HMMs, using x and y velocities as feature vectors, serve as models of those components

and are trained on the set until the log-likelihood improvement falls below 0.001.

The testing is performed on a long unsegmented SQUARE gesture, performed in either

right-handed or left-handed version. The new, previously unseen sequence, is segmented

and labeled by the algorithm.

In the example shown in figure 6-1a the recovered structure was that of a right-hand

square. Recognition results for a left-handed square sequence are seen in figure 6-1b. Note

that the the label TOP was assigned to the left-right gesture in the first case and to the

right-left in the second. The figures show sample indices, corresponding to each of the

gesture primitives enclosed in square brackets. The indices, which were found during the

a) Segmentation <rsquare.dat>:

Label Segment LogP

Right hand square [0 146] 8.619816e-01

Top [0 23] 8.557740e-01
Up down [23 66] 7.490584e-01
Right left [66 94] 8.863638e-01
Down up [94 146] 9.567336e-01

Viterbi probability = 0.02400375

b) Segmentation <lsquare.dat>:

Label Segment LogP

Left hand square [0 173] 8.304875e-01

Left right [0 49] 9.351195e-01
Down up [49 71 1 6.933256e-01
Top [71 132] 7.313213e-01

Up down [132 173] 9.593422e-01

Viterbi probability = 0.01651770

Figure 6-1: Example of the SQUARE sequence segmentation. In the presented example STIVE setup
serves as the data source.
a) right-handed square segmentation, b) left-handed square segmentation.

Figure 6-2: The Stereo Interactive Virtual Environment (STIVE) computer vision system used to
collect data.

execution of the algorithm, form a continuous coverage of the input signal.

6.2 Recognition and semantic segmentation

As a more complex test of our approach we chose the domain of musical conducting. It is

easy to think of conducting gestures as of complex gestures consisting of a combination of

simpler parts for which we can write down a grammar (coincidentally, a book describing

baton techniques, written by the famous conductor Max Rudolf [24] is called "The Grammar

of Conducting"). We capture the data from a person, a trained conductor, using natural

conducting gestures. The task we are attempting to solve is the following. A piece of music

by Sibelius 1 includes a part with complex 6/4 music beat pattern. Instead of using this

complex conducting pattern, conductors often use 2/4 or 3/4 gestures by merging 6/4 beats

into groups of three or two at will. For the experiment we collect the data from a conductor

conducting a few bars of the score arbitrarily choosing 2/4 or 3/4 gestures, and attempt to

find bar segmentation, while simultaneously identifying the beat pattern used.

For the experiments we use Polhemus sensor and then apply the technique in the STIVE

environment. We trained five HMMs on two primitive components of a 2/4 pattern and the

three components of a 3/4 pattern. As a model we use a 4-state HMMs with x and y velocity

Jean Sibelius (1865-1957), Second Symphony, Opus 43, in D Major

100

0

100

0. 50 190 150 290 250

0
0.50 190 10 0

0-

0.1 0 190 1 0 ?0 ?0

50 190 1 0 290 200.5i

14 50 100 150 290 ?50

0 50 100 150 200 250

0.5 ' lI
0 5 10 15 20 25 30 35

0 5 10 15 25 30 35

25 3003

S215 20 25 30 35

o 5 - 2
0 5 10 15 20 25 30 35

S10 i 20 25 30 35

Figure 6-3: Output of the HMM bank for the sequence 2/4-2/4-3/4-2/4. a) Top plot shows the
y - component of the input sequence. Five plots below it show output of each HMM in the bank
superimposed with the result of discretization. b) Corresponding event sequence.

feature vectors for Polhemus data and a 6-state HMM with a feature vector containing x,

y and z velocities of the hand for the STIVE experiment.

Some of the primitives in the set are very similar to each other and, therefore, corre-

sponding HMMs show a high likelihood at about the same time, which results in a very

"noisy" lattice (figure 6-3a). We parse the lattice with the grammar G, (again, for simplicity

omitting the SKIP productions):

Ge,:
PIECE

BAR

THREE

TWO

-> BAR PIECE

BAR

-- TWO

THREE

-+ down3 right3 up3

-> down2 up2

[0.5]

[0.5]

[0.5]

[0.5]

[1.0]

[1.0]

The results of run of a lower level part

2/4-3/4-2/4 are shown in figure 6-3 with

of the algorithm on a conducting sequence 2/4-

the top plot of 6-3a displaying a y positional

component.

Figure 6-4 demonstrates output of probabilistic parsing algorithm in the form of se-

mantic labels and corresponding sample index ranges for the 2/4-2/4-3/4-2/4 gesture using

Polhemus sensor. Results of the segmentation of a 2/4-3/4-2/4-3/4-2/4 gesture in the

STIVE experiment are shown in figure 6-5.

Segmentation:

BAR:

2/4 start/end sample: [0 66]

Conducted as two quarter beat pattern.

BAR:

2/4 start/end sample: [66 131]

Conducted as two quarter beat pattern.

BAR:

3/4 start/end sample: [131 194]

Conducted as three quarter beat pattern.

BAR:

2/4 start/end sample: [194 2461

Conducted as two quarter beat pattern.

Viterbi probability = 0.00423416

Figure 6-4: Polhemus experiment: Results of the segmentation of a long conducting gesture for
the bar sequence 2/4-2/4-3/4-2/4.

Segmentation:

BAR:
2/4 start sample/end sample: [0 80]

Conducted as two quarter bit pattern.

BAR:

3/4 start sample/end sample: [80 210]

Conducted as three quarter bit pattern.

BAR:
2/4 start sample/end sample: [210 2741

Conducted as two quarter bit pattern.

BAR:

3/4 start sample/end sample: [274 404]

Conducted as three quarter bit pattern.

BAR:

2/4 start sample/end sample: [404 470]

Conducted as two quarter bit pattern.

Viterbi probability = 0.00639809

Figure 6-5: STIVE experiment: results of the segmentation of a conducting gesture for the bar
sequence 2/4-3/4-2/4-3/4-2/4.

00 ~0.2 20 40 60 80 100 120 140 160 180

8.0.1

5020 40 60 80 100 120 140 160 180
0.5 t

300 20 40 60 80 100 120 140 160 180
0. 0 t

0

20 20 40 60 80 100 120 140 160 180

10 20 40 60 80 160 120 140 160 160

0 1 20 40 60 60 16 120 140 160 180
a)-25 -20 -15 -10 -5 0 5 10 15 20 25) t

60

50-

Segmentation: 40

Christmas tree: 20

Branch [11 173] 20

Branch [40 144]
Branch [66 116] 10

c) V = 0.04483359 d) -ao -20 -10 0 10 20 20

Figure 6-6: Labeling a recursive process. a) Christmas tree drawing as an example of a recursive
process. b) Results of component recognition process with candidate events identified. Top plot
shows the y component of the drawing plotted against time axis. c) Segmentation. d) Lower branch
removed.

The segmentation and labeling achieved in these experiments are correct, which can be

seen for one of the Polhemus experiments (refer to figures 6-3 and 6-4). In the interest

of space we do not show intermediate results for the STIVE experiment, but it was also

successful in all tests.

6.2.1 Recursive Model

The final experiment is presented here more for the sake of illustration of simplicity of

describing a model for the recursive recognition task.

The task can be described as follows: we make a simple drawing of a tree as shown in

figure 6-6a, starting at the left side of the trunk. We want to parse this drawing (presenting

the data in the natural order), find the lowest branch and remove it from the drawing.

The drawing is described by a simple recursive grammar:

Ge,:
TREE up BRANCH down [1.0]

BRANCH -+ LSIDE BRANCH RSIDE [0.9]

| LSIDE RSIDE [0.1]

LT-SIDE - left up-diag [1.0]

RT-SIDE -+ dn-diag left (1.0]

The intermediate results are shown in figure 6-6b. What is of interest in this example is

the recursive character of the drawing and the fact that the definition of BRANCH includes

long distance influences. In other words, the part of the drawing which we want to label is

composed of the primitives which are disparate in time, but one causes the other to occur.

As seen from figure 6-6c, the algorithm has no problems with either of the difficulties.

The segmentation data now can be used to complete the task and remove the lower

branch of the Christmas tree which is shown in figure 6-6d.

Chapter 7

Conclusions

7.1 Summary

In this thesis we implemented a recognition system based on a two-level recognition archi-

tecture for use in the domain of action recognition. The system consists of an HMM bank

and a probabilistic Earley-based parser. In the course of the research we developed a set

of extensions to the probabilistic parser which allow for uncertain multi-valued input and

enforce temporal consistency of the input stream. An improved algorithm for building a

Viterbi derivation tree was also implemented. The system includes an annotation module

which is used to associate a semantic action to a syntactic grouping of the symbols of the

input stream.

The recognition system performs syntactic segmentation, disambiguation and labeling

of the stream according to a given Stochastic Context-Free Grammar and is shown to work

in a variety of sensor modalities.

The use of formal grammars and syntax-based action recognition is reasonable if decom-

position of the action under consideration into a set of primitives that lend themselves to

automatic recognition is possible. We explored several examples of such actions and showed

that the recognition goals were successfully achieved by the proposed approach.

7.2 Evaluation

The goals of this thesis and the means with which they are achieved in this work are

summarized in the table below:

Goal Means Completed

Build a recognition system Achieved by a probabilistic Earley V/
which is based on a simple de- - based parser,a Stochastic Context-
scription of a complex action Free Grammar and extensions for tem-
as a collection of component poral parsing.
primitives.

Develop a segmentation tech- Segmentation is performed as a struc-
nique based on a component ture probability maximization during
content of the input signal. the Viterbi parse.

Develop a context dependent Annotation is emitted by a grammar /
annotation technique for an driven annotation module during the
unsegmented input stream. structure probability maximization.

As is seen from the table, the main goals of the thesis have been reached.

Evaluating the contributions of this thesis the most important question to be answered

is what this technique affords us. First of all, it allows us to assign probabilities to the

structural elements of an observed action. Second of all, it allows for easy formulation of

complex hierarchical action models. As an added advantage, it increases reliability of the es-

timation of the component primitive activities by filtering out the "impossible" observations

and accommodates recursive actions.

Quantitative evaluation of the accuracy increase of the technique developed in this thesis

is quite difficult to perform for two main reasons:

* Direct comparison of the current system with an unconstrained one involves building

an alternative system which is quite an undertaking and it is still unclear which

parameters of the system can be changed and which ones carried over. On the other

hand, the evaluation problem can be simply stated as "not performing the parse".

This alternative comparison is unfair since it is clearly biased to the system which we

developed in this thesis.

* The improvement, afforded by additional syntactic constraints is problem specific.

The essence of the syntactic filtering is that the full sequence space is significantly

reduced by the grammar to a non-linear sub-space of admissible sequences, where

the search is performed. The effectiveness of this approach is directly related to the

decrease in the size of the search space. However, it is possible to write a grammar

which covers the whole sequence space, in which case no improvement is afforded.

In general terms, the expected advantage of syntactic constraints was shown in intro-

duction (figure 1-2). The figure shows that the syntactic constraints dramatically increase

recognition accuracy of the component primitives. This estimation is correct in our case,

as was noted above.

7.3 Extensions

The recognition system described in this thesis can be easily extended to produce video

annotations in the form of Web pages. It can be useful, for instance, for summarizing

instructional videos.

It is possible to use Extended SCFGs with the current parser. Extended CFGs allow for

limited context-sensitivity of the CFG parsing mechanism without opening the Pandora's

box of Linearly bounded automata.

One interesting application of the window parsing algorithm, descried in section 4.6.2,

is direct parsing of the outputs of an HMM bank with no explicit discretization. In this

case, computational complexity can become prohibitive. However, if some knowledge about

expected length of the signal is available, the original parsing task can be reformulated. The

solution can be provided by splitting the original grammar into several components - one

for each selected non-terminal and one which gathers the results into a final sentenial form.

Each of the selected non-terminal models performs the parsing within some window of a lim-

ited size, thus, restricting the production range to a manageable size, as it is routinely done

with HMMs. In this case, the sequence will effectively undergo a semantic discretization,

which is then assembled by the top-level structure which has no window limit.

7.4 Final Thoughts

With all the advantages of the method there are still problems that were not addressed in our

work, for instance, grammar inference is hard to do in the framework of stochastic parsing.

We have not researched the opportunities of fully utilizing the production probabilities. In

the experiments above we determined them heuristically using simple reasoning based on our

understanding of the process. The rule probabilities, which reflect "typicality" of a string

derivation, will play a significantly more important role in recognition and interpretation

of actions of a higher complexity than those presented in the thesis. We plan on exploring

the added advantages of the learned probabilities in our further research.

Bibliography

[1] A. V. Aho and Ullman J. D. The Theory of Parsing, Translation and Compiling.

Volume 1: Parsing. Prentice Hall, Englewoods Cliffs, N.J., 1972.

[2] A. V. Aho and T. G. Peterson. A minimum distance error-correcting parser for context-

free languages. SIAM Journal of Computing, 1, 1972.

[3] J. Allen. Special issue on ill-formed input. American Journal of Computational Lin-

guistics, 9(3-4):123-196, 1983.

[4] M. L. Baird and M. D. Kelly. A paradigm for semantic picture recognition. PR,

6(1):61-74, 1974.

[5] A. F. Bobick. Movement, activity, and action: The role of knowledge in the perception

of motion. In Philosophical Transactions Royal Society London B, 1997.

[6] A. F. Bobick and A. D. Wilson. A state-based technique for the summarization and

recognition of gesture. Proc. Int. Conf. Comp. Vis., 1995.

[7] T. L. Booth and R. A. Thompson. Applying probability measures to abstract languages.

IEEE Transactions on Computers, c-22(5):442-450, May 1973.

[8] M. Brand. Understanding manipulation in video. In AFGR96, pages 94-99, 1996.

[9] R. A. Broks. A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, April 1989.

[10] H. Bunke and D. Pasche. Parsing multivalued strings and its application to image and

waveform recognition. Structural Pattern Analisys, 1990.

[11] L. Campbell. Recognizing classical ballet setps using phase space constraints. Master's

thesis, Massachusetts Institute of Technology, 1994.

[12] J. H. Connell. A Colony Architecture for an Artificial Creature. PhD thesis, MIT,

1989.

[13] J. D. Courtney. Automatic video indexing via object motion analysis. PR, 30(4):607-

625, April 1997.

[14] T. J. Darrell and A. P. Pentland. Space-time gestures. Proc. Comp. Vis. and Pattern

Rec., pages 335-340, 1993.

[15] Charniak. E. Statistical Language Learning. MIT Press, Cambridge, Massachusetts

and London, England, 1993.

[16] Jay Clark Earley. An Efficient Context-Free Parsing Algorithm. PhD thesis, Carnegie-

Mellon University, Computer Science Department, Carnegie-Mellon University, Pitts-

burg, PA, Aug. 1968.

[17] K. S. Fu. A step towards unification of syntactic and statistical pattern recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(3):398-404,

May 1986.

[18] F. Jelinek, J. D. Lafferty, and R. L. Mercer. Basic methods of probabilistic context

free grammars. In Pietro Laface and Renato Di Mori, editors, Speech Recognition

and Understanding. Recent Advances, Trends, and Applications, volume F75 of NATO

Advanced Study Institute, pages 345-360. Springer Verlag, Berlin, July 1992.

[19] P. Maes. The dynamic of action selection. AAAI Spring Symposium on AI Limited

Rationality, 1989.

[20] R. Narasimhan. Labeling schemata and syntactic descriptions of pictures. InfoControl,

7(2):151-179, June 1964.

[21] B. J. Oomen and R. L. Kashyap. Optimal and information theoretic syntactic pattern

recognition for traditional errors. SSPR 6th International Workshop on Advances in

Structural and Syntactic Pattern Recognition., 1996.

[22] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proc. of the IEEE, 77(2):257-285, February 1989.

[23] L. R. Rabiner and B. H. Juang. Fundamentals of speech recognition. Prentice Hall,

Englewood Cliffs, 1993.

[24] Max Rudolf. The Grammar of Conducting. A Comprehensive Guide to Baton Tech-

niques and Interpretation. Schimmer Books, New York, 1994.

[25] A. Sanfeliu and R. Alquezar. Efficient recognition if a class of context-sensitive lan-

guages described by augmented regular expressions. SSPR 6th International Workshop

on Advances in Structural and Syntactic Pattern Recognition., 1996.

[26] A. Sanfeliu and M. Sainz. Automatic recognition of bidimensional models learned

by grammatical inferrence in outdor scenes. SSPR 6th International Workshop on

Advances in Structural and Syntactic Pattern Recognition., 1996.

[27] R. Schalkoff. Pattern Recognition: Statistical, Structural and Neural Approaches. Wi-

ley, New York, 1992.

[28] J. Schlenzig, E. Hunter, and R. Jain. Recursive identification of gesture inputs using

hidden markov models. Proc. Second Annual Conference on Applications of Computer

Vision, pages 187-194, December 1994.

[29] T. Starner and A. Pentland. Real-time american sign language from video using hidden

markov models. In MBR97, page Chapter 10, 1997.

[30] T. E. Starner and A. Pentland. Visual recognition of American Sign Language using

hidden markov models. In Proc. of the Intl. Workshop on Automatic Face- and Gesture-

Recognition, Zurich, 1995.

[31] A. Stolcke. Bayesian Learning of Probabilistic Language Models. PhD thesis, University

of California at Berkeley, 1994.

[32] A. Stolcke. An efficient probabilistic context-free parsing algorithm that computes

prefix probabilities. Computational Linguistics, 21(2), 1995.

[33] M. G. Thomason. Stochastic syntax-directed translation schemata for correction of

errors in context-free languages. TC, 24:1211-1216, 1975.

[34] W. G. Tsai and K. S. Fu. Attributed grammars - a tool for combining syntatctic and

statistical approaches to pattern recognition. In IEEE Transactions on Systems, Man

and Cybernetics, volume SMC-10, number 12, pages 873-885, 1980.

[35] A. D. Wilson, A. F. Bobick, and J. Cassell. Temporal classification of natural gesture

and application to video coding. Proc. Comp. Vis. and Pattern Rec., pages 948-954,

1997.

[36] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time tracking of

the human body. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(7):780-

785, July 1997.

[37] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-sequential images

using hidden markov model. Proc. Comp. Vis. and Pattern Rec., pages 379-385, 1992.

