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Abstract

The Minimalist Program in current linguistic theory seeks to explain linguistic struc-
ture in terms of economy principles, under the assumption that the human language
faculty is a perfect system that performs only enough work to satisfy interface re-
quirements. We consider processing costs as a property of syntactic computation
and propose that these principles of economy may be met by the availability of al-
ternative operations, each favorable in different circumstances. We characterize the
basic Merge operation as a collection of three nested operations that apply to three
corresponding levels of nested syntactic data types. In this framework, we provide
an analysis of coordinate structure that uses a goal of minimizing processing cost to
explain a number of peculiar characteristics of coordination, including the Coordina-
tion of Likes Constraint, the Coordinate Structure Constraint, and apparent case and
agreement violations.
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Chapter 1

Introduction

An important question in current linguistic research is the concept of minimality, a

property both of linguistic theories and of language itself: a minimal theory employs a

minimum set of basic axioms from which observed characteristics may be derived, and

in a broad sense, a minimal system performs a minimum amount of work to meet the

conditions imposed by external systems that interact with it. In linguistics, the notion

has been applied to the derivation and representation of linguistic structure by the

human language faculty, the linguistic processing capabilities that distinguish humans

from other animals. The current Minimalist approach seeks to analyze linguistic

operations in a way that minimizes the computations that need to take place to

meet interface conditions imposed by the cognitive systems for sending and receiving

physical information-bearing signals among language users, and for developing and

operating on communicable concepts (Chomsky 1995).

In this study, we take a closer look at the processing costs of the primitive op-

erations and representations that combine to construct complex linguistic structure.

We examine basic combining operations and propose that the human language fac-

ulty may employ more than one such operation as different circumstances may favor

one over another due to lower processing cost, and which operation is preferred may

depend on relevant conditions such as the need to check features or categorial com-

patibility.

In contrast to previous approaches in Minimalism, we propose that the binary



branching resulting from the combinatory Merge operation is not ideal in all situa-

tions, and suggest that the properties of coordinate constructions may favor the use

of an alternative operation that constructs flat structures instead.

Chapter 2 discusses memory management and processing efficiency in relation to

recursive and iterative processes in computer science. We connect these notions with

processing in the human language faculty and consider the evolution of linguistic op-

erations as a development that favors efficient operations. We raise the question of

whether efficiency in processing should be regarded as a matter of processing perfor-

mance as opposed to the competence of a grammar, and argue that processing cost

may have a direct impact on grammatical properties. In particular, we distinguish

multiple-branching nodes from flat lists as a matter of grammar in that flat lists offer

more than one point of access to a structure.

In chapter 3, we provide an overview of coordinate structures from a number of

languages, and identify characteristics of coordination that distinguish it from other

kinds of linguistic constructions.

Surveying previous work on coordination in chapter 4, we identify problems aris-

ing from a characterization of coordination as having a necessarily binary-branching

structure. We also examine multidimensional treatments of coordination.

In chapter 5, we attempt to revise previous notions of primitive operations. Start-

ing with the approach taken by Hornstein (2009), we consider the advantages of

treating the Merge operation as the result of two more primitive operations: Con-

catenate and Label. We depart from this approach and consider syntactic objects as

forming three levels of data types, with nodes constituting the lowest level. We de-

fine three analogous operations-Concatenate, Append, and Project-that combine

objects at each of the three levels. The three operations together form a three-level

conception of Merge.

We argue that this three-level analysis treats each operation as involving opera-

tions at higher levels as subroutines. This avoids reduplication of similar tasks by

grouping identical tasks into distinct modules, and it naturally leads to a total order-

ing among the operations in terms of processing cost.



Applying this analysis to coordination, we argue that coordination is an appli-

cation of Append and not Project, as in recursive embedding structures. We give

examples of how derivations proceed with these operations, and demonstrate how our

characterization naturally explains a number of peculiarities of coordination, such

as the Coordination of Likes Constraint, the Coordinate Structure Constraint, and

unexpected case and agreement patterns.

In addition, we contrast our three-level Merge with Langendoen's (2003) charac-

terization of Merge as three alternative operations.

Finally, in chapter 6, we conclude the current exploration and suggest areas that

would benefit from future research, particularly further theoretical treatment of coor-

dination and other structures, computational modeling, and psycholinguistic experi-

mentation.
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Chapter 2

Minimality and Processing Cost

2.1 Minimality

The notion of minimality has been a central focus of contemporary linguistics, par-

ticularly in the Minimalist Program, a framework launched by Noam Chomsky in

the 1990s, developing out of the previous Principles and Parameters approach in

transformational-generative grammar (Chomsky 1995). The core idea of Principles

and Parameters is that all natural languages share a set of basic principles underly-

ing the production and comprehension of language-a universal grammar-and that

the variation observed across languages then arises out of a set of parameters that

configure how the principles apply in any individual language. This approach has

the advantage of addressing language universally as an attempt to understand the

workings of the human brain, the ability of children to acquire language from limited

examples, and the universality of characteristics across the world's languages.

Minimalism takes a further step and seeks to simplify the principles involved,

which in earlier stages of Principles and Parameters had grown to include operations

that apply in the course of deriving a syntactic structure but do not produce any

observable effects. A central goal of Minimalism is to relate the science of linguistics

more closely to other cognitive sciences and accordingly to examine linguistic opera-

tions in the context of computations performed by the human brain. In particular, it

focuses on the external interfaces to the language system: the articulatory-phonetic



system responsible for producing and receiving the physical sounds or signs that carry

linguistic information between language users, and the conceptual-intentional system

responsible for producing and encoding meaning in linguistic structure. Minimalism

assumes that the language system performs in an optimal manner in generating lin-

guistic structure that satisfies the needs of both interfaces. This optimal performance

can be characterized as meeting principles of economy of representation and deriva-

tion: the way in which a linguistic unit is represented must not contain extra pieces

of information that are not needed to interact with the external interfaces, and the

process by which complex structures are generated must not use any more operations

than necessary. In particular, individual steps in a derivation are optimized locally:

that is, given a set of possible completions of an intermediate structure, the compu-

tational system chooses the path that appears most economical at that point in the

derivation, rather than considering all possible derivations as a whole.

To minimize derivations, Chomsky (1995) proposes that the operations that pro-

duce syntactic structure can be reduced to a minimal set of primitive operations:

Select, Merge, and Move. These operations apply to assemble basic units into com-

plex structures that are ultimately interpreted by the two interfaces. The basic units

are lexical items pulled from the lexicon, a pool of units bearing semantic and pho-

netic information along with additional features to facilitate assembly into larger

structures. The initial input to a derivation is a numeration, a set of items drawn

from the lexicon along with indices to differentiate repeated items. The operation

Select introduces an item from the numeration into the current working domain so

that it can be used in constructing larger syntactic objects. The operations that com-

bine basic lexical items are Merge and Move. Merge takes two objects and combines

them into a larger object. To account for instances in which parts of a phrase are

dependent on others, such as the appearance of wh-phrases at the front of a sentence

when they are thematically associated with another part of the sentence, Chomsky

proposes a third operation, Move, that makes objects that are part of a derivation

available for future operations. These primitive operations can generate a wide vari-

ety of possible structures, so additional constraints need to exist to ensure that they



generate only grammatical structures: a derivation must converge at the interfaces

to be acceptable.

2.2 The Cost of Primitive Operations

Chomsky (1995: 226) states that "Select and Merge are 'costless'; they do not fall

within the domain of discussion of convergence and economy." However, in a frame-

work whose goal is to explain the nature of a physical system, especially its interfaces,

the question arises as to whether we should address in some way the physical demands

that these operations place on the linguistic components of the brain. Even though

we formulate the operations in theoretical terms, the operations must map to phys-

ical actions since derivations occur to interact with two physical systems. It seems

reasonable to allow that these operations may incur a processing cost and that this

cost is a factor in determining whether a derivation can take place.

If Select and Merge are the only possible operations of their kind, it may be

irrelevant to consider their cost, but could there exist alternative operations that

may be favorable? To answer this, we must distinguish these alternative operations

somehow. Leaving aside the question of possible alternatives to Select, let us examine

Merge in more detail and identify its characteristics.

The input to Merge is a pair of syntactic objects, and the output is another syn-

tactic object. In a hierarchical representation, Merge creates a node corresponding to

the larger object that has as children nodes corresponding to the constituent objects.

The result of applying Merge any number of times is a set of binary trees since the

only combining operation takes exactly two inputs. But are binary trees an ideal

representation for syntactic structure?

Chomsky accepts Kayne's (1984) proposal that binary branching is sufficient for

representing syntactic structure, and while its simplicity is desirable, the use of strict

binary branching does introduce characteristics that may be disadvantageous for pro-

cessing. Most importantly, a binary tree distinguishes among possible immediate

groupings of nodes: the Merge operation is not associative since applying it to pairs



of nodes in a different order results in a different binary tree. If this representation

corresponds to a physical representation in the brain, then resources are required

to maintain enough information to distinguish the correct representation from other

possible arrangements of the same units-unless distinguishing them is not neces-

sary, in which case the theoretical representation encodes more information than it

needs to, and it is unclear how the brain represents a corresponding structure holding

less information. If the binary-tree representation does not correspond to a physical

representation, then it may be preferable to adopt a representation that does. For

example, if a derivation produces a structure of the form [[A[BC]]D], its internal

representation must store enough information to distinguish this from [A[B[CD]]] or

[[[AB]C]D] or [A[[BC]D]]. This is necessary to differentiate among ambiguous sen-

tences like "I saw the cake with a telescope," which has at least two possible readings.

So in general, an operation that introduces hierarchy is desirable.

However, the need for hierarchy for one kind of linguistic construction does not

imply that hierarchy is desirable everywhere. In a construction in which it is not

necessary to distinguish among possible groupings of adjacent nodes, employing an

operation that necessarily generates binary-branching structure and a representation

that encodes such structure requires the brain to store more information than it

needs. If an alternative operation exists that serves the same purpose of assembling

nodes together but without creating hierarchical structure, it would be economically

preferable as no resources are wasted on maintaining unneeded information.

Let us suppose that such an operation is available and call it Concatenate. This

takes two nodes as input and assembles them without creating a larger node, simply

linking the inputs together into an ordered list. Any information that would have

been associated with a new node is absent. Successive applications of Concatenate

yield flat sequences of inputs in which groupings of adjacent inputs are irrelevant. To

be useful, this operation needs to change the structure of the input in some way. We

can simply assume that it serves the purpose of introducing a precedence relation to

two nodes. Without introducing a relative order, Concatenate would be commutative,

and its application to a set of n nodes would yield the same set, since neither order



nor grouping is relevant.

The number of possible distinct connected structures assembled from n items in a

predefined order, using only Merge, is the (n - 1)st number in the Catalan sequence

C = ( , which starts out as 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786,

208012, 742900, ... (Langendoen 1998). In contrast, using only Concatenate, only one

possible structure can be produced: a flat list. The amount of information needed to

distinguish among n possibilities is at least logarithmic with respect to n, or Q(log n),

so to maintain a representation for n items assembled using Merge requires resources

at least proportional to n, but only a constant amount for structures generated using

Concatenate. As the size of a structure grows, it becomes increasingly more costly to

maintain it if hierarchical information is needed.

Since hierarchical structure is a desirable but costly option, it would be advanta-

geous for the linguistic processor to choose among alternative operations in order to

minimize the resulting cost. Let us suppose that Concatenate is cheaper than Merge

by virtue of not needing to construct a new node. If in one situation, Concatenate

is sufficient, then there is no reason to use Merge since Concatenate is cheaper. If

relative grouping is necessary, then the cost of Merge is justifiable since Concatenate

fails to meet the requirements.

When might Concatenate be sufficient? This would be preferable in cases where

phrases are similar in some fashion and the order in which successive pairs are con-

nected does not matter. One linguistic example could be the phenomenon of coordi-

nation, in which phrases are connected using a conjunction, as in "The colors of the

rainbow are red, orange, yellow, green, blue, indigo, and violet." Here the ordering of

the individual colors is relevant, as a different order would not characterize a rainbow,

but it is not necessary to group the colors into smaller sets. So in this example, it

seems that avoiding Merge for the portion of the sentence listing individual colors

would be more economical than using it.

Coordination is a fairly tricky phenomenon that exhibits a number of features

absent from other syntactic structures and seems to violate rules that consistently

apply elsewhere. Let us examine its characteristics in more detail in chapter 3.



2.3 Recursion and Iteration

As far as we know, the human species is unique among Earth's life forms in having

the ability to develop and use language, a complex system of communication that

assembles basic units of meaning and sounds together according to established rules.

This form of communication meets the requirement of discrete infinity, the ability to

produce arbitrarily long constructions that remain governed by underlying structural

rules. One mechanism that allows this property to arise is recursion, in which struc-

tures of a given category may be nested within others of the same category to any

arbitrary depth. The apparent uniqueness of this mechanism in distinguishing the

complexity of human language from the systems of communication employed by ani-

mals has led Hauser, Chomsky and Fitch (2002) to propose that the human language

faculty alone contains the ability to handle recursion, and that recursion alone dis-

tinguishes the capabilities of human language from those of animal communication.

However, the hypothesis that recursion is a requirement for any human language is

not an uncontroversial claim. Research over the past few decades-from findings in

the Warlpiri language of Australia (Hale 1982) to more recent claims about the Pi-

rahs language of South America (Everett 2005)1-has raised the question of whether

recursion is indeed an essential component of a complete human language.

If we suppose the hypothesis to be false, we must then be able to account for the

structural complexity of languages without recursion. However, even if we suppose

the hypothesis to be true, we cannot exclude the possibility that natural languages

employ-in addition to recursion-an alternate mechanism of generating complex

structures.

Why might such a dual system evolve in the human language faculty? Suppose

that the process of recursion, R, demands a considerable processing cost CR(x) that

depends on the characteristics of a derivation x and that an alternative non-recursive

process NR requires a different cost, CNR(X). For two derivations x and y, suppose

that their characteristics are such that CR(x) < CNR(x) and that CNR(Y) < CR(Y).

'Though see Sauerland et al. (2009) and Nevins et al. (2009) for a refutation of Everett's claim.



Then assuming that derivations similar to x and y occur naturally in the course

of human language evolution and that neither type of derivation is dispensable, a

processing system that relies only on R or only on NR to perform all derivations will

operate at a higher cost than one that employs R for derivations like x and NR for

derivations like y.

Is there a measure by which recursion is more costly than an alternative non-

recursive process? To answer this, we can observe that an immediate requirement of

recursion is that the mechanism for extending the length of a sequence joins grouped

structures into a hierarchical structure that increases in height as new structures are

added to the existing structure. In particular, if we assume a binary tree representa-

tion of this hierarchy, then a structure of n elements must have a height of at least

e(log n). In effect, recursion is able to meet the criterion of discrete infinity, but at

a cost: the structures it generates are unbounded with respect to their height.

So far, we have not related this abstract notion of "cost" to any actual resource.

Now we may ask what practical consequences may arise from this necessary cost

and whether there are alternative approaches that demonstrate an improvement over

recursion. One possible limiting resource is short-term memory, which produces ob-

servable differences between people's ability to parse nested recursive structures and

tail-recursive ones, a topic to be addressed in section 2.4.

As Miller and Chomsky (1963) have noted, since language must interact with

the physical systems of the brain that handle production and logic, we expect that a

limited resource will have an impact on the ability of the language faculty to function.

If no such resource has any effect on the depth to which structures can grow, then

the necessary cost of constructing deep levels of recursion is inconsequential, and we

can conclude that recursion is the best mechanism that can satisfy the requirement

of discrete infinity. On the other hand, if there is a resource that can limit the

depth of an embedded structure, then we must examine alternative mechanisms to

see whether they satisfy the condition of discrete infinity while presenting a lesser

cost to the limiting resource.

One alternative would simply be that of joining structures in linear connections



without expanding the depth of the joined structure. This action could potentially

generate arbitrary-length sequences by extending them horizontally. We define as

iteration the process that joins a sequence of structures of the same category in this

way. Iteration is thus analogous to recursion in that iteration is repetition generated

by an operation of linear extension while recursion is repetition generated by an

operation of embedding. An iterative structure of n elements would then be bounded

only by a constant depth. This mechanism would thus offer an advantage over that

of recursion by not placing a demand on any resources related to the depth of a

structure.

A complete human language, however, must meet multiple criteria, and it is rea-

sonable to imagine that some criteria may be more easily met by embedding than by

linear extension, as a number of phenomena like c-command hold across nodes in a

hierchical structure. As a result, we have at least two competing mechanisms, each

of which offers advantages over the other. We may imagine that the human language

faculty, as a system evolved toward a goal of optimizing the use of its available re-

sources, makes use of both mechanisms in a way that takes advantage of the benefits

provided by either mechanism.

2.4 Grammar and Processing

A key distinction to be made when discussing comparative complexities of linguistic

structure is what characteristics should be assigned to a formal grammar that reflects

the underlying structure of language and what characteristics should be assigned

to the components of the language faculty that process the grammar and perform

the computations that link sound and meaning. The latter components involve the

functions of production-generating a structure from a set of atomic lexical elements

and transforming the structure into an output stream-and parsing-receiving an

input stream and constructing a corresponding structure. Both processes employ

an underlying grammar to relate a phonetic stream and its corresponding semantic

meaning.



A classic result from Chomsky (1956) proves that a finite-state grammar cannot

generate arbitrarily nested recursive sentences like

(2.1) The mouse [the cat [the dog chased] bit] ran.

This example requires a dependency between the subject the mouse ... and its

predicate ran. However, the subject can be modified by an embedded clause that in-

tercedes between the subject and the verb. This process can be continued indefinitely,

allowing an arbitrary number of nested dependencies. A grammar that generates sen-

tences of this type would need to keep track of a potentially unlimited number of states

in order to decide whether all dependencies are met, and a finite-state grammar is

not capable of this.

A sentence like (2.1), however, proves difficult or impossible for a human to parse.

One may conclude from this that a human grammar is not actually capable of generat-

ing recursive structures to any arbitrary depth but that the grammar is a finite-state

grammar after all, one with many states. Such a characterization may satisfy the

experimental evidence, but it would require an exponential number of states, imprac-

tical for a natural system acquired with ease by children.

Alternatively, the entire language faculty may be characterized more simply as

the interaction of a more complex grammar, such as a context-free grammar, and

a processing component with limitations imposed by resources such as short-term

memory, or a finite-state transducer. These limitations produce the difficulty observed

with processing sentences like (2.1).

One may compare the complexity of (2.1) with an analogous tail-recursive struc-

ture like (2.2):

(2.2) The dog bit [the cat that chased [the mouse that ran]].

(2.2) is much easier to process than (2.1), and by drawing (simplified) trees to repre-

sent these structures, we can characterize the difference:



ran

the

mouse

bit

the

cat

chased

(2.3) the dog

the dog chased

the

cat

that

bit

the

mouse

(2.4) that ran



In (2.3), dependencies between nodes can grow without bound, but all depen-

dencies in (2.4) are local, limited by a constant number of intervening nodes. We

may conclude that a constraint imposed by short-term memory limits the ability to

process long-distance dependencies, producing the disparity observed.

However, both (2.3) and (2.4) share the characteristic of involving embedding to

the same degree. If we suppose that the depth of a structure itself poses a considerable

cost to a resource like short-term memory, as Langendoen (1975) notes, then even a

structure like (2.4) will exceed the capacities of short-term memory, which has to store

the entire depth of the embedded structure. We may wish to find a structure that

limits the depth of an expanding structure rather than simply directing the expansion

to one side. In short, we would like an ideal structure resembling the following:

(2.5)

ran

the cat bit the mouse
the dog chased

the mouse
the cat

In (2.5), the longest vertical path of successive edges is bounded by a constant,

regardless of the number of additional clauses added. If we suppose that short-

term memory only needs to handle the depth imposed by each disconnected clause

individually, conserving its resources to process each one in turn, then there is no

limit to how many clauses can be assembled together.

Langendoen (1975) proposes that while the underlying grammar of a language

generates embedded structures of the type seen in (2.3) and (2.4), the processing

component applies readjustment rules to produce intermediary structures like (2.5).

These readjustment rules transform the underlying embedded structures into individ-

ual components like the ones in (2.5) so that short-term memory limitations apply

not to an entire structure like (2.4) but to the intermediate structures produced by



the processing component of the language faculty. The readjustment rules in question

cannot apply to a structure like (2.3) due to its long-distance dependencies, so the

processor cannot conserve short-term memory by applying a rule. This would explain

the difficulty of processing a sentence like (2.1) but not one like (2.2).

Do the readjustment rules then allow the grammar to generate embedded struc-

tures without any concern for their processing? We may conclude this only if the

readjustment rules themselves place no demands on processing resources. Since the

rules are an operation of the processing component of the language faculty, we cannot

reasonably make such an assumption, so let us assign a cost to the readjustment rules

themselves, CRR. For simplicity, let us assume that this cost is the same for every

individual readjustment of a structure.

To return to the question of whether human language structure should be char-

acterized only by recursion, let us suppose that language is indeed characterized only

by recursion and that every sequence of n clauses is generated by a grammar that

constructs an underlying structure of n embedded clauses. To meet the constraints

imposed by short-term memory, the processing component must then apply 0(n)

readjustment rules to flatten the entire structure, if the structure uses no nested

embedding.

Ultimately, adding readjustment rules still requires a processing overhead that

grows with the size of a structure. This overhead is limited at any point in time

because rules can be distributed and spread out over a period of time, but the net

result is that the processor must meet a necessary cost imposed by the readjustment

rules.

Alternatively, let us suppose that the underlying grammar does not require com-

pletely embedded structures for every possible grammatical sequence of language,

but that some structures may be reflected by underlying forms similar to (2.5): sep-

arate structures (themselves formed from embedding) that are linked together in a

fashion other than embedding. 2 Given these underlying forms, and assuming that
2 See Langendoen (2008) for a more recent approach that formally relates embedding structures

to flat structures accessible to finite state transducers. Langendoen argues that bounds on center
embedding follow from more natural bounds on zigzag embedding. Our approach differs, however,



a representative form does not have a depth of embedding in any of its constituent

structures that exceeds the limitations of short-term memory, there is no reason to

apply readjustment rules because the limitations enforced by short-term memory are

not in danger of being violated. The total cost to the processor is thus reduced with

respect to a tail-recursive structure like (2.4).

Is there experimental evidence that such a process is going on? As a simple

example, let us suppose that conjunctions like and are a way of connecting separate

structures without embedding. Then we would have, as an analogous structure to

the embedded example (2.2), the following:

(2.6) The dog bit the cat, and the cat chased the mouse, and the mouse ran.

To test the processing requirements of (2.6) versus (2.2), let us extend each example

into an infinite stream:

(2.7) The dog bit the cat [that chased the mouse that ran after the dog that bit the

cat] ...

(2.8) The dog bit the cat, [and the cat chased the mouse, and the mouse ran after

the dog, and the dog bit the cat, ] ...

Given that readjustment rules demand an additional processing cost that can

be spread out over time, we may ask what happens when we shorten the available

time. The total processing cost would remain the same, but the processor is not

permitted to spread the cost over a long period. The cost per unit time must increase

to compensate. However, the limitations of short-term memory are themselves time-

dependent since they arise from a limited capability of handling multiple items at

once rather than multiple items at separate points in time. By compressing the time

window in which a number of readjustment rules must take place, we must eventually

force the readjustment cost to exceed the short-term memory limitations.

in that we do not allow any level of embedding among coordinands in a coordinate structure while
Langendoen does allow coordinate embedding to a finite degree. Ultimately this may be a question of
whether the information content of coordinate grouping has a syntactic representation; see section
5.7 for a discussion of logical hierarchy and flat syntactic structure. Langendoen also does not
address the possibility of coordinating different categories, while we offer a tentative explanation for
observed multiple-category coordinate constructions in section 5.7.



By this reasoning, we would expect that if someone tries to parse (2.7) as fast

as possible, repeating the bracketed section indefinitely, the structure would unravel

into incoherence very quickly. However, by our assumption that (2.8) imposes no

requirement to apply readjustment rules, we would expect that someone trying to

parse (2.8) at the same rate at which (2.7) becomes incoherent, (2.8) will still remain

considerably coherent and will only become incoherent at a faster rate at which an-

other processing resource common to the processing of both (2.7) and (2.8) becomes

exhausted.

Psycholinguistic experiments may be devised to determine how well people per-

form on such a task and compare results for structures we propose to be grammati-

cally flat versus those with embedding structure; see chapter 6 for a brief discussion

of possible experimental approaches.

2.5 The Cost of Node Construction

In arguing for a grammatical representation of flat structure, we must distinguish

between n-ary branching tree structures, where n > 2, and flat structures that do not

have a node dominating a number of others. One can argue that this is merely a choice

of representation, and that grammatically the two are equivalent. However, the two

structures do have distinct characteristics that lead to distinguishable consequences

in grammar.

In syntax, complex objects that are used in a derivation do not expose their

entire contents to syntactic operations; rather, a complex object has a point of access

which represents the object to operations that apply to it. Accordingly, we observe

locality effects such as internal, unprojected features of a phrase remaining invisible

to operations applied to the phrase.

In a tree, the most natural point of access is the root, a single node that is

representative of the whole tree in some fashion, and allows the tree to form a part

of a larger tree simply by making the root a node in the larger tree. A non-root node

cannot be made a node in a larger tree without structural rearrangement.



In a flat list, on the other hand, there is no single node that is representative of

the entire list, so it is not obvious how to isolate a single point of access. Structurally,

there are two types of nodes within a flat list: endpoints and interior nodes. Interior

nodes are connected to two other nodes each, but endpoints are only connected to

one. The simplest way to form a flat list into part of a larger flat list is identify it

with a node in the larger flat list. This does not change any of the connections of

the interior nodes, but it introduces new connections to one or both of the endpoints.

So we can think of flat lists as having two points of access for syntactic operations.

Since the two endpoints are distinguished by their relative order, we may expect to

find grammatical differences between operations that apply at the front of a flat list

and ones that apply at the end of a flat list. In chapter 5, we suggest that this may

explain certain peculiar features of coordinate constructions.
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Chapter 3

Characteristics of Coordination

3.1 Basic Features

On the surface, a coordinate construction contains at least two phrases (coordinands)

along with coordinators, particles or affixes that express a relationship among the

phrases (Haspelmath 2004). Syndetic coordination occurs when at least one overt co-

ordinator appears, while asyndetic coordination juxtaposes the coordinands without

an overt coordinator, as in this example from Lavukaleve, a Papuan isolate spoken in

the Solomon Islands:

(3.1) nga-bakala nga-uia tula
1SG.POSS-paddle(M) 1SG.Poss-knife(F) small.SG.F

"my paddle and my small knife" (Terrill 2004: 431)

When an overt coordinator appears in a coordination of two coordinands, it may

appear once (monosyndetic coordination) or twice (bisyndetic coordination), as in

these respective examples from Iraqw, a Southern Cushitic language of Tanzania,

and Upper Kuskokwim Athabaskan, an Athabaskan language spoken in Alaska:

(3.2) kwa/angw nee du'uma
hare and leopard

"the hare and the leopard" (Mous 2004: 116)



(3.3) dineje ?I midzish ?I

moose with caribou with

"moose and caribou" (Kibrik 2004: 539)

More than two coordinands may appear, in which case bisyndetic coordination

has one coordinator for every coordinand, and monosyndetic coordination one fewer.

These analogous examples to (3.2) and (3.3) demonstrate coordination with multiple

coordinands:

(3.4) Kwermuhl, nee Tlawi, nee Dongobesh, nee Haydom nee Daudi
Kwermuhl and Tlawi and Dongobesh and Haydom and Daudi
"Kwermuhl, Tlawi, Dongobesh, Haydom, and Daudi [places]"(Mous 2004: 113)

(3.5) maladija ?1 jamena ?1 denk'a
tent with stove with gun

"a tent, a stove, a gun, and dog food"

?1 leka mama? I
with dog food with

(Kibrik 2004: 539)

In monosyndetic coordination in many languages, omission of all coordinators

except the last may occur, as in the English glosses of (3.4) and (3.5), but this op-

tion is not available in all languages, as in Hakha Lai clauses (Peterson and VanBik

2004). Omission of coordinators in bisyndetic coordination seems impossible in gen-

eral (Haspelmath 2004).

Many languages that have monosyndetic coordination also allow the option of

bisyndetic coordination for the same structures, as in French and Japanese, respec-

tively:

(3.6) Jean connait et Paul et Michel.
Jean knows and Paul and Michel

"Jean knows Paul and Michel." (Kavne 1994: 58)

(3.7) John to Mary to ga kekkonsita.
John and Mary and NOM married

"John and Mary married." (Kayne 1994: 58)



The coordinator is usually associated with one of its adjacent coordinands, but not

both, and intonational phrasing can be used to demonstrate that a coordinator is as-

sociated with one of the adjacent coordinands. For example, in English, coordinators

attach to the coordinands that follow them, which we can determine by separating

the coordinands:

(3.8) John left, and he didn't even say goodbye.

(3.9) John left. And he didn't even say goodbye.

(3.10) *John left and. He didn't even say goodbye. (Ross 1986: 100)

This is an example of a prepositive coordinator. Postpositive coordinators attach to

coordinands that precede them, as in Japanese:

(3.11) remon iro-to miruku t'i
lemon color-and milk tea

"lemon color and milk tea" (the title of a 2004 song by Morning Musumeo)

3.2 Properties and Peculiarities

Coordinate structures exhibit a number of interesting properties, some of which differ

greatly from structures that can easily be accommodated in a hierarchical framework.

One example is c-command, a relation that holds between a node and any child

of its parent. As an example, in domains licensing polarity items, a negative polarity

item (NPI) must be c-commanded by an NPI licensor while a positive polarity item

(PPI) cannot be:

(3.12) *He chased nobody and/or any dogs.

(3.13) He chased nobody and no dogs.

(3.14) Nobody chased any dogs.

(3.15) *Nobody chased no dogs. (Progovac 1998: 1/3)



In these examples from Standard English, the NPI any must be licensed by nobody,

but the PPI no cannot appear in the domain of nobody. We can observe this distri-

bution in (3.14) and (3.15). When a coordinate structure is introduced, however, as

in (3.12) and (3.13), we find that there is no c-command relation between the coordi-

nands, so that any and no are not licensed, resulting in any being unacceptable and

no being acceptable.

This observation would be a problem for any model of coordination in which the

first coordinand heads the larger coordinate phrase. As Hornstein (2009) argues,

c-command arises naturally as a consequence of having primitive operations that

combine to generate hierarchical structure, so c-command must be present in any

structure that employs the same recursive combining operation that yields structures

with typical c-command effects.

A common feature of coordinate structures is the similarity in category across co-

ordinands. Coordinands usually must be of the "same" category, e.g. a noun phrase

(NP) with another noun phrase or an adjective phrase (AP) with another adjective

phrase, though a precise definition of "same" is unclear. This is known as the Coordi-

nation of Likes Constraint (CLC) (Chomsky 1957). However, the constraint appears

to be violated in certain kinds of coordinations:

(3.16) You can depend on [my assistant] and [that he will be on time].

(3.17) *You can depend on that he will be on time. (Progovac 1998: 1/5)

Here, a determiner phrase (DP) and a complementizer phrase (CP) are coordinated

despite being of distinct categories. Furthermore, the ungrammaticality of (3.17)

shows that the CP cannot appear by itself but is somehow acceptable within a coor-

dinate structure. However, it cannot appear as the first coordinand:

(3.18) *You can depend on [that my assistant will be on time] and [his intelligence].

(Progovac 1998: 1/4)

Another example of different categories being conjoined is the following, in which a

DP predicate and an AP predicate are conjoined:



(3.19) Pat is [a Republican] and [proud of it]. (Sag et al. 1985: 117)

Coordinate structures also exhibit some unusual agreement characteristics. A

conjunctive phrase of two singular conjuncts can agree with a plural verb, when

either conjunct by itself would be unacceptable:

(3.20) A teacher and a student are/*is here discussing linguistics.

(3.21) A teacher *are/is here discussing linguistics.

(3.22) Two teachers are/*is here discussing linguistics.

However, the position of the verb with respect to the coordinate phrase reverses this

effect:

(3.23) There *?are/is a teacher and a student here discussing linguistics.

(3.24) There *are/is a teacher here discussing linguistics.

(3.25) There are/*is two teachers here discussing linguistics.

The asymmetries with respect to relative verb position also appear in a number of

other languages, as in Arabic:

(3.26) el-walad we-l-banaat gataluu el-bisse
the-boy and-the-girls killed-3PL/MASC the-cat

"The boy and the girls killed the cat."

(3.27) el-banaat we-l-walad gataluu el-bisse
the-girls and-the-boy killed-3PL/MASC the-cat

(3.28) gatal el-walad we-i-banaat el-bisse
killed-SG/MASC the-boy and-the-girls the-cat

(3.29) gatalen el-banaat we-l-walad el-bisse
killed-PL/FEM the-girls and-the-boy the-cat

(Progovac 1998: 1/4)



Case mismatch also occurs in coordinate structures. Accusative Case may appear

on a DP in subject position or nominative Case on a DP in object position; the

expected Case of a DP may fail to be acceptable once it is conjoined with another,

and Case may differ across coordinands in the same structure (Progovac 1998):

(3.30) A notice arrived for him and I.

(3.31) Me and her went to the store.

(3.32) *?I and she avoided going outside.

(3.33) She and him are best friends.

(3.34) Him and I found the solution.

This phenomenon occurs cross-linguistically and shows systematic patterns. De-

scribing data from 32 languages, Johannessen (1998) demonstrates a correlation be-

tween verb-object order and the position of a deviant conjunct; out of 14 VO (verb

before object) languages, all place the deviant conjunct in the second position, while

11 out of 12 OV (object before verb) languages place the deviant conjunct in the first

position. The remaining 6 languages have mixed or unclear word order. This shows

that in general case-checking is stronger between the verb and the closer conjunct. In

coordinate constructions in subject position, however, the judgments are less clear.

Progovac (1998) notes that judgments may differ across speakers, that the level of

acceptability may be unclear even to a single speaker, and that Johannessen's analysis

may be falsified by differing judgments.

Another parallel between verb-object word order and coordination is the attach-

ment of coordinands. Progovac (1998) observes that the relative order of conjunctions

and their associated conjuncts generally matches the relative order of verbs and ob-

jects, suggesting that coordinators occupy a head position in a phrase.

In addition to these differences, the Coordinate Structure Constraint (CSC) pro-

hibits the movement of coordinands within a coordinate structure and movement of

parts of coordinands outside of the coordinate structure (Ross 1986). An exception



to the constraint is Across-the-Board (ATB) movement, which allows extraction only

when it takes place out of all coordinands:

(3.35) Which pancake did Airi prepare _ and Koharu devour _?

(3.36) *Which pancake did Airi prepare _ and fry potatoes?

(3.37) *Which pancake did Airi fry potatoes and prepare _ ?

Acceptable examples similar to (3.37) exist, such as in (3.38) and (3.39):

(3.38) How many pancakes can you eat - and still have an appetite?

(3.39) How many pancakes can you sit at the table and eat __ ?

However, as Postal (1998) argues, examples like this one are not true coordination,

but rather an example of modification by an adjunct. If we assume the CSC to hold

with only the exception of ATB movement, then it would be preferable to have a

theory that can account for this fact.
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Chapter 4

Previous Analyses

4.1 Problems with Binary Branching

As argued by Kayne (1984) and subsequently adopted in Chomsky's (1995) formu-

lation of Minimalism, binary branching arises as a consequence of a requirement for

unambiguous paths to exist between any pair of distinct nodes. Kayne (1984: 132)

defines a path as a sequence of adjacent nodes, and an unambiguous path in a tree T

as a path P = (Ao ... Ai, Ai+ 1 ,... An) such that

(4.1) Vi, 0 < i < n:

(a) if Ai immediately dominates Ai+1, then Ai immediately dominates no

node in T other than Ai+1, with the permissible exception of Ai_ 1;

(b) if A is immediately dominated by Ai,, then Ai is immediately

dominated by no node in T other than Ai+1, with the permissible

exception of Ai-1.

Informally, an unambiguous path is one that never has to choose among possible

branches extending in the same direction. Since multiple upward branches are not

possible in a binary tree, there is always an unambiguous path from a node to an

ancestor of the node. In addition, immediate children of an ancestor are reachable by

an unambiguous path, but only if the branching is binary, since having three or more



branches allows for more than one possible alternative at an ancestor node. Kayne

treats this as a simpler reformulation of the c-command relation, and concludes that

there can only be binary branching in phrase structure as a consequence.

While this argument is reasonable, it assumes that phrase structures exhibit a

feature that trees must possess for this definition to apply: directionality. Without

directionality, one cannot determine which of two adjacent nodes dominates the other.

Hence the argument relies on an assumed property that may not actually characterize

the structure of phrases.

If we remove the requirement of directionality, this allows two nodes to be adjacent

without having one dominate the other. A sequence of adjacent nodes in which this

property does not hold can be represented as a flat connected list.

Thus, while Kayne's argument holds for tree structures like (4.2), it does not hold

for list structures like (4.3). In fact, as formulated, the unambiguous path constraint

does hold between nodes B and D, since there is only one branch to choose from at

any node.

A

(4.2) B C D

(4.3) B-C-D

Following the definition strictly, however, we see that the existence of an unam-

biguous path follows vacuously since no node dominates another in this flat list. On

the other hand, for every pair of adjacent nodes in a tree, one must dominate the

other, so one of the two cases in the definition must hold. So how the concept of an

unambiguous path applies to a flat list is unclear, and the apparent lack of c-command

between coordinands suggests that there is no unambiguous path in the same sense

as for a tree.1

Assuming that Kayne's argument holds for tree structures but is not sufficiently

defined for flat lists, we can conclude that if the property of directionality is not

'See Progovac (1998) for a discussion of approaches arguing for and against c-command in coor-
dinate structure.



assumed, phrase structure can exhibit binary-branching structures and flat structures,

but not n-ary branching trees where n > 2.

4.2 Multidimensionality

A number of authors have treated phrase structure as exhibiting multidimensionality,

having a third dimension by which nodes can be connected, independent of the dom-

inance relation between a node and its parent and the adjacency relation between a

node and its sibling. Goodall (1987) characterizes coordinate constructions as being

a set union of phrase markers: a coordinate phrase is then an overlaying of one phrase

on top of another and a merging of identical elements.2 For example, a corresponding

diagram for (4.4) would be (4.5).

(4.4) Airi prepared, and Koharu devoured, the stack of pancakes.

Airi baked
(4.5) the stack of pancakes

Koharu devoured

This analysis conveniently explains Right Node Raising and the lack of c-command

between coordinands since they remain on separate levels, but it fails to sufficiently

characterize the nature of the operation that overlays one coordinand on the other. An

analysis by de Vries (2008) characterizes this operation as behindance, which assembles

phrases along a third dimension; de Vries distinguishes two primitive operations:

dominance-Merge and behindance-Merge. The former assembles hierarchies in which

dominance-based conditions hold, and the latter performs an analogous operation but

along an independent dimension immune to c-command. Each operation, however, is

a form of Merge that connects two nodes into a larger node. Resulting structures in

this formulation are still binary trees, but with two kinds of nodes: the type of each

node determines the dimension along with its children extend.

This approach does raise some questions. It is not clear how this differs from

dominance-Merge, or how properties like the CLC and CSC can be explained. If
2 See also Lasnik and Kupin (1997). Fong and Berwick (1985) provide an implementation of these

ideas in Prolog and further discussion.



situated within a Minimalist framework, questions arise concerning the economy of

behindance-Merge: what economic considerations motivate the availability of behindance-

Merge, and why is dominance-Merge unsuitable?

Furthermore, strict binary branching still exists in this model, and there are re-

sulting problems outside of c-command.



Chapter 5

Primitive Computations

5.1 Beyond Merge and Move

The primitive Merge and Move operations of Chomsky (1995) have not gone un-

challenged. A copy theory of movement has emerged in which the Move operation

is regarded as involving an underlying primitive operation of Copy, which copies el-

ements in the working domain so that they can be accessed in future stages of a

derivation. Move would then result from applying Copy to a phrase in the working

domain, then later on applying Merge to connect the copy to the larger structure that

contains the original copied phrase (Nunes 2004).

Hornstein (2009) takes this basic idea a step further and breaks down Merge into

more primitive elements: Concatenate and Label. As a result, the three primitives

Copy, Concatenate, and Label combine to produce Merge and Move. Merge arises

when Concatenate links two objects and Label combines the two into a larger object.

Move occurs when Copy duplicates an object and Merge later combines the duplicate

with a larger object that contains the original. An advantage of treating Merge and

Move in this manner is that one can separate processes that appear in the cognitive

systems of non-human animals from those unique to humans. The simpler the pro-

cesses that make humans unique, the easier it is to explain how such an evolutionary

leap could arise, since organisms evolve by developing often gradual changes that are

retained across generations if beneficial.



Hornstein suggests that Copy and Concatenate are simple enough processes that

may already appear in the communication systems of non-human animals, whose com-

munication patterns exhibit features of connecting utterances in an ordered fashion

(Concatenate) and duplication of utterances (Copy). Leaving the Label operation as

the sole invention of the human language faculty, Hornstein suggests that this simple

operation of constructing atomic units out of smaller ones emerged as an evolved trait

specific to humans and is the basis for the complexity of language.

The nature of Label and what mental processes underlie it is a more challenging

question. Concatenate is a simple enough operation; its only effect is to introduce

order to a pair of previously unordered objects. So is Copy; its sole effect is to

make a copy of the input object available for further derivations. What is more

interesting is how Label operates. Labeling carries restrictions on what inputs can be

operated on and depends on additional factors to determine the appropriate output.

It is not clear that Label can operate so simply as to just project the head of its

input Concatenated object; for one thing, what exactly constitutes the output is

unclear, and if the theory is to correspond to actual processing operations, relevant

to determining minimal computing costs. Another issue is what out of the input

projects; the operation would be useless if it only projects the entire input, so some

kind of selection mechanism is necessary.

Departing from Hornstein's approach, we allow the possibility that Label may

be a class of primitive combining operators rather than a single unique one. These

operators may apply in different circumstances, and they have differing costs that

may make one preferable to another, depending on interface conditions that need to

be satisfied.

5.2 Three Levels

In light of our earlier argument that flat lists are more useful in some circumstances,

the simplest approach to deconstructing Label would be introducing two combining

primitive operators, one that builds trees and one that builds flat lists. Concatenate



by itself already builds flat lists, but it cannot construct atomic units, so we need

another operator that forms an atomic unit out of a Concatenated list while still

retaining a flat structure. However, this kind of atomic unit must be distinguished

from the one that results from the tree-building operation; otherwise it would be

structurally equivalent to a multiple-branching tree. So we have a need for three

distinct object types: an atomic unit with tree structure, an atomic unit with flat

structure, and a list of atomic units.

Let us call the tree-building operation Project and the list-building operation

Append, and let us refer to the tree-structure atomic units as nodes, the flat-structure

atomic units as frames, and the non-atomic objects as lists.

More rigorously, we take nodes to be basic and define frames and lists in terms of

nodes:

(5.1) Node: A syntactic object consisting of a collection of features.

(5.2) Frame: An ordered sequence of one or more nodes.

(5.3) List: An ordered sequence of one or more frames.

In the definitions for frame and list, the ordered sequence characterizes only the

relationship among objects in the sequence; when there is only one object, the se-

quence is equivalent to the object itself. Hence a frame is a list of unit length, and

a node is a frame of unit length and by extension also a list of unit length. In these

terms, we no longer need a separate definition of atomic, as frames and only frames

are atomic.

All lexical items are nodes, though new nodes can also be constructed during the

course of a derivation by the operation Project. Frames and lists of more than unit

length are constructed by Concatenate and Append.

We define the operations Concatenate, Append, and Project as follows. In our

notation, we mark the boundaries of a node with parentheses ((-... )) and the edges of

a frame with square brackets [... ]). List boundaries are not explicitly marked, but

unconnected lists are separated by commas. Adjacent nodes and frames are simply



placed next to each other in order. Since a node is a collection of features, we denote

the features of a composite node as a subscript after the opening parenthesis. For

example, if the node (XY) has the same features as X, we can notate this as (xXY).

(5.4) Concatenate: Given two input lists X and Y, join them in order to produce

a larger list. If X = [x1 ] - [x,] and Y [yi] ... [ym], where all xi, y are

frames, then

Concatenate(X, Y) -> [X1] - [X] [Y1] ... [Yn].

(5.5) Append: Given two input frames X and Y, join them in order to produce a

larger frame. If X = [(x1 ) ... (X)] and Y = [(yi) ... (ym)], where all xi, yi are

nodes, then

Append(X, Y) -> [(xi) ... (xn)(yi) ... (y.)].

(5.6) Project: Given two input nodes X and Y, join them in order to produce a

larger node. If X and Y are nodes, then

Project(X, Y) -> (XY).

Parallelism abounds in these definitions, and indeed, starting from our definitions

of frames and lists, we can see that Append is simply a species of Concatenate (since

all frames are lists), and Project is simply a species of Append (since all nodes are

frames). To avoid reduplication of tasks, we can then reason that Append has Con-

catenate as a component, to connect lists together, along with any additional frame-

specific computations that need to take place to connect frames together. Hence the

application of Append involves an application of Concatenate, along with possible

additional computations. Likewise, Project incorporates Append, so it makes use of

Append to connect frames together, and then applies additional computations that

need to take place to create a new node. We will discuss the nature of these additional

computations shortly.



We assume that these operations consume objects in the working domain and

introduce new objects to the working domain. However, the inputs to an operation

are not necessarily maximally connected objects. If Project acts on two nodes, and the

nodes are part of larger frames and lists, then the Append and Concatenate instances

within Project operate on frames and lists (the two single nodes themselves) that are

connected to other nodes. We therefore allow Append and Concatenate to operate on

non-maximal frames and lists, as long as the inputs are prefixes and suffixes of any

larger objects they are part of; specifically, if X and Y are inputs to Concatenate or

Append, then X is not connected to anything to its right, and Y is not connected to

anything to its left.1

Taken together, Concatenate, Append, and Project can be regarded as a general

operation Merge that can apply to different data types, with more restricted behavior

arising for more specific subtypes. This is somewhat analogous to class inheritance

and method overriding in object-oriented programming.

(5.7) Merge: Given two input objects X and Y of type Z, join them in order to

produce a larger object of type Z.

This can be viewed as a three-level analysis of Merge. Hornstein's proposal, which

lacks Append, can be considered a two-level analysis. Let us examine properties that

arise from the different kinds of structures, and check whether a three-level approach

is viable. To do so, we need to distinguish Concatenate from Append, and Append

from Project.

'If we relax this assumption, then a frame is no longer a totally ordered sequence of nodes, but
only a partially ordered connected set of nodes, and likewise for a list. While we do not explore this
possibility in the current study, it may be an appropriate direction in which to proceed, one that
may explain phenomena which appear to involve constituents that are disconnected on the surface,
as in flexibility in adjunct grouping (Hornstein 2009) and Right-Node Raising (Bachrach and Katzir
2009).



5.3 Concatenate vs. Append vs. Project

As formulated, there are no constraints on Concatenate. Any two lists can Concate-

nate to form a bigger list.2 However, the result may or may not be grammatical or

anywhere in the stages of becoming grammatical. We need an operation that can

make a Concatenated list be useful. In the current approach, the available primitive

operations are a three-level Merge and Copy. The former can apply to all data types,

so it cannot differentiate among them. This leaves Copy.

Since Copy is used to duplicate an object for future use in a derivation, constraints

introduced by Copy may select between Concatenated lists that can be Copied and

ones that cannot. What characterizes the input to Copy? If X is an object in the

working domain, and Copy's output is a copy of X, then the input cannot be a copy

of X; otherwise, we would need another operation that does the same thing as Copy,

and we have the same problem. So the input to Copy must be a piece of information

that is not itself a copy of X, but can be used to construct a copy of X. If we assume

that Copy has the ability to scan objects in the working domain, then it must be able

to know when to start and stop copying. We can give Copy the first and last nodes

and have it check successive nodes that it comes across, but the possibility of identical

nodes makes this impractical. We can also specify exactly how many nodes to copy,

but this information must be updated every time lists are extended, and as far as we

are aware, no other part of grammar employs a counting operation. Alternatively,

a simple and efficient solution would be to introduce markers into a list to identify

contiguous sublists that are suitable for copying, assuming that Copy may impose its

own constraints on what may or may not be copied. This results in a partitioning of

lists into contiguous groupings, which we can distinguish as frames. Since Copy can

2In Hornstein's (2009) formulation, Concatenate operates on atomic units and produces a non-
atomic list of units. Since in our terms a node is by definition a list, and a Concatenation of two
nodes is the same as the Concatenation of any lists the nodes are in, the two formulations are
equivalent. We can alternatively formulate Append and Concatenate as taking input nodes and
producing frames and lists, but we favor the current approach on the grounds that the three-level
construction of Merge allows the operations at each level to apply to all objects at that level rather
than just nodes; any action that applies to nodes specifically cannot be a part of Concatenate or
Append. This approach places stronger restrictions on what Append and Concatenate can do, and
makes it easier to distinguish among the three levels.



only copy frames, not lists in general, we need an operation to construct composite

frames, which we call Append.

The precise nature of frame markers is unclear, but there are two simple and

equivalent characterizations. One possibility is to make frame markers denote the

edges of a frame. Thus whenever a node is introduced into the working domain, it

comes with enclosing frame markers. Select and Project must add frame markers

as part of the process of introducing a new single-node frame, and Append joins

existing frames by removing frame markers between them so that Copy does not

stop between the old frames. The other possibility is to characterize frame markers

as "bridges" between adjacent nodes that tell Copy to keep going until it reaches a

node without an outgoing bridge. These two characterizations are equivalent because

the connection between every pair of nodes in a list is either a separation between

frames or a connection between nodes in the same frame. We can choose either type

of connection to mark; the other follows from the absence of a marker. Since it is

simpler to introduce an object only when it is needed rather than introducing objects

and then deleting them, we adopt the bridge characterization. 3

As a duplicating operation, Copy needs to allocate memory to correspond to each

node being copied. If we imagine that nodes come in different shapes and sizes, as

reflected in their features, then it may be more efficient to copy a group of similar

items than a group of dissimilar ones. Using shape as an analogy, suppose that the

copying machinery can accommodate different shapes, but it has different settings for

different shapes, so that it can copy a group of triangles quickly rather than having

to readjust if the successive inputs are an eclectic mix of triangles, squares, and cir-

cles. We can suppose that some features, such as shape, describe characteristics that

allow Copy to operate efficiently, and that other features, such as color, characterize

differences among objects with the same shape; these features are copied over to the

output object corresponding to each input object. Following Chomsky (1995), we

distinguish categorial features like shape and #-features like color, though with the
3 The notation we have adopted marks frame edges rather than bridges, but this is only for

notational convenience, not a reflection of actual representation.



caveat that this classification is only for the purposes of Copy and may not relate to

other classifications of features. So the ideal input to Copy would be a sequence of

nodes with the same categorial features and possibly different #-features.

These constraints on Copy make it advantageous for the operation that assembles

frames to check whether the nodes in each frame have the same categorial features. If

we assume that this notion of sameness constitutes an equivalence class among sets of

categorial features, then the property of transitivity allows Append to check matching

categorial features only between adjacent nodes. If all pairs of adjacent nodes in a

frame share the same categorial features, then by transitivity, all nodes in the frame

do. This property allows Append to operate on two input frames in general without

compromising efficiency to check all nodes in the two frames. If transitivity did not

exist, then this kind of feature checking cannot be generalized to input frames and

must be restricted to input nodes; such a restriction violates the input conditions on

Append, so we conclude that non-transitive feature-checking cannot be a function of

Append.

Adjacency is not a transitive relation. Any relation that requires adjacency would

motivate the inclusion of a third operation beyond Concatenate and Append. If there

is a binary relation R such that for two nodes X and Y, R(X, Y) must hold to yield a

convergent derivation, and R is true only if X and Y are adjacent, then R cannot be

computed by Append, but only by an operation that operates at the level of individual

nodes. We thus turn to feature checking between individual nodes. It is well known

that adjacent nodes can satisfy feature-based relations. For example, the transitive

verb find requires an adjacent DP as an argument. We can state this criterion as a

relation between find and any adjacent node with the right features.

To compute this relation, we need an operation that applies to individual nodes.

We call this operation Project and allow it to compare features between two adjacent

nodes and construct a new node whose features are determined by a function of the

features of the input nodes.

Constraints on Copy and the need to compute non-transitive relations thus neces-



sitate the inclusion of at least three levels of syntactic operations.4

5.4 Processing Costs

With a three-level construction of Merge, where a joining operation at each level is

a specification of joining operations at higher levels (regarding the list level as the

highest), it is reasonable to separate computations into three levels, where computa-

tions that take place at higher levels are used as part of operations that take place at

lower levels. This avoids unnecessary reduplication of tasks and allows more complex

operations to build upon simpler ones. For example, Concatenate links lists together

so that Append does not have to do so separately in order to check categorial feature

matching, and Append accesses at least some features so that Project does not have

to access them independently. 5

This naturally makes Project more costly than Append, as it involves computa-

tions that cannot take place at the frame level, in addition to processes that form part

of Append; likewise, Append becomes more costly than Concatenate. We may expect

that the human language faculty, as a computational system that prefers efficient op-

erations, to use Append only when Concatenate fails to meet necessary requirements,

and to use Project only when Append is not sufficient.

We can formulate the three operations algorithmically as follows:

(5.8) CONCATENATE(X, Y):

1. If X is not connected to any object to its right and Y is not connected

to any object to its left:

2. Join X and Y into the same list by connecting the rightmost node

of X to the leftmost node of Y.

3. Else:
4While we allow the possibility of four or more levels, we do not pursue such an analysis here.5Accessing features may impose a considerable cost if the encoding of features in labels is not the

representation that Project and Append work with, so that features must be decoded from labels.
Perhaps labels store features in a compressed form, and they have to be decompressed for Project
and Append to use them. We merely raise this point as a possibility without addressing it further.



Return a Concatenate error.

(5.9) APPEND(X, Y):

1. If CONCATENATE(X, Y) succeeds:

2. If the categorial features of the rightmost node of X and the

leftmost node of Y are equivalent:

3. Join X and Y into the same frame by inserting a bridge

between the rightmost node of X and the leftmost node of Y.

4. Else:

5. Return an Append error.

6. Else:

7. Return a Concatenate error.

(5.10) PROJECT(X, Y):

1. If APPEND(X, Y) does not return a Concatenate error:

2. If the features of X and Y satisfy selection conditions:

3. Create a new node Z to dominate X and Y. The label of Z is a

function of the labels of X and Y.

4. Else:

5. Return a Project error.

6. Else:

7. Return a Concatenate error.

While all three operations, if successful, result in a Concatenation of nodes, Project

and Append introduce additional structure not found if Concatenate applies by itself.

We note that Append does not have to succeed in order for Project to use it. Ap-

pend applies in order to construct a single frame from its inputs, and this characterizes

its success. If it fails to construct a single frame, however, Project can construct a



new node, which by definition is a new frame, so the output of Project also meets

the requirements for Copy. The difference is that the new frame is not formed from

the joining of existing frames, but by the creation of a new node that dominates two

single nodes within existing frames; other nodes in those existing frames do not di-

rectly participate in Project, so we can predict that structures exist in language which

satisfy categorial equivalence conditions imposed by Append but not other conditions

imposed by Project. We will try to explain some of the peculiarities of coordination

as a consequence of having three levels of types and operations.

In the definition of Project, the function that constructs a new label is not defined.

The details of such a function are outside the scope of this study, but we allow that

such a function need not "project" the entire label of one of the two input nodes to

form the label of the new node. It may assemble a new label from features present in

both nodes, and it may even construct features not present in either of the nodes. The

last possibility may be ruled out as being inefficient since introducing new informa-

tion not present in the inputs can conceivably be more costly than copying existing

information. We do not pursue this possibility, but we do allow the construction

of composite labels from features of both input nodes as a simple explanation for

coordinators.

5.5 Coordination as a Product of Append

We argue that in its most basic form, coordination is the application of Append to

coordinands to form frames. Since coordinate structures can move, they must be

frames rather than lists, due to constraints imposed by Copy. While this condition

can be met by either Project or Append, Project is the more expensive operation and

should be avoided if possible.

Under the current analysis, Project can operate to serve one of two purposes. If

Append fails, then Project can serve as a backup since it too constructs a frame. The

other purpose is to check features, following Chomsky (1995)'s Full Interpretation

principle, in which uninterpretable features must be checked during a derivation and



unchecked uninterpretable features at the interfaces cause a derivation to crash. Thus,

if uninterpretable features are present, Project can serve the purpose of checking them,

even if Append does not fail.'

Since in general coordinands exhibit more categorial similarity than head-argument

pairs, we may suppose that Append succeeds, and Project, if it occurs, must check

features. The lack of c-command across coordinands, however, suggests a config-

uration of coordinands distinct from hierarchical structures where phrases move to

higher positions to check their features. We conclude from the absence of expected

consequences of Project that Project does not actually apply in joining coordinands.

Coordinate structures, however, do feature coordinators that appear between coor-

dinands and exhibit asymmetry in that they are primarily associated with one coordi-

nand each rather than multiple coordinands. Since cross-linguistically a coordinator-

coordinand pair has the same order as a verb-object pair, the coordinator appears

to behave as a head taking the coordinand as a complement. At the same time,

the categorial features of the coordinand are accessible outside of the coordinator-

coordinand pair and are used by Append to join coordinands. So the result of joining

a coordinator and a coordinand manifests features of both components.

If we allow Project to construct a label from the labels of both input nodes,

then it seems reasonable that Project would apply to join a coordinator and its

associated coordinand. The need to use features from the complement suggests that

the head does not carry all the features needed for Append to apply. We can think of

coordinators, then, as a kind of "partial head" whose features form part of, but not

all of, the label of a node constructed by Project.

Since Append compares categorial features, we can suppose that each coordinator-

coordinand complex has categorial features. These seem to arise from the coordinand

rather than the coordinator since in many languages, the same coordinator can be

used to coordinate a number of types; for example, the English and can conjoin two

noun phrases, two verb phrases, two prepositional phrases, and so on.

6 This possibility raises interesting questions as to whether any empirical constructions are of this

form.



While this is a cross-linguistic trend, it is by no means universal. In Japanese, for

example, the conjunction to ("and") can conjoin noun phrases but not verb phrases.

Thus some categorial selection must take place.

There are two levels to distinguish here. One is the level at which a coordinator

and a coordinand Project. The other is the level at which the output of Project

can undergo Append. Both levels can perform some kind of categorial selection.

Distinguishing these two levels can lead to a simple explanation for examples in which

coordinands of seemingly different categories are coordinated. We will address this

in section 5.7, along with other curious phenomena like apparent case and agreement

violations. But first let us give examples of the different kinds of structures that can

arise from the interactions between Append and Project.

5.6 Examples

We now give examples of types of structures that can arise under a three-level con-

ception of Merge. At one extreme, we have structures with absolute binary branching

that arise out of repeated applications of Project. At the other end, we have com-

pletely flat structures that arise out of repeated applications of Append. In between

are examples that make use of both operations. We derive examples according to our

framework, and identify consequences in terms of processing costs.

As an example of pure binary branching, let us consider a sequence of n terminals

(5.11), and examine how applications of Project can construct a complex structure,

specifically argument structure. The initial input is the numeration, an unordered set

of n lexical items; Project combines these into a tail-recursive nesting of arguments.

(5.11) History of philosophy of history of philosophy of ... of history of philosophy.

The meaning of this construction is an academic discipline whose main concern is the

history of another academic discipline, which itself has a similarly recursive defini-

tion.7 The derivation proceeds as follows, selecting successive lexical items starting
7Other interpretations of (5.11) are possible, such as a discipline whose main concern is the



from the right.8

(5.12) Derivation of (5.11):

1. Select philosophy (the rightmost instance).

2. Select of.

3. Merge of and philosophy. Since of must check selection features, Project

constructs a new node dominating of and philosophy. The features of of

form the label of the new node.

4. Select history.

5. Merge history and of philosophy. The node of philosophy must be an

argument of history, not an adjunct, so Project once again applies to

satisfy the selection criteria.

6. Perform steps 2-5 in an analogous fashion to construct philosophy of

history of philosophy.

7. Repeat steps 2-6.

This process continues until all lexical items have been incorporated. The result

is a tree resembling the following (for n = 7 terminals):

"history of philosophy" of another discipline. We adopt the strictly tail-recursive interpretation for
explanatory purposes, to illustrate how argument structure can arise from the available operations.

8While it is also possible to select lexical items starting from the left, the successive applications
of Merge must happen in right-to-left order because the rightmost terminals are the most deeply
nested. Selecting lexical items from the left leaves n leaves by themselves at the point at which
the first Merge operation occurs, and it may be less efficient for the processor to maintain a set of
unconnected objects instead of selecting objects from the numeration as needed.



NP

history PP

of NP

philosophy PP

of NP

history PP

(5.13) of philosophy

At the other extreme, consider a similar construction in which and substitutes for

of:

(5.14) History and philosophy and history and philosophy and ... and history and

philosophy.

A plausible context for this construction would be a speaker unpacking a box full of

history and philosophy books and identifying the genre of each book as it emerges.

The derivation proceeds as follows, selecting nouns in left-to-right order and se-

lecting each instance of and immediately following the noun it precedes.'

(5.15) Derivation of (5.14):

1. Select history (the leftmost instance).

2. Select philosophy.

3. Select and.

4. Merge and and philosophy. Since and must check selection features,

Project constructs a new node dominating and and philosophy. A
9We characterize the derivation as proceeding from left to right rather from the bottom up,

but the Append operations can be applied in any order. We choose the left-to-right order as a
convenience since any parser of a construction like (5.14) receives the input in that order. While we
might wish to do the same for (5.11), Project must proceed from the bottom up to construct the
requisite hierarchy, in (5.12).



combination of features from and and philosophy form the label of the

new node.

5. Merge history and and philosophy. Since the categorial features are

equivalent, and no selection features need to be checked, Append

introduces a bridge between history and and philosophy, thus joining

their frames.

6. Perform steps 2-5 in an analogous fashion to construct history and

philosophy and history.

7. Repeat steps 2-6.

The resulting structure is not a tree but a single frame connecting the coordinands

together. Each coordinator-coordinand pair forms a two-leaf tree within the frame.

We can visualize the structure as the following graph (for n = 7 terminals):

(5.16)

history NP NP .............. NP

and philosophy and history and philosophy

Comparing the costs of these two types of extensions, we find that the completely

nested structure of n leaves derived through Project has a processing cost of (n- 1)CP,

where Cp is the cost of applying Project once. In addition, the height of the resulting

tree is 0(n). On the other hand, the flat structure of n leaves derived through Append

has a processing cost of (Cp + CA)(n - 1)/2, where CA is the cost of applying Append

once. Since CA < Cp, we have that the flat structure has a lower processing cost.

It is also possible to construct flat structures without coordinators, such as an

enumeration of terms, which would have an even lower processing cost, but how this

is distinguished from ordinary coordination is a matter for future inquiry.



5.7 Consequences

Our formulation of Merge as a three-level operation leads to natural explanations for

a number of observed coordination phenomena.

The Coordination of Likes Constraint follows from conditions on the application of

Append. While we have not established a direct mapping between categorial features

as compared by Append and categories of phrases that are coordinated in coordinate

constructions, some form of a mapping seems to exist. While the details are not

entirely clear, the general categorial similarity of conjoined phrases suggests that it is

compatible with and is a logical result of categorial equivalence conditions imposed

by Append.

In a coordinate structure, there are two levels at which categorial selection takes

place. The first is selection of a coordinand by a coordinator head. The second is

the Appending of adjacent nodes. We can distinguish these two levels by introducing

coordinands that are not of the same category, for example a determiner phrase and

a complementizer phrase in these examples copied from (3.16) and (3.17):

(5.17) You can depend on [my assistant] and [that he will be on time].

(5.18) *You can depend on that he will be on time. (Progovac 1998: 1/5)

The unacceptability of (5.18) shows that the preposition on in this sense cannot select

a CP as its complement. In (5.18), however, it is not a preposition that is selecting the

CP as its complement; it is the conjunction and. This observation can be explained

by allowing and to select for a CP as a complement but project the same categorial

features as a DP in order for Append to take place. Thus and possesses at least some

categorial features, though not necessarily all the categorial features of a DP. At a

minimum, it must have all categorial features of a DP that are not present in a CP.

In addition, the Coordinate Structure Constraint follows naturally from input

constraints on Copy: since Copy must copy a frame, and it does so by duplicat-

ing all consecutive nodes connected by bridges, a non-maximal sequence of nodes

within a frame cannot be copied. Hence no proper subsequence of a frame can be



moved. Across-the-Board movement is not movement directly out of a frame, but

out of constituent nodes within a frame. This suggests that frame-like properties

may hold across parts of nodes in adjacent frames. The exact mechanism remains

to be explained, but returning to the shapes analogy, if we suppose that triangles

can be joined in a frame, then the memory allocated to hold triangle representations

may also allocate memory to hold representations of triangle corners and sides in

the same configurations; the parts of memory holding information about analogous

corners may align and form a frame-within-a-frame that may be readable by Copy

and thus participate in movement.

Apparent mismatches in agreement and case also naturally arise from this line of

analysis. Consider the distribution of is and are in the following examples:

(5.19) There is a cake and a pie in the fridge.

(5.20) *There are a cake and a pie in the fridge.

(5.21) *A cake and a pie is in the fridge.

(5.22) A cake and a pie are in the fridge.

We assume that a cake and a pie originates after the copula and optionally rises

to satisfy the EPP condition, which may also take the expletive there instead. We

assume features need to be checked in both the original position and the position to

which a cake and a pie can move. For simplicity purposes, we collapse everything

between the two positions, including tense and other functional heads, into a single

verb head, and ignore the PP in the fridge.

The coordinate phrase a cake and a pie is constructed by applying Project to

a and cake, yielding a DP, and to a and pie, yielding another DP. Project applies

again to combine and with a pie, producing an object with the categorial features of

a DP. Append then connects a cake and and a pie. The resulting structure can be

represented as

(5.23) [(DP,-PI(DP,-Pla) (NPcake)) (DP,+Pl (+pland) (DP,-Pl(DP,-Pla) (NPcake)))]



Here we suppose that and has a [+ Plural] feature that allows a coordinate struc-

ture to have plural agreement in some settings. When and combines with a pie under

Project, the [- Plural] feature of a pie is overridden by the [+ Plural] feature of and.

Number is not a categorial feature, so Append can conjoin a cake and and a pie

despite their differing plurality features. The result is a frame with two DP nodes:

the first node is singular, and the second is plural.

After the coordinate structure is constructed, it can participate in subsequent

operations. We now need to merge the preceding copula with the a cake and a pie.

Since selection features need to be checked, we need to apply Project. Since Project

only operates on individual nodes, it is applied to is/are and a cake (not the entire

a cake and a pie). Since is selects for a DP with a [- Plural] feature, this operation

succeeds. On the other hand, are selects for a [+ Plural] feature, so it fails. If the

derivation stops here and fills the frontal position with there, then there are still

unchecked features, so (5.20) crashes, and we have an unacceptable derivation. In

(5.19), however, the analogous features are checked, so the derivation converges.

Now suppose that instead of using there, we move a cake and a pie to the front.

To satisfy feature selection here, we must apply Project, which again operates on

individual nodes. Thus, due to the change in relative position, it combines and a pie

and is/are. Since and a pie is plural, Project succeeds with are but not is. If the

derivation stops here, we have that (5.21) is unacceptable while (5.22) is acceptable.

Our theoretical framework leads naturally to a prediction that concurs with ob-

served empirical distributions.

Case mismatch can be analyzed in a similar manner. Consider these examples in

some varieties of informal English:

(5.24) Him and her ate some cake.

(5.25) ?Him and she ate some cake.

(5.26) He and her ate some cake.

(5.27) He and she ate some cake.



(5.28) A present arrived for him and her.

(5.29) ??A present arrived for him and she.

(5.30) *A present arrived for he and her.

(5.31) *A present arrived for he and she.

While my judgments on these are not completely clear, (5.24) through (5.29) are

definitely much better than (5.30) and (5.31).1o

If we take (5.24) to be grammatical, then nominative case is needed in the last

node of the coordinate frame. Since her has accusative case, we suppose that and

has nominative case that overrides it.

A similar argument to the earlier analysis for number features holds for these

examples as well. (5.30) and (5.31) crash because for selects for accusative case and

gets nominative case in he instead. (5.28) and (5.29) are both acceptable because for

only checks features with him. In (5.25) and (5.27), she has nominative case which

is not overridden in the construction of and she, so these pass. In (5.24) and (5.26),

her has accusative case, but it is overridden by the nominative case of and, making

these acceptable as well.

Why and has nominative case is unclear, but this assumption is consistent with the

results, at least in my judgment. If another speaker's and does not have nominative

case, and Project simply raises the case of and's complement, we would expect that

(5.24) and (5.25) fail to converge, a pattern that is similar to the distribution of

analogous constructions with or, in my judgment:

(5.32) *?Him or her ate some cake.

(5.33) ?Him or she ate some cake.

10Different judgments are possible and have been attested. We attribute this to natural variation
among speakers of a language, and predict that for speakers whose and lacks a case feature, a
distribution similar to (5.32) through (5.39) would be observed, and that for speakers whose and
has accusative case, only (5.28) and (5.29) would be acceptable, with (5.29) possibly appearing
questionable, perhaps for independent reasons, as in my judgment. Additional factors may be
involved that rule out otherwise acceptable derivations, or force derivations that crash to appear
acceptable on some level; for example, the construction "I and my friend" seems to be unacceptable
in any configuration.



(5.34) *He or her ate some cake.

(5.35) He or she ate some cake.

(5.36) A present arrived for him or her.

(5.37) ??A present arrived for him or she.

(5.38) *A present arrived for he or her.

(5.39) *A present arrived for he or she.

This distribution is consistent with an assumption that or has no case feature.

We tentatively conclude that our theoretical framework makes predictions that

correspond with a variety of empirical characteristics of coordinate constructions.

A possible problem with our current approach, however, is its failure to account

for logical hierarchy in coordinate structure. For example, a coordinate structure may

have several logical groupings of coordinands:

(5.40) (A cake and a pie) and (a pancake and a waffle).

(5.41) A cake and (a pie and a pancake and a waffle).

(5.42) A cake and (a pie and a pancake) and a waffle.

In these examples, the bracketing could indicate the layout of these items on a table,

with items in the same grouping lying closer to each other. These structures can be

distinguished by prosodic information like intonation and spacing (Steedman 2000;

Wagner 2009):

(5.43) A cake and a pie I and a pancake and a waffle.

(5.44) A cake | and a pie and a pancake and a waffle.

(5.45) A cake | and a pie and a pancake I and a waffle.



If we require that prosodic information have a syntactic representation, then our

current approach fails to capture this prosodic information without further intro-

ducing syntactic objects that correspond to prosodic units. However, it may not be

necessary to connect prosody and semantics through syntax. One can alternatively

suppose that prosody and semantics are connected directly, as in Selkirk's (1984) pro-

posal that a level of intonation structure connects phonetic structure and information

structure separately from syntax, or Steedman's (2000) proposal that the appearance

of a level of syntactic structure emerges only as a by-product of a processor mapping

between phonetic and logical form. If so, a characterization of syntactic structure

need not suppose that all relations between logical and phonetic form have a syntac-

tic representation.

5.8 Three Merges or Three Nested Levels?

Our conception of a tripartite Merge bears some similarity to a proposal by Lan-

gendoen (2003), who divides Merge into three separate operations: Set Merge, List

Merge, and Pair Merge, building upon Chomsky's (2001) distinguishing between Set

Merge and Pair Merge operations. Ranking the three operations in order of "sim-

plicity, elegance, and economy"-from greatest to least: Set Merge, List Merge, and

Pair Merge-Langendoen argues that higher-ranked operations are employed unless

they are inadequate. By analogy, we can suppose that our Concatenate, Append, and

Project resemble set merge, list merge, and pair merge, respectively.

The two accounts differ, however, in that Langendoen argues that coordinate

structure arises from Pair Merge applied both between a coordinator and its associ-

ated coordinand and between the resulting complex and additional coordinands, while

in our approach, we use Project to produce the coordinator-coordinand complex and

Append to connect the resulting complex and other complexes or stand-alone coordi-

nands. Langendoen (2003) does not provide an explanation of how peculiar charac-

teristics of coordination can be accounted for, so it is difficult to see how employing

Pair Merge explains these empirical observations. Also, by employing Pair Merge for



coordinate structure and the simpler List Merge for pure argument structure, Lan-

gendoen's analysis predicts that the former is more difficult to process, while in our

approach, the latter should be more difficult. Future experimental testing may be

able to distinguish the relative applicability of these two approaches.

Furthermore, Langendoen's analysis treats the three operations as distinct alter-

natives, while we argue that simpler operations form subroutines of more complex

ones. In our formulation, each operation applies to a separate syntactic data type,

yielding the same data type, and the data types are related to each other in a class

membership relation, while in Langendoen's analysis, it is not clear how the output

of the three operations can be used for subsequent operations if they are of different

types.

In addition, all three of our operations introduce order to objects that may in

general be unordered, while Set Merge does not introduce an order, but rather a

grouping among objects. Thus, over the objects on which they operate, Concatenate is

associative but not commutative, while Set Merge is commutative but not associative.

We may ask which of the two operations is preferable to have as part of a linguistic

computational system.

While this question merits a deeper exploration, it is worth noting that if indi-

vidual objects are associated with distinct spatial regions in a physical device that

can store information, then the spatial arrangement of the objects' representations

implies at least a partial order. Suppose we want to represent sets in a limited amount

of memory, and we assign physical locations to two objects A and B. If we switch the

locations of A and B, this results in a distinct memory configuration, but the result is

still a valid representation of the set {A, B}. On the other hand, if we are representing

ordered lists in the same memory architecture, then switching the locations of A and

B yields a distinct ordered pair: (B, A) instead of (A, B). As a result, the number

of ordered lists that can be represented in a given amount of memory is higher than

the number of sets. For this reason, we find that many commonly used programming

languages offer a primitive ordered list or array data type, while unordered sets are

less often available, and where they are implemented, are often not a primitive data



type. For example, C++ has built-in arrays, but set implementations are only avail-

able in auxiliary libraries. So while the conventional set-theoretic representation of an

ordered pair-{A, {A, B}}-requires more symbols than the corresponding represen-

tation for a set-{A, B}-this does not imply that sets are easier to represent than

ordered lists in the memory architecture employed by the human language faculty.

Indeed, Langendoen (2003: 317) observes that "set merge is not adequate for any

such purpose" of "provid[ing] the basis for interpretation of linguistic objects at the

interfaces." But if it is inadequate, is there any reason to hold a place for it in the

human language faculty?



Chapter 6

Conclusion

6.1 Future Directions

This preliminary study has raised a number of questions that are worth pursuing fur-

ther. Subsequent work can address other theoretical issues, implement computational

models, and make use of psycholinguistic experimentation.

A number of theoretical questions remain to be addressed. In addition to strength-

ening our characterization of primitive operations, we may examine other character-

istics of coordination as well as structures that exhibit similarity to coordination,

including parenthesis, apposition, and parataxis (de Vries 2008). Other structures

like comparatives and nonsententials may benefit from this analysis as well.

In addition, the nature of adjunct structure as opposed to argument structure

has formed a core part of Hornstein's (2009) analysis. While we have not examined

adjunct structure in detail in our current study, applying the current tripartite Merge

approach to adjuncts, in a similar fashion to Hornstein's two-level conception, may

yield insight into the primitive operations that underlie adjunction and the result-

ing differences among adjunct, argument, and coordinate structure. Furthermore, we

may relate this approach to Kayne's (1994) model, in which all arguments originate

after their head and all adjuncts originate before their head, both of which can subse-

quently undergo movement to yield the variety of head-complement orderings found

in natural languages. Since in our formulation, Concatenate, Append, and Project all



apply to ordered pairs of objects, this order-based characterization of adjunct and ar-

gument structure may be a natural consequence of characteristics of primitive joining

operations.

Another topic to explore is the syntax-prosody and syntax-semantics interfaces

with respect to these primitive operations, and the nature of interface conditions that

constrain syntactic structure.

The empirical applicability of the model can be improved by considering a larger

variety of constructions from numerous languages.

As an approach to syntax motivated by considerations of economy and processing

cost, this study would benefit from psycholinguistic experimentation to determine

actual performance in parsing and production tasks. To highlight the difference in

processing costs among different primitive operations, we could construct example

sentences consisting of multiple applications of a single kind of joining operation,

possibly sentences that repeat the same sequence of words an arbitrary number of

times. For example, a possible contrastive set could include the following types of

structures: 1

(6.1) (Nested arguments with no adjuncts)

History of philosophy of history of philosophy of history of philosophy ...

(6.2) (Nested arguments with adjuncts)

A box in a house in a box in a house in a box in a house ...

(6.3) (Multiple adjuncts in succession)

A box with a cubic shape made of wood weighing one kilogram containing five

apples ...

(6.4) (Flat coordination)

A box and a house and a box and a house and a box and a house ...

'We looked at examples analogous to (6.1) and (6.4) in chapter 5. (6.2) and (6.3) involve adjuncts,

which we have not covered here in detail but may be analyzed in a manner similar to Hornstein's

(2009) approach. (6.5) contains hierarchical logical structure within a flat syntactic structure. If

our analysis is correct, we would expect similar syntactic processing effects to appear for (6.4) and

(6.5) but possibly differing semantic processing effects.



(6.5) (Coordination with hierarchical logical structure)

(Either) a box or (both) a house and (either) a box or (both) a house ...

By varying the speed at which the sentences are presented, we can observe how

well people can process the given sentences. Since processing resources are limited,

those operations that are more costly would be less manageable if needed at a fast

rate, so we would predict that structures formed from more demanding operations end

up crashing the parser and registering as ungrammatical. It is a challenge to construct

comparable constructions, since factors such as the words used in each example, the

frequency or presence of repetition, and the possibility of ambiguous readings can

make a direct comparison difficult. Nevertheless, at a first glance, constructions

which remain essentially flat and avoid the use of Project (6.3, 6.4) seem much easier

in my judgment to process than ones that require an operation like Project (6.1, 6.2),

especially when read at a fast rate. In addition, examples that involve consecutive

applications of Project (6.1), with no room for combining operations of any other kind,

seem significantly more difficult to process than ones that interleave opportunities to

combine phrases using less costly alternatives (6.2). Perhaps we observe this effect as

a result of the possibility of an alternate reading, as (6.2) can be parsed as having the

same structure as (6.3), and the available cheaper alternative may force the syntactic

processor to adopt it, even though it conflicts with the intended semantics. In (6.5),

the compositional meaning of the sequence is difficult to deduce at a fast rate, but

the effect seems different from that of parsing (6.1). If the goal of exact semantic

comprehension is disregarded, an attempt to parse (6.5) only to obtain a general idea

of the phrase becomes much easier, almost as easy as (6.4), while (6.1) still remains

difficult. This observation would agree with our theory that on a syntactic level,

hierarchy in coordinate constructions is encoded in a flat manner and that a full

hierarchical representation is only needed at the conceptual-intentional interface.

Research on event-related potentials (ERPs), electrical potentials measured at the

scalp in conjunction with the presentation of a stimulus, may yield insight into how

the brain processes different kinds of structures. The N400 effect, in which a strong

negative peak is observed about 400 ms after a stimulus, has been shown to appear



when semantically incongruous words are presented (Kutas and Hillyard 1980). For

syntactic anomalies, there is a similar P600 effect, in which a positive peak appears

after a 600 ms delay (Osterhout et al. 1997). The P600 effect has been shown to

arise even for grammatical sentences that are difficult to process, such as garden-path

sentences in which a preferred resolution of an initial ambiguity turns out to be an

incorrect choice (Kaan et al. 2000). Measuring ERPs in response to different types of

structures may indicate which operations are more costly as well as which domains

(syntactic or semantic) meet with difficulty in processing certain structures; this may

illuminate processing differences between constructions like (6.1) and (6.5).

Another direction to pursue would be computational modeling of the primitive

operations proposed to see how well they perform on a corpus. Artificial parsers

that produce structured representations from a string of tokens have encountered dif-

ficulty particularly with coordinate structures, in part due to structural ambiguity

among possible pairings of coordinands (Park and Cho 2000). In some cases, perfor-

mance can improve if coordinate structures are distinguished; for example, Charniak's

(2000) probabilistic parser performing on the Penn Wall Street Journal tree-bank cor-

pus gains a 0.6% improvement in precision/recall after explicitly marking coordinate

constructions. It is possible that existing parsers may be improved by recognizing

the possibility that the joining processes underlying coordination may be subject to

a different set of conditions than those behind subordination.

6.2 Closing Thoughts

Our exploration of processing efficiency as a factor affecting the choice of primitive op-

erations has yielded fruitful results and appears to be a promising pursuit within the

Minimalist framework. In addition to considering the ways in which basic operations

can apply to generate syntactic structure, a focus from the start of the Minimalist

Program, we can also ask which basic operations are preferable in a given setting, a

question in line with Minimalist goals. The unique characteristics of different opera-

tions result in different kinds of structures that are reflected in empirical observations.



We can strengthen a theory of language if we recognize that the tools available for

constructing language may be a set of options that are optimal for different condi-

tions, developed and retained in the human language faculty through the process of

evolution. In part, the complexity and variety of human language naturally arise from

the availability of multiple operations, and by examining the characteristics of each,

we may come to a fuller understanding of linguistic diversity.
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