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ABSTRACT
In Arusha urban, northern Tanzania, groundwater contributes about 80% of the water supply.

However, elevated fluoride levels and evidence of anthropogenic pollution have been reported in

the groundwater around Mount Meru which is a water source for Arusha urban. This study aims at

understanding the recharge areas and flow pathways of groundwater in what has been a poorly

monitored area. The study uses the isotopic ratio of oxygen and hydrogen to estimate the

groundwater recharge area and flow pathway. The results show the recharge elevation of

groundwater is between 1,800 and 3,500 m above mean sea level on the slopes of Mount Meru.

The average fluoride contents in the study area are 5.3± 0.4 mg/L greater than the limits of 1.5 mg/L

set by the World Health Organization (WHO) and Tanzania. The nitrate concentration of 83.9 mg/L at

the lower elevation areas (<1,400 m above mean sea level) exceeds the 50 mg/L WHO limit. The

relationship of F� with δ18O and NO3
� suggests the leaching of fluoride in high altitudes and dilution in

lower altitudes.
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HIGHLIGHTS

• Management of groundwater resources is essential to maintain the supply of freshwater.

• Adequate and precise demarcation of the groundwater area for protection is critical.

• Isotopic ratio of oxygen and hydrogen is used to estimate the recharge area and flow pathway.

• Meteoric water is the source of groundwater recharge in Mount Meru watershed.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY 4.0), which permits copying,

adaptation and redistribution, provided the original work is properly cited

(http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION
Shortage of adequate surface water sources, urban develop-

ment, escalating per capita water consumption, and the

influence of climate change have made groundwater the

main source of water for domestic uses in many urban

areas around the globe, including Tanzania (Li ; Foster

Bousquet & Furey ). However, groundwater sources
are often faced with various dynamics such as geochemistry,

topography, geology, water–rock interaction, and anthropo-

genic activities (Mduma et al. ). In Arusha city, northern

Tanzania, groundwater from wells and springs provides

more than 80% of the freshwater used for both domestic

and industrial purposes (Chacha et al. a). However,

the greatest threats to maintaining freshwater supply in the

city are the prevalence of fluoride contamination, a decrease

in groundwater reserve, and degradation of water quality

due to human activities in the potential recharge areas
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(Chacha et al. a). A comprehensive examination of the

recharge areas and flow pathway of groundwater is a signifi-

cant tool when considering sustainable groundwater

resources management (Nakaya et al. ).

The Arusha urban water authority has recently devel-

oped an additional well field with nine boreholes for

domestic uses (�200 m deep) at Ngaramtoni area on the

south-western slopes of Mount Meru, on the north-western

part of Arusha city. The new well-field construction demon-

strates a commitment to long-term reliance on the Arusha

Aquifer. However, groundwater resources in the area are

not adequately protected and anthropogenic activities have

been reported in the recharge areas recently (Chacha et al.

a). A precise demarcation of the areas of protection is

critical (Nayak ). To achieve this, identification of the

spatial distribution of the predominant recharge areas and

flow pathway of groundwater is needed (Carrillo-Rivera &

Varsányi ; Nayak ). The present study aimed to

identify the spatial distribution of the predominant recharge

areas of groundwater used in Arusha urban and to under-

stand the general flow pathway of groundwater for fluoride

contamination in Arusha urban groundwater resources.

Several methods such as multivariate statistical analysis

using chemical tracers, etc. (Bakari et al. ) can be used to

delineate the recharge areas of groundwater. However, the

stable isotopic ratio of oxygen and hydrogen (δ18O and

δD) is the best method for tracing flow pathways and clarify-

ing the groundwater origin and source areas (Nakaya et al.

) because these isotopes are naturally contained in the

water molecule and cannot be modified by water–rock con-

tacts (Kim ). Furthermore, the isotopic altitude effect is

very useful for tracing and distinguishing groundwater

recharged at high altitudes from that recharged at low alti-

tudes (Li ; Nakaya et al. ). Various researchers

have successfully used the isotopic altitude effect of the iso-

topic ratio of oxygen to determine the recharge areas and

flow pathway of groundwater (e.g., Li ; Nakaya et al.

). Bouchaou et al. () reported that the variation in

the isotopic values of groundwater is influenced by differ-

ences in the altitude of recharge areas. As the mean

annual air temperature becomes low at high elevations,

the composition in the stable isotope of water vapor in the

atmosphere decreases by isotope fractionation (Farid et al.

).
://iwaponline.com/hr/article-pdf/51/6/1490/790943/nh0511490.pdf
Therefore, this study applied the stable isotope ratio

method on groundwater and surface water samples from

Mount Kilimanjaro watershed at an altitude >1,500 m.a.s.l.

The results of the study primarily provide critical information

for the management of the groundwater resources in the

study area. They might also help to indicate what could be

happening in other areas and how it can best be studied.
THE STUDY AREA

The present study was conducted in urban areas of Arusha

(including the Arusha district council) located on the

south-western slopes of Mount Meru in the north-eastern

part of Tanzania with an elevation of 1,400 m.a.s.l. (Figure 1).

According to the Tanzania population and housing census

data of 2012, the approximated total population of the area

is 739,640 (NBS ).

The area experiences a tropical climate with dry and wet

seasons and the rainfall pattern is bimodal, with short rains

between November and December and long rains between

March and May or June with a total average annual precipi-

tation of 842 mm (Chacha et al. b). The maximum

temperature varies between 13 and 30 �C with an annual

mean value of 25 �C and the area is characterized by a

narrow variation of relative humidity (55–75%) with

924 mm annual potential evapotranspiration (Chacha et al.

b).

The area is studded by volcanic deposits of variable ages

and dumped alluvial residues (Ghiglieri et al. ). Accord-

ing to Chacha et al. (b), Mount Meru is the focal point

of volcanic events in the area and the lava flow forms the

main volcanic rocks such as basalts to phonolitic and nephe-

linitic tuff. These act as an aquitard, which restricts the

infiltration of groundwater, and directs the surface run-off

toward the lower slopes. Faults and fractures formed due

to volcanic and tectonic activities act as groundwater con-

duits. Moreover, the study area is described by volcanic

and sedimentary hydrogeological formation composed of

rocks with minerals such as fluorapatite, natrite, halite, cal-

cite, chabazite, nepheline, biotite, and illite. The geological

properties in the area change with geologic time and the

main groundwater aquifer is characterized by volcanic

ash, pyroclastic deposits, weathered and fractured materials



Figure 1 | Map of the Arusha region and details of the study area.
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such as basalts, and phonolitic to nephelinitic materials

(Ghiglieri et al. ; Chacha et al. b).
MATERIAL AND METHODS

Sampling and analytical measurements

Groundwater and river water samples were collected

throughout the study area (Figure 1) in September 2018

for groundwater and from March to May 2019 for river

water to document the spatial disparity in the isotopic signa-

ture of δ18O and δD. The groundwater samples (n¼ 32), as

presented in Table 2, were collected from springs as well

as from public and privately owned deep and shallow

wells close to the points of discharge to reduce the influence

of evaporation and pollution from the atmosphere. The

sampling points were as mapped in Figure 1 at altitudes ran-

ging from 1,299 to 1,904 m.a.s.l. in Mount Meru watershed.
om http://iwaponline.com/hr/article-pdf/51/6/1490/790943/nh0511490.pdf
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The depth of the sampling wells from the ground surface

ranged from 48 to 273 m for public wells and 11 to 26 m for

privately owned wells. Most of the public wells were labeled

with the wells’ information, but the privately owned wells

were not labeled and information was obtained from the

owners. The groundwater levels were measured using a

water level meter. The depth to groundwater level ranged

from 2.7 to 93.2 m for public wells and 1.98 to 7.03 m for pri-

vately owned wells. One artesian well was also observed

during the field survey.

The primary sources of groundwater recharge in the

study area are precipitation and rivers. River water samples

were collected from different points based on the ease of

access within the study area to establish the isotopic compo-

sition of different recharge sources. To develop the local

meteoric water line (LMWL) for Mount Meru watershed,

rainwater samples were collected from five locations distrib-

uted in altitudes between 1,294 and 1,813 m.a.s.l., as

presented in Figure 1. Also, the precipitation information



Figure 2 | Classification of water chemistry in the Piper plot.
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of Dar es Salaam and Dodoma as presented in Table 2 were

obtained from the International Atomic Energy Agency

(IAEA) database. To trace the flow pathways and recharge

areas of groundwater, water samples from (n¼ 26) wells,

(n¼ 6) springs, (n¼ 5) rivers, as well as rainwater samples

(n¼ 4) from various altitudes, were collected for measuring

stable isotopic ratios of δ18O and δD.

The recharge area of groundwater can be estimated by

using δD and δ18O values and show their relationship to

the altitude at which precipitation might have infiltrated

the groundwater. The altitude effect with a gradient of

�0.13‰ per 100 m was applied to calculate the recharge

elevation of groundwater because the composition of

stable isotope decreases with a rise in altitude since the

mean annual air temperature becomes low at high elevation

(Farid et al. ).

Measurements of temperature, electrical conductivity

(EC), pH, oxidation–reduction potential (ORP), and dis-

solved oxygen (DO) for well, spring, and river water

samples were performed onsite. The sampling locations

and respective elevations were recorded using a hand-held

global positioning system (GPS) receiver. Precipitation

samples were collected through a high-density polyethylene

(HDPE) funnel (30 cm in diameter) into 5 L plastic contain-

ers which were covered with aluminum foil and buried in

the soil at open sky locations to minimize evaporation

(Bakari et al. ).

All water samples for stable isotopic ratios and chemical

composition were collected in 50 mL pre-cleaned HDPE

bottles filtered through a 0.2 μm membrane filter. To

ensure that the samples represented the groundwater at

the location, each well and spring was purged before

sampling until the monitoring values of pH, EC, ORP, DO

and temperature stabilized. The sampling bottles were

rinsed three times with the water samples and sealed tightly

to avoid contamination and loss by evaporation.

The laboratory analyses were undertaken at Shinshu

University in Japan. The isotopic composition values for

δD and δ18O were measured using δD/δ18O Isotopic

Water Analyzer (Picarro L2130-i) (Nakaya et al. ) with

respective analytical precision of 0.1‰ and 0.02‰. The iso-

topic results were recorded with respect to Vienna Standard

Mean Ocean Water (V-SMOW) in δ notation. The major

anions and cations were analyzed using non-suppressed
://iwaponline.com/hr/article-pdf/51/6/1490/790943/nh0511490.pdf
ion chromatography with IC-C4 and IC-A3 columns

(Shimadzu) and a detection limit of <0.1 mg/L. The

measurement of alkalinity was undertaken by titration

against 0.02 N HCl using a mixture of bromocresol green

and methyl red (BCG-MR) as an indicator (pH 4.8).
RESULTS AND DISCUSSION

Hydrogeochemistry

Table 2 shows the physicochemical parameters and isotopic

composition of δ18O and δD for groundwater, river water,

and precipitation samples. The hydrogeochemistry analysis

using the Piper diagram shows that the Na–HCO3 water

type dominates for both well, spring, and river waters

except sample SP1 from spring which is the Na–Ca–HCO3

water type (Figure 2). The pH of the groundwater samples

ranged between 6.18 and 8.56 with a mean value of 7.1±

0.09, indicating that the water was weakly acidic to alkaline,

while pH values for the river water varied between 6.8 and

8.2. About 44% of all the analyzed groundwater samples

were weakly acidic (pH< 7). A similar observation from

weakly acidic to alkaline groundwater in Mount Meru

watershed has been reported (Elisante & Muzuka ;

Mduma et al. ; Chacha et al. b).

The temperature of the groundwater samples varied

between 17.2 and 25.5 �C with a mean value of 21.1±

0.4 �C, while that of river water samples varied between

13.4 and 18.2 �C with a mean value of 15.9± 0.9 �C. The

EC of the groundwater samples varied widely, from 16.19

to 172.80 mS/m with a mean value of 70.6± 6.5 mS/m.
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However, the EC of river waters ranged within that of

groundwater (16.19–54.50 mS/m), indicating stronger

water–rock interaction in groundwater relative to river

water. The concentrations of Cl� and Naþ suggest the dissol-

ution of ions from rocks, which is also reflected in the EC

(Table 1a), as also reported in other parts of the globe (Li

).

Generally, the study area had elevated fluoride concen-

trations in both groundwater and river water. The fluoride

concentration in the groundwater varied widely from 1.23

to 10.09 mg/L, with an average value of 5.13± 0.4 mg/L.

Similar ranges of fluoride concentrations in naturally con-

taminated geothermal waters located in volcanic areas

have been reported in other parts of the world (Edmunds

& Smedley ). Likewise, the stable isotopic ratios of

oxygen and hydrogen show that the groundwater in the pre-

sent study area is of meteoric origin (rain and/or snow),

though elevated fluoride contamination suggests mixing

with geothermal waters. River water samples were observed

to have a slightly narrower range of fluoride concentration

(2.1–9.3 mg/L) with an average value of 5.9± 1.3 mg/L.

The level of fluorides in about 69% of all the analyzed

groundwater samples exceeded the recommended upper

limit for drinking water of 1.5 mg/L set by both WHO and

Tanzania.
Table 1 | Statistical correlation between chemical compositions of groundwater (a) and the rela

groundwater (b)

Cl� (mg/L) Naþ (mg/L) EC (mS/

(a)

Cl� (mg/L) 1

Naþ (mg/L) 0.63 1

EC (mS/m) 0.8 0.96 1

F� (mg/L) 0.08 0.70 0.52

NO3
� (mg/L) 0.53 0.07 0.21

δ18O (‰) 0.62 0.12 0.3

Alkalinity (meq/L) 0.61 0.9 0.96

Well depth (m) Recharge altitude (m) Samplin

(b)

Well depth (m) 1

Recharge altitude (m) 0.73 1

Sampling altitude (m) 0.72 0.66 1

δ18O (‰) �0.73 �1 �0.66

om http://iwaponline.com/hr/article-pdf/51/6/1490/790943/nh0511490.pdf
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The fluoride concentrations further showed corre-

lations with Naþ (r¼ 0.70, P< 0.05) and alkalinity (r¼
0.60, P< 0.05) as shown in Table 1a, suggesting that like

Naþ, the fluoride contamination is natural through water–

rock contact mainly from volcanic rocks. These findings

are also in line with the suggestions by Kim & Kim ()

for the relationships of fluorides with Naþ and alkalinity

in groundwater.

The results presented in Table 2 show a wide range of

NO3
� contents in the groundwater samples. The lowest

NO3
� level of 0.7 mg/L and the highest NO3

� level of

83.9 mg/L were observed at altitudes of 1,447 and

1,341 m.a.s.l., respectively. Compared to the WHO guide-

lines for drinking water of 50 mg NO3
� per liter, about

9.4% of all analyzed groundwater samples showed higher

NO3
� concentrations. The SO4

2� contents in the groundwater

samples ranged from 2.17 mg/L at the altitude of

1,760 m.a.s.l. to 106 mg/L at the altitude of 1,343 m.a.s.l.

with an average value of 18.7± 3.5 mg/L, whereas in river

water samples, the SO4
2� concentrations ranged from 1.6

to 9.5 mg/L. The presence of SO4
2� could be due to the dis-

solution of sulfide deposits in the soil layer or anthropogenic

pollution from farming activities in the lower altitude parts

of the study area. Recent studies (Elisante & Muzuka ;

Mduma et al. ) have similarly reported elevated levels
tionship of well depths, recharge altitudes, sampling altitudes and isotopic composition of

m) F� (mg/L) NO3
� (mg/L) δ18O (‰) Alkalinity meq/L)

1

�0.2 1

�0.38 0.2 1

0.60 �0.01 0.2 1

g altitude (m) δ18O (‰)

1
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of NO3
� and SO4

2� in groundwater sources in the lower

slopes of Mount Meru.

The lowest Cl� concentration 2.0 g/L (fluoride¼
2.1 mg/L) in groundwater samples was noted at a high alti-

tude of 1,760 m.a.s.l., whereas the highest Cl� concentration

of 64.4 mg/L (fluoride¼ 2.2 mg/L) was observed at a lower

elevation of 1,320 m.a.s.l (Table 2), suggesting the recharge

and discharge areas of the aquifer, respectively. These obser-

vations are in line with earlier reports (e.g., Dattaa et al.

). There is no correlation between fluoride and Cl� in

our water samples (Table 1), indicating that Cl� is likely to

come from anthropogenic influences (Bouchaou et al.

; Olaka et al. ; Makoba & Muzuka ).

The high NO3
� concentrations in the groundwaters

could be an indicator of anthropogenic pollution (Kim &

Kim ). Similar studies by Krishnaraj et al. () also

report that higher Cl� and NO3
� contents in groundwaters

indicate anthropogenic contamination from domestic waste-

water, animal manure, and application of fertilizers. Slightly

elevated SO4
2�, NO3

�, and Cl� contents of up to about 106,

83.9, and 64.4 mg/L, respectively, in the groundwater

could most likely be due to anthropogenic activities since

they were observed in shallow wells (�100 m deep), located

in the informal settlements of Arusha city which are

described by a high population density and poor sanitation

facilities. The results thus suggest local recharges to shallow

groundwater, especially in the topographically low parts of

the study area.

The water sample WG25 collected from the shallow

well (11 m deep) was observed to have negligible NO3�

(2.3 mg/L) and elevated Cl� (50.7 mg/L) contents, indicat-

ing groundwater discharging conditions. The upward

moving groundwater from the subsurface is fundamentally

free of NO3� and has high contents of Cl� due to excess evap-

oration. However, high Cl� can also represent the mixing

of polluted water from human activities (Carrillo-Rivera &

Varsányi ). Moreover, according to Koh et al. (),

the relationship of NO3� and Cl� contents as shown in

Table 1a reveals that a significant portion of Cl� comes

from anthropogenic sources.

The Naþ concentration showed a wide range from 28 to

341.1 mg/L with a median value of 121 mg/L. The Ca2þ

contents range from 1.4 to 43.1 mg/L, while the concen-

tration of Kþ and Mg2þ varied from 8.7 to 69.0 and 0.6 to
://iwaponline.com/hr/article-pdf/51/6/1490/790943/nh0511490.pdf
16.8 mg/L, respectively. The present study observed high

Ca2þ contents at a lower altitude of Mount Meru watershed.

It should be noted that the statistically significant positive

relationship between well depth and elevation of sampling

location (r¼ 0.72, P< 0.05), as presented in Table 1b, indi-

cates that most wells at higher altitudes are deep.

Stable isotopes of water

The stable isotopic values of the groundwater samples ranged

from �6.0‰ to �4.0‰ for δ18O and from �31.3‰ to

�17.7‰ for δD, whereas the isotopic composition of the

river water samples varied from �6.3‰ to �4.9‰ for δ18O

and from �34.7‰ to �23.0‰ for δD (Table 2). These results

show that the river water samples had relatively narrow iso-

topic ranges and were more isotopically depleted than the

groundwater samples, an indication of elevation effects

since river water was sampled from high elevation areas

(>1,700 m a.s.l) on slopes of Mount Meru (Table 2).

Similarly, the ratio between the isotopic values of δ18O

and δD varied locally due to climatic and geographical

differences in the area. Thus, they represent the LMWL.

This study estimated the LMWL for Tanzania (δD¼
7.037δ18O þ7.051) using the precipitation data from the

IAEA website recorded at Dar es Salaam and Dodoma

stations. Dar es Salaam station is located in the coastline

(latitude 6.88_S, longitude 39.20_E, 55 m.a.s.l.), and accord-

ing to Rozanski et al. (), this is the only place within the

global network of isotopes in precipitation (GNIP) in East

Africa that records δ18O values of rainfall directly from the

Indian Ocean. Other studies (e.g., Mckenzie et al. )

used a virtually similar LMWL (δD¼ 7.057δ18O þ7.0) in

related studies on Mount Kilimanjaro, which was developed

by using the precipitation data obtained from the IAEA,

recorded from 1960 to 1976.

Figure 3 shows the δ18O and δD values of the ground-

water, precipitation and river waters in reference to the

global meteoric water line (GMWL) expressed as δD¼
8δ18O þ10 (Levin et al. ; Rozanski et al. ), LMWL

for Tanzania, and an average of meteoric water lines for

Africa defined by Levin et al. () as δD¼ 7.48δ18Oþ
10.1. The linear equation resulting from the δD – δ18O relation-

ship is expressed as δD¼ 7.3δ18Oþ 11.41. The LMWL for the

study area revealed a slope (¼7.3) which is virtually identical



Table 2 | Physico-chemical and isotopic composition of groundwater, river water and precipitation samples

Source name
Source
type

Sample
ID

Altitude
(m)

Well
depth
(m) pH

Temperature
(oC)

EC
(mS/m)

Alkalinity
(meq/L)

Naþ

(mg/L)
Kþ

(mg/L)
Mg2þ

(mg/L)
Ca2þ

(mg/L)
F�

(mg/L)
Cl�

(mg/L)
NO3

�

(mg/L)
SO4

2�

(mg/L)
δ18O
(‰) δD (‰)

Oltulelei Borehole GW1 1481 180 6.8 19.7 44.2 3.85 87.5 18.8 3.9 6.9 4.1 8.5 18.4 8.0 �5.2 �26.8

Ilkiurei Borehole GW2 1430 100 7.31 21.4 50.1 5.05 123.1 17.9 1.9 6.5 5.3 13.3 37.8 9.3 �5.1 �24.9

Magereza Borehole GW3 1369 130 7.21 24.4 111 10.80 220.4 45.3 9.2 9.3 3.8 31.9 25.6 26.0 �4.9 �25.3

Sombetini shuleni Borehole GW4 1341 100 7.04 22.5 69.3 4.36 125.5 30.0 4.9 15.2 3.6 34.5 83.5 12.9 �5.0 �24.8

Longdong Borehole GW5 1314 – 7.19 23.9 98.7 7.72 180.4 39.0 9.3 28.5 5.2 53.2 42.3 24.2 �4.4 �21.7

Seedfarm No.6 Borehole GW6 1623 273 7.67 17.2 43.2 3.70 90.8 17.4 1.1 7.6 6.1 5.0 6.5 7.2 �5.6 �27.7

Old Sanawari Borehole GW7 1460 88.4 7.26 21.3 41.2 2.63 55.6 16.1 6.0 13.7 2.5 11.4 19.6 11.3 �4.7 �22.4

Moivo II Borehole GW8 1449 103.5 7.49 21.1 36.5 3.33 71.4 12.6 3.6 5.8 2.2 5.0 4.4 3.3 �4.6 �21.1

Loruvani yard Borehole GW9 1501 81 7.24 20.9 35.8 3.27 61.5 17.2 4.3 10.0 3.5 5.6 11.9 7.6 �4.7 �22.1

Loruvani bondeni Borehole GW10 1499 63 7.37 20.3 34.7 3.20 72.9 15.5 1.7 4.1 5.0 4.8 5.8 5.5 �5.2 �25.6

Moivo I Borehole GW11 1349 – 7.25 22.1 39.6 3.10 51.1 16.4 7.2 17.6 2.1 10.8 20.1 4.9 �4.4 �20.3

Machale Spring SP1 1322 – 6.68 21.7 34.3 2.26 28.1 8.7 12.7 23.0 1.2 12.5 34.0 5.2 �4.5 �20.3

EMCO Borehole GW12 1369 78 7.54 21.7 42.9 4.34 94.0 20.5 5.7 5.2 3.8 10.7 1.9 6.2 �4.7 �21.6

Ilkiloriti Borehole GW13 1451 181.5 7.23 21.7 39.4 3.20 81.9 15.9 2.2 4.2 5.5 6.4 8.0 7.8 �4.9 �23.2

Mianzini Borehole GW14 1447 141.5 8.56 22.3 52.4 4.62 127.9 10.1 0.6 1.4 8.8 9.0 0.7 6.0 �5.0 �23.3

Kiranyi I Borehole GW15 1435 189 6.95 21.1 49.7 4.44 99.1 18.2 3.6 11.4 4.6 6.8 13.7 9.7 �5.2 �25.2

Sakina Borehole GW16 1418 91.4 7.24 21.7 47.5 4.15 103.2 15.7 2.1 6.7 6.1 7.0 9.8 8.2 �5.3 �26.8

Lemala Borehole GW17 1320 48 6.97 23.7 88.5 4.81 118.8 31.0 16.8 43.1 2.2 64.4 83.9 33.9 �4.2 �19.6

Monduli Borehole GW18 1500 120 6.82 22.3 90.9 8.32 175.5 34.1 5.4 22.6 5.7 16.7 15.1 27.8 �5.2 �27.9

Shamba la mbegu Borehole GW19 1514 – 6.87 22.0 74.8 7.40 136.6 35.3 5.7 19.7 4.5 14.0 6.1 18.7 �5.1 �26.0

Saida School Borehole GW20 1641 – 6.66 18.0 87 8.00 187.2 38.9 1.7 11.6 6.3 8.3 21.7 19.1 �5.6 �30.1

Mzee Ally Borehole GW21 1542 – 6.76 17.6 136.1 12.82 282.5 58.6 5.9 29.5 8.8 26.0 29.0 41.9 �5.1 �26.9

Levolosi juu Spring SP2 1594 – 6.36 20.9 76.5 6.24 128.8 49.8 5.3 19.2 5.3 18.6 38.4 21.0 �4.6 �23.8

Levolosi chini Spring SP3 1582 – 6.18 20.8 97.2 5.78 144.9 52.0 4.8 20.3 5.5 36.2 77.0 25.4 �4.6 �24.1

Seliani Borehole GW22 1536 – 6.32 21.4 93.2 8.82 180.2 69.0 4.3 9.7 7.7 11.4 12.8 14.9 �4.8 �25.3

Mzee Zakaria Borehole GW23 1597 – 6.74 19.2 95.3 8.58 211.3 35.5 1.3 11.5 10.1 12.8 21.4 23.5 �5.5 �30.2

Muriet ofisi-kata Borehole GW24 1299 15 6.94 25.5 131.7 11.72 295.5 34.9 5.9 13.8 7.6 52.8 16.8 39.9 �4.8 �25.2

Unga Ltd 1 Borehole GW25 1343 11 6.64 21.7 121.9 10.27 198.3 57.5 15.3 41.8 5.9 50.7 2.3 41.1 �4.0 �17.7

Unga Ltd 2 Borehole GW26 1343 26 7.40 22.8 172.8 16.34 341.1 59.4 15.0 39.9 6.9 56.1 8.7 105.7 �4.0 �17.8

Themi Spring SP4 1760 – 7.65 18.2 16.19 1.44 28.5 10.2 1.1 3.4 2.1 2.0 1.2 2.2 �4.9 �23.0

Njoro Spring SP5 1662 – 7.6 19.8 52.2 4.65 108.5 25.2 0.9 6.4 7.3 6.0 10.1 11.0 �6.0 �31.3
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Table 2 | continued

Source name
Source
type

Sample
ID

Altitude
(m)

Well
depth
(m) pH

Temperature
(oC)

EC
(mS/m)

Alkalinity
(meq/L)

Naþ

(mg/L)
Kþ

(mg/L)
Mg2þ

(mg/L)
Ca2þ

(mg/L)
F�

(mg/L)
Cl�

(mg/L)
NO3

�

(mg/L)
SO4

2�

(mg/L)
δ18O
(‰) δD (‰)

Oloshaa Spring SP6 1904 – 7.7 17.5 55.9 5.00 109.7 40.9 1.2 4.4 4.6 5.4 4.6 8.9 �5.3 �28.2

Nduruma River R1 1891 – 8.24 13.4 17.21 1.28 30.6 8.3 0.5 1.8 3.7 2.2 0.8 1.6 �5.70 �28.1

Emboocho chini River R2 1907 – 7.3 16.1 43.8 3.85 88.1 23.0 1.0 5.9 7.2 4.9 6.2 7.4 �6.15 �34.7

Emboocho juu River R3 1971 – 6.84 14.7 54.5 3.76 88.0 23.0 0.9 5.3 7.3 4.9 5.8 7.8 �6.16 �34.4

Seliani River R4 1803 – 7.55 17.2 49.6 4.10 95.7 25.9 1.1 6.0 9.3 6.2 2.9 9.5 �6.27 �34.0

Themi River R5 1760 – 7.65 18.2 16.19 1.44 28.5 10.2 1.1 3.4 2.1 2.0 1.2 2.2 �4.86 �23.0

Timbolo School Rainfall RW1 1813 – – – – – – – – – – – – – �5.61 �27.9

Moshono-Laizer Rainfall RW2 1294 – – – – – – – – – – – – – �3.29 �6.4

NGAWASA BH Rainfall RW3 1490 – – – – – – – – – – – – – �7.04 �42.4

Loruvani yard Rainfall RW4 1501 – – – – – – – – – – – – – �6.34 �34.5

Dar es Salaam Rainfall 196103 55 – – – – – – – – – – – – – �1.3 �0.6

Dar es Salaam Rainfall 196104 55 – – – – – – – – – – – – – �1 �13.7

Dar es Salaam Rainfall 196105 55 – – – – – – – – – – – – – �2 6.2

Dar es Salaam Rainfall 196106 55 – – – – – – – – – – – – – �0.1 2.5

Dar es Salaam Rainfall 196107 55 – – – – – – – – – – – – – �4.1 �29.2

Dar es Salaam Rainfall 196108 55 – – – – – – – – – – – – – �3.1 1.8

Dar es Salaam Rainfall 196109 55 – – – – – – – – – – – – – �0.6 5.6

Dar es Salaam Rainfall 196110 55 – – – – – – – – – – – – – �5.1 �28

Dar es Salaam Rainfall 196112 55 – – – – – – – – – – – – – �6.6 �45.2

Dar es Salaam Rainfall 196201 55 – – – – – – – – – – – – – �2.3 �3.1

Dar es Salaam Rainfall 196202 55 – – – – – – – – – – – – – �3.5 �10.6

Dar es Salaam Rainfall 196203 55 – – – – – – – – – – – – – �1.7 6.8

Dar es Salaam Rainfall 196204 55 – – – – – – – – – – – – – �3.6 �5.6

Daar es Salaam Rainfall 196205 55 – – – – – – – – – – – – – �2.4 �3.8

Dar es Salaam Rainfall 196206 55 – – – – – – – – – – – – – �0.2 4.4

Dar es Salaam Rainfall 196207 55 – – – – – – – – – – – – – �0.4 1.2

Dar es Salaam Rainfall 196208 55 – – – – – – – – – – – – – �1.2 �4.4

Dar es Salaam Rainfall 196210 55 – – – – – – – – – – – – – �0.8 �4.4

Dar es Salaam Rainfall 196211 55 – – – – – – – – – – – – – �0.7 �1.9

Dar es Salaam Rainfall 196212 55 – – – – – – – – – – – – – �1.6 �6.9

Dar es Salaam Rainfall 196301 55 – – – – – – – – – – – – – �0.4 �3.1
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Table 2 | continued

Source name
Source
type

Sample
ID

Altitude
(m)

Well
depth
(m) pH

Temperature
(oC)

EC
(mS/m)

Alkalinity
(meq/L)

Naþ

(mg/L)
Kþ

(mg/L)
Mg2þ

(mg/L)
Ca2þ

(mg/L)
F�

(mg/L)
Cl�

(mg/L)
NO3

�

(mg/L)
SO4

2�

(mg/L)
δ18O
(‰) δD (‰)

Dar es Salaam Rainfall 196302 55 – – – – – – – – – – – – – �2 �5.3

Dar es Salaam Rainfall 196303 55 – – – – – – – – – – – – – �2.7 �16.8

Dar es Salaam Rainfall 196304 55 – – – – – – – – – – – – – �4.4 �19.9

Dar es Salaam Rainfall 196305 55 – – – – – – – – – – – – – �1.1 �0.6

Dar es Salaam Rainfall 196306 55 – – – – – – – – – – – – – �4.4 �25.5

Dar es Salaam Rainfall 196307 55 – – – – – – – – – – – – – �0.6 5.6

Dar es Salaam Rainfall 196308 55 – – – – – – – – – – – – – 1.3 15.6

Dar es Salaam Rainfall 196310 55 – – – – – – – – – – – – – �0.3 4.4

Dar es Salaam Rainfall 196311 55 – – – – – – – – – – – – – �4.9 �37.2

Dar es Salaam Rainfall 196312 55 – – – – – – – – – – – – – �1.3 �6.9

Dar es Salaam Rainfall 196401 55 – – – – – – – – – – – – – �1.3 �8.1

Daar es Salaam Rainfall 196402 55 – – – – – – – – – – – – – �3.1 �20.5

Dar es Salaam Rainfall 196403 55 – – – – – – – – – – – – – �2.9 �18.6

Dar es Salaam Rainfall 196405 55 – – – – – – – – – – – – – �2.9 �14.9

Dar es Salaam Rainfall 196409 55 – – – – – – – – – – – – – 1.1 18.7

Dar es Salaam Rainfall 196410 55 – – – – – – – – – – – – – �1.3 �4.4

Dar es Salaam Rainfall 196412 55 – – – – – – – – – – – – – �0.9 �3.8

Dar es Salaam Rainfall 196501 55 – – – – – – – – – – – – – �0.6 8.1

Dar es Salaam Rainfall 196502 55 – – – – – – – – – – – – – 1.6 16.2

Dar es Salaam Rainfall 196503 55 – – – – – – – – – – – – – �3.6 �16.8

Dar es Salaam Rainfall 196504 55 – – – – – – – – – – – – – �4.3 �20.5

Dar es Salaam Rainfall 196505 55 – – – – – – – – – – – – – �2.5 �11.2

Dar es Salaam Rainfall 196506 55 – – – – – – – – – – – – – 0.5 9.9

Dar es Salaam Rainfall 196507 55 – – – – – – – – – – – – – 2.6 18

Dar es Salaam Rainfall 196508 55 – – – – – – – – – – – – – �1 1.8

Dar es Salaam Rainfall 196509 55 – – – – – – – – – – – – – �1 �0.6

Dar es Salaam Rainfall 196510 55 – – – – – – – – – – – – – �0.7 8.7

Dar es Salaam Rainfall 196511 55 – – – – – – – – – – – – – �3.7 �27.3

Dar es Salaam Rainfall 196512 55 – – – – – – – – – – – – – �1.9 �5

Dar es Salaam Rainfall 196601 55 – – – – – – – – – – – – – �4.2 �23.6

Dar es Salaam Rainfall 196602 55 – – – – – – – – – – – – – �1.4 �6.9
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Table 2 | continued

Source name
Source
type

Sample
ID

Altitude
(m)

Well
depth
(m) pH

Temperature
(oC)

EC
(mS/m)

Alkalinity
(meq/L)

Naþ

(mg/L)
Kþ

(mg/L)
Mg2þ

(mg/L)
Ca2þ

(mg/L)
F�

(mg/L)
Cl�

(mg/L)
NO3

�

(mg/L)
SO4

2�

(mg/L)
δ18O
(‰) δD (‰)

Dar es Salaam Rainfall 196603 55 – – – – – – – – – – – – – �3.8 �23.6

Dar es Salaam Rainfall 196604 55 – – – – – – – – – – – – – �2.5 �10

Dar es Salaam Rainfall 196605 55 – – – – – – – – – – – – – �1.8 �6.9

Dar es Salaam Rainfall 196606 55 – – – – – – – – – – – – – �0.7 �0.6

Dar es Salaam Rainfall 196607 55 – – – – – – – – – – – – – �0.3 �2.5

Dar es Salaam Rainfall 196608 55 – – – – – – – – – – – – – �1.5 �1.3

Dar es Salaam Rainfall 196609 55 – – – – – – – – – – – – – �0.9 7.5

Dar es Salaam Rainfall 196610 55 – – – – – – – – – – – – – 0.4 13.1

Daar es Salaam Rainfall 196612 55 – – – – – – – – – – – – – �1.3 1.8

Dar es Salaam Rainfall 196701 55 – – – – – – – – – – – – – �2.49 �5.9

Dar es Salaam Rainfall 196702 55 – – – – – – – – – – – – – �1.58 �3.9

Dar es Salaam Rainfall 196703 55 – – – – – – – – – – – – – �1.87 �2.6

Dar es Salaam Rainfall 196704 55 – – – – – – – – – – – – – �3.27 �14.5

Dar es Salaam Rainfall 196705 55 – – – – – – – – – – – – – �1.99 �7.8

Dar es Salaam Rainfall 196706 55 – – – – – – – – – – – – – �1.05 1.4

Dar es Salaam Rainfall 196707 55 – – – – – – – – – – – – – �1.75 �6.5

Dar es Salaam Rainfall 196708 55 – – – – – – – – – – – – – �0.99 3.4

Dar es Salaam Rainfall 196709 55 – – – – – – – – – – – – – �1.76 �3.9

Dar es Salaam Rainfall 196710 55 – – – – – – – – – – – – – �2.52 �11.8

Dar es Salaam Rainfall 196711 55 – – – – – – – – – – – – – �2.79 �24.3

Dar es Salaam Rainfall 196712 55 – – – – – – – – – – – – – �2.76 �11.1

Dar es Salaam Rainfall 196801 55 – – – – – – – – – – – – – 0.96 10

Dar es Salaam Rainfall 196802 55 – – – – – – – – – – – – – �3.85 �20.6

Dar es Salaam Rainfall 196803 55 – – – – – – – – – – – – – �6.68 �37.3

Dar es Salaam Rainfall 196804 55 – – – – – – – – – – – – – �4.94 �25.4

Dar es Salaam Rainfall 196805 55 – – – – – – – – – – – – – �1.66 4

Dar es Salaam Rainfall 196806 55 – – – – – – – – – – – – – �1.28 4.6

Dar es Salaam Rainfall 196808 55 – – – – – – – – – – – – – �3.09 �13.4

Dar es Salaam Rainfall 196809 55 – – – – – – – – – – – – – �2.72 �15.2

Dar es Salaam Rainfall 196810 55 – – – – – – – – – – – – – �1.83 �10.4

Dar es Salaam Rainfall 196811 55 – – – – – – – – – – – – – �1.78 �8
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Table 2 | continued

Source name
Source
type

Sample
ID

Altitude
(m)

Well
depth
(m) pH

Temperature
(oC)

EC
(mS/m)

Alkalinity
(meq/L)

Naþ

(mg/L)
Kþ

(mg/L)
Mg2þ

(mg/L)
Ca2þ

(mg/L)
F�

(mg/L)
Cl�

(mg/L)
NO3

�

(mg/L)
SO4

2�

(mg/L)
δ18O
(‰) δD (‰)

Dar es Salaam Rainfall 196812 55 – – – – – – – – – – – – – �3.29 �17

Dar es Salaam Rainfall 196901 55 – – – – – – – – – – – – – �3.52 �22.4

Dar es Salaam Rainfall 196902 55 – – – – – – – – – – – – – �2.99 �17.7

Dar es Salaam Rainfall 196903 55 – – – – – – – – – – – – – �2.34 �10.6

Dar es Salaam Rainfall 196904 55 – – – – – – – – – – – – – �2.67 �17.7

Daar es Salaam Rainfall 196905 55 – – – – – – – – – – – – – �3.61 �16.3

Dar es Salaam Rainfall 196906 55 – – – – – – – – – – – – – �1.01 �0.9

Dar es Salaam Rainfall 196907 55 – – – – – – – – – – – – – �0.16 6.2

Dar es Salaam Rainfall 196908 55 – – – – – – – – – – – – – �3.12 �13.1

Dar es Salaam Rainfall 196909 55 – – – – – – – – – – – – – 0.32 8.1

Dar es Salaam Rainfall 196910 55 – – – – – – – – – – – – – �1.66 �0.2

Dar es Salaam Rainfall 196911 55 – – – – – – – – – – – – – �1.37 �2.1

Dar es Salaam Rainfall 196912 55 – – – – – – – – – – – – – �8.95 �62.6

Dar es Salaam Rainfall 197001 55 – – – – – – – – – – – – – �1.72 �10

Dar es Salaam Rainfall 197002 55 – – – – – – – – – – – – – �1.59 1.7

Dar es Salaam Rainfall 197003 55 – – – – – – – – – – – – – �2.39 �9.3

Dar es Salaam Rainfall 197004 55 – – – – – – – – – – – – – �3.48 �22.2

Dar es Salaam Rainfall 197005 55 – – – – – – – – – – – – – �1.78 �13

Dar es Salaam Rainfall 197006 55 – – – – – – – – – – – – – �0.63 3.5

Dar es Salaam Rainfall 197009 55 – – – – – – – – – – – – – �0.5 �0.7

Dar es Salaam Rainfall 197010 55 – – – – – – – – – – – – – �0.66 �1.7

Dar es Salaam Rainfall 197011 55 – – – – – – – – – – – – – �2.61 �10.6

Dar es Salaam Rainfall 197012 55 – – – – – – – – – – – – – �2.48 �20.7

Dar es Salaam Rainfall 197205 55 – – – – – – – – – – – – – �2.73 �6.7

Dar es Salaam Rainfall 197208 55 – – – – – – – – – – – – – �0.98 3.8

Dar es Salaam Rainfall 197210 55 – – – – – – – – – – – – – �1.9 �1.9

Dar es Salaam Rainfall 197211 55 – – – – – – – – – – – – – �2.08 �5.9

Dar es Salaam Rainfall 197212 55 – – – – – – – – – – – – – �3.96 �16.8

Dar es Salaam Rainfall 197301 55 – – – – – – – – – – – – – �2.77 �11.2

Dar es Salaam Rainfall 197302 55 – – – – – – – – – – – – – �0.8 4.8

Dar es Salaam Rainfall 197303 55 – – – – – – – – – – – – – �3.04 �9.9
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Table 2 | continued

Source name
Source
type

Sample
ID

Altitude
(m)

Well
depth
(m) pH

Temperature
(oC)

EC
(mS/m)

Alkalinity
(meq/L)

Naþ

(mg/L)
Kþ

(mg/L)
Mg2þ

(mg/L)
Ca2þ

(mg/L)
F�

(mg/L)
Cl�

(mg/L)
NO3

�

(mg/L)
SO4

2�

(mg/L)
δ18O
(‰) δD (‰)

Dar es Salaam Rainfall 197304 55 – – – – – – – – – – – – – �3.98 �19.1

Dar es Salaam Rainfall 197309 55 – – – – – – – – – – – – – �1.26 3.2

Daar es Salaam Rainfall 197310 55 – – – – – – – – – – – – – �1.26 4.4

Dodoma Rainfall 199301 1157 – – – – – – – – – – – – – �5.88 �33.8

Dodoma Rainfall 199302 1157 – – – – – – – – – – – – – 0.06 11.7

Dodoma Rainfall 199303 1157 – – – – – – – – – – – – – �3.61 �11

Dodoma Rainfall 201401 1157 – – – – – – – – – – – – – �0.95 3.2

Dodoma Rainfall 201402 1157 – – – – – – – – – – – – – �0.8 0.6

Dodoma Rainfall 201411 1157 – – – – – – – – – – – – – �4.26 �20.4

Dodoma Rainfall 201412 1157 – – – – – – – – – – – – – �0.66 3.2

Dodoma Rainfall 201501 1157 – – – – – – – – – – – – – 3.36 36.4

Dodoma Rainfall 201502 1157 – – – – – – – – – – – – – �1.28 �2.3

Dodoma Rainfall 201503 1157 – – – – – – – – – – – – – �0.68 1.5

Dodoma Rainfall 201504 1157 – – – – – – – – – – – – – �1.15 �1.5

Dodoma Rainfall 201505 1157 – – – – – – – – – – – – – �3.48 �17.4

Dodoma Rainfall 201511 1157 – – – – – – – – – – – – – �2.58 �8.1

Dodoma Rainfall 201512 1157 – – – – – – – – – – – – – �4.49 �21.5

Dodoma Rainfall 201601 1157 – – – – – – – – – – – – – �5.12 �25.3

Dodoma Rainfall 201602 1157 – – – – – – – – – – – – – �1.25 10.5

Dodoma Rainfall 201603 1157 – – – – – – – – – – – – – �5.43 �31.3

Dodoma Rainfall 201604 1157 – – – – – – – – – – – – – �10.15 �69.6
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Figure 3 | The plot of δD and δ18O values of groundwater, precipitation and river water in

reference to global meteoric water line (GMWL), LMWL and African local

meteoric water line.
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to the slope of the African meteoric water line (¼7.48) and the

LMWL for Tanzania (¼7.037). However, it is slightly less than

the slope of the GMWL (¼8), an indication of the minimal

influence of evaporative enrichment of precipitation during

or prior to infiltration. Moreover, most of the groundwater

data plotted close to the LMWL for Tanzania and the African

meteoric water line, and according to Farid et al. (), this

indicates that the groundwater in the study area is of meteoric

origin (rain and/or snow).

The δ18O of groundwater showed a negative correlation

(r¼�0.73, P< 0.0004) with well depth (Table 1b). This

suggests the mixing of shallow groundwater with evaporated

surface water, for example, from pools stagnated on the land

surface in low-lying areas or other fractionated surface water

sources. Similar observations were reported in related

studies (Gonfiantini et al. ; Kim et al. ; Krishnaraj

et al. ). Moreover, the isotopic signature of water

samples from wells with depths �100 m, particularly

samples WG4, WG17, and SP3 with NO3
� >50 mg/L and

high Cl� concentrations of 34.5, 64.4, and 36.2 mg/L,

respectively, suggests recharge by stagnated water pools in

low-lying areas or pollution from human activities. These

observations agree with previous reports by Olaka et al.

() and Mduma et al. () in related studies.
Groundwater recharge area

The recharge locations of most isotopically depleted ground-

water samples (�6.0‰ to �5.0‰) collected from
om http://iwaponline.com/hr/article-pdf/51/6/1490/790943/nh0511490.pdf
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Ngaramtoni area were found at elevations ranging between

2,600 and 3,500 m.a.s.l. The elevation of the recharge areas

for most enriched groundwater samples (�4.86‰ to

�4.0‰) from the same area, ranged between 1,800 and

2,500 m.a.s.l. in Mount Meru watershed. This indicates

that the recharge zone of groundwater used in Ngaramtoni

area is virtually similar to that for well water supplied to

Arusha city.

The isotopic signature further showed that about 50% of

14 groundwater samples collected at Ngaramtoni area come

from a recharge altitude located between 1,800 and

2,500 m.a.s.l. on the south-western slope of Mount Meru.

Additionally, more than 60% of 18 groundwater samples

from wells used in Arusha city are recharged at an elevation

ranging from 2,500 and 3,500 m.a.s.l. on the southern slopes

of Mount Meru. This suggests that the well and spring waters

used in Arusha urban originate from a recharge area located

at altitudes between 1,800 and 3,500 m.a.s.l. in Mount Meru

watershed. Well depth showed a significant positive

relationship (r¼ 0.73, P< 0.05) with recharge elevation

(Table 1b). This can be an indication that shallow ground-

water comes from low altitude recharge areas while deep

groundwater originates from high altitude recharge areas.

Water sample WG4 collected from an artesian well

(100 m deep) was observed to have high altitude isotopic sig-

nature (-5.0‰), and elevated NO3
� concentration (83.5 mg/L),

which indicates pollution due to human activities in the

recharge area. Carrillo-Rivera & Varsányi () also reported

similarly in a related study. The mean fluoride value of 6.1±

0.49 mg/L was observed in groundwater coming from high-

altitude recharge areas between 2,537 and 3,500 m.a.s.l. On

the other hand, groundwaters originating from low altitude

recharge areas between 1,800 and 2,530 m.a.s.l. was observed

to have relatively low average fluoride content (4.3± 0.5 mg/

L), suggesting that the fluorite precipitation CaF2 at the

lower altitude reduces the fluoride contents in the ground-

water system (Edmunds & Smedley ).

The water sample from spring (SP3) located at a high

altitude (1,582 m.a.s.l.) was observed to have an elevated flu-

oride concentration (5.5 mg/L) and enriched isotopic values

(�4.6‰). According to Plummer et al. (), this indicates

the mixing of waters of variable ages and quality along the

flow pathways. Sample WG17 was collected in a shallow

well (48 m deep) and appeared to originate from a mixture
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of groundwater and contaminated surface water with

negligible fluoride contents. This was depicted by the elev-

ated NO3
� contents (83.9 mg/L), enrichment in isotopic

values of oxygen (�4.2‰), and low fluoride concentration

(2.2 mg/L). Therefore, infiltration characteristics and the

duration that water stays on the land surface at different

locations in the topographically lower altitudes show

some relationship between δ18O and NO3
� concentration

of groundwater.

Groundwater flow path

Groundwater samples collected from the entire study area

were plotted for fluoride contents versus the recharge

elevations (Figure 4(a)), which conceptually indicated two

groups of water quality (A and B) based on the relationship

between fluoride concentration and the stable isotopic ratio

of oxygen of groundwater samples (Figure 4(d)). Similarly,

from the data, it can be inferred that there are two different

flow pathways from two recharge areas. The fluoride

contents in water quality group A ranged from 5.2 to

10.1 mg/L with a mean value of 7.2± 0.5 mg/L, while for

the group B, the range was from 1.2 to 7.3 mg/L with a

mean value of 4.2± 0.4 mg/L. Those suggest a difference in

locations, geology, or catchment areas of the groundwater

flow pathways in the study area. The concentration of fluoride

in the two flow pathways was shown to increase with well
Figure 4 | Variation of F- concentration with recharge altitude (a), well depth (b), with Naþ (c)

://iwaponline.com/hr/article-pdf/51/6/1490/790943/nh0511490.pdf
depth (Figure 4(b)). The fluoride contamination in the flow

pathway of water group A showed a poor relationship with

Naþ concentration and a positive significant correlation in

group B (Figure 4(c)). This indicates that the fluoride is dis-

solved through water–rock interaction over a longer period

with weathering of granite along the flow pathway or in the

recharge areas of water group B (Kim & Kim ).

The isotopic ratio of oxygen showed an increasing trend

as the fluoride contamination was reduced in all flow path-

ways (Figure 4(d)). Similar cases have been reported in

Tanzania and around the globe (Mduma et al. ; Olaka

et al. ), suggesting the mixing of high fluoride-contami-

nated groundwater from topographically high areas and

shallow groundwater from local recharge or polluted surface

runoff water pools stagnated in low-lying areas with negli-

gible fluoride contents along the flow direction.

Figure 1 provides the details of three locations (1, 2, and

3) of the discharge areas of the two flow pathways. Compar-

ing the fluoride contents in both flow pathways, the high

fluoride leaching at location 1 (mean value¼ 6.3± 0.5 mg/L)

is an indication of the mixing of water with relatively high flu-

oride contamination from the two flow pathways as presented

in Figure 1. Moreover, Figure 1 shows the low concentration

of fluoride at location 3 (mean value¼ 4.3± 0.7 mg/L),

suggesting the dilution of fluoride contaminated water from

the two flow pathways with water of negligible fluoride con-

tents like rainwater stagnated in low-lying areas.
, and isotopic composition of groundwater (d).
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The concentration of NO3
� at location 1 varied between

4.6 and 77.0 mg/L with a mean value of 22.4± 5.8 mg/L.

The groundwater at location 2 was observed to have relatively

low pollution of NO3
�, as the measured value ranged between

0.7 and 37.8 mg/L with a mean value of 11.9± 3.2 mg/L. A

relatively wide range of NO3
� contamination ranging between

1.9 and 83.9 mg/L with a mean value of 32.6± 10.6 mg/L was

observed in the groundwater collected at location 3, indicating

contamination from anthropogenic sources. This is similar to

the reports by Makoba & Muzuka (), Mduma et al.

(), and Elisante & Muzuka () on groundwater sources

in the slopes of Mount Meru.
CONCLUSIONS AND RECOMMENDATIONS

The altitude effect of the isotopic ratio of oxygen revealed

that groundwater used in Arusha urban, northern Tanzania,

comes from recharge areas located at altitudes between

1,800 and 3,500 m.a.s.l. The groundwater in the study area

is of meteoric origin (rain and/or snow). The isotopic signa-

ture and the spatial distribution of fluoride contamination in

the groundwaters generally indicate two flow pathways

which start from the recharge area in the south and south-

western slopes of Mount Meru toward the southern part of

Arusha urban.

Relatively lower fluoride levels and elevated NO3
� in

groundwater from the low-lying parts of the study area

could be due to dilution by local recharge with negligible flu-

oride contents. The contamination of fluoride and NO3
� at

some sampling locations confirm that the low-altitude

groundwater comes from high-altitude and local recharge

sources and the high-altitude groundwater is recharged

from topographically high areas of Mount Meru. Elevation

of NO3
� and Cl� contents in water samples from sources

in the lower part of the study area is the evidence of anthro-

pogenic contamination.

The fluoride concentration in the studied groundwaters

is natural contamination and exceeds the WHO and

Tanzania’s guidelines of 1.5 mg/L by 70%. The fluoride

concentrations in the river waters similarly exceeded the

standard by 75%. The fluoride contamination seems to

increase toward the recharge areas and there is evidence

of mixing of high fluoride groundwater from the two flow
om http://iwaponline.com/hr/article-pdf/51/6/1490/790943/nh0511490.pdf
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pathways. Dilution effects lowered the concentration of flu-

oride in groundwater in the lower part of the study area. This

study, therefore, recommends (1) protection of the local

groundwater recharge areas from anthropogenic contami-

nation as they produce water with relatively low fluoride

contents and (2) application of appropriate treatment

method to moderate the fluoride concentration in the

water supplied to Arusha urban.
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