
Portfolio Optimization with Transaction Costs and

Preconceived Portfolio Weights

by

Jeremy D. Myers

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2009

© Jeremy D. Myers, MMIX. All rights reserved. ARCHNES

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part. MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

AUG 2 4 2010

LIBRARIES
A uthor

De'partment of Electrical Engineering and Computer Science
August 21, 2009

Certified by... - -
Leonid Kogan

Nippon Telephone and Telegraph Professor of Management
Thesis Supervisor

A ccepted by
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

Portfolio Optimization with Transaction Costs and

Preconceived Portfolio Weights

by

Jeremy D. Myers

Submitted to the Department of Electrical Engineering and Computer Science
on August 21, 2009, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

In the financial world, many quantitative investment managers have developed so-
phisticated statistical techniques to generate signals about expected returns from
previous market data. However, the manner in which they apply this information
to rebalancing their portfolios is often ad-hoc, trading off between rebalancing their
assets into an allocation that generates the greatest expected return based on the gen-
erated signals and the incurred transaction costs that the reallocation will require.
In this thesis, we develop an approximation to our investor's true value function
which incorporates both return predictability and transaction costs. By optimizing
our approximate value function at each time step, we will generate a portfolio strat-
egy that closely emulates the optimal portfolio strategy, which is based on the true
value function. In order to determine the optimal set of parameters for our approxi-
mate function which will generate the best overall portfolio performance, we develop
a simulation-based method. Our computational implementation is verified against
well-known base cases. We determine the optimal parameters for our approximate
function in the single stock and bond case. In addition, we determine a confidence
level on our simulation results. Our approximate function gives us useful insight into
the optimal portfolio allocation in complex higher dimensional cases. Our function
derivation and simulation methodology extend easily to portfolio allocation in higher
dimensional cases, and we implement the modifications required to run these simula-
tions. Simple cases are tested and more complex tests are specified for testing when
appropriate dedicated computing resources are available.

Thesis Supervisor: Leonid Kogan
Title: Nippon Telephone and Telegraph Professor of Management

4

Contents

1 Introduction 11

1.1 History of Portfolio Optimization. 12

1.2 Introduction of Transactions Costs to Portfolio Optimization 13

1.3 Return Predictability vs. Transaction Costs 14

1.4 Scope of the Paper 15

2 Assumptions for Paper and Important Results from Theory of Port-

folio Optimization 17

2.1 Returns Processes of Stocks and Bonds 17

2.2 Investor's Utility Function . 18

2.3 Investor's True Value Function . 19

2.4 Continuous-Time Solution of Portfolio Optimization in Single Stock

and Bond Case . 20

2.5 Discrete vs. Continuous Time Representation 20

2.6 Cox, Ross, and Rubinstein's Representation 21

3 Derivation of the Approximate Value Function and the Optimal

Portfolio Policy 23

3.1 Definition of Objective and Variables in the Single Stock and Bond Case 23

3.1.1 Definitions using Initial Allocations 24

3.1.2 Our Approximate Value Function 24

3.1.3 Determining the Optimal Portfolio Policy 27

3.1.4 Maximizing Final Total Wealth 29

3.1.5 Definitions using Allocations After Rebalancing 29

3.1.6 New and Improved Representation for Portfolio Rebalancing . 31

3.1.7 Our Final Approximate Value Function 33

3.2 Approximate Value Function in the Two Stock and One Bond Case . 35

4 Computational Implementation of Portfolio Optimization Problem 39

4.1 MATLAB Platform . 39

4.2 CreateData.m: Creating the Test Data via User Preferences 40

4.3 Objgradnew.m: The Approximate Value Function 41

4.4 MEngCode.m : The Portfolio Optimization Simulator 42

4.5 Pi-a..solve.m and Pi-a-fmincon: Approximate Value Function Parame-

ter Optimizer.. 43

4.6 Plot..objfungrad: Plot Approximate Value Function Under Different

Trade Choices . 44

5 Simulation Results and Analysis 45

5.1 Single Stock and Bond No Transaction Costs Case 45

5.2 Single Stock and Bond Portfolio With Transaction Costs 49

5.3 Two Stocks, One Bond With Transaction Costs Case 62

6 Possible Research Extensions and Conclusion 65

6.1 Possible Research Extensions..... 65

6.1.1 Better Multi-Dimensional Optimization Simulator 65

6.1.2 Generalize Code to Construct Approximate Value Function . . 66

6.1.3 Allow Approximate Value Function Parameters to Vary Across

Tim e Periods . 67

6.1.4 Find Compatible Trading Strategies to Test Against 67

6.2 Conclusion . 67

A Computational Implementation 69

B Gradient of Value Function 81

List of Figures

5-1 Merton Ratio Base Case: One Stock, One Bond Plot with no Trans-

action Costs with p = 10%, o = 20%, rf = 5%, -y = 2 47

5-2 Merton Ratio Base Case 2: One Stock, One Bond Plot with no Trans-

action Costs with p = 15%, a = 30%, rf = 5%, -y = 3 49

5-3 Plot of Approximate Value Function with Unreasonable Value for ai

(a 1 = -5)...... ... 50

5-4 Plot of Approximate Value Function with Unreasonable Value for r,

(K = .2 . 51

5-5 Plot of Approximate Value Function under condition that ao = -2 . . 52

5-6 Plot of Approximate Value Function under condition that ao = -. 02 . 53

5-7 Plot of the Average Final Approximate Value Function Outputs with

1000 Simulations and a1 is a Large Negative Value for Value Function

(ai = - 1).. 54

5-8 Plot of the Average Final Approximate Value Function Outputs with

10000 Simulations and a1 is a Large Negative Value for Function (ai =

-1)........ 55

5-9 Plot of the Average Final Approximate Value Function Outputs with

10000 Simulations and a1 is a Smaller Negative Value for Function

(a 1 = -. 5)..... 59

8

List of Tables

5.1 Table Showing Discrete-Time Approach Approximates Continuous-Time

Case as A t -+ 048

5.2 Table of Values of the Average Approximate Final Value Function Out-

puts with 1000 Simulations and ai is a Large Negative Value for Func-

tion (a1 = -1).. 54

5.3 Table of Values of the Average Final Approximate Value Function Out-

puts with 10000 Simulations and ai is a Large Negative Value for Func-

tion (a1 = -1)..... 56

5.4 Table of Values of the Average Final Approximate Value Function Out-

puts with 10000 Simulations and a1 is a Smaller Negative Value for

Function (a1 = - .5) . 58

5.5 Table of Values of the Average Final Approximate Value Function Out-

puts with 10000 Simulations and ai Varies Between Different Smaller

Negative Values for Function.. 60

5.6 Table of Values of the Average Final Approximate Value Function Out-

puts with 10000 Simulations and ai Varies in a Very Concentrated Range 60

5.7 Table of Values of the Average Final Approximate Value Function Out-

puts with Two Stocks, 1000 Simulations and ai, a2 , a3 , are largely

negative .. 63

10

Chapter 1

Introduction

Portfolio optimization has been the Holy Grail of Investment Finance over the past

half-century. At the personal finance level, individual investors looking to secure

enough money for retirement are always debating the correct distribution of wealth

distribute stocks and bonds. Fixed financial instruments such as bonds guarantee

the investor a steady but low interest rate, whereas stocks provide the investor an

opportunity for high level gains, but with significant risk. Many individuals who are

not blessed with the opportunity to take a graduate level finance course use rules

of thumb, such as the common 60/40 stock-to-bond ratio as a safe course of action.

Before the stock market crisis of these past few years, many individuals who were

far from retirement would invest all of their retirement savings in the stock market,

convinced that by the time they retired, the stock market would assuredly be at new

record heights.

At the corporate finance level, multi-billion dollar financial corporations and hedge

funds continue to conduct research on the optimal asset allocation method which

incorporates as much information and flexibility as possible. Although the goals of

these different types of investors are slightly different, both share a common need for

an efficient asset allocation method.

1.1 History of Portfolio Optimization

Even though the half-century of history of portfolio optimization theory is relatively

short compared to the longevity of the stock market, which saw its birth in the 1700s

after the American Revolution, the progress researchers have made during that time

is astonishing. In 1952, Harry Markowitz introduced what we know today as Mod-

ern Portfolio Theory, which describes how investors will diversify their portfolios to

minimize the variance in the portfolio for a given level of expected return [9]. Robert

Merton helped revolutionize the field with his papers on the asset allocation problem

[10]. Merton made it possible to obtain closed-form solutions to the asset allocation

problem, given a few assumptions and constraints (this model will be discussed fur-

ther in Section 2.4). However, today we find that the assumptions made by Merton

in developing his model to be very unrealistic in our current financial markets.

One key assumption of the Merton model is that there are no transactions costs.

We not only know that transaction costs exist in the financial markets, but also that

their cumulative effect is significant. According to the Merton model, at every possi-

ble trading opportunity, the investor should trade so that the Merton ratio of stocks

to bonds is maintained. With the introduction of transaction costs, it is no longer

optimal for the investor to maintain this ratio at every trading opportunity. To-

day's investor must weigh the benefit of transacting to an optimal portfolio position

and the transaction costs that would be incurred in doing so. If an investor were to

trade continuously, the transaction costs would reduce the portfolio's value drastically.

A few decades ago, this situation in the financial world was unheard of, as people

would buy and sell relatively infrequently, compared to today. However, over the

last decade came the advent of the algorithmic traders, who use intense and constant

computational power to identify arbitrage opportunities in the market. These types

of investors understand transactions costs to be of the utmost importance. Opportu-

nities for arbitrage, for which trade volumes can easily exceed hundreds of thousands

for a single opportunity, strongly depend upon the seemingly small transaction costs

that the transactions will incur.

1.2 Introduction of Transactions Costs to Portfolio

Optimization

George Constantinides explicitly proved how the existence of transaction costs leads

to less frequent trading [3]. In the same paper, Constantinides proved that there

exist transaction boundaries for the single stock and bond investor. If the value

fluctuations of the portfolio's holdings led the portfolio allocation to be outside the

transaction boundary lines, the optimal asset allocation decision would be to transact

back to the nearest boundary line. Constantinides proved the shape of these trans-

action boundaries were convex cones, given transaction costs that are proportional

to the transaction amount. In addition, he was able to numerically calculate these

boundaries for a power utility investor in the infinite horizon case [4]. The infinite

horizon case of portfolio optimization is when the investor never withdraws from the

market and invests forever. Considering that this specification simplifies the portfolio

optimization problem, the infinite horizon case was further developed by Davis and

Norman [6] who were able to model the portfolio allocation problem as a stochastic

singular control problem in the event that transaction costs applied only to the risky

asset. Oksendal and Sulem [11] also considered this infinite horizon case, but coupled

the optimal consumption problem along with portfolio optimization. However, for

practical applications, one must consider the solution to the finite horizon case, as

no investor invests forever. Intuitively, one will come to the conclusion that as an

investor approaches the end of his investment time horizon (e.g., prepares to retire

and withdraw from market), the transaction boundary lines for his investment port-

folio should grow monotonically. In other words, as the investor prepares to exit the

market, he will be more tolerant of his portfolio's composition. The (not so) long run

benefits of adjusting the portfolio are outweighed by the immediate transaction costs

the rebalancing would require.

Significant work has also been done in the finite horizon case. Gennotte and

Jung [7] were able to develop a numerical method which allows one to obtain a

numerical approximation for the no-transaction boundaries. Boyle and Lin [1] go on

to provide an explicit closed-form solution to the finite horizon case using proportional

transactions costs and a power utility function to describe the risk aversion of the

investor. Current work, such as the one by Zakamouline [12], considers both fixed

and proportional transactions costs while numerically solving the asset allocation

problem.

In addition to the introduction of transactions costs to asset allocation models, re-

turn predictability has recently become an important factor in portfolio choice. With

the current computational capabilities of today's hardware and software, financial

institutions are now able to research historical market data and generate relatively

reliable expected future stock returns. Many papers, like the working paper by Camp-

bell and Viceira [2], show that returns are predictable to some extent.

1.3 Return Predictability vs. Transaction Costs

There is a hole in the literature on the trade-offs between rebalancing one's portfo-

lio based on return predictability and the incurred transaction costs. The paper by

Lynch and Balduzzi [8] attempts to reconcile the effects of return predicatability and

transaction costs. In order to maximize their function (which is a Bellman equation),

they backward solve from t = T -1 to get their optimal solution. This is problematic

on two counts. First, investors historically do a poor job of estimating their true time

horizon; factors of personal preference play too large a role and are generally not

well understood until later stages. Second, simulating backwards requires one to take

into account all possible paths the stock may take from t = 0 to T, to compute the

total probability, just like in the computation of quantum probabilities in Feynman

diagrams. In more applied settings, many quantitative portfolio managers use statis-

tical techniques and computing power to generate signals concerning expected stock

returns. Instead of having an asset allocation method that includes both the signals

on stock returns and transaction costs, managers use ad-hoc methods in weighing

these two factors when rebalancing their portfolios. For the individual investor, rules

of thumb or personal preference often replace numerical values for predicted stock

returns in recommending that they maintain a certain portfolio composition.

1.4 Scope of the Paper

In this paper, we develop a new function that approximates an investor's true value

function. The function takes into account transaction costs and return predictability.

We develop the portfolio optimization problem in a discrete time domain, employ-

ing the Cox, Ross, and Rubinstein discrete time approximation for returns on stocks

and bonds after we rebalance the portfolio at each time iteration (see Section 2.6).

the approximate function includes several parameters to allow tuning to particular

return and preferential situations. In order to determine the optimal parameters for

the approximate value function, we perform numerical simulations on the evolution

of various case portfolios using MATLAB. The computational simulations utilize dy-

namic portfolio choice to find the optimal portfolio composition given the parameters

at each time step. The function provides a high degree of flexibility, allowing the

user to alter parameters to reflect the risk aversion of the investor, the degree of user

certainty in their estimate of the optimal portfolio composition, and their estimate of

expected returns. Shorting stocks or bonds is allowable as well. With minor additions,

the function is extended to incorporate more than one stock or bond in the portfo-

lio choice parameters. In addition, we test the accuracy of the chosen parameters

for the approximate function resulting from the solution through a simulation-based

evaluation method.

The paper is organized as follows. Chapter 2 presents assumptions and important

results from past papers that we will use in this paper. The discrete-time simulated

returns and investor utility function are discussed. Chapter 3 presents the theory

and derivation of the new approximate value function. Using the results and as-

sumptions from chapter 2, we derive a approximate function which also takes return

predictability and transaction costs into account. Chapter 4 presents the computa-

tional implementation of the portfolio optimization simulations. All code needed to

simulate the function is sectioned into parts, and are described in detail. Chapter

5 presents the results and analysis of the siniulation> to recover the optimal param-

eters for the function. We compare the function's 1erforniance against benchmark

values and simulate in situations where no closed forti solution is known. Chapter

6 concludes the paper and discusses possible research extensions stemming from the

paper.

Chapter 2

Assumptions for Paper and

Important Results from Theory of

Portfolio Optimization

In the previous section, we discussed some of the relevant background results in

portfolio optimization. There are a few theoretical results that will be foundational

to what we will do in this paper. In this section, we will discuss in depth those

necessary results and assumptions that we will need as the foundation for the new

approximate value method; these will be key in optimizing the portfolio in the single

stock and bond case, as well as in higher dimensional cases.

2.1 Returns Processes of Stocks and Bonds

One of the most important assumptions is how we will model the returns process of a

stock and of a bond. Modeling the stock price process stochastically as a Geometric

Brownian Motion is an industry standard, since prices move continuously and ran-

domly. If we model the bond price process movement continuously as well, the price

processes for the stock and bond are:

dY = Yidt + Yo-dZt

dXt = Xtrdt (2.1)

where y represents the mean return of the stock (drift of the Brownian Motion), o

represents the variance of the stock (variance of the Brownian Motion), r represents

the return of the bond, Y represents the price of the stock at time t, and Xt represents

the price of the stock at time t. Solutions to these equations are analyzed in most

graduate finance textbooks.

2.2 Investor's Utility Function

A second major assumption that is needed for the new function is the form of the

investor's utility function, which determines how the investor values wealth. The

Constant Relative Risk Aversion (CRRA) utility function is a widely accepted utility

function to describe risk averse investors:

1
U(Wt) = (Wt)'-7(for -y > 0) (2.2)

where U is the utility function, Wt is the wealth at time t, and -y is our risk

aversion coefficient. A risk averse investor is one who values an increment of wealth

more when their total wealth is low, and values an increment of wealth less when their

total wealth is higher. The bound on y is necessary because when -y = 0, the investor

is considered risk-neutral, meaning he values an increment of wealth the same given

any current total wealth. When y < 0, he is considered to be a risk loving investor.

An investor is said to be risk loving in the sense that given a guaranteed return and a

risky return whose expected value is below the guaranteed return, that investor will

choose the risky return; this is not considered rational behavior.

The utility function in Eq. (2.2) is the base of the value function in that it deter-

mines how we value different levels of wealth. For any distribution of wealth Wt, an

investor is able to assign a theoretical value to that level of wealth. This is important

in describing the investor's true value function in section (2.3).

2.3 Investor's True Value Function

Now that we have the form of the investor's utility function, we can define the form

of the investor's true value function. Using the continuous-time models of the stock

and bond returns in Eq. (2.1), the CRRA utility function defined in Eq. (2.2), and

knowledge of dynamic programming from Ph.D Finance courses, we can reduce our

true value function to the form:

1
V(Wt, 7rt) = * F(wrt) * (Wt) 1- (2.3)

where 7rt is the portfolio composition (ratio of stocks to total wealth) and F is a

function of 7rt that reflects the dependence of portfolio return on portfolio composition.

It is possible to determine an exact expression for the form of the function F. However,

trying to dynamically maximize this function of ir as well as the other components to

the true value function is very inefficient. Our new approximate value function that

we will derive in Chapter 3 will approximate the dynamic function F in the value

equation. This approximate function will emulate the true value function well and

therefore will produce an approximately equivalent trading strategy as the true value

function. The advantage of this approximation is that the new function will be much

easier and quicker to maximize at each time step than the true value function, while

they both will produce similar results. This true value function is the basis off which

we will derive our new approximate value function.

2.4 Continuous-Time Solution of Portfolio Opti-

mization in Single Stock and Bond Case

In the Literature Review section earlier, we referred to Robert Merton's asset alloca-

tion paper [101. In it, Merton was able to derive an analytic closed-form solution to

the port folio optimization problem with a single stock and bond, and with no trans-

action costs. The returns processes he used for his stock and bond and the utility

function he used to describe the risk-averion of his investor are as in Eq. (2.1) and

Eq. (2.2) above. The solution to his portfolio choice problem was a static position in

the market, meaning the optimal ratio of stock-to-bond to hold remained the same in

every time period. Given the CRRA utility function and returns processes, the solu-

tion for the static portfolio to hold in all time periods, famously known as Merton's

ratio, is:

7r t = r (2.4)

We will be trying to solve the portfolio optimization problem under the condition

of non-zero transaction costs, which Merton does not consider. However, Merton's

ratio will be a base case benchmark for our computational simulations.

2.5 Discrete vs. Continuous Time Representation

Although we could use the continuous time representation for the price processes of

the stocks and bonds above, we will take a discretized approach to the price processes.

The advantage of representing the price processes using a discrete-time representation

is that it is a much more convenient representation for simulation purposes. If the

investor checks their portfolio during consistent time intervals (every month), than

the discrete-time representation will not affect the portfolio strategy. Because the

investor will only trade at these interval time periods, the investor only needs to

know the prices of the stocks and bonds at these periods.

One shortcoming of the discrete-time representation is that sometimes investors

react when prices reach certain predetermined levels. Using the discrete time ap-

proach, our reaction to prices reaching these predetermined levels will be delayed,

due to only trading (and checking prices) at our designated periods. This delay will

be important when we discuss the boundary lines for trading in the next section. It is

just useful at this point to acknowledge that this effect leads to a slightly sub-optimal

portfolio optimization strategy.

Understanding its benefits and its deficiencies, we will use a discrete-time approx-

imation for the behavior of the stock and bond. This representation is derived in a

well known paper (and included in the book) by Cox, Ross, and Rubinstein. [5]

2.6 Cox, Ross, and Rubinstein's Representation

In the section of their book on discrete-time approximation, Cox, Ross, and Rubin-

stein [5] describe the stock price process as a standard recombining binomial tree,

with a probability p of the stock price increasing by a factor of u and a probability

(1 - p) of the stock price decreasing by a factor of d. The bond price process increases

by a factor of rf at each period. In order to define the values for this recombining bi-

nomial tree, we need a few input parameters. We need the mean return and standard

deviation y, o from the stochastic price process for the stock Y, the annual interest

rate r of the bond of the form: annual interest = e' - 1 (from Eq. (2.1) above), and

the constant time step At between investor transaction times (as well as stock and

bond evaluation times).

To solve for the parameter values necessary for the recombining binomial tree

representation (p, u, d, rf), Cox, Ross, and Rubinstein generate a system of equations

in their paper, given the parameters y, o, r, At. The solution to this system yields:

1 1 y,'p = -+ at(2.5)
2 2 o-

U= eo"At (2.6)

(l -(2.7)

(2.8)

Here p is the return parameter fi-rm the stochastic stock price process represen-

tation, and ft is the risk neutral ret iir ii)araneter, which is equivalent to ft = P - aj

Our rf variable is the risk-free ri e t hat multiplies the amount in bonds at every

time step. This summarizes the calcIlated parameters used in the model simulations,

given the choice parameters p, a. r, At (defined in Eq. (2.1)).

Cox, Ross, and Rubinstein [5] also proved that in the limit as At -* 0, the

optimal portfolio to hold in the single stock and bond case with no transaction costs

approaches Merton's ratio. This is an important result as we can still use Merton's

ratio as a base case benchmark, even t hough we will use a discrete time approach to

the problem.

With the two major assumptions above, we are able to begin the derivation of the

new approximate value function.

Chapter 3

Derivation of the Approximate

Value Function and the Optimal

Portfolio Policy

We now employ the tools of portfolio optimization to develop the model we will

employ to optimize the portfolio allocation in the single stock and bond case, as well

as in the higher dimensional cases.

3.1 Definition of Objective and Variables in the

Single Stock and Bond Case

The basic goal of portfolio optimization is to determine whether it is beneficial to

change one's portfolio composition at any point in time, and to determine the optimal

allocation to which to transact. The base case example of portfolio optimization

is determining the optimal allocation of one stock and one bond, given an initial

allocation.

3.1.1 Definitions using Initial Allocations

Let us denote the terms that describe the initial allocation of wealth in a time period

(before rebalancing) as follows:

: Initial allocation of wealth in bonds at time t

yt : Initial allocation of wealth in stock at time t

W' + y : Initial total wealth at time t

,ye
tr= , + , : Initial ratio of stocks to total wealth

(zt + yt)

We adopt the convention that all variables with a prime symbol on them represent

a quantity before rebalancing occurs at that time period.

With these variables for describing the initial allocation of wealth in a time period,

we consider a way to value the amount of wealth that we possess. Our tool for

doing this is the utility function of section 2.2. In Chapter 2, we presented the true

value equation of the investor based upon the Constant Relative Risk Aversion utility

equation. We can rewrite the true value function in terms of the distribution of initial

wealth (x, y') at time period t:

V(Xzy, ir) = *F(7r') * (x + y')1y (3.1)

Recall from section 2.3 that F(7r') reflects the dependence of portfolio return on

portfolio composition.

3.1.2 Our Approximate Value Function

In section 2.2, we briefly discussed the idea of approximating the function F(7) in

the true value function Eq. (3.1). By approximating this complicated factor in the

true value function, we are able to quickly and easily optimize the value function

thereby determining the optimal portfolio policy. However, with the introduction

of this approximation for the factor F(7r'), the approximat e function is not a value

function anymore. Even though the approximate value function may be different

from the true value function by a constant factor, once we multiply the true value

function by a constant, we can no longer call it a value function because it does not

correspond to the terminal utility of wealth at time t = T. However, we note that

multiplying the value function by a constant does not change the rankings between

different levels and distributions of wealth U (x', y', 7r) for different (X y, 7r). In

other words, if one level and distribution of wealth is valued greater than another in

the true value equation, than that relationship still holds in the approximated value

equation. Because we only care about the portfolio optimization decision (where the

maximum occurs in the function) and not the actual value outputted by the value

function, we take advantage of this fact to approximate F(7r;) without worry. In the

language of metric spaces, the approximate value function and the true value function

are different but equivalent metrics.

The main contribution of this paper is the development and analysis of this ap-

proximated factor in substitution of F(7r'). We will approximate the factor F(r) by

using a second-order Taylor expansion of ln(F). Writing out this approximation, we

have:

F(7r) e (f("D for function f(7r) = ln(F(7r))

F(ir) ~eo+f*(-)+f2*(-)2)

The last equation above includes the second-order Taylor expansion of f(X) =

ln(F(X)). This Taylor expansion is a quadratic equation. We could take this expan-

sion and write it in the form:

fo + fi * (fr - tr) + f2 * (7r - _r)2 =bO + b1 * vr + b2 * 7r 2 (3.2)

Notice how we only need three variables in order to define the quadratic equation

from the previous representation in Eq. (3.2). Therefore, without loss of generality,

we can set fi in Eq. (3.2) and still be able to recover the quadratic form from the three

variables fo, f2, and -r. Substituting fi = 0 in the derivation of the approximation

for F(X) above, and renaming variables fo and fi we get:

F(7r) ~ e("o-l4*(r r (3.3)

The approximation for the factor F(X) in Eq. (3.3) is the main contribution of

the paper. With this substitution, all that is required to find the optimal values for

ao, ai, and r in order to approximate F(X) well. The true value function Eq. (3.1)

transforms into:

2 (1--Y)

V(xz, yt) t (x + y)e)(3.4)

The new exponential factor derived in Eq. (3.1) and substituted in Eq. (3.4)

is the approximation of F(7r'). The parameters of this exponential approximation

are the Obstinance Factor a and the Composition Variable t. The Composition

Variable r is a vector whose size depends on the number of stocks, and represents

the predetermined estimate of the optimal portfolio composition. fr is motivated by

Merton's ratio, since we know that without transaction costs, the solution to the

optimal 7r is static (Merton's ratio). With the functional form of our exponential

factor, we recover this behavior when transaction costs are 0. We will discuss this

example more in section 5.1. The Obstinance Factor a is a matrix of coefficients whose

dimensions depend upon the number of stocks and bonds composing the portfolio.

This factor represents the reluctance of the portfolio composition to stray from the

predetermined guess (r). The bounds on these factors are:

a < 0 for all i (3.5)

0 < tr < 1 for all j (3.6)

Substituting the exponential factor into the approximate value function greatly

simplifies finding the optimal portfolio policy. Instead of having to dynamically inaxi-

mize the true value function which includes the unwieldy function F(ir), the problem

is reduced to optimizing over three variables: ao, ai, and r. We must optimize over

these three variables which parameterize the entire space of allowed portfolio strate-

gies. This scenario is much more manageable that trying to solve for the true value

function dynamically. In addition to simplifying the optimization of the portfolio pol-

icy, the substituted factor has other helpful characteristics. The factor is exponential,

meaning that it is differentiable. This is a very important characteristic since opti-

mizing the approximate value function may (will) require us to compute the gradient

of the multi-variable function. In addition, the Obstinance Factor a allows the user to

determine the weight of the Composition Variable in the utility function. A portfolio

strategy that does not drift far from the predetermined estimate (7r) of the optimal

portfolio composition will have a set to be highly negative to increase the importance

of the Composition Variable. In higher dimensions, when there are multiple Trs, a

portfolio's policy may insist on keeping some stocks at certain levels and not mind

letting the levels of other stocks drift. The parameter a will reflect this by some

of its elements having high negative values (for those that maintain certain levels),

and others being approximately 0 (for those that drift). In essence, the parameter

a determines the no transaction boundaries of the substitute value function. This is

discussed later in Chapter 5.

3.1.3 Determining the Optimal Portfolio Policy

Defining the approximate value function above, we need to discuss why we need

an approximate value function. What is the purpose of the function? How do we

find an optimal portfolio policy? The purpose of the approximate value function

that we proposed above is to allow the investor to determine the optimal portfolio

allocation at any point in time. Given our current magnitude and distribution of

wealth along with other parameters, by optimizing this approximate value function

which incorporates transaction costs and return predictability, we will be able to

determine the optimal portfolio policy at that point in time. A basic walkthrough of

the portfolio optimization process is below. It enumerates the steps taken to find an

investor's optimal portfolio policy.

1. Pick ao, ai, r as parameters of the approximate value function (choice of param-

eters determines portfolio policy)

2. At the beginning of each time step for each simulation of the portfolio policy,

maximize the approximate value function with respect to variables (XB, IXS, YB, YS)

to determine how much stock/bond to buy/sell at the current step (determine

optimal trading decision)

3. Average all terminal utility function values (utility function from section 2.2)

at time t = T for all i simulations.

4. Use Monte Carlo simulation to choose the best portfolio policy allowed by our

parameterization (choose portfolio policy determined by ao, ai, and r which

optimizes the average of all approximate value function values at time t = T

for all i simulations)

Choosing different values for parameters ao, ai, ir is equivalent to selecting different

portfolio policies. Choosing ao and a1 to be small in magnitude translates to a

portfolio policy that is rather indifferent if the portfolio composition drifts away from

the specified fr, meaning the investor has a large no transaction area. r should be

close to Merton's ratio as that solution is optimal in the no transactions cost case. It

may not be optimal for r to be exactly Merton's ratio.

At each time step of each simulation we optimize the approximate value function

which determines the optimal trading strategy for time t. We store the terminal

values of the approximate value function at time t = T for each simulation and

then average the values together. Whichever portfolio policy produces the largest

average terminal value is the best portfolio policy. Our parameterization of the space

of possible trading strategies (possible values for ao, a1 , and fr) is very compact and

easily searcliable In Chapter 4, we discuss the computational implementation to

perform the steps in the section to find the optimal portfolio polic.

3.1.4 Maximizing Final Total Wealth

We continue the analysis of the approximate value function by observing that this

function represents the behavior of a risk-averse investor looking to maximize the final

total wealth WT. Because the realized returns for each time period are independent

of one another, performing an optimization at each time period only requires the

wealth at the beginning of the current time period. Therefore, at each time-step t, we

want to maximize the approximate value equation, but not with the current wealth

as functions of the parameters for xt and yt. We want to maximize the approximate

value function with respect to the expected wealth of the next time period. At each

period in time, we know what the expected wealth for the next time period will be

because we defined the returns process for the stock and bond with the Cox, Ross,

and Rubenstein representation (Section 2.6).

We seek to devise a method to redistribute our wealth between stocks and bonds

in order to maximize the expected approximate value function of wealth, based on

the estimated stock returns. While rebalancing the allocation of wealth, we assume

that we incur transaction costs rK proportional to the amount transacted.

3.1.5 Definitions using Allocations After Rebalancing

While attempting to maximize the approximate value function of wealth, the total

wealth invested in bonds and stocks may or may not change. If the initial allocation

of wealth between stocks and bonds is close enough (defined by the Obstinance factor

a in a way which will be made clear later) to the Composition factor r, it may happen

that no rebalancing occurs. This is because at the current portfolio composition, the

transaction costs incurred from rebalancing, which are a first order factor, would be

greater than the gain from transacting closer to the prespecified optimal portfolio

allocation, which is a second order factor. To facilitate the process of rebalancing the

portfolio, we introduce a new set of variables:

xt :Amount of wealth in bonds after rebalancing at time t (3.7)

yt :Amount of wealth in stock after rebalancing at time t (3.8)

Wt= xt + y : Total wealth after rebalancing at time t (3.9)

7t= : Yt Ratio of stocks in portfolio after rebalancing at time t (3.10)
(zt + yt)

K Proportional transaction cost rate (3.11)

This completes the set of computational variables. We must discuss the relation-

ship between the before-rebalancing variables and the after-rebalancing variables.

If there were no transaction costs associated with rebalancing the portfolio, then

we would have (x' + y') = (xt + yt), since no wealth is lost in transacting from one

portfolio allocation to another. However, because the transaction cost rate is , and

not necessarily 0, the equation to relate wealth before and after rebalancing becomes

approximately:

(+y) (t + yt - (lyt - y |+|xt - x'|) = (xt + yt - 2(lyt-y) (3.12)

Using this relation in Eq. (3.12) with the utility function in equation Eq. (3.4),

we can define the utility equation post-rebalancing as:

1 , af 2i

((xt + yt - 2Kyt y)e \ / (3.13)

We eliminate the 7rt variable and replace it with its definiton in x and yt, as well

as rewrite a in terms of its matrix components (reducing the equation to only terms

in x and yt). We then have:

1 (zt + yt - 2Klyt -aa y,|)*e)(3.14)
1 - - t) y

It is important to note that the no time step has occurred. Thus the structure of

the progression is as follows:

xi-, yt-1 -- simulate returns -+ x, yt -+ rebalance -+ xz, yt -+ simulate returns -* etc.

3.1.6 New and Improved Representation for Portfolio Rebal-

ancing

Notice that after the introduction of transaction costs, the objective function contains

an absolute value and is therefore no longer differentiable for all values of xt, yt. In

addition, the technique of introducing transactions cost in Eq. (3.12) above was only

approximate. However, we can use a linear optimization technique to remedy the

situation. Instead of denoting (xt, yt) as our portfolio after transacting and denoting

2 KiYt - y'| as the transactions costs, we will remove the variables (xt, yt) and replace

them with four new variables:

XB > 0: The amount of bonds bought during rebalancing at time t (3.15)

xs > 0: The amount of bonds sold during rebalancing at time t (3.16)

YB > 0: The amount of stocks bought during rebalancing at time t (3.17)

ys > 0: The amount of stocks sold during rebalancing at time t (3.18)

Using the the utility equation Eq. (3.14), we can substitute the following relations:

Xt = xt+XB-xS (3.19)

Yt = Yt + YB ~ YS (3.20)

2Kyt - y| = l(xB + XS + yB + yS) (3.21)

XB - XS + YB ~ YS = -K(xB + xS + yB + yS) (3.22)

The last equation comes from the fact that after all transactions are complete,

the only difference in total wealth are the costs incurred by the transactions. If the

transaction costs were 0 (i.e. r = 0), then xS = YB and ys = XB which implies

that you can buy as much as you sell. In addition, the previous representation of

transaction costs in Eq. (3.13) was only approximate. In Eq. (3.13), we simplified the

transaction cost expression to 2KIyt - y'|. This is expression is not entirely correct in

that it implies that the amount of transaction costs with respect to selling the stock or

bond is equivalent to the costs associated with buying the stock or bond. The problem

with the approximation in in Eq. (3.13) is that an investor must sell an asset first and

then purchase a different asset with the acquired funds. Without loss of generality,

assuming the investor sold bonds, he is left with x - Xt - K(Xt - x') = (1 - n)(Xt - X')

in cash, which he will then invest in stocks. The amount which he will invest is

since the difference between this amount and (1 - /')(xt - x') are the

transaction costs required to buy the stock. The total amount of transaction costs

incurred are:

, (1 - s)Xt - X'),((xt - X 1)) + K- < 2Kxt - xt| (3.23)(1 +i /)

The left hand side of Eq. (3.23) produces the correct amount of transaction costs,

whereas the previous approximate representation on the right hand side did not, which

makes this new representation for transaction costs seem that much more efficient.

Rewriting the utility equation using the equations above, we have the differentiable

function below:

U(xB, XS, Y1,YS) - K(XB + XS + YB YS))

Kao+a~~ I(xBxX/ ~ y) /'r -7r
* e ao1a)",Y"+*** (3.24)

All that is left is to optimize the expected value of the Eq. (3.24) with respect

to the predicted returns, which we defined according to Cox, Ross, and Rubinstein

in Section 2.6. We will use the discrete time recombining binomial tree stock price

process discussed in the Previous Results / Assumptions chapter above.

3.1.7 Our Final Approximate Value Function

Writing this expected utility function out explicitly using the parameters p, u, d, rj

defined in the equations Eqs. (2.5) earlier, the approximate value function we want

to optimize becomes:

V(XB,XSyB,yS) tf((+ XB - XS - K(rB + XS + YB + YS)) + u(y + YB YS))

(ao alu(v + Yn -ys) --) 2) 1-oe (f+a (I x+x -xs-(xB+xs+YB+Ys))+u(y+yB-ys))

+ P ((rf(xI + XB - XS - K(B + XS +YB + YS)) + d(y +yB - yS))
1-7- \

ed(ao+al ((rf (X (+yB-Ys) -T) 2)

e ! * ~t"***** ~ (3.25)

Remember that in Eq. (3.25) above, it is assumed that transaction costs required

for rebalancing are paid with the amount of wealth stored in bonds.

Most of the values in Eq. (3.25) above are known. While performing the opti-

mization at time step t, the values xz, yt ,, y, Ir, a0 , ai are all known (i, y, r, ao, ai are

predefined before the optimization is performed and x', y are known from the previ-

ous time step). Therefore, the only unknown variables that are to be determined at

each time step are XB, x, y B., and ys-

After completing the approximate value function to optimize, we complete the

model by weaving the time steps together. This is done by simulating the returns

of the stock and bond after the optimization of the approcimate value function is

completed. This translates into defining the relationship between xz + XB - XS, Yt --

YB - ys and x+ 1, y'+1. We defined the recombining binomial tree that defines the

returns on stocks earlier (Section 2.6), but to explicitly show what values are used,

we will repeat the model again quickly. The returns are as follows:

Xt+1= (Xt + XB - XS)rf, where rf is the return rate defined earlier (3.26)

yt+1 =((y + YB - YS)u) with prob p and (3.27)

yt+1 =((y + YB - yS)d) with prob (1 - p) (3.28)

Nearly all aspects of the model have been covered except for one: choosing the

best parameters for the approximate value function. Above, we discussed the newly

created function, as well as the pre-specified values it requires. However, we must

assign values to these prespecified parameters. These values are very important in

that those values determine the portfolio policy at each time step. For the transaction

costs rate K and for the CRRA utility function's risk aversion factor -Y, we will set

the parameters to standard values. Namely, we choose:

K = 0.01

y = 2 (3.29)

The only variables left to be determined are -r, ao and a,. Because these last

three variables were introduced in the substitute exponential factor, we do not yet

have known good choices for these parameters. In fact, choosing the right values for

these parameters will decide how well this approximate value function will perform in

deciding the proper trades to make at each time step with the goal of maximizing our

wealth at a final time T. When we have chosen proper values for these three remaining

variables, we will then be able to test the portfolio trading strategy against simulated

data in order to determine its efficiency and performance.

3.2 Approximate Value Function in the Two Stock

and One Bond Case

The functional form of the approximate value function in higher dimensional cases is

very similar to the form for the single stock and bond case. Extending the function to

accomodate more stocks in the portfolio requires modfication in a few places. How-

ever, the expansion required by the approximate value function is easy to understand

and simple to implement.

Initially, in the event of an increase in the stock value by a factor of u, the total

wealth factor is:

(rf(x' + XB - XS - r(XB + XS + YB - Ys)) + U(t + B + YS) (3.30)

For a two stock and one bond case, it becomes necessary to add in a second stock

initial wealth, as well as variables to buy and sell the second stock. In addition, there

are four outcomes with non-zero probabilities at each time step which need to be

integrated into the value function. Let us define pi as the probability that the first

stock will increase by a factor of u1 . On the same note, the second stock will increase

by a factor of U2 with probability P2. The four possible outcomes are that both

stocks increase with value with probability pi * P2, the first increases and the second

decreases with probability pi * (1 - P2), the second increases and the first decreases

with probability (1-p1)*p2, or both stocks decrease with probability (1-P1)*(1-P2).

For the case that both stocks increase, the total wealth factor is:

(rf (xt+XB-XS-K(XB+XS+IB I +Y2B+Y2s)) +U1 (Y1t +Y1B +Ys)+U2 (Yt ±Y2B+Y2s)

(3.31)

Not only does the total wealth factor change, but so does the Preference factor.

The required changes are predictable though as the Preference factor, in the case

where the stock increases in price, changes from:

ao+al u(y +YB-YS)

ea(+ ((rf(xt++xB-xs K(xB+xs+yB+yS))+u(y +yB-ys)) 2 (3.32)

to the following form below which incorporates both stocks and their respective

wr's:

ao+ai (t+ 1 1_ +a2 U2 y2+ 1 y2)- 2 +a3 U1(Ylt +YIB Y1S) - 1(y2t +Y2B1 Y2S) k2

eK"~' W-7l) +a (WtA4,) 7r)+3(E(Wt+l) (Ui) E(Wt~l)

(3.33)

where E(Wt+1) is the wealth factor when both stocks increase in price, as defined

in Eq. (3.31) above.

As the number of stocks in the market (reflecting the dimensionality of the prob-

lem) increases, the changes made to the value function follow as above. In the Pref-

erence factor, there is an a matrix coefficient factor for each diagonal term (squared

term) and for every cross term (2*... term). As the dimensionality of the prob-

lem grows, the number of unknown parameters for the value function grows rapidly.

Therefore, a method, more efficient than the one described in the next chapter, of

searching for the optimal parameters of the value function must be found for the value

function to scale well to higher dimensional parameters. This would be a valuable

extension to this paper and is discussed later.

In the next chapter, we will describe the computational implementation of the

portfolio optimization routine which centers around the optimization of the value

function at every time step. In addition, we will describe the method by which we

will discover numerically, through simulations, the ideal values for F, ao and a1 , which

give us the best portfolio policy. By finding the ideal values for -r, ao and ai through

simulation, we will have achieved closure for the approximate value function, defining

the optimal portfolio policy at any point in time.

38

Chapter 4

Computational Implementation of

Portfolio Optimization Problem

In the previous section, we discussed the theory and mathematics behind the approx-

imate value function which we will utilize in order to determine an optimal portfolio

policy. However, one problem that was left unsolved was determining optimal values

for the parameters fr, ao and a1 in the function. In this section, we will discuss the

computational implementation of the portfolio optimization problem, the method by

which we will discover the optimal values for t, ao and ai, and the methodology for

testing the performance of the approximate value function.

4.1 MATLAB Platform

The MATLAB platform is utilized for the computational implementation of the port-

folio optimization problem. There are several reasons behind this choice. A high level

language is required in order to organize the code into several classes, each of which

has its own specific and important function. In addition, in order to quickly perform

the simulations required of the portfolio optimization problem, a numerically-based

optimizer is preferred over a slower but exact symbolic algebraically-based optimizer

like Mathematica. Taking into account the requirements of the problem, we choose

to implement the code for the portfolio optimization problem in MATLAB.

4.2 CreateData.m : Creating the Test Data via

User Preferences

As the first step in the implementation of the optimization problem, we must discuss

how we will generate the test data, as well as the values for the parameters pre-

specified by the user, which will be used by the portfolio optimization code. All

of this data is generated/specified by the MATLAB file createData.m attached in

Appendix A. Here we assign the pre-specified values that we developed earlier in

the paper (values for -y, ,, p, -, , At, rf, u, d, p in Eq. (3.29) and section 2.6). We

specify the initial distribution of wealth for all simulations, which we set to 7ro = .5

(xO = 100, yo = 100) as a typical initial distribution.

For a single portfolio optimization iteration, we need to specify the length of time

an investor will be in the market. As an investor may pull out at any time, this

generated number should be somewhat random. An accurate representation for this

period is the stopping time of a Poisson distribution. This representation is equivalent

to the values generated by an exponential distribution, which are the lengths of the

inter-arrival times, given a parameter A. We denote At = 1, so that the time-steps12)

are monthly, and so we choose the parameter A = 48 (fthe years) for the exponential

distribution (which we call simLength in the code). This is historically a reasonable

amount of time for the investor to be in the market. However, the investor may

choose to leave the market earlier or later and the approximate value function must

perform well for both shorter term and longer term investors. Therefore, we stipulate

that during the performance test of the function (with assigned values for the param-

eters -r, ao and ai), it will perform a very large number of simulations using different

simulation lengths chosen from the exponential distribution (num-runs = 10, 000). In

chapter 5, we will prove that this number is sufficient to provide us with the true mean

of the final approximate value function outputs given the exponential distribution of

simulation lengths. This array of different simulation lengths is represented by the

variable sample-sizes.

All that is left to generate is the returns table for the stock. For each of the

simulation runs, we generate an array of stock returns based on the given probability

p of the stock increasing (called returnrnmatrix). We generate a different array for

each simulation run, so we set a length for the table (tableLength = 500) and make

the table (10,000 x 500). If a simulation length generated is greater than 500, the

table wraps around to the first cell of the row and repeats from there.

In order to accurately compare the performance of the function with different

values for its parameters (r, ao and ai), we would like to use the same generated data

for each of the simulations in order to avoid discrepancies in the test data. This is

made possible by saving all of the generated values to a temp file (called "newtemp")

and loading this file when data is needed to test the function with parameter values

for t, ao and a1. Therefore, once createData.m is run once, there is no need to run it

again, unless the user would like to change one of the user-specified parameters.

4.3 Objgradnew.m: The Approximate Value Func-

tion

the defined approximate value function is stored in this file. MATLAB's fmincon

optimizer routine calls this function when we are optimizing the portfolio allocation

at each time step for each simulation iteration in MEngCode.m. Even though the

function above is differentiable, computing the gradient is not an easy task and is

very complex (See Appendix B for Mathematica-computed symbolic derivatives).

Therefore, we do not input a user-defined gradient for MATLAB to utilize. Instead

we allow MATLAB's fmincon function take care of the optimization of the function.

There are two adjustments to the approximate value function in this code to point

out. First, the function is multiplied by a factor of (-1) and second, it is multiplied

by a factor of 10, 000. There are two simple reasons behind these adjustments. The

first adjustment is necessary because we are utilizing MATLAB's fmincon function,

which minimizes the value of the function inputted. Since we are trying to maximize

the output value of the function, this is equivalent to minimizing: (-1)*output value

of the value function, which is what we do in this case. With respect to the second

adjustment, with the pre-specified value of ? = 2, the output value of the function

becomes a very small fraction. MATLAB's fmincon function optimizes the input

function (the function) through adjusting the variable parameters (XB, xs, yB, YS)

by a value proportional to the value of the input function with its current variable

parameter values. Because the output value of the approximate value function is a

very small fraction in this case, MATLAB's fmincon function progresses towards the

optimal solution in very small steps. In order to increase this step-size and therefore

decrease the time necessary to maximize the function, we multiply the function by a

large factor (on the order of 10,000).

4.4 MEngCode.m : The Portfolio Optimization

Simulator

The backbone of the MATLAB code is the file MEngCode.m. This code performs the

optimization simulations based upon the parameters generated from CreateData.m.

The code optimizes the portfolio allocation at each time step for each simulation iter-

ation by using MATLAB's fmincon function and calling the function Objgradnew.m

described above. In the process of performing the portfolio optimization at each time

step, we impose two constraints in the code to ensure no degenerate solutions are

chosen for the portfolio. First, we limit the amount that we are allowed to short and

go long for both stocks and bonds (i.e. we model a risk averse investor). In addi-

tion, if the optimization protocol calls for transactions that are minuscule in size (ie.

10-6), we decide not to transact at all to avoid MATLAB rounding errors. The final

7r and final approximate value function value is stored after each simulation. After

all 10,000 simulations are completed, the code averages these values over all simula-

tions and outputs these results to the user or the function that called MEngCode.m

(namely pi-a-solve.m).

4.5 Pi-a-solve.m and Pi-a-fmincon: Approximate

Value Function Parameter Optimizer

As we have discussed, the goal of the MATLAB code is to test the performance

of the function using simulations and to determine the best values for parameters

fr, ao and a1 of the optimization. The MATLAB codes pi-a-solve.m and pi-aifmincon

are designed to do both of these things. In pi-a-fmincon, the optimization of the

function's parameters r, ao and ai are left to the fmincon optimizer of MATLAB.

However, MATLAB's fmincon was not designed to handle this particular situation.

Instead of optimizing a function which may have a gradient, or can at least have its

gradient approximated by MATLAB's finite difference method, we are optimizing a

number which is the average of the final values of 10,000 different simulations. As

there are three variables to simultaneously optimize, MATLAB's fmincon method

is unable to find values that are even close to the optimal values for the function's

parameters.

The only choice left is to search for the solutions manually. The method for

searching for the optimal values of the approximate value function's parameters is

described and justified in Chapter 5. In the code pi-a-solve.m, we are able to manually

select values for Jt ao, a1 and run the optimization simulations on the parameter-

specified function. This file collects the averages of the final function values, the final

7r of the portfolio, and the average total final wealth and stores them in tables. This

allows the user to not only determine which values allowed the function to perform

the best, but what the values of the average final portfolio composition were as well

as the average final wealth of the portfolio.

4.6 Plot -objfungrad: Plot Approximate Value Func-

tion Under Different Trade Choices

For the convenience of the user and in order to create understandable plots of the

function under different conditions, the MATLAB file plotobjfungrad.m was created.

In this standalone file, all user modifiable data is listed, which include parameters

from createData.m and the three unknown global parameters of the approximate

value function (fr, ao, ai). After the user designates values for all listed parameters,

the file plots the function under all possible trading choices (all possible values of

XB, XS, YB, YS). This allows the user to observe graphically how different trading

choices will affect the output value of the function. In this single instance, the user

can see graphically which trading choice is optimal at this single time-step with these

specifically designated parameters. In the MEngCode.m file, instead of having to try

all possible trading choices in order to find the optimal trading choice, MATLAB's

fmincon function finds this solution nearly instantaneously. This optimization needs

to be performed quickly as well, since MATLAB on average will need to find this

optimal trading choice a large number of times:

Total Number of Simulations = (# of different parameter choices in pi-a_ solve)

* (10,000 simulations per choice)

* (avg 48 timesteps / simulation)

With the necessary MATLAB simulation code explained and implemented, we are

now able to discuss the resulting data from testing as well as discuss the meaning of

these results. In Chapter 5, we look at the results from the single stock and bond case,

as well as get a glimpse of the results from running the simulation on higher-order

situations, namely the two stock, single bond scenario.

Chapter 5

Simulation Results and Analysis

After deriving the new approximate value function and creating the necessary MAT-

LAB simulation code, we are ready to test the performance of the function in simula-

tions. Before using the derived approximate value function to determine the optimal

allocation at every time step, we will use a base case function instead, whose optimal

asset allocation has a closed form solution, in order to test the MATLAB code to make

sure it is operating correctly. To put the portfolio optimization's performance into

perspective, we will compare the results of this optimization against a benchmark.

In addition, we will be able to discover the optimal parameters for the approximate

value function (ao, ai, -r) through numerical simulation.

5.1 Single Stock and Bond No Transaction Costs

Case

Before testing the performance of the derived approximate value function using the

MATLAB simulation code, it is important to discern whether or not the MATLAB

portfolio optimization code is operating properly. The most efficient way to test this

is to run simulations on base cases for which we know the correct solutions. The

no-transaction costs case for the single stock and bond scenario is a great base case

to use. We already know that the optimal portfolio composition at every time step

is static and is equal to Merton's ratio, which we discussed earlier in section 2.4.

In order to adjust the function to emulate the value function Merton employed,

we simply need to eliminate transaction costs and the exponential factor for the user-

recommended portfolio composition. These conditions are satisfied by setting the

parameters K, ao, ai = 0. With these parameters, the transaction costs are nullified

and the exponential Preference Factor = eo = 1, and no longer affects the approximate

value function either. This is easily done by setting , = 0 in the CreateData.m

file and setting ao, ai = 0 in the pi-a-solve.m file. Another way we can emulate

Merton's strategy with the approximate value function is to set ai to be a highly

negative number and set i = Merton's ratio. Because transaction costs are 0 and the

Obstinance factor a is strongly negative, the optimal portfolio would natuarally be

r = 7 which is Merton's ratio. Using either of the two methods mentioned produces

the same optimal solution: Merton's ratio.

All that remains is to pick parameters p, or, ry, -y, run the simulations using the

computational implementation, and compute Merton's ratio using the formula in

Eq. (2.4):

y - rf
ir =

In fact, running the simulations in MATLAB is unnecessary. All one needs to

do is plot one optimization simulation of the current value function to discover the

simulation's choice for 7r. The reason for that is with no transaction costs, the initial

portfolio composition does not matter in determining the optimal portfolio to hold

for the next time step. After the simulated returns at each time step, the portfolio

composition and the magnitude of wealth changes, but the optimal portfolio to hold

for next period does not depend on the current portfolio or the magnitude of wealth.

Therefore, whatever distribution of wealth is optimal to hold in one period, that same

distribution will be optimal to hold for all periods.'

'One can verify this by allowing the MATLAB code to output the values (tempx, tempy) in
MEngCode.m at every time step and compute 7r tmempy to see that 7r stays the same after
each time step.

Fig. (5-1) is a plot in the case where p = 10%, o = 20%, rf = 5 =X 2, which

are all fairly standard values for the parameters.

Note: In all two-dimensional graphs, the x-axis representation is as follows: for

X = (-100, 0), the portfolio's change is to sell x dollars worth of stocks, and buy 1

worth of bonds. For x = (0, 100), the portfolio's change is to sell x dollars worth of

bonds, and buy x. worth of stocks. This is a great way to represent the single stock

and bond case graphically since the plots are continuous and are easy to interpret

visually. In addition, this covers all possible inputs (combinations of xB, xs, YB, Ys) for

the approximate value function. Unfortunately, this representation will not translate

well to a higher dimensional case.

Approx Value Function With Aone = 0, mu = .1, sigma = .2, rf = .05, gamma = 2, kappa = 0
-49.72 - -

-49.73 -

C -49.74 -

0

- -49.75 -

IL

- -49.76 -

a)
16 -49.77
E
0

cLC -49.78

-49.79

-100 -60 -60 -40 -20 0 20 40 60 80 100
-100:0 Sell x Stock, Buy x Bond -- 0:100 Sell x Bond, Buy x Stock

Figure 5-1: Merton Ratio Base Case: One Stock, One Bond Plot with no Transaction
Costs with p = 10%, o = 20%, rf = 5%, -y = 2

According to both the plot and the MATLAB output, the maximum on the graph

occurs at x = 27. This is equivalent to buying $27 worth of stocks and selling $27

worth of bonds. Our calculated 7r = 100+27 = .635

Calculating Merton's ratio, we have: -O = = .625, which translates to holding
2(62)2 8 o

62.5% of our wealth in stocks and the rest in bonds. Our 7r and Merton's ratio are

A, 7 .64 .635 .63 .625 1 .62
-49.7270737 -49.7270683 -49.7270711 -49.7270822 49.7271016

1 -49.999967189 -49.999967188 -49.9999671875 -49.999967188 49.999967190

Table 5.1: Above is the table of values for the output of the function, varying the At
parameter. We can see that the optimal value of the function is approaching Merton's
ratio as At is decreased.

not equivalent. The reason for this discrepency is that Merton's ratio is based upon a

continuous case whereas the approximate value function and returns process is based

upon the discrete case. We can see that the solution approaches Merton's solution

in the limit as At --> 0. Currently, it is set to At = -, meaning we re-evaluate the12' wereealae)h

portfolio after returns occur monthly. If we adjust this parameter so that it approaches

0 and re-evaluate the function (which is shown in Table (5.1) with At = 1 o), we

can see that the optimal portfolio does indeed approach the Merton Ratio. Below

is a table of the function's outputs based on the value for At and the input x from

the x-axis values (ie. 7r = .64 means x = (.64 * 200) - 100 = 28 so we evaluate the

approximate value function at x = 28).

As further verification, Fig. (5-2) is another plot of the approximate value function

using different parameters. In this case, we will use t = 15%, o- = 30%, rf = 5%, -y =

3. These parameters correspond to an investor who is more risk averse than the

previous case, and a stock that has a higher return, but is more volatile than the

previous case. Therefore, we should expect to see a lower optimal ratio: -15 -
3(.3)2

= .37. As you can see in the caption, the discrete case approximates the continuous

solution well.

We have convinced ourselves through rigourous testing that the optimization code

works properly using a base case. We can now test the derived approximate value

function with confidence. In addition, we will introduce transaction costs to the

testing.

Approx Value Function With Aone = 0, mu = .15, sigma = .3, rf = .05, gamma = 3, kappa = 0

-0.1234 1 1 1 I I 1

-0.1236

-0.1238

-0.124

-0.1 242

-0.1244

-0.1246

-0.1248'
-100 -80 -60 -40 -20 0 20 40 60 80

-100:0 Sell x Stock, Buy x Bond -- 0:100 Sell x Bond, Buy x Stock

Figure 5-2: The output from MATLAB determines that the maximum in the graph

above is at x = -25. This means the optimal 7r is 100-25 .375. This result is very

close to Merton's ratio which we calculated above the graph to be .37. As before,
reducing the size of At makes these two values converge.

5.2 Single Stock and Bond Portfolio With Trans-

action Costs

Having established that the base cases of the approximate value function and opti-

mization routines in MATLAB are behaving correctly, we may test the function on

a more realistic case: including transaction costs. In this case, we have two extra

factors and their impacts to the approximate value function to consider: the cost of

rebalancing (transaction costs), and the cost of not exactly rebalancing to the sug-

gested portfolio (exponential factor). It seems as though the balance between these

factors is unstable. If one cost is set too high, that factor will dominate the other

factor and the dynamic component of the portfolio will be eliminated. For example,

setting the parameters r = 0.01 and ai = -5, the portfolio will rebalance at every

time step to equate its composition to that of the user-specified -r. On the other

hand, if K is set too high, the portfolio will never rebalance at any of the time steps

and its composition will be decided by the returns of the stock. The first behavior is

equivalent to maintaining a static portfolio whereas the second behavior is equivalent

to the investor being static.

Fig. (5-3) and Fig. (5-4) each exhibits one of the two possible behaviors above,

based upon the user-specified parameters. Fig. (5-3) is the example of having K =

0.01 and ai = -5 with the rest of the parameters having default values (we will

arbitrarily pick r = .8). Fig. (5-4) is the example with r, = .2 and ai = -. 05. Both

plots help express the aforementioned behavior perfectly.

Approx Value Function With Aone = -5, mu = .1, sigma = .2, rf = .05, gamma = 2, kappa = .01
0r 1 11

-200

-400

-600

-600

1000

-1200

-1400'-
-100 -60 -60 -40 -20 0 20 40 60 60 100

Figure 5-3: The output from MATLAB is exactly what we
maximum occurs at x = 60 This translates to 7r = 100+60= .8.

expect it to be: the

In this one stock and bond scenario with transaction costs, we realize that a static

portfolio is not necessarily the optimal investment strategy. At some trading periods,

it may be optimal to trade and at others it may be optimal not to trade, depending

on which of the two factors mentioned above has more weight. Ideally, we could just

use MATLAB's optimization routine to optimize the choice of the global variables

Approx Value Function With Aone = -. 05, mu .1, sigma = .2, rf = .05, gamma = 2, kappa = .2

-45

-50 -

0
-55

-75
CL

-100 -60 -60 -40 -20 0 20 40 60 -0 100
-100:0 Sell x Stock, Buy x Bond -- 0:100 Sell x Bond, Buy x Stock

Figure 5-4: Again, the output from Matlab is exactly what we expect it to be: the

maximum of the function occurs at x = 0 This translates to 7r = 10"o0 = .

*00_ -65

aoI ai, and -r. We mentioned before in section 4.5 that this was not possible. This

is because MATLAB's fmincon function does not converge to the correct solution.

The reason for MATLAB's inability to converge to the correct solution is because of

the finite-difference method MATLAB uses to search for an optimal solution when an

approximate gradient cannot be computed (it is impossible to compute a gradient for

an objective function that is based upon the average of 10,000 simulations). Therefore,

a method for finding the optimal choice parameters must be devised.

In finding the optimal parameters for the approximate value function, it is impos-

sible to optimize over more than one variable at a time. If one adjusts two variables at

the same time while performing a search, when the objective function value changes

for the better, it is impossible to discern which change to which variable was respon-

sible. Therefore, maximizing one variable at a time is the only logical way to proceed

with optimizing the function's parameters ao, ai, and tr.

In order to optimize the choice variables, we will optimize the -Tr choice variable

first, and then optimize the (i I choice variable. There is no need to use simulations

to find the optimal choice for ao as it is possible to discern graphically and through

reasoning. Letting ao be a non-zero value is the same as multiplying the approximate

value function by a factor of (a). Having ao / 0 will reduce the effect of the e a()

factor and decrease the entire exponential factor in magnitude. This will decrease

the output value of the function. Since we are trying to maximize the function and

want the eal ..) factor to be effective but not too small of a fraction, it is optimal to

have ao = 0, since the constraint on ao < 0 is in effect from the approximate value

function's design section. Fig. (5-5) and Fig. (5-6) illustrate varying the values of ao

keeping all other values the same as before (setting ai = -. 2 and r = .8). Fig. (5-5)

has ao = -2, a large negative value. Fig. (5-6) has ao = -. 02. The effect of ao is

easy to see between the two graphs and it is easy to tell graphically that the optimal

value for ao is 0.

Approx Val Fun: Azero -2, Aone -.2, mu .1, sigma .2, rf =.05, gamma 2, kappa .01
-370

-380 -

0
c -390
.0

U-

C
S-400-

a)

-420 -

-430 '
-100 -80 -60 -40 -20 0 20 40 60 80 100

-100:0 Sell x Stock, Buy x Bond -- 0:100 Sell x Bond, Buy x Stock

Figure 5-5: Plot of Approximate Value Function under condition that ao = -2

The optimal method for optimizing the approximate value function parameters

(ai, fr) depends upon the ability to narrow down the search space as much as possible.

Approx Val Fun: Azero = -. 02, Aone = -. 2, mu = .1, sigma = .2, rf = .05, gamma = 2, kappa = .01

-51

-52 -

-5 3

C

x

0=- -57 -

L)

a) 5

-56 -

-59
-100 -80 -60 -40 -20 0 20 40 60 80 100

-100:0 Sell x Stock, Buy x Bond -- 0:100 Sell x Bond, Buy x Stock

Figure 5-6: As we can see from Fig. (5-5) and this figure, the maximum value of both

graphs occurs at the exact same value of x (MATLAB's output states optimal value in

both graphs occurs at x = 145, 7r = .72). However, the difference in the scaling of the

approximate value function's output is enormous. Since we are looking to maximize
the function's output, we can let ao = 0 knowing that the approximate value function
will return the same answer for the optimal rebalancing (since the function's output
is just scaled).

When we optimize the choice for -r, we will choose a large negative value for ai so

that the problem temporarily becomes a static portfolio choice problem. As stated

before, the optimal static portfolio allocation in the no transaction costs case (and

without the exponential factor) is the Merton ratio. Therefore, the optimal choice for

-r in this static portfolio case, will be close to the Merton ratio.

Fig. (5-7) is a plot, shown with its associated data in Table (5.2), of the average

final function outputs over 1,000 simulations versus the choice for r, having a1 be a

large negative value. The parameters chosen in this case are a0 = 0, a1 = -1, -y =

2 ,Xo = 100,yo = 100, At = n, r = 0.01,p = .1,o = .2 ,rj = .05,A = 48. This

simulation provides us with a view over a wide range of portfolio compositions so we

know where to concentrate the search.

1 00 Simulations and Large Pibar Changes

0.55 0.6 0.65 0.7 0.75
Avg Final Pi Values

0.6 0.65 0.9

Figure 5-7: Plot of the average final approximate value function outputs with 1000
simulations and a1 is a large negative value for value function (ai = -1)

r .85 .80 .75 .70 .65 .60
Average 7r .8471 .7982 .7492 .6999 .6504 .6010
Avg Value - - - - - -

Fun Result 41.5758 40.9179 40.3620 40.1250 40.1529 40.2702

Table 5.2: Table of Values of the Average Approximate Final Value Function Outputs
with 1000 Simulations and a1 is a Large Negative Value for Function (ai = -1)

Note: Even though we have a large enough negative value for ai, the average r

values are not equivalent to the corresponding Tr. This is because after rebalancing

the portfolio at time T - 1, we simulate the returns to get the portfolio value at time

T, and then exit the market. We do not rebalance the portfolio at time T. Therefore,

after the last return simulation, the values for 7r will be slightly different than r. For

the rest of the paper, 7r will no longer be included in the data tables if rounding the

average 7r values gives us the value of r.

From the simulation above, we can see that the maximal average value for the

x 10
-4

C -4.05

0

0

C -4.1
L

co
> -4.15
CD

cL -4.2

z-4.25

-4.3 L-
0.5

approximate value function occurs vhbIn i he value for r is somewhere in the range of

.70 to .55. We should not narrow the irea down too much since 1,000 simulations is

small enough for the data to still bave somle significant variance in it.

With the slightly narrowed range. we run the simulation again only changing

the number of simulations from 1.000 to 10,000 in order to get a more accurate

picture of what the true mean of the final approximate value function outputs is over

all simulations. This simulation generates Fig. (5-8) and its corresponding data in

Table (5.3):

Plot of Avg Final Pi Avg Approx. Value Function Output
-39.505 -

-39.51

-39.515

-39.52

-39.525

-39.53 -

-39.535 -

-39.54 -

-39.545 -

-39.55 -

-39.555 -
0.54 0.56 0.56 0.6 0.62 0.64 0.66

Avg Final Pi Values
0.68 0.7 0.72

Figure 5-8: Plot of the average final value approximate function outputs with 10000

simulations and a1 is a large negative value for function (a1 = -1)

Graphically in Fig. (5-8) (and in its data in Table (5.3)), we can see that the

optimal choice for iTr is .60 < it < .61. This result makes a lot of sense. We know that

the optimal static portfolio should be close to the Merton ratio because rs is relatively

small. We also know that the optimal it will be less than the Merton ratio because

Average ir .6914 .6815 .6717 .6618 .6519 .6420 .6321
cont'd .6223 .6124 .6022 .5926 .5827 .5728 .5629
Avg Value -39.54015 -39.53233 -39.52549 -39.51963 -39.51479 -39.51091 -39.50800
Fun Result
cont'd -39.50604 -39.50504 -39.50502 -39.50599 -39.50791 -39.51078 -39.51460

Table 5.3: Table of values of the average final approximate value function outputs
with 10000 simulations and a1 is a large negative value for function (a1 = -1)

calculating the Merton ratio using the above parameters, we get .625. This number is

above .5 which is the initial t from the beginning of the simulation, due to the choice

parameters (xo = 100, yo = 100) Therefore, the 7 should be close to the Merton ratio,

but, because of the transaction costs, be slightly below the Merton ratio.

It is unclear, at this point, what the actual reason is as to why the optimal i is

equal to this particular value. In other words, why does the optimal t = .02 less than

the Merton ratio? Why is this magnitude of difference not more or less? The reason

is that at this particular value of t, the marginal utility of transacting closer to the

optimal portfolio (Merton's ratio) is less than the marginal utility of having , extra

wealth at the current t (stay and do not incur transaction costs).

We have solved the static portfolio problem with transaction costs. Using this

solution, we must look to solve for the optimal value of ai, knowing that the optimal t

may change a little in the process. First, we should ask ourselves "how does changing

the magnitude of a1 affect the MATLAB code's optimization at each timestep?"

a1 determines the importance of the current portfolio composition versus the pre-

specified ideal composition. If the magnitude of a1 decreases, the importance of how

far we are from the ideal composition also decreases, which means that the importance

of incurring transcations cost increases. Therefore, by decreasing a1 , we are increasing

the size of the no-transaction area.

We know that a no-transaction area exists in the portfolio optimization model.

It was discussed in the section 1.2, but the idea also makes logical sense. If the

current portfolio composition is close enough to the pre-specified composition, then

the cost of transacting to get even closer to the pre-specified ideal portfolio is greater

than the utility gain of being closer to the ideal portfolio. In this situation, the

-K(XB + -S + YB + YS) term has a larger marginal effect than the exponential term.

As the magnitude of ai decreases, the exponential term behaves like the following

(consider ai,,, = -1, al1ew = -. 08):

aln g < a1 new

(ao + ai,,, ...) < (ao +ain ...) (5.1)

e(ao+a1 .) < e(ao+alnw....)

As we can see, the new exponential factor is greater than the old (with the same

-r used). In addition, if one were to compute the derivatives of the exponential

factor using arbitrary values for abi,, and ai_ (both terms in the last inequality),

one would see that the derivative value of the new factor is less than the derivative

value of the original factor. Therefore, we can say that the new factor's importance

(exponential factor with ainew) in the approximate value function decreases, which

means that there is a larger area where the marginal cost of the transaction costs

factor outweighs the marginal cost of the exponential factor (the no-transaction region

increases).

With a larger no-transaction region, the range of portfolios which we are allowed

to hold increases. This means that the optimal portfolio is dynamic and no longer

static. In the Merton case, the portfolio was allowed to be dynamic as well. However,

the optimal solution to Merton's case happened to be a static portfolio. Although

we know the optimal portfolio may no longer be static, the average of the optimal

portfolio choice across all time periods and all simulations in the dynamic case should

still be close to the static case. We can think of the choice for r to be the midpoint

between two boundary lines where the portfolio composition lies after every rebal-

ancing. Whenever the portfolio composition leaves the boundary lines, we transact

back to the closest boundary. On the other hand, whenever the composition is within

the boundary lines, we do not transact. Therefore, the composition moves between

the boundary lines depending on the return of the stock over simulated time periods.

Average 7 .64178 .63194 .62209 .61223 .60237 .59250

Avg Value -39.47268 -39.47010 -39.468418 -39.46782 -39.46813 -39.46941
Fun Result

Table 5.4: Table of values of the average final approximate value function outputs
with 10000 simulations and a1 is a smaller neg-ative value for function (ai = -. 5)

If the stock return is u, then the composition moves towards the upper boundary

whereas if the stock return is d, the composition moves towards the lower boundary.

Over a large number of simulations and time periods for each simulation, the mean

will be close to this # value. Therefore, the optimal choice for -, during the optimiza-

tion of the choice for ai, may change a little. but should still be close to the above

static problem solution.

If we needed, we could plot the boundary lines formed by the choices of Ji and a1 .

To do so theoretically would mean to take the derivative of the approximate value

function given the choices for t and ai and set the derivative equal to 0 under two

circumstances: when we are given a high initial 7 distribution of wealth (all money

in stocks and none in bonds before rebalancing), and when we are given a low initial

7 distribution of wealth (all money in bonds and none in stocks). This would give

upper and lower boundary points under a certain magnitude of wealth. In order to

draw lines, we must plot these values under different magnitudes of wealth, but using

the same bipolar initial distributions of wealth.

In order to test how much effect changing the magnitude of a1 will have, Fig. (5-

9) and Table (5.4) displays the results for the case when ai = -. 5 with all other

parameters and data remaining the same.

Comparing Table (5.4) and Fig. (5-9) to the previous graph and table above

(Fig. (5-8) and Table (5.3) whose only difference with this data set and graph is the

fact that ai = -1 previously), we see that the optimal f moves slightly away from .60

to .61. In addition, the function values are smaller, which is an expected effect from

changing ai described above. A less obvious difference to notice is that the average 7

10000 Simulations With Aone = 5
-39.465

-39.466
3

2 -39.467
0

-39.470

C

a>

.2 -39.4690)

<-39.472

a)

> -39.47
- 4

-39.471
0
CL

CL

iL -39.473

-39.474

-39.475

Figure 5-9: Plot of
simulations and a1

the average final value approximate function outputs with 10000
is a smaller negative value for function (a1 = -. 5)

values, in the case when ai = -. 5, are smaller than the average -r values in the case

when ai = -1. We will discuss the reason for this discrepancy using Table (5.5).

Table (5.5) is a table of values averaging the final approximate value function

outputs, given the choice variables over 10,000 simulations and varying the values of

ai so that the portfolio optimization is dynamic. We vary the values of ir as well but

within a small region, close to the static portfolio solution. The cells for the table are

meant to be read as follows: (avg 7r, avg approximate value function result).

Continuing the point made early in the discussion of Table (5.2), we notice that

as the magnitude for a1 decreases, the value for iTr also decreases. The effect in

Table (5.5) is much more obvious than in Table (5.2). The reason is that as the value

for a1 decreases, the approximate value function is less restricted by the preconceived

notion that 7r should be equal to -r. Therefore, the weight of the exponential factor

decreases, which means that the comparative weight of the transaction costs increases.

0.58 0.59 0.6 0.61 0.62
Avg Final Pi Values

0.63 0.64 0.65
I I I I I I I

Specified - .62 .61 .60
al
-.4 (.62126, -39.46145) (.61144, -39.46098) (.60160, -39.46149)
-.3 (.61855, -39.45473) (.60877, -39.45473) (.59898, -39.45568)
-.2 (.60850, -39.45386) (.59883, -39.45416) (.58913, -39.45640)
-.1 (.56063, -39.49238) (.55513, -39.49342) (.55045, -39.49378)

Table 5.5: Table of values of the average final approximate value function outputs
with 10000 simulations and ai varies between different smaller negative values for
function

Specified r .65 .64 .63 .62
al
-.19 (.63518, (.62563, (.61604, (.60642,

-39.45458) -39.45335) -39.45305) -39.45368)
-.18 (.63267, (.62314, (.61357, (.60397,

-39.45501) -39.45406) -39.45403) -39.45493)
-.17 (.62969, (.62019, (.61064, (.60106,

-39.45573) -39.45514) -39.45546) -39.45669)
-.16 (.62618, (.61669, (.60716, (.59760,

-39.45698) -39.45675) -39.45743) -39.45904)

Table 5.6: Table of values of the average final approximate value function outputs
with 10000 simulations and ai varies in a very concentrated range

This means that as ai decreases, the function puts more weight on saving money by

reducing transaction costs than rebalancing the portfolio so that 7r = F. Because the

orignal wealth distribution for this data was 7r = .5 (yo = 100, xo = 100), minimizing

transactions cost means less movement away from 7r = .5. This is why when ai

decreases in magnitude, ir values become smaller and approach .5.

We notice that the optimal value in Table (5.5) occurs when ai = -. 2 and tr = .62.

In order to numerically narrow down the region where the optimal parameters lie, we

simulate the approximate value function again on a narrower set for ai in Table (5.6):

As we can see in Table (5.6), the optimal values for r and ai are .63 and -. 19.

Looking back, the optimal value of -r = .63 in the dynamic case (when a1 is not

a highly negative constant and is allowed to vary) is close to the optimal value of

-r = .61 in the static case (when a1 is a highly negative constant).

How do we know that the optimal values for Tr ad ai t hat the simulations pro-

duce is correct? In order to determine the accuracy of t hese results, we calculate the

standard error of the mean of the approximate value finction outputs for all simu-

lations. Calculating the standard deviation of the function's 10,000 final simulation

values from the mean (39.45305 from Table (5.6)), we get os,,dev= 0.0246235. From

statistics, we know that:

Standard Error = Ostddeu
num-runs

0.02462
Standard Error = (5.2)

10, 000
Standard Error = 2.46235 * 10-4

Using the 95% confidence interval for the standard error calculated in Eq. (5.2)

(95% confidence interval -+ 1.96 * Standard Error = range for mean):

True mean of (t = T) Approximate Value Function Outputs c (39.45305±4.82620*104)

(5.3)

Eq. (5.3) defines the range where the true mean lies in given a 95% confidence

interval. This interval overlaps with the mean utility value in Table 5.6 given 7r = .64

and ai = -. 19, but with no others. This means that we have successfully found the

optimal value of a1 with 95% certainty and a small range for the optimal value of

7F E (.63, .64) with 95% certainty. Due to the large number of simulations chosen

(10,000), we can say that the simulations produced accurate results.

We have found the optimal values for the parameters of the approximate value

function. By finding the optimal values for -r and ai for the new function, we have

provided a new portfolio policy for risk averse investors to employ, in addition to

other suggested strategies by others for the single stock and bond case with transac-

tion costs. We cannot directly compare the output values of the approximate value

function with other strategies because the output value magnitudes from the approx-

im8te value function are arbitrary.

One possible method of comparing strategies is to run the approximate value

function against a different published value function/trading strategy. Instead of

comiiparing the average of the final value function values of each simulation, we can

compare the average of the final total wealth values of each simulation. Even this

method of comparison may not be possible because the results may just mean that the

risk aversion of an investor using one value function is greater than the risk aversion of

another investor using a different value function. Unfortunately, I was unable to find

other trading strategies that translated to using a value function that was compatible

to the MATLAB simulation setup. Additional research related to this paper could

include finding compatible strategies developed by others and testing the performance

of the approximate value function against theirs.

Our approximate value function capabilities are not limited to only the single stock

and bond scenario. Not only does the MATLAB code allow us to find optimal values

for the approximate value function parameters in the one stock case, but the code is

versatile enough to test the function in order to discover its optimal parameters in

higher dimensional cases. Only minor extensions to portions of the code are necessary

in order to handle higher dimensional cases. A possible extension to this paper would

be to rewrite the code to allow the usage of more than one stock and bond without

the need to adjust significant parts of the code whenever the user decides to change

the dimensionality of the problem.

5.3 Two Stocks, One Bond With Transaction Costs

Case

We have used the approximate value function model with the changes promoted in

section 3.2 along with changes to the associated code to begin analysis of the case of

Two Stocks-One Bond with Transaction Costs Case. Small-sized runs are convincing

that the computational implementation is working as intended and returns useful

Specified 7f2 .3 .4 .5 .6 .7

7Ti
.3 -250.08364 -247.27020 -245.31997 -244.01101 -243.36878
.4 -247.26962 -245.31918 -244.01147 -243.36877 0
.5 -245.31922 -244.01176 -243.36908 0 0
.6 -244.01127 -243.36985 0 0 0

Table 5.7: Table of values of the average final approximate value function outputs
with two stocks, 1000 simulations and ai, a2 , a3 , are largely negative

results in this case. As discussed in section 5.2, we need on the order of n = 10000

iterations in order to achieve a minimal standard error of the estimate. Unfortunately,

we do not currently have access to computational assets that we can control for

long enough in order to complete analyses of this size. We will pursue this when

computational assets become available.

Setting n = 1000, the computational implementation produces interesting results.

Selecting two stocks whose returns are completely independent of each other (the

probability of each stock increasing and decreasing is independent of the other), se-

lecting ai = a 2 = a3 = -4 (largely negative to make the problem static), and setting

y1 = .1, P2 = .15, oi .2, o-2 = .3, the approximate value function determines

optimal values for the parameters 7F1 and ff2 in the static case.

Table (5.7) allows us to determine that the optimal choices for parameters 7f1 and

7f2 in the static case are if1 = .4 and F2 = .6. The number of simulations performed in

the two stock case is a factor of 10 less than the number of simulations performed in

the single stock and bond case. Looking at Table (5.7), we see that the average final

approximate value function outputs when 7iF = .4 and F2 = .6 and when 7f1 = .3 and

f 2 = .7 are very close to each other. Because the number of simulations performed

is low, it is likely that the true optimal values for 7f1 and f 2 in the static case lie

somewhere within this range of values.

Given the values f 1 and ff2 above, the approximate value function states that a

risk averse investor, given two independent stocks and a risk-free bond with returns

equivalent to those for the simulation above, will choose to invest in only the two

stocks, and not in the risk-free bond. This may seem unreasonable, but given our

assumptions, this solution makes sense. In the simulation. We stipulated that the

behavior of the two stocks were independent of each other. Therefore, diversifying

between the two stocks reduces much of the risk in our port folio; it reduces the risk

so much that given the expected returns, the approximate value function tells us that

even a risk averse investor is willing to fully invest in stocks.

However, this assumption of the independence of stock returns is not entirely

realistic. In the stock market, the performance of many stocks are correlated to each

other. The recent crash of the market is obvious evidence of this interdependence.

It is very difficult to find two stocks that are completely independent of one another,

although one can come close by selecting stocks that involve separate industries of

the economy. With access to increased computational capabilities, we should simulate

the approximate value function again over a set of stocks which have a certain degree

of correlation. As the correlation between our stocks' returns grows, the portfolio

becomes less diversified. It would be expected that as the correlation increases, the

percentage of wealth held in bonds would also increase to diversify our risk.

A set of important parameters that we would like to vary to increase our insight

into this higher dimensional problem, given increased computational capabilities, is

ai, a2 , and a3 . In the Table (5.7), we chose ai, a2, a3 to all be highly negative and

equivalent values. In order for the portfolio to become dynamic and perform better,

we would need to decrease and vary these values so that all three parameters are not

necessarily equivalent.

With the data analysis completed, we are able to concisely tie our results together

in order to draw conclusions as well as suggest topics of further research which would

be valuable in extending this paper.

Chapter 6

Possible Research Extensions and

Conclusion

6.1 Possible Research Extensions

In several sections of the paper thus far, we have mentioned possible extensions to

the research which would help the efficiency/applicability of this paper to the field of

portfolio optimization. These opportunities are described below.

6.1.1 Better Multi-Dimensional Optimization Simulator

During the course of performing the data analysis, we mentioned that MATLAB's

fmincon optimizer did not work effectively in the case of pi-aifmincon.m. Because

the "function" we were optimizing was a value which was the average of a number of

simulations, MATLAB was unable to pursue the optimal solution properly. A very

useful piece of code would be a multi-dimensional optimizer routine that is based on

simulations, and not based on a gradient or a finite difference approximation. With

this extension available for the paper, we could pursue the optimal parameters for the

approximate value function in higher order dimensions more quickly and efficiently

than we are able to currently.

6.1.2 Generalize Code to Construct Approximate Value Func-

tion

In transitioning from a single stock and bond scenario to a two stock, one bond

scenario, we previously discussed that it was necessary to adjust the approximate

value function as well as the simulation code to handle this higher order dimensional

data. Ideally, we could construct code in a higher level language, like Java, to create

the approximate value function and simulation code based upon the number of user-

specified stocks and their [t, o parameters. For example, pseudocode that would

perform the task of create the function would be of the form:

1. For each stock i in input stock-array with cell data yio, pi, o-

2. ValFunct(wealthfactorup) = ValFunct(wealthfactorup) +ui * (yio + YiB - YiS) -

rf * n * (YiB + YiS);

3. temp = ValFunct(expfactor)

4. For each other stock j already processed in stock-array

5. temp = temp * e2 *a*(xied*(ai--i);

6. end

7. ValFunct(expfactor) = temp *ea"*(re-i 2 ;

Other code would need to be written the generate the rest of the code in MEng-

Code.m. For each stock, generate appropriate bounds on values, etc...

Having this higher-level code would mean that we are no longer required to adjust

the approximate value function and simulation code everytime we would like to make

a change to the dimensional parameters of the problem. This code would take care

of this change in dimension for the user.

6.1.3 Allow Approximate Value Function Parameters to Vary

Across Time Periods

In the current approximate value function, once the user picks the value of -r, this value

is fixed for all time periods throughout the simulation. However, there may be times

when the investor wants to change his r in the middle of his investment period. A

good extension to the function would be to allow this change mid-simulation, however,

in order to make this change, we would impose a penalty to the final average function

output (new output to optimize = (avg final function output across simulations) -c*

'(Air)2 where c is a parameter to be optimized). This additional degree of freedom

would provide another factor that we must optimize in adherence to. Although the

optimization would become slightly more complicated, the approximate value function

would be able to handle a wider range of situations.

6.1.4 Find Compatible Trading Strategies to Test Against

Finally, one other extension that would be useful for the purposes of this paper would

be to find other researchers' portfolio optimization strategies whose trading strategies

translate to using a function that needs to be optimized and is compatible with the

simulation setup for this paper (discrete, binomial stock movement, etc.). With other

trading strategies at hand, we could compare the performance of the approximate

value function against those provided by others under numerous test conditions to

see which provides the investor with optimal performance.

6.2 Conclusion

In this paper, we developed a new approximate value function that takes into account

transaction costs and return predictability. Key to this new function is the approxi-

mation of a factor in the true value function with a second order exponential factor.

This factor is parameterized by a pre-specified portfolio composition tr, the Com-

position Factor, and the portfolio's insistence on staying close to this composition,

denoted bY i. lie Obstinance Factor. This approximate value function emulates the

true value fiinct ion well and is much quicker to optimize at each time step than using

dynamic progranming to solve the true value equation. Using the Cox, Ross, and

Rubinsteins discrete time approximation for returns on stocks and bonds [5], we for-

mulated the portfolio optimization problem using discrete time steps and optimized

the portfolio in accordance with the approximate value function at each time step.

Using the single stock and bond with no transaction costs base case scenario,

we verified that the approximate value function model returns Merton's ratio as the

optimal portfolio choice, providing evidence that the model and computational imple-

mentation are operating correctly. We are able to determine the optimal parameters

for the function in the single stock and bond scenario with transaction costs to within

a 95% confidence interval. Determining these optimal parameters equivalently deter-

mines the optimal dynamic portfolio strategy. With only minor modifications we

were able to have extend the approximate value function and computational imple-

mentation to higher dimensional portfolios. We have performed simulations of the

two stock, one bond scenario for low numbers of iterations and have verified that the

results are reasonable and consistent with expectations, and obtain some insight as

to what the optimal parameters would be for that case. We are ready to perform

these computations at a high confidence level when sufficient uninterrupted time on

a dedicated computing platform can be obtained.

Appendix A

Computational Implementation

The actual code of the Computational Implementation (Section 4) section of the

paper is shown here. As discussed earlier in Section 4, the environment chosen for the

computational implementation is MATLAB. Below are each of the different MATLAB

files which were described in detail in Section 4. The comments in the files describe

the MATLAB specifics of our implementation.

% This file generates the data for the computational simulations of our approximate value
% function. The parameters are sectioned into parameters that are subject to change by the
% user and parameters that are generated from other parameters.

% Parameters to be adjusted by the user
gain = 2; % Risk aversion factor
kappa = 0.01; % Transaction costs rate
numruns = 10000; % Number of simulations
% Lambda parameter for exponential distribution to determine time invested in the market
% for each simulation (t = T)
simLength = 48;
tableLength = 500; % Maximum length of returns stored in table
mu= .1; % Return of stock
sigma = .2; % Variance of stock
deltaT = 1/12; % Length of time-steps (1 month)
r = .05; % Annual RF-rate parameter
x_0 = 100; % Initial distributions of wealth
y_0 = 100;

% Parameters determined by parameter values above
mubar = mu - (sigma)A2/2; % Adjusted return of stock
RFrate = exp(r*deltaT); % Monthly RF-rate
u = exp(sigma*sqrt(deltaT)); % u factor gain if stock price increases
d = 1/u; % d factor loss if stock price decreases
p = (1/2) + (1/2) * (mu-bar/sigma) * sqrt(deltaT); % probability of stock price increase

% Set return matrix to randomly return u or d at each time step given p
returnmatrix = rand(numrunstableLength);
for i=1:numruns,

forj=1:tableLength,
if (returnmatrix(ij) < p)

return_matrix(i,j) = u;
else

return_matrix(i,j) = d;
end

end
end

% Determine array of different simulation lengths for each simulation
samplesizes = ceil(exprnd(simLength,1,numruns));

% Save generated data for use by pi_a_solve.m and MEngcode.m
save('newtemp', 'gam', 'kappa', 'numruns', 'simLength', 'tableLength', 'mu', 'sigma', 'deltaT',

'r', 'RFrate', 'u', 'd', 'p 'x_0', 'y_', 'return_ matrix', 'samplesizes');

% This file contains our Approximate Value Function which is to be maximized at every time step
% to determine the optimal trade for the risk averse investor to make

function f = objgradnew(x,yamount,xamount,kappa,gam,pibar yt,Azero,Aone,RFrate,u,d,p)

% Unknown Variables to be Optimized
% x(1) = xB
% x(2) = xS
% x(3) = yB
% x(4) = yS

% Break down approximate value function into factors to piece to together to avoid any mistakes

% With prob p that the stock price increases
% totalWealthup = RFrate* (xamount+x(1) -x(2) -(kappa* (x(1) +x(2)+x(3) +x(4)))
% +u*(yamount+x(3)-x(4)))
% yRatioup = (((yamount+x(3)-x(4))/totalWealthup)-pibaryt);
% correlationFactorup = exp(Azero+Aone*(yRatioup)^ 2);

% With prob I-p that the stock price decreases
% totalWealthdown = RFrate* (xamount+x (1) -x(2) - (kappa* (x(1) +x(2) +x(3) +x(4)))
% +d* (yamount+x(3)-x(4)))
% yRatiodown = (((yamount+x(3) -x (4))/totalWealthdown) -pibaryt);
% correlationFactordown = exp(Azero+Aone*(yRatiodown)^ 2);

% Approximate Value Function broken down into pieces
% f = -(p*1/(1-gam)*(totalWealthup*correlationFactorup)A(1-gam) +

% (1-p)*1/(1-gam)*(totalWealthdown*correlationFactordown)A (1 -gam))

% Approximate Value Function in terms of input parameters and variables to be optimized
f = 10000* (-(p* 1/(1-gam) * ((RFrate* (xamount+x(1)-x(2)- (kappa* (x(1)+x(2)+x(3)+x(4))))

+u* (yamount+x (3) -x(4)))
exp(Azero+Aone (((u* (yamount+x (3) -x (4))!
(RFrate* (xamount+x(1) -x(2) - (kappa* (x (1) +x(2) +x(3) +x(4))))+u* (yamount+x(3)-x(4)))) -pibaryt))A2))A (1-gam)
+ (1-p) * 1/(1-gam) * ((RFrate* (xamount+x(1)-x(2)- (kappa* (x(1)+x(2)+x(3)+x(4))))

+d* (yamount+x(3)-x(4)))
exp(Azero+Aone(((d*(yamount+x(3)-x(4))/ (RFrate* (xamount+x(1)-x(2)- (kappa* (x(1)+x(2)+x(3)+x(4))))

+ d*(yamount+x(3)-x(4))))-pibaryt))A2))A (1-gam)));
end

% In Section 4 of the paper, we mentioned that pi-ajfmincon did not correctly. We also discussed
% the reason why the function was not operating correctly. If MATLAB's fmincon worked properly
% in this situation, this code would find the optimal parameters pibar-yt, Azero, and Aone for our
% approximate value function. We would not need to manually search for the solution ourselves.

% Extend Decimal Output
format long;

% Designate initial guess values for parameters to be optimized
pibaryt = .6;
Azero =0;

Aone = -.5;

% Create starting guess input for fmincon optimizer
input = [pibar-yt; Azero; Aone];

%Create holder function for fmincon
MENGholder = @(input) MEngCode (input);

%set appropriate options
options = optimset('Algorithm' ,'active-set');
options = optimset(options, 'Display','off);

% Set bounds on our parameters to be optimized
lb= [0 -1 -1];
ub= [10 0];

% Find the optimal values for our parameters
[x, fval] = fmincon(MENGholder,input, [], [1, [], [],lb,ub, [],options)

%1 This file is the master file. This file takes in the user's input for parameters for the value
% function -> parameters pibar, aO, al. For each set of choices of parameters pibar, aG, al,
% this file sends those values to MEngCode.m which performs the computational simulations
% on that specified approximate value function and returns values which determines its
/) performance. The values are stored in tables and are accessible to the user after the file has
% completed running. The user is then able to compare the performance of different approximate
% value functions (approximate value functions of the same form with different parameter values)

% Increase decimal output length
format long;
% Load data for simulations
load newtemp;

% Optimal Azero = 0 -> See Section 5 for more details
Azero = 0;

% Initialize data tables to store results
AVGMENGUtilityTable = zeros(1, 6);
AVGMENGpiytTable = zeros(1, 6);
finalutilityTable = zeros(3,numruns);

% Initialize indices for data tables
AVGTableAoneindex = 1;
AVGTable-pibarindex = 1;

for pibaruyt = [.64 .63 .62 .61 .6 .59],
AVGTableAoneindex = 1;
for Aone = -.19,

% Create input for MEngCode.m
input = [pibar-yt; Azero; Aone];

% Simulate approximate value function with chosen parameters in MEngCode.m
[fval pLyt finalutility] = MEngCode (input);

% Save resulting avg value function output, avg pi, and final approximate value function
% outputs for all simulations (for standard error calculations)
AVGMENGUtilityTable(AVG_TableAoneindex, AVGTable-pibar index) = fval;
AVGMENGpiytTable(AVGTableAone index, AVGTable-pibarlindex) = pLyt;
final-utilityTable(AVGTablepibar-index,:) = finalutility;
AVGTableAoneindex = AVGTableAoneindex + 1;

end
AVGTable pibarindex = AVGTable pibarindex + 1;

end

% This file contains the code responsible for performing the computational simulations. This file
% calls upon the file created by createData in for the parameters and data required for simulation.

% At each optimization iteration. it calls upon objgradnew.n for our approximate value function
% to optimize. After all simulations are performed on the current approximate value function
% (given the variables passed in by pi-a_solve.m -> pibar, aO, al) it returns the avg final approximate
% value function output, the avg final pi of the portfolio, the avg final wealth, and the final value
% function outputs of all the simulations.

function [avgutil avgpi-yt avgwealth finalutility] = MEngCode(input)

% Load data created by createData.m
load newtemp;
% Increase decimal output
format long;
% Turn off all warning messages (hinders speed of simulations)
warning off all;

% Acoeff in form Acoeff = a_0 + a_1 * (pi-yt - pibar-yt)^2
% Receive parameters for approximate value function from pi-a-solve.m
pibar yt = input(1);
Azero = input(2);
Aone = input(3);

%Create Matrices to store info gathered from completed simulations
finalutility = zeros (1,numruns);
finalpiyt = zeros(1,num runs);
finalwealth = zeros (1,num-runs);

% For each single simulation instance
for i=l:numruns,

% Create temporary arrays to store important values over the simulation
tempSize = sample-sizes(i); % Length of the simulation i
xtemp = zeros(1,tempSize+ 1); % Vector of xt values
ytemp = zeros(1,tempSize+ 1); % Vector of yt values
xtemp(1,1) = xO; % Initial wealth distribution
ytemp(1,1) = y_0;

% Vector of Approximate Value function outputs for simulation i
utilityValues = zeros(1,tempSize);

% For each time step j in simulation i
forj=l:tempSize,

% Initial wealth distribution
xamount = xtemp(lj);
yamount = ytemp(1,j);

% Create holder function to optimize
holderFunction =

@ (x) objgradnew(x,yamount,xamount,kappa,gam,pibaryt,Azero,AoneRFrateu,d,p);

% Make initial guess for objgradnew.m to use during optimization
% Guess = trade to make pi = pibar
correcty = pibar-yt * (xamount + yamount);
if (yamount <= correcty)

guesssellx = correcty - yamount;
guessbuyy = guesssellx / (1 +kappa);
guessselly = 0;
guessbuyx = 0;

else
guesssellx = 0;
guessbuyy = 0;
guessselly = yamount - correcty;
guessbuyx = guessselly / (1 +kappa);

end
inputx = [guessbuyx; guesssellx; guessbuyy; guessselly];

% Set option below on and turn option below that off to see MATLAB's optimization steps for
% the approximate value function
% options =
% optimset('TolX',1e-15,'TolFun',1e-20,'TolCon', le-6, 'MaxunEvals', 1e3, 'Maxlter', le3, 'Display', iter');
options = optimset('TolX', 1 e- 15,'TolFun', 1 e-20,'TolCon', 1 e-6,'MaxFunEvals', 1e3,'Maxlter',1e3);

% Select options for maximization method
options = optimset(options, 'Algorithm','active-set');

% Turn off optimization solution display for each time step
% Very Large constraint on throughput
options = optimset(options, 'Display','off); % Turn off Display

% Turn on option below if gradient calculated by user and inputted into objgradnew.m
% options = optimset(options, 'GradObj','on');

% Set upper bounds on variables so that user is not allowed to short sell more than total
% portfolio worth
maxYSell = (yamount + xamount);
maxXSell = (xamount + yamount);
maxYBuy = maxXSell;
maxXBuy = maxYSell;

% Set lower bound on variables (given that xB, xS, yB, yS >= 0)
lb = [0 0 0 0];
ub = [maxXBuy maxXSell maxYBuy maxYSell];

% Set constraint that calculates transactions cost during optimization
BuyCoeff = 1+kappa;

SellCoeff = -1;
A = [BuyCoeff SellCoeff BuyCoeff SellCoeff];
b =0;

% Perform optimization of approximate value function using MATLAB's fmincon function
% on objgradnew.m which holds our approximate value function
[x, fval] = fmincon(holderFunction,inputx,A,b, [], [],lb,ub, [],options);

% If the optimal trade size is <= 10^- 6, do not trade at all
% (Realistically cannot trade that little)
if (((x(l) < le-6) && (x(2) < le-6) && (x(3) < le-6) && (x(4) < le-6))

|| (fval < 0))
x(1) =0;
x(2) =0;
x(3) =0;
x(4)=0;
fval = objgradnew(x,yamount,xamount,kappa,gam,pibaryt,Azero,

Aone,RFrate,u,d,p);
end

% Assign new values for our wealth in stocks and bonds and add the approximate value
% function output to our storage array

% NOTE: Since we found the minimum of our Approximate Value Function * -1, to get the
% maximum value back, we have to multiply fval by -1
utilityValues(l,j) = -1 * fval;
tempx = xamount + x(l) - x(2);
tempy = yamount + x(3) - x(4);

% Simulate returns on the portfolio after transactions have been made during the current time
% step period
xtemp(1,j+1) = tempx*RFrate;
if (mod(j,tableLength) > 0)

ytemp(lj+1) = tempy*return-matrix(i,mod(j,tableLength));
else

ytemp(lj+1) = tempy*return-matrix(i,tableLength);
end

end

% We must collect the final approximate value function outputs, the final pi, and the final total
% wealth in order to eventually average them together in order to determine the optimal values
% for parameters pibar, a0, al of our approximate value function
finalpi-yt(l,i) = ytemp((1,tempSize+l)/(ytemp(l,tempSize+1)+xtemp(1,tempSize+1)));
finalutility(l,i) = utilityValues(1,tempSize);
finalwealth(l,i) = ytemp(1,tempSize+1) + xtemp(1,tempSize+1);

end

% Calculate the desired averages from the arrays of values collected throughout the simulations.
% These values are returned to the function pi-a_solve.m

% These values do not have their outputs terminated in order for the uwr to determine the progress
% ofpi a olve.mso far
avgutil = mean(finalutility)
avgpi-yt = mean (finalpiyt)
avgwealth = mean (finalwealth)

end

% This file allows the user to graph the approximate value function for a single time step. All
% parameter specifications from createData.m are in this file for the user to manipulate. This file is
% independent of all other files. This allows the user to change parameters without worry. The
% function plots our approximate value function over all possible portfolio adjustment choices.

%Extend decimal output
format long;

%Initialize arrays for plotting our approximate value function
x = zeros(201,4);
yvalue = zeros(201,1);

%Designate parameters of our exponential factor
Aone = -.2;
Azero = -.02;
pibar-yt = .8;

%Designate parameters of our optimization problem
gam = 2; % Risk aversion factor
kappa = .01; % Transaction cost rate
numruns = 5000; % Number of Simulations
simLength = 48; % Parameter for distribution for length of portfolio (T)
tableLength = 500; % Maximum length stored in table
mu =.1; % Return of stock
sigma = .2; % Volatility of stock
mu__bar = mu - (sigma)^2/2; % Adjusted return of stock
deltaT = 1/12; % Time step length
r = .05; % Annual RF-rate.
RFrate = exp(r*deltaT); % Monthly RF-rate
u = exp(sigma*sqrt(deltaT)); % u factor for stock price increase
d = 1/u; % d factor for stock price decrease
p = (1/2) + (1/2) * (mu-bar/sigma) * sqrt(deltaT); % probability of stock price increase

x_0 = 100;
y_0 = 100;

% Initial allocations of wealth

% Determine approximate value
for i = -100:100,

k =i+101;
buy = i/(1+kappa);
sell = i;
if (i < 0)

x(k,:) = [-buy; 0; 0; -sell];
else

x(k,:) = [0; sell; buy; 0];

function output for each possible portfolio change

end
yvalue(k) = objgradnew(x(k,:),yO,xO,kappa,gam,pibaryt,Azero,Aone,RFrate,u,d,p);

end

% Graph approximate value function
1 = -100:100;
plot(1,yvalue)

% Determine optimal change in portfolio
% See index system in for loop above to determine the action equalivalent of the index
% outputted as the choice to optimize our value function
[cj] = min(yvalue)

80

Appendix B

Gradient of Value Function

The gradient of the approximate value function is listed in this Appendix. The four

partial derivatives are with respect to XB, XS, YB, and ys. These four variables are the

variables to be maximized in the approximate value function at every time step in

our code. These derivatives were computed using Mathematica. As we can see, the

derivatives are rather unwieldy. As the dimensions of the portfolio allocation problem

grows, so does the size and complexity of the approximate value function, making the

derivative that much harder to compute. In the computational implementation, we

approximate the gradient by using MATLAB's finite difference method. If the avail-

able computing power is capable of computing the gradient in the higher dimensional

problem, it would be more efficient to invest the time to compute the user-supplied

gradient in Mathematica once rather than rely on MATLAB to approximate the

gradient at every time step.

totalWealthup[xl_, x2 , x3 , x4] :=
RFrate * (xamount + x1 - x2 - (kappa * (xl + x2 + x3 + x4))) + u * (yamount + x3 - x4) ;

totalWealthdowntxl_, x2 , x3_, x4_ :=
RFrate * (xamount + xl - x2 - (kappa * (xl + x2 + x3 + x4))) + d * (yamount + x3 - x4) ;

yRatioup[xl_, x2_, x3_, x4_] := (yamount +x3 -x4) / totalWealthup[xl, x2, x3, x4] -pibaryt;
yRatiodown[xl , x2_, x3_, x4] := (yamount +x3 - x4) / totalWealthdown[xl, x2, x3, x4] - pibaryt;
correlationFactorup[xl_, x2_, x3_, x4_] :,= Exp[al + a2 * (yRatioup[xl, x2, x3, x4]) '2] ;
correlationFactordown[xl_, x2_, x3_, x4_] := Exp[al + a2 * (yRatiodown[xl, x2, x3, x4]) ^2];

f[xl_, x2_, x3_, x4_] :=
- (p* (1/ (1 - gamma) * (totalWealthup [xl, x2, x3, x4] *correlationFactorup [xl, x2, x3, x4))

(1 - gamma)) + (1 - p) * (1 / (1 - gamma) *
(totalWealthdown[xl, x2, x3, x4] * correlationFactordown[xl, x2, x3, x4])^ (1-gamma)))

TraditionalForm[f [xl, x2, x3, x4]]

.x 3-x4+yanm-kt -pibaryt 2+at-(-)e RFrte(x-x2-kappa(xl+x2+x3+x4)+xa t)+d(x3-x4+y am+t)

i - gamma

(RFrate (x I - x2 - kappa (x + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount)))

I 2 x3-x4+yamut 7 - pby) a
ga m C RFrate(xl--x2-kappa(x1+x2+x3+x4)+xamount)+ux3-x4+ymont

1 -ggamma

(RFrate (x I - x2 - kappa (xlI + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount)))l-am

2 | JeremyGradientnb

fxl = D[f [xl, x2, x3, x4], xl]

al+a2x3-x4+yamount
2

-(1 p) e RFrate (x1-x2-kappa (x1x2+x3+4)+ xamount).d (X3 x4-, v ur.

gamma

(RFrate (xl-x2 -kappa (xl+x2+x3+x4) +xamount) + d (x3 -x4+ yamount)))

al+a2 pibax3-x4yamunt
ea1+a -pibryt+RFrate (x1 -x2--kappa (x1 +x2+x3+x4) +xamount) +d (x3-x4+yamont >(1 -- kappa) RFrat e -

x3-x4+yamount 2
al +a2 x2 k4aryt +2 a2 e -pibaryt+ RFrat. (x1-x2-kappa (x1+x2+x3+x4)+Xaount)+d (x3-x4 -mount (1 - kappa) RFrate (x3 - x4 + yamount)

x3 - x4 + yamount

RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount)

(RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount)) -

.+a2 (pibaryt+ R. x3-x4+yamnt 2
+a2 -ibart+ Rrate(x1-x2-kappa (xi~x2.x3+x4)-xaMut)+u (x3-x4+yamunt))

gamma

(RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount))

(la iay x3-x4+yamunt
)2

+RFrate (x1-x2-kappa (x1+x2+x3+x4)+xamont)+u (x3-x4+yamout) (1 - kappa) RFrate -

C a2x3-x4+yaount (-2

2 a a2 pia RFrate (x-x2-kappa (x1+x2+x3+x4)+xamount)u (x3-x4 yamount i(- kappa) RFrate (x3 - x4 + yamount)

x3 -x4 + yamount
-pibaryt +-

RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount)

(RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + u (x3 -x4 + yamount))

p e
al

JeremyGradient.nb | 3

fx2 = D[f [xl, x2, x3, x4], x2]

al+a2 pibaryt+ 2

-gamma

rt RFrate (x-x2-kappa (xl+x2+ x3+-x4+yamount (u1 - kappa) RFratme -

a1+a2 -pibaryt
2

(2 a2 e RFrate (xi-x2)-kappa (x1+x2+x3+x4).xamnt)-d (x3 x4+yamount) (- 1 - kappa) RFrate (x3 - x4 + yamount)

a apibaryt -x3 - x4 + yamount
pibaryt + RFrate (xl - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount)

(RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount)) -

p al+a2 (-pibaryt+ ,3X,-n
peRFrate (XI-x2-kappa (X1-x2 x3+xaxmunt)+u (x3-x yamunt)

-gamma
(RFrate (x1l-x2 -kappa (x1l+x2 +x3 +x4) + xamount) + u (x3 -x4+ yamount))

al+a2 pibaryt x3-x4+yamount 2
et RFrate (xi-x2-kappa (x1x2+x3+x4)xamnt)+u (x3-x4+yamount) 1 - kappa) RFrate -

al+a2 -pibaryt+ . o 4amount
2 a2 e aRFrate (x-x2 kappa (x1.x2+x3.x4) .xamount)u (23 x4.yamot) (- 1 - kappa) RFrate (x3 - x4 + yamount)

pibayt ;x3 - x4 + yamount
pibaryt + RFrate (x1 - x2 - kappa (x1 + x2 + x3 + x4) + u (x3 - x4 + yamount)})

(RFrate (x1 - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount))

4 | JeremyGradient.nb

fx3 = D[f [xl, x2, x3, x4], x3]

/ la pibrt X3 X4ym~n ut

- (1 - p) a2 pia RFrate (xl-x2-kappa . x2 3 X4 xamo t)+d (X3 -4yam t)

gamma

(RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount))

x3 X4 vmut2

e a1.a2 (pibaryt+ RFrate (xi-x2-kappa (x1+x2 x3 x; amount -d (x3-x4+ymunt) (d - kappa RFrate) +

(eal aa (-pibaryt+ ymout)

2 a2 ea1+a2 pibary RFrate (xi-x2-kappa (x1.x2.x3.x4 xamt)+a (x3-x4+yamt)

(RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount))

(d - kappa RFrate) (x3 - x4 + yamount)

(RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount) 2

1

RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount)

pibayt +x3 - x4 + yamount

RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount)
(al+a2 (-pibaryt 2 x3pp 4 (' munt

2eal~a -pib ryt iRFrate (x1-x2-kappa (xl+x2 x3 y)amonmunt - u (x3-X4+yamount)2

gamma
(RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount))

a 1 a 2 p i b a r y t + R t (xi x2 k p p (1 2 +3 x - (- k a p p a R F r a t e + u) +

2 a2 ea1+2 -pibary 2- R arat (xlx2-pp a mut (x.2+3x xmount =)+ x3-x4+yamount))

(ratea (x x -ap (l+2 x x4 xmon)+u(3-x ymon)

(RFrate (x1 - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount))

(-kappa RFrate + u) (x3 - x4 + yamount)

(RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount) 2

1

RFrate (xl - x2 - kappa (xl + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount)
x3 -x4 + yamount

-pibaryt +
RFrate (x1 -x2 -kappa (x1 +x2 +x3 +x4) +xamount) +u (x3 -x4 +yamount)

Je-rmyGradient nb |5

fx4 = D[f[xl, x2, x3, x4], x4]

al+a2 pibaryt + - X)x4,amount 2

R(ep) e (xa e x2 ka (xix2.x3- x4amount)-d <xa mount) +

(RFrate (x1 - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount))

a1+a2 -pibarytd x a p (4amount 2
RFrate (YI x-kappa (x x- +x 2 x3 +-x4+yamou) (d -kappa RFrat) +

a1+a2 -pibaryt .3-4-amt 2

2 a2 eRFrate x-x2 kappa (x+x2 +x3+x4)amnt))+d (x3-x4+yamount)

(RFrate (x+ - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + d (x3 - X4 + yamount)
(-d - kappaRFrate) (x3 - x4+ yamount)

(RFrate (x1 - x2 - kappa (x + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount) g2

1

RFrate (x - x2 - kappa (x + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount))

xpibaryt +
x3 - x4 + yamount

\ ~RFrate (x1 - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + d (x3 - x4 + yamount)))

(x -pal+a2 (xpibaryt ,.3
)amont-2

pr(RFrate Yx1 x2-kappa (x-xl2.x3+x4)+xamount)+u(x3-x4+yamunt)

(RFrate (x - x2 - kappa (x + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount) am

al+a2 -pibaryt+ ,i x4.amunt 2

e RFrate (xi x2-kappa (xi.x2.x3+x4)+xamount)+u (x3-x4+yamount) (- kappa RFrate - u) +

,al+a2 -pibaryt+ , e 4mamt
2

2 a2 , RFrate (xl-x2-kappa (x1+x2+x3+x4)+xamut)+u (x3-x4+yamout)

(RFrate (x1 - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount))
(kappa RFrate - u) (x3 -X4 + yamount)

\(RFrate (x1 - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount)) 2

1

RFrate (x1 - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount))

x3 - x4 + yamount
pbrt+RFrate (x1 - x2 - kappa (x1 + x2 + x3 + x4) + xamount) + u (x3 - x4 + yamount),

Bibliography

[1] P.P. Boyle and X. Lin. Optimal portfolio selection with transaction costs. North
American Actuarial Journal, 1(2):27-39, 1997.

[2] John Y. Campbell and Luis M. Viceira. Consumption and portfolio decisions
when expected returns are time varying. Harvard institute of economic research
working papers, Harvard - Institute of Economic Research, 1998.

[3] G. M. Constantinides. Multiperiod consumption and investment behavior with
convex transaction costs. Management Science, 25:1127 -1137, 1979.

[4] G. M. Constantinides. Capital market equilibrium with transaction costs. Jour-
nal of Political Economy, 94:842-862, 1986.

[5] J. M. Cox, S. A. Ross, and M. Rubinstein. Option pricing: A simplified approach.
Journal of Financial Economics, 7:229-263, 1979.

[6] M. H. Davis and A. R. Norman. Portfolio selection wiht transaction costs. Math-
ematics of Operations Research, 15(4):676-713, 1990.

[7] G. Gennotte and A. Jung. Investment strategies under transactions costs: The
finite horizon case. Management Science, 38(11):385-404, 1994.

[8] Anthony W. Lynch and Pierluigi Balduzzi. Predictability and transaction
costs: The impact on rebalancing rules and behavior. The Journal of Finance,
55(5):2285-2309, Oct 2000.

[9] Harry M. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77-91,
1952.

[10] Robert C. Merton. Continuous-Time Finance. Wiley-Blackwell, Hoboken, NJ,
second edition, Nov 1992.

[11] B. Oksendal and A. Sulem. Optimal consumption and portfolio with both fixed
and proportional transaction costs: A combined stochastic control and impulse
control model. SIAM Journal on Control and Optimization, 40(6):1765-1790,
2001.

[12] Valeri I. Zakamouline. Optimal portfolio selection with both fixed and propor-
tional transactions costs for a crra investor with finite horizon. In Discussion
Papers. Norwegian School of Economics and Business Administration, Depart-
mett of Finance and Management Science, 2002.

