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An adaptive fuzzy sliding mode controller (AFSMC) is adopted to reduce 

the 2D flow-induced vibration of an elastically supported square-section 

cylinder, free to oscillate in stream-wise and transverse directions in both 

lock-in and galloping regions. The AFSMC strategy consists of a fuzzy logic 

inference system intended to follow a sliding-mode controller (SMC), and a 

robust control system designed to retrieve the variance between the sliding 

mode and fuzzy controllers.  The sprung square cylinder first experiences 

vortex-induced vibrations with increasing Reynolds number, and then, after 

passing the critical flow velocity, it confronts high-amplitude and low-

frequency vibrations of galloping owning to its sharp corners. A co-

simulation platform is considered by linking the AFSMC system modeled in 

Matlab/Simulink to the plant model implemented in Fluent, aiming at the 

calculation of opposite control force needed for comprehensive annihilation 

of the cylinder motions. Based on the performed numerical simulations, it 

becomes clear that the utilized active control system has successfully 

mitigated the two-degree-of-freedom vibrations of a square cylinder in both 

the lock-in region and galloping zone. Here, the vibration amplitudes in the 

transverse and streamwise directions have decreased by 93% and 94%, for 

the lock-in region and 93% and 99%, for the galloping zone, respectively. 
© 2019 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Fluid-solid interaction (FSI) is a stimulating engineering subject owing to its numerous 

applications ranging from pipelines used in different locations to various sections of power 

plants and heat exchangers[1, 2]. Two interesting phenomena categorized as flow-induced 

vibration (FIV) are vortex-induced vibration (VIV) and galloping. The former occurs due to the 

frequency synchronization of vortex-shedding frequency and structural natural frequency, 

leading to self-excited oscillations with potentially large amplitudes [3]. The latter, i.e. galloping, 
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happens in non-circular cylinders when self-excited instabilities bring about oscillations with 

different amplitudes[4]. This phenomenon occurs in certain ranges of Reynolds (Re) number that 

are known to be higher than those of VIV. The cross-flow motion of a structure located in the 

galloping region yields aerodynamic loads that can augment oscillations [5]. When the flow 

velocity surpasses a critical galloping velocity, the magnitude of vibrations continues to rise with 

growing flow velocity. In other words, the criterion that shows the galloping phenomenon takes 

place is the occurrence of higher amplitude and lower frequency oscillations at higher flow 

velocities in comparison with lock-in condition for non-circular cylinders. A direct consequence 

of such vibrations in VIV and galloping is fatigue failure. Accordingly, one must consider 

different control strategies to alleviate these instabilities [6]. 

Passive control strategies are best suited for simple applications owing to their easier 

implementation and independency from an external power source [7]. Obviously, such methods 

may not be effective in special circumstances as the structural conditions or surrounding 

properties might change or a modification in the physical characteristics may become obligatory 

which is usually a challenging task. In contrast, active control methods benefit from actuators 

that apply energy to desired locations of the system so that the behavioral characteristics of the 

fluid-structure system could be adjusted[8]. Among such active systems, one can mention 

rotating cylinders, blowing/suction, acoustic excitation and direct opposing control force [9-12].  

Bergers [13] arguably the first researcher who implemented a closed-loop control algorithm to 

mitigate vortex-shedding of a cylinder at low Re numbers. To reduce VIV in an elastic circular 

cylinder, Baz and Ro[14] utilized a velocity feedback controller that relied on flow 

measurements and electromagnetic actuators. A robust adaptive algorithm for a flexible cylinder 

was developed by  Poh and Baz [15] that could effectively control and reduce low-amplitude 

VIV. The impacts of periodic vortex-induced excitations were greatly eliminated. Such 

excitations continuously act on flexible cylinders in the same conditions. To control FIV in FSI 

systems with limited disturbance, Carbonell et al.[16] proposed an algorithm with three different 

approaches. Micro-actuators of PZT type have also been used to empirically mitigate transverse 

VIV in multiple cylinders as in a study by  Li et al.[17] In another study, Mehmood et al.[18] 

took advantage of various velocity feedback controllers to actively suppress VIV in a sprung 

cylinder with a circular cross-section in the synchronization regime. Another study relying on 

active control methods that sought to mitigate two-dimensional VIV was carried out by 

Hasheminejad et al.[19]. who used the opposite control force on a circular cylinder. 

Square cylinders demonstrate a thoroughly distinctive behavior owing to their sharp corners. [20, 

21]Venkatraman and Narayanan[22] considered the galloping belonging to a square prism in 

addition to the vortex-shedding of circular cylinders and proposed an active vibration control 

approach for these two geometries by modeling them as oscillators with one degree of freedom. 

A simultaneous control scheme was proposed by Cheng et al.[23] to suppress the vibrations in 

the structure and surrounding flow using a special periodic wave on a piezo actuator. Control 

systems based on time delay have been the subject of research by Dai et al.[24] who evaluated 

their efficacy in mitigation of large amplitude vibrations of a sprung cylinder of square cross-

section. It was shown that the onset of galloping could be delayed using the developed method.  

Wu et al.[25] numerically studied the influence of twist angle on the mitigation of oscillations in 

a square cylinder that was considered to freely vibrate in the cross-flow direction. It was 
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demonstrated that the vortex-shedding separation is affected by the twist in the cylinder surface, 

causing variations in the vortex-shedding frequency and vibration attenuation. 

The above introduction shows that despite the large number of studies on the mitigation and 

control of vibrations due to vortex-shedding in circular cylinders, few studies have dealt with 

cylinders of square cross-section. Thus, the current study focuses on the topic of an active 

control strategy on a square cylinder with the aid of application of control forces that has proved 

to be one of the most appropriate methods for attenuation of FIV in circular cylinders. In this 

regard, the main novelties of current study are highlighted as follows: (1) Active FIV control of 

elastically mounted square-section cylinder using direct opposing control force; (2) Simultaneous 

VIV and galloping control of square-section cylinder; and (3) Application of intelligent model-

free control strategy (adaptive fuzzy sliding mode controller) in active FIV control of square 

cylinder. 

2. Formulation 

2.1. Mathematical description of fluid and structure 

The non-dimensional incompressible Navier-Stokes equations in their two-dimensional form are 

used to commence the numerical study. They are succinctly described as: 

 21
( . ).

Re

. 0


    





u
u u u

u
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t

,

 
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 (1) 

in which p  and   are the pressure and density of the considered fluid, respectively, and u=(ux /U, 

uy /U) denotes the non-dimensional velocity vector of flow where U  is used to represent the free 

flow velocity. The oscillating moments and forces are the excitations required for the onset of 

motion of a rigid body placed in fluid. Here, the two-degree-of-freedom vibration of a rigid 

sprung cylinder with square cross-section upon which an outer control force via the intelligent 

control system is exerted is studied. Figure 1 displays a simplified view of the flow around the 

described cylinder installed on a two-degree-of-freedom elastic base. Along the x direction, the 

free stream flow causes variable forces, hence the rigid-body motion of the cylinder in both 

streamwise and transverse direction. An appropriate method for modeling the elastic cylinder is 

the simplified system of mass-damper-spring with stiffness values of kx=ky=k, and damping values 

of cx = cy =c. The corresponding motion equations are explained as: 

 
D( ) / ,x F cx kx m    

(2) 
 

L a( ) / ,y F cy ky F m     

where m is the system mass per unit length, DF  and LF  are, respectively, the streamwise and 

transverse forces exerted on the cylinder from the flow  and aF  is the transverse control force 

from the actuator (refer to Figure 1). Besides, x  and y  are, respectively, the in-line and cross-

flow accelerations, x  and y  are, respectively, the in-line and cross-flow velocities, and x and y 

are the in-line and cross-flow displacements of the cylinder. 
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Fig. 1. Representation of FIV on a cylinder with square cross-section along with the adaptive fuzzy sliding mode 

control block diagram 

2.2. Fluid and oscillator solvers 

In this section, a summary of the utilized solvers for fluid and structure and their associated 

properties are discussed. To this aim, ANSYS Fluent combined with a user-defined function 

(UDF) is used to solve Equation (1) aided by an iteration method. The surrounding domain of the 

cylinder is a simple rectangle. As displayed in Figure 1,  
u d( , )L L  denotes the distances from the 

center of the cylinder to the boundaries of the upstream and downstream flows, H represents the 

size of the sidewise boundary and /B D H  is the blockage ratio. The obtained mesh for 

0.05B  is shown in Figure 2. A mesh deformation function controls how the triangular grids 

are shaped after each time step. At the same time, the cylinder is rotated inside the domain and 

vibration-related quantities are obtained. In addition, unstructured meshes need to be reformed in 

the outer region. Laminar unsteady properties are taken for the flow in question. Also, 

hydrodynamic forces are obtained based on a first-order implicit solver using continuity and 

momentum equations. According to these hydrodynamic forces, the UDF can determine the 

motion of the elastically-supported square cylinder in terms of velocities in two directions. A 
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condition for the surface boundary, i.e. 1 1( , ) ( , )  n n x yx y u u , yields results concerning cylinder 

position, mesh structure and surface flow velocity in an iterative manner. Other assumptions 

including non-slip boundary conditions on the surface of cylinder, zero stress on horizontal 

boundaries and zero transverse velocity are important. Refs.[11, 26] provides a more detailed 

explanation of the flow-structure interaction procedure. 

 

Fig. 2. Schematic of the computational domain 

2.3. Controller design 

The control of the cylinder understudy constitutes a complex FIV problem whose accurate model 

is significantly challenging to obtain due to nonlinearities, uncertainties, and variable parameters. 

This makes the derivation of controller design a cumbersome and even impractical task. 

Obviously, common control strategies that rely on the mathematical model of plants including 

sliding mode control (SMC) and ℋ2 / ℋ∞ robust control are not applicable here. A proper 

solution to tackle this issue is to use model-free or intelligent control methods based on heuristic 

algorithms. 

The adaptive fuzzy sliding mode control (AFSMC) is based on fuzzy concepts and is an 

appropriate choice for the investigated problem. This method has also been used in various 

industrial areas [27, 28]. When designing the adaptive fuzzy sliding mode controller, one 

should consider the interaction between structure and fluid as the controller employs a 

transverse force 
a

F  to modify this interaction. At its heart, a fuzzy logic control (FLC) algorithm 

simulates a perfect sliding mode controller, accompanied by a robust controller able to 

compensate the differences between the fuzzy system and the perfect controller via an adaptive 

tuning technique targeting FLC parameters and uncertainty bounds related to robust 

controller[29, 30].  

To begin, a condensed inspection of the simple SMC as a method offering concurrent robustness 

and stability especially in nonlinear control systems is a must. To this end, an affine form of the 

coupled motion equations previously presented in Equation (2) is required as in: 

 ( ) ( ) , x xy f g u  
(3) 
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where the functions ( )xf  and ( )xg  are unknown at this stage, the control input is described by 

a[ ]u F  and the states are hidden in x  as [ , , , ]x
Tx x y y  with T  denoting the vector transpose. 

Moreover, according to Figure 1, the tracking error is expressed as d( ) ( ) ( ) y t y t y t  where 

d ( )y t  is the preferred state trajectory while the final objective is lim ( ) 0. t y t  In the presence 

of uncertainties, a description of the previous second-order system is best written as: 

 ( ) ( ) ,  x xy f g u d  
(4) 

in which d   ( ( ) ( )  x xd f g u ) signifies the bounded uncertainty parameter. Next, a 

description of the sliding surface ,as well as its derivate, should be given in the form: 

 , s y y  

(5) 
 

d ,  s y y y  

where   is not known at this stage. Finally, SMC rule is described as: 

 eq rb , u u u  
(6) 

where 
equ  is the equivalent feedback controller defined as 

1

eq d( ) ( )      x xu g f y y  and 

found through the use of Equation (3) and Equation (5) assuming 0s . Also, 
rbu  defined as  

 1

rb sgn( )u g s  is necessary to be able to consider uncertainties. 

Next, minimization of uncertainty bounds to eliminate chattering and to attain closed-loop 

stability is necessary. One should note that the ideal input for the controller, Equation (6), is not 

achievable as the required parameters are not known beforehand. To tackle this issue, equ  is 

estimated using an ideal controller *u  based on the concept of a Takagi-Saugeno fuzzy system 

having a single input (shown by s), a single output (shown by fuzu ) and rn  fuzzy IF-THEN rules: 

Rule r : IF s  is r
A  THEN 

fuz ,
r

u b    ( 1,..., ),rr n  (7) 

where rA  is a fuzzy set based on a special membership function described by 
2[( )/ ]( )  

r r

r
s c

A
s e   in which rc  and r  are the corresponding center and width, and 

rb  

signifies a fuzzy singleton related to the output value of the r-th rule. Now, the fuzzy system 

output based on a well-known fuzzy interference method is expressed as: 

 T
fuz ( , ) ,u s B B W  (8) 

 

where 1 T[ ,..., ] rnb bB  and 1 T[ ,..., ] rnw wW  with 
1

1
( ) ( )




 
 

r

r r

nr

A Ar
w s s   indicating the 

firing strength of the previous section of a fuzzy rule.  

It is now time to approximate the *u  using an ideal fuzzy controller in the form: 
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 * * * *T
fuz ( , ) ,   u u s  B B W  (9) 

where *B  is the optimal parameter vector defined by  * *argmin T uBB B W  and   is the 

sum of errors due to imperfect approximation and any other uncertainty (   ). Generally, *B  

and   are not exactly known, hence the need for an estimation. Also, fuzû  as a means of 

estimating the ideal controller is expressed as: 

 T
fuz

ˆ ˆˆ ( , ) ,B B Wu s  (10) 

quantity B̂  is an estimation of *
B . At this point, one can propose a proper control law for the 

AFSMC system as in: 

 
fuz rb

ˆˆ ( , ) ( ), Bu u s u s  (11) 

where rbu  takes care of the discrepancies between ideal and fuzzy controllers. Substituting 

Equation (15) in Equation (7) results in: 

 
fuz rb

ˆˆ( ) ( )[ ( , ) ( )].  x x By f g u s u s  (12) 

Additionally, by considering a set of approximation errors in the form 
*

fuz fuz
ˆ , u u u  

* ˆ , B B B and ˆ   in which ̂  is an estimation of uncertainty bound, and with the aid 

of Equations (9) and (10), one arrives at: 

 T

fuz , B Wu   (13) 

It should be restated that   . 

The proposed design steps of AFSMC are listed as: 

a) Choosing a control input according to Equation (11) 

b) Adaptively tuning the fuzzy parameter vector as explained by: 

 
1

ˆ ( ) ,  B B Ws t  (14) 

c) Determining a robust controller according to: 

 
rb

ˆ sgn[ ( )]sgn[ ( )],u s t g t  (15) 

d) Approximating the uncertainty bound in an adaptive manner as in: 

 
2

ˆ ( ) sgn[ ( ) ],    s t g t  (16) 

Where 1 and 2 are the learning rates assigned by the user, and it is desired that 

lim ( ) 0. t y t  
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2.4. Fluent/Matlab Coupling, grid independency study, and validation 

ANSYS Fluent and MATLAB/Simulink are used to implement the CFD and control models, 

respectively. An appropriate coupling and a concurrent simulation scheme are proposed between 

the two as in Figure 1 such that the controller recalls the outputs of the CFD model and attempts 

to control the cylinder vibrations. In particular, the communications of utilized data between 

Matlab/Simulink and ANSYS/Fluent are attained through a simple test file. The detailed 

procedure is as follows: (1) The ANSYS/Fluent solver calculates the pressure and velocity in the 

computational domain, (2) Fluid forces in the streamwise and transverse (
D L,F F ) directions are 

found, (3) The total force on the cylinder is obtained using the UDF, (4) The solution of motion 

equations is found using the Euler formula in the explicit form, (5) MATLAB reads the 

computed transverse displacements log, (6) The necessary force for displacement attenuation is 

found and saved by AFSMC, (7) The UDF reads the required control force as saved in a separate 

file from the last step, (8) Motion equations are solved once more according to the recalculated 

total force, (9) The procedure is repeated until the cross-flow displacements of cylinder are 

entirely eliminated. 

It is essential to obtain the appropriate mesh size for precise flow computations. For this purpose, 

to examine the grid size independency, the general mesh arrangement is maintained, and 

consequently, the effect of the relative grid enhancement on the calculated mean drag and 

maximum lift coefficients associated with stationary square-section cylinder at Re=100 is 

investigated. Three different mesh grids of different sizes have been explored, as listed in Table 

1, in which the level of improvement of the grids increasing for each case. According to 

computed force coefficients presented in Table 1, one can see the convergence of the calculated 

solution on gradually smaller mesh grids. Subsequently, the second grid (Case 2) with medium 

mesh grid quality appears to be the finest candidate intended for employment in the collaborative 

simulations hereafter. This selection approves that perfect compromise will be obtained between 

numerical precision and computing effort. 

Table1. Effect of mesh grid improvement on the computed force coefficients of the elastically-mounted square-

section cylinder 

 Total no. of cells No. of cells in the central block 
max

LC  
DC  

Case 1 9100 3000 0.382 1.662 

Case 2 20000 7000 0.339 1.607 

Case 3 64500 9500 0.333 1.601 

 

As an important step, the conducted simulations should be validated so as to check the reliability 

of the proposed method. The value of necessary quantities is taken as 
* 10, 0, 0.05; /   N Nm B F f D U 14.39 / Re  based on which the variations in the 

maximum amplitude of the cross-flow vibration of a flexibly supported square cylinder with two 

degrees of freedom at various Re numbers and a constant blockage ratio (B = 0.05) are obtained. 

The results closely match the findings of  Sen and Mittal [31] who employed a finite element 

code (see Figure 3a). 
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3. Numerical results 

To study how VIV and galloping respond to the adaptive fuzzy sliding mode controller, the same 

parameters used in the previous section are employed.[31] Figure 2 displays the domain 

assuming 20H D  and B = 0.05 for CFD analysis. The total number of grid cells reaches 20000 

while those in the center grid count up to 7000. For the lock-in and galloping zones, Re numbers 

of Re 87.5  and Re 250  are considered, respectively. As discussed earlier, we seek to 

completely eliminate the cylinder vibration in the cross-flow direction, i.e. d ( ) 0y t   while 

AFSMC attempts to satisfy the relation lim ( ) 0t y t  .  Other required parameters are taken as 

3  , ( , ) ( 10,3),(0,3),(10,3) r rc  ,  ˆ [ 0.5,0,0.5]B  and 0.1 . Moreover, the learning 

rates are set to 1  =0.02 and 2 =0.025.  

Practical implementation concerns, including sensors, actuators ,and installation considerations, 

are not included in the main scope of the present study. However, a brief and simple explanation 

of the practical set up for considered FIV closed-loop control system is provided. The opposing 

control force should be attained by the utilization of electromagnetic actuator mounted inside the 

cylinder, to prevent flow distribution around the cylinder [14, 32]. The feedback signal (cylinder 

transverse displacement) can be achieved utilizing either a direct displacement sensor (laser 

displacement senor or LVDT) or a small accelerometer sensor mounted inside the surface of the 

square cylinder. To calculate cylinder position information, the accelerometer data can be 

integrated two times, and the output sent to the control system. Next, the control signal should be 

amplified and then drive the utilized actuator.   

For both uncontrolled and control configurations, Figure 3b displays the outputs of the time 

evolution response related to the dimensionless displacements in the transverse and streamwise 

directions corresponding to Re numbers of lock-in and galloping zones, i.e. Re 87.5  and 

Re 250 , respectively. First, for the lock-in region, the oscillation frequency of transverse 

displacement turns out to be almost the same as the vortex-shedding frequency. The 

corresponding frequency of streamwise displacement is, however, twice as much. According to 

the conducted analysis, the vibration amplitudes in the transverse and streamwise directions have 

decreased by 93% and 94%, respectively, thanks to the performance of the adaptive fuzzy sliding 

mode controller. On the other hand, for the galloping zone, the proposed controller has decreased 

the transverse and streamwise oscillations by as much as 93% and 99%, respectively. Compared 

with the lock-in region, the uncontrolled response of the square cylinder has considerably 

increased in the galloping zone. This is especially true about the streamwise vibrations. As 

observed, although the control force is only exerted in the transverse direction to the cylinder, its 

vibration is also significantly reduced in the streamwise direction. This is due to the coupling 

between motion equations in the x and y direction of the flow-dependent cylinder. The decrease 

in the cylinder transverse vibration alters the fluid-structure nature around the cylinder, resulting 

in the reduction of its streamwise vibration. 
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Fig. 3. (a) Representation of changes in the amplitude of cross-flow displacement at different Re numbers, (b) 

Outputs of the time evolution response related to the dimensionless displacements in the transverse and streamwise 

directions in both lock-in and galloping regions. 

For both controlled and uncontrolled cases, the orbital trajectories, i.e. / vs /y D x D , of the 

sprung cylinder understudy at Re 87.5  (lock-in region) and Re 250  (galloping zone) are 

shown in Figure 4. The 8-shaped traces offer a proper view of oscillations in both streamwise 

and transverse directions after a cycle. For a better representation of the described condition, the 

magnified view of the orbital trajectory of the cylinder in the controlled case is presented on its 

right side. The adaptive fuzzy sliding mode controller has thoroughly miniaturized the orbital 

traces in addition to shifting them to the left side such that the displacement magnitude in both 



A.H. Rabiee / Journal of Theoretical and Applied Vibration and Acoustics 5(1) 69-84 (2019) 

79 

 

directions has successfully approached zero. This was also identifiable in the black plots of the 

figure. 

 

Fig. 4. Orbital trajectories of square-section cylinder for controlled and uncontrolled cases in both lock-in and 

galloping regions 

For both controlled and uncontrolled cases, the values of lift and drag coefficients in both studied 

regions are provided in the form of time evolution responses as in Figure 5. The amplitude of the 

lift coefficient on the cylinder in the lock-in region shows no reduction compared with the 

uncontrolled case. Also, the frequency change in the lift coefficient is clearly visible. On the 

contrary, the active controller has successfully decreased the magnitude of drag coefficient on 

the cylinder by 97%. At Re 250  (galloping zone), the adaptive fuzzy sliding mode controller 

has decreased the amplitudes of drag and lift coefficients by 90% and 50%, respectively. The 

obtained results show that the active control system has not performed satisfactorily in reducing 

the amplitude of lift coefficient on the cylinder, particularly in the lock-in region. In contrast, the 

transverse displacement amplitude of cylinder for both studied regions has reduced by more than 

90%. This indicates that the main reason behind the reduction in the cylinder transverse vibration 

is not the decrease in the magnitude of lift coefficient. 

For both galloping and lock-in regions, the values of power spectral density (PSD) related to 

both controlled and uncontrolled cases can be seen in Figure 6 as a means of better assessment. 

The normalized values of vortex-shedding frequency in the lock-in region ( 1nf f ) related to 

the uncontrolled cylinder show they are almost equal to the structural natural frequency, 

indicating the resonance in the structure. Another advantage of the control system is 

demonstrated by the reduction of normalized vortex-shedding frequency to 0.84nf f  (from a 

previous value of 1nf f ). As a result, the transferred energy from the fluid flow to the square 
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cylinder has considerably decreased after the interruption in frequency synchronization. A direct 

consequence of this phenomenon is a 93% decrease in the amplitude of transverse vibrations. 

Furthermore, the normalized vortex-shedding frequency in the galloping region, i.e. 0.87nf f , 

has shifted up to 2.92nf f  using the active controller. Consequently, the galloping oscillation 

frequency, which occurs in lower values than lock-in frequency, has risen and thus, the square 

cylinder exits this region due to the frequency change. 

 

Fig. 5. Lift and drag coefficients in the form of time evolution responses for controlled and uncontrolled cases in 

both lock-in and galloping regions 

The snapshots of steady-state vorticity patterns corresponding to adaptive fuzzy sliding mode 

controlled and uncontrolled cylinder at Re 87.5  and Re 250  are provided in Figure 7. The 

associated snapshot for the stationary cylinder can also be seen to compare different cases. In the 

lock-in region, the wake vorticity pattern toward the back of the uncontrolled circular cylinder 

demonstrates the 2S mode. In this condition, a single vortex from the top and bottom boundaries 

of the cylinder is reciprocally shed after a vibration cycle. Here, with the aim of an active control 

system, no change in the mode of vorticity has been made while the vortex sizes have been 

slightly reduced and the distance between them has increased. On the other hand, in the 

galloping region, the 2P mode can be seen in the vorticities. This occurs when a pair of vortices 

(double-vortex) from the top and bottom boundaries are reciprocally shed from the cylindrical 

structure after a vibration cycle. Here, the adaptive fuzzy sliding mode controller successfully 

shifts the 2P mode vortices to the regular 2S-mode of von Kármán vortex shedding. Also, the 

size and the distance between the vortexes are reduced compared with the uncontrolled case. 

Finally, it is observed that by employing an active control system, the general shape of vortexes 
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formed toward the back of the square cylinder is similar to a stationary square cylinder, 

indicating the small amplitude of cylinder oscillations. 

 

Fig. 6. PSD of cylinder transverse displacement for both controlled and uncontrolled cases 

 

Fig. 7. Snapshots of instantaneous vorticities for both lock-in and galloping regions 
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4. Conclusions 

An adaptive fuzzy sliding mode control strategy is employed to annihilate the two-dimensional 

vortex-induced vibration and galloping of a sprung square-section cylinder at Reynolds numbers 

of Re 87.5  and Re 250 .  A co-simulation platform is considered by linking the AFSMC 

system modeled in Matlab/Simulink to the plant model implemented in Fluent, aiming at 

calculation of opposite control force needed for comprehensive suppuration of the cylinder 

motions. The most important observations are as follows. The sprung square cylinder first 

experiences vortex-induced vibrations with increasing Reynolds number, and then, after passing 

the critical flow velocity, it confronts high-amplitude and low-frequency vibrations of galloping 

owning to its sharp corners. First, for the lock-in region, the vibration amplitudes in the 

transverse and streamwise directions have decreased by 93% and 94%, respectively by 

utilization of an active control system. Moreover, for the galloping zone, the proposed controller 

has decreased the transverse and streamwise oscillations by as much as 93% and 99%, 

respectively. Also, the amplitude of the lift coefficient on the cylinder in the lock-in region 

shows no reduction compared with the uncontrolled case. At the galloping zone, the adaptive 

fuzzy sliding mode controller has decreased the amplitudes of lift coefficients only by 50%. The 

obtained results show that the active control system has not performed satisfactorily in reducing 

the amplitude of lift coefficient on the cylinder, particularly in the lock-in region. This indicates 

that the main reason behind the reduction in the cylinder transverse vibration is not the decrease 

in the magnitude of lift coefficient. On closer examination, it can be seen that the utilized 

controller reduces the normalized vortex-shedding frequency from 1nf f  to 0.84nf f . As a 

result, the transferred energy from the fluid flow to the square cylinder has considerably 

decreased after the interruption in frequency synchronization. Furthermore, the normalized 

vortex-shedding frequency in the galloping region, i.e. 0.87nf f , has shifted up to 2.92nf f  

using the active controller. Consequently, the galloping oscillation frequency, which occurs in 

lower values than lock-in frequency, has risen and thus, the square cylinder exits this region due 

to the frequency change. Finally, it is observed that by employing an active control system, the 

general shape of vortices formed toward the back of the square cylinder is similar to a stationary 

square cylinder, indicating the small amplitude of cylinder oscillations. 
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