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ABSTRACT
Knowledge of an exoplanet’s oblateness and obliquity wouldgive clues about its formation and internal

structure. In principle, a light curve of a transiting planet bears information about the planet’s shape, but
previous work has shown that the oblateness-induced signalwill be extremely difficult to detect. Here we
investigate the potentially larger signals due to planetary spin precession. The most readily detectable effects
are transit depth variations (TδV) in a sequence of light curves. For a planet as oblate as Jupiter or Saturn,
the transit depth will undergo fractional variations of order 1%. The most promising systems are those with
orbital periods of approximately 15–30 days, which is shortenough for the precession period to be less than
about 40 years, and long enough to avoid spin-down due to tidal friction. The detectability of the TδV signal
would be enhanced by moons (which would decrease the precession period) or planetary rings (which would
increase the amplitude). TheKepler mission should find several planets for which precession-induced TδV
signals will be detectable. Due to modeling degeneracies,Keplerphotometry would yield only a lower bound
on oblateness. The degeneracy could be lifted by observing the oblateness-induced asymmetry in at least one
transit light curve, or by making assumptions about the planetary interior.
Subject headings:stars: planetary systems—techniques: photometric

1. INTRODUCTION

Measuring the oblateness of exoplanets would further our
understanding of planetary formation, rotation, and internal
structure. One possible measurement technique relies on
the differences between the transit light curve of a spheri-
cal planet and an oblate planet with the same sky-projected
area (Seager & Hui 2002, Barnes & Fortney 2003). However,
the differences are minuscule, of order 200 parts per million
(ppm) for a planet as oblate as Saturn, and 2 ppm for a “hot
Jupiter” whose spin rate has been slowed by tidal friction into
synchronization with its orbit. In a previous paper we showed
that with this technique, even the best available light curves
are only barely sufficient to rule out a Saturn-like oblateness
(Carter & Winn 2009). Those results pertained to the planet
HD 189733b, for which one would expect spin-orbit synchro-
nization, and consequently the theoretical oblateness wasan
order of magnitude below the empirical upper limit.

In that work we also pointed out the potentially observable
effects of a phenomenon that had been previously overlooked:
the precession of the planet’s rotation axis. Precession of
an oblate planet causes the sky-projected area of the planet
to change over time, thereby causing gradual changes in the
depth and duration of transits. In this paper we investigate
the observable manifestations of spin precession in a broader
context. Section 2 describes the characteristics of the signal
in terms of the properties of the star, planet, and orbit. Section
3 discusses the range of orbital periods for which the signal
is most readily detectable, considering the timescales for
precession and spin-orbit synchronization. Section 4 presents
simulated results for a specific case, a Saturn-like planet
observed by theKepler satellite. Section 5 summarizes and
discusses the results.

2. CHARACTERISTICS OF THE SIGNAL

We model the planet as an oblate spheroid, illustrated in
Figure (1). Theoblateness(or flatness) parameter is defined
as

f =
Req− Rpol

Req
, (1)

whereReq andRpol are the equatorial and polar radii, respec-
tively. For rotationally-induced oblateness, a good approxi-
mation is

f =
3
2

J2 +
1
2

R3
eq

GMp

(

2π
Prot

)2

(2)

whereMp is the mass of the planet andJ2 is the planet’s
zonal quadrupole moment (Murray & Dermott 2000, Hubbard
1984). This approximation is valid for all the Solar System
planets for whichf , J2 andProt have been measured precisely.

Theobliquity is the angleθ between the polar axis and the
orbital axis. The angleφ specifies the direction of the projec-
tion of the polar axis onto the orbital plane. For a uniformly
precessing planet, the case considered here,φ is a linear func-
tion of time,

φ(t) =
2πt
Pprec

+φ0. (3)

Accurate calculations of the transit light curve of an oblate
spheroid, including the effects of stellar limb darkening,have
been presented by Seager & Hui (2002), Barnes & Fort-
ney (2003), and Carter & Winn (2009). In this paper we are
not interested in high accuracy or in the slight differencesbe-
tween the light curve an oblate planet and a spherical planet.
Instead we are interested in the order of magnitude of the vari-
ations in the transit depth and duration due to the changes in
the precessing planet’s sky-projected figure.
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FIG. 1.— Geometry of transits by an oblate spheroid. The planet’s orientation is specified by the spin-orbit obliquityθ ≡ cos−1 ŝ· n̂, the angleφ between the
projection of the spin axis onto the orbital plane and the vector connecting the centers of the star and planet at midtransit, and the orbital inclinationi relative to
the sky plane.

In the absence of limb darkening, the depthδ is approxi-
mately the areal ratio between the sky projection of the oblate
spheroid and the stellar disk,

δ(t)=k2

√

1− ǫ2
{

1− [sinθcosφ(t)sini + cosθcosi]2
}

(4)

wherek ≡ Req/R⋆ is the planet-to-star radius ratio,i is the
orbital inclination with respect to the sky plane andǫ is the
ellipticity,

ǫ≡
√

1− (1− f )2. (5)

A derivation of this expression is given in the Appendix. Fig-
ure 2 shows the fractional amplitude of the transit depth varia-
tions for the casei = 90◦, as a function off andθ. For Saturn-
like values of oblateness and obliquity, the depth variations
would be a few percent.

The transit duration will also vary over the precession pe-
riod, due to the changing dimensionR‖ of the planet’s sky
projection in the direction of orbital motion:

R‖ = Req

√

(1− f⊥)2 sin2θ⊥ + cos2θ⊥, (6)

where

f⊥≡1−
√

1− ǫ2
{

1− [sinθcosφ(t)sini + cosθcosi]2
}

(7)

θ⊥≡ tan−1 sinφ(t) tanθ
cosφ(t) tanθcosi − sini

(8)

are the quantities describing the oblateness and obliquityof
the projected exoplanet’s shape. Derivations of these expres-
sions are also given in the Appendix. For a circular orbit,
the ingress/egress duration (first to second contact, or third to
fourth contact) is approximately

τ ≈
(

R⋆Porb

πa

)

R‖

R⋆

√
1− b2, (9)

wherePorb is the orbital period,a is the orbital distance, and
b ≡ acosi/R⋆ is the normalized impact parameter. The full
transit duration (first to fourth contact) is approximately(e.g.,

Seager & Mallén-Ornelas 2003)

Tfull ≈
(

R⋆Porb

πa

)

√

[

1+
R‖

R⋆

]2

− b2. (10)

These approximations are valid as long as the transit is not too
close to grazing. The fractional amplitude of theτ variations
(TτV) is comparable to that of depth variations (TδV). The
amplitude of transit full-duration variations (TDV) depends
on k andb, in addition to f andθ, and therefore cannot be
summarized in a single contour plot such as Figure 2.

3. THE OPTIMAL ORBITAL DISTANCE

In this section we suppose that the planet’s precession is
caused exclusively by the gravitational torque from the star. In
order for the detection of precession-induced TδVs or TDVs
to be feasible, the planet must be close enough to the star for
precession to produce observable effects in a human lifetime.
However, if the planet is too close to the star, then tidal dissi-
pation should slow down the planet’s rotation until it is syn-
chronized with the orbital period, and drive the obliquity to
zero, which would cause the signal to be undetectable. Hence,
we must ask if there is a range of distances from the star that
is close enough for rapid precession, and yet far enough to
avoid spin-orbit synchronization.

The spin precession period for a planet on a fixed circular
orbit is given by

Pprec=
13.3 yr
cosθ

(

C/J2

13.5

)(

Porb

15 d

)2(10 hr
Prot

)

(11)

(Ward 1975), whereProt is the planet’s rotation period andC is
its moment of inertia divided byMpR2

eq. The numerical scal-
ing of 13.5 forC/J2 is the estimated value for Saturn (Ward &
Hamilton 2004). According to this expression, orbital periods
shorter thanPorb ∼30 days will lead to rapid enough preces-
sion to be observed over decadal timescales, depending on
the planet’s obliquity and internal structure. In Fig. 3, the
thick solid line shows the spin precession period as a function
of orbital distance, for an exoplanet with the sameProt, C, J2,
andθ as Saturn. (The thin solid lines show the more rapid pre-
cession rates produced by hypothetical planetary satellites, as
discussed in § 5.)
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FIG. 2.— The fractional amplitude of transit depth variations (TδVs), shown as a function of oblateness (f ) and obliquity (θ) assuming the orbit is perpendicular
to the sky plane (i = 90◦). For reference, the astrological symbols show the shape parameters of Solar System planets:' – Mercury,♀ – Venus,⊕ – Earth,♂ –
Mars,X – Jupiter,Y – Saturn,Z – Uranus,[ – Neptune.

FIG. 3.— The optimal orbital distance. The solid curves refer tothe axis
on the left; they show the calculated spin precession periodas a function of
orbital distance for a Saturn-analog planet, with no satellites (thick line) and
with a Titan-like satellite (thin lines) orbiting at a specified fraction of a Hill
radius. The dashed curve refers to the axis on the right; it shows the calculated
timescale for tidal spin-orbit synchronization. The vertical dotted line marks
the orbital distance for which the spin-down time is 1 Gyr.

The approximate timescale for tidal spin-orbit synchroniza-
tion is

τs ≈ 1.22 Gyr×
(

Qp

106.5

)(

C

0.25

)(

5 hr
Prot,i

−
10 hr
Prot

)

×
(

Mp

MJup

)(

RJup

Req

)3( Porb

15 d

)4

(12)

(Goldreich & Soter 1966), whereQp is the planet’s tidal dis-
sipation factor andProt,i is its initial rotation period, both of
which are highly uncertain.

Based upon Solar System constraints,Qp is thought to be
in the range 10–500 for terrestrial planets, and 104.5–6.5 for
gas or ice giant planets (Goldreich & Soter 1966, Peale et
al. 1980, Yoder 1995, Mardling & Lin 2004, Ogilvie & Lin
2004, Jackson et al. 2008), although the results are strongly

model-dependent and also dependent on the frequency of tidal
oscillations. In setting the scale parameters in Eqn. (12) we
adoptedQp = 106.5, on the high end of current estimates, giv-
ing the longest (most favorable) synchronization timescale.

The primordial spin period might be expected to be near the
rotational breakup limit, which is≈3 hr for Jupiter (Murray &
Dermott 2000), although the effects of planetary contraction
and disk-planet interactions should also be considered. For
Eqn. (12) we used a current rotation period of 10 hr (similar
to Jupiter and Saturn) and an initial period of 5 hr.

For τs & 1 Gyr, it is reasonable to hope that the planet
has not yet been tidally spun down. Thus, with reference to
Eqns. (11) and (12), the “sweet spot” for observing the effects
of spin precession on the transit parameters is atPorb ∼ 15 d,
which is long enough to allow for rapid rotation, and short
enough to allow for rapid precession.

Of course the identification of a single optimal period is a
simplification. The existence and observability of TδVs and
TDVs depends on the particular mass and radius of the planet
under consideration and the observed age of the star, as well
as the parameters relating to the planet’s tidal dissipation, in-
ternal constitution, and initial spin period. The dashed line in
Figure 3 shows the dependence ofτs on orbital distance for
the particular case of a Saturn analog. Table 1 gives some
numerical results for precession periods and synchronization
timescales for hypothetical close-in planets with properties
similar to Solar System planets. If we requirePprec< 40 yr
andτs > 1 Gyr for observability, then from Table 1 we see
that the signal is potentially observable for Jupiter and Saturn
analogs. For analogs of Uranus and Neptune, we expect the
signal to be unobservable unless the spin precession is made
more rapid by the presence of large satellites (see § 5). For
Earthlike planets the signal seems unlikely to be observable
because of strong tidal dissipation.

4. A SPECIFIC EXAMPLE

In this section we examine the particular case of a hypo-
thetical, ringless, moonless, Saturn-like transiting exoplanet
( f = 0.1, θ = 27◦) in a circular orbit around a Sun-like star
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TABLE 1
RELEVANT TIMESCALES FOR THE OBSERVABILITY OF PLANETARY SPINPRECESSION

Adopted planetary parameters forτs = 1 Gyr forPprec= 40 yr
Planet analoga Pi

rot [hr] Prot [hr] Qp C C/J2 Pprec [yr] Porb [d] Porb [d] τs [Gyr] Observable Range inPorb [d]

Jupiter 5.0 10.0 106.5 0.26 15.4 13.7 14.3 24.3 8.5 14.3− 24.3
Saturn 5.0 11.0 106.5 0.22 13.5 15.7 17.1 27.3 6.5 17.1− 27.3

Uranus 8.0 17.0 106.5 0.22 67.0 45.3 16.3 15.3 0.78 Nonea

Neptune 8.0 16.0 106.5 0.23 68.0 43.8 15.3 14.7 0.83 Nonea

Earth 12.0 24.0 102.0 0.34 314 13,100 151 8.40 9.0×10−6 Nonea

REFERENCES. — Murray & Dermott (2000), Hubbard (1984), Yoder (1995), Ward & Hamilton (2004)
a Assuming no satellites

with Porb = 17 d. This orbit is near the “sweet spot,” giving
Pprec= 17 yr andτs = 1 Gyr.

4.1. Likelihood of discovery

First we must ask how likely it is that such a planet will be
discovered. Giant planets with periods between 15–30 d are
already known to exist from Doppler surveys. At the time of
writing, theexoplanets.org database has 8 such planets.
Indeed one of them is already known to transit (HD 17156b;
Fischer et al. 2007), although in that case tidal effects may
have slowed the planet’s rotation because the orbit is highly
eccentric and the pericenter distance is small. None of the
other 7 planets is known to transit, and the probability thatat
least one of them transits is approximately 23%. Given these
facts and the recent acceleration in the discovery rate using
the Doppler method, it would seem likely that a transiting gas
giant withPorb = 15–30 d will be discovered in the near future.

Of particular interest are the prospects for theKeplersatel-
lite mission (Borucki et al. 2010).Kepler searches for tran-
siting planets by keeping≈105 stars under nearly continuous
photometric surveillance for at least 3.5 yr and possibly as
long as 6 yr. To estimate the fraction of the target stars thathas
a suitable planet, we used the power-law formulas given by
Cumming et al. (2008) for the abundance of planets of a given
mass and period, which were derived from data from the Keck
Planet Search. The integrated value of (abundance× transit
probability) over the rangePorb =15–30 d,Mp = 0.2–2MJup

is approximately 0.019%. Therefore, among the 5×104 Sun-
like stars in theKepler field, we expect≈10 transiting giant
planets withPorb = 15–30 d.

4.2. Expected signal

Figure 4 shows the expected time variations inδ, τ , and
Tfull for our hypothetical close-in Saturn. Compared to the
TδV signal, the TDV signal has a smaller amplitude, and de-
pends on a larger number of parameters. The TτV signal has
a similar amplitude to the TδV signal, butτ cannot be mea-
sured as precisely asδ because of the relatively short duration
of the partial transit phases. Therefore we expect the TδV
signal to provide the best constraints on the planetary shape
parameters.

Depth variations of a few percent should be detectable.
Ground-based observations of individual transits have already
allowedδ to be measured to within 1% [see, e.g., Gillon et
al. (2009), Johnson et al. (2009), Winn et al. (2009)]. To es-
timate the precision with whichKepler can measure transit
depth variations, we simulated a transit light curve and aver-
aged it into 30 min bins, corresponding toKepler’s standard
time sampling. Then we added white noise with a standard
deviation of 95 ppm, as appropriate for a typicalKepler tar-

get (KIC r mag = 13), based on the early results of Welsh et
al. (2010) and Latham et al. (2010). By fitting a parameter-
ized model to the light curve we found that the transit depth
was recovered to within 0.6%. Over a 6 yr mission,Kepler
would observe≈130 transits with this precision.

4.3. Parameters and degeneracies

Next we discuss the “inverse problem” of inferring the plan-
etary shape and precession parameters from the observed TδV
signal. Fori = 90◦, the TδV signal is periodic with period
Pprec/2. For i 6= 90◦ the TδV period is actuallyPprec, but the
odd and even maxima have only slightly different amplitudes.
Hence the period of the TδV signal will revealPprec.

Three other characteristics of the TδV signal will help to
pin down the model parameters. First, the minimum observed
transit depth will reveal the parameter combination

δmin =k2 (1− f ) = k2
√

1− ǫ2. (13)

Second, the full range of transit depths determines a combi-
nation of f andθ,

[

δmax

δmin

]2

− 1 =
ǫ2

1− ǫ2
(sini sinθ + cosi cosθ)2

=
ǫ2

1− ǫ2

(

sin2θ +∆i sin2θ
)

+ O(∆i)2 (14)

≈2 f sin2θ,

where∆i = π/2− i is always small and can be measured pre-
cisely through transit photometry. Third, the phases at which
the maxima occur will determineφ0.

For∆i 6= 0 there are two other informative observables, at
least in principle. First, the phases at which the minima occur
depends slightly on∆i andθ:

φmin −φ0 = (2n− 1)
π

2
+
{

+∆i cotθ , n odd
−∆i cotθ , n even+ O(∆i)3, (15)

wheren =1, 2, 3,.... Second, there is a slight difference in
heights between odd and even maxima,

∆δmax=∆i
k2ǫ2sin2θ√
1− ǫ2cos2θ

+ O(∆i)3 , (16)

but these effects are very small in practice. For our Saturn
analog, assumingi = 88.97◦ (transit impact parameter = 0.5),
the difference in the maxima is smaller than 0.25%.

For ∆i 6= 0 there are a total of 6 observables listed above,
and it would be possible in principle (with arbitrarily precise
data) to determine all 6 model parametersk, f , θ, i, Pprec and
φ0. However, using our simulatedKepler light curve we find
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FIG. 4.— Variations in the transit light curve due to an oblate, oblique, precessing exoplanet. Plotted are the transit depth (δ), total duration (Tfull ) and ingress
duration (τ ) fractional variations (TδV, TDV, and TτV, respectively) that are expected for a uniformly precessing Saturn-like planet around a Sun-like star. The
time scale is based on the assumptionPorb = 17.1 days.

that f and θ cannot be determined independently, although
Eqn. (14) could be used to place a lower bound onf . The
degeneracy is illustrated in Fig. (5).

To break the parameter degeneracy, one possibility is to ar-
range for high-cadence, high-precision observations of atleast
one transit, seeking the slight oblateness-induced anomalies
that were described by Seager & Hui (2002) and Barnes &
Fortney (2003). Observations of a single light curve would
lead to constraints on the sky-projected oblateness and obliq-
uity [see Eqns. (7) and (8)], which, together with the TδV
signal, would uniquely determinef andθ. The best time to
schedule such observations would be near a minimum of the
TδVcurve, when the light curve anomalies are largest.

This would be a challenging task, as the amplitude of
the differences between the actual light curve and the best-
fitting model of the transit of a spherical planet would be
.100 ppm. For this specific example, evenKepler photom-
etry (with 1 min cadence) would be insufficient to detect the
anomalies in a single transit. By observing 10 transits near
the minimum of the TδV signal (during which time the sky-
projected quantities are constant to within 1%),Keplercould
detect the signatures of oblateness and obliquity at the 1σ
level, but the resulting constraints would be weaker than the
constraints determined by an analysis of the TδVsignal. A
significantly larger planet, or brighter host star, would bere-
quired for meaningful constraints.

Another possibility is to enforce additional physically-
motivated relationships between parameters. In particular, we
have already shown that the precession period is a function of
k, f , θ, C andJ2 [by combining Eqn. (2) with Eqn. (11)]. A
further condition can be imposed onf , C andJ2, such as the
Darwin-Radau approximation for planets in hydrostatic equi-
librium (Murray & Dermott 2000):

J2

f
= −

3
10

+
5
2
C−

15
8
C

2. (17)

Following this path, there are 8 model parameters (k, f , θ,
i, Pprec, φ0, C, J2) with 2 physically-motivated constraints

among them. However there are only 5 quantities that are
well determined from the photometric data [Pprec, φ0, f sin2θ,
k2(1− f ), i], leaving us still short by one observable or con-
straint from being able to determine all the parameters. For
example, if one were willing to assumeC = 0.23, then we find
from our simulatedKeplerdata thatf , θ, J2 andPprec can be
recovered with a precision of about 10%, andk is recovered
within 1%.

AssigningC a specific value is unrealistic, but for realis-
tic planets one expectsC to be smaller than 0.4 (Murray &
Dermott 2000). We repeated the analysis of our hypotheti-
cal TδVsignal, allowingC to be a free parameter restricted to
that range, with a uniform prior.1 In effect we averaged the
results over a range ofC deemed to be physically plausible.
As might be expected, a strong degeneracy was observed be-
tweenf andθ, as seen in Fig. (5). However, we were still able
to determineJ2 to within 10%, andk to within 2%.

5. DISCUSSION

In this paper we have investigated the observability of
changes to transit light curves resulting from the spin pre-
cession of an oblate, oblique exoplanet. The most readily
detectable signal is the TδVsignal, the variation in transit
depth due to the changing area of the planetary silhouette.
The planets that seem most likely to exhibit detectable effects
are those with periods between 15–30 days (around Sun-like
stars), which is short enough for precession periods to be 40yr
or less, and long enough to hope that tidal spin-orbit synchro-
nization has not taken place.

It is also important to consider other physical processes that
could give rise to TδV signals, and which might confound
the interpretation of the data. Starspots and other types of
stellar variability can produce transit depth variations.These
can be recognized and taken into account by monitoring the
star outside of transits, as is done automatically by theKepler

1 We also requiredJ2 > 0, which corresponds toC > 0.133 according to
the Darwin-Radau relation (Eqn. 17).
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FIG. 5.— Hypothetical constraints onf andθ, as determined by analyzing
a simulated TδVsignal measured byKepler. The signal was based on transits
of a Saturn analog on a 17.1-day orbit around a Sun-like star with KICr = 13
mag. The light gray region marks the 95% confidence region, using a model
that allow the parameters{k, f ,θ, i,Pprec,φ0} to be independent free parame-
ters. In this case only the productf sin2θ is well determined; the dashed line
satisfiesf sin2θ = constant. The dark gray region is the 95% confidence re-
gion, using a model that enforces the expected physical relationship between
TδVamplitude and period, as well as the Darwin-Radau relationand a re-
stricted range for the normalized moment of inertiaC. See § 4 for details.
The dotted lines mark the “true” values off andθ that were used to generate
the simulated TδVsignal.

satellite. We are not aware of any atmospheric phenomena
associated with the exoplanet that would result in variations
in the projected area at the 1% level, mimicking those due to
uniform spin precession.

However, we can think of two plausible phenomena that
would affect the TδV signal: moons and rings. If the planet
has any moons then the precession period may be shorter than
we have calculated. Satellites provide more leverage for the
star to torque the exoplanetary system. Mathematically, satel-
lites augment the effective values ofJ2 andC. Following
Ward & Hamilton (2004) we may write the enhanced values
asJ2 + j andC+ c, where

c=
∑

i

mi

Mp

(

ai

Req

)2 Prot

pi
orb

and (18)

j =
1
2

∑

i

mi

Mp

(

ai

Req

)2 sin(θ − Ii)
sinθ

(19)

wheremi , ai , Ii andpi
orb are the satellites’ masses, orbital radii,

orbital inclinations (relative to the planetary equator),and or-
bital periods.

For example, in the Saturnian systemj/J2 ≈ 3.2 while
c/C ≈ 0.01 such that (C + c)/(J2 + j) ≈ 3.2 (as compared to
C/J2 = 13.5). Titan alone is responsible for about 90% ofj
and c, shortening Saturn’s precession period by a factor of
four relative to a satellite-free Saturn.2 Fig. (3) shows the ef-
fect of Titan analogs at various distances around the Saturn
analog considered in this paper. The distances are expressed

as fractions of the Hill radiusrH . This effect might be used
to implicate the presence of exomoons, if a TδV signal were
observed and found to correspond to an effectiveJ2 too large
to be plausibly attributed to the planet alone.

Ring systems would increase the amplitude of the signal,

2 For Titan:ai/Req = 20.2, mi/Mp = 2.3×10−4, pi
orb/Prot = 38.3; Murray

& Dermott (2000).

while leaving the period unchanged. Optically thick rings
that lie within the equatorial plane of the planet would in-
crease the fractional variation of the sky-projected area,as
the planet precesses. In contrast to exomoons, ring systems
have little mass, and would not significantly reduce the pre-
cessional period. This is the situation in the Saturnian sys-
tem (Ward & Hamilton 2004). It is not certain that rings
could exist around planets having orbital periods between 15
and 30 days. Rings around planets with orbital periods less
than Porb ≈ 15 days would likely be short-lived as a result
of Poynting-Roberston drag amongst other destructive effects
(Barnes & Fortney 2004). Also, we would be unlikely to find
rings composed of water ice (e.g. Saturn’s rings) around plan-
ets whose orbits are interior to the snow line (< 1 AU). Nev-
ertheless, rings of other compositions may exist.

In short, rings and moons would each affect the observed
TδV signal, and in complementary ways. This may introduce
some ambiguity in the estimation of the shape parameters of
the rotating planet, but may also allow the rings and moons to
be detectable, issues that we leave for future work.

For simplicity we have considered only circular orbits.
Planets on eccentric orbits will undergo apsidal precession
and nodal precession, which will result in time variable stel-
lar torques on the planet and consequent modifications to
the spin-axis precession. For Saturn or Jupiter analogs at
Porb & 15 days, the apsidal and nodal precession periods are
&107 yr and therefore likely to be irrelevant (Ragozzine &
Wolf 2009).

In addition, we restricted our attention to the simplest case
of uniform spin precession, but in reality the perturbations
from other bodies may cause the spin axis to perform a more
complex ballet. For example, Mars’s spin axis tumbles chaoti-
cally (Touma & Wisdom 1992). Saturn’s moon Titan causes a
700 yr modulation of Saturn’s spin precession frequency, due
to its inclined orbit. Furthermore, Saturn’s spin axis may be
trapped in a resonance with Neptune’s orbit, causing it to li-
brate with an angular amplitude of&31◦ as it circulates about
the second Cassini state (Ward & Hamilton 2004). These
effects would be manifested as additional time dependences
(“noise”) in the TδVsignal. The effects are impossible to fore-
cast for exoplanets, depending as they do on the existence of
other bodies and any resonances that may occur.

We thank Dan Fabrycky, Darin Ragozzine, and members
of the MIT exoplanet discussion group, for helpful conversa-
tions. We also thank an anonymous referee for helpful com-
ments on an earlier draft of this manuscript.

APPENDIX

THE PROJECTION OF A SPHEROIDAL PLANET ONTO THE PLANE OF THE SKY

We model the planet as an oblate spheroid, illustrated in Figure (1). The sky plane projected shadow of the spheroidal planet is
bounded by an ellipse. The polar axis,ŝ, of the spheroid is tilted by the obliquity angleθ > 0 from the orbital axiŝn and by the
angleθ′ > 0 from the axiŝn′ which is perpendicular to the plane that is perpendicular tothe sky plane. Let̂y be the axis which
lies along the line connecting the center of mass and the observer. Letx̂ be the axis in the orbital plane whose projection into the
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plane perpendicular to the sky plane lies alongŷ. The angleφ is the angle through whicĥs is rotated about̂n andφ′ is the angle
through whicĥs is rotated about̂n′ such thatφ = φ′ = 0 corresponds to the orientation in which the spheroid is tipped towards the
observer (such that̂s is coplanar with botĥx andŷ). It follows that

cosθ= ŝ· n̂ (A1)
cosθ′ = ŝ· n̂′ (A2)

cosφsinθ= ŝ· x̂ (A3)
cosφ′ sinθ′ = ŝ· ŷ (A4)

x̂− ŷ= n̂ cosi − x̂ (1− sini) (A5)

wherei ≡ sin−1 x̂ · ŷ is the inclination of the orbital plane to the sky plane and where we have assumed the distance from planet
to star is much less than the distance from planet to observer. The following relationship between unprimed angles (measured
relative to the orbital plane) and primed angles (measured relative to the sky plane) may be derived from the above equations:

cosφ′ sinθ′ = sini cosφsinθ + cosi cosθ. (A6)

The polar axis of the spheroid is inclined relative to the plane of the sky by the angleθ′′ where

cos2θ′′ = 1− cos2φ′ sin2θ′ (A7)

= 1− (sini cosφsinθ + cosi cosθ)2 (A8)

If p̂ andq̂ are the orthonormal axes in the sky plane that are aligned with the axes of the ellipse bounding the planet’s shadow,
then a point (y, p,q) on the surface of the spheroid satisfies

(y′)2 + p2 +
(

q′

1− f

)2

= R2
eq (A9)

where

y′ =ycosθ′′ − qsinθ′′

q′ =ysinθ′′ + qcosθ′′,

Req is the equatorial radius andf is the oblateness parameter.
The analytic description of the closed curve bounding the projection of the planet on the sky plane may be found by solving

for the non-degenerate solutions ofy(p,q) in Eqn. (A9). Non-degenerate solutions correspond to points in the sky plane where
rays parallel witĥy intersect at exactly one point on the planetary surface and thus define the boundary of the shadow as seen by
the observer (who is located at a distant point alongŷ). As advertised, it may be shown that the collection of thesepoints satisfy
the equation of an ellipse,

p2 +
q2

sin2θ′′ + (1− f )2cos2θ′′
=R2

eq, (A10)

having major and minor axis lengths,A andB, satisfying

A=Req (A11)

B=Req

√

sin2θ′′ + (1− f )2cos2θ′′

=Req

√
1− ǫ2cos2θ′′

=Req

√

1− ǫ2
[

1− (sini cosφsinθ + cosi cosθ)2
]

(A12)

whereǫ ≡
√

1− (1− f )2.
The minor axis of the ellipse lies along the projection of thepolar axis onto the sky plane. The angle between the major axis of

the ellipse and the direction of orbital motion is given as

θ⊥ = tan−1 sinφ tanθ
cosφ tanθcosi − sini

(A13)

and the oblateness parameter of the ellipse,f⊥ ≡ (A− B)/A, is given as

f⊥ = 1−
√

1− ǫ2
{

1− [sinθcosφsini + cosθcosi]2
}

. (A14)

The boundary of the ellipse may be defined relative to the ellipse center via the parameter equations

X(s) =Req
[

cosscosθ⊥ − (1− f⊥)sinssinθ⊥
]

(A15)

Y(s) =Req
[

cosssinθ⊥ + (1− f⊥)sinscosθ⊥
]

(A16)
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for s∈ [0,2π] and whereX is the coordinate along the direction of orbital motion. Theradius,R‖, of the projection of the ellipse
onto the direction of orbital motion is equal to the maximum of X(s). This maximum occurs forsmax satisfying

tansmax=−(1− f⊥) tanθ⊥ (A17)

for which

R‖ ≡ X(smax) =Req

√

(1− f⊥)2sin2θ⊥ + cos2θ⊥. (A18)

The areal ratio of the spheroidal planet’s sky projection and the stellar disk is

δ =
πAB
πR2

⋆

=k2

√

1− ǫ2
[

1− (sini cosφsinθ + cosi cosθ)2
]

. (A19)

wherek≡ Req/R⋆.
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