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ABSTRACT

Knowledge of an exoplanet’s oblateness and obliquity waie clues about its formation and internal
structure. In principle, a light curve of a transiting plahears information about the planet’'s shape, but
previous work has shown that the oblateness-induced sigiliabe extremely difficult to detect. Here we
investigate the potentially larger signals due to planesain precession. The most readily detectable effects
are transit depth variations {V) in a sequence of light curves. For a planet as oblate asefupi Saturn,
the transit depth will undergo fractional variations of erd%. The most promising systems are those with
orbital periods of approximately 15-30 days, which is skeorugh for the precession period to be less than
about 40 years, and long enough to avoid spin-down due tbftidon. The detectability of the @V signal
would be enhanced by moons (which would decrease the presgsriod) or planetary rings (which would
increase the amplitude). Thé&epler mission should find several planets for which precessioiréed BV
signals will be detectable. Due to modeling degenerakiegler photometry would yield only a lower bound
on oblateness. The degeneracy could be lifted by obserlimnghlateness-induced asymmetry in at least one
transit light curve, or by making assumptions about thegtiaty interior.

Subject headingstars: planetary systems—techniques: photometric

1. INTRODUCTION 2. CHARACTERISTICS OF THE SIGNAL

Measuring the oblateness of exoplanets would further our We model the planet as an oblate spheroid, illustrated in
understanding of planetary formation, rotation, and imar  Figure [1). Theoblatenesgor flatnes} parameter is defined
structure. One possible measurement technique relies oras
the differences between the transit light curve of a spheri- _ Reg=Rpol
cal planet and an oblate planet with the same sky-projected f= T Ry (1)
area (Seager & Hui 2002, Barnes & Fortney 2003). However, a
the differences are minuscule, of order 200 parts per millio whereReq andRy are the equatorial and polar radii, respec-
(ppm) for a planet as oblate as Saturn, and 2 ppm for a “hottively. For rotationally-induced oblateness, a good agjpro
Jupiter” whose spin rate has been slowed by tidal frictida in  mation is
synchronization with its orbit. In a previous paper we shdwe )
that with this technique, even the best available light earv f = 3J N 1 qu 2m 5
are only barely sufficient to rule out a Saturn-like oblatmne T2 EG—MP Prot (2)
(Carter & Winn 2009). Those results pertained to the planet
HD 189733b, for which one would expect spin-orbit synchro- where M, is the mass of the planet ard is the planet’s
nization, and consequently the theoretical oblatenessawas zonal quadrupole moment (Murray & Dermott 2000, Hubbard
order of magnitude below the empirical upper limit. 1984). This approximation is valid for all the Solar System

In that work we also pointed out the potentially observable planets for whichf, J, andP,t have been measured precisely.
effects of a phenomenon that had been previously overlooked Theobliquity is the angle? between the polar axis and the
the precession of the planet’s rotation axis. Precession oforbital axis. The anglé specifies the direction of the projec-
an oblate planet causes the sky-projected area of the planedion of the polar axis onto the orbital plane. For a uniformly
to change over time, thereby causing gradual changes in therecessing planet, the case considered kieiea linear func-
depth and duration of transits. In this paper we investigatetion of time,
the observable manifestations of spin precession in a keroad ot
context. Section 2 describes the characteristics of theabig o(t) =
in terms of the properties of the star, planet, and orbittiSec
3 discusses the range of orbital periods for which the signal - accurate calculations of the transit light curve of an oblat
is most readily detectable, considering the timescales forgpheroid, including the effects of stellar limb darkeningye
precession and spin-orbit synchronization. Section 4gmss  peen presented by Seager & Hui (2002), Barnes & Fort-
simulated results for a specific case, a Saturn-like planetyey (2003), and Carter & Winn (2009). In this paper we are
observed by th&epler satellite. Section 5 summarizes and ot interested in high accuracy or in the slight differerioes
discusses the results. tween the light curve an oblate planet and a spherical planet

Instead we are interested in the order of magnitude of the var
ations in the transit depth and duration due to the changes in
the precessing planet’s sky-projected figure.
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FiG. 1.— Geometry of transits by an oblate spheroid. The plar@ientation is specified by the spin-orbit obliquity= cos™§- i, the anglep between the
projection of the spin axis onto the orbital plane and theareconnecting the centers of the star and planet at midtramel the orbital inclination relative to
the sky plane.

In the absence of limb darkening, the deptfis approxi- Seager & Mallén-Ornelas 2003)
mately the areal ratio between the sky projection of thetebla

spheroid and the stellar disk, R 12
P Tiun ~ (R*F::rb) [1+€”} -b2.

(10)

12 [1-.2 1 _[ei . 12
)=k \/1 € {1 [sing cosg(t) sini +cosf cosi] } (4) These approximations are valid as long as the transit isooot t

close to grazing. The fractional amplitude of theariations
wherek = Req/R, is the planet-to-star radius ratiojs the (TTV) is comparable to that of depth variationso{). The
orbital inclination with respect to the sky plane ané the amplitude of transit full-duration variations (TDV) depkn
ellipticity, on k andb, in addition tof and#, and therefore cannot be

e=/I-(1- 1) (5) summarized in a single contour plot such as Fidlire 2.

A derivation of this expression is given in the Appendix.+ig _ 3'_ THE OPTIMAL ORBITAL DISTANCE , o

urel2 shows the fractional amplitude of the transit deptiavar N this section we suppose that the planet's precession is

tions for the case= 907, as a function of and6. For Saturn- ~ caused exclusively by the gravitational torque from the $ta

like values of oblateness and obliquity, the depth vanetio order for the detection of precession-induce$ or TDVs

would be a few percent. to be feasible, the planet must be close enough to the star for
The transit duration will also vary over the precession pe- Precession to produce observable effects in a human liéetim

riod, due to the changing dimensi@) of the planet's sky However, if the planet is too close to the star, then tidagidis
projection in the direction of orbital motion: pation should slow down the planet’s rotation until it is syn

chronized with the orbital period, and drive the obliquity t
P zero, which would cause the signal to be undetectable. Hence
R = Req\/(l‘ f1)?sir0. +co$0,, (6) we must ask if there is a range of distances from the star that
is close enough for rapid precession, and yet far enough to
where avoid spin-orbit synchronization.
The spin precession period for a planet on a fixed circular

fL=1- \/1—62 {1-Isindcoss(D)sini +cospcosi]?| (7)  orbitis given by

2
_ sing(t) tand _133yr (C/J2> < Porb) <10 hr>
6, =tan* M 8 Porec= —— 11
L=tan cosp(t) tand cos —sini 8) Pr¢™ "cosd \ 135/ \ 15d Prot (11)

are the quantities describing the oblateness and obligdgity (Ward 1975), wher€q: is the planet's rotation period aridis
the projected exoplanet's shape. Derivations of theseesxpr its moment of inertia divided bMRZ, The numerical scal-
sions are also given in the Appendix. For a circular orbit, ing of 13.5 forC/J; is the estimated value for Saturn (Ward &
the ingress/egress duration (first to second contact, it tii Hamilton 2004). According to this expression, orbital pes

fourth contact) is approximately shorter tharP,, ~30 days will lead to rapid enough preces-
sion to be observed over decadal timescales, depending on

_ (RPom\ Ry Viop? 9 the planet’s obliquity and internal structure. In Hig. 3eth

=\ Tra R, ’ ) thick solid line shows the spin precession period as a fancti

of orbital distance, for an exoplanet with the saig C, J,,
wherePqy, is the orbital perioda is the orbital distance, and andf as Saturn. (The thin solid lines show the more rapid pre-
b = acosi/R, is the normalized impact parameter. The full cession rates produced by hypothetical planetary satg|ts
transit duration (first to fourth contact) is approximatéyg., discussed in EI5.)
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FIG. 2.— The fractional amplitude of transit depth variatiomg\(s), shown as a function of oblatene$$ &nd obliquity ¢) assuming the orbit is perpendicular
to the sky planei(= 90°). For reference, the astrological symbols show the shagergders of Solar System planets:- Mercury,@ — Venus,® — Earth,g —

Mars, % — Jupiter,h — Saturng — Uranus g — Neptune.

Orbital Period [days
20 [25y J

P, for Saturn—analog [yr] (Solid)
Spin—down time (T,) [Gyr] (Dashed)

0.16
a [AU]

FIG. 3.— The optimal orbital distance. The solid curves refetht® axis
on the left; they show the calculated spin precession pexsod function of
orbital distance for a Saturn-analog planet, with no stsl|thick line) and
with a Titan-like satellite (thin lines) orbiting at a spietl fraction of a Hill
radius. The dashed curve refers to the axis on the rightpivstthe calculated
timescale for tidal spin-orbit synchronization. The weatidotted line marks
the orbital distance for which the spin-down time is 1 Gyr.

The approximate timescale for tidal spin-orbit synchraniz
tion is

. Qp C S5hr_10hr
Ts RS 1.22 Gyr>< (1@5 0.25 Prot,i F)I‘Ot

(i) (Re) ()
(Goldreich & Soter 1966), wher®,, is the planet’s tidal dis-
sipation factor andP; is its initial rotation period, both of

which are highly uncertain.
Based upon Solar System constrair@g, is thought to be

in the range 10-500 for terrestrial planets, and>10° for

(12)

gas or ice giant planets (Goldreich & Soter 1966, Peale et

al. 1980, Yoder 1995, Mardling & Lin 2004, Ogilvie & Lin

model-dependentand also dependent on the frequency bf tida
oscillations. In setting the scale parameters in Ega. (12) w
adoptedQ, = 10°®, on the high end of current estimates, giv-
ing the longest (most favorable) synchronization timescal

The primordial spin period might be expected to be near the
rotational breakup limit, which is:3 hr for Jupiter (Murray &
Dermott 2000), although the effects of planetary contearcti
and disk-planet interactions should also be considered. Fo
Eqn. [12) we used a current rotation period of 10 hr (similar
to Jupiter and Saturn) and an initial period of 5 hr.

For 75 2 1 Gyr, it is reasonable to hope that the planet
has not yet been tidally spun down. Thus, with reference to
Eqns.[(I11) and(12), the “sweet spot” for observing the ¢ffec
of spin precession on the transit parameters B,at~ 15 d,
which is long enough to allow for rapid rotation, and short
enough to allow for rapid precession.

Of course the identification of a single optimal period is a
simplification. The existence and observability @iV and
TDVs depends on the particular mass and radius of the planet
under consideration and the observed age of the star, as well
as the parameters relating to the planet’s tidal dissipatie
ternal constitution, and initial spin period. The dashed in
Figure[3 shows the dependencergfon orbital distance for
the particular case of a Saturn analog. Tdble 1 gives some
numerical results for precession periods and synchraoizat
timescales for hypothetical close-in planets with prapsrt
similar to Solar System planets. If we requiRgec < 40 yr
and7s > 1 Gyr for observability, then from Tablg 1 we see
that the signal is potentially observable for Jupiter ani®a
analogs. For analogs of Uranus and Neptune, we expect the
signal to be unobservable unless the spin precession is made
more rapid by the presence of large satellites (See & 5). For
Earthlike planets the signal seems unlikely to be obseevabl
because of strong tidal dissipation.

4. A SPECIFIC EXAMPLE

In this section we examine the particular case of a hypo-
thetical, ringless, moonless, Saturn-like transitingpanet

2004, Jackson et al. 2008), although the results are strongl (f = 0.1, 6 = 27°) in a circular orbit around a Sun-like star



TABLE 1
RELEVANT TIMESCALES FOR THE OBSERVABILITY OF PLANETARY SPINPNRECESSION
Adopted planetary parameters far=1 Gyr for Porec= 40 yr

Planet analoy P,iOt [hr] Prot [hr] Qp C C/J Porec [yr] Porb [d] Porp [d] 75 [Gyr] Observable Range iRy [d]
Jupiter 5.0 10.0 1% 0.26 15.4 13.7 14.3 24.3 8.5 14-24.3

Saturn 5.0 11.0 g 0.22 135 15.7 17.1 27.3 6.5 1+=Pr7.3
Uranus 8.0 17.0 & 022 67.0 45.3 16.3 15.3 0.78 Néne
Neptune 8.0 16.0 f 023 68.0 43.8 15.3 14.7 &8 Noné

Earth 12.0 24.0 ®P 034 314 13,100 151 8.40 .®x10° Noné'

REFERENCES — Murray & Dermott (2000), Hubbard (1984), Yoder (1995), /& Hamilton (2004)
a Assuming no satellites

with Py = 17 d. This orbit is near the “sweet spot,” giving get (KICr mag = 13), based on the early results of Welsh et

Porec=17 yr andrs = 1 Gyr. al. (2010) and Latham et al. (2010). By fitting a parameter-
- _ ized model to the light curve we found that the transit depth
4.1. Likelihood of discovery was recovered to within.8%. Over a 6 yr missionKepler

First we must ask how likely it is that such a planet will be Would observe~130 transits with this precision.
discovered. Giant planets with periods between 15-30 d are .
already known to exist from Doppler surveys. At the time of 4.3. Parameters and degeneracies
writing, theexopl anet s. or g database has 8 such planets.  Next we discuss the “inverse problem” of inferring the plan-
Indeed one of them is already known to transit (HD 17156b; etary shape and precession parameters from the obsefved T
Fischer et al. 2007), although in that case tidal effects maysignal. Fori = 90°, the ToV signal is periodic with period
have slowed the planet’s rotation because the orbit is ighl Rye/2. Fori #90° the T8V period is actuallyPyrec, but the
eccentric and the pericenter distance is small. None of theodd and even maxima have only slightly different amplitudes
other 7 planets is known to transit, and the probability itat  Hence the period of thedV signal will revealPyec.
least one of them transits is approximately 23%. Given these Three other characteristics of thé\ signal will help to
facts and the recent acceleration in the discovery rategusin pin down the model parameters. First, the minimum observed
the Doppler method, it would seem likely that a transiting ga  transit depth will reveal the parameter combination
giant withP,, = 15-30 d will be discovered in the near future.

Of particular interest are the prospects for Keplersatel- Smin=K2(1—f) = k?V1-e2. (13)
lite mission (Borucki et al. 2010)Kepler searches for tran- . . .
siting planets by keeping:10° stars under nearly continuous Second, the full range of transit depths determines a combi-
photometric surveillance for at least 3.5 yr and possibly as nation of f and®),

long as 6 yr. To estimate the fraction of the target stardtast { s
max

a suitable planet, we used the power-law formulas given by
Cumming et al. (2008) for the abundance of planets of a given Smin
mass and period, which were derived from data from the Keck €2 ) o 5
Planet Search. The integrated value of (abundantensit =1 2 (si? 9+ Aisin2) +O(Ai)? (14)
probability) over the rang&, =15-30 d,Mp = 0.2-2M;y, ~ i?

is approximately 0.019%. Therefore, among the BY* Sun- ~2f i,

like stars in theKeplerfield, we expect10 transiting giant  whereAi = 7/2-iis always small and can be measured pre-

2 2
-1=_°"_(sinisind +cos cos)?
1-¢2

planets withPyr, = 15-30 d. cisely through transit photometry. Third, the phases attvhi
i the maxima occur will determingy.
4.2. Expected signal For Ai # 0 there are two other informative observables, at
Figure[4 shows the expected time variationsjjnr, and least in principle. First, the phases at which the minimauocc

Trn for our hypothetical close-in Saturn. Compared to the depends slightly or\i andé:

TV signal, the TDV signal has a smaller amplitude, and de- Aj dd
pends on a larger number of parameters. Th¥ Signal has dmin—do=(2n—-1) " + { +A! cotd, no

a similar amplitude to the 4V signal, butr cannot be mea- 2 | -Aicot?,neven
sured as precisely asbecause of the relatively short duration |\ oran=1 2 3
of the partial transit phases. Therefore we expect theé T AN .
signal to provide the best constraints on the planetaryeshap

+O(Ai)3, (15)

.. Second, there is a slight difference in
heights between odd and even maxima,

parameters. Abe = A| k?*sin 2 +O(AN)? (16)
i = Al —— 1)~
Depth variations of a few percent should be detectable. max /1-ec2c020

Ground-based observations of individual transits haeaally

allowed¢ to be measured to within 1% [see, e.g., Gillon et but these effects are very small in practice. For our Saturn
al. (2009), Johnson et al. (2009), Winn et al. (2009)]. To es- analog, assuminig= 88.97° (transit impact parameter =5),
timate the precision with whiclkKepler can measure transit the difference in the maxima is smaller than 0.25%.

depth variations, we simulated a transit light curve and-ave  For Ai #Z 0 there are a total of 6 observables listed above,
aged it into 30 min bins, correspondingkeplers standard  and it would be possible in principle (with arbitrarily pise
time sampling. Then we added white noise with a standarddata) to determine all 6 model parameters, 0, i, Pyec and
deviation of 95 ppm, as appropriate for a typi&apler tar- ¢o. However, using our simulatdgeplerlight curve we find
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FiG. 4.— Variations in the transit light curve due to an oblataljque, precessing exoplanet. Plotted are the transihdépttotal duration Tz, ) and ingress
duration ) fractional variations (3V, TDV, and TrV, respectively) that are expected for a uniformly preaggSaturn-like planet around a Sun-like star. The
time scale is based on the assumpfgp = 17.1 days.

that f andd cannot be determined independently, although among them. However there are only 5 quantities that are
Eqn. [14) could be used to place a lower boundfonThe  well determined from the photometric daByke o, f Sir’,
degeneracy is illustrated in Fidl(5). A k2(1-f), i], leaving us still short by one observable or con-
To break the parameter degeneracy, one possibility is t0 argraint from being able to determine all the parameters. For
range for high-cadence, high-precision observationsletat  oxample, if one were willing to assunie= 0.23, then we find
one transit, seeklng the slight oblaterjess-lnduced anesnal fom our simulateckepler data thatf, 6, J, andPyrec can be
that were described by Seager & Hui (2002) and Barnes & recovered with a precision of about 10%, dais recovered
Fortney (2003). Observations of a single light curve would \yithin 104,
lead to constraints on the sky-projected oblateness amg-obl  asgigning € a specific value is unrealistic, but for realis-
uity [see Eqns.[{7) and(8)], which, together with th&VT (¢ pjanets one expect& to be smaller than 0.4 (Murray &
signal, would uniquely determinand¢. The besttime to  permott 2000). We repeated the analysis of our hypotheti-
€al T6V signal, allowingC to be a free parameter restricted to
that range, with a uniform pridr. In effect we averaged the
results over a range @ deemed to be physically plausible.
As might be expected, a strong degeneracy was observed be-
tweenf andd, as seen in FigL{5). However, we were still able

TV curve, when the light curve anomalies are largest.

This would be a challenging task, as the amplitude of
the differences between the actual light curve and the best
fitting model of the transit of a spherical planet would be

<100 ppm. For this specific example, evéeplerphotom- 1, qeterminel, to within 10%, andck to within 2%.
etry (with 1 min cadence) would be insufficient to detect the
anomalies in a single transit. By observing 10 transits near 5. DISCUSSION

the minimum of the 3V signal (during which time the sky-
projected quantities are constant to within 1%#&plercould
detect the signatures of oblateness and obliquity at the 1
level, but the resulting constraints would be weaker than th
constraints determined by an analysis of thd/$ignal. A
significantly larger planet, or brighter host star, wouldrbe
quired for meaningful constraints.

Another possibility is to enforce additional physically-

In this paper we have investigated the observability of
changes to transit light curves resulting from the spin pre-
cession of an oblate, oblique exoplanet. The most readily
detectable signal is thedVsignal, the variation in transit
depth due to the changing area of the planetary silhouette.
The planets that seem most likely to exhibit detectablecedffe
are those with periods between 15-30 days (around Sun-like

motivated relationships between parameters. In partiouta stars), which is short enough for precession periods to lye 40

have already shown that the precession period is a function 0 ©" Ie?s, "’H‘d Ion?teEougrll to hope that tidal spin-orbit symchr
k, f, 8, C andJ, [by combining Eqn.[[R) with Eqn[{11)]. A  NZation has not takeén place. _
further condition can be imposed dnC andJ,, such as the Itis also important to consider other physical processais th

i fnati i - could give rise to BV signals, and which might confound
:Ijbarmvm (ﬁﬂ%??;y?%rg:(rm?ttggogr: planets in hydrostaticiequ the interpretation of the data. Starspots and other types of

stellar variability can produce transit depth variatiombese

» 3 5, 15, can be recognized and taken into account by monitoring the
T _E"' §® B @C : 17 star outside of transits, as is done automatically byigler
Following this path, there are 8 model parametdrsf( 6, 1 We also required, > 0, which corresponds @ > 0.133 according to

i, Pores @0, C, J) with 2 physically-motivated constraints the Darwin-Radau relation (Edn.117).



as fractions of the Hill radiusy. This effect might be used
0.20[ " ' ' ] to implicate the presence of exomoons, if &/Tsignal were
[ Y. ] observed and found to correspond to an effeclivimo large
5 1 to be plausibly attributed to the planet alone.
Ring systems would increase the amplitude of the signal,

©
o

2 For Titan: & /Req = 20.2, M /Mp = 2.3 x 1074, p, /Prot = 38.3; Murray
& Dermott (2000).
while leaving the period unchanged. Optically thick rings
that lie within the equatorial plane of the planet would in-
crease the fractional variation of the sky-projected aeea,
the planet precesses. In contrast to exomoons, ring systems

Oblateness f
o
S

0.05T

0.00[ L . . . have little mass, and would not significantly reduce the pre-
0 20 40 60 80 cessional period. This is the situation in the Saturnian sys
Obliquity 6 [degrees] tem (Ward & Hamilton 2004). It is not certain that rings

_ _ _ . could exist around planets having orbital periods between 1
Fie. 5 dg{’/p‘?thetica' Cons”g'gés Of"a”%?' as deferm'”gd bé ani'yz'”% and 30 days. Rings around planets with orbital periods less
a simulate signal measured bigepler. The signal was based on transits : :
of a Saturn analog on a 1I7day orbit e?round a St?n-like star with KIG=13 than POfb_z 15 days would I'kely be short-lived as a result
mag. The light gray region marks the 95% confidence regidngusmodel of Poynting-Roberston drag amongst other destructivetsife
that allow the parametef, f, 0,1, Porec, ¢o} to be independent free parame-  (Barnes & Fortney 2004). Also, we would be unlikely to find
ters. In this case only the produtsin? 6 is well determined; the dashed line rings composed of water ice (e_g_ Saturn’s rings) aroumﬂ-pla

satisfiesf sin? @ = constant. The dark gray region is the 95% confidence re- ets whose orbits are interior to the snow lirel AU). Nev-

gion, using a model that enforces the expected physicalaethip between : . :
TsVamplitude and period, as well as the Darwin-Radau relatind a re- ertheless, rngs of other compositions may exist.

stricted range for the normalized moment of ineftla See &% for details. In short, rings and moons would each affect the observed
The dotted lines mark the “true” values baindd that were used to generate T4V signal, and in complementary ways. This may introduce
the simulated 3V signal. some ambiguity in the estimation of the shape parameters of

he rotating planet, but may also allow the rings and moons to
e detectable, issues that we leave for future work.
For simplicity we have considered only circular orbits.
Planets on eccentric orbits will undergo apsidal precessio
and nodal precession, which will result in time variabld-ste

would affect the BV signal: moons and rings. If the planet lar torques on the planet and consequent modifications to

has any moons then the precession period may be shorter thal'® SPI-axis precessior. For Saturn or Jupiter analogs at
we have calculated. Satellites provide more leverage for th "o = 15 days, the apsidal and nodal precession periods are
star to torque the exoplanetary system. Mathematicaliglsa ~10" yr and therefore likely to be irrelevant (Ragozzine &
lites augment the effective values af and C. Following  Wolf 2009). _ _ _

Ward & Hamilton (2004) we may write the enhanced values [N addition, we restricted our attention to the simplesecas

satellite. We are not aware of any atmospheric phenomen
associated with the exoplanet that would result in vannstio
in the projected area at the 1% level, mimicking those due to
uniform spin precession.

However, we can think of two plausible phenomena that

asJ,+j andC +c, where of uniform spin precession, but in reality the perturbagion
from other bodies may cause the spin axis to perform a more

Pot complex ballet. For example, Mars’s spin axis tumbles dhaot
c= Z < > 0 nd (18)  cally (Touma & Wisdom 1992). Saturn’s moon Titan causes a

Req orb 700 yr modulation of Saturn’s spin precession frequenacy, du

sin@-1) to its inclined orbit. Furthermore, Saturn’s spin axis may b
=3 Z M (Re ) “sind_ (19) trapped in a resonance with Neptune’s orbit, causing it-to li

p a brate with an angular amplitude gf31° as it circulates about
the second Cassini state (Ward & Hamilton 2004). These
effects would be manifested as additional time dependences
(“noise”) inthe ToV signal. The effects are impossible to fore-
cast for exoplanets, depending as they do on the existence of
other bodies and any resonances that may occur.

wherem, a;, | andp'Orb are the satellites’ masses, orbital radii,
orbital inclinations (relative to the planetary equatand or-
bital periods.

For example, in the Saturnian systejil, ~ 3.2 while
¢/C =~ 0.01 such that@C +c)/(J + j) = 3.2 (as compared to
C/J, = 135). Titan alone is responsible for about 90%jof
andc, shortening Saturn’s precession period by a factor of We thank Dan Fabrycky, Darin Ragozzine, and members
four relative to a satellite-free SatUfirFig. (3) shows the ef-  of the MIT exoplanet discussion group, for helpful conversa
fect of Titan analogs at various distances around the Saturrtions. We also thank an anonymous referee for helpful com-
analog considered in this paper. The distances are exgressements on an earlier draft of this manuscript.

APPENDIX
THE PROJECTION OF A SPHEROIDAL PLANET ONTO THE PLANE OF THE SK

We model the planet as an oblate spheroid, illustrated inrgiffl). The sky plane projected shadow of the spheroidakpia
bounded by an ellipse. The polar axdspf the spheroid is tilted by the obliquity angle> 0 from the orbital axish and by the
angled’ > 0 from the axig¥ which is perpendicular to the plane that is perpendiculdinéosky plane. Ley be the axis which
lies along the line connecting the center of mass and thenadrsé etx be the axis in the orbital plane whose projection into the
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plane perpendicular to the sky plane lies algndhe anglep is the angle through whicéis rotated about and¢’ is the angle
through whichsis rotated about’ such thatp = ¢’ = 0 corresponds to the orientation in which the spheroigisai towards the
observer (such thdtis coplanar with bottk andy). It follows that

cosf=8§-n (A1)

cos?' =s-fi/ (A2)
cospsingd=§-x (A3)
cosy’sing’ =$.y (A4)
X=y=n cos —X (1-sini) (A5)

wherei = sint %y is the inclination of the orbital plane to the sky plane anderenwe have assumed the distance from planet
to star is much less than the distance from planet to obsefver following relationship between unprimed angles (roest
relative to the orbital plane) and primed angles (measweladive to the sky plane) may be derived from the above eojustti

cosg’ sinf’ =sini cospsind +cos cosh. (AB)

The polar axis of the spheroid is inclined relative to thenglaf the sky by the ang¥’ where
cog 0" =1-cog ¢’ sirt e’ (A7)
=1-(sini cospsind+cos cosd)? (A8)

If pandq are the orthonormal axes in the sky plane that are alignddtivit axes of the ellipse bounding the planet’'s shadow,
then a pointy;, p,g) on the surface of the spheroid satisfies

N
i () =R #9)

where
y =ycos?” —qsing”
g =ysind” +qcos”,

Req is the equatorial radius arfdis the oblateness parameter.

The analytic description of the closed curve bounding tteggation of the planet on the sky plane may be found by solving
for the non-degenerate solutionsygp, q) in Eqn. [A9). Non-degenerate solutions correspond totpdinthe sky plane where
rays parallel withy intersect at exactly one point on the planetary surface lamsldefine the boundary of the shadow as seen by
the observer (who is located at a distant point algndis advertised, it may be shown that the collection of thesats satisfy
the equation of an ellipse,

2
2 q _
e~ T (1-f)2co2¢” Rea (A10)

having major and minor axis lengthsandB, satisfying
A=Req (A12)

B=Reqy/sif0” + (1 f)2cog0”
=ReqV1-€?cog0”

:Req\/l—e2 {1—(sini cospsing +cos cos@)z} (A12)

wheree = /1-(1-f)2
The minor axis of the ellipse lies along the projection of pladar axis onto the sky plane. The angle between the majerdxi
the ellipse and the direction of orbital motion is given as

singtand

6, =tant — A13
L=tan cosptand cos —sini (AL3)

and the oblateness parameter of the ellijse= (A—B)/A, is given as
flzl—\/1—62{1—[sinecos¢sini+cos€cosi]2}. (A14)

The boundary of the ellipse may be defined relative to thpsdlicenter via the parameter equations
X(s)=Req[cOsscosd | — (1~ f,)sinssing, | (A15)
Y(S) =Req [cOsssing, +(1-f,)sinscosd | (A16)
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for s€ [0,27] and whereX is the coordinate along the direction of orbital motion. Tadius,R;, of the projection of the ellipse
onto the direction of orbital motion is equal to the maximuhXg¢s). This maximum occurs fagyax Satisfying

tansnax=—(1-f)tand (A17)
for which
Ry = X(Snad = Reqy/ (1~ 11)2si?0, +cogd.. (A18)
The areal ratio of the spheroidal planet’s sky projectiot gue stellar disk is
wAB
§=—
TRZ
=k2\/1—52 {1—(sini cospsiné +cos cos@)z] (A19)
wherek = Reg/R..
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