THERMAL CONTACT RESISTANCE WITH NON-UNIFORM INTERFACE PRESSURES
R. McMillan, Jr. B. B. Mikic

Report No. DSR 72105-70

National Aeronautics and Space Administration
Contract No. NGR-22-009-(477)

Engineering Projects Laboratory Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

November 1970

THERMAL CONTACT RESISTANCE WITH

 NON-UNIFORM INTERFACE PRESSURESR. McMillan, Jr.
B.B. Mikic'

Prepared for the National Aeronautics and Space Administration Grant No. NGR-22-009-(477)

November 1970

DSR PROJECT 72105

Engineering Projects Laboratory
Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

ABSTRACT

This work considers the effect of roughness and waviness on interfacial pressure distributions and interfacial contact resistance. It is shown that for moderate roughness the contour area could be substantially different from the contour area calculated using the Hertzian theory. The model for pressure calculation assumes plastic deformation of surface irregularities and elastic deformation of a spherically wavy base. The calculations of pressure distributions cover the range of parameters of practical interest. Experimental contact resistance values have been determined and are compared with theoretical predictions. It was calculated that contact conductance for wavy surfaces can be increased for certain ranges of parameters by making surfaces rough.

ACKNOWLEDGMENTS

This report was supported by the National Aeronautics and Space Administration under Grant No. NGR-22-009-(477).

TABLE OF CONTENTS
ABSTRACT 2
ACKNOWLEDGMENTS 3
TABLE OF CONTENTS 4
LIST OF FIGURES 6
NOMENCLATURE 7

1. INTRODUCTION 10
2. DESCRIPTION OF SURFACES 14
3. INTERFACE PRESSURE DISTRIBUTION 15
3.1 Governing Equations 15
3.2 Method of Solution 16
3.3 Pressure Distribution Curves 17
4. EXPERIMENTAL PROGRAM 19
4.1 Preparation of Specimens 19
4.2 Description of the Apparatus 20
4.3 Experimental Procedure 22
5. EXPERIMENTAL RESULTS AND DISCUSSIONS 23
6. CONCLUSIONS 24
BIBLIOGRAPHY 25
APPENDIX A - DERIVATION OF CONTACT RESISTANCE EQUATION 27
APPENDIX B - COMPUTER PROGRAMS 30
List of Fortran Variables Used in Programs 30
Program to Determine Dimensionless Pressure Distributions Between Rough and Wavy Surfaces 32
Program to Determine Contact Resistance Using Equation (5) 40

-5-

Page
APPENDIX C - TABLES OF COORDINATES FOR PRESSURE DISTRIBUTIONS 46
table I - EXPERIMENTAL dATA 71
TABLE II - EXPERIMENTAL DATA 72
FIGURES 73

LIST OF FIGURES

Fig. 1 Definition of Contact Resistance
Fig. 2 Surface Contacts
Fig. 3 Surface Waviness
Fig. 4 Surface Geometry
Fig. 5 Typical Contact Area
Fig. 6
Plasticity Index vs. Dimensionless Force: Region of Significance for Roughness

Fig. 7 - 16 Dimensionless Pressure Distribution Curves
Fig. 17-19 Comparison of Hertzian and Rough-Sphere Pressure Distributions

Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Radius Ratios: Smooth vs. Rough Spheres
Surface-Profile Measuring Device
Contact Resistance Apparatus
Contact Conductance Results
Non-Uniform Heat Transfer Coefficient
Non-Uniform Heat Transfer Coefficient

NOMENCLATURE

a_{H}	Hertzian radius
\bar{a}_{H}	Dimensionless Hertzian radius, $a_{H} /\left(R_{i} \sigma\right)^{1 / 2}$
a_{w}	Contour radius
A	Area
$\mathrm{A}_{\text {app }}$	Apparent contact area
A_{c}	Contour area
$\overline{\mathrm{A}}$	$A / R_{i}{ }^{\sigma}$
b	Radius of heat channel
C.L.A.	Centerline average
C_{n}	Constant inside a summation
$\mathrm{E}_{1}, \mathrm{E}_{2}$	Moduli of elasticity of specimens in contact
$\overline{\mathrm{E}}$	$\equiv\left(\frac{1-v_{1}^{2}}{\pi \mathrm{E}_{1}}+\frac{1-v_{2}^{2}}{\pi \mathrm{E}_{2}}\right)^{-1}$
F	Force
$\overline{\mathrm{F}}$	$F / \mathrm{H} \sigma \mathrm{R}_{\mathrm{i}}$
$\mathrm{f}(\lambda)$	$\mathrm{h} / \mathrm{hav}_{\text {av }}$
H	Microhardness of the softer of two materials in contact
h	Wave amplitude; Heat transfer coefficient
hav	Average heat transfer coefficient
J_{n}	Bessel function of order n
k	Thermal conductivity-if two materials are in contact, $k=2 k_{1} k_{2} /\left(k_{1}+k_{2}\right)$
P	Pressure
$\mathrm{P}_{\text {av }}$	Average pressure

$\mathrm{p}_{\text {a }}$	Average pressure over contour area
p_{H}	Hertzian pressure
P_{L}	Local pressure over Hertzian area
$\overline{\mathbf{P}}$	P/H
P1	Plasticity index $\equiv(\overline{\mathrm{E} / H})\left(\sigma / \mathrm{R}_{1}\right)^{1 / 2}$
Q	Heat
q/A, Q/A	Heat flux over surface A
R	Thermal resistance; Radius of curvature
R_{c}	Constriction resistance
R_{1}	$\mathrm{R}_{1} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\mathrm{R}_{1}, \mathrm{R}_{2}$	Radii of curvature of undeformed, spherically wavy surfaces
$\mathrm{R}_{\text {MAC }}$	Macroscopic resistance term
r	Radial coordinate parallel to contact interface plane
$\overline{\mathbf{r}}$	$r /\left(R_{i} \sigma\right)^{1 / 2}$
r_{1}	A quarter-wavelength
r_{0}	Radius where pressure becomes zero
T_{c}	Local surface temperature
To	Ambient temperature
T_{s}	Extrapolated surface temperature
w(r)	Deformation of spherical object at point r
Y	Distance between the mean lines of specimen surfaces,
	measured in a direction perpendicular to the interface
	plane
\bar{Y}	Y/ σ
y_{1}	Slope of a surface profile at position i

Greek Letter Symbols

```
\lambda r/b
\nu
v},\mp@subsup{v}{2}{}\quad\mathrm{ Poisson's ratio of specimens in contact
\rho Distance between any point r and any elemental area
    dA on the interfacial area
\rho
\sigma
Tan}
Mean absolute value of profile slopes--Tan}0=(\mp@subsup{\operatorname{Tan}}{1}{2}0+\mp@subsup{\operatorname{Tan}}{2}{2}0)0.
if two surfaces are in contact. More specifically,
Tan}\mp@subsup{0}{i}{}\equiv\underset{L LIM }{L->\infty
|
Contact resistance factor
```


1. INTRODUCTION

Thermal resistances discussed in this work are assumed to occur in a vacuum environment, or in an environment where an interstitial fluid has a very low thermal conductivity. Thermal contact resistance is defined by

$$
\begin{equation*}
\mathrm{R}=\frac{\Delta \mathrm{T}}{\mathrm{q} / \mathrm{A}} \tag{1}
\end{equation*}
$$

where (q / A) is the heat flux based on the apparent area, and ΔT is defined in Figure 1. Consider two pieces of smooth metal that are pressed together. As seen in Figure 2A, there is a finite number of contact points, A_{c}. The total actual contact area is often much smaller than the apparent area, $A_{\text {app }}$. Resistance to heat flow across such a joint is called contact resistance due to macroscopic constriction. The term "constriction" is used because heat-flow lines must squeeze together to pass through the contact area (see Figure 2B). Of course, the constriction would be present only in a vacuum, or where the interstitial fluid has a lower conductivity than the base material. If the surfaces are rough (Figure 2 C), the true contact area will be even smaller than A_{c}. For this reason, A_{c} will from now on be referred to as a "contour area" rather than a "contact area." The additional area reduction due to roughness causes "microscopic constriction" of the heat-flow lines. If $A_{c}=A_{a p p}$, only microscopic constriction is present, and the pressure distribution over the contour area is uniform. When both macroscopic and microscopic constriction are present, the pressure distribution is nonuniform, because of the clustering of contour areas at discreet locations.

Holm [6], Kragelski [7], Clausing [1], and Greenwood [3] developed equations for contact resistance under these conditions. They superimposed a microscopic constriction relation over another equation that applies to the macroscopic case. These relations, however, require a detailed knowledge of the contour area. Consider heat flow between two cylindrical solids whose channel radii are greater than the radius of their contour area (as in Figure 2B). In addition, let the surfaces originally be spherically wavy. There are three ways that one can model the heat transfer across the interface:

1. Assume constant temperature across the contour area;
2. Assume constant flux across the contour area; or
3. Assume that the heat flux through any point on the contour area is proportional to the microscopic conductance, which is in turn a function of the local pressure between the two surfaces.

In the first case, the maximum heat flux occurs at the outer rim of the contour area. For this reason, heat-flow lines that are outside the contour radius as $Z \rightarrow \infty$ must change their direction a minimal amount. The third case, however, places the maximum heat flux at the center of the contour area, making it necessary for the outer heat-flow lines to change direction substantially more. In the second case above, heat-flow is distributed in some intermediate fashion.

Resistance to heat flow is highest when the heat-flow lines must redistribute themselves to the greatest extent. For this reason, a contact resistance formula employing assumption (3) will be an upper bound for the actual contact resistance. Case (1) will consequently be a lower bound, and case (2) will fall somewhere in the middle.

A simple formula, e.g., Reference [2], predicts the macroscopic constriction resistance from the radius of the contour area:

$$
\begin{equation*}
R_{\mathrm{MAC}}=\frac{\phi_{\mathrm{w}} \pi \mathrm{~b}^{2}}{2 \mathrm{k} \mathrm{a}_{\mathrm{w}}} \tag{2}
\end{equation*}
$$

where a_{w} is the contour radius, b is the channel radius, and k is the thermal conductivity. ϕ_{w}, the contact resistance factor, is given by

$$
\phi=\left(1-\frac{a_{w}}{b}\right)^{1.5}
$$

where constant temperature is assumed and by

$$
\phi=\frac{32}{3 \pi^{2}}\left(1-\frac{a_{w}}{b}\right)^{1.5}
$$

for the case of constant flux. A similar resistance equation includes the effect of microscopic constriction resistance [9]:

$$
\begin{equation*}
R=\frac{b^{2}}{a_{w}^{2}} \frac{1}{h_{c}}+\frac{\phi_{w} \pi b^{2}}{2 k a_{w}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{h}_{\mathrm{c}}=1.45\left(\frac{\mathrm{P}}{\mathrm{H}}\right)^{0.985} \frac{\mathrm{k} \operatorname{Tan} \theta}{\sigma} . \tag{4}
\end{equation*}
$$

Tan θ is the mean absolute value of the profile slopes, and σ is the root-mean square deviation of roughness heights. P_{a} is the average pressure over the contour area, $\pi a_{w}{ }^{2}$.

We now have equations for models (1) and (2), assuming constant temperature or constant heat-flux across the contour area. Mikic [8] has developed an equation that falls into the third category, where contact resistance is a function of the contour area pressure distribution, $P(r)$:

$$
\begin{align*}
& R= 0.345 \frac{\sigma}{k \operatorname{Tan} \theta}\left[\int_{0}^{1} \lambda\left(\frac{\mathrm{P}}{\mathrm{H}}\right)^{0.985} \mathrm{~d} \lambda\right]^{-1} \\
&\left.\left.+\frac{8 \mathrm{~b}}{\mathrm{k}} \sum_{\mathrm{n}=1}^{\infty} \frac{\left[\int_{0}^{1} \lambda(\mathrm{P} / \mathrm{P}\right.}{\mathrm{av}}\right)^{0.985} \mathrm{~J}_{0}\left(\nu_{\mathrm{n}} \lambda\right) \mathrm{d} \lambda\right]^{2} \tag{5}\\
& \nu_{\mathrm{n}} \mathrm{~J}_{0}^{2}\left(\nu_{\mathrm{n}}\right)
\end{align*}
$$

b, σ, and $\operatorname{Tan} \theta$ have been defined above. Hardness and thermal conductivity are denoted by H and k, respectively, and λ is the dimensionless radial coordinate $\lambda \equiv r / b$. J_{n} is the Bessel function of order n, and ν_{n} are the roots of

$$
J_{1}\left(v_{n}\right)=0 .
$$

$P_{a v}$ is the average pressure over the apparent area. A summary of the derivation of this equation appears in Appendix A. Knowledge of the interfacial pressure distribution is required for this equation. The Hertzian pressure distribution for a smooth sphere pressed against a rigid flat plane cannot, in general, be used as an approximation. Greenwood [4] has shown that in many instances the pressure distribution under a tough sphere is substantially different from the Hertzian approximation.

This work evaluates numerically the required pressure distribution curves for rough, wavy surfaces in contact. The curves are compiled in terms of convenient dimensionless parameters. In addition, experimental values of contact resistance are presented and compared with theoretical results.

The model used in this work assumes that microscopic surface irregularities are random and normally distributed, and their deformation is plastic. Deformation of the spherically wavy base surface is elastic.

2. DESCRIPTION OF SURFACES

The surfaces considered in this investigation are both wavy and rough. A surface is wavy if its profile has a finite radius of curvature along some finite length (see Figure 3). Roughness appears as a zig-zag pattern of surface heights superimposed over the waviness. The surfaces considered are assumed to have a Gaussian distribution of heights. It has been shown in Reference [2] that for the purpose of determining contact resistance, the parameters σ, $\operatorname{Tan} \theta$, and R provide a sufficient description of the surfaces involved. σ is the root-meansquare deviation of roughness heights, and $\operatorname{Tan} \theta$ is the absolute slope of these irregularities. In a wavy surface, R is the radius of curvature of a half-wave. A convenient way of finding R is by charting the surface profile and using the following equation (refer to Figure 3):

$$
\begin{equation*}
R=\frac{\left(\frac{1}{4} \text { wavelength }\right)^{2}}{2 \text { (wave amplitude) }}=\frac{r_{1}^{2}}{2 h} \quad, \quad\left(\text { for } \frac{h}{R} \ll 1\right) . \tag{6}
\end{equation*}
$$

A description of surface-profile measuring devices is given later on in this paper.

3. INTERFACE PRESSURE DISTRIBUTION

3.1 Governing Equations

The following equations determine the pressure distribution between two rough and wavy surfaces in contact under a load F:

$$
\begin{align*}
& P=\frac{H}{2} \operatorname{ERFC}\left(\frac{Y}{\sqrt{2} \sigma}\right) \tag{7}\\
& Y(r)=Y(0)+\frac{r^{2}\left(R_{1}+R_{2}\right)}{2 R_{1} R_{2}}-\frac{2 \pi}{\bar{E}} \int P d r+\frac{1}{\bar{E}} \iint_{A} \frac{P}{\rho} d A \tag{8}\\
& F=\iint_{A} P d A . \tag{9}
\end{align*}
$$

Non-dimensional versions of these equations are:

$$
\begin{align*}
& \bar{P}=\frac{1}{2} \operatorname{ERFC}\left(\frac{\bar{Y}}{\sqrt{2}}\right) \tag{7a}\\
& \bar{Y}(F)=\bar{Y}(0)+\frac{1}{2} \bar{r}^{2}-\frac{2 \pi}{P l} \int \bar{P} d \bar{r}+\frac{1}{P l} \iint_{\bar{A}} \frac{\bar{P}}{\bar{\rho}} d \bar{A} \tag{8a}\\
& \overline{\mathrm{~F}}=\iint_{\bar{A}} \overline{\mathrm{P}} \mathrm{~d} \overline{\mathrm{~A}} . \tag{9a}
\end{align*}
$$

The variables in these equations are defined in the Nomenclature and Figures 4A, 4B, and 5.

Equations (7) and (7A) come from surface-height distribution theory and the assumption of plastic deformation of surface asperities [2]. Equations (8) and (8A) result from geometry and an assumed elastic deformation [11] as seen in Figure 4A. The final equation is a simple force balance which must be satisfied. The solution of these equations is described in Section 3.2.

The non-dimensional version of these equations results in (dimensionless) pressure vs. (dimensionless) radius curves that are functions of only two parameters, P1 and $\overline{\mathrm{F}}$. For practical purposes, the most useful plasticity index values range from 0.0 to 0.6 . These values correspond to metals such as copper, aluminum, and stainless steel, with root-mean-square roughnesses from 20 micro-inches to 200 micro-inches, and whose wavy surfaces have radii of curvature between 25 inches to infinity.

3.2 Method of Solution

This section describes the technique used to find a pressure distribution employed by the contact resistance equation (Equation (5)). A pressure distribution is determined by an iterative procedure that refines a rough approximation until all three of the governing equations (7), (8), and (9) are simultaneously satisfied.

The Hertz solution for a smooth sphere pressed against a rigid flat wall [11] is taken as a first approximation for $Y(r)$. This $Y(r)$ is substituted into Equation (7) whose pressure is in turn placed in Equation (8) along with an arbitrary constant value of $Y(0)$. The new $Y(r)$ found from Equation (8) is then placed in Equation (7) and checked by (9) to determine if its load matches the actual load. At this point, $Y(0)$ is repeatedly modified until the pressures in (9) yield a force that is within 10 per cent of the correct load.

In some cases the calculated load will be lower than the actual load even when $Y(0)=0$. Thus it would be impossible to reach the correct load by merely modifying $Y(0)$. When this condition exists, $Y(0)$ is immediately called zero, and the resultant pressures are sent directly to Equation (8).

Here the shape of the pressure distribution is changed until the correct load can be obtained. When the iteration process passes through Equations (7) and (8) twice in a row yielding approximately the same pressures (within l per cent), the computation is complete, and the desired pressure distribution is printed.

Computations were made using an I.B.M. 360. For the cases presented in this work, twenty-four radial increments have been used in the finite difference approximations. To be sure that twenty-four increments were sufficient, a test case was run at forty-eight increments also. Comparison of the two resulting pressure curves shows a maximum discrepancy of 5 per cent and an average discrepancy of less than 1 per cent. Based on the above, it was concluded that twenty-four increments yield sufficient accuracy.

In the calculation procedure, symmetry was imposed on the bulk elastic deflection by setting $w(0)=w(\Delta r)$ where $w(0)$ is the deflection at the center and $w(\Delta r)$ is the deflection at the first radial point. In this way, the slope of the deflection curve at the center line will be zero.

3.3 Pressure Distribution Curves

The Hertzian pressure distribution between two spherically wavy surfaces is given by

$$
\begin{equation*}
\bar{P}=\frac{1.5 \bar{F}}{\pi \bar{a}_{H}^{2}}\left(1-\left(\bar{r} / \bar{a}_{H}\right)^{2}\right)^{0.5} \tag{10}
\end{equation*}
$$

where \bar{F} is the dimensionless applied load, and \bar{a}_{H} is the dimensionless Hertzian radius, $\overline{\mathrm{a}}_{\mathrm{H}} \equiv 1.333(\overline{\mathrm{~F}} / \mathrm{P} 1)^{1 / 3}$.

When a surface is rough, the pressure distribution may or may not differ significantly from the Hertzian solution. The region of Pl vs. $\overline{\mathrm{F}}$
plane where roughness is significant has been determined in this work and is presented in Figure 6. Roughness causes pressure distributions to differ significantly from Hertzian predictions in the following regions:

$$
\begin{align*}
& \overline{\mathrm{F}}<12.8(\mathrm{P} 1)^{1.25}, 0<\mathrm{Pl}<.10 \tag{11}\\
& \overline{\mathrm{~F}}<11.7(\mathrm{P} 1)-0.25, .10<\mathrm{P} 1<.60 \tag{12}
\end{align*}
$$

Even outside of these regions, edge effects will cause the contour radius to be greater than the Hertzian radius.

Dimensionless pressure curves for the region defined above appear in Figures 7-16. Coordinates for these and other pressure curves are listed in Appendix C. Pressure curves close to the transition line in Figure 6 closely resemble Hertzian shapes, whereas far below this line, curves are much flatter. Figures 17-19 illustrate this by depicting pressure curves at extreme values of $\overline{\mathrm{F}}$ along with the associated Hertzian pressures. In each of these pictures, the curve with the higher maximum is the Hertzian pressure (p_{H}).

Let r_{0} be defined as the radial position where the pressure drops to zero. r_{0} is therefore the contour radius and is available from the enclosed pressure distribution solutions. The ratio of r_{0} over the Hertzian radius (a_{H}) becomes less as the applied load is increased. r_{0} / a_{H} is plotted as a function of Pl and $\overline{\mathrm{F}}$ in Figure 20. $r_{\mathrm{o}} / \mathrm{a}_{\mathrm{H}}$ approaches a constant value greater than one as $\overline{\mathrm{F}}$ values leave the region described by Equations (11) and (12). Outside this region, r_{0} should probably be used instead of a_{H} as the contour radius in Equations (2) and (3), whereas the Hertzian pressure distribution is in this case acceptable for Equation (5).
-18a-

The r_{0} / a_{H} curves in Figure 20 are obtained from values of r_{0} which are read directly from Figures $8-16$. There is some subjective interpretation as to where the pressure actually reaches zero. The behavior of the $\mathrm{P} 1=.1$ curve should be accepted with caution because (as seen in Figure 8) only three r_{0} values were used to construct that curve.

4. EXPERIMENTAL PROGRAM

4.1 Preparation of Specimens

Experiments are performed with solid circular cylinders 1-1/2 inches long and 1 inch in diameter. The specimens are cut from stainless steel 303 bar-stock. Four holes (size 55 drill) are drilled to the centerline of each specimen so that thermocouples can be inserted for measurement of the axial temperature drop. The first hole is $1 / 4$ inch from the interface, and the rest of the holes are $3 / 8$ inch apart.

The contact resistance interface surfaces are lapped nominally flat. Waviness is created by the following method: A specimen is rotated in a lathe while a hard rubber block is used to press an abrasive (emery paper or diamond paste) against the test surface. The velocity distribution of the abrasive relative to the interface surface causes wear to be an increasing function of radius. In this way, the longer the abrasive is held in contact, the more convex the specimen becomes.

After the degree of waviness has been measured by a surface profilometer, the surface is blasted with glass beads to provide a desired roughness.

Waviness measurements are taken using a device specially built to accommodate the 1-inch diameter, 1-1/2-inch long specimens used in contact resistance experiments (see Figure 21). This device consists of a specimen holder that slides slowly beneath a diamond stylus that is connected to the core of a linear variable differential transformer. As the specimen passes underneath the stylus, the stylus moves up and down to follow the specimen surface. The profile shape is traced out on a Sanborn 150 recorder. This profilometer is capable of magnifying the vertical
deflection by a factor of five hundred. A detailed description of this device may be found in Reference [5].

Roughness is measured on a Taylor-Hobson Talysurf IV. The "Talysurf" provides a profile chart and a direct reading of the centerline average (C.L.A.). The root-mean-square roughness (σ) can be determined by the following relation:

$$
\begin{equation*}
\sigma=\left[\text { C.L.A.] }(\pi / 2)^{0.5} \cong 1.25\right. \text { [C.L.A.] } \tag{13}
\end{equation*}
$$

The absolute value of the slope, Tan θ can be computed graphically from the profile chart.
4.2 Description of the Apparatus

Contact resistance data have been obtained from the apparatus in Figure 22. In a few words, the apparatus passes heat through two specimens in a vacuum environment. The three main sections of the apparatus are:

1. a vacuum chamber;
2. a refrigeration unit; and
3. a lever arrangement for applying an adjustable force to the test interface.

The vacuum system is basically a hollow aluminum cylinder which has been fabricated from four main sections. An upper cylinder is welded to a top plate. When the rig is in use, a removable lower cylinder with a flange seals up against an " 0 " ring and a bottom plate. The bottom plate is bolted to the supporting structure. The upper and lower cylinders are bolted together at their interface where another " 0 " ring allows for a vacuum seal. Connections with the vacuum pumps and the refrigeration unit are made through the bottom plate. Thermocouple wires, power lines
for the specimen heater, and a bellows for the loading mechanism enter through the top plate.

The vacuum is created by a forepump (Cenco HYVAC 14 rotary mechanical pump) and a 4-inch diameter diffusion pump (NRC model H4SP). A three-way valve allows the forepump to bring the system pressure down to 50 microns of mercury where activation of the diffusion pump will continue to lower the pressure to 15 microns of mercury.

The refrigeration unit, of course, supplies the low temperature sink for the heat fluxes that are passed through the test specimens. The unit is a $1-1 / 2$ horsepower, Model 155 WFC, built by the Copeland Corporation. With its evaporator at $25^{\circ} \mathrm{F}$, it can receive up to $16,840 \mathrm{BTU} / \mathrm{HR}$. Freon 12 serves as the refrigerant fluid. The magnitude of the heat-flux produced is crucial to contact resistance studies because with large loads too low a heat-flux will produce a negligible ΔT across the test interface.

A series of levers, supported by a welded steel frame, permits the application of force to the specimens at a ratio of 100 to 1 . This deadweight loading is transmitted into the vacuum system via a 15 -convolution, 3-3/8-inch I.D. stainless steel bellows, manufactured by the Flexonics Division of the Universal Oil Products Company. At atmospheric pressure, the applied load can be adjusted between 0 and 20,000 pounds. When the system is evacuated, the minimum load is 163 pounds, due to the atmosphere pressing down on the 3-3/8-inch diameter bellows device.

In addition to the apparatus listed above, there is a water-flow cooler between the bellows and the heater. This cooler prevents the heater from raising the temperature of the rest of the chamber to a level
that would destroy the vacuum seals. The heater is powered by a 220 volt d.c. power source. A more detailed description of this apparatus may be found in Reference [12].
4.3 Experimental Procedure

Chromel-alumel thermocouples are covered with "Silver Goop" and inserted into the specimens. ("Silver Goop," manufactured by the Crawford Fitting Company, is a substance that provides a good thermal contact.) The thermocouple wires are then sealed in position with "White Epoxy," a product of the Hysol Division of the Dexter Corporation.

With the specimens inside, the vacuum chamber is sealed. The mechanical pump is switched on, and the system pressure is brought down to 50 microns of mercury. At this point the diffusion pump is activated to further lower the pressure to 15 microns of mercury. The applied load is now the minimum force of 163 pounds. After the water-flow cooler and the refrigeration unit are turned on, the heater is powered up to pass a heatflux through the specimens.

Temperature readings are recorded from a thermocuple potentiometer every thirty minutes. When two successive readings are the same, it is assumed that steady state has been reached. The applied load is now increased, and the temperature-recording procedure is repeated. The applied load is always increased rather than decreased because the specimens may undergo a plastic (irreversible) deformation.

5. EXPERIMENTAL RESULTS AND DISCUSSION

The results of contact resistance experiments appear in Tables I and II and are plotted in Figures 23A and 23B. Also appearing are the predictions using Equation (2) for contact resistance with wavy surfaces, Equation (3) which includes the effects of both roughness and waviness, and Equation (5), an integral formula which assumes that the local interfacial flux is proportional to the local microscopic conductance and hence is a function of the local interfacial pressure. Equation (5) was solved on an I.B.M. 360 computer, using forty-four and eighty-nine radial increments (for the two different cases involved in the experiments) in a finite difference approximation of the integrals. The summation appearing in the macroscopic resistance term was evaluated using the first six terms of the series. The computer program for this equation appears in Appendix A. Equations (2) and (3) are given for the case of constant flux over the contour area, using two separate choices for the contour radius, ${ }^{\mathrm{w}}$.
a. $a_{w}=a_{H}$, the Hertzian (smooth surface) approximation; and
b. $a_{w}=r_{0}$, the rough-surface contour radius determined from the pressure curves in Figures 7-16.

It has been stated earlier that Equation (5) is an upper bound for resistance (a lower bound for conductance). This indeed appears to be the case, as Equation (5) is the lowest curve in both Figures 23 A and 23 B . Using $a_{w}=a_{H}$, Equation (3) is very close to Equation (5). For the particular parameters involved in the experiments (for which the macroscopic conductance was the dominant factor), Equation (3) with $a_{w}=r_{0}$
gives the best prediction for the actual contact conductance (to within 25 per cent accuracy).

It is important to notice that in certain ranges of parameters, a wavy surface will yield a higher h if it is roughened. This is caused, as it is shown in this work, by an increase in the contour area. (The engagement of the two surfaces covers a larger area when roughness is present as in Figure 4B.) Experimentally, this was also observed by Clausing [1]. He, however, did not explain the phenomena.

Experiments performed in this work dealt with surfaces that were both rough and wavy. There was no need to experiment with rough, flat surfaces, because this topic has already been covered sufficiently, both experimentally and theoretically, in Reference [2], for example. Similarly, the case of smooth, wavy surfaces has been covered amply by authors such as Clausing [1].

6. CONCLUSIONS

From pressure distribution curves given in Figures 7-16, one can determine the actual contour area between two rough and wavy surfaces. In a certain range of parameters, this contour area is substantially larger than the value calculated from the Hertzian theory. Experiments were performed in this range, and three basic approaches for the calculation of contact conductance were applied to the results, including formulas based on
a. the Hertzian contour area;
b. the contour area predicted by this work; and
c. an integral relation which uses the complete interfacial pressure distribution.

It is suggested that Equation (3) (which assumes constant flux over the the contour area) using contour radii predicted in this work is the best prediction for the cases involved in the experiments (in which the predominant resistance comes from macroscopic constriction). For those cases where microscopic resistance is primarily controlling the value of contact resistance, it is believed that the integral relation (Equation (5)) would yield the correct prediction. (For the case of a uniform pressure distribution between two flat, rough surfaces, Equation (5) reduces to one term, the microscopic constriction resistance.)

The main conclusion is that contact conductance can be increased for certain ranges of parameters by making surfaces rough. This thesis also identifies the range of parameters where roughness will substantially affect the interfacial pressure distribution between rough and wavy surfaces.

1. Clausing, A. M. and Chao, B. T., "Thermal Contact Resistance in a Vacuum Environment," National Aeronautics and Space Administration, University of Illinois, ME-TN-242-1, August, 1965.
2. Cooper, M., Mikic, B. B., and Yovanovich, M. M., "Thermal Contact Conductance," International Journal of Heat and Mass Transfer, V. 12, 1969, pp. 279-300.
3. Greenwood, J. A., "Constriction Resistance and the Real Area in Contact," British Journal of Applied Physics, 17, 1966, pp. 1621-1632.
4. Greenwood, J. A., "The Area of Contact between a Rough Surface and a Plane," Burndy Research Report No. 25, Burndy Corporation, Norwalk, Connecticut, July 30, 1965.
5. Henry, J. J., "Thermal Resistance of Metals in Contact," M.I.T. S. M. Thesis, August, 1961.
6. Holm, R., Electric Contact Handbook, Springer Verlag, Berlin, 1958.
7. Kragelski, I. and Demkin, M., "Contact Area of Rough Surfaces," Wear, V. 3, 1966, pp. 170-187.
8. Mikic, B. B., "Thermal Constriction Resistance Due to Non-Uniform Surface Conditions; Contact Resistance at Non-Uniform Interface Pressure." (This article, written under contract with the National Aeronautics and Space Administration, has been accepted for publication in the International Journal of Heat and Mass Transfer.)
9. Mikic, B. B. and Flengas, S., "Thermal Contact Resistance in a Vacuum under Conditions of Non-Uniform Interface Pressure." M.I.T. Heat Transfer Laboratory Memorandum, 1967.
10. Mikic, B. B. and Rohsenow, W. M., "Thermal Contact Resistance," M.I.T. Report No. DSR 74542-41, September, 1966.
11. Timoshenko, S. and Goodier, J. N., Theory of Elasticity, New York, McGraw-Hill, 1951.
12. Velissaropoulos, P. D., "Apparatus for Measurement of Contact Resistance," M.I.T. S. M. Thesis, August, 1963.
13. Yovanovich, M. M., "Thermal Contact Conductance in a Vacuum," M.I.T. Report No. DSR 4542-39, November, 1965.
14. Yovanovich, M. M. and Rohsenow, W. M., "Influence of Surface Roughness upon Thermal Contact Resistance," M.I.T. Report No. 76361-48, June, 1967.

APPENDIX A

DERIVATION OF CONTACT RESISTANCE EQUATION

The equation developed by Mikic [8] for contact resistance (Equation 5) was derived as follows:

Figure 24A depicts a solid circular cylinder with a non-uniform heat transfer coefficient, h, on the $z=0$ face. The sides are insulated, and heat-flow is assumed to be one-dimensional as $z \rightarrow \infty$. The flow of heat at the top surface is

$$
\begin{equation*}
Q=\int_{A} h\left(T_{0}-T_{c}\right) d A \tag{A1}
\end{equation*}
$$

where T_{0} and T_{c} are defined in Figure 24A. The heat-flux over that surface is therefore

$$
\begin{equation*}
Q / A=T_{0} h_{a v}-\frac{1}{A} \int_{A} T_{c} h d A \tag{A2}
\end{equation*}
$$

where

$$
h_{a v} \equiv \frac{1}{A} \int_{A} h d A
$$

The total resistance from the surface to the ambient is

$$
\begin{equation*}
R \equiv \frac{T_{0}-T_{s}}{Q / A} \tag{A3}
\end{equation*}
$$

where T_{s} is defined in Figure 24B.
To transform (A2) into the form of (A3), the term

$$
\frac{1}{A} \int_{A} h T_{s} d A
$$

can be subtracted from and added to the second and third terms of (A2), respectively to yield:

$$
\begin{equation*}
Q / A=\left(T_{0}-T_{s}\right) h_{a v}-\frac{1}{A} \int_{A}\left(T_{c}-T_{s}\right) h d A . \tag{A4}
\end{equation*}
$$

Thus we now have:

$$
\begin{equation*}
R=\frac{1}{h_{a v}}+\frac{1}{Q} \int_{A} \frac{h}{h_{a v}}\left(T_{c}-T_{s}\right) d A . \tag{A5}
\end{equation*}
$$

The second term on the right-hand side of (A5) is the constriction resistance:

$$
\begin{equation*}
R_{c} \equiv \frac{1}{Q} \int \frac{h}{h_{a v}}\left(T_{c}-T_{s}\right) d A . \tag{A5.A}
\end{equation*}
$$

This represents the difference in total resistance between the two cases pictured in Figure 25A.

Figure 25B illustrates the basic model for which Equation (5) was developed. At $z=0, h$ is a function of radius, and the sides are insulated. Also, $\frac{\partial T}{\partial z}=$ constant as $z \rightarrow \infty$.

The governing differential equation for the situation is

$$
\begin{equation*}
\nabla^{2} T=0 \tag{A6}
\end{equation*}
$$

where $\nabla^{\mathbf{2}}$ is the Laplacian operator. For the given boundary conditions, the steady-state solution is

$$
\begin{equation*}
T_{s}=T_{c}-\frac{Q}{k \pi b^{2}} z+\sum_{n=1}^{\infty} C_{n} e^{-\nu_{n} z / b} J_{0}\left(\nu_{n} r / b\right) \tag{A7}
\end{equation*}
$$

where ν_{n} are the roots of

$$
\begin{equation*}
J_{1}\left(\nu_{n}\right)=0 \tag{A8}
\end{equation*}
$$

Using relation (A8) and the approximation

$$
\begin{equation*}
\frac{\left[-k\left(\frac{\partial T}{\partial z}\right)_{z=0}\right]_{a t} r}{Q / A} \cong \frac{h(r)}{h_{a v}} \tag{A9}
\end{equation*}
$$

Equation (A7) becomes

$$
\begin{equation*}
T_{c}-T_{s}=\frac{2 Q}{\pi b k} \sum_{n=1}^{\infty} \frac{\int_{0}^{1} \lambda J_{0}\left(\nu_{n} \lambda\right) f(\lambda) d \lambda}{\nu_{n} J_{0}^{2}\left(\nu_{n}\right)} J_{0}\left(\nu_{n} \lambda\right) \tag{A10}
\end{equation*}
$$

where $\lambda \equiv r / b$ and $f(\lambda) \equiv h / h_{a v}$. Combining (A5.A) and (A10) will yield

$$
\begin{equation*}
R_{c}=4 \frac{b}{k} \sum_{n=1}^{\infty} \frac{\left[\int_{0}^{1} \lambda f(\lambda) J_{0}\left(\nu_{n} \lambda\right) d \lambda\right]^{2}}{\nu_{n} J_{0}^{2}\left(\nu_{n}\right)} \tag{A11}
\end{equation*}
$$

Contact conductance for purely rough surfaces with Gaussian surface height distributions has been shown in Reference [2] to be

$$
\begin{equation*}
h_{c}=1.45 \frac{\mathrm{k} \operatorname{Tan} \theta}{\sigma}\left(\frac{\mathrm{P}}{\mathrm{H}}\right)^{0.985} \tag{A12}
\end{equation*}
$$

where the variables have been defined in the nomenclature. By combining (A11) and (A12), Equation (A5) becomes Equation 5:

$$
\begin{align*}
R= & 0.345 \frac{\sigma}{k \operatorname{Tan} \theta}\left[\int_{0}^{1} \lambda\left(\frac{\mathrm{P}}{\mathrm{H}}\right)^{0.985} \mathrm{~d} \lambda\right]^{-1} \\
& +\frac{8 \mathrm{~b}}{\mathrm{k}} \sum_{\mathrm{n}=1}^{\infty} \frac{\left[\delta_{0}^{1} \lambda\left(\mathrm{P} / \mathrm{P}_{\mathrm{av}}\right)^{0.985} J_{0}\left(\nu_{\mathrm{n}} \lambda\right) \mathrm{d} \lambda\right]^{2}}{\nu_{\mathrm{n}} J_{0}^{2}\left(\nu_{\mathrm{n}}\right)} \tag{5}
\end{align*}
$$

List of Fortran Variables Used in Programs

Notation of This Thesis
${ }^{a_{H}}$
\bar{a}_{H}
b
\bar{F}
H
$J_{0}(x)$
k
p , or P
\bar{p}, or \bar{p}
P1
R
R_{i}
$\mathrm{R}_{1}, \mathrm{R}_{2}$
r
$\bar{r}, \mathrm{~d} \bar{r}$
$\bar{Y}(\bar{r})$
$\overline{\mathrm{Y}}(0)$
$\lambda, d \lambda$
ν_{n} where $J_{1}\left(\nu_{n}\right)=0$

Fortran Symbol

AH
AHB
B
PLOAD, FBAR
H
BESEL (X)
AK
PRES, PRSS, PREZ,
HRTZP (Hertzian)
PRESH (Due to Hertzian Y)
PBAR, PBAZ
PL
RES
RADI, RAD
R1,R2
R, RR, RHOM (radial position of dA)

RB, DRB
$\mathrm{YB}(\mathrm{I})$
YNB
ALAM, DL
ANU (J)

Notation of This Thesis
$\rho \ddot{\rho}$
$\operatorname{Tan} \theta$
$\operatorname{Tan}_{1} \theta, \operatorname{Tan}_{2} \theta$
σ
σ_{1}, σ_{2}

Fortran Symbol
S
TAN
TAN1, TAN2
SIGMA
SIGMI, SIGM2

PROGRAM TO DETERMINE DIMENSIONLESS PRESSURE
DISTRIBUTIONS BETWEEN ROUGH AND WAVY SURFACES

INPUT DATA
a. $M A X=$ Number of radial increments
b. $\mathrm{P} \ell, \overline{\mathrm{F}}$
c. $Y N B=$ first approximation for \bar{Y} (0)

OUTPUT DATA
a. $\mathrm{Pl}, \overline{\mathrm{F}}$
b. Dimensionless Hertzian pressures 57
c. Dimensionless Hertzian radius 68
d. First approximation for $\bar{Y}(\bar{r}) \quad 69$
e. First approximation for $\overline{\mathrm{P}}(\overline{\mathrm{r}}) \quad 78$
f. Second approximation for $\overline{\mathrm{P}}(\overline{\mathrm{r}}) \quad 96$
g. If any values of $\bar{Y}(\bar{r})$ are negative, they are
written here.
h. Final values, $\bar{P}(\bar{r}) 229$
i. Final values, $\bar{Y}(\bar{r}) \quad 230$
j. \bar{F} calculated from $\bar{P}(\bar{r}) \quad 232$
k. Dimensionless radial coordinates 235

1. $\mathrm{P} \ell, \overline{\mathrm{F}}$239
```
        DIMFNSION PRSS(50), -TRTZP(50),YB(50), PRESH(50),PBAR(5)),7(50),PBAZ(
        150),N(50),PREZ(50),RTER(50),PR1(50)
C
C
C
C
C
102 FORMAT(25X,F15.4)
103 FJRMAT(1H,GE15.4)
105 FJRMAT(25X,15HHERTZIAN RADIUS)
107 FORMAT(1H,40X,15HCALCULATFD LJAD/)
103 FJRMAT(1H ,40X,E15.4)
109 FJRMAT(1H2,30X,27HFINAL PRESSURE JISTRIRJTION/)
112 FORMAT(E15.4)
114 FORMAT(1H,30X,34HINTERMEDIATE PRESSURE DISTRIBUTIJN/I
117 FJRMAT(1H,14HPLASTICITY(PL),KX,4HFBAR/)
118 FJRMAT(1H,F15.4,5X,F15.4)
122 FJRMAT(2F10.3)
490 FJRMAT(1H, 22HPURE HERTZIAN PRESSURE/)
1001 FORMAT(I10)
1005 FJRMAT(1H, 8HYBAR(O)=,E15.4)
1008 FORMAT(IH , {HYRAR(I)=/)
1011 FJRMAT(1H, 25HPRAR DJF TO HERTZIAN YRAR/)
4755 FORMAT(1H, RHPBAZ(I)=/)
4756 FORYAT(1H,30HPBAZ(I)=(PRAR(I)+HRTZP(I))/2.0/)
    A=0.0
    CCIUNT=O.0
    CHAVGE=0.O
    G=0.0
    READ(5,1C01) MAX
    PI=3.14150
    READ(5,122) PL,FBAR
    AEAP=0.0
    n] 8010 I=1,29
    HRTIP(I)=0.0
```

PRESO001
PRESOOS2
PRESOOn3
PRFS 3014
PRESO005
PRESO? 36
PRESO007
PRESOOO8
PRESOOO9
PRESO010
PRFSOO11
PRESOO12
PRFSOつ13
PRESOO14
PRESOO15
PRESOO16
PRFSOO17
PRESOO18
PRFSOO19
PRESOO20
PRESOO21
DRESOO22
PRESOO23
PRESOO2.4
PRES 0025
PRESO026
PRESO027
PRESOO28
PRESJ029
PRESO』30
PRESOO31
PRESO032
PRESOO 33
PRESOO34
PRESO035
PRESOO 36

```
RO1O CCNTINHE
    READ(5.112) YNR
8 0 0 0 ~ C O N T I N U E
    WRITE(6,117)
    WRITE(6,118) PL,FBAR
    DU }75\textrm{I}=1,\textrm{MAX
    PRSS(I)=0.7
    PLJAD=FRAR
    RMAX=MAX-1
    MAXM1=MAX-1
    AHR=1.333*((FBAR/OL)**.3333)
    AH=AHB
    AHSQ=AHB*AHB
    LL=(RMAX/4.0)+1.5
    DRB=(4.0*AHB)/RMAX
    0] 491 [=1,LL
    RB=FLOAT(I-1)*DRB
    HRTZP(I)=.477*(FBAR/AHSQ)*SQRT(1.0-(RR*RR/AHSQ))
491 CONTINUE
    WRITE (6,480)
    WRITE(6,103) (HRTZ)(I),I=1,LL)
    DJ 1 I=1,MAX
    RR=Fi\capAT(I-1)*DRB
    IF(RB-AHR)4,4,5
    YB(I)=0.!
    GO TO 1
    SIDE=SQRT(RR*RB-AHS) )
    Y3(I)=.5*(RB*RR-2.)*AHSQ*(1.)-. 318*(((2.)-((RR/AH)**2.0))*ATAN(AH/
    1SIDE) +(((RB*RR)/(AHSQ))-1.0)**0.5))))
1 CONTINUE
    WRITE(6,105)
    WRITE(6,102) AHR
    WRITE(6,103) (YR(I),I=1,MAX)
    O) 200 I= , MAX
    PRESH(I)=0.5*(1.0-ERF(YR(I)/(1.414)))
    PTEST=.001*PRFSH(1)
```

PRESOO.37
PRESOO38
PRFSOO39
PRESOO40
PRFSO241
PRFS2042
PRESOO43
PRES 2044
PRESOO45
PRFS0046
PRES 2047
PRESOO48
PRESCO49
PRES0050
PRESOO51
PRESOO52
PRESOO53
PRESOO54
PRESOO55
PRESOO56
PRESOO57
PRESOO58
PRESNO59
PRFS0060
PRESN061
PRESOOR2
PRES0963
PRES 2064
PRESOO65
PRESOOS6
PRES0067
PRFSOn68
PRESO069
PRESOO70
PRESOO71
PRESOOT2

```
    IF(PRESH(I).LT.PTEST) GO TO 1984
200 CONTINUF
1984 MAX=I
    MAXM1 =MAX-1
    WRITE (6,1011)
    WRITE(6,103) (PRESH(I),I=1,MAX)
    TEST1=.O1*PRESH(1)
    AEAR=0.0
    DO 436 I =1, MAX
    RB=FLOAT(I-1)*DRR
486 AEAR=AEAR+PRESH(I)*RR*\capRR
    FLOAJ=2.0*PI*AEAR
    G] TJ 195
1898 CONTINUE
    G=G+1.0
    IF(G.EQ.1.0) GO TJ 80OI
    GO TJ ROO3
8001 CONTINUE
    D) 8002 I= 1,MAX
    PBAR(I)=(HRTZP(I)+PRAR(I))/?.?
    DRI(I)=PBAR(I)
8002 CJNTINUE
    WRITE(6,4756)
    WRITE(6,103) (PBAR(T),I=1,MAX)
8003 RONTINUE
    D] 8004 I= ,MAX
    PBAR(I)=(PRI(I)+PBAR(I))/2.0
    PRI(I)=PBAR(I)
9004 CSNTINUE
11 TESTI=.01*PRAR(1)
    COUNT = COUNT+1.O
    IF(COUNT-15.0)1772,1972.1979
1972 CJNTINUE
    DJ 85 I= 1,MAX
85 PRSS(I)=PBAR(I)
    TEST=0.1*PBAR(1)
```

presool3
PRESOO74

```
    N=MAX
    AREA=0.,)
    DJ 25 I=2,N
    RB=FL\capAT (I-1)}\times\cap\capR
    SUM=0.0
    \triangleDD=2.O*SORT(PI)*Q2B*PRAR(I)
    D] 26 K=1,N
    RH\capM=FLDAT (K-1) *DRB
    SJM1=(2.n*RHOM*)2R*PBAR(K))/(RHOM*RHOM+R3*RB)**.5
    EP=2.O*RR*RHOM/(RB*RB+RHOM*RHOM)
    IF(EP-1.n)600,601,601
    S3=0.0
    DO 300 J=1,5
    THETA =FLCAT (J-1)*PI/9?.0+PI/183.0
    S=SQRT(1.0-EP*COS(THETA))
    S3=S3+(PI/90.0)/S
300 CONTINUE
    S4=0.0
    DO 301 M=2,18
    THETA = FLOAT(M-1)*PI/18.0+PI/36.0
    S=SQRT(1.O-EP*CTS(THETA))
    S4=S4+(PI/18.0)/S
301 CJNTINUE
    S1=S3+S4
    G] TJ 602
601 S S = (2.0**0.5)*ALOG(8.0*RR/DR3)
602 SUM=SUM+(SUMI*S1)
26 CONTINIIE
25 W(I)=(SUM+ADD)/PL
W(1)=W(2)+(DRB*DRR)/2.0
AEAP=0.0
DU 50 I=1, MAX
RB=FLJAT(I-1) &DRB
RTE2(I)=RR*RB/2.0
YB(I)=RTER(I)-W(1)+W(I)+YNB
PBAR(T)=0.5*(1.0-ERF(YB(I)/(2.0**.5))
```

PRES 2109
PRESO110
DRESO111
DRESㄱ112
DRESO113
PRESO114
PRESO115
PRESO116
PRFSO117
PRESO118
PRESO119
PRESO120
PRESO1 21
PRESO122
PRESO123
PRESO124
PRESO125
PRESO126
PRESO127
PRESO128
PRESO129
PRESO130
PRESO131
PRESO132
PRESO133
PRESO134
PRESO1 35
PRESN136
PRESO137
PRESO138
PRES 1139
PRESO140
PRESO141
PRES 2142
PRESO143
PRFSO144

```
    CONTINUE
    OJ 950 I =1,MAX
    IF(YR(I).LT.O.0) G3 TJ 8880
95) CJNTINUE
    GO TJ 1099
9880 CONTINUF
    WRITE(6,103) (YB(I),I=1,MAX)
482 CONTINUE
483 CONTINUE
    DO 494 I=1, MAX
    P3AR(I)=?.5*(1.0-ERF(YB(I)/(?.0**.5)))
484 CJNTINUE
    GO TJ 1090
195 CJNTINUE
495 CONTINUE
    \squareา 295 I =1,MAX
    \triangleEAP=0.0
295 YB(I)=YB(I)+YNB
    DJ 99 I=1,4AX
    PBAR(I)=0.5%(1.0-ERF(YR(I)/(2.)**.5)))
99 CONTINUE
1099 CONTINIJE
    DO 97 I = l,MAX
    IF(A3SIPRSS(I)-PBARII)I.GT.TESTI) GOTO 7S
97 CJNTINUE
    AF=(FLOAD-PL\capAD)/PL\capAD
    IF(ABS(AF).GT.O.1) G0 TM }7
    GJ TJ 16
76 CJNTINUE
    D] }44\textrm{I}=1,MAXM
    RB=FL\capAT (I-1)*DRB
44 AEAP=AEAP +PRAR(I)*R 3*DR&
    FLOAD=2. O*DI*AEAP*(PBAR(1)*PI*DRB*DRR)/4.J
    AF=1 =LDAD-PLOADI/PLOAD
    AEAZ =0.0
    DO 196 I =1,MAX
```

PRFSO145
PRFSO146
PRESO147
PRESO148
DRFS 3149
PRESO150
PRESO151
PRESO152
PRESO153
PRESO154
PRFSO155
PRESO156
PRESO157
PRESO158
PRESO159
PRESO160
PRESO161
PRESO162
PRES 1163
PRESO164
PRESO165
PRFSO166
PRESO167
PRFSO168
PRESO169
DRESO170
PRES 1171
PRFSO172
PRFSO173
PRESO174
PRESO175
PRESO176
PRESO177
PRESO178
PRFS0179
PRESO1RO

```
    Z(I)=YB(I)-YB(1)
    PRAZ(I)=0.5*(1.0-ERF(Z(I)/(2.0**.5)))
196 CONTINUE
    DJ 170 I=1,MAXM1
    RB=FLOAT(I-1)*DRB
190 AEAZ=AEAT+PBAZ(I)*RR*DRB
    FLJAZ = 2. )*PI*AFAZ+(PBAI(1)*PI*DRB*DRB)/4.)
    CHECK=FLCAZ-PLJAD
    DJ 5000 I=1,MAX
5000 YB(I)=2(I)
    IF(CHECK)0011,9011,192
9011 GJNTINUE
    D] 901.2 I=1,MAX
    PBAR(I)=PBAZ(I)
9 0 1 2 ~ C O N T I N U E ~
9013 CONTINUE
    GO TO ll
192 IF(PLOAD.TT.FLGAD) GO TO 193
    GO TO 191
193 AF=(FLOAD-PL\capAD)/PLOAD
    IF(ABS(AF).LT.0.1) GO TO 1899
    IF(ABS(AF).LT.O.4) GO TO 476
    IF(ABS(AF).LT.0.6) GO TO 470
    IF(ABS(AF).LT.1.0) GO TO 477
    YVR=YNB*0.8
    GO TO 471
476 YNR=YNB*0.99
    G] TJ 471
470 YNB=YNB*O.96
    G] TJ 471
```



```
4 7 1 ~ C O N T I N U E
    GO TO 195
191 AF=(FLOAD-PLUAD)/PLDAD
    IF(ABS(AF).LT.O.1) GO TD 1873
    IF(ARS(AF).LT.C.4) GO TO 478
```

PRFSO181
PRESO182
PRESO1R3
PRESO184
PRESO185
PRESO186
PRESO187
pRESO18R
PRFSO189
PRESO190
PRESO191
DRESO192
PRFSO193
PRESO194
PRESO195
PRESO196
PRESO197
PRESG198
PRESO199
PRESO200
PRESO201
PRESO2n2
PRFSO2へ3
PRESO2.04
PRESO205
PRESO206
PRESO207
PRESO208
PRESO209
PRESO210
PRESOR11
PRESO212
PRFSO213
PREST214
PRESO215
PRESO216

```
    IF(ABS(AF).IT.O.6) SO T\ 473
    IF (ABS (AF).LT.1.0) GO TO 479
    YNB=YNB%1.2
    G] TJ 474
478 YNB=YNB*1.01
    GO TJ 474
473 YNR=YNB*1.04
    GO TJ 474
4 7 9 ~ Y N B = Y N B * 1 . 1 ~
474 CONTINUE
    GO TJ 195
16 WRITE (6,109)
    WRITE(6,103) (PGAR(1),I=1,MAX)
    WRITE(6,103) (YB(I),I=1,MAX)
    WRITE(6,107)
    WRITE(6,108) FLOAD
    DO 1970 I=1,MAX
    RA\capIM=FLOAT(I-1)*ORR
    WRITE(6,103) RADIM
1970 CJNTINUE
1779 CONTINUE
    WRITE (6,117)
    WRITE(6,118) PL,FBAR
1973 CJNTINUE
1978 CONTINUE
4 9 0 1 ~ C O N T I N I J E ~
1971 CALL EXIT
    EVD
```

PRESO217
PRFSO218
PRESO219
PRESO220
PRES0221
PRESO222
PRFSO223
PRESO2.24
PRESO225
PRESO226
PRFSO227
PRFSO228
PRESO229
PRESO230
PRESO231
PRESO232
PREST233
PRFSO234
PRESO235
PRESO236
PRESO237
PRESO238
PRESO239
PRESO240
PRESO241
PRESO242
PRESO243
PRFS 244

USING EQUATION (5)

INPUT DATA
LINE NO.
a. $H, \sigma_{1}, \sigma_{2}, \operatorname{Tan}_{1} \theta, \operatorname{Tan}_{2} \theta$ 34
b. k (thermal conductivity) 35
c. R_{1}, R_{2}, MAX $=$ Number of pressures to be read
in, $N=$ number of roots of $J_{1}\left(\nu_{n}\right)=0$ to be read in 36
d. Dimensionless pressures 37
e. Roots of $J_{1}\left(\nu_{n}\right)=0 \quad 38$
f. Dimensionless radial increment 39
g. Average pressure \equiv F/A app 40

OUTPUT DATA
a. INPUT DATA

93-100
b. Microscopic resistance term 102
c. Macroscopic resistance term 104
d. Total contact resistance 106

NOTE: The number appearing in the inequality in card 107 should be one less than the number of sets of input data.

FIJNCTIJN RESEL(X)

RESLODO1

C
 BESSEL FINCTITN SJB-RIJUTINE USED IN THF PRJGRAM FJR CONTACT RESISTANCE USING EQUATION (5)

$1 F \operatorname{IF}(X-3.0) 10,10,11$
 $1 / 3.0) * * 6.7)+.04444 *((x / 3.0) * * 8.0)-.00394 *((x / 3.0) * * 10.0)+.00021 *(($ 1×/3.0)* 12.01
RETURN
BESLOON2
BESLODO3
BESL0004
9ESLO095
BESLO006
RESLO007
RESLOOO8
BESLOOO9
BESLOO10
BESLOO11
RESLOO12
$11 \mathrm{FZ}=.79788-.00552 *((3.0 / X) * * 2.0)-.000 \cap 9 *((3.0 / X) * * 3.0)+.00137 *(13.0$
$1 / X) * 4.0)-.00072 *((3.0 / x) * * 5.0)+.00014 *((3.0 / x) * * 5.0)$
THETA $=x-.78539-.04166 *(3.0 / X)-.00004 *((3.3 / X) * * 2.0)+.00263 *((3.0 / x$
$1) * * 3.0)-.00054 *((3.0 / x) * * 4.0)-.00029 *((3) / x) * * 5.2).+.00014 *((3.0 / x$
$1) * 6.01$
BESEL $=(F Z * \operatorname{COS}(T H E T A)) /(X * * 0.5)$
RETURN
EVD
yع001Sヨy与と00IS ヨy ちと0015ヨy とと0015」y 2と00ISまy 1800ISヨy cevolsヨa $6200153 y$ 82001Sまも $2200153 y$ 9く001S」y ¢2001Sヨy ゅて $0015 \exists y$ とてCCISヨy zZU0ISjy 120015ヨy čúcisヨy 6iuvisjy 810015ヨy LTOCIS $\exists y$ 91001Sヨy sicclsjy ゅI001Sヨy El00ISjy 2I001Sまy IIUOISヨy ut0015まy －ن0015ヨy $800 \mathrm{ClS} \mathrm{\exists y}$ L0001Sまと 9000isjy secoisjy か00015jy とう0015ヨy z00015」と IU00ISヨy
$N^{*} X \forall W^{*}$ てy＇Ty（TOT＇s）OVヨy
妆（LII＇G）OVヨy
ZNVI＇INロI＇ZWSIS＇InSIS＇H（COI＇G）CVヨy
C•I＋WחNG＝WกNG
ヨПNIINCつ $\varepsilon \varepsilon \varepsilon \varepsilon$
$0^{\circ} 0=W \cap N Y$
$5 \cdot 0=4$
（て・SIJ）IロWyC」 $̧ \varepsilon I$

$\left(=(\lambda) 0 \searrow \exists Z-\Gamma H O T * \times \sigma^{*}=\lambda H Z^{6} \times S^{*} H() \perp \forall W y O J \varepsilon \varepsilon I\right.$
$\left(=\Lambda \forall d / d H 9^{*} \times I\right) \perp \forall W \forall C J \quad$ टعI

（／hyヨ1 8H9＊XI）1 \forall WはC」 OZI

（ャッらTヨ） $1 \forall$ WとO」 SII

（／ヨコNVLSISヨy 1כV1NCJH8I＇HT）IVWンO」 IIT

（カ・ऽ【」を）IVんyC」 90I
（／ZWSISHS＊XCI＇IWOISHS＊X8＊HHI＇XG＊HI）IVhyCJ カOI
（ャ＊UI」9）1 Vhyo」 EOI


```
    READ(5,1C\cap) (PRAR(I),I=1,MAX)
    READ(5,103) (ANIJ(J),J=1,N)
    READ(5,115) DRP
    READ(5,135) PAV
    PTOT=0.0
    TAN=(TAN1*TAN1+TAN2*TAN2)**C.5
    SIGMA=(SIGMI*SIGMI +SIGM2*SIGM2)的*?.5
    RADI=(R1*R2)/(R1+R2)
    OR=DRB*((RADI*SIGMA)**0.5)
    MAXP=MAX +1
    LS = B /DR
    IF(LB-MAXP)51,51,49
    CONTINUE
    D] 50 I=MAXP,LB
    PBAR(I)=0.0
50 CONTINUE
    G] TJ 52
51 CONTINUE
W2ITE(6,118)
    52
NTNUE
MAX=LB
PAVI=0.0
DO 2 K=1,MAX
RR=FLOAT (K-1)*DR
PRES(K)=H*PBAR(K)
PAVI = PAVI + PRES(K)*RR*DR
CONTINUE
W2ITE(6,130) PAV
CK2=(0.345*SIGMA)/(AK*TAN)
C<3=(8.0*B)/4K
SUM=0.0
DO 3 I=1,MAX
R=FLJAT(I-1)*DR
ALAM=R/R
OL=OR/B
SUM=SIJM+ALAM* (PBAR(I)**0.985)*DL
```

RESIOO37
RESIOO39
RESI 0039
RESIO040
RESIOO41
RESIO042
RESIO043
RESIO044
RESIO045
RESIO046
RESI0047
RFSIO048
RESI 0049
RESIOO50
RESIOD51
RESIO05?
RESIOO53
RESIOO54
RESIO055
RESI0056
RESI0057
RESIOO58
RESI0059
RFSI 0060
RESI 0061
RESI0062
RFSI 0063
RES IOO64
RESI 0065
RESI 10066
RES 10067
RESI 0068
RESI0069
RESI0070
RESIn071
RFSIO072

```
CONTINUF
TERM1=CK2/SUM
SUMMA=0.0
O) 5 J=1,N
X=AN|(J)
SUMI=0.0
O] 4 I= 1,MAX
R=FLJAT(I-I)*DR
\DeltaLAM=R/P
Y=ANJ(J)*AL AM
SUMI=SJM1+ALAM*((PRES(I)/PAV)**0.985)*(3ESEL(Y))*)L
CONTIPNUE
SUMMA = SUMMA + (SUM1*SUM1)/(ANII(J)*(ARS(RESEL(X))**2. J))
WRITE(6,131) SUM1
CJNTINUE
TERM2=CK 3*SUMMA
RES=(TERM1 + TERM2)/12.0
AVS1=TERM1/12.0
ANS2=TERM2/12.0
WRITE(6,104)
WRITE(6,1C6) H,SIGYI,SIGM2
WRITE (6,116) DRB
WRITE(6,177)
WRITE(6,106) TAN1,TAN2,AK
WRITE (6,109)
WRITE(6,109) MAX,V,R1,R2
WRITE(6,110)
WRITE(6,100) (PRAR(I),I=1,MAX)
WRITE(6,119)
WRITE(6,112) ANS1
WRITE (6,120)
W2ITE(6,112) ANS2
WRITE(6,111)
NRITE(6,112) RES
IF(RNUY.GT.6.0) GJ TO 3334
GO TJ 3333
```

RESIOO73
RFSI 9074
RESID075
RESI 0076
RFSI0077
RESIO 078
RESI0079
RESIOORO
RESIOOB1
RESIOOR2
RESI0083
RESI 0084
RESIOOR5
RESIOORG
RFSI9087
RESI0088
RESIO0R9
RESIOn90
RESIO091
RESIOก92
RFSIOO93
RESI 9094
RESIOn95
RESI 10006
RESI 0007
RESIOOQR
RESI0099
RESIO100
RESIClni
RESIn1r2
RESIO103
RESIO1ก4
RESIO195
RESI 3106
RFSIO107
RESI 2108

3334 CDNTINUE
RFSIO109
C K IS IN (BTH/HR-F-FT)) RESIOIIO
C SIGMA AND B ARE IN INCHES
E RESISTANCE IS IN (HR-F-FT-FT)/RTU CALL EXIT

RESIO111
RESIO112
RFSIO113
RFSIO114
-46-

APPENDIX C

tables of COORDINATES FOR PRESSURE DISTRIBUTIONS

$$
\begin{aligned}
& \mathrm{Pl}=.002 \\
& \overline{\mathrm{~F}}=.005
\end{aligned}
$$

\bar{r}	\bar{P}
0.000	.00066
0.302	.00066
0.603	.00061
0.905	.00054
1.206	.00046
1.508	.00034
1.809	.00019
2.111	.00007
2.412	.00000

$P 1=.004$

$\overline{\mathrm{F}}=.005$		$\overline{\mathrm{~F}}=.010$	
$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$	$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$
0.000	.00097	0.000	.00132
0.239	.00097	0.302	.00132
0.478	.00089	0.603	.00121
0.718	.00081	0.905	.00109
0.957	.00068	1.206	.00092
1.197	.00052	1.508	.00069
1.436	.00034	1.809	.00040
1.675	.00016	2.111	.00014
1.915	.00005	2.412	.00002
2.154	.00001	2.714	.00000
2.393	.00000		

-49-

$$
\begin{aligned}
& \mathrm{Pl}=.01 \\
& \overline{\mathrm{~F}}=.02
\end{aligned}
$$

$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$
0.000	.00293
0.279	.00293
0.559	.00270
0.839	.00243
1.120	.00204
1.400	.00153
1.679	.00093
1.959	.00039
2.239	.00009
2.519	.00000

> -50-

$$
P 1=.02
$$

$=.040$	$\overline{\mathrm{~F}}=.060$		
$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$	$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$
0.000	.00590	0.000	.00685
0.279	.00590	0.320	.00685
0.559	.00545	0.641	.00631
0.839	.00492	0.961	.00568
1.120	.00416	1.282	.00476
1.400	.00316	1.602	.00350
1.679	.00199	1.922	.00198
1.959	.00089	2.243	.00068
2.239	.00023	2.563	.00010
2.519	.00003	2.884	.00000
2.799	.00000		

$$
\bar{F}=.080
$$

\bar{r}	$\overline{\mathbf{P}}$
0.000	.00765
0.353	.00765
0.705	.00701
1.058	.00629
1.411	.00528
1.763	.00384
2.116	.00203
2.469	.00054
2.821	.00005

$P 1=.04$

$\overline{\mathrm{F}}=.13$		$\overline{\mathrm{~F}}=.16$	
$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$	$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$
0.000	.01412	0.000	.01556
0.320	.01412	0.353	.01556
0.641	.01305	0.705	.01433
0.961	.01182	1.058	.01294
1.282	.01004	1.411	.01090
1.602	.00763	1.763	.00807
1.922	.00469	2.116	.00458
2.243	.00189	2.469	.00145
2.563	.00036	2.821	.00016
2.884	.00002	3.174	.00000
3.204	.00000		

-52-

$$
\begin{aligned}
& \mathrm{P} 1=.05 \\
& \overline{\mathrm{~F}}=.2
\end{aligned}
$$

$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$
0.000	.01861
0.353	.01861
0.705	.01708
1.058	.01530
1.411	.01273
1.763	.00916
2.116	.00487
2.469	.00140
2.821	.00014
3.174	.00000
3.527	.00000

-53-

$P 1=.20$

$\overline{\mathrm{F}}=.2$		$\overline{\mathrm{F}}=.4$	
\bar{r}	$\overline{\mathrm{P}}$	\bar{r}	\bar{P}
0.000	. 03741	0.000	. 05564
0.222	. 03741	0.280	. 05564
0.444	. 03543	0.560	. 05174
0.667	. 03010	0.840	. 04685
0.889	. 02685	1.120	. 04008
1.111	. 02071	1.400	. 03131
1.333	. 01446	1.679	. 02105
1.555	. 00859	1.959	. 01096
1.777	. 00409	2.239	. 00378
1.999	. 00145	2.519	. 00073
2.222	. 00036	2.799	. 00007
2.444	. 00006	3.079	. 00000
2.666	. 00000		
$\overline{\mathrm{F}}=.6$		$\overline{\mathrm{F}}=.8$	
\bar{r}	$\overline{\mathbf{P}}$	$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$
0.000	. 06558	0.000	. 07312
0.320	. 06558	0.353	. 07312
0.641	. 06071	0.705	. 06748
0.961	. 05472	1.058	. 06068
1.282	. 04625	1.411	. 05091
1.602	. 03506	1.763	. 03767
1.922	. 02189	2.116	. 02191
2.243	. 00954	2.469	. 00788
2.563	. 00223	2.821	. 00119
2.884	. 00021	3.174	. 00005
3.204	. 00000	3.527	. 00000

$P 1=.20$

$\overline{\mathrm{F}}=1$		$\overline{\mathrm{F}}=1.3$	
\bar{r}	$\overline{\mathbf{P}}$	\bar{r}	$\overline{\mathbf{P}}$
0.000	. 08200	0.000	. 09035
0.379	. 08200	0.404	. 09035
0.759	. 07567	0.807	. 08344
1.114	. 06825	1.211	. 07551
1.520	. 05759	1.615	. 06403
1.899	. 04296	2.018	. 04827
2.279	. 02486	2.422	. 02826
2.659	. 00818	2.826	. 00897
3.039	. 00090	3.229	. 00079
3.419	. 00002	3.633	. 00001
3.799	. 00000	4.037	. 00000
$\overline{\mathrm{F}}=1.4$		$\bar{F}=1.6$	
$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$	$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$
0.000	. 09551	0.000	. 09919
0.425	. 09551	0.444	. 09919
0.850	. 08810	0.889	. 09136
1.275	. 08002	1.333	. 08232
1.700	. 06825	1.777	. 06892
2.125	. 05113	2.222	. 05033
2.550	. 02863	2.666	. 02679
2.975	. 00791	3.110	. 00611
3.400	. 00049	3.554	. 00023
3.825	. 00000	3.999	. 00000

$$
\begin{aligned}
& \mathrm{P} 1=.20 \\
& \overline{\mathrm{~F}}=1.7
\end{aligned}
$$

\bar{r}	\bar{P}
0.000	.10280
0.462	.10280
0.924	.09467
1.386	.08538
1.848	.07131
2.310	.05126
2.773	.02578
3.235	.00489
3.697	.00011
4.159	.00000

$P 1=.30$

$\overline{\mathrm{F}}=.2$		$\overline{\mathrm{F}}=.4$	
$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$	$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$
0.000	. 04341	0.000	. 06279
0.194	. 04341	0.245	. 06279
0.388	. 04109	0.489	. 05844
0.582	. 03840	0.734	. 05259
0.776	. 03203	0.978	. 04461
0.970	. 02575	1.223	. 03477
1.164	. 01922	1.467	. 02403
1.359	. 01283	1.712	. 01364
1.553	. 00742	1.956	. 00588
1.747	. 00357	2.201	. 00174
1.941	. 00137	2.445	. 00032
		2.690	. 00003
		2.934	. 00000
$\overline{\mathrm{F}}=.6$		$\overline{\mathrm{F}}=.8$	
\bar{r}	$\overline{\mathbf{P}}$	\bar{r}	$\overline{\mathrm{P}}$
0.000	. 07933	0.000	. 10440
0.280	. 07933	0.308	. 10440
0.559	. 07374	0.616	. 10020
0.837	. 06653	0.924	. 08434
1.120	. 05658	1.232	. 06819
1.400	. 04384	1.540	. 05281
1.679	. 02921	1.848	. 03449
1.959	. 01511	2.157	. 01671
2.239	. 00525	2.465	. 00484
2.519	. 00103	2.773	. 00066
2.799	. 00099	3.081	. 00003
3.079	. 00000	3.389	. 00000

$P 1=.30$

$\overline{\mathrm{F}}=1.2$		$\overline{\mathrm{F}}=1.5$	
$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$	$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$
0.000	. 11040	0.000	. 11940
0.353	. 11040	0.379	. 11940
0.705	. 10230	0.759	. 11030
1.058	. 09235	1.140	. 09936
1.411	. 07819	1.520	. 08357
1.763	. 05913	1.899	. 06189
2.116	. 03619	2.279	. 03556
2.469	. 01456	2.659	. 01198
2.821	. 00268	3.039	. 00144
3.174	. 00015	3.419	. 00004
3.527	. 00000	3.799	. 00000
$\overline{\mathrm{F}}=2$		$\overline{\mathrm{F}}=2.6$	
\bar{r}	$\overline{\mathbf{P}}$	$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$
0.000	. 13300	0.000	. 15240
0.418	. 13300	0.450	. 15240
0.836	. 12230	0.901	. 14070
1.254	. 11000	1.351	. 12800
1.672	. 09227	1.802	. 10950
2.091	. 06731	2.252	. 08245
2.509	. 03580	2.702	. 04636
2.927	. 00912	3.153	. 01238
3.345	. 00054	3.603	. 00060
3.736	. 00000	4.054	. 00000

$$
P 1=.30
$$

$\overline{\mathrm{F}}=3.1$		$\overline{\mathrm{~F}}=3.4$	
$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$	$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$
0.000	.19610	0.000	.16930
0.479	.19610	0.499	.16930
0.957	.18000	0.998	.15550
1.436	.15500	1.497	.14050
1.914	.12160	1.996	.11900
2.393	.08924	2.495	.08791
2.872	.04903	2.994	.04557
3.350	.01158	3.493	.00824
3.829	.00035	3.992	.00012
4.307	.00000	4.491	.00000

-60-

$$
P 1=.40
$$

$\bar{F}=.1$		$\overline{\mathrm{F}}=.2$	
$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$	\bar{r}	$\overline{\mathbf{P}}$
0.000	. 02907	0.000	. 04654
0.140	. 02907	0.176	. 04654
0.279	. 02770	0.353	. 04411
0.419	. 02567	0.529	. 04010
0.559	. 02301	0.705	. 03503
0.699	. 01985	0.882	. 02884
0.839	. 01638	1.058	. 02233
0.979	. 01281	1.234	. 01584
1.120	. 00941	1.411	. 01008
1.260	. 00644	1.587	. 00561
1.400	. 00405	1.763	. 00265
1.540	. 00231	1.940	. 00103
1.680	. 00118	2.116	. 00032
1.820	. 00054	2.292	. 00008
1.959	. 00021	2.469	. 00001
2.099	. 00007	2.645	. 00000
2.239	. 00002		
2.379	. 00000		

-61-

$$
P 1=.40
$$

$\bar{F}=.3$

$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$	$\overline{\mathbf{r}}$	$\overline{\bar{P}}$
0.000	.05887	0.000	.07284
0.202	.05887	0.222	.07284
0.404	.05519	0.444	.06905
0.606	.05004	0.667	.04606
0.807	.04320	0.889	.05324
1.009	.03497	1.111	.04192
1.211	.02603	1.333	.03019
1.413	.01720	1.555	.01883
1.615	.00972	1.777	.00963
1.817	.00450	1.999	.00378
2.019	.00162	2.222	.00106
2.220	.00044	2.444	.00020
2.422	.00008	2.666	.00002
2.624	.00001	2.888	.00000
2.826	.00000		

$$
P 1=.40
$$

$\overline{\mathrm{F}}=.5$	$\overline{\mathrm{~F}}=1.0$	
$\overline{\mathrm{P}}$	$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$
.07819	0.000	.14330
.07819	0.302	.14330
.07288	0.603	.13600
.06563	0.905	.12600
.05584	1.206	.09847
.04382	1.508	.07404
.03064	1.809	.04977
.01795	2.111	.02613
.00819	2.412	.00886
.00267	2.714	.00154
.00057	3.015	.00011
.00007	3.317	.00000
.00000		

$$
\bar{F}=1.6
$$

$$
\bar{F}=2.0
$$

\bar{r}

$$
\overline{\mathrm{P}}
$$

0.000	.16620
0.345	.16620
0.690	.15000
1.035	.13430
1.381	.10980
1.726	.08462
2.071	.05520
2.416	.02549
2.761	.00606
3.106	.00051
3.451	.00001
3.797	.00000

-63-

P1 $=.40$

$\overline{\mathrm{F}}=2.3$		$\bar{F}=3$	
$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$	\bar{r}	\bar{P}
0.000	. 16910	0.000	. 18660
0.409	. 16910	0.434	. 18660
0.818	. 15580	0.869	. 17200
1.228	. 13980	1.305	. 15490
1.637	. 11670	1.739	. 13030
2.046	. 08486	2.174	. 09618
2.455	. 04595	2.609	. 05282
2.864	. 01283	3.044	. 01389
3.274	. 00097	3.479	. 00077
3.683	. 00001	3.914	. 00000
4.092	. 00000		
$\overline{\mathrm{F}}=3.5$		$\overline{\mathrm{F}}=4.0$	
$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$	$\overline{\mathbf{r}}$	\bar{P}
0.000	. 20270	0.000	. 21280
0.462	. 20270	0.487	. 21280
0.924	. 18720	0.973	. 19570
1.386	. 16970	1.459	. 17680
1.848	. 14390	1.946	. 14950
2.310	. 10610	2.432	. 10930
2.773	. 05679	2.919	. 05533
3.235	. 01355	3.405	. 01040
3.697	. 00051	3.892	. 00020
4.159	. 00000	4.378	. 00000

$\mathrm{P} 1=.50$			
$\overline{\mathrm{F}}=0.1$		$\overline{\mathrm{F}}=0.2$	
\bar{r}	$\overline{\mathbf{P}}$	$\overline{\mathbf{r}}$	\bar{P}
0.000	. 03035	0.000	. 04989
0.130	. 03035	0.164	. 04989
0.260	. 02906	0.327	. 04730
0.390	. 02716	0.491	. 04357
0.520	. 02259	0.654	. 03869
0.650	. 02155	0.819	. 02909
0.780	. 01712	0.982	. 02375
0.910	. 01395	1.146	. 01934
1.039	. 01119	1.310	. 01312
1.169	. 00808	1.473	. 00802
1.299	. 00546	1.637	. 00432
1.429	. 00342	1.801	. 00201
1.559	. 00197	1.964	. 00079
1.689	. 00103	2.128	. 00025
1.819	. 00049	2.292	. 00007
1.949	. 00020	2.455	. 00001
2.079	. 00008	2.619	. 00000
2.209	. 00002		
2.339	. 00000		

-65-

$$
P 1=.50
$$

$\overline{\mathrm{F}}=0.3$		$\overline{\mathrm{~F}}=0.4$	
$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$	$\overline{\mathrm{r}}$	$\overline{\mathrm{P}}$
0.000	.06450	0.000	.07678
0.187	.06450	0.206	.07678
0.375	.06118	0.413	.07269
0.562	.05880	0.619	.06960
0.750	.04869	0.825	.05661
0.937	.03417	1.031	.04537
1.124	.03037	1.237	.03365
1.312	.02100	1.444	.02217
1.499	.01288	1.650	.01248
1.686	.00677	1.856	.00572
1.874	.00294	2.062	.00203
2.061	.00102	2.269	.00053
2.249	.00027	2.475	.00009
2.436	.00005	2.681	.00001
2.623	.00000	2.887	.00000

-66-
$P 1=.50$
$\bar{F}=0.5 \quad \bar{F}=1$

$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$	$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$
0.000	.08860	0.000	.12320
0.222	.08860	0.279	.12320
0.444	.08396	0.559	.11450
0.666	.07700	0.839	.10280
0.889	.06489	1.112	.08680
1.111	.05131	1.400	.06657
1.333	.03720	1.679	.04418
1.555	.02347	1.959	.02282
1.777	.01222	2.239	.00806
1.999	.00492	2.519	.00165
2.222	.00143	2.799	.00017
2.444	.00028	3.079	.00000
2.666	.00003		
2.888	.00000		

-67-

$$
\mathrm{Pl}=.50
$$

$\overline{\mathrm{F}}=1.6$		$\overline{\mathrm{F}}=2$	
$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$	\bar{r}	$\overline{\mathbf{P}}$
0.000	. 16010	0.000	. 18160
0.320	. 16010	0.353	. 18160
0.641	. 14910	0.705	. 16870
0.961	. 13520	1.058	. 15280
1.282	. 11580	1.411	. 13030
1.602	. 09038	1.763	. 10030
1.922	. 05998	2.116	. 06408
2.243	. 02954	2.469	. 02833
2.563	. 00861	2.821	. 00624
2.884	. 00112	3.174	. 00045
3.204	. 00005	3.527	. 00000
3.524	. 00000		
$\overline{\mathrm{F}}=3$		$\overline{\mathrm{F}}=4$	
\bar{r}	$\overline{\mathrm{P}}$	\bar{r}	$\overline{\mathrm{P}}$
0.000	. 21710	0.000	. 23810
0.404	. 21710	0.443	. 23810
0.807	. 20130	0.889	. 21990
0.211	. 18240	1.333	. 19850
1.615	. 15520	1.777	. 16740
2.018	. 11810	2.222	. 12400
2.422	. 07195	2.666	. 06894
2.826	. 02652	3.110	. 01859
3.229	. 00334	3.554	. 00101
3.633	. 00007	3.999	. 00000
4.037	. 00000		

-68-

$$
P 1=.50
$$

$$
\bar{F}=5.3 \quad \bar{F}=5.5
$$

$$
\overline{\mathbf{r}}
$$

0.000	.26970	0.000	.27400
0.497	.26970	0.485	.27400
0.994	.24820	0.969	.25380
1.491	.22350	1.455	.23050
1.988	.18800	1.940	.19600
2.485	.13720	2.425	.14760
2.982	.06998	2.909	.08466
3.479	.01309	3.394	.02249
3.976	.00023	3.879	.00083
4.473	.00000	4.364	.00000

$P 1=.60$

$\bar{F}=.5$		$\overline{\mathrm{F}}=.9$	
$\overline{\mathbf{r}}$	$\overline{\mathrm{P}}$	\bar{r}	\bar{P}
0.000	. 09278	0.000	. 13250
0.209	. 09278	0.263	. 13250
0.418	. 08787	0.526	. 12340
0.627	. 08000	0.790	. 11120
0.836	. 06858	1.054	. 09446
1.045	. 05507	1.317	. 07363
1.254	. 04093	1.580	. 05048
1.463	. 02701	1.844	. 02816
1.673	. 01521	2.107	. 01155
1.882	. 00694	2.371	. 00307
2.091	. 00244	2.634	. 00047
2.300	. 00062	2.897	. 00004
2.509	. 00011	3.161	. 00000
2.718	. 00001		
2.927	. 00000		
$\overline{\mathrm{F}}=1.4$		$\overline{\mathrm{F}}=2.2$	
\bar{r}	$\overline{\mathrm{P}}$	\bar{r}	$\overline{\mathrm{P}}$
0.000	. 16470	0.000	. 24200
0.302	. 16470	0.332	. 24200
0.603	. 15310	0.664	. 23800
0.905	. 13790	0.996	. 20000
1.206	. 11660	1.327	. 16730
1.508	. 08929	1.659	. 12580
1.809	. 05843	1.991	. 08412
2.111	. 02877	2.323	. 04265
2.412	. 00900	2.655	. 01276
2.714	. 00144	2.987	. 00162
3.015	. 00009	3.319	. 00006
3.317	. 00000	3.650	. 00000

$$
P 1=.60
$$

$\overline{\mathrm{F}}=3$		$\overline{\mathrm{F}}=4$	
\bar{r}	\bar{P}	\bar{r}	\bar{P}
0.000	. 23870	0.000	. 27230
0.379	. 23870	0.418	. 27230
0.759	. 22160	0.836	. 25280
1.140	. 20090	1.254	. 22970
1.520	. 17150	1.672	. 19650
1.899	. 13200	2.091	. 15090
2.279	. 08380	2.509	. 09325
2.659	. 03514	2.927	. 03470
3.039	. 00631	3.345	. 00414
3.419	. 00028	3.763	. 00007
3.799	. 00000	4.181	. 00000
$\overline{\mathrm{F}}=5$		$\bar{F}=6$	
$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$	$\overline{\mathbf{r}}$	$\overline{\mathbf{P}}$
0.000	. 28120	0.000	. 37270
0.450	. 28120	0.479	. 37270
0.901	. 25950	0.957	. 35000
1.351	. 23340	1.436	. 29740
1.802	. 19570	1.914	. 23730
2.252	. 14280	2.393	. 17740
2.702	. 07633	2.872	. 10300
3.153	. 01889	3.350	. 02892
3.603	. 00087	3.829	. 00129
4.054	. 00000	4.307	. 00000

TABLE I

EXPERIMENTAL DATA

```
Stainless Steel (303)
    Specimen Pair No. 1
k = 10.0 BTU/HR.FT. }\mp@subsup{}{}{\circ}\textrm{F
```

Specimen 1.1	Specimen 1.2	Combined Values
$\sigma_{1}=81 \mu^{\prime \prime}$	$\sigma_{2}=69 \mu^{\prime \prime}$	$\sigma=106 \mu^{\prime \prime}$
$R_{1}=10.4^{\prime \prime}$	$R_{2}=8.4^{\prime \prime}$	$R_{i}=4.65^{\prime \prime}$
$\operatorname{Tan}_{1} \theta=.0512$	$\operatorname{Tan}_{2} \theta=.0378$	$\operatorname{Tan} \theta=.0635$

F(Applied Load in Lbs.)	h(BTU/HR. $\left.\mathrm{FT}^{2 \mathrm{o}} \mathrm{F}\right)$
165	10.7
265	12.5
365	13.9
765	20.0
1165	26.0
2165	32.8
3165	41.0
5165	54.7
7165	62.5
9765	85.7

-72-

TABLE II

EXPERIMENTAL DATA

```
Stainless Steel (303)
    Specimen Pair No. 2
k=10.0 BTU/HR.FT'F
```

Specimen 2.1
$\sigma_{1}=69 \mu^{\prime \prime}$
$R_{1}=250^{\prime \prime}$
$\operatorname{Tan}_{1} \theta=.068$

F (Lbs.)
165
265
365
565
765

$$
\mathrm{h}\left(\mathrm{BTU} / \mathrm{HR} \cdot \mathrm{FT}^{2 \mathrm{o}_{\mathrm{F}}}\right)
$$

49
71
88
101

1165
124
208
-73-

FIGURES

$$
\text { RCONTACT } \equiv \frac{\Delta T}{Q / A}
$$

FIG. I DEFINITION OF CONTACT RESISTANCE

b)

c)

FIG. 2 SURFACE CONTACTS
-76-

FIG. 3 SURFACE WAVINESS

FIG. 4a SMOOTH SPHERE PRESSED AGAINST RIGID PLANE

FIG. 4b TWO ROUGH SURFACES PRESSED TOGETHER
$w(r)=\frac{1-V^{2}}{\pi E} \iint \frac{p}{\rho} d A$
POINT (A) IS A POINT WHERE $W(r)$ IS TO BE COMPUTED
POINT (B) IS THE ORIGIN OF A CIRCULAR COORDINATE SYSTEM

FIG. 5 TYPICAL CONTACT AREA

FIG. 6 REGION WHERE ROUGHNESS IS SIGNIFICANT

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. II

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

(d)

FIG. 17 COMPARISON OF HERTZIAN (P_{H}) AND ROUGH-SPHERE PRESSURE DISTRIBUTIONS
-91-

(c)

(d)

FIG. 18 COMPARISON OF HERTZIAN (P_{H}) AND ROUGH-SPHERE PRESSURE DISTRIBUTIONS

FIG. 19 COMPARISON OF HERTZIAN (P_{H}) AND ROUGH-SPHERE PRESSURE DISTRIBUTIONS

FIG. $2 I$ SURFACE PROFILE MEASURING INSTRUMENT

FIG. 22 CONTACT
RESISTANCE APPARATUS

FIG. 23A. CONTACT CONDUCTANCE RESULTS

FIG. 23 B. CONTACT CONDUCTANCE RESULTS

$$
T_{0}=A M B I E N T \text { TEMPERATURE }
$$

EXTRAPOLATED TEMPERATURE

FIG. 24 NON-UNIFORM HEAT TRANSFER COEFFICIENT

FIG. 25 NON - UNIFORM HEAT TRANSFER COEFFICIENT

