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ABSTRACT

I
The heat transfer and pressure drop characteristics of water in

tape generated swirl flow were investigated. The test sections were
electrically heated small diameter nickel tubes with tight fitting full length
Inconel tapes of twist ratios from 2. 48 to 9. 2 inside diameters/180 of
tape twist. Heat transfer coefficients and friction factors were determined
for non-boiling forced convection heating and cooling while overall pressure
drop information and curves of heat flux versus wall superheat were deter-
mined for surface boiling conditions.

Improvements in heat transfer for equal flow rates of up to 851c
were observed for the non-boiling swirl flows with heating, but the im-
provement with cooling was substantially less. Compared on the basis of
equal pumping power, improvements in heat transfer of up to 351c were
observed for the tighter tape twists. A method for predicting the heat
transfer coefficient for non-boiling swirl flows was developed. It was based
upon the theory that the improvement was due primarily to: 1) the in-
creased flow path created by the tape, 2) the increased circulation created
with heating due to the buoyancy effect set up by the large centrifugal force
present, and 3) the fin effect of the tape. The experimental results of
this and previous swirl flow investigations were in good agreement with
the analytical prediction.

The surface boiling characteristics of swirl flow were found to be
similar to those observed in straight flow. The boiling curves for various
velocities were asymptotic to a fully developed line at high wall superheats,
and the visually observed point of incipient boiling and the transition to the
fully developed boiling asymptote were predictable by conventional straight
flow methods. It was concluded, therefore, that the dominant surface boil-
ing heat transfer mechanism was similar for both swirl and straight flow.

For non-boiling swirl flows, the decrease in the pressure drop with
heating was slightly less than is usual with straight flows, while the in-
crease in the pressure drop with surface boiling was substantially less. A
method for predicting the difference in each case is presented.
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NOMENCLAT URE

a = centrifugal acceleration

A = area

A = flow cross sectional areac

Ax = tube cross sectional area

B = fin constant defined in Eq. (4. 15)

c = specific heat at constant pressure
p

d = density in Eq. (2. 7)

D = diameter

Dh hydraulic diameter

E = test section voltage

f = Fanning friction factor

F = fin effect multiplier

g = local acceleration of gravity

ge= gravitational constant

G = mass velocity

h = heat transfer coefficient

I = test section current

k = thermal conductivity

ko = thermal conductivity at O'F

Lh = axial heated length

L = axial length between pressure taps

m = fin constant defined in Eq. (4. 11)
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qf
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r

R
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Vs

Vt

Wx

w

Wi

y

= pressure

= volume flow rate (w/e)

= rate of heat transfer

= centrifugal convection heat transfer

= fin heat transfer rate

= spiral convection heat transfer rate

= heat flux

= radius

= electrical resistance of test section

= gas constant

= temperature

= overall heat transfer coefficient

= mean axial fluid velocity

= resultant swirl velocity at tube wall

= tangential fluid velocity

= uncertainty in an arbitrary quantity

= mass flow rate

= internal heat generation rate per un

= tape twist ratio = inside diameters/

it volume

180" of tape twist

C11 = geometric parameter defined by Eq. (1. 7)

k = temperature coefficient of thermal conductivity

ce = temperature coefficient of electrical resistivity

rate
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ATf=

4 Tsat=

ATsub=

Sf =

6w=

N =

Pr=

Re=

Gr=

a =

adb =

straight tube condition

adiabatic condition

-x-

volumetric coefficient of thermal expansion

fin effect parameter

wall minus bulk temperature difference

wall superheat

degrees of subcooling

tape thickness

tube wall thickness

material roughness

fin parameter defined by Eq. (4. 17)

fluid density

electrical resistivity

electrical resistivity at 0F

dynamic viscosity

kinematic viscosity

DIMENSIONLESS GROUPS

Nusselt number = hD/k

Prandtl number = c pA/k

Reynolds number = G D/A

2 3
3rashof number = Vs @ Tf Dh

ri 02
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B boiling condition

b = bulk fluid condition

. cc = centrifugal convection

ex = test section exit condition

f = tape characteristic

FC = non-boiling forced convection condition

h = based on the hydraulic diameter

h = based on the heated length

i = inside tube condition

in = test section inlet condition

inc = incipient boiling condition

iso = isothermal condition

NB = non-boiling condition

o = outside tube condition

o = constant power straight flow condition

P = constant power comparison

s swirl flow condition

sat = saturated fluid condition

sc = spiral convection

t = tangential

w = tube wall characteristic

x = local condition at a point

All fluid properties are evaluated at the bulk temperature unless other-

wise indicated.
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Chapter I

INTRODUCTION

1. 1 General Description of Augmentative Techniques

In recent years, the requirement for more efficient heat transfer

systems has stimulated interest in augmentative heat transfer methods.

Artificiallyroughened surfaces, extended surfaces, inlet vortex genera-

tors, vibration of the surface or fluid, application of electrostatic fields,

and the insertion in tubes of objects such as twisted tapes, coiled wire

or spinners are a few examples of such augmentative techniques. Ex-

isting systems can often be improved by using an augmentative method,

while in other applications, such as the design of heat exchangers for

use in space vehicles, an augmentative scheme may be mandatory in

order for the system to function properly in a zero gee environment,

and meet the size limitations imposed. Increases in cost, weight, and

pumping power are frequently associated with a given augmentative

method, and the designer must, therefore, make a careful study in

order to determine the net improvement available from such a method.

A detailed survey and evaluation of the many augmentative methods

presently employed is given by Bergles and Morton (1) .

Devices which establish a swirl in the fluid in order to increase

the heat transfer coefficient and critical heat flux are particularly

Underlined numbers in parentheses refer to references listed

beginning on page 74.
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attractive augmentative schemes for forced convection systems. They

can be readily used to improve the performance of existing systems,

and because of the high centrifugal force fields, the results of experi-

ments made in the normal one gee environment are directly applicable

in the environment of outer space.

The maximum centrifugal accelerations are obtainable with a

tangential slot or spiral ramp vortex generator at the inlet to a heated

test section. Gambill and Greene (2) attained the unusually high heat

flux of 54. 8 X 106 Btu/hr ft2 with a tangential slot vortex generator at

the inlet to a very short test section (I. D. = 0. 191 in., L/D = 2. 94).

The estimated angular velocity of the fluid at the test section inlet was

20, 000 RPM representing a centrifugal force at the tube wall of approxi-

mately 100, 000 gees. However, the swirl created by inlet vortex

generators decays rapidly as the fluid moves downstream (3, 4) and

hence, the practical applications of such devices are limited.

Swirl flows generated by twisted tapes running the entire length

of the heat transfer tube appear to offer significant benefits since im-

ptovements in heat transfer and critical heat flux are obtainable at

relatively low cost. They also could be easily employed to improve

the performance of existing systems. The prime disadvantage to

twisted tapes is, of course, the increased pressure drop which accom-

panies their use. Therefore, the pumping power required is greater

for a swirl flow than for a straight tube flow of the same velocity.
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* An economic comparison between a swirl and a straight flow system can

be made on the basis of equal pumping power. That is, a swirl flow

system will be more efficient if for the same pumping power it has a

higher heat transfer coefficient.

1. 2 Previous Research on Tape Generated Swirl Flow

Many investigations have been made to determine the heat trans-

fer and pressure drop characteristics one obtains for various fluids in

tape generated swirl flow. The first such investigation appears to have

been reported by Royds (5) in 1921. He found that the cooling rate for

air could be noticeably improved by inserting a twisted tape in a tube.

Since then, investigators have examined the effect of twisted tapes on

the heat transfer and pressure drop for water, ethylene glycol, flue

gases, and air in forced convection heating and cooling. A limited

amount of data is also available for the surface boiling and bulk boiling

of liquids in swirl flow. A comparison of these results is made by

Gambill and Bundy (6) and Bergles and Morton (1). Tables I and II

summarize the range of variables examined in past swirl flow investi-

gations for liquids and gases, respectively. In these tables, a "tight"

tape fit is said to exist when there is no measurable gap between the

tape and tube wall; whereas a "snug" tape fit exists when a gap of

less than 0. 01 in. is present.



Table I

Previous Research on the Tape Generated Swirl Flow of Liquids

Nonboiling

Investigator

Blatt and
Adt

Feinstein
and
Lundberg

Gambill et al.

Gambill and
Bundy

Ibragimov et
al.

Judd

Kreith and
Margolis

Ref-
erence Fluid

Water
16, 17 Freon 11

14 Water

12 Water

Ethylene
13 Glycol

15 Water

25 Isopropy-
lated Santo-
wax

Water

Di-in.

0. 15-
0.50 2. 50-bo

0.250 2.00-6.00

T ape hs
Fit Heating

T ight

Tight

h
Cooli ng

Boil- Pressure
ing Drop

Bulk

Sub-
cooled

Sub-
cooled

0. 136-
0.25 2.30-12.03 Tight

0. 136-
0. 25 2. 30-12.03

0.473

0.48

0.53

2. 12-4. 57

2.6-7.3

2. 58-7. 3

Sub-
X cooledTight

Tight

Snug

Snug



Table I (continued)

Previous Research on the Tape Generated Swirl Flow of Liquids

Investigator

Smithberg and
Landis

Viskanta

Ref-
erence Fluid

10, 11

18

Water

Water

Di-in.

1. 382

0. 3125

y

1.81-0O

2. 50-5. 0

Nonboiling
T ape h, hs
Fit Heating Cooling

Boil- Pressure
ing Drop

Snug

Snug



Table II

Previous Research on the Tape Generated Swirl Flow of Gases

Investigator

Colburn &
King

Evans &
Sarjant

Koch

Kreith &
Margolis

Royds

Seymour

Smithberg &
Landis

Fluid

Air

3 non-lumi-
nous gases

9 Air

Air

Air

Air

Air

Di-in.

2. 625 2. 67-3. 05

3.00

1.97

0.53

2.00

0.87

2. 9-5. 9

2.45-11.0

2. 58-7. 3

Below 10

1. 8-14. 0

1.382 1.81-oo

T ape h P
Fit Heating

loose

h
Cooling

x

loose

tight

snug

unknown

tight

snug

Pressure
Drop

x

x

x

x

x

x

x

Ref-
erence

7

8

5

19

10,11

U.
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1. 2. 1 Forced Convection Heat Transfer

The mechanisms effecting the heat transfer in forced convection

swirl flow have not been clearly defined as a result of the investigations

noted in Tables I and II, and no correlation has as yet been presented

that correctly accounts for all observed effects. This is in part due to

the difficulty in obtaining accurate experimental data for the swirl geo-

metry. The following conclusions may be drawn, however, as a result

of these investigations.

1) For a constant Reynolds number the swirl flow heat transfer

coefficient, h , indreases for tighter tape twist (lower y values).
S

2) For both heating and cooling, h is greater than the com-

parable straight tube coefficient, h a, however, the improvement is

less for cooling than for heating (8, 13).

3) A dependence of hs on the centrifugal body force andAT f is

indicated by the results of Gambill et al. (12, 13) and Kreith and

Margolis (8) but the magnitude of this effect has not been determined.

This effect can be characterized by a Grashof number based upon the

centrifugal acceleration at the tube wall (see Appendix 1 for the deriva-

tion of the basic swirl flow formulas). This is

Gr? = 2(VaDh)2 (D hF ATf(1Gr =ah2

2
or 4.94 Reh (DhN ATfGr = (2)

1091h
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This effect will be referred to as the centrifugal convection effect.

4) The improvement in hs is due in part to the tape fin effect,

however, investigations with just a straight tape in a tube indicate the

maximum gain attributable to this fin effect is about 25% (8, 10, 11).

5) In general, the improvement in heat transfer for both

liquids and gases in swirl flow is of the same magnitude for equal Re

and tube/tape geometry, and the variation in hs with Re is similar for

both fluids (9, 10, 11, 12, 13, 19). The data of Kreith and Margolis

(8) represent the only exception to this conclusion. They report an

increase in hs over ha of more than 300% for the heating of water, but

for the heating of air the improvement is only 75%. An examination of

the original data of Margolis (26) indicates that an error was perhaps

made in construction of the Wilson plot used in the reduction of their

water heating data.

For forced convection swirl flow, several types of correlations

have been developed to explain the trends noted above. The simplest

form as presented by Gambill et al. (12),

a = 2. 18 y 0 0 9 0  (3)
h

correlates the increase in h over ha as a function of only the tape
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twist. This equation presumes that hs varies exactly as ha for varia-

tions in Re and Pr. It fails to account for variations in hs' for

changes in the fin effect or centrifugal effect, and it does not predict

the decrease in hs for cooling as opposed to heating. As pointed out

by Gambill (12), equations of this form are limited in their application

and should be used only if the geometry and operating conditions of

the system of interest to the designer are identical to those upon

which the equation is based.

A more accurate correlation that accounts for both the centri-

fugal convection and the tape twist effects was also presented by

Gambill et al. (12) for their water data.

h 12 1 0.084
hs = 1. 65 10 ( '1_).z (4)

ha y

Equation (4) was later modified as follows (13) to best correlate their

water and ethylene glycol data:

0.0344
(Nu) = 0.00675 V1a (5)

(Re)i, a 0.89 Pro06  y2 D.

where e is in lbm/ft3 Va in ft/sec, and D in ft.

III,



-10-

Equation (5) correlates the 103 data points for heating of

references (12, 13) with an average deviation of + 12%. It failed to

correlate their 24 data points for cooling of ethylene glycol which

still, however, had heat transfer coefficients greater than the conven-

tional straight tube values. Such an equation also overlooks possible

variations in the fin effect on the heat transfer.

A more detailed model for the prediction of hs was developed

by Smithberg and Landis (10, 11). They theorized that the swirl flow

heat transfer could be found by adding the axial flow heat transfer pre-

dicted from conventional correlations and the heat transfer associated

with "super mixing" of the warmer boundary layer fluid and the cooler

fluid in the swirling core. They also presented a method of accounting

for the tape fin effect. The super mixing contribution is expressed as

a function of the friction factor predicted from their isothermal flow

field model. The applicable equations are:

f 04 2 0.0498 7D c 1125 ln (Reh (T - 3170 +

f =0.4640Ly) 0Reh R8 Y A 2 ()

0.046 Reh 0 .2 (6)

where Ac = free flow cross sectional area, and
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Nu = RehPr X
1+ 350 JDA 0. 731

Rehfy rD 0

25.4 0.023 D. 0.0219

y Reh Rh. "2rPr2 f- 1+ 2 y (7

The use of Equation (6) is cumbersome in that it is an implicit friction

factor relation. Since Equation (7) is based on the isothermal frictioi

factor, it fails to properly account for the centrifugal convectior A11c

and cannot explain the difference observed for the heating and cooling

of swirl flows. The use of isothermal swirl flow observations for

developing a heat transfer model is questionable when one considers

the large buoyancy forces which can be set up in the heated case.

Considering the large number of parametric variables appear-

ing to influence swirl flow and the experimental problems associated

with obtaining good heat transfer data, it is not surprising that attempts

to predict the data have met with limited success. These prior investi-

gations have served to point out the need for a further study in order

to delineate the mechanisms effecting forced convection swirl flow and

lead to a more generalized prediction method. While a snug and a

tight tape fit might be expected to give the same results if the difference

in fin effects is considered, a loose or undersized tape would not tend

MIMIMMIIIIIN
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to create as large a centrifugal acceleration and one would expect that

the mechanisms influencing the heat transfer would also differ. The

data and correlations obtained with the loose tapes were, therefore,

omitted from this discussion.

1. 2. 2 Boiling Heat Transfer

For two-phase swirl flows created by boiling at the tube wall,

the bubbles formed at the surface of the heated tube are surrounded

by the rapidly rotating liquid of higher density. The centrifugal accelera-

tion force acting on the liquid is, therefore, greater than that acting

on the bubbles, and hence, a radial transport of the bubble from the

wall towards the center of the tube occurs. Since any liquid present

in the tube tends to migrate towards the heated wall and force the

vapor bubbles away from the wall, a greater critical heat flux is attain-

able for swirl flows than for comparable axial flows. This increase in

critical heat flux has been observed by several investigators (12, 13,

14, 27, 28, 29, 30), and as one might expect, the magnitude of the

improvement appears to be directly proportional to the centrifugal

acceleration at the tube wall (6, 31).

Little reliable data exists, however, on the heat transfer co-

efficient for the boiling of water in swirl flow. Gambill et al. (12)

and Feinstein and Lundberg (14) appear to have presented the only

available surface boiling data obtained in conjunction with their investi-

gation of burnout heat fluxes, while Blatt and Adt (16) have presented
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the only bulk boiling data. The results of these investigators are in

poor agreement and insufficient data exists in order to draw definite

conclusions as to the effects of tape twist, velocity, or subcooling on

the boiling heat transfer rate. The marked increase in heat flux which

one normally observes at the inception of boiling for water flowing in

a straight tube has not been noted for water in swirl flow.

The extremely high wall superheats ( A sat ='175*F for q/A =

106 Btuhr Pt, ATsub = 200'F, P = 50 psig, Va = 49 ft/sec) reported

for straight tube boiling by Feinstein and Lundberg raised doubts as

to the validity of their data. They employed electrically heated test

sections made of Inconel X and calculated their tube wall temperature

drop considering the variation in thermal conductivity of the tube with

temperature. In an analysis of their data reduction procedure, it was

found that an error was made in their evaluation of the integrated

thermal conductivity variation with temperature, J k(T)dT, (14, 32).

This led to large errors in their calculated inside wall temperature.

After making the appropriate corrections, it was found that practically

all of their reported surface boiling data was in fact non-boiling. The

study by Blatt et al. (17) also appears to be in error in the calculation

of the tube wall temperature drop. They used a condensing steam heat-

ing system but failed to account for the temperature drop across the

stainless steel tube wall. This would cause a negligible error in their

reported wall superheats for Freon-11, but could lead to errors as

111119,1 '
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much as 30'* F for their higher heat flux water data.

1. 2. 3 Pressure Drop and Friction Factors

As noted in Tables I and II, a vast amount of data on swirl flow

friction factors is presently available. Gambill and Bundy present a

comparison of this data in Reference (6) and it can be seen that for

liquids and gases rather close agreement exists between the data of

various investigators. Their recommended correlation is

(fs - 0ah (0)525 (Re) n (8).W 1[2 00

where n = 0. 81 exp[-1700 (E/Dh

This equation predicts the isothermal friction data of References

(6, 7, 8, 9, 13, 18) with a maximum deviation of 33%. An earlier cor-

relation scheme of Gambill et al. (12) considered the increase in the

friction factor for tape generated swirl flow to be caused by the increased

surface area per unit length seen by the moving fluid (characterized by

the hydraulic diameter) and the increased velocity of a fluid particle

at the tube wall due to the spiral flow path (see Appendix 1). The

relation between the straight tube friction factor and the swirl flow

case is then

fa = (472+7 2) 3/2
fa 8y3

The early ORNL water data (12) was correlatable within + 20%

by Equation (9) and Seymour (19) reported his air data could be cor-

related within + 7% by this equation.
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Equation (6) which.was developed analytically by Smithberg and

Landis (10, 11) predicts their isothermal air and water data within 16%

and the air data of Koch (9), and Margolis (26) within 10%.

While a large amount of reasonably well correlated data is

available for isothermal swirl flow pressure drop, little data has been

presented on the difference between the isothermal and heated pressure

drops for non-boiling forced convection and the pressure drop with

surface boiling swirl flows.

1. 3 Purpose of Study

In order to better explain the phenomena of swirl flow heat

transfer the goals of this study were defined to be:

1. Delineate the mechanisms present in forced convection

swirl flows by taking data under carefully controlled conditions and

from these data develop, if possible, a more universally applicable

method for predicting the associated heat transfer coefficients.

2. Obtain reliable surface boiling heat transfer and pressure

drop data, and compare the boiling inception points with conventional

straight tube boiling data.

3. Carefully evaluate the usefulness of tape generated swirl

flow as an augmentative heat transfer technique.

I.,
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Chapter II

EXPERIMENTAL PROGRAM

2. 1 Scope of Research

A comprehensive investigation was made of the forced convec-

tion, non-boiling, heat transfer coefficients and pressure drop for both

the heating and cooling of water in swirl flow. The heat transfer char-

acteristics for swirl flow surface boiling of water were also determined

and visual observations of the bubble motion present with such boiling

were made. The range of variables investigated and the design of

the electrically heated test sections were dictated primarily by the

capabilities of the low pressure test loop used for this study. The

basic test section and system variables were as follows:

Tubing: Nickel, INCO alloy 200

Wall thickness = 0. 0125 in. , Roughness = 11. 0# in.(cla)

Straight test section, Di = 0. 198 in.

Swirl test sections, Di = 0. 1935 in.

Heated L/D: 69-76

Calming L/D: 20 (minimum)

Tapes: Inconel, INCO alloy 600

Thickness = 0. 0135 in. , Roughness = 11. 8 A in. ( cla)

y values: 2.48, 3.15, 3.52, 5.26, 9.2

Inlet Temperature: 50-200*F
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System Pressure: 30-100 psia

Re.: 8 X 103 - 1. 3 X 105

6 2
Maximum Heat Flux Attained: 3. 5 X 10 Btu/hr ft

2. 2 Description of the Test Loop

2. 2. 1 Hydraulic System

The test-loop used in this study was located in the M.I. T. Heat

Transfer Laboratory and was designed and constructed in 1961 (32). A

schematic layout of the facility is shown in Fig. 1. For corrosion

resistance, the fittings and pipings are made of brass and stainless

steel, while rayon reinforced rubber hose is used for making any re-

quired flexible connections. It is a closed loop low pressure system

with circulation of the distilled water provided by a Fairbanks-Morse,

two-stage regenerative pump (260 psig discharge pressure at 3. 6

gal/min) driven through a flexible coupling by a 3 hp Allis Chalmers

induction motor. A Fulflo filter is installed at the pump inlet, and a

Greer accumulator charged with nitrogen to an initial pressure of 40

psig is at the pump outlet to dampen any pressure fluctuations. A

Jamesbury ball valve is used to isolate the accumulator from the loop

at shutdown. After the accumulator the flow splits into the by-pass

line and the test section line.

In the test section line, fluid flows through a Fischer-Porter

flowrator followed by a preheater, thence through a Hoke metering

1@11'
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valve and the test section, after which it merges with fluid from the

by-pass line. The fluid then flows through a heat exchanger and re-

turns to the pump. The preheater consists of four Chromalox

immersion heaters of approximately 6-kw each. Three of these

heaters are controlled by "on-off" switches located on front of the

test panel, while the fourth can be varied to provide from 0 to 6 kw

by means of powerstat auto-transformer mounted on the test bench.

Quick action, 1/4 turn Jamesbury ball valves are installed before

the inlet to the flowrator and after the exit from the test section to

permit quick isolation of the test section in the event of a burnout or

sudden leak. The exit valve was also used to adjust the test section

exit pressure.

Flow through the by-pass line is controlled by a ball valve on

each side of which there is a 300 psig pressure gage. Pump operating

pressure and hence the pressure upstream of the test section needle

valve is controlled by this valve.

The heat exchanger is a counterflow type with system water

flowing in the inner tube and city water flowing in the outer annulus.

Because of seasonal temperature variations, the minimum operating

temperature is approximately 50*F in the winter and 80*F in the

summer. Except for input power levels above approximately 50 kw,

the heat exchanger maintained a constant pump inlet temperature.

0
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A Fulflo filter is installed on the city water line to reduce scale forma-

tion in the heat exchanger.

The distilled water was continuously deionized by passing a

portion of the flow through a series of four mixed-bed resin deminerali-

zer cartridges installed in a Barnstead "Bantan demineralizer unit.

The conductivity as indicated by a PM-19 Barnstead Purity meter was

maintained above 2.0 megohm-cm for all runs. To minimize the dis-

solved gas in the system a 4. 7 gal degassing tank with five electrical

heaters (3-220 vac and 2-110 vac) is provided. This tank also served

as a surge tank and provided make-up water to the system during

operation. A 15 gal stainless steel supply tank is located directly

above the degassing tank and it was filled from the standard 5 gal

bottles by a small Hypro pump. Sight glasses were provided on both

the supply tank and the degassing tank in order to assist in maintain-

ing proper fluid levels.

For the cooling experiments, an additional city water line was

used to provide cooling water for the counterflow heat exchanger which

surrounded the test section.

2. 2. 2 Power Supply

Electrical power is supplied to the test section for the heating

experiments by two 36 kw Chandrysson direct current generators

connected in series. Each generator was rated at 12 volts and 3, 000

IIII
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amperes. A portable power control console permitted coarse or fine

voltage control from 0 to 24 volts. A water cooled shunt is installed in

parallel with the test section and protects the generators against the

shock of a sudden open circuit. Power is transmitted from the main

bus to the test section by water cooled power leads. Each power cable

was connected through a braided copper connector to a brass test sec-

tion holder. Each holder consisted of two segments of 3/8 in. brass

plate which, when bolted together, clamped to the test section power

bushing. To insure good electrical contact between the test section

bushings and the holders, the inner surface of the holders were lined

with a thin layer of high temperature soft solder. For these experi-

ments, the test section exit power lead was at a positive potential,

and for electrical isolation, rubber hose connected the exit plenum

chamber to the main loop.

2. 2. 3 Instrumentation

Instrumentation was provided to monitor the fluid pressure

and temperature conditions throughout the system. All fluid tempera-

tures were measured by 30 gage, copper-constantan thermocouples

made from the same reel of Leeds and Northrup duplex wire. Cali-

bration checks were performed on three thermocouples selected at

random. The deviations from the N. B.S. standard thermocouple

tables, however, were negligible and further corrections were deemed
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unnecessary. The thermocouples were connected to a common ice bath

through one of two Leeds and Northrup 12 position thermocouple selec-

tion switches and the millivolt output indications were read on a

Minneapolis-Honeywell, Brown recorder with ranges 0-6, 5-11, 10-16,

15-21, and 20-26 millivolts. The recorder was calibrated before and

during the investigation. The test section inlet and exit bulk tempera-

tures were measured by thermocouples installed directly in the fluid

stream in the inlet and exit plenum chambers. The thermocouples

were introduced at these locations through Conax fittings equipped

with lava sealants. Prior to taking data, two thermocouples were in-

serted in the exit plenum with an axial separation of approximately two

inches, and simultaneous temperature readings for varying insertion

depths were taken. Agreement between the readings was sufficient to

insure that the mixed mean temperature could be indicated by a single

thermocouple. A thermocouple was also installed in the degassing

tank to monitor the tank temperature during degassing, and another

was at the pump discharge to insure that the water entering the de-

mineralizers was below the recommended limit of 140*F. Details of

the test section instrumentation will be discussed later.

Fischer-Porter flowrators with overlapping ranges from 15 to

4, 000 lbm/hr were used to measure the flow rate. At the beginning of

this investigation the calibration of each tube-float combination was
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checked against the initial calibration curves obtained in a prior inves-

tigation (33) and periodic spot checks were made throughout this study.

All pressures atthe points indicated on Fig. 1 were read on

Bourdon-type gages. The test section inlet and exit pressures were

measured with Helicoid 8-1/2 in. gages with a specified accuracy of

+ 1/4% of full scale. At the onset of the investigation, the inlet 200

psig gage and the exit 100 psig and 60 psig gages were calibrated on

a dead weight tester and adjusted to within 0. 1 psig over their range.

They were also checked against each other at various static pressure

levels during each series of runs. A manometer system consisting

of two 60 in. Meriam U-tube manometers in parallel were also used

to accurately measure the test section pressure drop. One manometer

was filled with mercury and the other with Meriam Fluid No. 3

(S. G. = 2. 95). The reported pressure drop for a given run was

always measured by the most sensitive available method. That is,

for very low pressure drops the Meriam fluid manometer reading

would be taken, whereas for high pressure drops, the difference

between the inlet and exit gage readings was used.

The power to the test section was determined from its voltage

drop and current. The voltage drop for early runs was read directly

on a Weston multiple range D. C. voltmeter with a specified accuracy

of + 1/2%, and for later runs it was read from a Digitec digital volt-

meter accurate to 0.02 volts. The current was obtained by using the
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Brown recorder to measure the voltage drop across an N.B.S. cali-

brated shunt (60. 17 amp/mv) in series with the test section.

2. 3 Description of the Test Sections

The tapes used for this investigation were fabricated by sus-

pending 80 to 120 pounds of weights on the end of a sheared strip of

Inconel (0. 0135 in. thick) which was supported at the top by a clamp.

The weights were then turned to produce the desired tape twist. To

insure uniform contact between the tape and the tube wall, the nickel

tubes were redrawn over the twisted tapes. The redrawing was per-

formed by the F. W. French Tube Co. of Newtown, Connecticut. The

tape width, tube dimensions, and size of the drawing die were such

that the redrawing caused a 1-2 mil penetration of the tape into the

tube wall.

X-rays were made of all tube-tape assemblies at the M.I.T.

Radiographic Laboratory in order to check on the uniformity of the

tape twist and tube wall penetration and to assist in locating the wall

thermocouples and pressure taps. In order to examine various aspects

of swirl flow, several types of test sections were required. The

characteristics of each type will now be examined.

2. 3. 1 Test Section for Heating of Swirl Flows

Figure 2 is a cross section of a typical test section used to

measure the swirl flow heat transfer coefficients and pressure drops

for heat addition in the forced convection and surface boiling regimes.

Mlsfilflgll _11fill
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Power was supplied through the brass bushings at each end, and the

heated length was defined to be the distance between the inner faces

of these bushings.

The pressure taps were 0. 0135 in. holes located at a circum-

ferential point 90* from the tube-tape juncture. They were positioned

by the aid of X-rays within the first 540' of tape twist as measured

from either end to permit deburring of the drilled hole.

Since D. C. heated test sections were used, the tube wall ther-

mocouples had to be insulated from the tubes in order to prevent an

erroneous temperature indication. To minimize the radial heat loss

from the test section and make accurate thermocouple indications

possible, a guard shield surrounded the entire test section. It was

constructed from a brass tube which had a single thread-like groove

cut in its outer wall. At the third points, it was partially severed to

provide three variable temperature segments. A nichrome heater

wire insulated in glass sleeving was then placed in the spiral groove

for each segment. Two thermocouples were fastened directly to the

guard shield inner wall in each segment and three A. C. variacs were

used to adjust the inner wall temperature of the guard ring segments

to match the test section outer wall temperature in the corresponding

length. The guard shield was centered by means of screws at each

end and the space between the tube and shield was filled with asbestos

insulation.

OWAON A gw- '1- -. , _.
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Six thermocouples were spaced uniformly along the axis of the

tube and insulated from the tube wall by a single layer of Scotch Elec-

trical Tape No. 27. The junctions were located at the 90* circumferen-

tial point relative to the tape and the leads were then bound radially

around the tube with another layer of tape. To avoid conduction errors,

sufficient lengths of all thermocouples were left inside the guard shield.

To check the accuracy of the guard shield system, two thermocouples

were placed directly on the tube wall and water from 100-300'F was

circulated through the test section. When the shield temperature was

adjusted to equal the temperature indicated by the directly fastened

thermocouplesit was found that the six thermocouples insulated from

the tube wall were reading within one degree of the two that were

directly fastened.

2. 3. 2 Visual Exit Section for Surface Boiling Observations

To positively ascertain that boiling was occurring in swirl flow

and to observe the bubble trajectories, a visual exit section was

designed whereby the flow could be observed at the immediate exit

of the heated length. Figure 3 shows the details of this test section.

The inside diameters of the glass tube and the test section differed

by at the most 1. 5 mil. The silastic gasket which sealed the glass

tube to the exit power connection also allowed for the differences in

thermal expansion between the glass and the metal.

i
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2. 3. 3 Test Section for Cooling of Swirl Flows

In order to determine the heat transfer coeffi.cients for cooling

of swirl flows, a counterflow concentric tube heat exchanger depicted

in Fig. 4 was employed. The inner tube consisted of a test section

used in the heating investigation from which the power bushings and

pressure taps had been removed. The heated length was defined to be

the distance between the bottom flats of the Conax fittings located at

each end of the heat exchanger.

Three 36 gage, iron-constantan thermocouples were recessed

in the tube wall and held in place by a drop of epoxy to permit measure-

ment of the local cooling heat transfer coefficients, and to serve as

a check on the overall values obtained by conventional heat balance

methods.

2. 3. 4 Insulated Tape Test Section

In order to determine the fin effect of the electrically heated

tapes, a special insulated tape test section was fabricated. The tape

used for this assembly was twisted from a 10 mil strip of copper in the

manner previously described. The twisted tape was then coated with

a 2 mil thickness of an organic material called "apcoat." This mate-

rial has thermal and electrical properties similar to teflon but is

stronger and more resistant to abrasion. It was applied with a special

spray process by the Applied Plastics Corp. of Norwood, Mass. The

tape was sized to fit tight in a nickel tube without the tube being redrawn
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over it. An X-ray of the completed tape-tube assembly indicated the

gap between tube and tape was no greater than approximately 2 mils

at any point. Continuity checks were also made before and after the

series of runs with this test section to insure that the tape was elec-

trically insulated from the tube.

2. 4 Experimental Procedure

2. 4. 1 General Loop Operation

After the test section was installed, the loop and degassing

tank were filled with water from the supply tank and air was bled

from all the high points of the system. The degassing tank was then

brought to a boil while water was circulated through the loop and ion

exchanger with the heat exchanger on. If heating runs were planned,

the generators were also started and allowed to warm up. The de-

gassing tank vent was closed when the tank began to boil and the

pressure in the tank was allowed to increase to a level of from 6 to

15 psig. This placed the pump inlet above atmospheric pressure, and

prevented air from being sucked in around the pump seals. Degassing

was then accomplished by by-passing a portion of the cool loop water

into the top of the vigorously boiling degassing tank. The degassing

tank was periodically vented to permit the vapor and gases to escape.

Continuous degassing was done in this manner during all runs. Forced

convection, non-boiling data was not taken until the gas content as in-

dicated by a Winkler analysis was below 1. 8 c. c. air/liter (assuming

oil
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1 c. c air/liter = 2. 9 c. c. 0 2 /liter). For the boiling runs, however,

degassing was continued until the gas content was below 0. 2 c. c. air/

liter. A pressure of from 220 psig to 260 psig was maintained at all

times on the upstream side of the Hoke metering valve to prevent

system-induced instabilities.

2. 4. 2 Operating Procedure for Heating Runs

For each series of runs with heat addition, isothermal pressure

drop data was first obtained by varying the water temperature by means

of the preheaters for several different flow rates and measuring the

overall test section pressure drop. Pressure drop data was also ob-

tained during each heating run.

When the desired flow rate, system pressure, and water inlet

temperature were established, the power was applied to the test sec-

tion. If a particular bulk temperature was required at a specified

point in the test section, the inlet temperature was decreased the re-

quired amount as the power was increased. At each power setting,

the segments of the guard shield were adjusted so their inner wall

temperatures were within 2"F of the average of the corresponding test

section outer wall temperature. At equilibrium, data were recorded

concerning the test section flow rate, inlet and exit fluid temperatures,

current, voltage drop, outer wall temperatures, and pressure drop.

From 10 to 45 minutes were required per run in order to establish

equilibrium at the desired flow conditions and record the data.
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2.4. 3 Operating Procedure for Cooling Runs

The data for cooling of the test section was obtained in a manner

similar to that for heating; however, the guard shield and test section

power were not required. The flow rate and inlet and exit temperatures

of the cooling water were recorded in addition to the test section flow

rate, inlet and exit fluid temperatures, and wall temperatures.

2. 5 Data Reduction Procedure

2. 5. 1 Heating Runs

A Fortran II computer program was written to facilitate the

data reduction and present it in a useful form. It was run on the IBM

7094 computer in the M.I.T. Computation Center. A sample printout

for a typical run is shown in Fig. 5 and details on the calculation

procedure are presented in Appendix 2. Similar records of all data

obtained in this investigation are on file in the M. I. T. Heat Transfer

Laboratory.

Heat input was determined by three separate methods for the

heated runs, and it was required that the heat balance agree within

five percent for the data to be accepted. For most runs, however,

agreement was within two percent.

Local and average values for the important parameters were

determined. A linear variation in bulk temperature from the inlet

to the exit of the heated length was assumed, and a linear variation

in pressure from the inlet to the exit pressure tap was also assumed.



-30-

Since the pressure taps were on the tube wall within the swirl channel,

the pressure they read would include the swirl contribution to the total

static pressure; hence, the saturation temperature presented for a given

point reflects the saturation temperature at the tube wall.

The tube wall temperature drop was calculated considering the

variations of the tube properties with temperature in the manner rec-

ommended by Kreith and Summerfield (34). Details on the determina-

tion of the nickel tube property variations with temperature are

presented in Appendix 2.

The heat flux, (q/A), used to calculate the heat transfer coef-

ficient, h, was based on the total inside surface area of the tube as has

been done in all previous swirl flow investigations. It is shown in

Appendix 5 that this is a reasonable engineering approximation. The

heat generated in the tape was always a very small percent of the total

heat transfer to the fluid (under 3%).

A detailed error analysis is presented in Appendix 3. Using

the 2nd power error determination method recommended by Kline and

McClintock (35), the maximum probable error likely to exist for a data

point on the conventional forced convection coordinates of (Nu/Pr 0 ' 4) b

versus Rei, b is 5%, while on boiling coordinates of q/A versus ATsat

it is 4%.

2. 5. 2 Cooling Runs

Data for the cooling runs was reduced by hand with the aid of

a slide rule and desk calculator. A heat balance was made by
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comparing the First Law expressions, Eq. (2. 9) for the two fluid

streams. Since the temperature difference of the cooling water was

generally small, agreement of the two expressions within eight per-

cent was required in order for the run to be considered valid.

The overall heat transfer coefficient was determined from the

expression

q/fWDiLh
Slm

A plot was then constructed, Fig. 6, in the manner recommended

by Wilson (36) in order to determine the inside swirl flow heat transfer

coefficient. The effect on hs of variations in the fluid properties with

0.8
temperature were accounted for by assuming h al Re . The value

of hs was then computed from

1 = 1 - Constant
h U

S

where the constant is the ordinate intersection of the curve in Fig. 6.

- -114111,
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Chapter III

PRESENTATION AND DISCUSSION OF NON-BOILING FORCED

CONVECTION HEAT TRANSFER RESULTS

3. 1 Observed Effects

The experimental forced convection heat transfer results are

presented in Figs. 9-12 on the coordinates of Nu/Pr0'4 versus Re.

These coordinates were based on the inside tube diameter rather than

the hydraulic diameter in order to best show the improvement obtain-

able with swirl flow over a comparable empty tube flow. If Nu and Re

were based on the hydraulic diameter, they would, for the swirl tubes,

be but 57% of the values presented. The straight line on each plot,

Nu/Pr0.4 = 0. 023 Re 0.8, is the familiar McAdams adaptation (44) of

the equation originally presented by Dittus and Boelter (47) for pre-

dicting straight tube heat transfer coefficients for turbulent flows.

The observed effects will now be discussed.

3. 1. 1 Tape Twist Effect on the Heat Transfer Coefficient

It is apparent from these figures that tighter tape twists (lower

y values) produce an increase in the heat transfer rate. It may also

0.8be observed that hs varies essentially as Re . This would lead one

to attempt a linearized correlation, similar to Eq. (4) as presented

by Gambill. For the heated forced convection data of this investiga-

tion, the following equation correlates the data with a deviation of 25%:
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S 2.426 y 
(10)

ha

Equation (10), like Eq. (4), should only be used to predict heat transfer

coefficients when the geometry and operating conditions of the system

of interest are identical to those upon which the equation is based.

3. 1. 2 Effect of Variations in ATf on the Heat Transfer Coefficient

The swirl and empty tube data of Fig. 9 were obtained for a

variation in 6Tf of up to 120*F. This wide variation in ATf created

a substantial change in the swirl flow heat transfer coefficients for a

constant Re,but caused much less variation in the corresponding straight

tube h. This is in line with the earlier results of Bergles and Rohsenow

(32) who recommended that the McAdams correlation be used for pre-

dicting straight tube heat transfer coefficients for low temperature

water (below 200*F) at high ATf.

The data for Fig. 10 were obtained with little variation in AT f

and the spread in the data for a given y and Re was noticeably less.

Figure 13 shows more clearly how the local heat transfer coefficient

varies with AT at various flow rates. The inlet temperature was

varied in order to maintain a constant bulk temperature and Re for

these runs. It can be seen that the increase in hs is greater for the

higher flows and thus increases the probability that centrifugal con-

vection is an important swirl flow heat transfer mechanism.
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3. 1. 3 Difference Between Average and Local Nusselt Numbers

Figures 9 and 10 are based on the average values of Nu, Pr, and

Re existing for a particular run, while Fig. 11 is based on the local

values. A comparison of the data on Figs. 9 and 11 for y = 3. 15

clearly show that there is a negligible difference between the average

and local Nu values. There is also very little entrance effect present

for the swirl flow. Thermocouple No. 1 is 12 diameters from the

beginning of the heated length, yet even for the low flow rates, the

local h at this point was approximately the same as that at the end of

the tube for a constant Re. This is not surprising when one considers

the increased mixing caused by the tape. Both the average and local

Nu versus Re values presented for the swirl flow cooling data in Fig.

12 are also in close agreement. Since the variation in Re and Nu with

length for the empty tube was noticeably less, a single line was drawn

to represent this variation rather than plotting the separate points.

It can be seen in Fig. 11 that with the empty tube, the inlet h, even for

the higher flow rates, tends to be greater than a comparable h further

downstream. Comparison of these swirl and empty tube data thus

indicate entrance effects are more pronounced in straight flow.

3. 1. 4 Effect on the Heat Transfer of Heating Versus Cooling

The same test section was used to obtain the heating and cooling

data presented for y = 3. 15 in order to accurately determine the dif-

ference in hs existing for the two modes. Comparison of the data in
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Figs. 9, 11, and 12 shows that for the same Reynolds number, the heat

transfer coefficient is generally 25% less for cooling than for heating;

however, improvements over the empty tube case were still present for

all cooling runs.

3. 1. 5 Fin Effect of the Tape

An indication of the fin effect of the tape for the heated runs may

be obtained by plotting, for a constant Re and ATf, the ratio hs /ha

versus 1/y and noting the intercept for 1/y = 0. This intercept is then

indicative of the asymptote that hs/ha would approach as y goes to

infinity, i. e., a straight tape. This was done for three Reynolds numbers

and the results are shown in Fig. 14. The fin effect ranges from 7 to

17% with the greatest variation occurring in the rather limited range

of Re. from 10 to 2. 5 X 10 . These results agree quite favorably with

an analytical solution for the tape fin effect shown in Fig. 15 that was

predicted by the equations derived in Appendix 4. In this analytical

approach, the thermal contact resistance between the tape and the tube

wall was assumed to be negligible, and both the tube wall and the tape

were assumed to act as fins. For further substantiation of the tape fin

effect, heat transfer data were obtained for an insulated tape test section.

The resulting Nusselt numbers are compared in Fig. 16 to those ob-

tained at the same conditions from a tube containing a non-insulated

Inconel tape of the same twist. It can be seen that the insulated tape

results are from 7-121c less than for the corresponding non-insulated case.
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For the prediction method that will be developed later in this chapter,

we need to know the percent of the total heat transfer that is attributed

to the fin effect of the tape. As a result of the rather good agreement

between these theoretical and experimental fin effect determinations,

it was presumed that the fin heat transfer was 9% of the total for Rei

above 3 X 104 and 12% for Rei less than 3 X 10.

3. 1. 6 Tube Wall Temperature Variation with Length

The designer of any heat transfer device is generally interested

in the manner in which the wall temperature varies with length as well

as the absolute value of that temperature. The rate of this increase

(dTw/dx) is readily predicted from the First Law of Thermodynamics

for these constant heat flux test sections. The bulk temperature at

any point, x, can be found from

_(q/AfrDi x
Tx = Tin (11)

w c 

i
The wall temperature at x can then be determined by the equation

Tw x /A + (qrD x + Tb, in (12)
hX w c p

Differentiation of Eq. 12 considering the variations in h with x yields

d Tw q/A d hx + (q/ AD, (13)
dx h dx w c
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For this case, it will be assumed that Eq. (10) applies and that the

straight tube h can be predicted by

hx, a 0. 023 k Pr 0. GD 0. 8 (14)
hxaD kMX I

The following functional relations are assumed to exist for a given flow

rate and tube geometry

hx = f(M, Pr),Prx = f(Tx), x = f(Tx) (15)

Then, by the chain rule, one may write

dh - h d h dPrx (16)
dx Sy dx dPrx dx

we also know that

dx dpx dT
S - d (17)

dx dT dx

and dPrx _ dPrx dT x
0 - (18)

dx dT x dx -

Effecting the differentiation of Eq. (11) indicated by Eqs. (17) and (18)

and then combining the results with Eq. (14) and (16), one obtains for

the desired slope (19)

dTw, x (q/A Di q(g/A 0. 4 dPrx 0.8 djx)
dx w cp hx Pr \ dTx /) , \ dT x

T he values for (dPr x/dT ) and (dA /dT2 are obtainable from plots of

these properties versus temperature or by differentiation of a polyno-

mial which represents these properties in the desired temperature

range.
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In order to further ascertain the accuracy of the data and to assist

in determining the boiling inception points, plots of the tube wall tem-

perature versus length were made. A typical plot showing the variation

in tube wall temperature with length for a constant flow rate and variable

heat flux is shown in Fig. 17. One may observe that for the low heat

flux, non-boiling runs, the increase in wall temperature with length is

linear. This would be expected considering the negligible end effects

on hs as indicated by Fig. 11 for this same tube. For this case Eq. (19)

will accurately predict the temperature variation with length if the

average bulk temperature existing in the test section is used to evaluate

the heat transfer coefficients and fluid properties. This was done for

several cases and as shown in Fig. 17 the predicted slope was generally

within 1 to 2% of the experimentally obtained values. If entrance effects

are present or the bulk temperature change in the heated length is large,

as they may be for low flows, Eq. (19) will predict a lesser slope than

actual if the average bulk temperature is used for property evaluations.

This is because of the increased variation in h with length, and the non-

linearity in)A(T) and Pr(T) which exist for a large bulk temperature

variation.

For the higher heat flux, surface boiling runs, the wall tempera-

ture profile is nearly flat for that region of the tube in fully developed

surface boiling. The slight temperature decrease with length observed

for q/A's greater than 2. 5 X 106 Btu/hr ft 2 may be explained by the
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pressure drop with length and consequent decrease in the saturation

temperature. Assuming that the wall superheat required for the sur-

face boiling is constant, the wall temperature must also decrease.

3. 2 Formulation of Prediction Method

Analysis of the early experimental results of this investigation

and consideration of the experiences of previous investigators led to

the belief that the swirl flow heat transfer was due primarily to three

effects:

1) The heat transferred by conventional forced convection mecha-

nisms as a result of the turbulent flow in the spiral channel. This

contribution would be present for all tape generated swirl flows, and

should be predictable from the conventional straight tube correlations,

such as Eq. (14), if one accounts for the increased velocity at the tube

wall caused by the tape insertion and the spiralling flow path. The

heat transferred by this mechanism will be referred to as the spiral

convection heat transfer.

2) The heat transferred by a centrifugal convection effect. It is

theorized that the low density warmer fluid at the tube wall is being

continually forced into the codler main stream as a result of the high

centrifugal body force acting on the fluid particles. On this basis, this

effect would only be present for swirl flows with heat addition.

3) The heat transferred by the tape acting as a fin. This con-

tribution would be present for both heating and cooling, but its
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magnitude would depend on the contact between the tube and tape, tape

material, flow characteristics, and the size of both the tube and tape.

It was then assumed that the total heat transfer could be expressed

as the sum of these three effects.

=total ~ qsc + qcc + qf (20)

It was also assumed that the heat transferred by the tape could be ex-

pressed as a certain fraction of the heat transferred in the tube wall.

That is

qf (21)
total

if qwall hsec + qcc (22)

t ntotal i y wall = Fqwall (23)

where F = 117 -(24)

For this discussion, the heat transfer coefficient is defined as

htotal =total Fqwall (25)(T w-T b)7r D (LTh - T b)7TDi Lh

Similarly q
hs = sc (6

se (T w- T b)VDi Lh (6

and q

hcc (Tw T D IDLh

Then htotal =F(hse + hc) (27)
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The spiral convection heat transfer mechanism is thought to be

very similar to conventional straight tube heat transfer; hence, the

same type equations should predict its magnitude. The increased

velocity due to the tape insertion is accounted for by defining the mass

velocity as

G = w (28)
IT Di /4 - 6fDi

The velocity increase due to the twist can be predicted by a vector

summation of the axial and tangential velocity components assuming a

rotating, slug flow model describes the flow pattern (see Appendix 1).

The flow field analysis of Smithberg and Landis (10, 11), substantiates

that the magnitude of the tangential component is accurately predicted

by the equation

Vt ~ Va * r (1.5)
2 y ri

Near the tube wall, the agreement of Eq. (1. 5) with the observed values

was especially good. It was shown by Evans and Sarjant (3) that the

turbulence in swirl flow tends to promote, as one would expect, a

more uniform radial temperature profile than found in straight flow.

Therefore, the radial temperature gradient is confined to the thinner

thermal boundary layer at the tube wall. Since the thermal boundary

layer, which depends on the velocity profile, is the controlling heat

transfer parameter, it seems reasonable that the resultant velocity

W
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at the tube wall would be of dominant interest in predicting the spiral

convection contribution. This resultant velocity can be expressed in

terms of the axial or straight tape velocity by (see Appendix 1)

c = = 1 (4y 2 +7T9. 5 (1. 7)
Va 2y

The hydraulic diameter should also be used in predicting qsc in

that it is more representative of the boundary layer thickness in swirl

flow. Tape insertion creates a smaller flow passage and hence, the

heat transfer should increase. A similar convention was adopted by

Smithberg (11) in calculating a comparable axial flow heat transfer con-

tribution.

Combining these assumptions with the conventional straight flow

pr6diction of McAdams, Eq. (14), hsc would be predicted by

hsc = 0.023 Pr (29)
II7L~]Dh

Although the empty tube heating data of this investigation were approxi-

mately 10% above the prediction of Eq. (14), the constant 0.023 was

selected for the right hand side of Eq. (29). Exact agreement with

predictions are seldom achieved; however, since 0. 023 is widely ac-

cepted as the correlation coefficient for straight flow, it was felt that the

prediction for qsc would also be more widely applicable if it were

based on the constant 0. 023. If actual empty tube heat transfer per-

formance is known by the designer for a particular system, he could



-43-

modify the qsc constant to reflect this information when calculating the

improvement available by inserting twisted tapes. Since empty tube

heat transfer data were available for this study, the qsc constant was

modified accordingly. For Re. above 1. 5 X 104 it was designated as

0.025 and for Rei below 1.5 X 104 it was 0.0237.

Since the centrifugal convection effect is similar to the natural

convection circulation established over a heated plate facing up under

the influence of a body force field, the magnitude of the effect should

be predictable in a like manner. The applicable Grashof number would

be based on the centrifugal acceleration rather than gravitational, how-

ever, and as shown previously it can be expressed as

4.94 2 Dh
Gr= 2 Reh . D Tf (2)

The expression recommended for predicting hcc on the basis of Eq. (2)

is then
1

h -k (0. 114) Gr Pr 3 (30)
cc Dh

This equation is a modified version of the equation first recom-

mended by Fishenden and Saunders (50) to predict the heat transfer

coefficients with turbulent convection for a horizontal hot plate facing

up in a normal one gee environment. One may note that it is independent

of length.
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The heat transfer attributable to the tape fin effect is a variable

which must be determined by the designer for each particular system

of interest. A theoretical method for predicting the fin effect for the

geometry of this system is presented in Appendix 4. This method can

be readily adapted to other systems by application of appropriate bound-

ary conditions.

Introducing the expressions in Eqs. (29) and (30) into Eq. (26)

yields the final prediction equation. The proposed forms for heating

and cooling are as follows:

For heating:

k1

h s = F 0. 023 (o(Reh 0 8Pr 0 4  + 0.h19 (h A T P

Dhh
For cooling: hs = 0. 023 F (~Q0.831b)

The additive manner in which each term contributes to the total

heat transfer in Eq. (31) is shown graphically for a typical problem in

Fig. 18. The relative importance of each term will vary depending on

the geometry and flow conditions; however, it is believed that all pre-

viously observed variations in hs can be predicted by this equation. It

is an iterative prediction to the extent that one must assume a &Tf,

calculate a predicted h, and then check the validity of the assumed ATf.

This type of iteration is characteristic of all natural convection problems

and presents no real difficulty.

___ MWOM IN M. .6 - __ a



-45-

3. 3 Application of the Prediction Method

3. 3. 1 Data of this Investigation

As shown in Fig. 19, Eq. (31) with the modifications to the con-

stant 0. 023 discussed previously, was successful in predicting practi-

cally all of the 200 forced convection data points of this study within

10%. Of particular interest, is the manner in which it correctly pre-

dicts the trends in the data for variations inATf and centrifugal

acceleration as shown in Fig. 13. It was also able to correctly predict

the reduced improvement observed with cooling noted in Fig. 12.

3. 3. 2 Water Data of Other Investigations

The proposed prediction method was applied to the data of several

other investigators. Since information on the fin effect, Tb, and ATf

are required in order to use Eq. (31), it was only possible to compare

it with data which provided this information directly or which provided

sufficient information so that reasonable assumptions could be made

concerning the value of a particular quantity.

In Fig. 20, the experimental Nusselt numbers for water obtained

by Smithberg (11) are compared with the prediction of Eq. (31). For

this case, exact values for Tb and ATf were known, and the fin effect

was estimated by comparing the predictions of Smithberg made with

and without consideration of the fin effect (10, 11). A point by point

comparison was made with the assumption that F = 1. 10. Since ATf

was practically a constant for these runs, it was possible to draw a
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line through the predicted points as shown. For the tighter tape,

y = 1. 81, all but one of the experimental values agreed within 10% of

the prediction of Eq. 31. The sole exception (run #4) was 22. 4% higher

than predicted. For the looser tape, agreement was within 20% for Rei

above 3 X 104 while the two points at the lower Reynolds numbers were

29% above the predicted value. These low Re. points also appeared to

exhibit the greatest deviation from the prediction of Smithberg and

Landis, Eq. (7). As can be seen, at these low Reynolds numbers, the

experimental Nusselt number appeared to be independent of tape twist.

This independence has not been noted by other investigators nor is it

accounted for in the prediction method of Smithberg and Landis. It

appears, therefore, that these few points may have been in error.

The form of the data of Gambill et al. (12, 13) made an exact

point by point comparison impossible since the Reynolds number cor-

2
responding to a given h /h versus Gr/Re. point could not be

s a i

obtained with any degree of certainty. The Reia was estimated for

four of the data points for water, however, from the (hs /h a)y 09 /2. 18

versus Rea plot of Reference (12) taking into consideration the manner

in which the data were grouped on the two plots. For these four points,

the predicted Nu was within 15% of the experimental value. It was not

possible to obtain the original Oak Ridge data and further check the

validity of the proposed prediction method.

I - - aw I M W 'i
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3. 3. 3 Air Data of Other Investigations

Because of the effect of radial temperature gradients on the heat

transfer coefficients obtained for the heating of gases in conventional

straight tube flow (51), corrections are generally applied to convert the

experimental Nu to isothermal conditions. It is presumed that such

corrections are also required for swirl flow, however, the centrifugal

convection effect would still be an additional mechanism influencing the

total heat transfer. For typical gas flow operating conditions, the

evaluation of Eq. (1. 23) of Appendix 1, which represents the radial

density variation due to the centrifugal acceleration, is very close to

1. 0, and thus, the centrifugal convection mechanism would not be in-

hibited for the swirl flow of a gas. To be consistent with the assumption

of earlier investigators (8, 11) the multiplying factor (Tw b 0. 575

(where the T's represent absolute temperature) as presented by Kays

and London (52) is recommended to correct the Nusselt numbers ob-

tained with heating to isothermal conditions. For gases, the left hand

side of Eq. (31) would then be (Nu) (Tw/Tb)n,with n = 0 for cooling

and 0. 575 for heating.

Comparison of the predicted and experimental Nusselt numbers

for the air data of Smithberg and Landis (11) is shown in Fig. 21. A

point by point comparison was again made. For this case, however,

the straight tape air data, when compared at constant Rei, with their

straight tube data, indicated a negligible fin effect was actually present,

=WIN. ,,
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and accordingly, it was assumed F = 1. 0. All 24 data points were

within 20% of the values predicted by Eq. (31).

The fully turbulent air data of Koch (9) are compared in Fig. 22.

It was assumed that the fin effect was negligible for this data since in-

formation on his tape fit was not available. The experimental results

were all within 13% of the prediction, and as can be seen, agreement

was generally within a few percent.

On the basis of the good agreement between the predicted and

actual results for the air and water data of previous investigators, as

well as for the data of this study, it appears that Eq. (31) correctly

accounts for the major effects influencing swirl flow heat transfer.

1_X'q"ftVMMWMWWM-W".-- - 1- 61 0111 -1 1 - _-_i ...........
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Chapter IV

PRESENTATION AND DISCUSSION OF SURFACE BOILING HEAT

TRANSFER RESULTS

Typical swirl flow surface boiling curves for two different tubes

are presented in Figs. 23 and 24, and a compilation of the fully devel-

oped boiling data for both swirl and empty tubes is presented in Fig.

25. The trends observed will now be discussed.

4. 1 Comparison of Boiling in Swirl and Straight Flow

In Fig. 25, the dashed lines represent an extrapolation into the

wall superheat regime of the forced convection heat transfer rate pre-

dicted from the data of Fig. 9 for the conditions specified. It is

apparent that for the lower wall superheats the heat flux could be

accurately determined from the forced convection prediction method

previously discussed.

It can also be seen from Figs. 23 and 24 that the general appear-

ance of these swirl flow boiling curves is essentially the same as found

for conventional straight flow boiling (32, 48, 49). Three regimes

appear to be present. For the low wall superheats, the heat transfer

is by forced convection and a relatively small increase in heat flux

occurs for a small increase in the wall superheat. For higher wall

superheats, however, a large increase in heat flux occurs for a cor-

respondingly small increase in wall superheat. As with straight tube

AMIN111111fl,
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boiling, the data for a particular tube at all velocities appeared to be

asymptotic to a "fully developed" boiling line in the high superheat

region.

The presence of this asymptotic effect can also be inferred from

the variation in wall temperature with length shown in Fig. 17. In

this figure, one can see that the tube wall temperature remains essen-

tially constant as boiling progresses up the tube. As we approach and

enter the fully developed boiling regime at a point,the increase in wall

temperature becomes successively less for each incremental increase

in heat flux. An intermediate regime was also present where the data

begin to deviate from the forced convection prediction and approach the

fully developed state.

This similarity between swirl and straight flow surface boiling

has not been noted in previous investigations. Complete boiling curves

for a given velocity and subcooling were not presented in the earlier

investigation of Gambill et al. (12) and as pointed out previously, the

data of Feinstein and Lundberg were in error.

4. 2 Inception of Boiling

To accurately determine the point of incipient boiling, the visual

exit section described previously and shown in Fig. 3 was employed

to determine the conditions at which the first vapor was observed. A

Strobotac was used in conjunction with this test section in order to

better observe the bubble size and their trajectories. The first
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bubbles were observed in the visual exit at the points indicated in Fig.

23 for that particular tube. These initial bubbles, as well as all sub-

sequent bubbles for higher heat flux or lower subcooling, were very

small in size and barely discernible. Several microflash photographs

were taken, but because of the very small bubble size and distortion

created by the glass, they were not of high enough quality to permit

enlargement and reproduction for this report. It can be seen in Fig.

23 that the first visually observed bubbles occurred very close to the

predicted inception point of Bergles and Rohsenow (48), which is

given by

2.30

(q/A)inc = 15.60 P 156 (Tw -T sat) P0.234 (32)

This equation is based on the thermodynamic requirements for

bubble growth, and it accurately predicts the incipient boiling point for

a considerable amount of both high and low pressure straight tube data.

Since the heat flux required for stable bubble growth at a given wall

superheat is dependent primarily on the pressure, it is not surprising

that Eq. (33 also preducts with rather close accuracy the incipient

points for swirl flow. The early work of Merte and Clark (55) also

indicated that the inception point was essentially the same for pool

boiling in an accelerating and non-accelerating system, and is, there-

fore, in agreement with the present results.

Mull,
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4. 3 Effect of Peripheral Pressure Variations on Inception

Since the inception of boiling occurs at the heated wall, the

piessure at the wall is of primary interest when applying Eq. (32).

For this study, the pressure taps were within the swirl channel, and

therefore, their readings include the centrifugal contribution due to the

swirl expressed by Eq. (1. 20). Since the pressure in an actual system

is generally measured at an inlet or exit header, the designer must

apply appropriate corrections to determine the actual pressure exist-

ing in the swirl channel. The form of these corrections is discussed

in the next chapter.

In order to determine the magnitude of the peripheral variation

in static pressure and thus check on the probability of inception occur-

ring at some preferential low pressure point on the tube wall, an iso-

thermal survey of the static pressure existing at ten different circum-

ferential points relative to a twisted tape was made. The results from

this survey also assist in determining the secondary flow pattern

present with isothermal swirl flow. The pressure taps were spaced

axially on a 0. 75 in. I. D. plexiglas tube so as to provide circum-

ferential pressure readings at 24* increments relative to a tape of

twist, y = 3. 60. The pressure differences between each tap and a

given reference tap were determined by recording the output of a

differential pressure transducer on a Sanborn, Model 321 Dual

Channel Recorder. For the maximum velocity attainable, the peripheral

*0 i i i i 111 i if 1 a-WOW416. - 11-1 - - I I - . I I _-1 - _
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variations were less than 0. 04 psi for this study. Assuming this varia-

tion is proportional to the velocity squared, the probable variation in

peripheral pressure with the heated smaller diameter tubes would still

be less than 1. 0 psi for high velocity runs. It is believed that such a

small variation would have a minor effect on the boiling pattern at the

tube wall. Fig. 26 is a plot of the typical pressure variations observed

in this manner. If it is presumed that the higher pressure points rep-

resent stagnation points for the radial secondary flows, a radial out-

flow is probable as indicated. This would tend, therefore, to substantiate

the existence of a double vortex secondary flow pattern superimposed on

the primary spiralling motion as observed by Smithberg and Landis (10)

for air. A more detailed, higher velocity study would be required to

firmly establish the secondary flow patterns for both isothermal and

heated flows, since the very small pressu-re variations currently ob-

served do not permit definite conclusions to be drawn.

4. 4 Transition to Fully Developed Boiling

As shown in Fig. 23, the transition from incipient to fully developed

boiling for a constant flow rate, i. e. the knee generally present on a

qlA versus AT sat boiling curve, can also be predicted for a swirl flow

by conventional straight flow methods. The recommended prediction

equation of Reference (48) is 1

(q/A)B (q/A____
q/A =(q/A) 1 + 1 / (33)

FC (q/A)F% (q/A) B
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In this equation, (q/A)B represents the fully developed boiling asymptote.

The value for (q/A)Bi is the value of (q/A)B for the wall superheat,

L Tsat, found at the intersection of (q/A)inc (From Eq. 32) with

(q/A)FC, for the flow rate of interest.

4. 5 Probable Heat Transfer Mechanism with Fully Developed Surface

Boiling

As the superheat was increased beyond the inception point and

into the fully developed boiling regime, many more bubbles appeared

in the visual section. These bubbles were still quite small but they

tended to follow a spiral path of a pitch approximately equal to that of

the twisted tape. It is theorized that the centrifugal acceleration caused

the heavier liquid to force the low density bubble away from the tube

wall and towards the tape surface soon after it has formed. The heat

removal is, therefore, stimulated by the periodic disruption of the thin

thermal boundary layer adjacent to the tube wall caused by the bubble

break away and subsequent in flow of cooler liquid from the bulk core.

While many theories have been presented, the exact mechanism

responsible for the improvement in heat transfer in conventional

straight flow boiling is still open to question. The rather close agree-

ment in Fig. 25 between the fully developed asymptotes for the straight

and swirl flow data indicates the heat removal mechanism with surface

boiling is perhaps similar for the two cases. The pool boiling results

of Costello and Tuthill (56) and Merte and Clark (55) tend to
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substantiate this conclusion, since they both observed that the wall

superheat required to produce a given heat flux was practically inde-

pendent of the acceleration for heat fluxes above 50, 000 Btu/hr ft2

Since in swirl flow the bubbles are removed soon after they are

formed and appear to move toward the center of the tube, a bubble

pumping or "microconvection" mechanism similar to that proposed

by Forster and Grief (53) is perhaps primarily responsible for the

improvement in both the swirl and straight flow cases. The probability

of thermocapillarity being a dominant mechanism as recently proposed

by Brown (54), is negated, however, by the agreement between the

straight and swirl data of Fig. 25. The bubbles must remain near the

tube wall for this mechanism to play an important role, and this is

obviously not the case for swirl flow.

As a result of this study, it is concluded that the general trends

for surface boiling of subcooled water in swirl flow are essentially the

same as for straight flow. It is important to realize, however, that

while the heat flux for a particular wall superheat may be the same for

both a swirl and straight flow, the critical heat flux will always be

higher and the forced convection contribution greater for the swirl flow

case. It is indeed possible that for equal mass velocities and heat

removal,the swirl flow could be in a non-boiling regime while a con-

ventional straight flow would be above the critical heat flux point.
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Chapter V

PRESENTATION AND DISCUSSION OF PRESSURE DROP RESULTS

5. 1 Contributions to the Total Pressure Drop for Swirl Flow

The increased pressure drop which accompanies the use of

twisted tapes for generating swirl flows is quite substantial and must

be considered when contemplating their use as an augmentative heat

transfer technique. The total pressure drop for a swirl tape assembly

is determined from four different contributions defined as follows:

AP 1 - pressure loss caused by the fluid acceleration upon

entry into the swirl channel due to the reduction in flow area.

AP 2 - pressure loss due to the initial establishment of the

swirl flow pattern.

AP 3 - frictional pressure drop for the length of the spiral

channel.

AP4 - pressure recovery due to the increase in flow area

at the end of the twisted tape.

The total pressure drop across the swirl assembly is then

Ptotal LP1 +Ap2 + AP 3 - Ar' 4  (34)

In line with the work of earlier investigators (11, 12, 14) it will

be assumed that the loss 4Ar'2 associated with the rotational kinetic

energy of the fluid, is not recovered upon exit from the swirl channel.

The separate contributions for PJ, Ap 2 , and aP 4 are generally

very small in comparison to AP3, but they are easily calculated from
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the geometry and flow conditions for a particular system. Assuming

the density is constant, the pressure variations associated with the

area change at the inlet and exit respectively are:

A P G2/2 fin 9c](1 _ -2 + Kc) (35)

A P 4 = G/ 2 eex gc (1 -2 - Ke) (36)

where L = (WT r2 - fDi) [ ri2 and G is given by Eq. (28).

The contraction and expansion coefficients are a function of T and the flow

rate. Their values for a particular case may be estimated from the

graphs in Kays and London (57). Since C is generally close to 1. 0, a

conservative estimate would be to assume Ke = 0. In the event signifi-

cant vapor is generated by boiling in the heated length, the above expres-

sion for A P 4 would not be directly applicable. The condensing vapor

would alter the flow pattern and this pressure change would then be a

function of the flow regime and void fraction existing at the exit as well

as the usual single phase pressure drop parameters. Information is

not presently available on the magnitude of AP4 for such swirl flow

quality exit conditions. For the subcooled surface boiling data of the

present investigation, however, negligible pressure recovery was ob-

served between the exit from the swirl section and a downstream

plenum. It is recommended, therefore, that the pressure recovery,

A P 4 , due to the slight expansion be neglected if subcooled surface

boiling occurs in the swirl tube.
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As shown by Gambill (12) and Smithberg and Landis (10), the

pressure drop AP 2 may be expressed by

ri

4 2 r 2 t2 2r d r (37)27Wr. g
1 CO

With Vt given by Eq. (1. 5), this integrates to

2 2
SP2 = 7T G 2 (38)

16"in c Y

The pressure drop, 6 P 3 , for boiling and non-boiling swirl flows

will now be considered separately.

5. 2 Non-Boiling Friction Factors

For this investigation, the pressure drop AP3 was experimentally

observed and the friction factors presented are all determined from:

f =-e 2 3(39)
2 L G

The friction factors of previous investigations have either been

based on the same type of measured pressure drop or the observed

value was corrected for inlet and exit effects to produce an equivalent

AP. Isothermal and heated friction factors for two values of tape

twist are compared in Fig. 27 with similar values obtained for an

empty tube. Since the friction factor and Reynolds number are based

on Di, a direct comparison between the pressure drop obtained for a

swirl and empty tube at the same G is possible.
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For the empty tube, the isothermal data were predictable within

6% by the usual approximation

f = 0.046/Re.2 (40)

The empty tube friction factors obtained with heat addition were

best corrected to isothermal conditions by multiplying them by the

viscosity ratio (Ijb/Uw) raised to the 0. 35 power. Dormer and Bergles

(45) also found in their extensive pressure drop study that the multiply-

ing factor (Ub ) 0. 35 corrected their forced convection friction factors

to isothermal conditions with the least deviation.

One may note in Fig. 27 that even for the relatively loose tape

twist (y = 9. 2) the pressure drop for the same G is over twice the empty

tube value. This is reasonable considering the increased surface area

acting on the fluid. If it is assumed that Eq. (40) based on Dh applies

for the case of a straight tape, the pressure drop comparison at the

same G would be

APy= Apempty /(Dh / Di) 1.2 (41)

The data of Smithberg and Landis (10) indicates that Eq. (41) correctly

relates their straight tape and empty tube pressure drops.

The difference between the isothermal and heated friction factors

for the swirl flow data was substantially less than the corresponding

difference for the empty tube. This is reasonable if one considers the

differences in the cross sections of the flow channels. For the swirl

tubes, the effective channel size is decreased, but the total peripheral
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shear stress is substantially increased. If we assume the viscosity

correction represents the effective decrease in this total shear stress

due to the decrease in viscosity of the fluid at the heated surfaces, this

correction would be equal for the swirl and empty tube cases only if

the thermal boundary layer thickness was the same at the tape surface

and tube wall. Since the heat transfer from the tape is only a small

percent of the total, it is probable that with heat addition the decrease

in the shear stress at the tape surface is less than the decrease at the

tube wall. The magnitude of the isothermal correction factor required

for swirl flow would then also be less. To account for this difference

the viscosity ratio exponent used to correct the empty tube heated

friction factors to isothermal conditions was multiplied by the ratio

(Dh/Di) in order to correct the swirl data. That is

f s, iso ~ fs (b/Aw) 0. 35(Dh/Di) (42)

It can be seen in Fig. 27 that the data with heating for swirl flow were

quite accurately corrected to isothermal conditions through application

of Eq. (42). The friction factors with heat addition for the intermediate

tape twists of y = 3. 15 and 5. 26 are not presented in Fig. 27 but they

also were correctable to isothermal conditions by Eq. (42). It is not

possible to check the validity of this correction method with the data

of other investigators since information on their heated friction factors

and corresponding viscosity ratios for swirl and straight flow have

not been presented separately.
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A comparison of the isothermal and swirl flow friction factors for

water found in this study and previous studies is presented in Fig. 28.

The variation in f with Re is similar for practically all investigations.

For Re above 104, f decreases for an increase in Re in approximately

the same manner as the conventional smooth tube straight flow f. The

lower velocity f values of Smithberg and Landis (10) and Viskanta (18)

appear to increase for a decrease in Re at a greater rate than the cor-

responding straight tube values, but this trend is not noted in the data

of other investigators. The N-N curve for Gambill is presented to show

the apparent roughness effect. For this curve E /Dh = 1. 7 X 10-3

-4
while for all others /Dh < 3 X 10

As shown in Fig. 29, the data of this investigation were correlated

within 20% by the equation:

fs /fa )h 2. 75 y-0. 4 0 6  (43)

The smooth tube (E/Dh < 3 X 10 4) air and water data of several other

investigators were also correlated by Eq. (43) within 300/c. For com-

parison the early correlation of Gambill (12) which is based on the

increases in the frictional surface area and flow path caused by the

tape, Eq. (9), is also presented. However, as can be seen, the pre-

diction of Eq. (9) is generally low for the majority of the data. The

only significant deviation from the prediction of Eq. (43) occurred for

the roughest tube of Gambill's later data (6) indicating that roughness

can significantly effect the swirl flow pressure drop if it is above a

1111111h,.. , I lli, W1 li 0 1 1 iyi,
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certain level. The magnitude of this roughness effect is still somewhat

indeterminate from the data presently available, and a more compre-

hensive study would be required in order to accurately determine the

effect of roughness on both the swirl flow heat transfer and pressure

drop.

Considering the rather close agreement of the smooth tube swirl

flow data of several investigators with the prediction of Eq. (43), it is

recommended that this equation be used to predict the isothermal friction

factors for similar smooth tube systems. For rough tubes, Eq. (8) of

Gambill and Bundy (J,) which was presented earlier is recommended.

An attempt was made to predict the forced convection swirl flow

heat transfer coefficients from the corresponding more easily measured

friction factors. It was impossible to accurately predict the heat trans-

fer coefficients by a Colburn type analogy, however, because of the

importance of the centrifugal convection effect. The pressure drop and

friction factor tend to decrease for an increase in LT* while the heat

transfer coefficient tends to increase because of the increased centri-

fugal convection.

5. 3 Surface Boiling Pressure Drop

When the heat flux is sufficient to cause the inception of surface

boiling for a straight tube flow, the pressure drop will also tend to

increase. As the heat flux is increased well beyond the inception point

it has been shown by several investigators (45, 61, 62) that the overall
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pressure drop will increase quite rapidly. This increase is generally

attributed to the increased acceleration created by the non-equilibrium

void fraction and the effect of bubble agitation on the overall flow pattern

(45).

In Fig. 30 overall surface boiling pressure drop data for swirl

flows with various tape twists are presented. Except for the uppermost

curve, (y = 2. 48, V = 25 ft/sec) all data represent fully developed sur-

face boiling conditions. Comparison of the straight and swirl flow data

at the same velocity shows that the percent increase in the overall pres-

sure drop for an incremental rise in heat flux is significantly greater for

the straight flows. The absolute pressure drop increase is also greater

for the straight flows. This clearly indicates that for surface boiling

with swirl flow the net pressure loss attributable to the bubble formation

is less than for straight flow. This is reasonable, considering the swirl

flow bubble observations discussed previously. Since the bubbles tend

to leave the heated wall soon after they form, they are smaller than

they might be in a comparable straight flow. The non-equilibrium void

fraction and consequent pressure drop attributable to the bubbles would,

therefore, be less for the swirl flow. The difference is further explained

by the fact the bubbles are immediately removed from the wall and thus

create less agitation of the velocity boundary layer. This is contrary

to the observation of Brown (54) and Hosler (63) who noted that the

bubbles remain close to the heated surface for subcooled boiling in



-64-

straight flows. If one makes the reasonable assumption that the wall

shear stress is increased by the bubble agitation which, in turn, leads

to an increased pressure drop, it can be seen that the pressure loss

attributable to bubble agitation could also be less for swirl flows.

The difference between the surface boiling pressure drops with

swirl and straight flows is more clearly seen in Fig. 31. The non-

dimensional coordinates in this figure are a modified form of those

originally presented by Dormer and Bergles (45). The abscissa is the

ratio of the heat added in the boiling length, LB, of the heated tube to

the heat required to produce saturated exit conditions. It is therefore

indicative of the exit subcooling. The ordinate APB/ adb' is the

ratio of the actual pressure drop in the boiling length to the pressure

drop that would exist in a similar adiabatic tube of length Lsat. The

basic equations used to calculate these ratios are as follows. The non-

boiling length, LNB, is given by

L =T - T. - q/AJ w cP (44)
NB L'w, inc in hJ (q/ATD(i

where Tw, inc is found from Eq. (32) and h is determined from experi-

mental data when available or by an appropriate prediction equation such

as Eq. (29) for straight flow water data. The non-boiling pressure

drop, 6PNB, is then calculated by

APNB 2 f (LNB /D) G2  (45)

where f is taken from experimental data at a Re based upon an average
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temperature in the non-boiling length found from

NB 2 (Tin + Tb, inc (46)

with Tb, inc = T . + (q/A)DL NB/wc (47)

If data is not available, f may be predicted by Eq. (42).

The boiling pressure drop is then

APB ptest section - NB (48)

Similarly LB = Lh - LNB (49)

In Eqs. (48 and 49) it is assumed that the heated length coincides with

the distance between the pressure taps. The heat added in the boiling

length is now

qB = (q/A)7TDLB (50)

and qsat = w cp (Tsat, ex - Tin) - (q/A)WDLNB

(51)

The length from boiling inception to saturation is then

Lsat = 7sat'D/(q/A) (52)

and finally $Padb = 2 f (Lsat/D) G2 (53)

The evaluation of f and e in Eq. 53 is now based on Tb, inc given by

Eq. (47).

The results from Eqs. (48, 50, 51, and 53) are then used to cal-

culate the desired dimensionless ratios.

NMM*WAM 1M1i1M11M M1 11,
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Approximately 800 straight flow surface boiling data points of

Reference (45) were plotted on these coordinates of APB/ Aadb

versus qB sat. They included a wide range of inlet temperature, flow

rate, heat flux, and geometry. Plotted in this manner, it was found

that the data could be correlated with a maximum deviation of 50% but

an average deviation of approximately 20% by the following expressions:

For q B qsat 'i< 0. 125 (LB / D) 0.38

APBIAPadb = 0. 84 (qB/qs at) (54)

For qB sat 0. 125 (L B/D)0.38

5

AP B/&Pad (q B /qsat) + F 555
AP ~adb F]550. 142

where F = 0. 4311 (LB/D) 0.076-- 0. 125 (LB/D) 0. 38 (56)

Additional work is currently in progress to refine the above cor-

relations and apply them to the pressure drop data of other investiga-

tors. On the basis of the work done thus far, however, it is apparent

that two regions are of interest for straight tube flows. The first which

is predicted by Eq. (54) represents the moderate increase in AP for

bubble agitation, while the second, Eq. (55), accounts for the more

significant increase due to the non-equilibrium voids created by the

bubbles. The (LB/D) criteria for selection of the particular regime of

importance is indicative of the effect of heat flux on the surface boiling

,AP.
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In Fig. 31 it is apparent that the swirl data do not exhibit the

dramatic increase in A5P at the high heat flux levels, characteristic of

the straight flow data. Burnout was reached for the highest qB/qsat

point for y = 2. 48, but the increase in pressure drop was still quite

small.

It may be concluded on the basis of this comparison that the in-

crease in pressure drop for swirl flow surface boiling is significantly

less than that normally obtained with straight flows at the same exit sub-

cooling. The reason for the difference appears to be due primarily to

the smaller non-equilibrium void fraction present with the swirl flow

which in turn will create less acceleration pressure drop. It may also

be due in part to decreased boundary layer bubble agitation with swirl

flow surface boiling.
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Chapter VI

CONSTANT PUMPING POWER COMPARISON

The net benefit obtainable with a tape generated swirl flow can

be found by comparing the swirl flow heat transfer coefficient for a

given flow rate to the heat transfer coefficient in an empty tube of the

same geometry whose velocity has been increased so that the pumping

power requirements are the same. This will be referred to as a con-

stant pumping power comparison. The equations required for this type

of comparison will now be derived.

For constant pumping power

(Q AP)s = (Q 4P)o (57)

and (A V AP)s = (A V A P)o (58)

Introducing the definition of the friction factor given by Eq. (35)

into Eq. (58) and cancelling like terms, we obtain

(A fi V3) s = (A fi V 3)0  (59)

Equation (51) can also be expressed in terms of Rei by

(A fi Rei3Is = (A fi Rei3 )o (60)

Assuming that fi, 0 = 0.046/Rei,o 0. 2, Eq. (60) can be rearranged to

yield the constant pumping power straight flow Reynolds number, which

is

Re = 21. 7 (As /Ao) (Re. s 3 i, s 0.357 (61)

If the Reynolds number and friction factor are defined on the basis

of the hydraulic diameter, the applicable equation for Rei 0 would be
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[h 
0. 357

Re 1 = 21. 7 (Di/Dh) (As /A)(Reh, s) h,s (62)

The Reynolds number found from Eq. (61) or (62) is then em-

ployed in the conventional straight tube correlation, Eq. (14), to

calculate the desired constant pumping power straight flow heat transfer

coefficient, ho.

The hs/h ratios for the forced convection heating data of this

investigation (ATf approximately constant and equal to 80*F) are

plotted against the constant pumping power Reynolds number, Reo, in

Fig. 32. These data indicate that from 10 to 35% improvement in heat

transfer is possible with swirl flow for a given pumping power. The

tighter tape twists in the range y = 2. 5 to 3. 2 appear to yield improve-

ment of at least 25% on this comparison basis. This is reasonable upon

consideration of the improvement in h versus the increase in f as indi-

cated by Figs. 9 and 29. It was shown in Chapter III that the heat trans-

fer could be accurately predicted by Eq. (31). The qsc contribution

then varies as c. (o is given by Eq. (1. 7)) or approximately as 1/y

0. 67
and the qcc contribution varies as 1/y - For both terms the improve-

ment will be significantly greater for a decrease in y below 3 than for

a similar increase. The friction factor, however, appeared to vary as

1/y 0.406, hence the net variation in f is less for a corresponding

perturbation in y about 3.

The improvement for a given tape twist is reasonably constant

with Reynolds number variations. An increase in jT will produce

1011
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a corresponding increase in hs/ho above the mean line which is drawn

through the data points for each tape twist. This is caused by the in-

crease in hs due to the centrifugal convection without a corresponding

increase in f. The data points for y = 3. 15, which are above the mean

line for y = 2. 48 at Reo ::e1. 2 X 10 5, were in fact obtained with &Tf

approximately 30*F above the mean values for the y = 2. 48 data at this

same Reynolds number. This points out that loose tape twists may be

more effective than a tight twist if the ATf is higher for the case of the

loose twist.

In Fig. 33, a constant power comparison of the data of other

investigators is presented. The higher Reynolds number data of Gam-

bill et al. (6, 12) indicate approximately a 10% greater improvement in

hs at constant pumping power than observed in this investigation. The

apparent improvement may be explainable by the fact the pressure

drops, hence the friction factors were erroneously low for these early

Gambill et al. data (12). Their later summary report (6) presented the

amount by which their previous data differed from their more compre-

hensive correlation, Eq. (8). Corrections accounting for this difference

were applied to their early friction factor data when computing the

curves for Fig. 32, but it is possible that the actual values would have

been different. Information on ATf for these data of Gambill et al. is

not available, but possible variations could perhaps account for the

close grouping of the curves for the various tape twists.
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The curves representing the data of Smithberg and Landis (10)

indicate a decrease in improvement is noted for an increase in Re 0 .

4W For their very loose tape, y = 11, the rather large improvement at

lower Re 0 values is due to their high h's observed at these lower flows

which was discussed earlier. Their very tight tape, y = 1. 18, indicates

an average improvement of approximately 151c occurs. This is some-

what less than that observed in the present study but the trend of the

variation is not significantly different.

As a result of this comparison it is apparent that improvement in

heat transfer is generally noted for a tape generated swirl flow over an

equivalent constant power straight tube flow. The magnitude of the im-

provement appears to be dependent on the &Tf existing as well as the

tape twist, and for a given tube, it is relatively insensitive to variations

in the velocity level. Improvements of at.least 25% seem probable for

the tighter tape twists of y less than 3. 2. With the inception of surface

boiling, the constant power comparison would also show an improvement

for swirl flows, since, as mentioned earlier, the pressure drop increase

is significantly less for a surface boiling swirl flow than for a straight

flow.
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Chapter VII

CONCLUSIONS

The conclusions of this investigation on tape generated swirl flow

can be summarized as follows:

7. 1 Non-Boiling

1. The non-boiling heat transfer rate was shown to be a function

of the tape twist, direction of heat transfer, and fin effect of the tape.

The heat transfer coefficients obtained in this and other swirl flow in-

vestigations were accurately predicted by Eq. (31) which appears to ac-

count for all present and previously observed trends.

2. The improvement in heat transfer is greater with heating than

with cooling. This difference appears to be due to the additional circu-

lation, and resulting increase in heat removal, created by the centrifugal

body force and favorable density gradient that are present only with

heating. The temperature difference, ATf, is, therefore, an important

parameter in predicting the h for the heating of swirl flows. The results

of a recent investigation by Thorsen (65) which were received too late for

detailed analysis and inclusion in this report, are also in agreement with

this conclusion.

3. The use of a Colburn type analogy to predict h on the basis of a

known friction factor is not feasible for swirl flows.

4. For equal flow rates, twisted tapes increased the heat transfer

above the empty tube value by as much as 85%. On the basis of constant
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pumping power, the improvement was up to 35%e with the tighter tape twists

(y <3. 2) appearing to yield at least a 25%e improvement.

5. The percent decrease in the pressure drop with heat addition is

slightly less for a swirl flow than for a comparable empty tube flow.

7. 2 Surface Boiling

1. The surface boiling heat transfer characteristics of the present

swirl flows do not differ significantly from those observed with empty tube

flows. The point of incipient boiling and the transition to fully developed

boiling are predictable by conventional empty tube equations.

2. The bubbles generated in surface boiling swirl flow were observed

to be very small and move away from the tube wall soon after they are

formed which is different than comparable empty tube observations. Since

the net improvement in heat transfer is similar for the two cases, however,

this indicates that the dominant surface boiling heat transfer mechanism

for both swirl and straight flows is similar.

3. The increase in pressure drop with surface boiling in swirl flow

is substantially less than that normally observed with a comparable empty

tube flow.
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APPENDIX I

BASIC SWIRL FLOW EQUATIONS

The following equations were used to describe the flow in a

twisted tape swirl channel

4 (Flow Area)

Wetted Perimeter

4 D(fD 2 4 -D

7W Di + 2 Di - 2

(1. 1)_ lDi + 4

IT + 2 (1 -I /Di)

The difference between the hydraulic diameter and the inside

tube diameter is then expressed by

Dh

Di

1 -
7T Di

1 + 2
IV

1 -
(1. 2)

Equation (1. 2) may also be used to convert Reynolds numbers

and friction factors based upon Dh to corresponding values based upon

D.. That is
1

D h

Di

Reh

Rei (1. 3)

The length of the spiral edge of the twisted tape, Ls, in a given

axial length, La, is found from geometric considerations to be

La 2 +J2 1/2

2y (1. 4)

Where y = Inside diameters/180* tape twist

Dh

mini

fh

L s
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A rotating slug flow model as first

(12) was used in this study to estimate the

at the wall and resulting centrifugal accele

velocity component with this model is then

Vt =Va
t a 9

proposed by Gambill et al.,

total velocity of the fluid

ration. The tangential

y4, Li (1.5)

The resultant velocity at the tube wall is then the vector sum

of the tangential and axial flow components at the wall.

s 1

or V 2 2' 1/2
Vs = a (4y + (1.6)

2 y

Eq. (1. 6) could have been obtained directly from Eq. (1. 4) by

merely observing that a particle of fluid at the tube wall for swirl flow

must traverse a greater distance in a given time period. The ratio

of the swirl velocity and flow path to the corresponding straight tube

quantities is then

Ls V (4y2 2 1/2

La a 2y

The centrifugal acceleration at any point is

2 2
Vt 2  a r

t r 2y r i

(1.7)

(1. 8)
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At the wall, this is
2

1 Va ra )(1.9)
s ~2 Di (y

The conventional Grashof number based upon the hydraulic diame-

ter as the characteristic length is

g g Tfg Dh
Gr= g 2 (1. 10)

If the g in Eq. (1. 9) is replaced by the expression for as, we

obtain

2 a Dh 2 Dh ,ATf
Gr = --- (1. 11)

2 y2 Di

or equivalently

Gr = ' . Reh. h a Tf (1.12)
2 y2 Di

The radial pressure gradient for an inviscid, isothermal fluid in

swirl flow may be found by application of Euler's equation normal to a

streamline with the tangential velocity expressed by Eq. (1. 5) or by a

force balance on a differential element. Smithberg and Landis (10, 11)

elected to use the former method while Gambill et al. (12) used the latter.

The final result was the same in both cases.

Using Euler's equation, one may write

S Vt2  (1.13)
r ge r

11,
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SP Va O/ 2 r
r e L 2y r

w ri 2
dP = . Va 7f

Pc e sc 2 y ri

incompressible case ( = constant), this

(1. 14)

r dr (1. 15)

yields upon integra-

Pw - P
8 Vay g/

2
8 y ge

(1. 16)

For a cylindrical control volume of width dr and unit depth into the paper,

1, the force balance would be

dF = dm _ (1. 17)

If

and

dm = r 7 T 1 dr

A = "Tr I (1
2

Then dF = (Va 7T r dr (1
A ge 2 y ri)2

Integration of Eq. (1. 19) from r = 0 to r = ri will then give

w P = Va2 (1.
8 y. gc

This result is identical to Eq. (1. 16) obtained previously.

For compressible fluids such as air which obey the perfect gas

relation, p = R T, Eq. (1. 14) yields upon separation of variables

dP _ Va 2  2 r dr (1.
P R T ge 4 y 2 ri2

. 18)

. 19)

20)

21)

or

Hence,

For the

tion:
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Integration of Eq. (1. 21) yields

Va 2 '1 2
ln - =

8 y 2 gc ri 2 R T

The radial pressure and density ratios for this case are then

SVa2 2
8y ge R Tj

+ In C

Pw = w

(1. 22)

(1. 23)
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APPENDIX 2

DETAILS OF DATA CALCULATION PROCEDURE

The.experimental data for all isothermal and heated runs were

reduced by a computer program on the IBM 7094. The equations and

computational methods used by this program are outlined in this

appendix, and Fig. 5 is a printout of the results for a typical run.

Input Information

The test section input information was as follows:

Di, DO, k, c, I , Lh, y, axial length of each tube wall thermo-

couple from the beginning of the heated length, and location of the

pressure taps relative to the heated length.

The run input information consisted of run number, date, Tin,

T e, w, Pex , P, E, I, and T ow(1-6)

Tube Wall Temperature Drop

The tube wall temperature drop was calculated for each wall

thermocouple by the Kreith and Summerfield series solution (34) to

the equation

dfk3r T + rW = 0 (2.1)
dr dr1

With boundary conditions of

at r = O, = 0, T = Tow (2.2)
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and assumed linear variation in tube properties of the forms

(1 + 0C e T) (2. 3)

k = ko (1 + oWk T) (2.4)

The first few terms of the solution, which accounts for the variations

in both e and k of the tube are (2. 5)

-Tm (Do - D ) m(Do - D) 3

Tw o ~ 4 (1 + of T )(1 + T ) 12 D (1 +oL.T )(1 +o4- T )o ow w~T 0 ow) OkT ow

(Do - D )4 m2 (3 o(k + 4eDCk T ow ) + m

16 6(1 +Ce Tow)3 (1 +(k Tow)3  D (1 +T ow)(1 +OckT ow

2 2
where 8 X 3. 413 (2 I

m = _ _ _ _

0 koir (Do - Di2) 2

The variation in resistivity with temperature was found experimentally

for the tubes used in this study. It was determined by measuring the

voltage drop which occurred as a result of passing a known current through

a carefully measured test section held at different temperatures in a con-

stant temperature oven. The results are shown in Fig. 3, and it can be

seen that very close agreement exists between this present data and that

of other investigators. The equations shown on Fig. 7 were used to

represent the e variation in Eq. (2. 5).

A survey of the experimental and theoretical predictions for the

variation with temperature of the thermal conductivity of nickel was

made, and the results are shown in Fig. 8. A rather high degree of

scatter is apparent. This is characteristic of thermal conductivity data,

111il
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however, since it is much more difficult to accurately measure than the

electrical resistivity. A considerable amount of work has been devoted

towards predicting the thermal conductivity from the more easily

measured electrical resistivity (37, 38, 39). It was, therefore, ap-

propriate to apply such predictions to the resistivity data of this study.

In 1950, Fine (39) presented such a conductivity prediction method

especially for nickel and nickel alloys. His recommended correlation

equation, which was supposed to be accurate within 20%, is

-8
k = 2. 13 X 10 XT +0.084 (2. 6)

The units in Eq. (2.6) are: k - watts/cm'C, T -*Kelvin, e -ohm-cm.

The first term on the right hand side of Eq. (2. 6) accounts for the elec-

tronic (metallic) conduction while the second accounts for the molecular

(nonmetallic) contribution.

Ewing et al. (37) in a later study analyzed over 140 metals and

alloys and developed a more generalized correlation. They reasoned,

that since resistivity is generally measured under isothermal conditions

while a temperature gradient is required for conductivity observations,

the mean free path of an electron in the thermal measurement would

be less than that in an electrical measurement at the same temperature.

This would then reduce the metallic conductivity contribution. Their

general equation with a reported over-all average deviation of 5% is

k = 2. 61 X 10- 8 (T /e ) - 2 X 10- 17 (T e)2/ C d
' 9(2. 7)+ 97 cp d2/MT
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The units in this equation are: k -watts/cm'C, T-*Kelvin, e -ohm-cm,

c -calories/gram'C, d-grams/cc, M-average molecular weight.
p

Considering the close agreement (within 5%) of the prediction of

Eq. (2. 7) with the experimental data of Powell et al. (21), it was decided

to use their results to represent k in Eq. (2. 5).

A subroutine was written that evaluated Eq. (2. 5) for a six term

series. It was an iterative calculation since the mean resistivity, ,

is a function of the mean temperature in the tube wall.

Heat Transfer Coefficient

The heat input to the fluid was determined as follows by three

different methods, and the results were required to agree within 5%.

q = E I X 3.413 (2.8)

q = wc p (T - Tin) (2.9)

12f Lh X 3. 413 X 4

0 1

The heat flux was then defined using the result from Eq. (2. 8) as

q/A = q/IT Di Lh (2. 11)

The bulk fluid temperature at each thermocouple location was found

by assuming a linear variation in the bulk temperature within the heated

length.

The heat transfer coefficient was then found from

h = q/A
(Tiw - Tb)

(2.12)

DIM
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Evaluation of Fluid Properties and Dimensionless Groups

The evaluation of the fluid properties as a function of temperature

or pressure and the thermocouple millivolt/temperature conversions

were accomplished by a SHARE subroutine entitled "TAINT Code AL.,

Univariate Table Look-Up and Interpolation for Multiple Arrays, " written

at the NASA, Ames Research Center, Moffett Field, California. The

values for the temperature dependent variables of f , LA , k, and k

were stored internally at five degree temperature increments and the

saturation temperatures corresponding to a given pressure were stored

at five pound pressure increments. The TAINT subroutine would effect

a polynomial curve fit in order to determine the value of a dependent

variable for a given temperature or pressure.

The values of e as a function of temperature and of Tsat as a

function of pressure were found in Keenan and Keyes (42). The values

forAA and k as a function of temperature were taken from the data of

Wellman and Sibbitt (43), while the variation in P with temperature was

determined from the work of Dorsey (58).

The dimensionless groups presented in Fig. 5 were calculated

for each wall thermocouple as follows

h D.
NU = (2. 13)

k

RE = GD. (2. 14)
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where G = w (2. 15)

TDi 2/4 - 6f Di

PR = CP (2. 16)
k

A P Di
FR =2 (2. 17)

EJ = NU/Pr0. 4  (2. 18)

UR = ( AA /1A b) (2. 19)

3
g p ATf D

GR = (2.20)

The average values were calculated by a numerical integration of

the curve fit to the local values normalized with respect to the heated

length. That is

F=average F(x)dx S:::F(n) A n (2.21)

The a n's were input variables for a given tube and represented the in-

cremental length associated with each wall thermocouple.

wlki
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APPENDIX 3

ERROR ANALYSIS

In order to determine the probable error in the presentation of the

forced convection and boiling data" an error analysis was made in the

manner recommended by Kline and McClintock (35). Uncertainties

were assigned to all observed variables and it was presumed that the

uncertainty distribution (i. e. the manner in which the observed value

varies from the actual) was normal for these variables.

The coordinates for the data presentations are: Forced convection

(Nu/Pr o4) versus Re; Boiling - q/A versus 2dTsat. The functional

relations for the results of interest are then

,q/A = q/A (E, I, Di, Lh)

Ti - Ti (I,e , k, Do, Di, T 0 )

Tsat - Tsat (Px)

Nu = Nu (q/A, Ti, Tb, Di, kb)

Re Re (w, Ac' b)

The uncertainties in the observable quantities were estimated to be

Observed Variable W = Uncertainty

To e2. 0F
Tb 2. 0*F
P 1.0 psi
Tsat 3. O'F
Do and Di 0.001 in.
Lh 0.01 in.

Wkw = 2. 0%,
W

= 10%,
WAc = 5%,
Ac

,T
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WPrO.4 Wk Wk Ww
______= 2. 0%, - - =__ = 0. 5%'
Pr- 04 i k w

The uncertainties in the current and voltage depend on the particular

meter scale used to observe their values for a particular run.

The probable error for the quantities in Eq. (3. 1) were then found

by what is commonly referred to as the second-power equation. For

q/A = E IirTDi Lh the probable uncertainty in q/A would be

. ?((/A/A )r 2 + gA) W2 q/ A) \21
Wq/A E) 2+ z? q/ A) W 2 Di + L WL

. 2 Lh)
)2)

This equation

Wq/A

q/A

can be reduced to

2 2 2
WE +____ D +W

(!E2+IN'+QDh+ (

For a typical forced convection non-boiling run, the evaluation of Eq.

(3. 3) is 1

W .0 2 (0.03 2 0.001\2 (0.01

With

case

q/A + ---.-3 ) + - = 1. 02%
g /A 6 11. 3) .1 14.5

(3. 4)

the higher heat flux boiling runs, the probable error in the worst

would be

W 0.15) 2 +0.2 2 0.001 \2
q/A - 01++ -O- 1. 62%

q/A 15 2 6 . 193 14' (3.5)

The error in the tube wall temperature drop may be estimated by assum-

ing this drop is given by the exact solution to Eq. (2. 1), neglecting the

(3. 3)



-94-

radial variation in tube properties, which is

AT wall 3. 413I 2  X (3.6)

where r[n B 1
B =L-l Xjr-1

ro) B- 1 (roa ri 2)

By taking the required partial derivatives, the applicable second power

equation for the uncertainty in Eq. (3. 6) is found to be
2 Q2W 2 Wk 2 [ W 2 (1 + B + -Bln

jTwall -+ 1-B
ATwall I k LX ri roz (1 - B

1

X +ro (1-B)3I
(. 7)

In the evaluation of the various terms of Eq. (3. 7), the probable uncer-

tainty in resistivity and conductivity are the most important error source.

The error introduced by the uncertainty in the current is small in com-

parison, hence, the probable error in ATwall is practically independent

of heat flux level. The evaluation of Eq. (3. 7) for a typical case is
(3.8)

WATwall = 10-2 + .12 X 10 4 + 4 X 10- 2 + .576 X 10- 2 + .166 X1
4Twall

= 23. 9%

The net error in the inside wall temperature may then be found from

W Wam
Ti ATwall

T, = LTo + T -l Twall /T (3.9)
wallj

Evaluation of Eq. (3. 6) for a high heat flux surface boiling run yields

W
W~ = 2.0 + 0. 239 X 39) /358 = 3. 18%c (3. 10)

Ti
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For the non-boiling, forced convection runs, the probable error in the

inside wall temperature is less. In the worst case, it was found to be

WTi (2.0 +0.239 X 15) /260 = 2. 151c (3.11)
T.

1

While the probable error in the tube wall temperature drop may

be large, the error in the calculated inside wall temperature remains

small as long as the magnitude of ATwall is small. Thin walled, rela-

tively high conductivity nickel tubing was selected for use in this study

in order to minimize the tube wall temperature drop and thus negate the

probability of large errors being introduced by the uncertainty in tube

properties.

The error in the calculated wall superheat, .ATsat may be ex-

pressed by

W W W
ATsat _ Ti + Tsat (3.12)
ATsat Ti Tsat

Using the results of Eq. (3. 10) and the estimated uncertainty in Tsat,

the maximum probable error in A T sat on a boiling plot is

W 3 X 100
aTsat - 3.18 + = 4. 251e (3. 13)

AT sat 280

The expression for estimating the error in the calculation of the heat

transfer coefficient by Eq. (2. 12) is 1

2 2

Wh Wq/A + Tb
h q/A ) (Ti Tb j (3.14)
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Introducing the results from Eqs. (3. 4) and (3. 11) into Eq. (3. 14) yields

for a forced convection non-boiling run

Wh (1. 02 )2 +
h [I

(2. 15 + 2100

1
2

= 3. 58%

The probable error in Nu is then

Nu 2

WNu 
- 3.58

Nu

(3. 15)

(3. 16)

2
2+

-.193)
+ (0. 5)1 = 3. 64% (3. 17)

The maximum error in the ordinate, X = (Nu/Pr0 4), for a forced con-

vection run would then be

W X

X

2

WPr. *4

Pr .]

1
2

2 2
= (3.64 +2 )

22

W DN(J
+ W Di + WA

DIi \~I~,.
271

W2

Ac

The probable error in Re can be found from

where

WRe G

Re2
Re 

\ G)f

W 2

w /)

W G

G

For the typical forced convection run, the probable error in G will then

be
WG

G
= (0. 52 + 5 (3.21)= 5. 02%

This in turn leads to a probable error in Re for a typical run of

(5.02)2 2+ (0. 5)3 = 5. 1%6

= 4. 17%

(3. 18)

(3. 19)

(3. 20)

WRe

Re
(3.22)



-97-

APPENDIX 4

DERIVATION OF FIN EFFECT EQUATIONS

The amount of heat that is transferred by the tape acting as a

fin may be estimated by treating both the tube wall and the tape as fins.

Since the heat flux is uniform in the tube wall, the presence of the tape

can be thought of as creating a circumferential variation in the tube

wall temperature, which has the effect of causing the wall to act as a

fin. This circumferential temperature variation would be superimposed

on the uniform radial temperature drop caused by the electric heating

and would in fact be responsible for the additional heat transferred by

the tape. Taking into account the symmetry, the problem is modeled

as follows:
q0

T ape T = f(x)

x q, Boundary Conditions
Wif

q q2 dTf 0 at x = r. (4. la)
dx 1

92

x = r. q = -k f 6 L d Tf at x =0
S-0 dx (4. 1b)

Tube Tw ()

r = r +1 r.
0 30 31

2 Boundary Conditions

d T (
7=w 0 at q=2 (4. 2a)

D rw d P 2

r 6q0=kw w L d Tw at T=_f (4. 2b)
fX 2 r d- Di
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The contact resistance between the tape and tube wall is considered

negligible since the tape uniformly penetrated the wall.

A heat balance on a differential element of the tape would be

q - q - q3 ~ q 4 + Mf f d6x L = 0 (4. 3)

Define = T-Tb (4.4)

From the definition of h we know

q2 =3 = h 6 x L Of (4. 5)

Neglecting the higher order terms in the Fourier expression for

Tf at (x + Ax) we can also write

d2T

1 q 4 = kf4f d~-x2'dxL (4. 6)

Introducing these results into Eq. (4. 3) and cancelling like terms yields

d2 ef - 2 hef + Wi f = 0 (4.7)
dx 2 k f kf

This equation can be solved by letting

=f + Wif 6 f
29i (4.8)

Then d2 _ = 0 (4.9)
dx 2  kf6f

mx
Equation (4. 9) may now be solved by letting ? = e . This yields

upon substitution in Eq. (4. 9) and consideration of Eq. (4. 8) the result

mx -mx
Of = Ki e + K2 e + Wifgf (4.10)

2 hf

where 2hf,
kfgf (4.11)
kff
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The constants K1 and K2 may be solved for by applying to Eq. (4. 10)

the boundary conditions presented in Eq. (4. 1). The final expression

for the temperature distribution in the tape is then

e I e mx/6 f + em(Di - x) /fJ + Wif f (4.12)f 0L mD wr4 (.2
kf L m (em Di/Jf - 1) 2 h

The temperature distribution in the tube wall may be found in a similar

manner. The differential energy balance in this case yields

d 2 O _ h r ri9w r 2WW 0
+__ _ __..3 =)

d kw S w kw

The solution to Eq. (4. 13) can be found by effecting a transformation

similar to Eq. (4. 8) and following the same procedure which led to Eq.

(4. 12). The desired temperature distribution in this case is found to be

rco[ Bf + eB(7 - )
go eJ+e + w~ r

Ow B Sw/D- B(if'- Sw/ILV 4 ki 7w7r ri [eB- e h ri

(4. 14)

where: hr ri' (4. 15)B= B-kw Sw

The heat transferred from the tube wall to the tape, qo, is solved for

by letting Ow (5 = )= ef ( x = 0) . The resulting expression for

go is

1 wifSf W w bw r (4. 16)
qo - ~~(~ 2 h h ri

IIIIWI
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~~~1~~~~

re MB7rerl~
e BW=: r ( 1 + e )

LV4k $ r r. hww iw eBf/Di

(1+ em 

kf L m (err

B("If - if /D1)

A f)
Di)

The fraction of the total heat transfer that is attributable to the tape fin

effect is

y q0 +Wif f ri L
igMSf ri L + WiwwTr L (4. 18)

Introducing Eqs. (4. 16) and (4. 17) into Eq. (4. 18) yields the desired fin

effect

+1
E 12 h ri L

1 +

_ Wirw -

Wif6f ri2 h L
(4. 19)Wiw6w L7r

Wif4f L ri

The ratio (Wiw/Wif) can be expressed in terms of the electrical resistivity

if the tape is assumed to be a resistance in parallel with the tube.

is:

(I R)f = (I R) w

or w f

That

(4. 20)

(4. 21)

Invoking the definitions of resistivity and internal heat generation yields:

Wiw w 2 e w Ax f (AX, f L)

Wif Ax, w(AX wL) If ef
(4. 22)

(4. 17)

wh
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Introducing Eq. (4. 21) into Eq. (4. 22) will then give the desired result

Wiw _ f (4. 23)
Wif w

The evaluation of the tape fin effect as indicated by Eq. (4. 19) for the

tubes of this study is presented graphically in Fig. 15. As one would

expect the trend of the curve indicates an increase in the fin effect for

a decrease in the heat transfer coefficient.

The probable fin effect for an electrically insulated tape may be

found directly by taking the limit of X given by Eq. (4. 19) as Wif -* 0.

This equation may be rewritten as

Wifgf ri 1 Wif Sf ri 1

Wiw %r 2 h ri L Wiww r 7Th ri L
f (4. 24)

Wif f 7r1 +0Wi r
WiwE wT r

0 + -1 0 - 1
lim' = E L 7'hr L J 1 (4.25)
Wif 0 1 + 0 7 h ri L

Equation (4. 25) can also be used to estimate the fin effect for a condensing

steam heating system where the total q to the fluid is known and the tube

wall temperature drop is small.
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APPENDIX 5

A NOTE ON THE DEFINITION OF THE HEAT TRANSFER COEFFICIENT

The wall temperature used in the determination of the heat transfer

coefficients for this and most other swirl flow investigations was the

measured temperature at the ninety degree point relative to the tape.

Taking into consideration the fin effect of the tape and the consequent

circumferential heat flow, we see that this is the maximum theoretical

temperature likely to exist in the tube wall. The equation used for the

calculation of h was (5.1)

7Di Lh (Twmax - Tb) WDi Lh 9 max

A heat transfer coefficient based on the actual heat transfer area and

which takes into consideration the temperature variation in the tape

and the tube wall could be defined as follows:

hi = (; 9
-TDi LhUw + 2 Di L~f

The ratio of heat transfer coefficients is then

h - w max (53)

h ? w (f

Sw and 9 f represent the integrated average temperature difference

existing between the tube wall and the tape and the bulk fluid. They are

found from wd

e9w 29w ( 9)r d q (5.4)
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Sf j r (x) dx (5.5)
ri 0f

Using the expressions for the temperature variation in the tube wall and

tape which were derived in Appendix 4 and effecting the integrations re-

quired by Eqs. (5. 4) and (5. 5) one obtains

h 1 + 2  C2 (5.6)

h 2 2 C2 (1- B- 2
1 - -___+ -- c+ C

1 IDi 7T B + _ 1 + 3

where C1 _ w Sf ri (5.7)
2?f 6 w r

CC (5. 8)
2ri Bif /Di B(IT - bf/ Di)
EL 4kww(.) h e e

2 Sf (C 1 - 1) (5.9)
C3 ~2- .9

7I m ri F.L kf

The values for m, B, and E are given by Eq. (4. 11), (4. 15), and (4. 17)

respectively.

The evaluation of Eq. (5. 6) for the tubes used in this study with

h = 104 Btu/hr ft F yields h 1 /h = 1.01, and with h = 103 Btu/hr ft 2 'F,

h1 /h = 0. 93. This rather close agreement between hi and h for the range

of flows of interest in this study substantiates that the reported heat

transfer coefficients are indicative of the average heat transfer coeffi-

cients existing in the tube. Considering the simplicity of Eq. (5. 1)

relative to Eq. (5. 2) and the coupling which exists in Eq. (5. 2) between

the actual and calculated average, h , it is recommended that Eq. (5. 1)

--MMIMMINIMINININ 1.1 " i il I,
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be used for the reporting of all swirl flow heat transfer coefficients.
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FIG. 3 VISUAL EXIT SECTION FOR SURFACE BOILING OBSERVATIONS.
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FIG. 4 COUNTERFLOW HEAT EXCHANGER FOR THE COOLING OF SWIRL FLOWS.



H E A T R A N S F E R L A B 0 R A T O R Y

TUBULAR OR ANNULAR DATA REDUCTION

RUN INPUT

RUN NO. SWIRL e DATE 9/29/66

IP = 2 AMV = 19.1900 TINMV = .95C0 TOUTMV = 2.1000 V = 10.0000 EPP a 800.0000
TWM%(1 THRU IM) ARE .3440E 01 .351CE 61 .3690E 01 .3780E Cl .3870E 01 .3940E 01 .OOOOE 00

DP (1 THRU IP) ARE

A = .11546623E -.4

M = .8C0CO)E 33 CM =

T.c, T

1 .1724697E 03

2 .1751977E 03

3 .1821475E 03

4 .185620.,E C3

5 .189C895E 03

6 .191774(E 03

AV

FR

1 .145687:E-01

2 .1455073E-01

3 .145326^E-01

4 .1451537E-C1

5 .1449422E-01

6 .1447220F-01

AV .1452196E-01

.2920E 02 .C:COE 00 .00COE 00 .0000E 00 .OOOOE 00 PGCUT =. .3610E 02

TIN = .75265485E 02

.3955428E 05 CV =

TB

.8312910E

.8983581E

.9654252E

.1032492E

.1099559E

.1166626E

EJ

.1620299E

.1739044E

.1774840E

.1885157E

.2001231E

.2159552E

.1868220E

C A L C U L A T E D 0 U T P U T

TOUT a .12470833E 03 G a .429933

.3940862E 05 QA = .3950536E 05 QF =

LTF

.893405RE

.8536192E

.8560495E

.8237073E

.7913355E

.7511133E

UR

.4406864E

.4687138E

.4802570E

.5014142E

.5199618E

.5494359E

.4937136E

H

.7112993E

.7444524E

.7423390&

.7714863E

.8030461E

.8460493E

.7714C77E

GR

.2472739E

.3026883E

.386 971E

.4613882E

.543488CE

.6213775E

.4284113E

NU

.3247574E

.3359741E

.3315830E

.3413660E

.3521856E

.3682546E

.3431138E

CL

.6237551E

.6273293E

.6364354E

.6409857E

.6455323E

.6490503E

.6370388E

81E 07 PACUT = .50799999E 02

.6354789E 06 PAIN= .6408833E 02

RE

.3451425E

*3740094E

.4025400E

#4311337E

*4589306E

.4928250E

.4177147E

CTSAT

-. 1211973E

-. 1168571E

-. 1082260E

-. 1030721E

-. 9791685E

-. 9342580E

-. 1068794E

PR

.5687348E

.5187857E

.4770705E

.4412469E

.4108523E

.3797181E

.4675620E

DTSUB

.2105379E

.2022190E

.1938309E

.1854429E

.1770504E

.1685371E

.1895910E

FIG. 5 COMPUTER PRINTOUT FOR A TYPICAL RUN.
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FIG. 12 AVERAGE NUSSELT NUMBERS FOR COOLING.
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FIG. 17 TUBE WALL TEMPERATURE PROFILES FOR VARIOUS HEAT FLUXES.
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