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Abstract

Orbits around black holes evolve due to gravitational-wave emission, losing energy
and angular momentum, and driving the orbiting body to slowly spiral into the black
hole. Recent theoretical advances now make it possible to model the impact of this
wave emission on generic (eccentric and inclined) black hole orbits, allowing us to
push beyond the handful of constrained (circular or equatorial) cases that previous
work considered. This thesis presents the first systematic study of how generic black
hole orbits evolve due to gravitational-wave emission. In addition to extending the
class of orbits which can be analyzed, we also introduce a new formalism for solving
for the wave equation which describes radiative backreaction. This approach is based
on a spectral decomposition of the radiation field originally introduced by Mano,
Suzuki, and Takasugi (MST), and was then adapted for numerical analysis by Fu-
jita and Tagoshi (FT). We find that the MST-FT formalism allows us to compute
various quantities significantly more accurately than previous work, even in strong
field regimes. We use this code to explore the location in orbital parameter space of
the surface at which the evolution of orbital eccentricity changes sign from negative

(orbits circularize) to positive (orbits become more eccentric).
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Chapter 1

General Relativity and Black Holes

General Relativity, first formulated by Einstein and published in 1915, is currently our

best description of gravity and the universe on large scales. It successfully describes

everything from the orbits of planets in the solar system to the history of the universe

as a whole. Perhaps its most well-known prediction, however, is the existence of black

holes, objects with gravity so strong that nothing, not even light, can escape.

1.1 From Newton to Einstein

Until the 2 0 th century, the best description of gravity available was the Newtonian

one, which described a force acting between massive particles given by the familiar

inverse square law

F- - Gmim2 r(1.1)

where mi and m 2 are the masses of the particles, r is the vector separating them,

and G is a constant. This, along with Newton's second law, described the motion of

bodies under the influence of gravity.

With Einstein's discovery of Special Relativity in 1905, however, this description

was seen to be incomplete. Special Relativity predicted that there was no universally

preferred reference frame, that is, that two observers moving uniformly with respect

to one another should have no method to decide which (if either) of them was at rest.



Additionally, it predicted that such observers disagree on the relative time between

events at different locations in space. This poses a problem for any theory that

requires action at a distance, because such theories are generally expressed in terms

of the locations of bodies at a particular time. If different observers cannot agree on

what it means for separated events to happen at the same time, then the theory's

formulation doesn't make sense in Special Relativity.

Gravity needed, then to be reformulated in a manner not requiring long-distance

forces. An idea for how to achieve this can be taken from Maxwell: we need a field to

cause the force. While this concept is easy to describe, the details turn out to be much

more complicated than in the case of electromagnetic fields. In fact, the field needed

is not something that exists in space, but the shape of spacetime itself. A description

of a gravitating system under General Relativity is a mathematical description of the

geometry of spacetime, written as a metric. The metric is a measure of the distances

between nearby points and obeys the Einstein Field Equations

87rG
G= TP (1.2)

where G,, is a complicated second order differential operator acting on the metric,

T,, is a description of the matter in the space, c is the speed of light, and G is the

same constant that occurred in Newton's force law. This is a system of equations,

as yt and v are indices which run over the integers from 0 to 3. Kindly, we have

the restriction that swapping y and v leaves the system of equations unchanged, so

the Einstein Field Equations work out to be a system of ten coupled second order

differential equations.

For convenience in calculations, it is traditional to choose units in which c and

G are both 1. Under this convention, distances, times, masses, and energies are all

measured in the same units, and the Einstein Field Equations become just

GPV = 87rT,. (1.3)

For the rest of this document, I will follow convention and use this "natural" unit



system. To gain some intuition about the magnitudes of quantities expressed in this

way, note that the mass of the sun is

1 Mo = 1.47 km = 4.92 x 10-6 seconds. (1.4)

1.2 Black Holes

Solving the Field Equations is, not surprisingly, incredibly difficult. The only cases

where we have analytic solutions of them are for very simple systems, with lots of

symmetry. The simplest of these systems are black holes, which, in their most general

form, are described by just three real numbers: mass, spin, and charge. As there are

no large separations of charge observed in the universe, I will consider only uncharged

black holes here.

The first black hole solution was found by Karl Schwarzschild in 1916. It de-

scribed a static, spherically symmetric body in an otherwise empty universe. The

Schwarzschild metric has only one parameter: the mass of the black hole, M, and is

given by

ds 2  1 2M) dt 2 + I 2M) dr 2 + r 2 (dO2 + sin 2 0 dp 2 ). (1.5)
r r

The coordinate t is the time, the quantities 9, and p are the usual colatitude and

longitude, and r labels a spherical surface of area 47rr2 . Given the differences dt, dr,

dO , and d~p in t, r, 6, and so, respectively, between two closely separated events, the

metric gives the actual distance ds between them, measured by an observer claiming

they are simultaneous.

The Schwarzschild metric has an interesting feature: the first two coefficients

become zero and infinite at r = 2M. This suggests that something interesting happens

at that radius, and indeed it is found that the solution has what is known as an event

horizon there, through which stuff, be it matter, radiation, or information in general,

can pass inwards, but not outwards.

The Schwarzschild solution is, however, too simple to describe objects that ac-



tually exist in our universe. Everything we know of is spinning, sometimes slowly,

sometime very rapidly, and therefore has a spin axis and angular momentum, pro-

viding a preferred direction on that object. The perfect spherical symmetry of the

Schwarzschild solution means that it cannot be a description of a spinning object,

and must have no angular momentum. Finding the description of spinning black

holes was a significantly harder challenge than the nonspinning case, and was only

accomplished in 1963 by Roy Kerr. The Kerr metric is given (in Boyer-Lindquist

coordinates) by

ds 2  2Mr dt 2 + -dr2 + E d0 2

+ (r2 + a2 + 2Ma sin 20 sin 2 d2 _4Mar sin 2 0 dt dyp (1.6)E E

where A = r2 - 2Mr + a2 and E = r 2 + a2 cos 2 0. As before, t is the time, r, 0, and

p specify a point in something similar to spherical coordinates, and M is the mass of

the hole, but we now have a second parameter, a, which is the angular momentum

per unit mass J/M. It can vary only in the range -M < a < M, and it is therefore

often useful to introduce the dimensionless quantity q = a/M which can vary from -1

to 1.

The Kerr metric shares many of the properties of the Schwarzschild solution. It has

an event horizon, although it is at a slightly different radius of r+ = M + VM 2 -a 2

(the larger root of A = 0). Additionally, near the event horizon, space is warped

in such a manner that everything must move around the hole in the same direction

as its spin. This region, where nothing can stay at the same spatial coordinates, is

known as the ergosphere. It extends out to r = 2M at the equator and touches the

event horizon at the poles.

1.3 Orbits

Consider a small particle of mass pa orbiting a heavy body of mass M. Inl Newtonian

gravity, the particle will follow a simple periodic elliptical trajectory. It takes six



parameters (for example, the three components of each of the initial position and

velocity) to completely specify the motion of a particle in orbit. Over long time

scales, the initial position along the orbit is unimportant, so we can ignore one of the

parameters, and are left with a Newtonian orbit described by five numbers. A common

choice for these parameters are the semilatus rectum p, eccentricity e, inclination

0 min, and two angles describing the orientation of the orbital plane and the direction

of periapse. For an equatorial orbit, the radius as a function of angle is determined

(up to a phase) by p and e as

r p=, (1.7)
1+ e cos ,o

so the minimum and maximum radii are

p _ p
rmin = rma = . (1.8)

1+e 1-e

The three angular parameters rotate this ellipse to an arbitrary orientation, providing

the most general orbit.

Not surprisingly, when we abandoned the simple equations of Newton for the

nonlinear Einstein Field Equations, we also lost the simple forms of orbits. For orbits

at large radius, the trajectories closely resemble the Newtonian paths, except that the

ellipses do not quite close after each orbit. The direction of periapse and the plane

of the orbit slowly precess, and, over a long period of time, the trajectory fills out a

volume in space, rather than a curve. The last two angles listed above are no longer

constants of motion, but become just part of the specification of the initial position

of the particle in the orbit, which we do not care about on long timescales. Orbits in

General Relativity are therefore described by three parameters.

Of course, when we are not far from the central object, the orbits will not look

anything like ellipses. They will still, however, be bounded by an inner radius rmin, an

outer radius rma and a minimum angle away from the spin axis 0 min. It is convenient

to define a semilatus rectum and eccentricity by requiring that (1.8) are satisfied.

This gives us one way of parametrizing the orbit: p, e, 9 min.

Of course, there are other useful parametrizations. The Kerr metric (1.6) does



not depend on t or o, so by Noether's theorem there are two conserved quantities in

the system. In nonrelativistic systems, these quantities would be the energy E and

angular momentum L, and this identification carries over very naturally to relativistic

orbits as well. It turns out that there is another conserved quantity of a similar form

to energy and angular momentum, but not related to a simple symmetry of the

Kerr metric. This constant is called the Carter constant and denoted Q. It will be

convenient to divide E, L, and Q by appropriate powers of the masses M and p so

as to make them dimensionless (see Appendix A for explicit expressions).

While distant orbits resemble those from Newtonian gravity with some small cor-

rections, orbits passing very close to a black hole are grossly different. For highly

eccentric orbits, the orbiting particle will (as in the Newtonian case) spend most of

its orbital period far from the black hole, but on the close part of the orbit it may

circle the hole several times before returning to large radius. This is sometimes po-

etically referred to as a "zoom-whirl" orbit. In an even more serious departure from

familiar behavior, for small enough values of p the orbit actually becomes unstable

and the particle plunges into the central black hole. For a given eccentricity and

inclination, the semilatus rectum at which this plunge occurs is called the innermost

stable orbit.

As the motion of the orbiting particle is no longer confined to a line, the descrip-

tion of motion along an orbit changes from a differential equation for dpo/dt with O

as in (1.7) to a set of three coupled differential equations for dr/dt, dO/dt, and dp/dt.

However, by changing the time variable to "Mino time" A [10], these equations de-

couple (although we gain another describing the rate of change of A) to give

(dr'\2 
_dt(19dr2= V (r) -t = Vt (r, 0) (1.9)

dA) dA

d 2= V (0) dp= V,(r, 0)
dA dA

where the four V functions (given in Appendix A) are functions only of the explicitly

mentioned variables and the orbital parameters. This shows that r and 0 are in fact

periodic functions of A. The Mino time frequencies of these orbits are often useful



and are denoted T, and To. Using the solutions for r and 0 as functions of A, we can

see that V, and V are biperiodic functions with these frequencies. We can average

V,1 and Vt over many periods of the r and 0 oscillations and obtain an average rate

of advancement for p and t, which we denote T. and F, respectively.

Of course, measurements by a distant observer are done in Boyer-Lindquist time

t, not Mino time A, so for observations it is more useful to convert the frequencies to

Boyer-Lindquist time frequencies as

Q, Tr Q 0=- '== 0Q. (1.10)Qr - F F

When observing orbits from large radius, we will see the coordinates r and 0 as

periodic functions with frequencies Q, and Q0 and the derivative d~p/dt as a biperiodic

function with these frequencies. As the p coordinate is periodic, we will observe the

orbit's o coordinate to be a triperiodic function with frequencies Qr, Qo, and Q,.

Interesting observables should be expressible in terms of the r, 0, and p coordinates

of the particle, and so will also be triperiodic functions of time. If we Fourier transform

any such observable, we should see contributions only from frequencies given by

Wmkn = mR, + kQ0 + nr . (1.11)

1.4 Gravitational Waves

Returning to the reformulation of gravity discussed in Section 1.1, we can look for new

predictions unrelated to the very strong field properties of black holes. Recall that

General Relativity posits a new field through which information propagates at a finite

speed, similar to the electromagnetic field. Although the Einstein Field Equations are

much more complicated than Maxwell's equations for electromagnetism, we can hope

to draw useful analogies between the gravitational and electromagnetic fields.' One of

the most notable properties of the electromagnetic field is that it admits propagating

'These analogies can be made rigorous for weak fields in otherwise flat spacetime. See, for
example, Chapter 7 of Carroll [1].



wave solutions, physically manifested as visible light, so we should look for similar

effects in General Relativity.

Such propagating wave solutions do, in fact, exist. For small amplitude waves,

we can ignore the nonlinear parts of the field equations and find sinusoidal solutions,

traveling at the speed of light. Just like electromagnetic waves, gravitational waves

carry energy and momentum. Also, just as an accelerating electric charge produces

electromagnetic waves, an accelerating mass produces gravitational waves.

Also similar to electromagnetic waves, we find that gravitational waves come in two

polarizations, conventionally called "plus" and "cross." These polarizations do not,

however, look like the electromagnetic polarizations. While electromagnetic waves can

be described by oscillating electric field vectors, gravitational waves are best described

as stretching and compressing space in directions perpendicular to their motion: one

direction is stretched while the direction perpendicular to it is compressed, and then

half a period later the directions have switched. In the plus polarization the directions

of stretching line up with the coordinate axes, while in the cross polarization they are

rotated by 45 degrees.

Recall, however, that the observation that accelerating charges produce waves

which carry off energy implied the instability of the classical atom. The same ar-

gument holds for two bodies orbiting under a gravitational attraction, and for large

systems we cannot appeal to quantum mechanics to restore the stability of the orbit.

General Relativity predicts that gravitationally bound systems are unstable, and an

orbiting particle will eventually spiral into the central mass.

Of course, the solar system has existed for billions of years, so clearly this inspiral

is quite slow except for extremely close orbits. Inspiral was, however, observed in

a tight neutron star binary by Hulse and Taylor, for which they received the 1993

Nobel Prize, and since their original observation several other inspiraling systems

have been observed. Additionally, inspirals towards black holes are expected to be a

major source of the gravitational waves detected by LIGO and LISA.

In this paper, I will focus only on systems where the central body is much more

massive than the orbiting particle. Inspirals in such systems, known as Extreme Mass



Ratio Inspirals (EMRIs), allow for significant simplification of the general inspiral

problem. The large central body can be approximated as unaffected by the orbiting

body, and the nonlinear effects in the radiation from the orbiting particle can be

neglected.

In the weak field regime far from the central body, orbits are almost those predicted

by Newtonian gravity. As the gravitational waves are expected to be produced more

energetically when the orbiting particle is under larger accelerations, such as near

periapse, we expect the orbit to tend to circularize over time. In this regime, we can

calculate inspirals as small corrections to the Newtonian results, and we indeed find

that the eccentricity of a particle's orbit tends to become smaller as the particle spirals

inwards. For very strong field orbits, however, it has been found that the reverse is

true, and orbits become more eccentric with time [5]. There must, therefore be some

radius (likely dependent on eccentricity and inclination) where the sign of e passes

through zero. As gravitational waves produced by a binary are expected to be strongly

imprinted with the orbit's eccentricity, the location of this sign change is of interest

for gravitational wave detection.
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Chapter 2

The Mathematics of Inspirals

Though the general case of two gravitationally interacting bodies in GR is analytically

intractable (albeit not numerically), the case where one particle is much lighter than

the other can be analyzed through perturbation theory. In the case where the heavy

object is a black hole, we have an analytic description (1.6) of the spacetime in the

limit where the small object becomes a test mass, and we have an analytic description

of the motion of such a test mass (1.9). The effects of the small object on the system

can then be treated as a perturbation on this analytic solution.

2.1 The Teukolsky Formalism

For the case of a Kerr black hole, the perturbative expansion was carried out to first

order in 1973 by Teukolsky [14]. Although the general metric perturbation involves

ten real functions, it turns out that the part relevant to gravitational wave pertur-

bations can be described by a single complex function 4'. Teukolsky derived a wave

equation for @ and showed that, somewhat amazingly, the equation was seperable by

writing

S= eiwteiMS(9)R(r). (2.1)

The function S(O) is known as a spin-weighted spheroidal harmonic, and is a gen-

eralization of the familiar spherical harmonics. Spin-weighted spheroidal harmonics



can be evaluated numerically as described in Appendix A of [6]. The spin-weighted

spheroidal harmonics are indexed by integers 1 and m just like spherical harmon-

ics, except that we must have I > |s|, where s is known as the spin weight. For

gravitational waves, s = -2.

The function R(r), known as the radial Teukolsky function, obeys the differential

equation
d ( d R

A~- I As+1I + V(r)R = T(r) (2.2)
dr dr

with the Teukolsky potential given by

V(r) = K 2 -2s(r-M)K + 4iswr - A (2.3)
A

where K = (r2+a 2)w-am, A is an eigenvalue associated with the spheroidal harmonic,

A, a, and M, are as in (1.6), and T is a source term dependent on the configuration

of matter in the system. We are generally interested in inhomogeneous solutions to

the Teukolsky equation, but these can be constructed from the homogeneous solution

and the source term using Green's functions [2], so I will mostly focus on the case

where T is identically zero.

As a second order differential equation, (2.2) admits two independent solutions. A

commonly chosen basis pair, due to their physical nature, is the "upgoing" solution,

which has no waves coming in from infinity, and the "ingoing" solution, which has no

waves emerging from the event horizon. These have asymptotic behavior [3]

Ri"(r r+) = BtransA 2 e-iPr* (2.4)

Ri"(r-+ oo) = B r*r 3e i" + Bincr-le-iwr*

RUP(r -+ r+) = CUPeiPr* + CrefA 2 e-iPr* (2.5)

R"P(r o 00) = Ctrans 3 iwr*

where P = w - ma/2Mr+ and r* is the tortoise coordinate

* 2Mr+ r - r+ 2Mr log r - r(26)r =-r + log lo . (2.6)r+- _ 2M r+±-r- 2M



Note that the terms involving Bi" and Cref are much smaller than the terms involving

Bref and CUP, so they will be difficult to extract from a numerical solution for R(r).

We will need B" for our calculations, so it is important to be able to extract the

smaller components of these solutions accurately.

2.2 Evolution of "Constants" of Motion

As noted above, a particle orbiting a black hole will slowly radiate its energy away

in gravitational waves and spiral into the hole. In the extreme mass ratio limit, the

emitted waves are very weak, with amplitude proportional to the ratio of the small

and large masses, p/M. As usual for waves, the energy carried is proportional to

the square of the amplitude, so, recalling that the (dimensionful) energy carried by

the particle is proportional to its mass and using dimensional analysis, we find that

E ~ (p/M 2 )E. As the orbital frequencies are independent of pI in this limit, we can

see that the evolution is adiabatic for sufficiently small p, that is, the time required

for the energy to change significantly is large compared to the typical timescale of the

orbit.

The inspiral can then be well approximated by a slow evolution between different

orbits in the unperturbed Kerr spacetime. As each Kerr geodesic will be followed for a

long time before the actual trajectory deviates from it significantly, we can average the

wave emission over the orbit, thus eliminating any dependence on the various phases

of the initial conditions, and leaving orbits described only by the conserved orbital

parameters. We are also justified in Fourier transforming quantities dependent on

the orbit without worrying about the effects of the inspiral changing our frequencies

over the period integrated over in the transform.

On the longer timescales of the adiabatic evolution, the orbital parameters will no

longer be conserved, so in order to calculate the details of the inspiral, we must find

expressions for their rates of change. The most convenient orbital parametrization

for this task is, perhaps not surprisingly, energy, angular momentum, and Carter

constant.



2.2.1 Energy and Angular Momentum

Since the Kerr spacetime is asymptotically flat and energy and angular momentum

are related to symmetries, we have global conservation laws for these quantities. This

means we can calculate the change in our particle's energy and angular momentum

as the negative of the amount radiated away in gravitational waves or absorbed by

the hole.

The dominant contribution to the energy and angular momentum loss is from

gravitational waves escaping to infinity. At large radius, the spacetime becomes flat

and we can find the energy and momentum carried off by the waves using the Isaacson

stress-energy tensor [7], which gives fluxes of

dp" UP (h+ 2 + (ahx 2 (2.7)
dA dt 167r Ot at

where ul' is a vector pointing in the (lightlike) direction of propagation with uO = 1,

h+ and hx are the amplitudes of the plus and cross polarizations, and (-) indicates

an average over several wavelengths. At large radius, the Teukolsky function (2.1)

becomes
-4

(-4 i.x) (2.8)
2

where p -1/(r - ia cos 6). Some manipulations with Green's functions performed

in [2] then give the energy and angular momentum radiated to infinity in each mode

of the field as

Eklm* lk (2.9)
kn 4 7W2~nk

mkn

= m g (2.10)
Wrmkn

where Z//"kf is the prefactor of RUP in the inhomogeneous solution for large r, given

by
1_ RuP nkmkn

zf4kf dr Binc (2.11)lmkn 2 iWmknB ,n , A 2

and 7 mk, is tlie source term in (2.2).



The energy and angular momentum absorbed by the hole can be calculated from

the gravitational waves entering the event horizon. This is done in [15], which finds

Elkn =r lmkn IZ1O1Okn 12  (2.12)
mkn

LHf - __lmkn (2.13)
Umkn

where Zimkn is the prefactor of R"in in the inhomogeneous solution near the horizon,

given by
B tras0 R inT

i m k n Slm k n l mkkCg s k "kZ1OM11 n inc ltrans dr A2(.4
Z~kl =2iWmknBmknCmkn Jr+

and almkn is given in [6]. Note that for a point source on a bound orbit, T only has

support between rmin and rma, so the integrals in (2.11) and (2.14) are over a finite

range.

2.2.2 Carter Constant

The Carter constant is not related to a simple symmetry of the Kerr spacetime,

so we cannot use simple conservation laws to calculate its change under radiation

of gravitational waves. In special cases where the orbital evolution is constrained,

the change in Carter constant can be determined from the evolution of the other

parameters. For example, equatorial orbits must remain equatorial by symmetry,

and also "circular" orbits (those with eccentricity e = 0) remain circular [8].

It has been common in the past when treating generic orbits (see, for example,

[2]) to assume that the radiative evolution of orbits leaves the inclination angle un-

changed. However, an argument leading to the general calculation of the Carter

constant evolution was introduced in [10] and simplified in [12]'. It was found that

Qlmkn = -2q2E cos 0) Elmkn + 2L (cot 2 0) Llmkn - 2MI Elmkn (2.15)

where (. ) denotes averaging over the orbital path, and q is again a/M. It was also

'Note that this reference refers to the value denoted here by Q as C and that there is a sign error
in the second term of the last equation of the paper.



shown that this expression gives the correct results for equatorial and circular orbits.



Chapter 3

The MST Formalism and Fujita

and Tagoshi's Method

To compute inspirals, then, the only remaining task is to solve the radial Teukolsky

equation (2.2). However, the equation is not well suited to numerical integration

because the potential V(r)/A is long range and because we need to extract the

coefficients of subdominant solutions in (2.4) and (2.5). Previous work by my group

(e.g., [6, 2]) avoided this problem using a method developed by Sasaki and Nakamura

[13] relating the Teukolsky equation to another differential equation with a short

range potential. This work uses a different, semianalytical, method developed by

Fujita and Tagoshi [3, 4]', which writes the Teukolsky solutions directly as series of

special functions.

3.1 The MST Formalism

Fujita and Tagoshi's method was developed from the formalism of Mano, Suzuki,

and Takasugi (MST) [9]. This formalism expands each of the homogeneous solutions

to the Teukolsky equation (2.2) as series of special functions in two different ways.

For example, the ingoing solution can be written as a series of Gauss hypergeometric

'This chapter is largely based on the two Fujita and Tagoshi papers cited here.



functions

R = eEX (-x)--i(c+T)/2 (1 - z)i(c-K)/2 (3.1)

X f,' 2F1(n + v + 1 - ir, -n - v - i; 1 - s - iE - t; X)
n=-oo

or as a series of confluent hypergeometric functions2

i= KvRv + K-v-1 R-"-1 (3.2)

R e v (i,- -s-i(E+T)/2 F(v + 1 - s + i)(

z - (1F(2v + 2)
00 Zn(v l + 1 + S - iO)x E f,'(-2iz)" + 1F(n + v + 1 - s + ie; 2n + 2v + 2; 2iz)

where c = 2Mw, K = V1 - q2 , - (e -mq)/,7 X = w(r+ -r)/E, z=w(r -r), pFq()

are hypergeometric functions, the K, are constants in r, f, is a sequence of coefficients

which will be discussed later, and v is the "renormalized angular momentum" which is

adjusted to make the series converge. The first of these converges for all finite r, and

the second converges for all points outside the horizon. There are similar expressions

for R"P, the asymptotic amplitudes Binc,ref,trans and Cref,trans,up, and the constants K,,

but the expressions given here give a feel for the general form of MST quantities, so

the others have been relegated to Appendix B.

Although we only need the value of the Teukolsky solutions in the physical region

r+ < r < o where both series above converge, it is important to have both expressions

for taking limits to find the asymptotic amplitudes (2.4) and (2.5). Also, when

performing numerical calculations, the formally convergent series are sometimes found

to have poor numerical behavior, with large terms canceling to give a small result.

The regions where the sums are numerically well-behaved are generally different, so

it is useful when calculating to have multiple methods available to obtain the same

result.

2The subscript C stands for "Coulomb," reflecting that the suunnands in the infinite sum and
Coulomb wave functions (radial solutions to the quantum Hydrogen atom) are both written in terms
of confluent hypergeometric functions.



3.2 Numerical MST

The MST formalism provides expressions for the Teukolsky solutions in terms of series,

rather than integrals as in the Sasaki-Nakamura method, so it has the potential to

be a powerful tool for numerical calculation. Before the series can be used, however,

there are parameters that need to be determined. The expressions (3.1) and (3.3)

contained the "renormalized angular momentum" v and the series of coefficients f"',
neither of which occurred in the original Teukolsky Equation (2.2), but which were

introduced in the construction of the series solutions.

By substituting the series solutions into the differential equation, a recurrence

relation between the coefficients f, can be derived. The relation is a simple three

term recurrence

f' f 1 + Onf' + 7Ynf_ 1 = 0 (3.4)

with coefficients given by

o= ieK(n + v)(2n + 2v - 1) ((n + v +1s) 2  2 ) (n + v + 1 + iT) (3.5)

#2=[(-A - s(s + 1) + (n + v)(n + v + 1) + E2 + E(e - mq)) (n + v)(n + v + 1)

+ e(e - mq) (s 2 +,E 2 )] (2n + 2v + 3)(2n + 2v - 1) (3.6)

-iEK(n + v + 1)(2n + 2v + 3) ((n + v - s)2 + C2) (n + v - ir). (3.7)

Recall that A is the eigenvalue of the spheroidal harmonic appearing in (2.3).

As a three term recurrence relation, (3.4) has two independent solutions. As n

becomes large, the coefficients can either grow as

l1 ~- nfn (3.8)

or drop off as

fn+1 ~n-1fnv (3.9)

and similarly for large negative n. It turns out that the fn dominate the large Inj
behavior of the series, so for the series to converge as n - cx we must take the solution



(3.9), known as the minimal solution. Of course, the series must also converge for

n -- -oo, so we must take the minimal solution for negative n as well. However, we

must have a single solution for all n, and the two minimal solutions do not generally

coincide.

This is where the parameter v comes in. We can vary the coefficients in (3.4) by

varying v and hopefully find a value where we have a single solution that is minimal

for both large positive and negative n. To do this, let If" and f,' be the solutions to

the recurrence relation that are minimal for large positive and negative n, respectively,

and let

+f- 1  (3)fn.

be the ratios of adjacent terms for these solutions. Using (3.4), we can rewrite these

as

LvvR" =- v L" = - (3.11)n #"n + a, R",+1 n #" + 7%nL",_

We can iterate this operation and construct continued fractions

R = I"= - (3.12)
n v an -1

On v v On~ v 0ZV
an+17-n+2 -Yn-1 n-2

n+ + -02 ~ ' -''O'- On-2~

which converge as the solutions +f?" and -fn" are minimal.

Our goal is to have +fn -fn", which implies R"L", 1 = 1. With a bit of further

manipulation we find

R+ aRn+1 + '4"R, 1 = 0. (3.13)

This suggests that the v matching the two minimal solutions can be identified by

finding zeros of

gn(v) = 0, + aR,- 1 + " (3.14)

The equation gn(v) = 0 is referred to as the continued fraction equation. From the

fact that both +fTV and -fn satisfy the recurrence relation (3.4), it is clear that if

gn(v) = 0 is satisfied for one value of n, then it is satisfied for any n, so we will often



take n = 0. Once we have a y satisfying go(v) = 0, we can use (3.10) to find the

coefficients f" (up to an irrelevant overall normalization).

3.3 Solving the Continued Fraction Equation

It turns out that go(v) has trivial zeros at all integer and half-integer v except V =

-1/2 which are not useful for constructing solutions. Additionally, it can easily be

shown (see [4]) that if v is a nontrivial zero of g,(v) then v + k is as well for any

integer k, that go(v) = go(-v - 1), and that go(x) and go(-1/2+ix) are both real for

any real x. It also turns out that gn(v) always has a nontrivial zero, and that there

are three possibilities for v at this zero:

1. v is real

2. v has integer real part

3. v has half-integer real part.

For small values of |wl, these cases can be distinguished by examining the value of

go(v) at v = -1/2 and its derivative at v = 1. As the continued fractions are poorly

behaved at integers and half-integers, these values must be evaluated by (analytically)

taking limits. The tests corresponding to the cases above are:

1. go(-1/2) < 0 and g'(1) has the opposite sign than e - mq)

2. go(-1/2) < 0 and g'(1) has the same sign as c(c - mq)

3. go(-1/2) > 0 and g'(1) has the opposite sign than E(e - mq).

Logically, these exists a fourth possibility [go(-1/2) > 0 and g'(1) has the same sign

as c(e - mq)], but it cannot occur.

For large values of |wl, we generally cannot evaluate these two special values well

enough to determine their signs, and so are reduced to searching the three regions in

sequence. It is generally found, however, that for large w, the solution is almost always

complex, with imaginary part increasing with increasing w, as shown in Figure 3-1.
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Figure 3-1: The value of v that matches the minimal solutions for = m = 7, q = 0
plotted against w. Note that v almost always has a large imaginary part for large
w. The jumps near w = 1.4 are the result of the code switching between different
nontrivial roots of go(v).

This is lucky, because while it becomes increasingly difficult to evaluate the function

near the real line for large w, the interesting values move out of that region.

While analytically any solution to the continued fraction equation would allow

us to determine the expansion coefficients, particular solutions are often preferable

numerically, either because they are easier to find or because they lead to numerically

better behaved series. When searching for a root with half-integer real part, it is

easiest to search the line v = -1/2 + ix, because, as noted above, the function values

are all real there. I have found no particular reason to prefer different solutions with

integer real parts, so have arbitrarily decided to search v = 1 + ix.

For real solutions, the process is more complicated. As noted above, if there is

a real root, there are always an infinite number of them separated by integer steps,

and also another infinite number obtained by reflecting the first set about -1/2.

Analytically one would expect it to suffice to choose an integer and adjacent half-

integer and search only the region between them. It is found numerically that most

of these roots are very close to poles of go(v), however, and thus not well suited to

most root finding algorithms (see Figure 3-2). These poles also indicate that the
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Figure 3-2: The function go(v) for 1 = m = 7, q = 0.99, Mw = 0.5 plotted for real v,
along with the polynomial approximation. The cleanest zero of go(v) is at v = 6.879,
while the polynomial zero is at v = 6.906. Note that the sharp features associated
with the zeros at integer shifts of this. The zeros at points reflected in v = -1/2, as
well as most of the trivial zeros, are near poles that are too sharp to be resolved on
this plot.

series for Rv and L' are poorly behaved in the region, so if these roots are used to

evaluate the coefficients fn they will often lead to additional numerical errors.

By formally expanding the function for large v + 1/2, we find that, particularly

at large v, it is well approximated by a polynomial with an infinite number of poles

added.3

go(v)/ 4 :::0 (v + 1/2)'

+ [-3/2 - e 2 /2 - (A + s(s + 1) - E2 - E(E - mq))] (v + 1/2)'

+ [9/16 + eKT (E2 + s 2 ) - C2K 2 (C2 _ 82 + 1/4) - E2 ;2 T2/2 - EY/8

+ (5/4 - 2 K2/2) (A + s(s + 1) - E2 - E(E - mq))] (v + 1/2)2

+ O(v + 1/2). (3.15)

3The next term in the expansion is roughly twice as long as all the preceding terms combined.
I have not found it to be useful, as the effects of the poles are generally important in the region
where such a term is significant, and adding another term would necessitate solving a cubic to find
the approximate zero.



Although in the region we are interested in the poles often overlap and cause signifi-

cant deviations from the polynomial form, the zero of the polynomial approximation

is empirically found to provide a reasonable approximation to the most well behaved

root of go(v) in many situations, as in Figure 3-2. Even when the approximation

becomes significantly worse, it is generally sufficient to search only a few half-integer

regions near it.



Chapter 4

Implementation

Of course, in addition to generation of analytical formulas, any computational project

is dependent on the implementation of these formulas in computer code. The main

differences between analytical and numerical work in this case arise from the fact that

the equations used in the MST formalism often involve infinite sums, which must be

truncated at some point by a numerical algorithm. In addition, many of these sums

turn out to have behavior which is problematic for numerical implementations.

4.1 Numerical Precision

In calculating the Teukolsky solution, two parts of the calculation were found to

encapsulate most of the numerical inaccuracy. These were the calculation of the

hypergeometric functions and the evaluation of the continued fractions (3.12).

The evaluation of the hypergeometric functions was found to be the most numeri-

cally problematic part of the code. The functions were evaluated by directly summing

the hypergeometric series

Fq~l, .. E (ai),--, (ap), z"
pFq(ai,... ,a; bi,. .. , bq;z) = (bi) (bq) (4.1)

This series is often involves large terms canceling to give a very small result, and it was

sometimes found to be necessary to use a multiple precision library to evaluate the



sum. This understandably causes a significant speed penalty in the code, however, so

a version using extended precision (64 bit mantissa) floating point numbers was also

implemented and the versions were chosen between at runtime based on the behavior

of (4.1).

The continued fractions were less of a problem and only caused precision problems

in a few cases. It was found that simply using extended precision code to sum the

fractions was sufficient for the calculations I performed.

The other parts of the calculations were calculated using double precision floating

point numbers, except for some of the internal variables used in summing the MST

series (e.g., (3.1) and (3.3)), which were found to be susceptible to overflow. These

were stored in extended precision, which provides 15 bit exponents, as opposed to the

11 bit exponents in double precision. The extra mantissa bits were not needed.

4.2 Algorithms and Truncation

Following Fujita and Tagoshi [3], I evaluated the continued fractions using Steed's

algorithm [11]. When searching for roots of the continued fraction equation (3.14)

on the real line or on the line Re v = -1/2, Brent's algorithm [11]was used. For

Re v = 1, the function go(v) was generally complex, so Brent's algorithm was not

applicable and the secant method was used instead. The secant method was found

to be more successful when applied to the function Im(v)go(v) because this made the

algorithm less likely to converge to the trivial zero at v = 1. The MST sums over the

fn were truncated after 10 consecutive terms were below the required precision.

The code taking the Teukolsky solutions and producing fluxes is a descendant of

the code used in [2], although heavily modified. The integrals involved in evaluating

(2.11) and (2.14) (note that there is a second integral required to compute T(r))

were evaluated using either the Clenshaw-Curtis method [11] or, when that was badly

behaved, an adaptive Simpson method.

Once we have the fluxes for each mode, we must perform the sum over all the

mode indices to obtain the changes in the orbital parameters. From symmetries of



the Teukolsky equation and related quantities, it can be shown that

ZH,oo _ _)+k-Hoc (4.2)l(-m)(-k)(-n) lmkn

where the bar represents complex conjugation. This means we only need to sum over

half the harmonics and then double the result to get the total flux. I have chosen to

break the sum as
00 1 00 00

-2ZZ Z Z Elmkn (4.3)
1=2 m=O k=-oo* n=-oo*

where oo* indicates that the lower bound should be replaced by zero on the k sum if

m = 0 and by one on the n sum if m = k = 0. The L and Q sums are done similarly.

Of course, the numerical implementation does not perform the infinite sums in

full. It will be convenient for the following discussion to define lmik to be the value

of the innermost sum in (4.3), Em to be the value of the innermost two sums, and El

to be the value of the inner three sums. Furthermore, define the symbol F to indicate

that a condition must hold for both E and L. To compute the fluxes to a requested

accuracy E, the 1 sum is started at 1 = 2 and summed over increasing 1 until

i < E max Fp.
1' already
computed

For each 1, the m sum is started at the value of m for which E(1-1)m was largest

in magnitude, and the sum proceeds in both directions until either the boundary of

the sum is reached or

Fim < e max Fpm,
1'm' already

computed

and Fim < Fim.prev The last condition ensures that the sum is not truncated when

terms are increasing.

The starting values and truncation conditions involving e for k and n are the obvi-

ous generalizations of those for m, but the requirements for terms to be decreasing are

stricter. To truncate the k sum, I required three consecutive terms to be insignificant

and decreasing.



The n sum was found to often have an oscillatory amplitude, so a strict require-

ment of decreasing values tended to cause many insignificant terms to be computed.

The truncation condition on n was therefore expressed in terms of the maximum value

on a moving window, so that isolated small harmonic fluxes would not prevent trun-

cation. For truncation, it was required that either the maximum value in a moving

window of length two was insignificant and decreasing for five summands or that the

maximum in a window of length three was for eleven summands. Additionally, the

last change was required to be a decrease.



Chapter 5

Results

Finally, in this chapter I present the numerical results of the calculations outlined

above. I first present speed and accuracy comparisons with my group's Sasaki-

Nakamura code and then accuracy comparisons with results from previous papers.

Finally, I present new calculations showing the location of the d = 0 surface for holes

with spins a = 0.2M and a = 0.5M..

5.1 Comparison with Sasaki-Nakamura

The implementation of Fujita and Tagoshi's numerical MST method (FT) was de-

signed to replace our group's older method for evaluating the Teukolsky functions

through the Sasaki-Nakamura transform (SN). It is important, therefore, to compare

the performance of the two algorithms. The metrics considered here are the speed

and accuracy of evaluation of the Teukolsky functions.

Both codes take a parameter controlling the accuracy of evaluation of the Teukol-

sky functions. This parameter has strong effects on the results of the SN code, so

tests were run in that code at requested accuracies of 10-3, 10-6, and 10-9. The

parameter in the FT code is tunable at evaluation time and was not adjusted for

these tests, resulting in all requests evaluating at the highest available precision. The

evaluation time can sometimes be reduced in actual runs by adjusting this parameter

to evaluate unimportant harmonics at lower accuracy.
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Figure 5-1: Evaluation times for the FT and SN solvers at a = 0.5M, = m = 6,
p = 4.5M, e = 0.1, r = 4.5M for various w. The evaluation times varied very little
for different SN precision requests.

5.1.1 Speed Comparisons

Comparisons of the speeds of the algorithms are not as simple as one might hope.

First of all, each method has an initialization procedure, which must be performed

once per harmonic, and a procedure to evaluate the solutions at a particular radius,

which may be evaluated many times per harmonic, particularly for eccentric orbits.

Additionally, I often perform a calibration routine in the FT code to choose between

different possible MST series. This calibration code can be omitted or shortened in

controlled cases where a particular series is known to work well.

The evaluation of the Teukolsky solution was found to be much faster in the SN

code than in the FT code (Figures 5-1 and 5-2). The initialization time when FT

calibration was not performed showed the reverse relation with the FT code much

faster than the SN code. The full FT calibration routine, however, involves many

evaluations of the Teukolsky function and generally took as long or longer than the

SN initialization (Figures 5-3 and 5-4).

As a result, the old SN code is faster in most cases. The exceptions are when only

a few values of the Teukolsky solution are needed and the calibration procedure can
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Figure 5-3: Initialization times for the FT and SN solvers at a = 0.5M, 1 = m = 6,
p = 4.5M, e = 0.1, r = 4.5M for various w. Initialization times were virtually the

same for the two FT runs because the multiple precision code is not used in the

initialization procedure.
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Figure 5-4: Initialization times for the FT and SN solvers at a 0.2M, = m 6,
p = 20M, e = 0.2, r = 20M for various w. As in Figure 5-3, multiple precision code
was not used in the initialization of either FT run.

be shortened or eliminated. This often holds when considering circular orbits, as the

calibration run time has dependence on eccentricity.

5.1.2 Precision Comparisons

The real advantage of the FT code, however, is in its precision capabilities. The FT

solver attempts to evaluate the Teukolsky function to double precision, and, unless

a lower precision is explicitly requested, the main source of error in the result is

round-off error. Therefore, as an estimate of the accuracy of the FT code using

multiple precision hypergeometric functions, I evaluated the function at 25 pairs of

(r,w) values in a grid spaced by (double precision) machine epsilon and recorded the

largest deviation from the value in the grid center. This is a lower bound on the error

in the evaluation, and is likely a good estimate. The other solvers' precisions were

estimated from the larger of this noise estimate and their difference from the value

given by the FT multiple precision evaluator.

In very strong field cases, such as the orbit with p = 4.5M considered in Figure 5-5,
there are significant round-off errors contributing from code outside the hypergeomet-
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Figure 5-5: Relative error in the values of the Teukolsky solutions as evaluated by
the FT and SN solvers at a = 0.5M, 1 = m = 6, p = 4.5M, e = 0.1, r = 4.5M for

various w.

ric function evaluators. As a result, even the version of FT using multiple precision

code was unable to maintain anything approaching double precision accuracy except

for very small w. However both versions of the FT solver were consistently much

more accurate than any tested version of the SN solver, which by MW = 5 was only

achieving accuracies of a part in 100.

In the weaker field case of p = 20M, shown in Figure 5-6, we can clearly see the

difficulties in evaluating the hypergeometric function. The FT solver using multiple

precision code for the hypergeometric function evaluator was able to maintain accu-

racies of 10-1-10-14 out to MW = 1, while the version using only extended precision

was completely swamped by round-off error by Mw = 0.9. The 10-6 SN solver also

performed well and was consistently able to achieve accuracies of 10-5-10-6 through-

out the range tested.

It is worth noting that the SN solver with requested precision of 10- 9 did not

generally achieve accuracy better than 10-6, and in fact often was outperformed by

the 10-6 SN solver despite having greatly increased initialization time. This suggests

that, at least in the current implementation, the SN algorithm is unable to consistently

achieve accuracies better than 10-6.
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Figure 5-6: Relative error in the values of the Teukolsky solutions as evaluated by
the FT and SN solvers at a = 0.2M, I = m = 6, p = 20M, e = 0.2, r = 20M for
various w.

5.2 Comparison with Previous Results

I have compared fluxes for individual harmonics in high spin, strong field orbits with

values given in Fujita and Tagoshi's papers [3, 4]. All my values were computed with

a requested precision of 10-14. For the values in Table 5.1, for circular equatorial

orbits at p = 3M around an a = 0.998M hole, the computed energy fluxes differed

by no more than a few parts in 1012 for any individual harmonic, and the differences

were always less than 10" of the flux from the 1 = m = 2 harmonic. For the data in

Table 5.2, which were chosen to have complex values of v and are in an even stronger

field (a = 0.99M, p = 1.55M) the agreement was not as good, with some harmonics

differing by a few parts in 10 7 . As a fraction of the 1 = m = 2 flux, however, the

values all agreed to almost 10.12

Tables 5.3-5.5 compare the total fluxes of energy and angular momentum to in-

finity and down the horizon with values reported by Glampedakis and Kennefick [5].

They estimate their error at no worse than 10-3-104, and I generally confirm their

results to 10-410- , with the notable exception of the down horizon fluxes for orbits

around an a = 0.5M hole, where we sometimes disagree by a few percent. and in one



limi Fujita and Tagoshi [3] This paper Rel. error Error/F2 2
2 1 6.3283737145864869x10~
2 2 7.3350910900390372x10- 3

3 1 3.4517924227877552x 10-8
3 2 5.6458902861747337x10-6
3 3 2.2084763695700243x 10- 3

4 1 8.8426341846420484x 10-12
4 2 9.6507761069096606x 10-8
4 3 3.1572084515052529x10-6
4 4 7.8979614897263311x10-4
5 1 2.2266003587317006x10- 4

5 2 7.6236253541558626x 10-1
5 3 9.6377094209411545x10~ 8

5 4 1.5240423964556889x10-6
5 5 3.0439980326075501x10-4
6 1 3.8509863211419323x10- 18

6 2 5.7360410503468190x10- 13

6 3 1.3155762424734953x 10-10
6 4 6.7884404091806854x 10-8
6 5 6.9003809076206216x10-7
6 6 1.2192534271212692x10-4
7 1 5.0631852897823082x10 2 1

7 2 3.1060171837611518x10- 1 6

7 3 1.7698525192439268x10- 2

7 4 1.2846205001945888x 10-10
7 5 4.0511763345368075x 10-8
7 6 3.0238471412501713x 10-7
7 7 4.9939392339609413x 10-5

6.3283737145863962x 10-6
7.3350910900386564x 10-3
3.4517924227877678x 10-8

5.6458902861747117x 10-6
2.2084763695701562 x 10-3

8.8426341846419337 x 10-12

9.6507761069096487x 10-"
3.1572084515053757 x 10-6
7.8979614897259636x 10~4

2.2266003587316801 x 10-14
7.6236253541560642 x 10- 11
9.6377094209402202 x 10-8
1.5240423964556398x 10-6

3.0439980326075800x 10-4

3.8509863211420001 x 10-18

5.7360410503468705x 10-13

1.3155762424734402 x 10-10
6.7884404091798980 x 10-8

6.9003809076206555 x 10 7

1.2192534271233083x 10-4

5.0631852897825580X 10-21
3.1060171837611498 x 10-16

1.7698525192441090x 10-12
1.2846205001946045x 10-10
4.0511763345352921 x 10-8
3.0238471412511279x 10-7

4.9939392339549003X 10-5

Table 5.1: Energy fluxes (scaled by M 2/p) to infinity for circular equatorial orbits at
p = 3M around an a = 0.998M hole compared to the values in Fujita and Tagoshi
[3]. The magnitude of the relative error between the values and the error divided
by the flux from the largest harmonic are also given. Values were computed with a
requested tolerance of 10-14.

1.43x 10-4
5.19 x 10- 1
3.83x 10-15
3.90 x 10-15
5.97x 10-14

1.30x 10- 14

1.23x 10-15

3.89 x 10-14

4.65x 10-'4
9.21 x 10-15

2.64x 10-14

9.70x 10-14

3.22x 10-1
4

9.97x 10-15

1.76x 10-1 4

8.98 x 10-15
4.19 x 10-14

1.16 x 10-13

4.91 x 10-15

1.67x 10-12

4.93x 10-14

6.35x 10-16
1.03x 10-13

1.23x 10-14

3.74x 10-13

3.16 x 10-13

1.21 x 10- 12

1. 24 x10-
5.19 x 10-14

1.80x10-
20

3.00 x 10-18
1.80 x 10- 1 4

1.56x 10-23

1.62x 10-20

1.67x 10-17

5.01 x 10-15
2.80 x 10-26

2.75 x 10-22

1.27x 10-18

6.70x 10-18
4.14 x 10- 16

9.24 x 10-30

7.02 x 10-25

7.51 x 10-22

1.07x 10-18

4.62 x 10-19
2.78 x 10-14

3.41 x 10-32

2.69x10-
29

2.48x 10-23

2.15 x 10-22

2.07 x 10-18

1.30x 10-17
8.24 x 10-15

Rel. error Error/E221 |ml Fujita and Tagoshi [3] This paper
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Table 5.2: Energy fluxes (scaled by M 2 /p) to infinity for circular equatorial orbits at
p = 1.55M around an a = 0.99M hole compared to the values in Fujita and Tagoshi
[4], which were chosen so that v was complex with half integer real part. Values were
computed with a requested tolerance of 10-14.

case (e = 0.4, p = 4.90M) by nearly 10%.

Tables 5.6 and 5.7 compare total fluxes to infinity and down horizon for generic

orbits with those from Drasco and Hughes [2]. Their fluxes are estimated to be

accurate to 10-3-10~4 and I generally confirm their values to that accuracy or bet-

ter. In contrast with the comparison with Glampedakis and Kennefick, agreement is

particularly good on down horizon fluxes.

5.3 The e = 0 Surface

As mentioned in Section 1.4, there must be some surface in the (p, e, Omin) space of

orbits which divides the Newtonian-like circularizing evolution, where d < 0 from

the strong field evolution where e > 0. With an algorithm able to evaluate the

Teukolsky solutions to high accuracy even in strong field regions, we are now prepared

to compute the location of this surface. Glampedakis and Kennefick used a solver

based on the Sasaki-Nakamura transform to locate the e = 0 curve for equatorial

orbits [5]. I have confirmed their result for a = 0.5M orbits in Figure 5-7 with a

3.568033154338851 x 102
2.152959342790158x 102
1.230541952573211 x 10-2
1.933924400940079x 10-
7.259849874157195x 10-3
1.536520289551414x 10-5
4.404599359654937 x 10 3

1.148795883734041 x 10-5
2.726949666682515 x 10-3
8.267168128593364x 10-6
1.713110726903289x 10~3
1.650193971262395x 10~ 7

5.800152000099428x 10-6
1.087830324625970x 10-3
1.423939557356283x 10-7
3.998328388790399 x 10-6
6.963929698290593x 10-4

3.568033154338834x 10-2

2.152959342790170x 10-2
1.230541952573288x 102
1.933924400868041 x 10-5
7.259849874157374x 10-3
1.536520289374150x 10 5

4.404599359655978x 10- 3

1.148795883372663x 10-5
2.726949666686628 x 10-3
8.267168127097673 x 10-6
1.713110726887038x 10-3
1.650193658201491 x10-7

5.800151998295866 x 10-6
1.087830324591859x 10~3
1.423939936276081 x10-7

3.998328381658750 x 10-6
6.963929698438952 x 10~4

4.86x 10-15
5.48 x 10-154
6.25x 10-'4
3.72 x 10- 11
2.46 x 10~14
1.15 x 10-10
2.36 x 10-13
3.15x 10-10
1.51 x 10-12
1.81 x 10-10
9.49 x 10-12

1.90x10-7
3.11 x 10-10
3.14x 10-
2.66 x 10~7
1.78x 10-9
2.13 x 10- 11

4.86x 10-'
3.31 x 10-15

2.15 x 10-14
2.02 x 10~14
5.01 x 1015
4.97 x 10-14
2.92 x104
1.01 x 1013
1.15x 1013
4.19 x 10-14
4.55 x 10-3
8.77x10- 3

5.05 x10-14
9.56x 1013
1.06x 10-12
2.00 x 10-13
4.16 x10-13

|ml IFujita and Tagoshi {4] This paper Rel. error Error/E22



e p/M (M 2 /t)o (M 2 /I)EH (M 2/p)gooLH
0.10 4.60 2.88029911 x 10-3 -6.40925149 x 106 2.88686886 x 10-2 -6.47037374 x 10

2.88029 x 10 3  -6.41673 X10 6  2.88686 X10 2  -6.47058 X10 5

0.10 5.00 1 .81736240 x 10-3 -4.02415542 x 10-6 2.06724594 x 10-2 -4.58625239 x 10-
1.81736 x 10 3  -4.03021 X10 6  2.06724 X10 2  -4.58643 X10 5

0.10 6.00 7.10653140 x 10- 4  -1.27378969 x 10-6 1.05537107 x 10-2 -1.88238940x 10-

7.10665 x10
4  -1.27547 X10 6  1.05539 X10 2  -1.88243 X10 5

0.20 4.70 3.11811419x 10- 3  -5.68844881x10 6  2.96691981x10 2  -563722245X10 5

3.11812 x 10~ 3  -5.71886 X1- 6  2.96692 X10 2  -5.63759 X10 5

0.20 5.00 2.09140784 x 10- 3  -4.24513094x10 6  2.21226787x10 2  -458864578x10 5

2.09142 x 10- 3  -4.27185 X10 6  2.21228 X1- 2  -4.58884 X10 5

0.20 6.00 7.78552936x10 4  -1.42994405x10- 1.08488123x102 -1.97301294x10 5

7.78541 x10-4 -1.43776 X10 6  1.08487 X10 2  -1.97306 X10 5

0.30 4.70 4.96252291 x 10- -2.29914952 x 10-6 4.07606137x 10-2 -2.63157686 x 0

4.96241 x10-
3  -2.34257 X10 6  4.07599 X10 2  -262670 X10 5

0.30 5.00 2.60438719 x 103 -3.72945859 x 10-6 2.48383086 x 102 -3.98838822 x 10-
2.60439 x10- -3.79849 X10 6  2.48384 X1- 2  -3.98856 X10 5

0.30 6.00 8.88287360 x 10 4  -1.61038937x10 6  1.12980424x10 2  -2.06377084x10 5

8.88282 x10~4  -163235 X10 6  1.12981 X10 2  -2.06383 X10 5

0.40 4.90 4.52498150 X 10-
3  2.83703121 x 10-6 3.62876348 x 10-2 8.76348623 x 106

4.52598 x 10- 3  +3.00302 X10 6  3.62936 X10 2  +9.69843 X10 6

0.40 6.00 1.03262466x 10-3 -1.63468538x 10-6 1.18255840 x 10-2 -2.0339419xlO0-
_-1.03261 X10 3 -1.68472 x10-

6 1.18257 x10-
2 -2.03399 x10-5

Table 5.3: Comparison with
eccentric prograde equatorial

numerical results by Glampedakis and Kennefick for
orbits around a spin a = 0.5M hole. The first line of

each pair is my data calculated with a requested precision of 10-8, and the second

line is the value reported in [5].

e p/M (M2//L)go(2pk M/)o,(21tL

0.10 1.55 9.28403015 x 10-2 -7.84631276x 103 2.64042554xl1-1 -2.22987881 x 10-2

9.26325 x10~
2  -785155 X10 3  2.63428 x10 1  -2.23134 x10 2

0.10 2.00 4.72368202 x 10 2  -3.16311295x10 1.77547292x10' -1.18563028x10 2

4.72325 x 10 2  -3.16550 X10 3  1.77532 x10 -1.18650 X10 2

0.10 3.00 1.12399333x10 2  -4.14238366x10 4  6.83341074X10 2  -2.50310835X10 3

1.12400 x 10 2  -4.14404 X10 4  6.83347 X10 2  -2.50408 X0 3

0.20 3.00 1.19894749x 10 2  -4.59150587x10 4  6.94435790x10 2  -2.60622702 X10

1.19893 X 10-2  -4.59376 x 10- 4  6.94427 X10 2  -2.60733 X10 3

Table 5.4: Same as Table 5.3, except for a spin a - 0.99M hole.



e p/M (M2|p_)goo (M21ppgH (M2|p)ILsoo (M21P H

0.10 9.5 1.22525287x 10-4 1.50993569x 10-6 -3.31416271 x 10~2 -3.98342328x 10~"
1.22528 x 10- 4  1.50991 x 10- 6  -3.31424 x 10- 3  -3.98335 x 10-5

0.10 11.0 4.99493099 x 10~5 3.39591366 x 10~1 -1.72493157x 10-3 -1.13847429x 10-5
4.99506 x 10-5 3.39590 x 10~ 7  -1.72497 x 10- 3  -1.13847 x 10-5

0.20 9.7 1.40483464 x 10-4 2.21416564 x 10-6 -3.53938931 x 10- -5.25892620x 10-5
1.40484 x 10~ 4  2.21408 x 10- 6  -3.53943 x 10- 3  -5.25871 x 10-5

0.20 11.0 5.63934277x 10-5 5.01281136x 10-7 -1.80665235 x 10-3 -1.47518536x10d-5
5.63927 x 10~ 5  5.01279 x 10- 7  -1.80663 x 10- 3  -1.47518 x10~ 5

0.30 10.0 1.49711929x 10- 4  2.90977239 x 10- 6  -3.53876006 x 10- 3  -6.33610134x10- 5

1.49711 x 10- 4  2.90957 x 10- 6  -3.53885 x 10- 3  -6.33565 x10-5

0.30 11.0 6.74023322 x 10- 5  8.29944762 x 10- 7  -1.94161860x 10~ 3  -2.11329488x10~ 5

6.74024 x 10- 5  8.29938 x 10- 7  -1.94163 x 10- 3  -2.11328 x 10-5
0.40 10.3 1.57139435 x 10-4 3.72830877x 10-6 -3.47122771 x 10-3 -7.49463504x10-

1.57135 x 10- 4  3.72816 x 10- 6  -3.47105 x 10- 3  -7.49426 x 10-5
0.40 11.0 8.33669911 x 10- 5  1.42913822 x 10- 6  -2.12769757 x 10-3 -3.18081101 x 10-7

8.33663 x10- 5  1.42912 x10- 6  -2.12770 x10- 3  -3.18078 x10-5

0.50 10.4 2.46733224x 10- 4  8.15263449 x 10- 6  -4.73608348 x 10- 3  -1.46441206x10-4
2.46763 x10- 4  8.15567 x10- 6  -4.73640 x10- 3  -1.46459 x10-4

0.50 11.0 1.04909170x 10-4 2.47886538 x 10- -2.36298876 x 10-3 -4.88980710x 10~ 5

1.04907 x 10- 4  2.47885 x 10- 6  -2.36298 x 10- 3  -4.88973 x 10- 5

Table 5.5: Same as Table 5.3, except for retrograde orbits around a spin a = 0.99M
hole.

e Omin (M 2|p)goo (M211) pM1yLogH1pL
0.1 700 5.87406088 x 10-4 -4.25755582 x 10-6 8.53661432X 10- -6-72409718x 10

5.87399 x 10- 4  -4.25756 xl1- 6  8.53652 X10 3  -62410 X10 5

0.1 500 6.18509450 x 10- 4  -3.96691978 x 10- 7.62833651X10- 3  -7.76672985X10- 5

6.18500 x10~ 4  -3.96692 x10- 6  7.62823 X10 3  -7.76672 X1- 5

0.1 300 6.83866668 x 10~4 -3.36170687x10- 6  6.07274919X10 3  -1.12143506X10 4

6.83855 x 10- 4  -3.36171 x 10- 6  6.07264 X10 3  -1.12143 X10 4

0.1 100 8.06828209x10~ 4  -9.78644624x10- 7  3.61885454X10 3  -1-90843400X10 4

8.07007 x 10~ 4  -9.78653 x 10- 7  3.61820 X10 3  -1.90843 X10 4

0.3 700 6.80445754x 10~4 -5.88185745 x 10-6 8.62450122 x 10- -7.78419472 x 10-
6.80432 x 10~ 4  -5.88185 x 10- 6  8.62437 X10 3  -7.78419 X10 5

0.3 500 7.26803050 x 10~4 -5.88820547x10-6 7.83518320x 10- -1 .00627987 i1"
7.26781 x10-

4  -5.88820 x10- 6  7.83499 X10 -1.00628 X10 4

0.3 300 8.31592110x 10~ 4  -5.28977216 x10- 6  6.48735187X10 3  -1.6690534X10 4

8.31504 x10-
4  -5.28978 x10- 6  6.48662 X10 3  -1.66905 X10 4

0.3 100 1.08618818x 10- 3  -1.52552341 x10- 7  4.37169436X10 3  -3.46175307X10 4

1.08629 X 10-3  -1.52779 X 1087 4.36910 x10-
3  -3.46171 x 10- 4

Table 5.6: Comparison with numerical results by Drasco and Hughes for inclined.
eccentric prograde orbits around a spin a = 0.9M hole with p - 6M. The first line
of each pair is my data calculated with a requested precision of 10-8, and the second
line is the value reported in [2].



e Gmin (M2 /Io)Eo (M2
1 p)EH (M 2 /I)LI (M 2/,t)LH

0.1 -100 2.51101673x10-5 .10408309x10-" -1.22380591x17 - .85761038x10g
2.50845 x10- 5  -1.10409 Xl1- 8  -1.22779 Xi1-4 -1.85760 X10 6

0.1 -300 2.67635055x 105 3.80215497x 10-8 -4.91743299 x 10- -2.47773849 x 10-

2.67639 x10~ 5  3.80216 X1- 8  -4.91749 X10- -2.47774 X10 6

0.1 -500 2.83941424x 10-5 7.36703876 x 10" -8.40630757x 10-4 -3.36034200 x 10-6
2.83939 x10- 5  7.36704 X10 8  -8.40626 X10 4  -3.36034 Xl1- 6

0.1 -700 2.96243014x10~5  1.06499809x10-1 -1.09778053x1 3  -4.23915116x10 6

2.96240 x10-5 1.06500 X1- 7  -1.09777 X10 3  -4.23915 X10 6

0.3 -100 2.92463760 x 10-5 2.44837650x 10-" -1.14149035x 10- -2.74782369 x 10-6
2.92408 x 10- 5  2.44837 X10 8  -1.14269 X1- 4  -2.74782 X10 6

0.3 -300 3.18177793x 10-5 7.99023301 x 10-8 -4.92331397x 10- -3.86655915 x 10-6
3.18207 x1- 5  7.99022 Xl1- 8  -4.92316 Xl1- 4  -3.86655 X10 6

0.3 -500 3.45505039x 10 1.57246246x 10-1 -8.65362467x 10 -5.43045357x
3.45503 x10- 5  1.57246 X10 7  -8.65358 X10 4  -5.43045 X10 6

0.3 -70* 3.67888755x 10-5 2.32108725 x 10-7 -1.15339840x 10- -6.98894974 x 10-6
3.67886 x10 5  2.32108 X10 7  -1.15339 X10 3  -6.98894 X10 6

0.5 -100 3.44246391 x 10-5 6.01946990xl08 -9.51575958xli05 -4.38713536xl1-6
3.44049 x10~5  6.01938 X1- 8  -9.51540 x10 5  -4.38711 X10 6

0.5 -300 3.87670910x10-5 1.87176401 x 10-7 -4.68896315 x 10- -6.64498626 x
3.87672 x 10- 5  1.87174 X1- 7  -4.68684 X10 4  -6.64495 X10 6

0.5 -500 4.37797072 x 10- 5  3.77540991x10-7  -8.67407548x10- -9.86403051X10 6

4.37778 x10--5  3.77537 Xl1- 7  -8.67384 X10- -9.86398 Xl1- 6

0.5 -700 4.82955053x 10- 5.75311579x 10-7 -1.20171197x 10' -1.31850289 x 10-
4.82937 X 1015 5.75306 x 10- 7  -1.20168 Xl1- 3  -1.31850 X10 5

Table 5.7: Same as Table 5.6, but for retrograde orbits with p =12M.

0.53.821 1 1 1 x 1

0.4 x -

0.3 x 1

0.2 x 1

0.1 x 1

0I

4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2

p/M

Figure 5-7: The 0 curve for prograde equatorial orbits around a spin a =0.5MI

hole, as well as the location of the innermost stable orbits.- Compare the upper right
image in FIG. 5 of [5]. Points were computed with a maximum precision of 10-6.

Note that each point has a horizontal error bar, which is only visible for the nearly
circular orbits.



much finer grid of points. I have not yet attempted to duplicate their results for

higher spin holes.

Additionally, using the prescription from [10], I have found the e = 0 curves for

0 min inclinations spaced at 150 intervals (excluding 0 min = 0, which passes through

a coordinate singularity at the pole of the spherical coordinate system) for central

holes of spins a = 0.2M (Figure 5-8) and a = 0.5M (Figure 5-9). As the inclination

changes from retrograde equatorial to prograde equatorial, the e = 0 surface moves

inwards to smaller p and also becomes closer to the innermost stable orbit.



-min - -

74 7.6 7.8
i I I

0.4

0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0

0.4

0.3

Omin = -450+

7.2 7.4 7.6

150

7.0

in = 600 -

6.4 6.6

- I

6 6 in

6.4: 6.6 6.8I -I I

6. 6m
6.0 6.2

p/M

I I

7.4

Omin = -750-

7.6 7.8

mir

7.0 7.2L-7 I

6.2 6.4

Omin

6.6

n = -30'-j

7.4

300

6.8

-- '

Omin = 750

-6.0 6.2 6.4

p/M

7.2 7.4

-

68 7.0i = I

0 min = 15-

7.2 7.4
I I -

-6

~6.2 6.4

-
0

min

16.0 6.2

p/M

Figure 5-8: The curves d = 0 for various inclination angles around a hole with spin
a = 0.2M. The horizontal range on each plot is constant at 0.8.
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Chapter 6

Conclusions and Future Work

I have presented here the results of implementing numerical code to evaluate grav-

itational wave fluxes using the numerical MST formalism developed by Fujita and

Tagoshi. This code was then used to calculate the evolution of generic orbits in

strong field regimes and compute the location of the surface dividing the large r

circularizing evolution from the small r evolution towards increasing eccentricity.

The accuracy of evaluations of the Teukolsky solutions using Fujita and Tagoshi's

method was found to be far superior to the accuracy obtained using the Sasaki-

Nakamura transform. The fluxes obtained using the numerical MST method were

found to agree with previous calculations to the claimed level of accuracy of the

previous results.

The natural next step in this work is to employ the code to locate the e = 0

surface at higher black hole spins than the two considered here. Comparison of fluxes

for specific high spin orbits with previous results suggests that the code used here

will be able to handle the higher spin cases without significant modification.

A more difficult project would be extending the known location of the surface

to higher eccentricity orbits than the upper bound of 0.5 used here. For higher

eccentricities, the number of Fourier modes required to approximate the fluxes well

starts becoming prohibitively large: many of the calculations for the current work

required 50-100,000 harmonics, of which half could be obtained by symmetry.
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Appendix A

Orbital Details

For a particle at Boyer-Lindquist position zM = (t, r, 0, p) moving with 4-momentum

p(dz"/dr) = (pt, pr, p (,p) for r the proper time, the dimensionless energy, angular

momentum, and Carter constant are constants of motion given by [12]

E = - [( _ 2Mr) pt +

L 2Mar sin2 0 +
L=PM E

ar sin2

(r2 + a2) 2 - Aa2 sin202 0 

Q = , ((pML)2 - a2 ([E)2 sin2 0) cot 2 0 + E2 (pO) 2 + p1 2 a2 cos 2 o
P 2M2I

(A.1)

(A.2)

(A.3)

where the expressions in square brackets are the dimensionful versions. The expression

for Q has been simplified using the relation p2 =_2

The functions occurring in (1.9) are given by

Vr(r) = P2 [(E (r 2 + a2 ) - MaL)2 - A (r 2 + (ML - aE)2 + M2Q)]

vo(o) = P2 [M 2Q - M 2 L 2 cot 2 0 - a2 (1 - E2 ) cos 2 0]

Vt(r,0)=p

V,(r,6) = p

(r2 + a2)2 a2sin2 +
EA 2 i26 +

ML csc20 + aE r + a

MaL (1

Ma2L~
1) - '

and the Mino time parameter A is defined by dT/dA = pE.

r2 + a2 )
-A

(A.4)

(A.5)

(A.6)

(A.7)



The orbital parametrizations p, e, 0 min and E, L, Q are most easily related by the

implicit equations

0O (4V)(A.8)

0 = V(Omin), (A.9)

which are easily seen from (1.9) and the fact that rmin, rmax, and 0 min are turning

points of the radial and angular motion.



Appendix B

Expressions for MST Quantities

The MST formalism provides two expressions for each of the independent solutions

to the Teukolsky equation, and these can each be transformed using hypergeometric

function identities into several useful forms. In the formulas below for R" and RUP,

the expressions in terms of Gauss hypergeometric functions (2 F 1 (-,-; -; -)) or R' are

formally convergent for r < oc and expressions in terms of confluent hypergeometric

functions (1 F1 (-;-;-) and U(-, -, -)) or R" are formally convergent for r > r+, although

their ranges of numerical usefulness are smaller. The ingoing solution can be expressed

as

R = ei *(-X)-s-i(e+r)/2(- _ i(e-,)/2 (B.1)
00

x E f, 2F1(n + v + 1- i, -n - V - ir; 1 - S - ie - ir; X)

n=-oo

0c)

= es"X(-x)-S-i(E+T)/ 2 (1 _ >3-v-i+i(e+r)/2 E fn (1 _)-" (B.2)
n=-oo

x 2 F 1 (n+v+ t71-in+v+ 1s -i; 1-s - -r;1

= KVRv + Kv_1R;-v-1 (B.3)

= R" + R"-. (B.4)

Expressions (B.1) and (B.2) are termwise equal. Numerically, (B.2), (B.3), and (B.4)

were found to be useful forms.



The upgoing solution is

ZZ S(v-+1 +s-ie)nU(v 1+.9
f00x 1 fv"(2iz )"v .+ " i U(n + v + 1 + s - iE, 2n + 2v + 2, -21z)

n=oo(V + 1 -S + ze)

= 2"z -- (1 - )-si(E+T)/2eiz- E-ir(v+1+s)( 2 iz)2v-1 (B.6)

v + -+
x E fn"(2i-z)~" . U(-n - v + s - iE, -2n - 2v, -2iz)

(v_+ 1 - s (__+ )

_--i -r" sin(r(v - s + iE)) R" - i sin(7(v + s - ie)) R"-1 (B.7)sin(27rv) KI, 0K-,_1-)

where U is the Tricomi confluent hypergeometric function. As in the case of R",

(B.5) and (B.6) are termwise equal, and in fact a useful expression for numerical

calculation takes the negative n terms from (B.5) and the positive n terms from

(B.6). This is useful because evaluation of hypergeometric functions is performed by

summing a series which, particularly for large values of the function, often has large

cancellations. As the result is generally more accurate when it is larger, and the two

expressions are termwise equal, it is advantageous to take terms with prefactors that

decrease with InI. The expression (B.7) was also found to be numerically useful.

The additional Teukolsky solutions R" and R' are

Rc = eiz2vzv- 1 r (+ 1 --- )(B.8)
z F(2v + 2)

00 
(

x E f"(-2iz)" (1v +F(n + v + 1 - s + iE; 2n + 2v + 2; 2iz)
fl= -00(2v +±2)2fl

R= e ( xs-i(e+r)/ 2 (1 _ X)v+i(E+r)/2 F(1 - S - i - iT)F(2v + 1)0 (- X) F(v +1I -ir)F(v + 1 -s- iE) (B9
00(2v 

+1)x fn"(1-x)n 2n
(v+ 1-ir),(v+1- -e),

x 2 F1 - - v - ir, -n - v + 2 - ie; -2n - 2v; .
2F1~ ~~ --x ZT

By expanding both of these solutions in powers of 1 - = z/es at large radii, it can

be seen that they are actually the same solution up to a constant (in r) factor, so we



then write R' = KVR', where

K" = 2~S(2K)S-veE"
17

F(1 - s - If - iT)F(2v + 2)1F(2v + 1)

(V + 1 - s + Zi)F(v + 1 - s - iE)F(v + 1 -iT)

(-1I)" (2v + 1)n (V + 1 + S + ie)n (V + 1 + ir) n

"n0n n! (v + 1 - s - ic)n (v + 1 - ir)n

0 V(-1)" (V + 1 + S - i')"

n-c(- n)! (2v/ + 2)n (V + 1 - S + iE)n)

(B.10)

By taking the limits of the above expressions near the horizon and for large r and

comparing with the asymptotic behaviors in (2.4) and (2.5), we can find expressions

for the asymptotic amplitudes1

B trans = ei2(E+r + ) : fn
n=-oo

Binc _ W-1e-E(ogE-(1-K)/2) K, - ie '"sin(7r(v - s + if))K
sin(7r(v + s - i))

Bref = -1-2i-(log E-(1-,)/2) (KV + ieiz"vK--i)A"_

Ctrans = 1-2s -i(oge-(1-,)/2)A"

where

A"= 2-1+s-iEe-(ei(v+1-s))/2 F(V + 1 - s + if) 0C,

F(V +1+s - i)

A" = 2-1-s8ie -(e+i(v+1+s))/2

fl=-00

n (V + 1 + s - i).
-n (v + 1 - s + ic)n,

'The phases of these expressions are incorrect almost everywhere in the literature.

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)
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Appendix C

List of Symbols

(x)

a

an

almkn

B inc,ref,trans

Cref,trans,up

A

E

e

6

pFq

gn (Vi)

h+,x

Pochhammer symbol F1(x + n)/F(x)

Black hole spin (1.6)

Coefficient in the recurrence for f,' (3.5)

Coefficient in ingoing flux equations (2.14)

Ingoing asymptotic amplitudes (2.4)

Coefficient in the recurrence for f, (3.6)

Upgoing asymptotic amplitudes (2.5)

r 2 - 2Mr + a2 = (r - r+)(r - r_) (1.6)

Energy of an orbiting particle

Energy removed from particle -dE/dt (superscript H or o can

indicate direction)

Orbital eccentricity (1.8)

2Mw (3.1)

Hypergeometric function

Coefficients in MST expansions (3.1)

Continued fraction function (3.14)

Mino time average of dt/dA (1.9)

Coefficient in the recurrence for f,' (3.7)

Gravitational wave amplitudes



K (r2 + a2 )w - am (2.3)

Kv Constants occurring in various MST formulas (B.10)

k 0 index on Teukolsky and related functions (1.11)

r V /1I --- q2 (3.1)

L z-angular momentum of an orbiting particle

L Angular momentum removed from particle -dL/dt (superscript H

or oc can indicate direction)

1 principal index on Teukolsky and related functions (2.1)

A Eigenvalue of the angular Teukolsky equation (2.3)

A Mino time parameter (1.9)

M Black hole mass (1.6)

m W index on Teukolsky and related functions (1.11), (2.1)

y Mass of the orbiting body

n r index on Teukolsky and related functions (1.11)

v Renormalized angular momentum

Qr,O, p Boyer-Lindquist time orbital frequencies Tr,O,,/' (1.10)

w Mode frequency (2.1)

P w - ma/2Mr+ (2.4)

p Orbital semilatus rectum (1.8)

w Boyer-Lindquist azimuth (1.6)

Full Teukolsky function (2.1)

Q Carter constant of an orbiting particle

Q Carter constant removed from particle -dQ/dt (superscript H or

oc can indicate direction)

q a/M nondimensionalized spin (1.6)

R Radial Teukolsky function (2.1)

R KRv, but used to indicate computation using (B.9)

Rv "Coulomb" Teukolsky solution (B.8)

R"'n Ingoing Teukolsky solution (2.4)

RUP Upgoing Teukolsky solution (2.5)



r Boyer-Lindquist radius (1.6)

r± M ± v/M 2 - a2 (r+ is the horizon radius) (1.6)

rmin,max Radial turning points of a bound orbit (1.8)

r* tortoise coordinate (2.6)

p -1/(r - ia cos 0) (2.8)

S Spin-weighted spheroidal harmonic (2.1)

s Field spin weight (-2 for gravitational waves) (2.2)

Er2 + a2 cos 2 O (1.6)

T Teukolsky source (2.2)

t Boyer-Lindquist time (1.6)

T (c - mq)/n (3.1)

0 Boyer-Lindquist inclination (1.6)

Omin Orbital inclination

U Tricomi confluent hypergeometric function

T,,o, P Mino time orbital frequencies (1.9)

V Teukolsky potential (2.3)

x w(r+ - r)/E, (3.1)

ZH Coefficient of RuP in the radiated field at infinity (2.11)

zo Coefficient of Ri" in the radiated field at the horizon (2.14)

z w(r - r_) (3.1)
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