
Goal-Oriented Web Search

by

Victor Lamont Williamson

SACHUSETTS INSTITUTE[OFTECHNOLOGY

AUG 2 4 2010

LIBRARIES

B.S., Massachusetts Institute of Technology (2005)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

/ 1 10)

Author-...:.. /..............

Department of Electrical Engineering and Computer Science

Feb. 2, 2010

Certified by................ ~

Stephen A. Ward
Professor

Thesis Supervisor

Accepted by..
LI',

KI'j"*br. Christopher J. Terman
Chairman, Department Committee on Graduate Theses

ARCHNES

Author .

2

Goal-Oriented Web Search

by

Victor Lamont Williamson

Submitted to the Department of Electrical Engineering and Computer Science
on Feb. 2, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

We have designed and implemented a Goal-oriented Web application to search videos,
images, and news by querying YouTube, Truveo, Google and Yahoo search services.
The Planner module decomposes functionality in Goals and Techniques. Goals declare
searches for specific types of content and Techniques query the various Web services.
We choose which Web service has the best rating at runtime and return the winning
results. Users weight their preferred Web services and declare a repository of their

own Techniques to upload and execute.

Thesis Supervisor: Stephen A. Ward
Title: Professor

4

Acknowledgments

Special thanks to Prof. Stephen Ward from MIT's Laboratory for Computer Science

and Artificial Intelligence for guidance and refinement of the project and for the

opportunity to pursue my idea. No less thanks to PhD student Justin Mazzola

Paluska for tweaking the Planner to suit the needs of the Web application and for

technical support, design insights, and practical common sense.

6

Table of Contents

1 Introduction

1.1 The W eb.

1.2 Background

1.2.1 The Planner

1.2.2 Subgoals and Goal Trees .

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

Goal Specifications .

Repositories

Goals and Techniques.

2.4.1 Video Search

2.4.2 Image Search

2.4.3 News Search

2.4.4 Mixed Search

Search Results

AJAX

Running Goals . . .

Goal Trees

Heuristics and Biasing

Adding Techniques

2.10.1 Uploading

2.10.2 Debugging

2 Implementation

2.1 Architecture

13

14

15

15

16

17

. - - - - - - . 17

. 1 8

. 1 8

. 1 9

. 2 1

. 2 4

. 2 4

. 2 6

. 2 7

. 2 8

. 2 9

. 3 2

. 3 3

. 3 5

. 3 6

. 3 6

2.11 Saving Settings . 36

2.11.1 Cookies . 36

2.12 HTML Display . 37

2.12.1 Dynamic Layout . 37

2.12.2 Home Page . 38

2.12.3 Results Page . 38

2.12.4 Cascading Style Sheets . 39

3 Security Issues 41

3.1 Threat Model . 41

3.2 Running Untrusted Code . 42

3.2.1 Sandboxing . 42

3.2.2 Closures . 43

3.2.3 Tokens . 44

3.2.4 Other Python Solutions . 45

4 Alternative Designs 47

5 Future Work 49

6 Related Work 53

7 Conclusion 55

List of Figures

2-1 Architectural Design . 18

2-2 Default Repository . 20

2-3 Video Search Goal Spec . 21

2-4 A Single Video Result - Truveo . 23

2-5 A Single Video Result - Google . 24

2-6 Image Search Goal Spec . 25

2-7 Image Search Result - Yahoo BOSS 25

2-8 News Search Goal Spec . 26

2-9 Single Video XML Result . 27

2-10 Single Image XML Result . 27

2-11 Single News XML Result . 28

2-12 Mixed Search Module . 29

2-13 MixVidImgNews Technique Module 30

2-14 Run Goal Code . 32

2-15 Mixed Search Goal Tree . 33

2-16 Web Goal Tree . 34

2-17 Home Page . 39

2-18 Video Search Results . 40

3-1 Python Closures .. 44

10

List of Tables

2.1 Goals, Techniques and Web Services 19

3.1 Python Opcode Token Accesses . 46

12

Chapter 1

Introduction

We have implemented a Goal-oriented Web search application to search online for

videos, images, and news. The search results come from YouTube, Truveo, Google,

and Yahoo Web Services. Users drag a slider to weight their preferred Web services.

The home page includes a checkbox for users to choose which kinds of content to

search and a text box allows users to enter a URL pointing to an external repository

that declares other search implementations.

The application uses the Planner [5], a framework written in Python that allows

new search implementations to be dynamically added at runtime. The Planner was

built for applications in pervasive computing environments, and has been customized

to integrate with Web search. The Planner leverages that pervasive applications are

extensible and decomposable. The Planner separates Goal declaration from Goal

execution so that new modules called Techniques can be plugged into an existing

application without requiring code changes to the application. This approach has the

nice property that decision logic chooses how to satisfy a Goal at runtime.

The outline of this paper is as follows. We show how the Web serves as motivation

for Goal-driven search and give an overview of the Planner. In chapter 2 we discuss

our software architecture and implementation. In chapter 3 we discuss security issues

with uploading untrusted code and suggest remedial measures. In chapter 4 we discuss

some alternative designs, and finally in chapters 5 and 6 we discuss future and related

work.

1.1 The Web

The Web is a distributed platform on which we build our Web application. We

combine multiple independent Web applications into a single application and compare

their performance. Independently developed Web applications often implement the

same or similar functionality and Web users evaluate them to determine which best

suit their needs. Many providers, for example, have implemented Web search engines

including Google, Yahoo, Live Search, Ask.com, Cuil and Bing. Web searchers either

stick with a single search engine or alternate between various ones. Factors that

influence user choices include site popularity, search speed, look-and-feel, and personal

bias. Our Web application leverages ratings returned from Web search services to

evaluate the quality of search results.

The Web has remotely accessible public APIs for enterprises and independent de-

velopers to build useful and novel applications. Web services integrate other Web

services to produce powerful and feature-rich Web applications. Fast and robust fea-

ture rich applications were once restricted to desktop applications where they leverage

the host operating system and CPU, while the Web was best suited for static markup

transfer. Applications such as instant messaging, text editing, email, Web conferenc-

ing, and document management are now ported to the Web. Browser technologies

such as AJAX and dynamic script loading have improved the look-and-feel of Web

applications so that they compete with desktop applications.

One popular set of Web applications are called mashups. Mashups aggregate or
"mash up" many different services on the Web to perform useful function. For exam-

ple, the Google Maps API has been incorporated into mashups to show jobs, people,

cab routes, photos, stores and disease outbreak information on a map. Mashups

depend on organizations such as the World Wide Web Consortium (W3C) to stan-

dardize Web APIs to increase portability and ease application development. Many

popular Web APIs use XML or JSON as the data interchange along with standard

protocols such as REST, XML-RPC and SOAP. These standardizations allow appli-

cations running on any machine connected to the Internet to easily integrate with

and leverage Web services.

1.2 Background

We use the Planner [5] to allow for dynamic uploading and execution of third party

Web search implementations. Our application operates differently than previous per-

vasive computing applications because the Planner is rerun on each Web request. We

want end users to evaluate, compare and modify search results from different Web

services. Our goal is to seamlessly integrate Planner capabilities within the Web

browser and maintain application look-and-fell and ease-of-use.

1.2.1 The Planner

The Planner was designed for ubiquitous and pervasive computing environments

where many and diverse computing platforms are often removed, relocated, upgraded,

or replaced. Applications operating in ubiquitous environments are expected to stay

abreast of environment changes. In order to achieve runtime determination of high-

level implementation decisions the Planner relies on Goals and Techniques. Goals

describe the high-level problem to be solved and prescribe decision points where the

Planner chooses a particular Technique to satisfy a Goal. Techniques implement

Goals and return domain-specific attributes for the Planner to compare alternative

approaches.

Goal descriptions include Goal parameters, output attributes, documentation, and

a URL that points to the Goal module containing evaluation code. Goal parameters

restrict application semantics. For example, "play any movie" may be parameterized

to "play a particular movie." Goal attributes describe qualities of the implemen-

tation returned by Techniques. The evaluation formula maps attributes to a single

value and instructs the Planner how to choose between competing Techniques. Goal

documentation provides an overview and useful information for Technique developers.

Techniques are small scripts broken up into a series of declarative and arbitrary

imperative code called stages that include subgoal declarations, evaluation code, and

commit code. Technique evaluation code is idempotent to handle being rerun when

the environment changes or when the user makes new requests. The Planner executes

each stage sequentially. Techniques may declare many subgoal and evaluation stages

to incrementally estimate and refine Goal attributes. Development is distributed for

independent and decentralized application development.

1.2.2 Subgoals and Goal Trees

Techniques may declare required subgoals to hierarchically decompose application

functionality and to declare application-specific decision points. The Planner explores

Goals and produces a Goal tree by binding Techniques to Goals and recursively bind-

ing Technique subgoals. The Goal tree is an and-or-tree and encapsulates all known

implementations. A path from the root Goal node to a Technique leaf represents a

single implementation strategy. The Planner heuristically chooses for each Goal the

Technique that maximizes the value returned from the Goal's evaluation formula. The

application may commit the current plan, change parameters, or upgrade a previously

committed plan to accommodate removed, modified, or added system resources.

Chapter 2

Implementation

Python modules form the basis of the Planner implementation and development

framework. Goals and Techniques are encapsulated as Python modules. Python is

an interpretive language useful for both scripting and application development. We

use Python to receive HTTP requests, to display HTML, and to easily incorporate

and integrate Planner modules. We use Python print statements to generate HTML

and JSON response data.

2.1 Architecture

The Web application consists of two python modules, one to display the home page

and the second to run Goals. Figure 2-1 shows how the varying components interact

at runtime. For each request, the Planner checks the default repository for declared

Goals and Techniques. The Goal specification provides the necessary data to create

fields on the home page and references the URL from which to download the Goal

module. Each Technique module is downloaded and the home page is updated with

the Technique's display name and Web services. On each Web search, the browser

sends a request to run the chosen Goal using the Javascript XMLHttpRequest object

and a JSON Goal tree is returned. The attributes are parsed and sent to the server

using an HTML form. The server returns the results in HTML for display.

AJAX GET
rungoal

JSON
goal tree

Form POST
search results

Planner
server

Technique
: - python

module

Goal
s- python

module

REST data -

Reference ---------

Figure 2-1: Architectural Design

2.2 Goal Specifications

Goals are specified in XML files that record the Goal name, display name, description,

parameters, attributes, and HTML file for the Goal. The XML specification is a

Web accessible document that the Planner accesses at runtime to populate the home

page, download Goal modules, discover Techniques and generate HTML. Attributes

encapsulate the data that associated Techniques must return. We use attributes for

heuristic evaluation and to output domain-specific data in HTML. Techniques may

return an html attribute with a link to an HTML display page, otherwise the Planner

will use the site linked to by default in the Goal specification. This allows Techniques

to customize how they display results in the browser. As example, section 2.4.1 shows

the Video Search Goal specification.

2.3 Repositories

Repositories are a way to centralize and easily extend which Goals and Techniques

are available to the Web application. We include a default repository that contains

all of our Goals and Techniques. The repositories are formatted in XML and are

HTML

Repository Goal spec
xml xml

parsed using Python's xml.dom.minidom. Figure 2-2 shows our default repository.

Each goal element references the corresponding Goal specification within its href

attribute. Each technique element specifies the Goal it implements, a URL to its im-

plementation and a list of sources corresponding to Web services it searches. We have

a second repository to demonstrate user upload of additional Techniques. The sec-

ond repository follows the same format and includes a single Technique to implement

video search using the Google AJAX API. We use the urlopen method of Python's

urllib module to read in the repository and parse it into a Document Object Model

(DOM) object.

2.4 Goals and Techniques

We have created four Goals to organize search for online content. We have a Goal

for each type of content and a Mixed Search Goal that includes the other Goals as

subgoals. Table 2.1 summarizes our Goals, Techniques and queried Web services.

Goal Technique Web Service

YouTubeSearch YouTube Data API

Search Videos AOLVideoSearch Truveo XML API

GoogleVideoSearch Google AJAX API

YahooImgSearch Yahoo Build your Own Search Service (BOSS)
Search Images

GooglelmgSearch Google AJAX API

YahooNewsSearch Yahoo Build your Own Search Service (BOSS)
Search News

GoogleNewsSearch Google AJAX API

Table 2.1: Goals, Techniques and Web Services

<repository>
<goal name="VideoSearch" href="http://people.csail.mit.edu/

victorw/goals/videosearch.xml"/>

<goal name="NewsSearch" href="http://people.csail.mit.edu/

victorw/goals/newssearch.xml"/>

<goal name="RateResults" href="http://people.csail.mit.edu/
victorw/goals/rateresults.xml"/>

<goal name="ImageSearch" href="http://people.csail.mit.edu/

victorw/goals/imagesearch.xml"/>

<goal name="MixedSearch" href="http://people.csail.mit.edu/

victorw/goals/mixedsearch.xml"/>

<technique name="YouTubeSearch" goal="VideoSearch" href="http://

people.csail.mit.edu/victorw/techniques/youtubesearch.py">

<source name="YouTube" href="http://gdata.youtube.com/
feeds/api/videos"/>

</technique>

<technique name="YahooNewsSearch" goal="NewsSearch" href="http://

people.csail.mit.edu/victorw/techniques/yahoonewssearch.py">

<source name="Yahoo! News" href="http://search.yahooapis.com/

NewsSearchService/Vl/newsSearch"/>
</technique>

<technique name="GoogleNewsSearch" goal="NewsSearch" href="http://
people.csail.mit.edu/victorw/techniques/googlenewssearch.py">

<source name="Google News" href="http://ajax.googleapis.com/
ajax/services/search/news"/>

</technique>
<technique name="AOLVideoSearch" goal="VideoSearch" href="http://

people.csail.mit.edu/victorw/techniques/aolvideosearch.py">
<source name="Truveo" href="http://xml.truveo.com/apiv3"/>

</technique>

<technique name="UserRate" goal="RateResults" href="http://

people.csail.mit.edu/victorw/techniques/userrate.py"/>

<technique name="RankRate" goal="RateResults" href="http://
people.csail.mit.edu/victorw/techniques/rankrate.py"/>
<technique name="YahooImgSearch" goal="ImageSearch" href="http://
people.csail.mit.edu/victorw/techniques/yahooimgsearch.py">

<source name="Yahoo! Images" href="http://search.yahooapis.com/
ImageSearchService/Vi/imageSearch"/>

</technique>
<technique name="GoogleImgSearch" goal="ImageSearch" href="http://
people.csail.mit.edu/victorw/techniques/googleimgsearch.py">

<source name="Google Images" href="http://ajax.googleapis.com/

ajax/services/search/images"/>
</technique>

<technique name="MixVidImgNews" goal="MixedSearch" href="http://
people.csail.mit.edu/victorw/techniques/mixvidimgnews.py"/>

</repository>

Figure 2-2: Default Repository

<goal name="VideoSearch">
<summary>search and return web videos</summary>

<display>search videos</display>

<doc>Goal that searches the web for videos to be displayed

to web viewers via the planner web application.

</doc>

<param name="text" type="string"/>

<output>

<attribute name="html" type="string" default="http://

people.csail.mit.edu/victorw/planner/html/videosearch.py"/>

<attribute name="videos" type="xml"/>
</output>
<evaluation href="http: //people. csail.mit .edu/

victorw/goals/videosearch.py"/>
</goal>

Figure 2-3: Video Search Goal Spec

2.4.1 Video Search

The Video Search Goal has three implementations for YouTube, Truveo and Google

respectively. The Technique that searches Google is included in a separate reposi-

tory from the default to demonstrate uploading a Technique. Figure 2-3 shows the

Goal specification. The text parameter is the search text. The default HTML and

evaluation code point to their respective Python module implementations.

The HTML results page includes the duration of the video, the title of the video

and the view count. A tooltip containing a description of the video is triggered when

the mouse hovers over the thumbnail. To prevent HTML parsing errors in tooltips

we filter out control characters and only keep ASCII characters between 32 and 126.

Quotations and HTML tags are removed to ensure tooltips are not susceptible to

Cross-site Scripting (XSS) attacks. We use the Python re pattern matching module

to filter out HTML tags and the tooltip method is placed in a utilities file for easy

access across all files. The video title is contained within an HTML anchor tag and

opens a new window where the video can be viewed. There is often insufficient space

to display the full title and a tooltip on the anchor tag displays the full title.

We search YouTube, Truveo and Google AJAX API. The YouTube API allows

us to search and upload videos, create playlists, customize players and playback,

add YouTube widgets, track activity and more. We use the Data API to easily

search videos by query string. We obtained a developer key and client ID and use

YouTube's Python Client Library. We create a YouTubeVideoQuery object and pass

it to a YouTubeService object which issues our search query. We set max-results to

15, include "restricted content" and order results by rating. We can access video

properties by iterating over the entries returned in the video feed. We use the title,

description, duration, view count, thumbnail and rating properties, but YouTube also

exports the video's publish date, category, tags, alternative formats, and geographic

location.

We use AOL's Truveo XML API to retrieve video search results from Truveo.

Truveo also provides a JSON API and libraries for AJAX, Flash, and Ruby. We likely

would have used JSON had it been available in 2008. There is no library support for

the XML API. We use standard REST-style access methods over HTTP. We have an

application id and use version 3 of the API. We pass "truveo.videos.getVideos" within

the method parameter and max our results at 15. Truveo returns dozens of properties

for its videos. Not all properties are normally populated. For example, we use the

userRating property over Truveo's proprietary vRank property to rate video results,

but userRating is not always present, in which case we default to vRank. Figure 2-4

shows a single video result from Truveo.

Google Videos is searched using the Google AJAX Search API. Libraries are

provided for Javascript and Flash. We do not use the libraries because our Techniques

make requests from the server and not from the client. On version 1.0 of the API we

set the rsz parameter to large and the query parameter q to the user's search text.

The Google AJAX API responds with the result set formatted in JSON which we pass

to Python's builtin eval function to create a Python dictionary. Before evaluation,

we turn the response string into a Unicode literal by preceding it with u'. To prevent

parsing errors, we remove ASCII character 127 and characters smaller than 32. Figure

2-5 shows a Google JSON response with search query "swahili". The original source

of this particular video entry is from YouTube. We use the rating property to rank

Google's search results.

<Video>
<id>2061533051</id>
<title>Klaus and Greta</title>

<sponsored>0</sponsored>

<videoUrl>http://xml.truveo.com/rd?i=2052820940&a=
01bbddf413a052ff31d5a3a38b96078d&p=1&

h=4b53d7e61d7881c:3101cd5bO5806b67f69accb3d2cOf2f1

</videoUrl>

<channel>Hulu</channel>
<channelUrl>http://www.hulu.com</channelUrl>

<dateFound>Fri, 15 Jan 2010 05:55:25 -0500</dateFound>

<textRelevancy>319</textRelevancy>

<vRank>0 .402201</vRank>

<description>Jenna enters in a fake relationship with James Franco

while Jack tries to gain access to a drunken voicemail

he left Nancy.

</description>
<referrerPageUrl>http://www.hulu.com</referrerPageUrl>

<copyright>2009 NBC Studios, Inc. All Rights Reserved</copyright>

<rating>TV-14</rating>

<runtime>1277</runtime>

<category>Comedy</category>
<tags>.. .</tags>

<showName>30 Rock</showName>

<showUrl>http://www.hulu.com/30-rock</showUrl>
<episodeName>Klaus and Greta</episodeName>

<episodeNumber>9</episodeNumber>

<seasonNumber>4</seasonNumber>

<country>United States</country>

<language>English</language>
<dateProduced>2010-01-09T01:51:05Z</dateProduced>

<viewCount>38</viewCount>
<thumbnailUrl> http://thumbnails.truveo.com/

0011/09/DB/09DBBD49586EF0191329DB.jpg</thumbnailUrl>

<videoResultEmbedTag>

<embed src="http://xml.truveo.com/eb/i/2052820940/a/
01bbddf413a052ff31d5a3a38b96078d/p/1/h/
4b53d7e61d7881c:3101cd5bO5806b67f69accb3d2cOf2f1"

type="application/x-shockwave-flash"
allowFullScreen="true"
width=" 425" height=" 245"></embed>

</videoResultEmbedTag>
<redirectFor/>
<adultFlag>0</adultFlag>

<videoPlayerEmbedTag>...</videoPlayerEmbedTag>
<formats>flash</formats>

</Video>

Figure 2-4: A Single Video Result - Truveo

{"GsearchResultClass":"GvideoSearch",

"title":"Swahili Song (Regina)",
"titleNoFormatting":"Swahili Song (Regina)",
"published":"Fri, 26 May 2006 20:46:12 PDT",
"content":"Swahili Song, East African, Kenya, Tanzania",
"publisher": "www. youtube . com",
"tbUrl":"http://3.gvtO.com/vi/AysrDPo3Vms/default.jpg",

"tbWidth": "320",
"tbHeight":"240",
"videoType": "YouTube",
"url":"http://www.google.com/url?q\u003dhttp://www.youtube.com/

wat chX3Fv3DAysrDPo3Vms\uOO26source \u003dvideo\uOO26vgc\
u003drss\uOO26usg\u003dAFQjCNF3UWvoYA3IIUYK0z2AnaoL72EMuA",

"playUrl":"http://www.youtube.com/v/AysrDPo3Vms\u0026fs\uOO3dl\

u0026source\u0O3duds\uOO26autoplay\uOO3dl",
"rating": "4.6860986",

"duration": "246"}

Figure 2-5: A Single Video Result - Google

2.4.2 Image Search

Our application searches the Web for images. Figure 2-6 shows the Image Search Goal

specification. We provide two implementations. One Technique searches the Yahoo

Build your Own Search Service (BOSS) and the second searches the Google AJAX

search API. The number of results returned from BOSS is limited to 15. Google

limits its result set to 8 images.

Results pages include a thumbnail, a title and the size of the image. The full image

can be viewed in a new tab by clicking on the title. A tooltip with the description

is placed on the thumbnail and a tooltip with the full title is placed on the title's

anchor element.

The Google AJAX search API searches images in very much the same way it

searches videos described in section 2.4.1. For BOSS we obtain an application ID

and limit our search to 24 results. The response is in XML. Figure 2-7 shows a single

image result from BOSS.

2.4.3 News Search

The News Search Goal searches the Web for up-to-date news by query string. We

search both Yahoo's Build your Own Search Service (BOSS) and the Google AJAX

API for latest news. We use the same application ID that is used to search BOSS

<goal name="ImageSearch">
<summary>search and return web images</summary>

<display>search images</display>

<doc>Goal that searches the web for images to be displayed

to web viewers via the planner web application.

</doc>
<param name="text" type="string"/>

<output>
<attribute name="html" type="string" default="http://

people.csail.mit.edu/victorw/planner/html/imagesearch.py"/>

<attribute name="images" type="xl"/>

</output>

<evaluation href="http://people.csail.mit.edu/
victorw/goals/imagesearch.py"/>

</goal>

Figure 2-6: Image Search Goal Spec

<Result>
<Title>obama jpg</Title>
<Summary>Edit This CALLING ALL LIBERAL DEMOCRATS What do

you say we hold a Woodstock of our own Since those

bitter old souls recently held what they described as

a conservative Woodstock I m wondering

</Summary>
<Url>http://vickisphipps.today.com/files/

2009/09/obama.jpg</Url>
<ClickUrl>http://vickisphipps.today.com/files/

2009/09/obama.jpg</ClickUrl>
<RefererUrl>http://vickisphipps.today.com/

category/politics</RefererUrl>

<FileSize>159232</FileSize>
<FileFormat>jpeg</FileFormat>
<Height>500</Height>
<Width>350</Width>
<Thumbnail>

<Url>http://thm-aOl.yimg.com/nimage/4d410097bef156bc</Url>
<Height>145</Height>
<Width>101</Width>

</Thumbnail>

</Result>

Figure 2-7: Image Search Result - Yahoo BOSS

<goal name="NewsSearch">
<summary>search and return the latest news articles from the web
</summary>
<display>search news</display>

<doc>Goal that searches the web for news articles to be displayed

to web viewers via the planner web application.

</doc>

<param name="text" type=" string"/>

<output>
<attribute name="html" type="string" default="http://

people.csail.mit.edu/victorw/planner/html/newssearch.py"/>

<attribute name="news" type="xml"/>

</output>

<evaluation href="http://people.csail.mit.edu/

victorw/goals/newssearch.py"/>

</goal>

Figure 2-8: News Search Goal Spec

for images. Figure 2-8 shows the News Search Goal specification. The specification

references the link that produces HTML markup. The HTML displays the title

within an anchor link, followed by a portion of the description, the publish date and

the publisher. The full description can be viewed as a tooltip when the user's mouse

hovers over the description area. The publish date lists the day, month and year

using the fromtimestamp method of Python's date module. The publisher is within

an anchor that links to the publisher's site. If one exists, a thumbnail is scaled down

20% and floated to the right of the description.

2.4.4 Mixed Search

The Mixed Search Goal combines search results for videos, images and news by declar-

ing each of the corresponding Goals as subgoals. Using subgoals we demonstrate the

Planner's ability to decompose functionality and allow users to combine content. The

application passes a special 3-bit parameter called types to the Mixed Search Goal to

specify which subgoals to run. The first bit instructs the Goal to search videos, the

second to search images and the third to search images. Any combination of the bits

may be set. At runtime, we use the Mixed Search Goal when two or more of videos,

images, and news is searched.

There are two Techniques that implement the Mixed Search Goal. The first

<video>
<title>Letterman - Betting on Tony Blair</title>

<desc>Find out how an average citizen benefitted from the former

Prime MInister of England.</desc>

<thumbnail>http://i.ytimg.com/vi/sAVD1046H8g/2.jpg</thumbnail>

<viewcount>25588</viewcount>

<duration>144</duration>

<url>http://www.youtube.com/watch?v=sAVD1046H8g&feature=youtube-gdata</url>

</video>

Figure 2-9: Single Video XML Result

<video>
<url>http://www.gwinnett.k12.ga.us/ArcadoES/Schoeller/

BlackHistory/mlk-index.jpg</url>

<title>mlk index jpg</title>

<desc>Encyclopedia of Prominent African Americans Click

on Picture to Hear Dr King s Famous Speech</desc>

<thumbnail>http://thm-aOl.yimg.com/nimage/
fO1dbOec8f7f2b64</thumbnail>

<height>258</height>

<width>397</width>

</video>

Figure 2-10: Single Image XML Result

searches videos and images because of their similarity and the second Technique

searches all content using the types parameter. We only use the second Technique.

For combined video and image search specified by types = 3, we set the html attribute

to a page that neatly displays only videos and images.

2.5 Search Results

We format search results as an XML attribute on the JSON response. To economize

space we only return video, image, and news properties needed for HTML display,

which always include the title, description and URL. Figure 2-9 shows the XML

format for a single video result for search query "Tony Blair" where YouTube was the

winning Technique. Figures 2-10 and 2-11 show image and article entries for search

query "MLK". In each case Yahoo was the winning Technique.

<article>
<url>http: //www. kens5. com/news/local/Hutchison-stops-in-

San-Antonio-but-not-at-MLK-March-82000827.html</url>

<title>Snubbed? Hutchison stops in S.A.
but not at MLK March</title>

<desc>Senator Kay Bailey Hutchison made a brief stop in San
Antonio Monday morning but, unlike several other political
candidates, she did not attend in the city's MLK March.
"I was not particularly invited, so I didn't,
she said. I would love to if invited consider
that in the future." Hutchison says she acknowledges the
importance of the day -- as well as the importance of all MLK
ceremonies . .. </desc>

<published>1263918463</published>

<modified>1263918464</modified>

<source>KENS 5 San Antonio</source>
<sourceurl>http://www.kens5.com/</sourceurl>

</article>

Figure 2-11: Single News XML Result

2.6 AJAX

We use Asynchronous Javascript and XML to run Goals on the server. As seen

in figure 2-1 we run each Goal on the server using an AJAX request sent in the

background and then direct the user's browser to the results page. We support both

Internet Explorer and Firefox methods to create a request object. Firefox supports

the World Wide Web Consortium (W3C) standard [10] to create an XMLHttpRequest

object while Internet Explorer uses the new ActiveXObject syntax. We create a new

request object for each request because we do not readily benefit from the performance

advantages otherwise. Most users run no more than a few search queries before being

directed to the search results, and requests are spaced far enough apart to forgo

more sophisticated request queuing. For each rungoal request the XMLHttpRequest

object's onreadystatechange callback is set. The callback displays the Goal tree,
saves user settings, and directs the user to the HTML results page. We process the

response after the request object has received all data as signified by readystate=4

and verify HTML 200 status. The JSON response is trimmed by passing a literal

regular expression to Javascript's replace function before being passed to eval and

converted to a Javascript JSON object.

from planner.goal import Goal

class MixedSearch(Goal):

"""Goal to search items on the Internet"""

def _ init _ (self,params=None):
Goal..__init__(self,params,required-params={"text": "csail"})

def evaluate(self, technique):

return technique.toprating

Figure 2-12: Mixed Search Module

2.7 Running Goals

When the server receives an AJAX request, we kick off a rungoal script. The rungoal

script creates a Goal object that is passed to the Planner object's satisfy method

which returns a Plan object. We import the Goal, GTDatabase and Planner, read

the default and user-specified repositories and download Goal and Technique modules

into separate package directories. The www user is given write permissions on these

directories using AFS's fs setacl command.

To execute Techniques and Goals we need to import them and add them to the GT-

Database. The Web application is extensible and we do not presume what the Goals

and Techniques are in advance. To evaluate and execute unknown strings at run-

time we use Python's builtin eval method to evaluate expressions and Python's exec

method to execute statements. For each Goal and Technique, we evaluate add-goal

and add-technique to add them to the Planner database. We execute import state-

ments for Goals and Techniques using Python's "from module import class" syntax.

Each Goal and Technique module must have a class definition with the same name

that is declared in the Goal specification. Figures 2-12 and 2-13 show the expected

Goal and Technique interfaces. Each Goal must subclass the Goal class and each

Technique must subclass the Technique class.

The Goal and Technique parent classes provide the machinery to evaluate Tech-

niques and to separate Techniques into stages. The Goal class takes as input the

Goal parameters and has an unimplemented evaluate method. The technique module

includes three Python decorators to execute subgoal, evaluation and update stages.

class MixVidImgNews(Technique):

GOAL = MixedSearch

def ._init__(self,goal):

self.timescommitted = 0
Technique...init._(self,goal)

Qsubgoal('sg0')
def sg0(self, subgoals):

if int(self.goal.params['types']) & 1:
self.satisfy('VideoSearch',**self.goal.params)

Qsubgoal('sgi')

def sg1(self, subgoals):
if int(self.goal.params['types']) & 2:

self.satisfy('ImageSearch',**self.goal.params)

Osubgoal('sg2')
def sg2(self, subgoals):

if int(self.goal.params['types']) & 4:
self.satisfy('NewsSearch',**self.goal.params)

Oevaluation
def evl(self,subgoals):

videos,images,news = [],[],[]

root = doc.documentElement
for i in range(0,9):

if i < len(videos):
root.appendChild(videos[i])

if i < len(images)
root.appendChild(images[i])

if i < len(news):
root.appendChild(news[i])

self.props.results = root.toxml('utf-8')

def commit(self, subgoals):
self.timescommitted += 1

Figure 2-13: MixVidlmgNews Technique Module

Python decorators are syntactic sugar to take the subsequent function definition as

input and return a wrapped version. The Technique class provides a geLeval-stages

method for the Planner to obtain and execute each stage.

The MixVidImgNews Technique shown in figure 2-13 uses three subgoal decora-

tors to execute each of the searches for videos, images and news. Each decorator takes

in an object that contains subgoal properties keyed by the subgoal name. After a

subgoal is executed, its properties are accessible to the current and subsequent stages.

The ev1 stage accesses each subgoal's search results and returns XML mixed with

videos, images, and news articles.

The Planner recursively iterates through all Goals, Techniques and subgoals dur-

ing execution using the iterate method. The top-level Goal is received as a query

parameter within the AJAX request, and the other query parameters are passed to

the Goal as inputs. The TechniqueNode and GoalNode classes wrap Techniques and

Goals. Subgoals are satisfied by a satisfy method set dynamically on the TechniqueN-

ode at runtime. The satisfy method is created using Python's partial method from

the functools module. The partial method returns a method with the subgoal param-

eter name already bound.

To complete Goal execution, the Planner recursively invokes commit methods on

Goals and Techniques. Commit methods return snapshot trees that reflect the final

state of execution. A GoalSnapshot contains the underlying Goal object, a snap-

shot of the winning Technique, and a list of snapshots for the other Techniques. A

TechniqueSnapshot contains the underlying Technique object, a dictionary of subgoal

snapshots, and a view of its properties. After committing the plan we obtain a Goal

tree represented by the top-level Goal snapshot. We recurse through the entire Goal

tree and convert it into a dictionary. A Python print statement called on a string

representation of the dictionary sends the JSON Goal tree to the client. Figure 2-14

shows a fragment of the rungoal code.

setg = "g = "+chosenGoal+"("+repr(params)+")"
exec(setg)
plan = planner.satisfy(g)
plan.iterate()
topgoalsnapshot = plan.commitO
goaltree = createGoalJSONElt (topgoal snapshot)
print (str(goaltree))

Figure 2-14: Run Goal Code

2.8 Goal Trees

Goal trees allow users to conceptualize how the Planner behaves on search requests.

Each Goal's winning Technique is listed first and the other Techniques listed after-

wards. Figure 2-15 shows the Goal tree for Mixed Search Goal.

A Show goal tree check box appears on the home page and causes the browser to

open a new window that displays the Goal tree. Javascript's window.open opens a

new window and HTML is written directly to the window's DOM document. We pop-

ulate the HTML head tag with our CSS style sheet, two script tags and a reload script

tag. The first two script tags dynamically load the jQuery and treeView Javascript

libraries and the reload script reloads the page to properly display jQuery's treeView

in Internet Explorer. We offload tree views to new windows to avoid loading jQuery

libraries on our home page and to give users more space to view attributes.

JQuery treeView allows users to expand and collapse tree elements with mouse

clicks. We interface with jQuery treeView by creating a bulleted list using HTML

ul/li tags. We create methods in Javascript that take in elements of the JSON Goal

tree and output formatted bullets. The root of the JSON Goal tree is passed to cre-

ategoalli, which formats the Goal name and calls createparamsli and createtechli to

format its parameters and Techniques. The createtechli method formats its attributes

with createattsli and calls creategoalli for its subgoals. Figure 2-16 shows a screen

shot of jQuery treeView. Goal names are gold and Technique names maroon.

We make Technique code viewable through the browser. When a user clicks on a

Technique in the Goal tree, a new window opens with the code. The viewable code

has search examples and allows users to share code. We preserve backslashes, quota-

tions and newlines by escaping and use HTML code and pre tags to display code in

Mixed Goal

Image
Search

Goal

News
Search

Goal

Yahoo Google Google AOL Video YouTube Yahoo Google
Image Image Video Search Search News News
Search Search Search Search Search

Rate Results

Goal

* Technique

User Rate Rank Rate

Figure 2-15: Mixed Search Goal Tree

the browser.

2.9 Heuristics and Biasing

Goals provide a heuristic formula to evaluate Technique attributes. The evaluation

formula is in the Goal's module. Evaluation code can be changed without change to

the server. Video Search Goal uses the toprating attribute to evaluate search results.

The rating is obtained from the highest ranking video. YouTube returns a user rating

for each video for how online users rate the video. Truveo returns a proprietary vRank

rating, and user ratings are returned when available from the video's original source.

We use a RateResults subgoal to return the max of Truveo's user rating and vRank.

Google AJAX API returns its own video rating. Ratings are scaled between zero and

one and used to determine from which Web service to return results.

Video ratings do not always meet user expectations, and image and news search

... - --..........

file 4dit View History Delicious Bookmarks

M ixedSearIch

El Parameters

El MixVidhngNews
E Attributes

E ImageSearch

E Parameters
*]YahoolmgSearch
* -GooglelmgSearch

Video Search

ER-Parameters

EYouTuheSearch
I*lGoogleVideoSearch
ElAOLVideoSearch

RI Attributes

R a te Result s

N sSe arch

EParameters

El YahooNewsSearch
El GoogleNewsSearch

Done

Figure 2-16: Web Goal Tree

results do not return ratings. To address this we allow users to weight Web services. A

user may decrease weight on YouTube and increase weight on Truveo so that Truveo

search results are more likely returned. We call this biasing. Users may bias toward

a single service by weighting competing services to zero. Users have complete control

over which search results to display. Biases are keyed by Web service URL and are

sent to the server as Goal parameters.

We display bias sliders for the user to drag with the mouse. The slider is im-

plemented by attaching Javascript functions to the DOM document's onmousedown,

onmouseup and onmousemove event handlers. The runnable CSS class changes the

cursor to move on mouse hover to alert the user to drag. We check that the event's

target is a slider, save the slider's x coordinate and set the onmousemove handler.

The onmousemove handler adjusts the slider's position each time the move event

fires. Finally, we remove the onmousemove handler and set the corresponding bias

input to the slider's final position. In browsers that support it we set the mouse type

to -moz-grabbing while the user drags.

The HTML layout includes only those Web service biases relevant to a particular

search. We do not display Web services that search images when the user chooses to

search videos or news. To do this we key every Web service's span element id with the

URL concatenated to the Goal name. When the user chooses search content, the Web

service's CSS display property is switched between inline and none. We display the

Web service name above each slider and display the source URL as a tooltip on mouse

hover. Web service names are user friendly and URLs serve as unique identifiers.

2.10 Adding Techniques

The Planner is extensible and we provide mechanisms for users to add their own search

implementations. Users can view returned attributes within jQuery's treeView to see

what attributes and formats are required. For example, the Video Search Goal has

two required attributes. The videos attribute is an XML formatted string of the search

results and toprating is used for Goal-level evaluation. The XML string is passed to

the HTML display code and parsed using Python's xml.dom.minidom module.

2.10.1 Uploading

Users upload Techniques by entering an additional repository on the home page. The

repository is saved in a client cookie and may be changed. The server checks for

the cookie and pulls in the new Techniques. For our demo we have an additional

repository that contains the Technique to search videos using the Google AJAX API.

Chapter 3 discusses security concerns and remedies for uploading and executing un-

trusted code.

2.10.2 Debugging

Users may debug their Techniques using the jQuery Goal tree. The Planner was

modified to run each Technique stage within a try/catch block. If an exception is

thrown a special exception attribute is added to the Technique's Goal tree. The ex-

ception attribute is populated with the exception type, exception message, Technique

stage and line of code. The line of code is obtained from the traceback returned by

sys.exc-info().

2.11 Saving Settings

We use cookies to save user input. The Remember values checkbox saves user biases

and the query string. The values stored in cookies are saved for 31 days and are pre-

populated when the user reloads the home page. Users may save settings to remember

their biases, to begin where they left off or to save their favorite searches.

2.11.1 Cookies

We have Javascript utility methods to get, set and delete cookies. The utilities are in

a separate file and are accessed by the main page and jQuery treeView. Javascript

cookies are available in document. cookie as a semi-colon separated list of name/value

pairs. Our setCookie method sets the expiration using the Javascript Date object by

adding the equivalent number of milliseconds to the current time. Cookie values are

escaped using the escape function so that special characters are replaced with their

%hex equivalent for network transfer. The cookie value is unescaped in getCookie.

To delete a cookie we set its expiration to a time past. The document. cookie is parsed

as, displays as and is a typeof string, but it is uniquely implemented in Javascript to

prohibit direct assignment of arbitrary values.

On the server we access the HTTP cookie by checking the "HTTP-COOKIE" envi-

ronment variable within the environ attribute on the os module. The os module is for

miscellaneous operating system interfaces. We create a SimpleCookie using Python's

Cookie module and access cookies by name using Python's [] indexing operator.

2.12 HTML Display

We dynamically generate HTML to display search results. Developers specify a de-

fault site in Goal specifications or they enforce Techniques to set the html attribute.

The MixVidlmgNews Technique for Mixed Search sets the html attribute when videos

and images are searched together. The top-level Goal's results are displayed and sub-

goal HTML pages are ignored. Parameters are passed in an HTTP POST request

via an HTML form. We use Python, but sites may generate HTML using any pro-

gramming language that supports HTTP.

2.12.1 Dynamic Layout

The HTML layout is robust and does not require code modification when new Tech-

niques are added at runtime. We iterate over Techniques and adjust the layout

accordingly. Both the home page and results page dynamically render their layouts.

2.12.2 Home Page

The home page displays an image of a planner to signify that no search content is

chosen. As the user chooses search content, the image is changed to reflect the cor-

responding search Goal. Web services and biases are dynamically added or removed

based on the user's search content. The user repository input moves up or down

based on the size of the Goal box. HTML links, parameters, attributes, Techniques,

display names and Web services are indexed by Goal name in Javascript JSON ob-

jects. We store the name of the current Goal in a global variable and use Javascript's

eval function to retrieve Goal data. Goal boxes are headed by their display name

and list Web service biases and Goal parameters. The Goal's attributes are sent to

the HTML page using an HTML form. Figure 2-17 shows a screenshot of our home

page. The News Search Goal box reflects that news content is checked. The Mixed

Search Goal box is displayed when two or more types of content is searched.

2.12.3 Results Page

We use separate pages to display videos, news, images and mixed search results. The

Mixed Search Goal page displays combinations of content. Pages for the other Goals

display one type of content. Page layout is finely formated to the type of content and

special cases are avoided. Search results are tabbed to show pages of results. Tabs

are HTML anchors that switch the CSS display property between block and none.

Each tab is accessed via a numbered link at the top of the page. The CSS display

property set to none pulls an element out of its normal flow so that it takes up no

space on the page. Videos and images display nine results per page. News results

display six results per page to handle larger titles and to show portions of the article

description. We use Python's xml.dom.minidom to parse search results. Figure 2-18

shows a screenshot of tab 1 for video search query "Mit Dome".

Plann er
Goal Driven Web Search

Choose content
search news to search:

Sources Bias E Videos
Yahoo! News E0 Inages

a KId I-Nws
Google News

text celtIcs
pjanj O Show Jltememhbr

goi values
tree

YourRepository: http://people.csail.mit.eduictorw/planrerftectrepo.xm Update

Figure 2-17: Home Page

2.12.4 Cascading Style Sheets

We store a separate file for CSS styles in a directory under the site's root directory.

Using a separate file is good programming practice to cleanly separate logic from

display. Styles in external style sheets are shared by all files. We define CSS classes

on various HTML tags that are set on HTML elements. We use div elements to

layout our page instead of tables because divs allow us to finely position elements

with absolute and relative positioning. We center div elements by setting the margin-

right and margin-left attributes to auto as specified by W3C. Absolute positioning

is used to move elements anywhere on the page. Relative positioning is preferred for

small tweaks when moving elements relative to their original position. We handle

differences in how Firefox and Internet Explorer render positioned elements.

..
WOW.

Video Search

Turning MITs
416 views

MIT Red Line
2213 views

MIT Red Line
1973 views

Oueensberry
1649 views

9:55
Gterzge Rhei
13825 views

Curse mit S
2050 views

The Dome 50
5110 views

3:16
The Dome 51
7023 views

1:48
MIT Great Do
432 views

Figure 2-18: Video Search Results

. - . ,

Chapter 3

Security Issues

We defend against Cross-site Scripting (XSS) and Cross-site Request Forgery (CSRF).

Quotes are escaped and HTML tags and attributes are removed from user-supplied

inputs. This prevents attackers from running Javascript code to corrupt cookies or

site layout. Attackers are prevented from triggering the rungoal script. An attacker

could execute the Mixed Goal search to implement a DoS against our site. We prevent

CSRF by checking that the HTTP referer header refers to our site.

We upload third party code to execute on our server, which makes our system

vulnerable to malicious code. Python is a flexible language because it is not statically

typed, has no coherent notion of private variables and shares sensitive modules such

as sys between all modules. We do not service requests as root and allow minimal

access to the file system. Malicious code may tamper with the file system, debug or

kill running processes, corrupt kernel memory and builtin Python modules, or simply

hang indefinitely. We present a threat model and discuss possible remedies to the

problem of running untrusted code.

3.1 Threat Model

Our Web application runs as the www user on the Apache server. The www user

has fine-grained access to certain directories on the file system and complete network

access. It is foreseeable that an attacker may achieve root access, in which case he

has access to the entire file system and all system calls and messaging facilities, for

example to kill or debug other processes. Code running as root could be sand-boxed

in Python. We focus on viable threats when untrusted code is run as non-root. The

following are presumed about an attacker

" An attacker may loop indefinitely

* An attacker may import our module and clobber attributes that point to sen-

sitive functions and data

" An attacker may clobber shared Python resources required for proper function-

ing of the application such as sys module attributes

" An attacker may access files accessible to the www user

" An attacker may make arbitrary network calls to download external code, per-

form DoS, send email, etc.

" An attacker may freely use Python's introspection capabilities to access objects,

variables and code anywhere in the interpreter

" An attacker may use Python's eval and exec functions to execute arbitrary

Python code

3.2 Running Untrusted Code

3.2.1 Sandboxing

Sandboxing is a broad term that applies to code run in a restricted environment with

limited access to privileged operations such as file system and network access. Some

well known sandboxes are Java applets, Google Native Client and virtual machines.

One sandboxing model that runs Python is Google App Engine. Google App Engine

allows developers to develop Web applications that run on Google's infrastructure.

Developers download an Integrated Development Environment written in Python to

develop their application and upload their application to Google servers. Here is a

list of sandboxing techniques that Google App Engine implements:

" Restricts access to the file system

* Confines outside communication to standard URL fetch and email services

* Designates a single data store to persist data

* Disallows process spawning

" Runs applications only in response to Web requests

" Kills applications that delay returning a response

" Confines incoming connections to HTTP and HTTPS

" Disables unsafe Python imports

This approach runs untrusted code in its own process. There are cases where

we'd rather sandbox box code within an existing Python interpreter. This more fine-

grained sandboxing is helpful for the Planner because it allows us to import untrusted

code and directly call its methods using standard Planner interfaces. Closures can be

used to enforce access control at the application level. Tokens is a way to implement

access control at the interpreter level. The downside is that access control does not

by itself protect against malicious code that loops forever or over-consumes resources.

However, they do allow us to restrict functionality and access to privileged operations.

Python has access control built into its interpreter. Setting the global _builtins_

variable to {} enables Python Interpreter's Restricted Execution (PIRE) [9] which

enforces access control on builtin object attributes. This can be used as basis to

develop a capability-based access control system within Python [9].

3.2.2 Closures

Closures have previously been explored in Python as a tool to wrap privileged opera-

tions before passing them to untrusted code [3]. A closure is a block of code that can

def f(f:open, base):

def restrictedopen(path):

fopen(base + path)
return restricted-open

ropen = f(open,'/jaildir')
ropen.func.closure[0].cell-contents <- Introspection

Figure 3-1: Python Closures

be transfered. In python it is implemented by creating a nested method definition as

shown in figure 3-1. With the help of PIRE [9], the untrusted code can be given a

capability, i.e. a closure function, that restricts functionality. In this restricted-.open

example, we prefix all file system accesses with a base directory.

Python allows developers to introspect modules and objects in interpreter-level

and application-level code. Without enabling PIRE, untrusted code can obtain clo-

sure internals through the func-closure. celL contents attribute. Furthermore, it is

difficult to ensure that all references to open are inaccessible. For example, every

module has a reference to __builtins__, so after importing the urllib module I can ref-

erence open via urllib._builtins_['open']. Python objects recursively reference one

another to unspecified depths and a diligent search may uncover references to func-

tions that were hidden at higher levels. Use of tokens is one approach to defend

against Python's extensive introspection.

3.2.3 Tokens

Woodrow, et. al. [11] proposed tokens to enforce access checking at memory level

to avoid accidentally exposing sensitive references. Tokens represent access permis-

sions for a module and are assigned to every object at object creation. By default

untrusted code may only access objects it creates. The token is checked at the byte-

code layer in opcodes that perform operations on memory such as LOADGLOBAL,

STORE-GLOBAL, etc. The tokens were prototyped on PyPy but can be ported to

CPython. We can use tokens to enforce that all sensitive objects remain inaccessible

to untrusted code. This comes at a performance cost because an extra check has to

be made on all memory accesses. Table 3.1 shows which opcodes must perform access

checks or token updates to prevent access breaches by untrusted code.

3.2.4 Other Python Solutions

Python has application-level modules to enforce access control and to restrict func-

tionality to untrusted code. The Zope3 [12] package runs untrusted code in a separate

interpreter. Objects that provide sensitive functionality are wrapped by the applica-

tion to mediate access to methods and attributes. The untrusted code sets variables

that are accessible to trusted code after code execution. Zope3 prohibits exec calls

and use of try/catch blocks. RestrictedPython [8] compiles untrusted code in an en-

vironment with user supplied implementations of print, import, getattr, setattr, etc.

and then executes it using Python's exec method. No convenient hooks are provided

for the application to interact directly with the untrusted code. Python cyptes can be

removed from the interpreter to make certain types private or otherwise inaccessible

to untrusted code. PyPy [6] is an ongoing project to provide a framework for build-

ing dynamic programming languages. PyPy is a Python interpreter written in the

Python programming language. PyPy's sandboxing features allow the programmer

to compile untrusted code in a separate interpreter. The programmer communicates

with the interpreter using stdout and stdin [7]. A controller examines and sanitizes

what the untrusted code sends to the trusted code.

Opcode O a

BINARYSUBSCR

STORESUBSCR

DELETE-SUBSCR

STORENAME

DELETE-NAME

UNPACK-SEQUENCE

FORITER

STORE-ATTR

DELETEATTR

STOREGLOBAL

DELETEGLOBAL

LOADNAME

LOADATTR

LOADGLOBAL

LOAD-CLOSURE

LOAD-DEREF

STOREDEREF

MAKE-FUNCTION

MAKE-CLOSURE

Table 3.1: Python Opcode Token Accesses

Access check

Token update

Access check

Token update

Access check

Access check

Access check

Token update

Access check

Token update

Access check

Access check

Access check

Access check

Access check

Access check

Token update

Token update

Token update

Operation

Chapter 4

Alternative Designs

We experimented with returning XML responses for our AJAX Goal invocations. The

time to return and process XML responses proved intractable. To create and parse

the entire XML Goal tree degraded performance despite the presence of Javascript

and Python functions to parse XML into Document Object Model (DOM) objects.

Python and Javascript support JSON innately as builtin objects which allows for fast

creation and evaluation of JSON strings. JSON outperformed XML ten-fold. We did

not keep measurements of XML latencies, but the browser stalled for over a quarter

minute in some cases.

We initially put all Goal boxes on our layout sequentially in rows of two on the

home page. It became clear that we needed a simpler layout to consolidate the many

buttons, sliders and text boxes spread throughout the page. As more Goals are

added to the application, it is overbearing to have so many titles and inputs showing

simultaneously. To solve this problem we use the CSS display attribute to switch

between the Goal boxes of different Goals.

We considered SOAP and XML-RPC as a way to make the Web application

extensible. Each Technique would communicate with the Planner over SOAP or

XML-RPC and third party implementations would return XML for platform and

language independence. We'd have to build an entirely new abstraction layer and

protocol on top of the Planner to interface with any number of Goals and Techniques.

We gain in portability but lose in performance and development effort. The overhead

was determined to have minimal advantage for our simple application especially when

Python and JSON are simple alternatives.

We considered using paging available through the YouTube API to page through

results. This would allow users to page through dozens of results instead of just 15.

We chose not to implement paging for compatibility purposes because not all Web

services support paging. We also identified sluggish paging in other sites where users

wait for the next page to load. To remedy slow load times, we can pre-fetch the next

page before the user requests it, and we are always one step ahead of the user. This

would help avoid degrading the user experience.

We looked into Web templates in Python Web frameworks such as Django, Mako,

Jinja, Kid and Cheetah. These frameworks allow application code to be interleaved

with HTML layout and provide other useful Web development tools. Python supports

UI/logic interleaving innately via print statements. This fact, and the desire to retain

fine control over our call stack convinced us to forgo using Web frameworks. The pros

and cons of various Web frameworks can be researched in future work.

Chapter 5

Future Work

Future work includes research to dynamically add Goals, port scripts to a constantly

running server, and implement Python sandboxing features. It became clear that to

dynamically add Goals is beyond the scope of this project. We make basic assump-

tions about Goal behavior to mix results and to switch between search content. A

video conversion service that converts video formats between Windows Media, flash,

MPEG, etc. would require additional logic in both client and server code. We include

support for repositories, Goal specifications, and external HTML display pages with

the intent that new Goals are added dynamically. The Planner engine is well suited

to add new Goals and Techniques dynamically. The challenge going forward is to

make the home page independent of search and to seamlessly switch between various

unrelated Goals.

The Web application runs on Apache on MIT's CSAIL infrastructure and in-

vokes our code as a script. Scripting alone limits performance and is transient per

request. We'd like to have a running server that persists across user requests, uses

privilege separation to separate functionality and more directly responds to user re-

quests for content. This will be particularly useful when we add support to add

Goals dynamically. We'd like to incorporate access control to preserve the integrity

of the application and system when untrusted code is executed. Preferably we use

a capability-based system based on Python closures or tokens, otherwise running

untrusted code in a separate interpreter is also an option.

A constantly running server will allow us to more flexibly run Goals and Tech-

niques. For example, we can use the Planner's update decorator to gradually refine

goals and run them multiple times. Currently we do not use the update stage because

we run each Goal "once and done" on each request. We can improve performance

by amortizing processing costs across many requests by caching heuristic values or

result sets for common requests. This reduces latency when running Goals with mul-

tiple subgoals. For example, our MixVidImgNews Technique runs each subgoal to

search videos, images and news sequentially, which tallies to searches on seven Web

services. Using cached data we can research efficient methods to reduce the number

of Techniques and Web services required to process a given Goal request.

We'd like to research ways to more fully sandbox untrusted code running within

the same interpreter as trusted code. Access control allows us to make variables

private and to restrict functionality, but this does not prevent malicious code from

looping for ever. This is an easy way for malicious code to implement a DoS attack

against our server. One solution is to filter out infinite loops through static analysis

at upload time. A while(true) loop that does nothing is obviously malicious and can

be removed and we can prevent the module from running altogether for its misdeeds.

A second approach is to identify infinite loops at runtime at the bytecode level and

forcefully break out of them.

Further research is required to improve heuristics for searching videos, images and

news on the Web. We use video ratings, but we do not have relevant heuristics to

evaluate image and news searches. We choose the top rating and use it to represent

the quality of the entire result set. More intricate heuristics that combine comments,

tags, ratings and view counts can be used to test more comprehensive evaluation for-

mulas. We'd like to research ways for users to choose properties used in the evaluation

formula.

We want to more fully use the special capabilities of each Web service. For ex-

ample, YouTube supports paging so that users can page through dozens of results.

We want users to view as many results returned from their preferred Web service as

possible. The default HTML display for a single Goal handles data in the same way

for each Technique. We want to be cognizant of ways to share code and to combine

appealing features from the various Web services.

52

Chapter 6

Related Work

The Planner [5] was developed at MIT CSAIL to allow applications to dynamically

adapt to changing conditions in ubiquitous and pervasive computing environments

such as mobile communication. One approach is for applications to declare what

they need before execution and the runtime environment determines how to satisfy

the declarations. For example, Adjie-Winoto, et. al. describe an Intentional Naming

System (INS) [1] in which applications use names to specify intent in the form of

resource attributes rather than simply network locations. The names are resolved at

runtime at the network layer. Becker, et. al. propose a component-based system

for pervasive computing (PCOM)[2] that offers programmers high-level programming

abstractions to capture dependencies between pervasive components. The resulting

dependency tree supports automatic adaption to changing conditions in the pervasive

environment. Costa, et. al. [4] introduce a middleware approach for networked

embedded environments that leverages self-configuring sensors and actuators to build

a language-independent component-based programming model minimal enough to

run on typical network embedded devices.

The Planner has been used for a number of applications. Paluska, et. al. [5]

demonstrated the Planner through the JustPlay Audio and Video application to han-

dle automatic configuration of A/V-compatible devices. The JustPlay application

uses an RTPStreams Technique for runtime determination of its Real-time Transport

Protocol by declaring two subgoals. The first subgoal chooses an RTP AV source

and the second chooses an RTP AV sink. The source and sink subgoals are run in

subsequent stages. The chosen source stream format of DarwinStreaming or MythTV

determines which of the HDTV or Laptop is chosen as the sink. JustPlay includes a

way for third parties to create their own Techniques, particularly, it includes a VL-

CHost external Technique that dynamically discovers hosts among HDTV, laptops

and desktops.

The Planner is also used in other applications to demonstrate its usefulness beyond

pervasive computing [5]. The crisis management application allows new strategies to

be added as the crisis unfolds. The Recipe application makes recipes from available

ingredients to match user-specified preferences. Each recipe is encapsulated in a

Technique and available utensils are accessed in subgoals. The Planner has been

considered in hardware design. The Planner chooses between various strategies for

building circuits and outputs Verilog.

Chapter 7

Conclusion

We have demonstrated that Goal-Oriented search is useful for aggregating and com-

paring Web services on the Internet. We use the Planner [5] for Goal-driven search to

decompose functionality. New Web services are added dynamically without requiring

changes to the Web application. Standard Web technologies such as REST, JSON

and XML are leveraged so that performance and portability are preserved.

The Web application is decomposed into high-level Goals that are implemented

by one or more modules called Techniques. We aggregate Web search results from

YouTube, Truveo, Google, and Yahoo. Video searches return ratings that allow us to

automate evaluation and comparison of search results. Users bias toward his or her

preferred service by adding weights that scale search result ratings.

Repositories declare Goals and Techniques which the Planner uses to execute

search queries. Users may add a repository to declare their own search Techniques.

HTML display modules are declared separately and other HTML display modules

can be declared at runtime. The home page and results pages respond dynamically

to modified Techniques and search results.

The application uses AJAX to run Goals and the resulting Goal tree is returned

in JSON. Goal trees reflect the entire state of the Goal's execution and are displayed

within the browser using jQuery treeView. Goal trees show Goal parameters and

attributes, and allow users to debug their own search implementations. Technique

code is viewed in the browser for users to examine and add their own.

56

Bibliography

[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley.
The design and implementation of an intentional naming system. 17th Sym-
posium on Operating Systems Principles, pages 186-201, December 1999. MIT
Laboratory for Computer Science.

[2] Christian Becker, Marcus Handte, Gregor Schiele, and Kurt Rothermel. PCOM
- A Component System for Pervasive Computing. Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communications (PER-
COM'04), pages 69-78, 2004.

[3] Brett Cannon and Eric Wohlstadte. Controlling Access to Resources Within the
Python Interpreter. http://people.cs.ubc.ca/~drifty/papers/python.security.pdf.

[4] Paolo Costa, Geoff Coulson, Richard Gold, Manish Lad, Cecilia Mascolo, Luca,
Mottola, Gian Pietro Picco, Thirunavukkarasu Sivaharan, Nirmal Weerasinghe,
and Stefanos Zachariadis. The Runes Middleware for Networked Embedded Sys-
tems and its Application in a Disaster Management Scenario. Proceedings of the
Second IEEE Annual Conference on Pervasive Computing and Communications
(PER COM), pages 69-78, 2007.

[5] Justin Mazzola Paluska, Hubert Pham, Umar Saif, Grace Chau, Chris Terman,
and Steve Ward. Structured Decomposition of Adaptive Applications. PerCom,
2008. MIT Computer Science and Artificial Intelligence Laboratory.

[6] Pypy documentation. http://code.google.com/p/google-caja/.

[7] Pypy's sandboxing features. http://codespeak.net/pypy/dist/pypy/doc/sandbox.html.

[8] Restrictedpython 3.5.1. http://pypi.python.org/pypi/RestrictedPython/.

[9] Tav. Paving the Way to Securing the Python Interpreter. AskTav!,
February 2009. http://tav.espians.com/paving-the-way-to-securing-the-python-
interpreter.html.

[10] Xmlhttprequest W3C Working draft 19 november 2009.
http://www.w3.org/TR/XMLHttpRequest/.

[11] Stephen Woodrow and Victor Williamson. Securely Executing Untrusted Code
in Python. MIT 6.893 Systems Security Final Project, December 2009.

[12] Zope 3 API documentation. http://docs.zope.org/zope3/.

