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A B S T R A C T

This work deals with phenomena of thermal resistance for metal-
lic surfaces in contact. The main concern of the work is to develop

reliable and practical methods for prediction of the thermal contact
resistance for various types of surface characteristics under dif-
ferent conditions. In particular, consideration is restricted to
the following cases: (i) rough nominally flat surfaces in a vacuum
environment; (ii) rough nominally flat surfaces in a fluid environ-
ment; (iii) smooth wavy surfaces in a vacuum environment (with
either of the following three types of waviness involved; spherical
waviness, cylindrical waviness in one direction and cylindrical
waviness in two perpendicular directions) and (iv) rough wavy sur-
faces in a vacuum environment.

The problem is divided into three parts: thermal analysis,
surface analysis and deformation analysis.

The thermal analysis, based upon the proposed models, inves-
tigates the analytical solutions for the thermal contact conductance
under steady state conditions. It was found convenient, due to the
extensive analytical work connected with various models and different
methods used here, to present all details of the thermal analysis
separately in the appendices.

The surface analysis, treating the surfaces as random processes
with Gaussian distribution of height, relates the interface geometry
to the actual contact area. The method suggested in this analysis
has been checked against some autoradiographical experimental data.

The deformation analysis, in its two parts, gives dependence

between the load supported by the interface and (i) the actual con-

tact area and (ii) the contact spots distribution for rough spheri-
cally wavy surfaces, respectively. The result of the first part of
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the analysis is based on the plastic deformation of the surface
asperities. The second part considers, through the model of the
equivalent contour area, the combined effect of spherical waviness
and roughness on the problem of contact spots spreading at the
interface.

Limitations and possible deviations of the proposed models
are discussed.

Prediction of the thermal contact conductance is compared
with experimental data obtained in this work (in a vacuum environ-
ment) together with some data obtained by other investigators (for
which necessary surface parameters were available). Agreement
between the measured and predicted values was good in the whole
tested range of system variables.
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NOMENCLATURE

a radius of contact spot

a half the width of contour strip

A projected area

b radius of heat channel

b half the width of the heat channel

c half the length of the heat channel

d half the length of contour area

d flatness deviation

D diameter of contour area

E modulus of elasticity

H microhardness

h contact conductance

I nJ ,K Bessel functions of order n

k thermal conductivity

1 length of specimen

L wave pitch

n number of contacts per unit area

p apparent pressure

Q total heat flux rate per channel

r radial coordinate

R resistance

R radius of curvature

T temperature

Y yield stress

Y distance between mean planes of contacting surfaces
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x,y,z Cartesian coordinates

a eigenvalue

6 mean height of interface gap

e a/b

0 mean of absolute value of slope

x D/L Eq. (4.3)

x factor Eq. (2.17)

a root mean square roughness

a root mean square slope

( ) resistance factor Eq. (2.14)

T( )resistance factor Eq. (2.19)

Subscripts

1,2 metals 1 and 2 respectively, in contact

a apparent

c contact

conr contour

f void fluid
2kik 2

s combination of 1 and 2 as in ks ki+k2

t total
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I INTRODUCTION

1.1 Historical Background

For a long time it has been widely recognized that the calcula-

tion of heat flux through metallic joints formed by two bodies in

contact, cannot be carried out in terms of the individual resistances

of the bodies alone, by neglecting the temperature drop occuring in

the region of the interface. Especially in the case of high heat

flux, any prediction based on relations which do not include the

interface effect would be unreliable. Consequently, when the pro-

blem of high heat flux arose in connection with the development of

nuclear reactors, the necessity for better understanding of the

phenomena of interface thermal resistance between two metals in

contact - in this case between fuel elements and their metalclading -

resulted in a substantial number of works related to these problems.

With the development of the spacecraft industry, where the knowledge

of the interface resistance has been of even more importance for

successful design of environmental control subsystems and energy

conversion devices, the research in this area got further impulse,

so that today we have a relatively extensive experimental, and in

a somewhat lesser degree, theoretical work available. Although

the noteworthy experimental work really started quite recently

(about fifteen years ago) when the interest in this field became

pronounced, it would be incorrect to conclude that the theoretical

work was not much older; actually it started as early as 1873 by one

of the best theoretical treatise on the subject [34J.

_I M 111111111M'



12.

The most significant publications related to this area are listed

in the bibliography, and a very good review of those publications can

be found in references [4], [5], [8] and [28]. Some investigators,

[1], [3], [5], [6], [7] and [8] treated the problem analytically con-

sidering certain special cases.

This work, as a natural continuation of what has been done thus

far, will represent an effort in the direction of obtaining more

general knowledge relevant to the field of interface resistance.

Our attention will be concentrated on the separate investigation of

rough non-wavy surfaces, smooth wavy surfaces (with three different

types of waviness), rough and wavy surfaces, all in a vacuum

environment and rough non-wavy surfaces in a fluid environment.

1.2 Definition of Contact Conductance

In future we will use the term of thermal contact conductance

which is defined by the following relation:

h = Q/A
AT (1.1)

where Q/A represents the heat flux per unit area and AT the tempera-

ture difference at the interface, interpreted, for steady state heat

flow, as a difference between the respective interface temperatures

which can be obtained by extrapolating the corresponding temperature

profiles occurring far away from the contact surface(Fig: la).

The term thermal contact resistance, when used, will represent

the reciprocal value of the contact conductance.

Turning now to the mechanism of contact resistance, we will

consider two surfaces pressed together under condition of steady

state heat flow. We may first conclude that the intimate contact
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occurs only at a discrete number of locations; furthermore, those loca-

tions - which we will call contact spots - can be distributed uniformly

or randomly or in some other particular manner over the contact surface,

depending on the state of the surface and the nature of the load. We

will investigate (Fig:lb) the case when the contact spots are confined

inside contour areas which in turn could have their own distribution

pattern. For a given load (normal to the surface of contact) and the

given materials of he bodies in contact, the distribution of the con-

tact spots, the shape of the contour areas and their distribution

depend on the properties of the surfaces as roughness and waviness.

The latter mainly, although not exclusively, determines the shape of

the contour area and the former the contact spots distribution. In

the case when the contour area is equal to the apparent area, i.e.

when the contact spots are distributed over the whole area, we will

say that we are dealing with nominally flat (or non-wavy)surfaces.

The heat across the interface generally can be transferred by

conduction through a fluid, which might be present in gaps, by

radiation and by conduction through the contact spots. When the

interface is in a vacuum environment, only the last two modes

will contribute in heat transmission.

We will restrict our interest primarily to the cases when the

interface is in a vacuum under conditions of negligible radiation.

Some theoretical work will be devoted also to the thermal contact

conductance when a fluid is present in the gaps.
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II THERMAL ANALYSIS

2.1 Models

In order to solve analytically the problem of heat conduction

through the interface of two metals in contact, the following models

are adopted.

It is taken that all contacts are uniformly distributed inside

the contour area and furthermore that all contact spots have the same

area of contact, circular in shape whose radius is denoted by a.

From the above it readily follows that inside the contour area

there exist a number of identical heat channels in the form of hexagonal

cylinders. In addition, for the contact in a vacuum, the contacting

surface for each heat channel is considered to be flat; the last

assumption can be justified by the fact that surface irregularities

usually have a very small slope. One half of the elemental heat

channel is given in Fig: 2a. By defining the elemental heat channel

above, we do not want to imply that all the heat passing through con-

tact spots under all circumstances flows in the pattern described

by our model.

For contact in a fluid environment the model for a typical heat

channel is given in Fig: 3a,where 6 = 61 + 62 is to be interpreted as

the mean distance between surfaces in contact such that w (b2 - a2 ) 6

represents the actual void volume for a heat channel;(bjstands for

the radius of the typical heat channel).

The shape of the contour area, specified by the type of surface

waviness, is assumed to be (i) circular for type of spherical wavi-

ness (Fig: lb), (ii) in form of a strip for cylindrical waviness in
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one direction only (Fig: 2b) and (iii) in form of a rectangle for

cylindrical waviness in two principal directions (Fig: 2c).

Finally, it is assumed that the surfaces in contact are free

from any kind of film and consequently, the whole problem of the ther-

mal contact resistance is treated as the constriction phenomenon only,

i.e. as the effect of constriction of heat flow in the region of contact.

2.2 Analytic Solution for an Elemental Heat Channel in a Vacuum
Environment

For the model presented in Fig: 2a which will be considered like

a semi-infinite cylinder, the temperature distribution and implicitly

the thermal contact resistance is specified by the Laplace difterential

equation (for steady state conditions and thermal conductivity

independent of temperature).

V2T = 0 (2.1)

and the following boundary conditions:

T =const at z = 0 o<r<a

aT 2.2)
- k - 0 at z = 0 a<r<b J

3z

- k -- z +- (2.3)
3z rb 2

- k -T 0 at r = bar (2.4)

k 30 at r = 0 (2.5)3r

where Q is the amount of heat passing through our modelper unit of

time and k stands for the conductivity of the material of the cylinder.

The solution of the above problem is obtained and discussed in

detail in Appendix B. Summarizing here briefly the results of the

Appendix, we want to emphasize several points. The mixed boundary

IMIMININIIIIIIIIINAIN iiii,
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conditions at z - 0 (2.2) (where over a part of the area the tempera-

ture distribution is prescribed and over the rest of the area, the

temperature gradient is given) did not allow for a direct analytical

solution of our problem. Instead, two different indirect approaches

are constructed, based on the known solution for the case when

b + o (or rather a/b -+ 0):

T - 2 ek-- - az sin (aa) J (ar) dia (2.6)
2wka Jo a

The derivation of (2.6) is presented in Appendix A.

2.2.1 Method of Superposition

In the first approach we considered the temperature field

obtained by superposition of an infinite number of sources equally

spaced on the surface at z - 0 (Fig: 4), where each source contri-

bution on the resultant temperature field is of the form (2.6).

In this manner the expression for the thermal contact resistance

for a half of an elemental heat channel was found to be:

b /2 . (a) a1-R- sin~1 (}) - (}) [1 - ()2 2_ (2.7)

-4a

Where b is presented in Fig: 5.

Expression (2.7) can be approximated by the linearized form as

R -= [ -M 2() (2.8)
2wka 12 P

a
which is a good approximation for 0 < < 06

$3 ( ) related to( 2.8) is also given for comparison in Fig: 5.

2.2.2 Alternative Approach

The other method presented in section one of Appendix B utilized
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the fact that from (2.6) follows:

- k aT Q - at z = 0 o<r<a
az 2 -a a2 - - -

(2.9)
and aTnd - k = 0 at z = 0 a<r

az

as well as T = const at z = 0 o<r<a

(See Appendix A (A.6a), (A.7a) and(A.7b))

From the above it follows that one may use (2.9) to approximate (2.2)

taking the temperature of the contact to be the mean temperature over

the contacting area.

This procedure yields the expression for the thermal contact

resistance in the form

2 sin (a a) J (a a)
R n 1 n (2.10)

ka l=1 (a b)3 j 2 (a b)

where eigenvalues an can be obtained from the relation:

S(an b) = 0 (2.11)

011 n

( ) is plotted in Fig: 5. The agreement between the two methods - as

it is evident from Fig: 5 - is excellent.

2.2.3 Constant Heat Flux over the Contact Area

The case when the condition of constant heat flux prevails over

the contact area, has been considered for two reasons: (i) since

the constant heat flux over the contact area imposes a higher cons-

triction of heat flow than the constant temperature condition over

the same area, the former should always yield the higher thermal

contact resistance and could serve as an upper bound check for
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our previous solutions; and (ii) in certain cases, for example in the

case of macroscopic constriction due to the waviness effect, the con-

dition over the contour area depends on the contact spots distribution

inside the area and hence, the actual situation over the contour

area may approach that of the constant heat flux.

The exact solution for the thermal contact resistance (see

section three of Appendix B) for this case, may be written as

O J2 (a a)
R =4 (b) E n 4 ( (2.12)wka a n=1 (a b)3 j 2 (a b) 7ka 4n o n

an is determinable from (2.11). $4( ) is given in Fig: 5.

2.2.4 Solution for a Finite Length of the Model

Since in practice the length of the elemental heat channel is

always finite, we realize that it is of some interest to find:

(i) the value of the minimum length for which the relations given

in the previous sections are still applicable and further (ii) how

the thermal contact resistance will behave when the length is less

than that value. For this reason in Appendix C, section one, this

problem specified by relation (2.1) with the boundary conditions

( 2.9), (2.4), (2.5) and

T = const at z = L

has been solved for the thermal contact resistance (C.13).

2 b sin(an a) J1 (a a)
R = k() E tanh (an) n (2.13)n=1 n (a b)3 j 2 (an b)~n o n

where an is again the solution of (2.11). The alternative expression

for the thermal contact resistance obtained by a method of super-

position, which is of some theoretical importance, is presented in
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section three of Appendix C. Also the case of constant heat flux over

the contact area has been treated in section two of the same Appendix.

Comparison between (2.14) and (2.10) shows that the influence of

the finite length of the elemental heat channel on the contact

resistance is negligible for all values of Z > b. This conclusion

follows from the fact that the lowest anb is (from (2.11))

acb = 3.8317 and for t > b

tanh (a b-) > tanh(a b) = tanh 3.8317 = 0.999

and for all other values of anb in the subsequent terms of the series

in (2.13), tanh(ank) will be still closer to the value of one.

Another significant conclusion which follows from (2.14) is that

the contact resistance will decrease with decreasing I and will have

the value zero for Z - 0. Of course, this is a direct consequence

of the imposed boundary condition: T = const at z = I and formally

it says that the mean temperature over the whole surface z = 0

approaches the contact temperature as I approachesthe value of zero,

which is nothing but the statement of unique temperature; physically

it says that as I decreases for 2 > b, the deflection of flow lines

will be less pronounced (i.e. heat flux contribution at z = I will

be highest directly opposite the contact area (wa
2) and will decrease

rapidly with increasing r for r>a).

If we had imposed the constant heat flux at z = I (rather than

the constant temperature) the behavior of the contact resistance with

decreasing 2 would be quite the opposite of the one discussed above.

MINIfth"Afil w1W111111, "i,
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2.2.5 Application

The expressions found in this chapter of the form

4 aLR = - + (k )

do represent the contact resistance only for a half of the elemental

heat channel. For the whole channel, it directly follows

R = R + R2  k a ( (2.14)
s

where

ks 2k k2
k +k2

k and k2 are the respective conductivities of two bodies in contact.

From the above one can obtain the thermal contact resistance

per unit area as

R = 1 8 ( 8(c) (2.15)R h an k /sY7 n

where n represents the number of contacts per unit area and may be

connected to the geometry of the elemental heat channel by the relation

1
n =- --

irb2

Also

E a Aconr 1/2
b Ac

is used as an abbreviation.

$(E) for a given e - can be found in Fig: 5 or in the linearizedb

form

(e) ~ - E
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2.3 Analytic Solution for an Elemental Heat Channel in a Fluid
Environment

The problem of an elemental heat channel in a fluid environment,

based upon the model given in Fig: 3a, has been considered in Appen-

dix F. In the following we will briefly outline the procedure used

in the Appendix and the result obtained by the same procedure.

The temperature distribution for this case is again determinable

from relations (2.1),(213), (2.4), (2.5) and (instead (2.2)).

T = Tc - const. at z - 0 o<r<a

-k kf (T - T) at z 0 0 a<r<b (2.16)
1 z

where kf is equivalent conductivity of the fluid present in the inter-

face gaps. 61 stands for the mean distance between the solid and the

isothermal plane specified by temperature Tc'

In order to obtain a solution in closed form, the body of revo-

lution which confines the amount of heat passing through the metallic

contact, is approximated by the cylinder of radius b1 (see Fig: 3b).

With this approximation, together with the known solution for the

cylinder in a vacuum environment, the expression for the contact

conductance per unit area was obtained in the form:

-1 skg/ifn +kf
h - k= + kf (2.17)

R 84 Ac) 6

where

A m2+i1~ +1 -m
2 E

bk k
m = -

Rk5 6ksV/n

INNINNIININdIA11911dw
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and 6 - 61 + 62

2.4 Analytic Solution for the Contact Resistance due to the Various
Types of Waviness

2.4.1 Spherical Waviness

The model for macroscopic heat channels in this case will be geo-

metrically similar to the elemental heat channel given in Fig: 2a,

and all expressions obtained for the latter are applicable here, pro-

vided that instead of e = , one uses D/L; D being the diameter of

the contour area and L the wave length of the spherical waviness.

So, from (2.15) it follows that the expression for the thermal con-

tact resistance per unit of the apparent area due to the spherical

waviness is:

4 $ (D/L)
Rw = 4 O(D/L) L (2.18)

ks(D/L)

The values for * (D/L) for different L/D can be found in Fig: 5

(formally taking D/L = a/b).

2.4.2 Cylindrical Waviness in One Direction

The analytical treatment of the heat flow through the macroscopic

heat channel (Fig: 2b) where the contour area is of the form of a strip,

is presented in Appendix D. The main results of the Appendix are as

follows.

For the case when the contour area is kept at a constant tempera-

ture, the thermal contact resistance (for one half of the heat channel)

was found to be:

R =1 b 1 J (nn) sin (nw
kir2  a n-l n2  0 bb(.9

k (g)
k
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where $i( ) is given in Fig: 6.

The thermal contact resistance, when the heat flux over the con-

tour area is taken to be a constant, can be expressed in the form

R - ()3 E - sin2 (nr }) (2.20)
kir3 a n=1 n3

$2(a/b)

k

*2 (a/b) is presented in Fig: 6.

From the above one can derive the relation for the thermal con-

tact resistance due to the cylindrical waviness per unit of the

apparent area as

= 4 *(a/b) b (2.21)

ks

2.4.3 Cylindrical Waviness in Two Perpendicular Directions

The contact resistance due to the cylindrical waviness in two

principal directions (based on the model presented in Fig: 2c) has

been considered in Appendix E only for the case of a constant heat

flux over the contour area. The reason for this, together with the

solution is given in the Appendix. The final result for the contact

resistance per unit of the apparent area obtained there can be writ-

ten as

sn nra 2 mird
R = 4bc b E b + 2 c

Rw3 2 b si + c2 E si3-
ksir3  ca2 nul n3  bdl m3  (

+ bcnir 2 m7 )(2.22)

b2c2 
n sin2  md

ksir2a2d2 n-1 m=1 n2m2V(w)2+ (mr) 2

where a, b, c and d are introduced in Fig: 2c.
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III SURFACE ANALYSIS

From the conductance equation involving roughness effect it is

evident that the knowledge of the number of contacts per unit of the

contour area as well as the ratio between the actual area and the

contact area is required for prediction of the contact resistance.

The ultimate goal of this whole work is to relate the thermal con-

tact resistance to the apparent pressure through some surface

characteristics and properties of materials which can be easily

obtained.

The subject of this chapter is to find dependence between the

number of contacts per unit area E(square root of area ratio) as a

function of geometrical parameters of surfaces, whereas the relation

between c and the load will be discussed in the next chapter.

3.1 Description of the Surfaces

For each of the surfaces forming an interface contact, we assume

the existence of an ensemble of the surface profiles, all taken from

one surface, from which one can deduce statistical properties of the

surface, i.e. we assume that there exists some probability measures

related to the behavior of all the obtained profiles. As a conse-

quence of the above, we can say that the surface profile y(x) (see

Fig: 8a) is a random process which possesses a probability density

function $(y), where $(Y), for example, is the probability that y - Y

and the quantity p(Y) dy is the probability of the random variable y

having the value between Y and Y + dy, i.e.

lim (Y + 6) - *(Y - E) (Y)
26

6+*o
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We will further assume that the random process y(x) is stationary,

meaning that the statistical properties of the ensemble of surface

profiles are invariant under arbitrary displacement in x direction.

In addition,it will be assumed that the probability density of

height and slope are independent (i.e. the joint probability for height

and slope may be written as p(y,y') = p(y) p(y')) and that the surface

height is normally distributed, i.e. the probability density function

for the surface height (measured from the mean plane) is given as

-y2/2(;2
p(y) = e / (3.1)

where a represents the standard deviation for height (or root mean

square deviation) specified by the relation

+L 2

a = y2dx = y2p(y)dy (3.2)

J o -JLJ__

Finally, we will state that for our purpose a surface under consider-

ation is completely determined with the known probability density

function for surface height p(y) together with the probability density

function for profile slope p(y') (although, as it will be shown later,

we will not need an explicit relation for p(y') but only the mean

value at the slope).

3.2. Determination of Number of Contacts per Unit Area

Before starting to work diredly on the problem of determination

of the density of contact spots as a function of c and the geometry

of the surfaces in contact, we recall the following known relation
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from theory of probability [40]:

Let f(y) be a function of a random stationary variable y for which

probability density distribution is known, then the mean value of

f(y) over whole y distribution may be expressed as

OL

f (y(x)) = g f(y(x)) dx = f(y) p(y) dy (3.3)

0 -- D

or more generally

f(Yl'Y 2  = J. (ylIy2'. Yn) P(y1 y2-- .yn) dyldy2.. .dyn (3.3a)

-00 -00

We return now to random stationary distribution of the surface

height, which can be formally presented as an all representative

surface profile y(x) given in Fig:8a. Referring to the profile

y(x) for a given surface, where y is measured from the mean line

of the profile, we ask the question: what is the expected number of

peaks per unit length above a certain level Y? Since we are dealing

with all representative profiles, the actual interpretation of our

question is: what is the expected value of /n, where n is the number

of contacts per unit area, when a rough nominally flat surface is

pressed to a smooth flat surface which is Y distance apart from

the mean plane of the rough surface.

The above problem could be solved in more than one way. The

method of counting functions suggested by Middleton [40] will be

used here:
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Let u(T) be the step function with the following properties

u(T) = 1 for T > 1 and u(T) = 0 for T < 1

Then u(y(x) - Y) has the shape given in Fig: 8b.

Differentiating u(y-Y) one can obtain the counting functional

as (u(y-Y)) = y'6(y-Y); y = d- (3.4)

where 6(y-Y) is known as unit impulse or Dirac delta, with property

to vanish everywhere except at y = Y and it satisfies the relation

6 (y-Y) dy = 1

from which follows

f(y) 6(y-Y) dy = f (Y) (3.5)

and if for a<x<b y(x) assumes the value of Y once and only once, then

b

y' 6(y - Y) dx = + 1 (3.6)
-a

where the sign depends on the sign of y'.

From the above follows clearly that consists of spikes withdx

unit area directed upward or downward, depending on whether y' is

positive or negative (see Fig: 8c). Hence, the counting functional

ly'| 6(y-Y) can be used for calculation (by virtue of (3.6)) of num-

ber of peaks crossed per unit lenghth of the profile (or square root

of the number of contacts per unit area) as

L

n - ly'| 6(y-Y) dx (3.7)

d0

Since (3.7) is nothing but one half of the mean value of the counting

functional, the use of (3.3a) will yield
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r = 1y'| I6(y-Y) p(y) p(y')dy dy'

or with (3.5) CO

A- J) y'I p (y') dy' (3.8)

(The above expression could be derived also by a somewhat different

approach developed by Rice, se [41], [43], [2]).

We can see that the integral of (3.8) represents the mean of the

absolute value of the profile slope, and hence from (3.8) and (3.1)

follows

2 n ey 2 /2a 2

tan V(3.9)

where [L

tanG = |y'| p(y') dy' = y'| dx (3.10)

Relation( 3.9) is presented in Fig: 9.

Ac 1 /2The value of E = may be similarly obtained.

From Fig: 8a it is evident that E can be expressed as

L

E u(y-Y) dx

0

and together with (3.3) and (3.1)

C = u(y-Y) p(y) dy = p(y) dy

or finally -
-2202

C = --- dy = 1 - erf (3.11)
Y2
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The dependence e = f ( /a) is given in Fig: 10.

Since both a /n and c are uniquely related to /a, there exists a

unique relation

2a /n= (c) (3.12)
tanG

Relation (3.12) is presented graphically in Fig: 1.

One can use the information given by Fig: 11 to relate the thermal

contact conductance for nominally flat surfaces in contact to e in

the form

stan9 = u() (3.13)

Dependence (3.13) is given in Fig: 12.

All the relations derived so far in this chapter are based on

the investigation of the contact between two nominally flat surfaces

with the additional restriction that one of the surfaces must be

smooth. In order to make the obtained results applicable for the

case of two rough nominally flat surfaces in contact,we will modify

the definitions of some parameters in the developed formulas.

Considering two rough surfaces in contact, with the mean planes

at distance Y apart (again it was assumed that the distributions of

height for both surfaces are random, stationary and Gaussian), we

realize that at any point, whenever y, + y2> Y, the contact between

the surfaces will occur (y1 and y2 are measured from the respective

mean line). Consequently, one may apply all found relations by

interpreting y(x) in Fig: 8a as

y(x) - y1 (x) + y2 (x)

and Y as the distance between the mean planes of the surfaces in con-

tact. Standard deviation for distribution y (x) + y2(x), where both
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y1 (x) and y2(x) are normally distributed, is given 
as [44].

a = 2 + G (3.14)

The value for tan® in this case depends on the respective distri-

butions of the slope for the two profiles.

If both slopes ly'1 (x)j and Iy' (x)| are approximately constant,

simple probability analysis shows thatIL
tan® = y' + y 2 1 dx = tano (3.15)

.0

where tanGi is the larger of the two slopes. In the case when each of

the two y'(x)I's could have two different values (which can be the

case for machined surfaces), the value of tan® will still approach

the one given by (3.15).

If both slopes are normally distributed, i.e. if

-y' 
2/202

p(y') -

fzTi

where 'a is the standard deviation from the mean of the slope, thenL
tan = |y' + Y'21 dx = Jy'|p(y')dy = a

.0

S .22 2
= (1 2 + 2) = V(tane ) + (tane2) (3.16)

The prediction of number of contacts per unit area based on the

method developed above was compared with the predictions obtained

from the other two existing methods, namely (i) from the graphical

method (which can be executed on analog computers [45]) and (ii) from

the method developed by Henry [2], which is based on the assumption

of the random distribution of the height as well as the slope. For
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five pairs of rough non-wavy surfaces, made of stainless steel 304,

comparison between the three methods, and some experimental autoradio-

graphical data is presented in Figs: 13 to 17. The predictions, except

for the method suggested here, as well as the experimental data,

were taken from [46]. The value for tanO in(3.12) was taken to be

the larger of the two mean slopes of the contacting surfaces (which

was justified by the behavior of the profiles slopes). In all the

three methods c was related to the apparent pressure with the depen-

dence: c2 = , where H is microhardness (Vickers or Knoop). The
H'

conversion from E to pressure was done in order to enable the com-

parison with the experimental data. The relative agreement between

the three methods, of course, does not depend on the validity of the

assumed dependence between c and pressure (since in their original

form the methods relate the number of contacts to ).
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IV DEFORMATION ANALYSIS

The objective of this chapter is to give the final link between

the thermal contact conductance and the apparent pressure. In the

obtained relations in the previous chapters, the contact conductance

Ac 1khas been expressed in terms of e = (A con) , he contour area andAconr

the wavelength, through some surface characteristics and properties

of the materials in contact. In the following we will attempt, in

the two separate sections, to relate E to the pressure over the

contour area and to determine the contour area as a function of the

apparent pressure for the case of rough spherically wavy surfaces.

4.1 Actual Contact Area

In Appendix H we have carried outan analysis with the purpose

of estimating the real contact area when two rough non-wavy surfaces

are brought into contact. The analysis is essentially constructed

on a model which assumes that each contact point consists of two

hemispherical asperities in symetric contact (Fig:19a)

The result of the analysis can be expressed by the following

equation

Ac P-
Aa 3Y, H

where y is a function of the material properties of the contacting

bodies, the pressure and the geometry of the surfaces in contact.

For the geometry of the metallic surfaces we considered here (tane>0.1)

and the range of pressure we used (p>130 psi), it is found that the

value of y was very close to unity, and therefore it is permissible

to use the relation

Aa H (4.1)
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The expression (4.1) agrees with the conclusions achieved by some

other investigators ([47], [10])

From (4.1) it follows

2 . Ac = Aa ,RPconr (4.la)
Aconr Aconr H H

One may now use( 4.la) and (3.13) to express the thermal contact

conductance for the case of rough nominally flat surfaces in contact

(Aa = Aconr) to the apparent pressure. The result is presented

graphically in Fig: 18.

The same dependence can be expressed analytically as

ah = 0.9 (16 7
ktanO H (4.2)

S

4.2 Contour Area for Spherically Wavy Surfaces in Contact

The model for spherical waviness, where only the mean line of

the surface is presented, is given in Fig: 19b. We assume that the

waviness is not too pronounced, i.e. (referring to Fig: 19b) d/L<<l.

As -a consequence of the above, the radius of curvature is expressed

by

R L2

We will call the distance d the flatness deviation and L the wavelength.

For two such specimens in contact with the type of waviness described

above, one can determine, by applying the Hertz theory [48], how the

contour area (for smooth surfaces) varies with the load exerted be-

tween the contacting members. The final result may be written in the

form

H E = 1.285 ( ) )/3 (4.3)

D being the radius of the contour area

dt w di + d2
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Es 2EjE 2 ; Ei and E2 are respective moduli of elasticity for
Ei+E 2

the materials in contact.

If the surfaces in contact are in addition rough, one can anti-

cipate that the contour area will be larger than predicted by the

Hertz theory. Also in this case, the effect of nonuniform distribution

of the contacts will be present with the consequence that the density

of the contact spots at the interface will decrease with increasing

radius. In order to make the relations, based on the model which

assumes uniform distribution of contacts inside the contour area, use-

ful, we define here the effective contour area to be the area which

would contain all the contact spots if they had been uniformly distri-

buted inside this area. Using the definition given above, and the

assumption that the mean surface would be deformed elastically

according to the Hertz theory, the problem was investigated in

Appendix H. The following result, which specifies the diameter of

the effective contour area was obtained.
,1

x2 A2H + 2 exp -t X2g(X ) [2 IL+ A 2H g( ) dX (4.3)eff H+ J 0 K XH [00 XIHJ

AH

where

XefEDeff adX 2rXeff=-and A LLL

-~~X (L1 Fl 1F 2  A~ lXH~ +x 2  1/2Jj(4.4)
g( /AH) X - - - ) sin-( ) -- 1)

XH L 2 Hx

the waviness factor g( A/XH) is presented also graphically in Fig: 20.

Since (Y/a) in (4.3) is the function of e(sie Fig: 10) where e is
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given by
1 (.2 /2

E:= ( H (4.4a)
Aef f H

it is obvious that the process of calculating Xeff is an iterative

process. However, from known AH and some limited experience, one can

make good estimation of Y/a in the first step so that only one evalua-

tion of Aeff might be necessary.

4.3 Application

We will conclude this chapter by outlining the procedure for

the prediction of the thermal contact resistance for two rough and

spherically wavy surfaces in a vacuum environment.

From (2.15) and (2.18) follows

R = 8 $(C) + L (4.5)

kS c/wn ksXeff

where the first term in (4.5) is the resistance imposed by the rough-

ness due to the amount of heat which might follow the pattern of the

model for the elemental heat channel, and the second term represents

the contribution due to the spherical waviness.

From the known parameters of the surfaces in contact (a ,tanOi,

d,L) as well as the properties of the materials (K.,E.,H ) one can

use Eq. (4.5) to obtain Aeff, Eq. (4.4) for e, Fig:ll for determining

/n and Fig: 5 to evaluate $(e) and $(eff). All this, together with

(4.5) will enable the prediction for the thermal contact resistance.

In the case of nominally flat surfaces in contact, the prediction

can be made directly from Eq. 4.2 (or Fig: 18)
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V EXPERIMENTAL DETERMINATION OF CONTACT RESISTANCE

5.1 Apparatus

The apparatus shown in Fig: 21 consists of a structure for support

and loading, the test chamber, a vacuum system and an instrument console.

The lever system was designed to give mechanical advantage of

100. Dead weight loading is made to be independent of thermal strains.

The load is measured by a strain gauge dynamometer, located in the

test chamber and hence, the hysteresis effect due to bearing

friction did not influence the accurate reading of the load.

The load in the test section may range from 0 - 20.000 pounds

when the pressure in the test chamber is at one atmosphere. However,

for a vacuum condition in the test chamber, the minimum load on the

test section is 103 pounds (or 131 p.s.i. over the one-inch diameter

specimens' interface). This is caused by the atmospheric pressure

acting on the 3-inch diameter bellows, through which the load is

transmitted to the test section. The cross-section of the test

chamber is given in Fig: 22.

The chamber consists of a top plate, a base plate, an upper

cylinder and a lower cylinder which can be lowered to expose the

test section.

Referring to Fig: 22, the test section consists of the upper and

lower main coolers (4,19), spacers (5,6,17) the upper and lower main

heaters (7 and 8 respectively) the specimens (8,9), the dynamometer

(18) and the guard ring with its upper and lower heaters (12,13), and

upper and lower coolers (11,14).

The test section design allows for heat flow through the inter-

face to be reversed. The heating elements are made from Kanthal
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resistance wire. The heater cores are one-inch diameter stainless

steel.

The temperature is measured by 28-guage chromel-alumel thermo-

couples cemented by means of Sauereisen. Four thermocouples are

inserted into each specimen, spaced 3/8 of an inch apart along the

centerline, beginning 2/8 of an inch from the tested interface.

A Leeds and Northrup potentiometer, with the accuracy of 0.005

millivolts (corresponding to 0.25*F) was used for measuring e.m.t.

produced by the thermocouples.

The load at the interface is measured by the dynamometer

made of 1.5 inch diameter 2 inch long aluminum cylinder with semi-

conductor strain gauges attached near the base of the cylinder.

The dynamometer was able to record the change of the load from one

pound (at the basic sensitivity the load of one pound produced dis-

placement on the Sanborn recorder of one millimeter).

The guard ring with its two coolers and two heaters is used

to minimize the radiation effect on the specimens. It is done by

adjusting the temperature gradient in the guard ring to be approxi-

mately the same as the temperature gradient in the two specimens.

The temperature gradient in the guard ring is measured by the three

thermocouples mounted along the guard ring.

The vacuum system consists of a mechanical pump, a diffusion

pump and a three -way vacuum valve. The connection between the

pumping system and the vacuum chamber is fitted with vacuum gauges.

A thermocouple vacuum gauge is used for pressures between 5 and 1000

i7
microus Hg, whereas the pressures from 5 micrcu's to 10 mm are
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covered by an ionization gauge. The pressure between the diffusion pump

and the mechanical pump is measured by a thermocouple vacuum gauge.

The instrument console can be seen in Fig: 21. On the console are

located: the thermocouple potentiometer, wattmeters for the heaters,

the vacuum gauge control, the valves for controlling flows through

the four coolers, four variacs for controlling the heaters and control

switches for the pumps.

5.2 Specimen Preparation and Measurement of Surface Parameters

Specimens are made in the form of a one-inch diameter cylinders,

1.5 inch long. Both base surfaces of each specimen are lapped on a

lapping machine. On one of the lapped bases, the spherical waviness

is obtained by spinning the specimen on a lathe with the test surface

pressed against a rubber base covered by polishing cloth with a thin

layer of a diamond compound spread over it. The waviness produced

in this manner is recorded on a surface analyzer with a basic vertical

sensitivity of 0.94 pin per millimeter deflection of the Sanborn re-

corder. With the known waviness, smooth test surfaces were blasted

by the Ballotini Division, Potters Bros.,Inc., Carlstadt, N.J., with

glass spheres of various sizes under different pressures in order to

achieve the desired roughness.

The surface profiles are recorded on the surface analyzer. From

the recorded profiles, the mean of the absolute value of slope

tanO = Ly'Idx isfbund graphically. The root mean square of

roughness is calculated from the center line average value (C.L.A. E

Jyjdx), by assuming the normal distribution of the profile's

0

height, i.e. a - C.L.A . The application of the Chi-square test2
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[21 showed that the assumption of the normal distribution of height was

acceptable for this type of roughness. The value of the center line

average is read directly from the "Talysurf" profilometer.

5.3 Experimental Procedure

The apparatus described in section 5.1, is used for the experi-

mental determination of the contact resistance.

Two specimens, with fitted thermocouples, are aligned by a device

in the form of a hollow cylinder (made of two removable halves). So

aligned specimens are placed in the chamber and there aligned (as one

unit) relatively to the chamber devices under a load of about 100 psi.

Following the alignment of the whole chamber, the cylinder which is

used for the specimens alignment is removed and the chamber closed.

Simultaneously, the dead weight is gradually removed and the vacuum

of about 5 x 10-6 mm Hg is attained. At the minimum pressure (131 psi)

and all heaters turned on, the system and the interface is allowed to

outgas for about 36 hours.

After the outgassing is accomplished, the heaters and the coolers

are adjusted to give the desired heat flow. The temperatures are

measured every half-hour. After two identical successive readings,

it was assumed that the steady state had been attained and the reading

was followed by an increase of the load.

All data are taken for the ascending load.

The deformation and the surface analysis used in this work are

valid only for the first appitation of the load, therefore the ascen-

ding load procedure had to be used in order to enable the comparison

between the theory and the experiments.
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VI COMPARISON OF PREDICTED AND EXPERIMENTAL RESULTS

Discussion of the agreement between the prediction, based on the

thermal, surface and deformation analyses presented in the first three

chapters of this work, and the experimental results obtained here,

together with some found by other investigators, will be the contents

of this chapter.

6.1. Elemental Model in a Vacuum Environment

The artificial specimens (made of different materials and with

various geometries), which resemble the model of the elemental

heat channel related to a heat flow through a contact spot, are

tested in a vacuum environment. The prediction of the contact

conductance, specified by equation (2.14) is, as it can be seen

from Fig: 23, in very good agreement with the experimental results.

In Figs: 24 and 25 we presented the result of the comparison

between the prediction (from Eq. 2.21) and the experiments for the

contact which comprises the conditions related to a cylindrical

waviness. For both tested contacts, one of the specimens was a

stainless steel with protruding stripes, whereas the other was made

of a softer material with contacting surface smooth and nominally

flat. The geometry of the contacts as well as the materials involved

are indicated in Figs: 24 and 25. The agreement between prediction

and the experiments can be described as satisfactory.

6.2 Rough Nominally Flat Surfaces in a Vacuum Environment

The prediction of the thermal contact conductance calculated from

relation (4.2) was compared by the experimental data in Fig: 18.

The experimental results from this work are the readings obtained
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from the rough spherically wavy surfaces for those values of pressure

for which the contour area is identical with the apparent area, i.e.

when the surfaces in contact behaved like nominally flat surfaces.

Fig: 18 also contains the experiments from references [2] and [5].

All specimens have been made from stainless steel. The geometry for

the surfaces tested are listed in Fig: 18. Except for data from

reference [2], where k = 14.6 Btu and H = 375,000 psi (for stain-
hr ft0FanH 37,0ps(frti-

less steel 416), the values for thermal conductivity are obtained

from Fig: 33 (supplied from [62]) and hardness for the material con-

sidered was H = 370,000 psi.

It can be seen from Fig: 18 that fairly good agreement is obtained

between the theory and the compared experimental data.

6.3 Rough and Wavy Surfaces in a Vacuum Environment

Three pairs of specimens made of stainless steel 305 with rough

and wavy surfaces are used in the experiments. The geometry of the

specimens' surfaces are listed below

Specimen 1 ai = 190 pin, di = 95 pin, tanGi = 0.150

IPair 1 -... _ __ __

Pair 2

Specimen l a2-negiible, d2 = J plntanU2  U

Specimen 1 a1= 132 pin, d 1  80 pin, tan01  0.163

Specimen 2 a2 = 76 pin, d2  0 pin, tan 2  0.137

Specimen 1 01 = 292 pin, d = 80 pin, tan 1 = 0.100

-- 1

air3 Specimen 2 a2 = 174 pin, d2 - 35 pin, tan02 = 0.100

The resulting a for each pair is given, together with the experi-

mental results, in Figs: 26, 27 and 28. The theoretical prediction



42.

is made from relation 4.5. tanG, for each pair is taken to be the

larger of the two respective tanG for the surfaces involved.

u = Al, varies with pressure, but the average one for range of

pressures from 131 psi to the pressure which will eliminate the

effect of deviation of flatness, is indicated in each figure. For

comparison, the curve corresponding to u = 1 (i.e. when the contour

area is assumed to be the same as one obtained by the Hertz theory

for smooth surfaces) is presented for each pair of specimens. Hardness

in all cases had the value of H = 370,000 psi, Young's modulus of

elasticity E = 26 x 106 psi and conductivity data are taken from

Fig: 33.

For all the three pairs of specimens, the agreement between pre-

dicted and measured values was good.

6.4 Contacts in a Fluid Environment

The theory, which is developed in this work, for prediction of

the contact conductance with the presence of an interstitial fluid,

is compared to some experimental data obtained by Fenech [1] and

Henry [2].

In Figs: 29 and 30 are given experimental results and prediction

by the theories (one presented here and the other in reference [1])

for two different geometries of an artificial model with a fluid in

the gap. Three types of fluids are used: air, water and mercury.

The agreement was satisfactory for all the three fluids. One

may notice, that the fluids with relatively low conductivity (com-

pared with the conductivity of the material of the model: stainless

steel AMS 5613), the prediction for the thermal contact conductance

was higher than the values obtained by experiments. This can be
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explained by the influence of the finite height of the small cylinder

which comprised the contact spot for the specimen experimentally tested.

Since our theory is based on the model with zero height of the contact

spot, it gave a somewhat smaller thermal resistance.

For the case of rough nominally flat surfaces with a fluid in the

gaps, the validity of expression (2.17) was checked against the

experimental (and theoretical) results obtained in reference [1]

(Fig: 31) and reference [2] (Fig: 32).

For the prediction given in Fig: 31, dependence between 6, /n and

e was taken from the graphically obtained data in reference [1], whereas

ks for the particular combination of materials (Iron/Aluminum) had

Btu
the value ks = 73.0 hr ftF

The interface parameters for the case considered, in Fig: 32 are

listed in the figure.

The agreement between the predictions and the experiments was

very good.
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VII CONCLUSIONS

7.1 Discussion of Results

The purpose of this, primarily theoretical work, was to provide

certain relations which can be used to predict the thermal contact

conductance for various conditions (rough non-wavy surfaces in a vacuum

environment, rough non-wavy surfaces in a fluid environment, smooth

wavy surfaces in a vacuum environment and rough and wavy surfaces in

a vacuum environment). Furthermore, the effort was made to reduce

the thermal contact conductance equation to the form which can be

acceptable for practical application. It seems that the success in

this respect was achieved in some cases, particularly for rough

nominally flat surfaces in a vacuum environment (Eq.(4.2)) and, in

a somewhat lesser degree for rough nominally flat surfaces in a

fluid environment. We realize that the price paid for the attained

simplicity is a degree of uncertainty in prediction imposed by the

adaptation of various models and assumptions made in the process of

deriving our relations. Although the experiments(Fig: 18), limited

to the certain pressure range, gave quite a comfortable agreement,

we do feel compelled to discuss limitations and possible deviations

of the prediction.

Starting with the model for the elemental heat channel( Fig:2a),

we can say that the assumption of negligible height of contact

button is a realistic one(justified by very small slope of surface

asperities normally encountered in practice). The only different

model, with contact button approximated by a small cylinder with a

finite height, has been proposed in reference [1]. This less

realistic model, leads to the more complicated conductance equation,
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which in turn was obtained by satisfying the boundary conditions only

in average, and assuming, that in the relations for the temperature

distribution, it was sufficient to retain only the first term of an

infinite series. As a consequence of these, when one lets the height

of the contact button approach zero in the conductance equation

developed in reference [1] (for the vacuum condition), the resulted

prediction did not agree with the one obtained in this work.(Although

in this way the two models have become identical.) The comparison

between the two methods are given in Fig: 34. However, we should say

that a prediction based on the original conductance equation from

[1] would be better than was indicated by the situation observed from

Fig: 34, since the resistance due to the fictitious finite height

of the contact button, when taken into account, would tend to de-

crease the discrepancy between the two methods.

The assumption concerning the shape of the elemental heat channel

with concentric circular contact spot, in spite of its artificialness,

(the real contact, of course, has an irregular shape) cannot produce

an essential error in the result for the thermal contact conductance

prediction (this can be verified by comparing the conductance for

two limiting cases: a cylinder with the concentric circular contact

spot (Fig: 2a) and a rectangular heat channel with the contact area

in the form of a strip (Fig: 2b) with the same contact area/apparent

area ratio). The employed model further assumed that all the contact

spots are of the same size and uniformly distributed over the apparent

area. In our opinion, this simplification might have serious

consequences on the accurate prediction of the contact conductance.

MOMMMINUMMINI MON "
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Especially at light pressures the actual situation could be quite

different than our model assumes. The degree by which nonuniform

distribution might effect the prediction could be deduced from the

fact that such a distribution has the same effect on the contact con-

ductance as some equivalent type of waviness. In Figs: 26, 27 and 28

we compared the predictions for rough spherically wavy surfaces and

for the same surfaces if they were without waviness, i.e. if the

contacts were uniformly distributed over the whole apparent area.

The result of this comparison indicates the possible significance of

nonuniform distribution of contacts.

The surface analysis, in which we related the number of contacts

to e, is based on probability analysis, starting with the assumption

that the surface height is normally distributed. Even if our assum-

ption were correct, and if we had sufficient information to determine

the required statistical properties, the result of the probability

analysis would represent, at best, only a good approximation.

Nevertheless, we are confident that for surfaces large enough to

qualify for statistical consideration, this analysis will yield the

reliable results.

Finally, the deformation analysis provided an estimated dependence

between area ratio and apparent pressure. The dependence is founded

on the consideration of a symetric model (see Appendix H). It was

concluded, as a result of such consideration, that the relation (4.1)

could be used for the pressure range we had been interested in (130

psi to 15,000 rsi) with the known consequence, that at low pressures

the actual area would be somewhat higher than predicted by (4.1) and

at the high pressures, if we used the same hardness value in the en-

tire pressure range, the actual area would be less than predicted,
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due to the work-hardening of materials in contact.

In view of all the effects discussed above, together with the

experimental findings (Fig: 18), we can conclude that the prediction

of the contact conductance obtained from relation (4.2) might be

somewhat low for low pressures( due to the combined effects of

nonuniform distribution of contact spots and underestimation of real

contact area) while at very high pressures the prediction could be

too high due to the work-hardening effect of the materials engaged

in the contact.

The waviness effect has been considered separately for smooth

surfaces, for three different types of waviness as well as in

combination with roughness. The latter case has significant practical

interest, since all surfaces in practice will normally possess some

type of waviness. On the other hand, this waviness could be irregular

and very often indeterminable and therefore, any accurate prediction

of the contact conductance, for these cases, would be impossible.

However, the consideration of waviness was undertaken here in order

to provide information concerning the relative importance of the

waviness effect for surfaces in contact which were, in addition,

rough. The waviness considered was of the spherical type specified

by flatness deviation of the same order as roughness (this particular

combination is likely to occur for real rough surfaces intended to

be flat.)

The prediction, which agreed well with the experiments (Figs: 26,

27 and 28) indicated that the waviness effect is relatively signifi-

cant and especially pronounced at low pressures with the tendency to
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diminish with increasing pressure. The particular pressure for a given

pair of surfaces, for which the waviness effect will disappear, depends

on the elastic properties, flatness deviation and roughness of the

specimens. The experiments done with wavy rough surfaces have been

used also to confirm the theory for rough non-wavy surfaces, for those

pressures for which the waviness will disappear (due to the elastic

deformation of the specimens).

7.2 Recommendation for Further Research

The broad area of contact resistance is still largely unexplored

Some topics have been examined mainly experimentally, for example,

directional effect for dissimilar metals in contact (Rogers [24]),

effect of cycling of the applied load on the thermal contact conduc-

tance (Cordier [19]), the thermal resistance with presence of inter-

facials foil (Fried [22]), plated surfaces in contact (Fried [9] and

Weills and Ryder [11]). Since in those areas we are still without

any correlation of available data, and still less without a theory

which agrees with experiments, the problem of prediction of the

contact resistance, for these cases, remains unsolved. We particularly

wish to emphasize the significance of having contacting surfaces

plated in connection, not only with an increase of actual contact

area which can be achieved by plating contacting members with a

soft metal, but also from the overlooked aspect of increasing

conductivity of the layer through which constriction takes place.

It is obvious from any conductance equation that the contact con-

ductance is directly proportional to the value of k ( 2k1k 2

k +k a

where ki and k2 are respecflye conductivities of the layers where
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the heat flow is not parallel. From the conclusion of Appendix C,

we saw that the thickness of this layer is approximately equal to the

radius of one elemental heat channel (=b= 1/n (n being the number

of contacts per unit area) and hence, for non-wavy surfaces, could be

quite small. From the above it follows that considerable reduction

in the contact resistance may be achieved by plating contacting

surfaces with a material of high conductivity, even if in this way

we do not increase the actual contact area. (Notice - from the

expression for ks - that for good results both surfaces should be

plated). The conclusion reached above may be generalized by

realizing that aiy process or treatment which changes the conductivity

of the materials in the immediate vicinity of contacting surfaces,

will have significant influence on the contact conductance results.

We think that the above phenomenon deserves closer investigation in

future research.

Further work in the area of deformation analysis is needed in

order to relate the actual contact area to the pressure in the region

of very low pressures where elastic deformation of surface asperities

might be a predominant factor.

Finally, we should mention investigation of the contact conductance

under the condition of a vibrating load as well as the practically

important case of transient conditions in their various forms (con-

tinuous heat flux variation and gradual evacuation of the interface

fluid) as areas of future interest.
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APPENDIX A

CONTACT RESISTANCE FOR A SEMI-INFINITE MEDIUM DUE TO HEAT SUPPLY
OVER A FINITE CIRCULAR AREA

A.1 The circular area is kept under a constant temperature.

For a steady state condition, the temperature distribution in

the semi-infinite medium should satisfy the Laplace differential

equation

V2T = 0 o<r<w (A.1)

The origin of the coordinate system is chosen so that it coincides

with the center of the circular area through which heat is supplied,

and the semi-infinte solid is extending in the positive z direction.

The boundary conditions of the problem are as follows

T = Tc = constant at z = 0 o<r<a (A.2)

DT- k-= 0 at z = O r>a (A.3)

T = 0 (arbitrary) at r = c
(A.4)

T = 0 at z = c

where a is the radius of the circular area, and k is thermal conduc-

tivity of the medium.

The differential equation (A.1) together with the boundary con-

dition (A.4) has a solution in the form

-az
e f(a) Jo (ar)

for all values of a between zero and infinity. Hence

-az
T J - f(a) JO (ar) da (A.5)

T 0

The function f(cz) will be determined in such a way as to fulfill the
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the conditions (A.2) and (A.3), and this can be achieved by making use

of the following known relations connected with Bessel functions (see

for example [33] or [35]).

sin (aa) 2 o<r<a (A.6a)
J0(car) dia =

sin~(-) r>a (A.6b)
o r

and

r>a (A.7a)
sin (aa) J0 (ar) da =

0 < 1 o<r<a (A.7b)
a2-r2-

From the above it is evident that, by virtue of (A.6a) and (A.7a)

the expression cO

T = Tc le sin (aa) Jo (ar) ca (A.8)

0

satisfies (A.1) and all boundary conditions: (A.2), (A.3) and (A.4)

(consequently f(a) - -. Sin(aa)
7r a

Let Q be the total amount of heat transferred through the circular area

per unit time, then from (A.7b) and (A.8) follows

-a -a

Q = -k ( z) 2Nrdr = 4Tck rd *Tcka (A.9)
ja /a2-r2

Jb kc

The total thermal resistance between z = 0 and z = co may now be

written as

Tc - To Tc 1 0.25) (A.10)
Q Q 4ka ka

Since the cross-sectional area of the conducting medium is infinite,

all resistance is entirely due to the contact resistance.

A.2 Heat is supplied at a constant rate over the contacting area

In some cases the condition over the contacting circular area
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could be different from that of the constant temperature, and may in

fact approach the constant heat flux condition (for example when a base

of a cylinder or a wire is pressed or welded to the surface of a large

body). For this reason the case of constant heat flux will be inves-

tigated in some detail below.

The temperature distribution should satisfy the differential

equation (A.1) with boundary conditions given by (A.3),(A.4) and

-k = at z = 0 o<r<a (A.ll)

Q being the total amount of heat passing through the contacting area

per unit time.

Relation (A.5) gives the form of the solution where f(a) may be

obtained by applying boundary conditions (A.ll) and (A.3) to the

solution (A.5) and utilizing the following integral relation [33]

and [35].)

o<r<a
JO (ar) J, (aa) da = a -

- o (A. 12)

0 a<r

This procedure yields to

f() Q J1(aa)
k'na a

and further to

T -az Jo(ar) J (aa) ca (A.13)T = kwa eda(.3
do

Since the temperature over the contacting area for this case is not

constant, the thermal contact resistance will be defined here with

respect to the mean temperature over the area of contact (o<r<a, z = 0)

i.e.

R T-T TM
Q Q
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where a

Tm = 2w [T(r)] rdr =
a 2  z=0

Go CO

= 2aa) Jo (ar) rdr] a = 21 2(aa) da

kaJa3 a a kwa 2  a2

The above integral can be evaluated in the form (see [33],[35]).

Tm r(2) r( 1)8
k 23 5 3 3 kf2

kra 2  2 r( ) r( 2) r(q) kira

Finally one may write

TM 8 1 0.27
-wa k (A.14)

Q 3 kir2a

Comparison between (A.10) and (A.14) reveals that there is no

big difference (8%) in the values for the thermal resistances for

the two cases considered. Also it is worthwhile to notice that the

resistance for the case of the constant heat flux is higher than that

of the constant temperature. This is quite in agreement with

intuitive anticipation if one considers the disturbance of the flow

lines (responsible for resistance) in the two cases.
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APPENDIX B

CONTACT RESISTANCE FOR A SEMI-INFINITE CYLINDER IN A VACUUM

The temperature distribution in a semi-infinite cylinder (Fig:2a)

for the case when heat is supplied over the circular area 'ra2 at

z = 0, will be considered below.

We seek the solution of

V2T = 0

with the following boundary conditions

T = const at z = 0 o<r<a

-k = 0 z = 0 r>a

aT-k ( )T = z O-

-k =T 0 r=barr

-k aT 0ar

The last condition, together with (B.3) r

distribution to the form

T = - 2  z + C e Jo(ar) + CO
kib 2

whereas (B.4) implies

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

estrict the temperature

(B.6)

Ji (ab) = 0

i.e. ab = 3.8317; 7.0156:

Hence the problem stated by (B.1) through (B.5) has the solution ex-

pressible as

T = z + E Cngfanz Jo (anr) (B.8)
7rkb 2  n=1

Where a ,.. a, .. can be obtained from (B.7). Cn should be determined
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by satisfying (B.2) while Co in (B.6), which by virtue of (B.7), rep-

resents the mean temperature over area rb2 was taken to be zero (as

the definition of zero temperature to be used in the first section of

this Appendix.)

The mathematical difficulties imposed by the mixed boundary

conditions (B.2) (where over a part of the area at z=O the temperature

is prescribed and over the rest of the area, the temperature gradient

is specified) will force us to construct an approximate solution

based on the exact temperature distribution for the case of semi-in-

finite medium (given in Appendix A).

Essentially there are three different methods by which one can

obtain such approximate solution. Two methods will be demonstrated

below, and the application of the third one will be postponed until

the next Appendix.

B.1 Temperature gradient over the contact area is proportional to

(a2_r2)-1/2

It is evident that the solution obtained in Appendix A(A,8)

represents the special case of the problem treated here, mainly the

case when b + c, or more precisely when -) 0.b

Furthermore, from (A.8), (A.9), (A.6a) and (A.7b) follows that

for that case (I -+ 0), boundary conditions

-k -T Q at z = 0 o<r<a
';)z 2 7ra 2 J ~Z 2ra~a~r2(B.9)

-k = 0 at z -0 r>0

az

are equivalent to those given by (B.2). With an assumption that (B.9)

can be used to approximate (B.2) even when # 0 we may proceed by
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determining Cn in (B.8).

The above approach could be justified by the following arguments:

(i) The purpose of this analysis is primarily to obtain an estimation

for the thermal resistance and not the exact temperature distri-

bution in the cylinder. To achieve the former it is sufficient

to know the temperature over the contacting area. Since here

we will use the mean temperature obtained by integration over

the mentioned area, an error introduced by the use of (B.9) will

produce a second order effect in the expression for the mean

temperature;

(ii) In an analogous situation for the two-dimensional case, it was

found (see Appendix D) that the error in the expression for

aT (a2 - r2)12 o<r<a is only of the order of ( ) .

Before proceeding further with the solution, we will utilize

the integral relation ([6])

Jo (w cosO) cosOdO = sin w
w (B.10)

40

In order to evaluate the following,set r = a cosO:

,a '0
r Jo(ar) dr a cosO a sine Jo(aa cosO) dO
/a2 - r2  J asinO

o

7r ~ "r/2
00

J a Jo(za cos®) cosede = sinaa (B.10a)

Making use of the orthogonal properties of Bessel function and relations

(B.8), (B.9), (B7) and (B.10a) one can write



r Jo(anr) dr + Cnan r Jo2 (anr) dr =
0

2Tka

r Jo(anr) dr

/a2- r2

Cnan k2jO2 (ab) Q sin ana
Cnn2J ab 27rka a

n

or

C Q sin (ana)

(anb)2o2(anb)

The substitution of (B.11) into (B.8) yields

T = Q- 9 z + Q Ea
2) 7k

rkb'- n=1
2- anz sin(ana)Jo(anr)

(ban 23o2 (Onb)

(B.11)

(B.12)

The value for the mean temperature over the contact area follows from

the above
a

Tm= 2 (T)z= rdr=
ira

0o

- () 1 sin (ana) Ji(ana)
rrka a 2n=l (anb)3j0 2(o.nb)

(B.13)

The thermal resistance between z = o and z = Z (for large X) is

specified with

Rt= m - Tz=t = -+ k

the contact resistance alone has the form

R = R t ~= -"

4 b 1 in(ab-) Ji(a b.)
wk 0 (a 2

n=1 (B.14)

We write (B.14) as

R = -- ( )7rka
(B.15)

where

# 1 b ) E s i n ( a b } ) J ( h b )
b 2 an=1 (anb) 3 j2 (anb)

57.

(Qo3 jog2n b)
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with Ji(anb) = 0

is represented in Fig: 5.

B.2 Solution obtained by the method of superposition

In order to obtain an approximate solution for the case of

cylinder (Fig:2a) we will consider the field composed of an infinite

number of heat sources equally spaced on the surface z = 0 which

extends to infinity (Fig:4).

The temperature field is given by

T = Z T.(r,z) (B.16)
i=1

where T.'s have the form of (A.8) and r in each T. represents the

distance between the point considered and the particular source which

contributes Ti.

By virtue of (A.6a), (A.6b) and (A.8) one may conclude that at

z = 0 the contribution of each source is Tc over its own source area

and TC sin a elsewhere (for ri>a, where a and r are measured

from the center of the source).

From (A.7a), (A.7b) and (A.9) it is evident that heat has been

transferred only through each source area and the amount for each

contact spot is given by (A.9) i.e. Q = 4Tcka.

In the further investigation the attention will be focussed on

a cylinder with adiabate sides which separate heat flow coming from

one contacting spot. The true shape of the cylinder is hexagonal,

but here it will be approximated by a circular shape specified by its

radius b. The radius itself depends on the density of sources and

can be expressed by b = (n)-1/2 where n is the number of contact

spots per unit area.

At this stage we want to introduce a small digression by
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attempting to prove one significant point - namely that the contact

resistance may be obtained from the expression
b

2 2
7 [T]z= rdr - [Tz- d

R= (B.17)

i.e. the knowledge of the temperature distribution at z = 0 contains

all the information we need to solve the problem.

To reach the above conclusion we start from the exact form for

the temperature distribution given with (B.8), noticing that it

consists of the two parts: the linear part which dominates the sol-

ution for large values of z, and the disturbance part, which has its

maximum effect at z = 0. The expression can also have a constant

term which essentially defines the zero reference temperature. By

virtue of (B.7) and (B.8) one may say that this constant would rep-

resent the mean temperature over 7b2 area or in other words - the

temperature one would get at z = 0 by extrapolating the existing

linear temperature profile occurring far away from the contact

surface (or simply taking disturbance part equal zero).

Then from the definition of the contact resistance one may write

(B.17)

Or proceeding in a more formal way

.a b
L [T]z rdr - (b2 + [T 0 rdr)

R T M- T Z1 t a2 j0 z=O "krb2 b2 JI =

m zLk £ -o0o2
Sfkb2 Qrkb 2

2 a 2 b

2 J[T] 0 rdr - T J [Tiz=0 rdr

d 0 0
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Returning now to the problem of determining the thermal resistance

by the method of superposition, one can express the temperature distri-

bution at z = 0 for one cylinder with adiabatic sides as

T=T ri -1-T = Tc + 7r E sin r( o<r<a
i=1

-1 -1 (B.18)
2Tc a 2T c

sin (-) + E sin (-) a<r<b7 r 7r il ri

where the terms summed from i = 1 to i = co are contributions due to the

sources outside of the area under consideration (ri being measured from

the center of the source i).

Applying (B.17) to (B.18)
b

Tca2  4Tc J -1a
Tc ( + b sin ( )rdr)

Q

Ea f sin (A)dA- sinb2s n (B.19)7Qi=l 7ra ra2  r 7b r2 r

To estimate the value of the last term in (B.19) we will use the

fact that -- << 1 and hence is permissible to write
ri

-l1a a a
sin (-)= (- + I (= (A--)ri ri ri ri

With this and the relation Q = 4kaTc it was obtained

2 Tc[ 1 a 1 e* a
i a2  (2sin dA -sin (-)dA] =

=1a aa 2c b3

1~ - ( )2 I (-3 (B.20)16wa bb i=l

where Ri is distance between the center of the area considered (r=o) and

the center of the particular source (Ri = ri for r = o).
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After evaluation of the first part of (B.19) and making use of

(B.20) follows the relation for the thermal contact resistance.

R = 2 l - sin ( C) -(g)[l - ( )2] /2 (-) [1 - (Q) 2 3 (B.21)
2T a[-1 -1 b -1

The series 0(--)3 has been calculated for 300 nearest points with the
i=l i

result
300 b 3 b 3 1
E (R- 1.5 (( -) 5000)

i=l 300

So the finite form for the thermal resistance may be written as

[ -1 
/

R- 2 - sin (a) - (a)[1 - ( /2 2] (B.22)2ir ka 1)1-( 6 b (P

4 a
- irka 2 b-

Where is given in Fig: 5.

The last term in (B.22) has a limited influence on the overall result

e.g.

for - 0.1 it contributes 1.5%
b

for a = 0.2 3.5%
b

Furthermore, (B.22) could be simplified giving the good approximation

of R for 0<(})<0.6 as

R = [ - 4( )] (B.22a)

B.3 Heat is supplied at a constant rate per unit of the contact area.

In order to obtain the upper limit for the thermal resistance, as

well as for the reasons already stated in the previous Appendix, we

will find the solution for the case of constant temperature gradient

over the contact area.
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The problem differs from that considered in the first section of

this Appendix only in the boundary conditions at z = o, where now,

instead of (B.9) we have

-k = at z = 0 o<r<a
az na2

(B.23)

-k -- = 0 at z = 0 a<r<b
3z

The routine procedure would lead to the following relation for the thermal

resistance

S2ab a)
4 a 4 b eO 1 nb (2)

R =i ( =ka (B.24)
Trka (b a a)n=1 (anb) J0 2(a1nb)
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APPENDIX C

CONTACT RESISTANCE FOR A FINITE CIRCULAR CYLINDER IN A VACUUM

In order to obtain the influence of the finite length of cylinders

in contact on the expression for the thermal contact resistance, the

solution obtained in Appendix B will be revised here by considering a

cylinder limited with o<r<b and o<z<t when heat is supplied over a

concentric circular area 7ra 2 , a<b.

C.1 Heat rate over the contact area is proportional to (a
2-r2)-1/2

The temperature distribution is determined by the following

relations:

V2T = 0 (C.1)

-k T = -Q- 1 at z = 0 o<r<a
az 27ra a2-r2

-k -- = 0 at z = 0 a<r<b (C.2)
az

T = To = const at z -I (C.3)

-k DT = 0 r = b (C,4)
Br

-k 3T = 0 at r = 0 (C.5)
ar

Imposing (C.3), (C.4) and (C.5) to (C.1) on arrives at the relation

n=w -a nZ
T - T = E Cn e sinh[an(t-z)] Jo(anr) (C.6)

n=o

where the solution of

J1 (ab) = 0 (C.7)

will give the values of an (n = 0,1,2....)

The boundary condition at z = 0 (C.2) can be expressed in the form

of Faurier-Bessel series as



(T) Q + - sin ana Jo (anr)
az 7rkb2 7rka

z=0 n=1 b2an Jo2 (anb)

From (C.6) follows

DT G
(- ) - C naz=0 Cnan= n=o

cosh(ant) Jo (ant)

Comparison of (C.8) and (C.9) will yield

7rkb 2ao -aotcoshaot
Cn Q sin(ana) C.10)

(anb)2Jo2 (anb) e-an cosh(an)

The first term for the temperature distribution may be obtained readily

lim --Q-a kb2

ao -+ 0

sinh [ao(L-z)]

ao cosh aot
Q (L-z)wkb2

The substitution of (C.10) and (C.11) into (C.6) will result in

T-T bQ (1-z) + 0I sinhlan(t-z)] sin(ana) Jo(anr)
T cosh ant)kb2 (anb) + 2(ka 2

n=1 cosh(ant) (anb)2 Jo2(anb)
(C.12)

From which the expression for the thermal contact resistance was found

to be

R = k.bl
irka a 2

n=a
tanh (ab 9) sin(anb A) Ji (anb A)

nb b
(anb)3 j0 2 (anb)

C.2 Heat is supplied over the contact area at constant rate

For the case when the constant heat flux is prescribed, the boundary

condition (C.2) will change in

-k 3T = a at z - 0 o<r<a

-T
-k T= 0 at z = 0 a<r<b

(C.14)

64.

(C.8)

Co =

(C.9)

(C.11)

(C.13)
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and the relation obtained for the thermal contact resistance (omitting

the details of derivation) may be written as

R - ) E tanh(anb 1 (anb ) (C.15)
n=1 (anb)3 02(Mnb)

C.3 Application of a method of superposition

In the following we will present the particular method of super-

position which has some theoretical value. Although the result obtained

here has less practical value than either (B.14), (B.19) or (C.13), the

method deserves attention for the elegance of the idea of superposition

as well as for the fact that the method itself is one of the first

treatise on the mixed boundary conditions we had to deal with in our

problem. The method is due to Weber (1873)([34],[35]).

As a first step, the infinite plate (o<r<oa) with thickness t

(o<z<t) will be considered for the case when heat is supplied over the

circular area ira2 with center at r = 0, z = 1.

The temperature distribution in the plate is defined by

V2T1 = 0 (C.16)

and the following boundary conditions

-k 1z = o<r<a
z 27rka f2ra 2irk (C.17)

-k T 0 Z = J a<r
a z

Ti = 0 (arbitrary) at z = 0 (C.18)

Ti = 0 r +co (C.19)

aTi
k --- = 0 at r =0 (C.20)

ar

Utilizing (A.7a) and (A.7b) one can write the solution in the form of



T1  Q sinaz -sin (ca) Jo (ar)-d27rka jcosh(cci) a

0

and at z = X -2at

(Ti) Q 2-ka -) sin(aa) Jo(ar)
Zz 2irka Jo i + + -2a) a~i

Wa3
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(C.21)

(C.22)

From (C.22), (A.6a) and neglecting terms of order (a)3 and up, the

following result has been found for the contact resistance ([33],[34])

R = -Aog2 (C.23)
4ka 2wkt

The solution for a finite circular cylinder may be obtained by superim-

posing the new temperature field T2 to the one found above (C.21). The

temperature distribution T2 is specified by the following relations

V2T- = 0 (C.24)

aT2_
-k - zT = 0 z=0

az

aT2-k -- = 0 z=.az

3T2
k = Oat r=O

3T1 3T2-k Ir-+ 3r ) = 0 r=b

(C.25)

(C.26)

(C.27)

(C.28)

Where the above boundary conditions - especially (C.28) reveal the nature

of superposition.

Satisfying (C.25), (C.26) and (C.27) one arrives at

M 2n-1 2n-1T2 = E Cn sin ( 2£ rz) Io ( 22 wr)
n=1

(C.29)

To implement (C.28) and thus to determine Cn in (C.29) one has to express

TI(C.21) in the form of a series.
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After the introduction of the approximation

sinaa

(C.21) may be written as

Ti = Q sinh(a J (ar) da=
2rk cosh(at) (r

2n-i
2in 2 iz) K n- r)

sin2r2)

for r>o

where the above transformation has been done by using Cauchy'

theorem (for details see [331 or [35]).

Notice that (C.31) is not valid for r = o due to the beh

Ko(O), but since it will be employed only at r = b, the form

useful.

From (C.29), (C.31) and (C.28) the expression for Cn has

obtained and after substitution into (C.29) we may write

7 sin 2n-1 z) K( 2n-1 rb) 2n-1
___ 29______ 22. io( 22. nr)

n=1 sin( 2n-1 W) ) 2n-1 nb)2 2

(C.30)

(C.31)

s residue

avior of

is still

been

(C.32)

Finally

T =T + T2  and

R =Tz= - Tzo -

Q kirb 2

2n-I
+ Y GoKi( --- rb) 2.

4ka 2wkt k t n kirb2
n=1 IJ( 2n-1 7ub)

For b>>
2.

(C.33)
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1 Ki( 2 n-1 b) _ 1 8.2 1 8t r2k7r. -n krx 2 2 2 32 8
2n=1 2n-1 krb) r b n=1 (2n-1) kr3b2  8

kub2

i.e. the solution (C.33) gets the form of (C.23) as one should expect.

The solution obtained in this section suffers from the lack of

accuracy mainly due to the approximation (C.30). However, it is

possible to improve the accuracy of the method by expressing integral

(C.21) in the form of an infinite series without introducing (C.30).

Because of the involvement of the procedure and the fact that we

already have a good solution, it will not be done here.
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APPENDIX D

CONTACT RESISTANCE FOR A SEMI-INFINITE RECTANGULAR SOLID DUE TO HEAT

SUPPLY OVER A STRIP

is supplied over the contact area at a constant rate.

With reference to Fig: 2b, the problem could be stated with the

following relations

V2 T = 0

-k -3z 2a

-k T= 03z

-k T £az 2b

k (.T) = 0

at z = 0; -a<x<a

at z = 0; a<x<-a

z + Go

(D.1)

(D.2)

(D.3)

(D.4)x = + b

Where Q is heat flux per unit length of the strip.

The solution of (D.1) which satisfies (D.3) and (D.4) may be

written as

T = - z +
2kb n=1

Cn e- cos( x) (D.5)

From (D.2),(D.5) and the orthogonal property of trigonomerie function

follows

cos(I x) dx +
2kb bxd+ Cn n cos2( y 4 xx = Jacos(n * x

-0

from which

Qb sin ( n )

kan2v
2

The temperature field is now defined by

-n Z

Q 1 7"+b-n~ a xT = z + a sin(nr.-)cos(n rb)
n=1

D 1 HeAt

Jb
0

(D.6)

is SUDDlied over the contact area
.
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The mean temperature over the contact area -a<x<a at z = 0 can be found

in the form

Tm = Q2  sin2(n )
TM ka2 7r3 n=1 2' nb

The thermal contact resistance per unit length of the contact strip may

be expressed from the above

R b2 - T sin2(nr ) (D.7)
n=1

Rk is presented in Fig:4.

D.2 Heat rate over the contact area is proportional to (a2_x2)-/

The problem is defined by the same relations considered in the

previous section, except for the boundary condition at z = 0, where

now, instead of (D.2) we have

-k T = _ at z = 0 -a<x<a (D.8a)
z wv/a2.2( .a

-k = 0 at z = 0 a<x<-a (D.8b)

Relation (D.8a) approximates condition of constant temperature over the

contact area. (More about this will be said later in this Appendix)

Expression (D.5) is still valid and Cn will be determined by

imposing boundary condition (D.8 ).

Since the following is true

a o ~ x ' / 2 O ( ac x dx = cos(aa sin w) dw = } J0 (aa)
/a2_x2

do .0

one may derive from (D.8 ) and (D.5) the following

Cn & o (ni )
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or after substitution
z

T = - z + Q e b Jo(nwg)cos(nri) D.9)
2kb kr nl n

n=1 n

The thermal contact resistance per unit length of the strip has been found

from (D.9) to be

1 b -1a a
R - kw2 ny JO(nwg) sin (nr ) (D.10)

n=1

D.3 The use of the Schwarz-Christoffel transformation

From the fact that this Appendix deals with the two dimensional

steady flow in the region bounded by a polygon, one may conclude that

it is possible to use Schwarz=Christoffel transformation to obtain the

solution. In the following we will use the mentioned transformation

only to justify the statement that boundary condition (D.8a) represents

very good approximation for the condition of constant temperature over

the contact area.

In Fig: 7a, in the complex W=plane which comprises our problem

(one can easily see the correspondence from Fig: 2b and Fig: 7a).

We consider heat flow restricted between two parallel planes, namely

v = 0 and v = b, for the case of a heat source at u = - w and a heat

sink at u = + co. At u = 0 from v = 0 to v = b-a there is a non-conducting

partition.

The above flow may be transformed into the flow in the complex

s-half plane (Fig;7b) by the use of the following transformation [10].

b . f + (s2 d2)2(.1
f - (S2 - d2) /2

where

f cos (- ) = sin 2 b

d E sin ( ) Cos

low imh
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The inverse of (D.ll) being

S = [d2 + f2 tanh2  /2 (D.12)

S-plane can be transformed into C-plane

S =, with its inverse

S - 1 (D.13)

S + 1

The complex potential for the case of a sink in 4-half plane

$ ( nC (D.14)

where strength of the sink is - /2 and Q has the same meaning as in

section 1 and 2.

By successive substitution of (D.13) and (D.12) into (D.14), the

complex potential for the heat flow described in Fig:5a was determined

to be

#(w) = 9 n 2 + f2 tanh2 b 2 + 1 (D.15)

[d2 + f2 tanh 2  /2 - 1J

From the above follows

T = Re [$(w)] (D.15a)

Instead of using (D.15a) for obtaining the exact expression for the case

considered in section 2, we will exploit (D.15) only for checking the

reliability of the approximation made by (D.8a) i.e.

-( ) Q= [(2 ) - ) - /2
3z 7r kb b bz=o

After differentiation of (D.15) and certain rearrangement we can write

aT ) = Re[d(w)I
az Z R= [ dw w-ivz=o wi

Q w sin 2b
7rb 2 [sinv) s in , -r cos cos2 /2
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for b>v>b-a.

Introducing the relation v = b-x, simplifying and developing corres-

ponding terms in series, one may proceed as shown below:

-( ) [sin2 - cos2  tan7] -1 =
(tz wkb 2 2b 2b 2b

z=o _1/2

= a 2  x 24 4  a 2

rkb ) - 3 ( + 3( ) 1+..

= [ - (b) ( a ] /2 for -a<x<a (D.16)

From expression (D.16) it follows that in order to approximate condition

T = const. over the contact area, the use of (D.8a) is permissible.

IN1111h11111191fth , dill''W" "
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APPENDIX E

CONTACT RESISTANCE FOR A SEMI-INFINITE RECTANGULAR PARALLELEPIPED

In this Appendix we will limit ourselves only to the consideration

of the case when heat is supplied at constant rates over the contour

area (Fig:3b).

The reasons for this are as follows

(i) The situation related to the geometry considered here primarily

arises in connection with heat flow through a contour area.

Since the contour area, by definition, is the area inside which

all contact points are distributed, the condition over the area

depends mainly on the character of this distribution. For the

uniform distribution through each point passes the same amount

of heat and consequently it might lead to (not completely justified)

conclusion that the heat flux over the contour area is constant;

(ii) Even in the case when the actual situation over the contour area

is different than that of constant heat flux, and approaches

condition of constant temperature, the prediction for the thermal

resistance obtained by either of the methods will be reliable due

to the very small difference between the results of the two

methods (as it was evident in the previous Appendix).

With reference to Fig: 3b, the problem is defined by the following

relation:

V2T = 0 (E.1)

3T Q-a<xca
-k()=-) at z = 0 -d<y<daz 4ad -d<y<d

(E.2)
DT

-k(z) = 0 at z =0 a<x<-a
d<y<-d
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-k(T)= 0 for x = + b (E.3)

DT
-k( )= 0 for y = + c (E.4)

-k b)= as z + co (E.5)

The solution of (E.1) which satisfies (E.3),(E.4) and (E.5) is expressible

as

T = - z +
4kbc n=1

Cno

nu
b

cos ( ) +
m=1

mW

Com e-

2 n 2

+ E E Cnm z b + ( cos(!! x) cos(- y)
n=1m=1

cos( y)

(E.6)

From (E.6) (after taking-L- and evaluating at z = 0), (E.2) and the

orthogonal properties of the trigonometric function, it follows

-Q -1 d sin(n) = k C nw bc
4ad nir b no b 2

a sin( mud)= k Com mr bc
4ad mw c c 2

sin(- d) sin( a) = k Cnmc b

(_nn- a)
Qb sin 2 b

Cno " 2kr2ac n2

C = dQc sin( d)
om 2kwr2db M2

C = Q
nm kw2ad

2~ + M7T cb
+ (M")

(E.7)

sin( a) sin(_m- d)
b c

2-
nm + ( m)

Substitution of (E.7) into (E.6) determines the temperature distribution as

z +4kbc 2kw2
b e- nz
bE e b z
acn-1

sin( nw- a) cos )n
b b

_ c b
4ad mw nn
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-mn .mnr icz sin ( d) cos ( y) ++ T E E cbc

m=l m2

-z V(ni m2 m~ 2x

kQ ad -z ( )-)c sin(- d) sin ( a) cos(- y) cos([ x)
k~r2ad n=lm=l 

2 2
mn ( ) + (-)

the mean temperature over the contour area, and consequently the thermal

contact resistance is immediately obtainable from the above expression

R b2 2 sin ( a) c2  sin2(R'r d)R 2.r3 Ia.2Eb + E
n=l n3  m=1 m

00 00 2 n1T 2 ME(E.8)
+ bc sin2( - a) sin2( d)

kk4a2d2  n=l m=l n2m2V'n )2 + (2E) 2
b c

It is easy to verify that relation (D.7) found in the previous Appendix

is only special case of (E.8) namely for c = d.

Since in practice the shape of the contour area will be elliptic

instead of rectangular one (as it was assumed here),we checked possible

error due to such an assumption by comparing contact resistance for

two cases; for a square bar with the concentric contour area and a cir-

cular cylinder with a concentric circular contour area. For both cases

the cross-sectional area and the ratio between the contour area and the

cross-sectional area were the same (for example considered square root

of the ratio was equal 0.1); the agreement of comparison was satisfactory:

3.5% discrepancy.

Based on this, we might expect that the application of relation

(E.8) to a case when the contour area has an elliptic shape, will not

produce substantial error.
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APPENDIX F

THERMAL RESISTANCE FOR A CONTACT IN A FLUID ENVIRONMENT

The model adopted for an elementary heat channel for the case treated

here is given in Fig: 3a. Direct contact exists over the area na2

which is under a constant temperature Tc. For r>a a fluid is present in

the gap. We denote with 61 the mean distance (mean with respect to

volume) between the solid and isothermal plane specified by the tempera-

ture Tc (Tc is not prescribed temperature, it stands only as an

abreviation for a temperature at the contact area).

Considering only the solid (and assuming that it is permissible

to treat the surface at z = 0 as a flat surface) one can seek the

solution for the temperature distribution from the relations given

in Appendix B, namely from (B.1), (B.3),(B.4) and (B.5), whereas, instead

of (B.2) as the boundary condition at z = 0 we now have

T = const = Tc at z = 0 o<r<a (F.la)

-k T (Tc - T) at z = 0 a<r<b (F.lb)

where kf is an equivalent conductivity of the fluid (taking into

account all effects present in the gap).

The temperature distribution which is the solution of (B.1) and

satisfies boundary conditions (B.3),(B.4) and (B.5) has the form of (B.8)

T = z + -anzJo(anr) (F.2)
n=l

with

Ji(anb) = 0 (F.3)

where Cn has to be determined from (F.1).

We will continue with our problem of estimating the thermal contact

resistance for this case without obtaining the temperature distribution

I I---.-- - INNIIIiINNIN 1101119
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by proceeding as follows.

First we will notice that expression (F.2) together with (F.3) defines

the zero reference temperature as the mean temperature over area rb2 at

z = U (notice that the above conclusion holds regardless of what we would

get for Cn)- Consequently, by virtue of (B.17) follows the expression

for the contact resistance:

Tc
R = -- (F.4)

Q

Furthermore, we may write

'a 'b

Trdr + Trdr = 0 at z = 0 (F.5)

-o -a

or b T ed Ta2or f Trdr = 2J 2
4a

Next we divide the total amount of heat passing through the surface

z = 0 in the two parts:

Q = Q1 + Q2

where Q, stands for the amount passing through the solid contact area ra2

and Q2 represents the amount transferred through the fluid.

From (F.lb) and (F.5) one can express 02 as

b b

IQ2 = 2 -k ( ) rdr = 27r (Tc - T) rdr=
z=0

oa -a

kf b2-a2_a
= 2w [Tc2 + Tc a2 i.e.

Q = Tc k fb2 (F.6)

The expression for the thermal resistance (F.4) now acquires a new form

Tc 1 (F.7)
Q1 + Q2 Q1/T + kf ub2

c i
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In order to estimate the value of Q'/Tc we will consider, see Fig;3b,

the body of revolution specified by the streamline e-f which separates

the part of the cylinder through which flows amount of heat Qi. Far

away from surface z = 0, where the streamlines are parallel, one can

relate the distance of the streamline e-f from the axis of the cylinder,

bi to the radius of the cylinder b, by using (F.6) as

2 b Q1 + Q= Tc kf 2 (F.8)

b2 Q1 + 1 61 b(F8
1

Approximating the body of revolution, which confines the amount of heat

Qi, with the cylinder of radius bi, treating the latter as in a vacuum

(since the streamline e-f for the body of revolution represents the

adiabatic wall), and using the results of Appendix B, one may write

(fr.om (B.14) and ( B.19))

Tc 4 ja ) a
Q, =k 1(bl 7 e({A) (F.9)

From (F.8) and (F.9) it follows

X2 = 1 + b2  ( A) (F.10)
ka 61 b

(F.10) implicitly determines A. Due to the linear character of $j

one can solve (in the range 0< A<0.6) explicitly for A. So linearizing

$ by using (B.22a) (F.10) changes to

x2 + ( X) A - [1 + (- b )kf

From which

1 2 + 7r ( b)m (F.11)

where

bkf
1 6 1k

Mmli Wh i iW111 , , "
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Knowing A, the expression for thermal contact resistance follows from

(F.7) and (F.9) as

R 1
ka + kf b2 (F.12)

4, ( k) 61

To make (F.12) more useful for practical applications, we will

consider two cylinders in contact with a fluid in the gap (Fig:3a).

Let the respective thermal conductivities of the two materials

be denoted with k1 and k2. From (F.8) it is obvious that

A, = A = A( = As a consequence of the above, from (F.11) follows
1

in =m2mi= n2, i.e.

61ki = 6 2k2  (F.13)

Relation (F.13) specifies the position of the isothermal plane Tc in

the gap.

Let 2kik 2

ks ki and 6 = 61 + 62

then from (F.13)

6 k = 62 k2 = 6ks (F.13a)

Hence one can obtain from (F.11) A without knowing separately 6, or 62

as

X =/ + m2 + ( ) m -MF.4A2 a i (F.14)

bkf
with M 6kf

The total contact resistance, for the two cylinders together, may be

written now as

R = R1 + R2 = 7rkia k 2 + k2 a k
+ - TAb + 6 b
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with

6ks 6ks
61 =6s and 62 - k2 , the relation for Rc simplifies into

ki +2k2

R= kl+k2
kik 2  7ra + 2 kf b 2 ) kra + irb2  (F.15)

4$ ) -s 8 ai )

The thermal contact conductance per unit area can be found from (F.15)

as

h =(a/b)ks kf
hc =b4 +-- (F .16)8 b( ) 6

(F.16) now is in the form suitable for direct application since one

determined X from (F.14),$ from Fig: 3(or from the linearized form:

$( X) = T6- () and b from the relation 7b2 = 1

number of contact points per unit of the contour area. Of course,

hc for vacuum conditions is only the special case of (F.16) when

kf = 0 and X = 1.

MMNMIIjW'hjI 4, h I IJ
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APPENDIX G

ESTIMATION OF MEAN PRESSURE OVER CONTACT AREA

In order to estimate the mean pressure over the contact area we

will consider a model which consists of two rough, nominally flat

surfaces made of the same material with Poison's ratio u = 0.3.

The irregularities on the surfaces are approximated by spherical caps.

Furthermore, it will be assumed that for each point of contact we have

two spherically shaped asperities with the same radius of curvature

R in symetric contact (Fig: 19a).

After the moment when two asperities just touch each other, any

relative approach between the two asperities of AC will produce,

by the Hertz theory [48], the normal force

F = E (AC)3/2 R'/2 (G.1)

and the area of contact

ia2 . 7 AC R (G.2)

where E represents Young's modulus of elasticity, and R the radius of

curvature. Relations (G.1) and (G.2) are applkable provided that

plastic flow did not occur. If AC is large enough so that the mean

pressure over the contact area reaches the value of 1.lYo, i.e.

PM = 1.1Yo

the elastic limit will be just exceeded at the point z ~ 0.5a due to

the shear stress at that point ([47]). (z is measured from the center

of the contact in the normal direction). Yo is the initial elastic

limit of the material found in pure tension.

When the mean pressure reaches the value of approximately 3Yo,

the whole region of contact is flowing plastically. Theoretically
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([51],[52]) it was shown that further increase in AC will not change Lhe

mean pressure over the contact area. The above conclusion is subject

to limitation ([47]) if the deformed area is comparable with the size

of the specimens and if there is work-hardening of the material during

the contact.

Based on the above known relation, namely: (G.1) and (G.2) for

elastic deformation, the mean pressure for which onset of plasticity

will occur, the behavior of the material when the full plastic flow

is reached, together with some relations from the surface analysis,

one may estimate the mean pressure over the contact area.

From (G.1) and (G.2) it follows

PM F 2 E AC /2 (G.3)
~m7l- .934 -f R

The radius of curvature R can be approximated with

R= h
2 tan 2®

where h being the height of the asperity and tanO the mean absolute

slope of the surface profile (defined in Ch.III), Substitution of R

in (G.3) and rearrangement will yield

AC = 0.467 (m ) 2 (G.4)
h tanOE

the value of ( )y - for which the material will just start to flow

plastically, could be found from (G.4) by setting Pm = 1.lYo. Using

Y -3
the data for stainless steel (303) for (= 4.4 x 10 ) and taking

E

tan® = 0.1 (that has been the minimum value we dealt with) it was

obtained

) = 1.1 x 10(G.5)
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Considering now our model, we can conclude that if at a certain

stage we had n - number of contacts per unit area, then after approaching

the two surfaces closer by (AC) all n contacts would experience plastic

flow and only new contact points obtained in the process of approaching

would be in elastic state.

From Ch.III (Eq. 3.9 ) the following relation holds

n = Ce (Ya 2

where C is a constant, y, the distance between the mean planes of the

two surfaces in contact, and a is the standard deviation for the

joined distribution (a =01 + 022).

If one goes from yi to y2 then as a consequence of the above, the

percentage of the new contacts can be determined form the expression,

n - n 1(y-{ ) - (Y2) (G.6)
2=1 1 a-

n2

If we choose for our initial position the one for which c = (c)-/ 2 0.02Aa
Ac(i.e. - 0.0004), and further estimate h by asserting

h(y) =2

(i.e. assuming that the sum of the heights of the two asperities just

touching each other is equal, in average, to the distance between the

mean planes), then after using Fig:10 to obtain yi/,, (G.6) will reveal

that at the end of the approach (AC)Y only 5% of all contacts will be

in elastic state. Furthermore, the approach of (AC) will produce the

total increase of the contact area of 17% (from Fig:10), which together

with the percentage of the new contacts allows us to conclude that not

more than 0.85% of the total area in contact belongs to the new contacts.

For initial e is greater than that used here, the percentage of



85.

the area for which the mean pressure is less than 1.lYo will be still

less due to the smaller (Y/a) and the slower increase of the contact

area for the same increment of ( )C.

The immediate conclusion from the above analysis would be, that

for the cases we are interested in, the amount of the contact area

with the mean pressure less than l.lYo - the value which will produce

onset of plasticity - is negligibly small. Although this information

is significant it still does not tell us more about the value of the

mean pressure than that it lies somewhere between l.lYo aid 3Yo.

To achieve somewhat closer estimation than the previous one, we

will proceed by making an assumption that the validity of relations

(G.1) and (G.2) may be extended until the whole region of contact

starts to flow plastically, i.e. until Pm = 3Yo. (Notice that although

the assumption can be considered quite crude, since when the onset of

plasticity occurs, both force F and the contact area will increase

faster with an increase in AC than (G.1) and (G.2) predict, we use

the above relations only in the form of the ratio (G.3) and hence, the

overall effect of the inaccuracy will be smaller).

Setting Pm = 3YO in (G.4) we obtain

AC 82 -2
( ) 8.2 x 10

Similarly as before, if we move the two surfaces closer for (AC) only

the new contacts will have the mean pressure less than 3 Yo.

Proceeding exactly as in the previous case, starting with e = 0.02

it was obtained that at the end of the approach of (AC) p, less than 9%

of the total contact area had the mean pressure less than 3Yo.

Since, as it was found earlier, the amount of the contact area with

the pressure less than l.lYo is negligible, we may assume that the whole



86.

9% of the contact area is at the pressure between l.lYo and 3Yo. For

the purpose of calculation we will take the mean pressure for this

portion of the contact area to be 2Yo.

Let Ap stand for the part of the contact area for which the

mean pressure is equal 3YO; Ac - the whole contact area, then we

may write

PmAc = Ap 3YO + (Ac - Ap) 2Yo or

Pm = Yo (2 + AP)Ac

For the example we considered

Pm = 2.915 Yo or

C2 = (Ac) - = 1.03
Ap Pm 3Yo

where p is apparent pressure and Aap - the apparent area.

In the case when c > 0.02 the mean pressure calculated in the above

manner would be closer to the value of 3YO.

It is not difficult to change our rather artificial model (of two

identical surfaces in contact) to more of a realistic one, consisting

of the two surfaces with different characteristics and made of

different materials.

For the latter case, the only modification in expressions (G.1)

(G.2) and (G.3) would be

2E E2
E = Es = E +E and

12 1

R = Rs = 2
R +R2 h 1 (tan 02)2 +(tan 92)2

h2
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or taking, in average

hl a and h1 + h 2 y
h2  02

S 0 2R= y/(1+ /2
s a 1

-tan 6)+ (tan 6
CJ2I

where yi, ai, 02 and tanO are already introduced in this Appendix.

One can proceed further similarly as in the former case, using

the value for Yo of the softer material. The numerical result so

obtained would depend on the particular combination of the surfaces,

but essentially it should not differ considerably from the one already

calculated.
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APPENDIX H

EFFECTIVE CONTOUR AREA FOR SPHERICALLY WAVY ROUGH SURFACES IN CONTACT

Considering a spherically shaped body with an ideally smooth surface

pressed on a rigid smooth plane (Fig:19c) one can obtain from the

Hertz theory [37] the following relations franthe displacement of the

surface in the z direction due to the local deformation

w(r) = ( - r2) r<D 2 (H.la)2R~ 2

and sin~ (

w(r) = Js 2r ( D? - r2sin 2T) dT =

.0

D24r 2  -1 D +4r 2 ~ r Di/S [(2- ) sin ( + -1] ;r>D/2 Hlb)

where R is the radius of curvature and D/2 is the radius of contact.

The vertical distance between the surface of the body and the

rigid plane for r> and << 1 may be found from (H.lb) as

1 2r D 46(r) - r2 _ [1 -- [(2 - ) sin'(D + - 1]] (H.2)

In the case of when two bodies with spherical waviness of the type

shown in Fig: 19C are pressed together, the vertical distance between

smooth surfaces beyond the contact area ( > r > ) can be expressed,

by using (H.2) in the form

6(r) = 6 1 + 6, = d2X H J
6(r =61+ =A2dt ()-2 1 - [(2 - A) sin~1( ) + -1

H si

X dt g( ) (H.3)H XH

where g ( /AH ) is given graphically in Fig: 20,
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2r d = d + d and
L t 1 2

H D=1. 285 [(--)( ) 1/3  (H.4)
H L =125 Es 2dt

where pis an apparent pressure given as

p= 4F/wL2 and Es = 2E E2
E +E2

Extending now our attention to the case of wavy rough surfaces in

contact, we will consider a model which can be obtained from the previous

one by superimposing roughness on the smooth wavy surface (which we

will call the mean surface). It will be further assumed that under the

contact pressure, the mean surface will be deformed in the same manner

as the smooth surface considered at the beginning of the section, i.e.

it will be assumed that the relations (H.la) and (H.lb) are specifying

the deformation of the mean surface. Consequently, the mean surfaces

of two rough surfaces in contact for o<r<D/L will be parallel and at

a relative distance Y, where Y is a function of characteristics of

the surfaces and the applied load. The vertical distance between the

D L
mean surfaces for R <r< j is being now [6(r) + Y].

The contact points will be spread not only over the area 7rD
2 /4

(specified by (H4)) but also beyond that area. Since the distance

between the mean surfaces will increase with an increase of r for

r>D/2, the density of contact points will decrease with an increase

of r.

The number of contact points per unit area for o<r<D/2 is given

(from Eq. 3.9) with
-y2/02

n = C e (H.5a)



90.

D L
and for - <r< -2-2

[Y+6(r)] 2}

n (r) = C Pe-f 02 - (H.5b)

The effective radius of the contour area has been defined here by the

relation:

n(D/ 2 ) (r2gf

-L/2

D- )= 2

-D/2

n(r)rdr (H. 6)

Which states that if the effective area had the uniform density n(D/2)

it would contain all the contact points.

From (H.6), (H.5a) and (H.5b) one can obtain

X 2ff Xe 2H + 2

* AH

with Aeff

- (2 - + A)
a a a

Ad A

= 2 reff

Together with (H.3), (H.7) can be written as

(H.8)
A2 eff = A21 +

1 - iA r 2 9 x [2 0 + t x2 H 9(-x 1
2 e a2H g(A)[ 2  / a 2 H AdA

AH

(H.7)
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