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ABSTRACT

The overall goal of this thesis was to exploit the versatility of the polyelectrolyte multilayer

(PEM) to fabricate a novel micro/nanofluidic device for patterning bacteria in BioMEMS.

Nanofluidic channels offer new opportunities for advanced biomolecule manipulation and

separation science because they provide unique capabilities such as ion-permselectivity and

nanometer-sized structures. In order to establish industrial applications for biotechnology and

medicine, including separation of biomolecules, drug delivery, and single molecule detection,

however, regular planar nanofluidic channels have limited fluidic conductance that results low

throughput. Therefore, it would be important to develop a robust engineering platform with

precise control of depth to the nanometer scale without channel collapse. Nanochannel-induced

fluidic conduction can be enhanced by controlling the channel gap size for increasing electrical

double layer (EDL) overlap as well as fabricating high-throughput vertical nanofluidic channels.

We have fabricated a vertical nanofluidic channel by anisotropic etching of silicon. The gap size

of the vertical nanochannel was as low as 50 nm, as obtained by layer-by-layer deposition of

polyelectrolyte. Silicon-to-glass bonding was achieved by electrostatic interaction at lower

temperature (180 'C) than conventional anodic bonding temperatures (300-400 C), and even at

room temperature (25 C). The second part of this thesis focuses on patterning bacteria on

polyelectrolyte multilayers. Patterns of bacteria are of growing interest in biofilm formation and

the broader area of microbial ecology. A simple method to create functionalized surfaces for

efficient micro-patterning of bacteria is presented, based on the use of micromolding in

capillaries (MIMIC) of poly(ethylene glycol)-poly(lactide) diblock copolymer (PEG-PLA) onto



polyelectrolyte multilayers. Two different implementations showed excellent selective anti-
biofouling results for micropatterning of bacteria.
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Chapter 1. Introduction and Background

1.1. Microfluidics

Microfluidics refers to devices and methods for controlling and manipulating fluid flows with

length scales less than a millimeter. Such methods have gained tremendous success over the past

decade in areas including microelectronics, analytical chemistry, drug discovery, genomics,

proteomics and tissue engineering, as well as other biological applications. Microfluidic devices

offer significant advantages compared to traditional technologies, including huge decease in

reagent consumption, lower cost, smaller overall size, faster processes, better separation

resolution, portability, and disposability . Microfluidics utilizes many different components such

as valves, pumps, sensors, mixers, filters, separators, heaters etc. These are combined into a

micro total analysis system (TAS, also called 'Lab-On-a-Chip') in which one tries to do such

things as chemical synthesis, analysis, and reactions by using very small fluid volumes.

Manipulation of microfluidic flows can be achieved by using different external fields (pressure,

electric, magnetic, capillary, etc.). The manipulation can be achieved by either applying the

external field at inlets and outlets, or it can be applied locally in the microchannel by integrated

components.



1.2. Nanofluidics

Nanofluidics can be defined as the study and application of fluid flow in and around nanometer-

sized objects with at least one characteristic dimension below 100 nm. The rationale for moving

down the scale from microfluidics to nanofluidics comes from the need to approach the

molecular level (1-10 nm) in order to understand many fundamental biological processes, such

as translation, gene regulation, mitosis, and cell communication. Availability of nanofluidic

tools with a similar size dimension as the target biomolecules and organelles will allow better

manipulation of these systems in general. There is a great deal of information about the

mechanisms behind biomolecular activities that can only be uncovered by studying single

molecules, which is conceivable with the development of nanofluidic tools. Understanding

molecular transport will reveal new research thrusts, such as single molecule sequencing and

molecular separation. In addition, nanofluidic tools could be significant due to the promise of the

discovery of new phenomena, not occurring at micro or macro scales. Thus, there is ample

motivation to explore molecular transport in nanoscale structures.

It is now feasible to fabricate nanofluidic channels with truly molecular dimensions, down to a

2 .. 3
few nanometers , using only standard microfabrication techniques . This opens up a new

possibility of using regular-shaped nanochannels in lieu of random nanoporous membranes, only

with a better knowledge and control of the pore characteristics. Recent engineering examples

include the separation of biomolecules such as DNA and proteins4 -5 , as well as nanofluidic

preconcentration systems shown in Figure 1-7. In addition to various applications4'-10,

nanofluidic channels can be an ideal, well-controlled experimental platform to study nanoscale

molecular/fluidic/ionic transport properties.
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Figure 1-1 Ion preconcentration using planar nanochannels (A) Image of 33 pM protein directly

after loading the sample into the top microfluidic channel. (B) Image after applying the electric

field for 25 min and (C) after 100 min. (D) Concentrations of the collected protein plug, for three

different concentrations. (E) Closeup view for the 33 fM protein experiment. This shows at least

107-fold concentration achieved within 40 min, from Wang et al 1.

1.3. Layer-by-Layer Polyelectrolyte Multilayers

As a means to produce ultrathin organic films, polyelectrolyte multilayers (PEMs) formed by

layer-by-layer deposition have received much interest for the simplicity of processing and

versatility of applications. Since Decher et al-1. triggered the practical use of sequential

adsorption of oppositely charged polyelectrolytes, numerous studies16-18 have contributed to

rapid growth of this particular technique.
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Figure 1-2 Assembly process for layer-by-layer polyelectrolyte multilayer films formed by

alternately dipping a substrate in a polycation and a polyanion solution.

The basic mechanism of the layer-by-layer deposition technique is the strong electrostatic

attraction between oppositely charged molecules. Figure 1-2 depicts the scheme of electrostatic

layer-by-layer self-assembly'6 . When a charged substrate is immersed into a polyelectrolyte

solution of the opposite charge, chains in the solution adhere to the substrate surface to neutralize

the surface charge leading to overcompensation' 9. Due to electrostatic repulsion between

molecules of the same charge, the adsorption process is self-limited to one monolayer. The

surface charge is now reversed20-21, and this enables the next step where oppositely charged

molecules adsorb onto the previous layer again reversing the surface charge. By repeating these



alternating deposition steps, polyelectrolyte multilayers can be made as thick as desired.

This simple characteristic of layer-by-layer deposition opens a big window for candidate

materials that can be processed via this method. Charged polymers used for PEM assembly are

classified as strong or weak polyelectrolytes based on their ionizable charged groups, as shown

in Figure 1-3.

type
polycation polyanion

strength

strong
.4) No

PDAC(mw-10,000-20,000) PSS(mw-70,000)

weak meM cooN

PAH(mw-70,000) PAA(mw-90,000)

Figure 1-3 Chemical structures of commonly used strong and weak polyelectrolytes. mw is the

molecular weight.

Those polymers that maintain a fixed charge over a broad range of pH conditions are termed

strong polyelectrolytes. In contrast, the degree of ionization of weak polyelectrolytes, such as

poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA), is highly sensitive to the

local pH. Polyelectrolyte multilayers made from weak polyelectrolytes have the advantage that

their properties can be tuned by simple pH adjustments.

Rubner and coworkers2 - performed extensive studies of the structure and properties of weak

polyelectrolyte multilayers built via layer-by-layer deposition. Their results (Figure 1-4) show

how the bilayer thickness dramatically changes depending on the pH combination of

18

. .............. ............ .... .......... ................. - - -......



polyelectrolyte dipping solutions. It was found that the internal structure and the surface

characteristics of multilayer platforms are determined mostly by the pH conditions of the

polyelectrolyte solutions during the dipping process.

2045PHp

25 3.Rn0.5 6 . 85 9 2

PAA pH

Figure 1-4 pH matrix showing the average incremental thickness contributed by a PAH/PAA
bilayer as a function of the pH of the dipping solution. Adapted from the work Shiratori et a123.

The common notation used to describe assembled PEMs is (poly] / poly 2), pHi / pH2,

where poly1 and poly2 are the polymers used and pH] and pH2 are the respective pH conditions

at which those polymers were adsorbed. x is the number of bilayers, where one bilayer consists

of one adsorption of poly] and one adsorption of poly2.

PEM film thickness is highly tunable. Multilayer buildup can proceed in a linear or

exponential fashion, depending on the polymer system chosen. Bilayer thickness can be varied

by manipulating assembly conditions such as pH and ionic strength. Total film thickness can be

adjusted by controlling the number of bilayers. From the collective survey of the pH assembly

combinations in Figure 1-4, three different pH systems that represent the unique assembly



mechanism of weak polyelectrolyte multilayers process in each regime are selected for further

investigation, specifically pH 6.5/6.5, pH 2.5/2.5, and pH 7.5/3.5. A schematic of the molecular

structures in each pH system is shown in Figure 1-6.

COOH COOH COOH

COHCOOH COOH

COOH

Inertial thin flat layer Internal active layer Outermost active layer
pH (PAH/PAA): 6.5/6.5 2.5/2.5 7.5/3.5

Figure 1-5 Schematic of the surface of PAH/PAA multilayers with PAA as the outermost layer at

different assembly PAH/PAA pH's.

Due to the nature of the PEM assembly process, PEMs can be adsorbed onto a variety of

substrates with differing geometries. Glass slides, polystyrene tissue culture dishes, fabrics, and

PDMS are common substrates used. Once assembled, PEMs are stable with respect to moderate

pH and ionic strength and ethanol treatment for sterilization.

For low molar-mass weak acids or bases, the ionization behavior is explained by the

Henderson-Hasselbalch equation:

pH = pKa + log (1.1)
1- a

where pKa is the dissociation constant of the weak acid, and a is the degree of ionization.

In the case of low molar-mass weak acids, pKa remains close to the intrinsic ionization constant

(pKo), with only a slight increase over a large range of a. However, for weak polyacids in

solution, as the degree of ionization increases, removing a proton from a new acid group on the



chain needs extra work (AFe), due to the electrostatic resistance of the neighboring negative

changes that are previously formed2 4 2 5 . Hence, the effective pKa of weak polyacids depends

rather significantly on the degree of ionization. In fact, theoretical calculation predicted the

effects of degree of ionization on the apparent pKa in weak polyelectrolytes to shift the pKa

values by 0.96 pH units from zero ionization to 100% ionization in the absence of salt, and the

empirical data of PAA titration showed a large pKa value of 2.5 pH units in the absence of salt.

The detailed acid-base chemistry is described in Appendix A.

1.4. Motivation and Scope of the Thesis

Recently, the science and engineering of molecular transport within nanofluidic channels, with

critical dimensions of 10-100 nm, have drawn much attention due to significant advances in

micro-/nano-fabrication techniques3 . While nanochannels are a good model system for studying

molecular dynamics in confined spaces, and have achieved great success in biomolecular

separation, higher fluidic conductance would be preferred for many applications, including high-

throughput molecular sorting, filtration and separation. To obtain large cross-sectional areas in

the nanofluidic regime for high ion-selective throughput, thin long channels are required.

However, considering the strong electric field and high temperature used in the bonding process,

the channel might sag or collapse, changing the channel depth. Thus, developing a new, low-

temperature bonding method that avoids shape distortion is a major challenges in the fabrication

of micro/nanofluidic devices.

In BioMEMS, the technique of selective immobilization of cells in defined positions or areas

using a precise understanding of the interactions between cells and surfaces is essential for

21



important applications such as biosensors, biochips, biomedical microdevices, and tissue

engineering. However, conventional surface modifying techniques are costly and afford only a

narrow window for the choice of the chemicals. To minimize cell adhesion (e.g. for implant

applications) or to better control surface properties, polyelectrolyte multilayers can be excellent

candidates, because (i) the versatility of the multilayer formation process with respect to the

variety of materials which can be used as building blocks, and (ii) the possibility of combining

this with other assembly procedures, result in high application potential in a broad range of

different areas of materials development.

Engineering extremely perm-selective membranes by the synergism of nanofluidics and

polyelectrolyte multilayer (PEM) for applications ranging from preconcentrator to fuel cell has

gained increased emphasis. However, a robust platform that can account for increasing electrical

double layer overlapping effects, achieving low temperature bonding without collapse of

channels, and proving an easy process for surface modification on demand have yet to be

developed. This thesis aims to improve current nanofluidic devices, especially producing

massively-parallel, regular vertical nanochannels with a uniform, well-controlled gap size of -50

nm for high-throughput membrane applications. As can be seen in Figure 1-6, the approach of

polyelectrolyte multilayer (PEM) on a chip developed in this thesis could be of benefit. The PEM

deposition step serves three purposes. Firstly, it is to build high-aspect-ratio (ratio of depth to

width) vertical nanochannels by the control of the lateral gap size. The gap size can be controlled

with nanometer-scale by the technique. Secondly, PEM offers electrostatic low temperature

bonding with keeping channel dimensions uniform. Finally, it is capable of controlling the

topographic organization of the films by micropatterning, which provides insights into to

mechanisms underlying cell/surface and cell/cell interactions.
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Chapter 2. Fabrication of Micro/Nanofluidic Channels

2.1. Introduction

Although various types of gel with various pore sizes are widely used in biomolecular separation,

investigating transport through nanoporous systems is challenging due to the geometry and

surface condition of nanopores of gels, characterized by parameters such as pore length,

deviation of pore shape from perfect cylinders, and pore size distribution, which are difficult to

deduce and control26

In order to overcome the limitations of nanoporous gels, solid-state nanometer-sized structures

are required. Micromachined nanochannels offer unique advantages over random nanoporous

gels because their geometry and surface properties can be well defined in order to model

transport through nanochannels or study molecular dynamics in confined spaces.

This chapter presents the fabrication of solid-state nanochannels on silicon and glass substrates

and bonding processes to achieve enclosed systems. Various methods of producing nanochannels

exist and are divided into the categories of top-down and bottom-up fabrication methods27 . We

focus here on the well-established top-down processes for the fabrication of channels with the

smallest dimension below 100 nm. The design of the micro- and nanochannels on chip is shown

in Figure 2-1.



Figure 2-1 Schematic configurations and microscopic images of (a) Single nanochannel bridge

device on silicon substrate and (b) Dual nanochannel bridge device on glass substrate.

2.2. Micro/Nanochannels on Silicon Substrate

A schematic diagram of the fabrication process is given in Figure 2-2. First, silicon wafers were

cleaned in a piranha solution (H2SO 4 (%): H2 0 2(%) = 3:1) for 10 min, rinsed in DI water and

spun dry with nitrogen gas. Then, nanofluidic channels with various widths and depths were

patterned and etched into silicon wafers by using standard photolithography and reactive ion

etching (RIE) techniques. It is straightforward to control the depth of the channel, since the etch

parameters can be controlled easily. After residual resist removal, the etched depth was measured

with a surface profilometer (Prometrix P-10, KLA-Tenco Co., CA.). Then, a standard

photolithography process was performed again on the wafer with a photomask having the

patterns of microchannels. The microchannel was also etched using RIE techniques. After

patterning of the channels, a potassium hydroxide (KOH) etching technique was used to make

access holes from the backside of the wafer. After thermal oxidation for electrical insulation, the

silicon chip was bonded with a flat glass plate (Pyrex Coming 7740 or Borofloat, Sensor Prep

Services, Inc., IL) by anodic bonding technique. The bonding process was carried out at 350 'C

with an applied voltage of 800 V in the bonder machine (EV501, Electronic Vision group). All

25

.... .. .......



the fabrication process, except bonding, was done in the MTL cleanroom at MIT. The detailed

process flows are described in the Appendix B-1.

Si wafer nanochannel
patterning

loading hole
etching

Figure 2-2 Fabrication

microchannel
patterning

thermal oxidation glass cover
for electrical insulation bonding

process of nanofluidic channels on silicon substrate

2.3. Micro/Nanochannels on Glass Substrate

The nanochannel chip described in Figure 2-3 was fabricated on two pyrex wafers with a

diameter of 150 mm and a thickness of 0.5 mm. The top wafer has reservoirs (1 mm diameter)

that were fabricated using an ultrasonic drilling system by Sensor Prep Services. The bottom

wafer contains both micro and nanochannels. The fabrication process of channels is as follow.

The glass wafers were cleaned in a piranha solution (H20 2 and H2 SO4 , 75 ml and 225 ml,



respectively) for 10 min, rinsed in DI water three times and spun dry with nitrogen gas. To

remove adsorbed water at the glass wafers, a dehydration bake of the surfaces was performed at

120 'C for 30 min in a convection oven. The wafers were vapor-primed with adhesion promoter,

hexamethyldisilazane (HMDS), in a vacuum chamber followed by spin coating with an OCG

825 as positive photoresist and soft baking at 95 'C for 30 min in a convection oven to remove

solvents and stress for increasing adhesion of the resist layer on the wafers. A standard

photolithography process was performed on this photoresist layer with a photomask having the

patterns of the nanochannels. After developing in OCG 934 1:1 developer, de-scumming was

conducted at 1000 W for 5 min in oxygen plasma chamber to remove unwanted resist left behind

after development. Hard baking at 120 'C for 30 min in a convection oven was performed before

etching the wafers by immersing in a commercial buffered oxide etchant (BOE 7:1), without

agitation. After residual resist removal, depth measurement of the fabricated channels was

performed with P-10. Then, a 20 nm chromium layer and a 100 nm gold layer were successively

deposited on the wafers using an evaporator. Following same processes described above, the

patterns of the microchannels were transferred onto the pyrex surfaces after etching the gold and

chromium with gold etchant (Aqua Regia, 3:1 HCl:HNO3) for 30 s and chromium etchant (CR-7)

for 25 s. Microchannels were etched by dipping in an HNA (650 : 150 : 200, DI water : HNO 3 :

HF) bath. The etch rate was 0.8 stm/min. Finally, residual photoresist, gold, and chromium layer

were removed using acetone, gold, and chromium etchant, sequentially. The etched glass

substrate and the cover glass that had the loading hole were bonded by thermal fusion bonding.

The important factors affecting successful thermal fusion bonding of glass chips include the

cleanliness of the bonding glass surface, the surface flatness of glass substrates, the bonding

temperature, and the pressure. Therefore, the substrate and the cover glass were cleaned in



piranha solution for 15 min and then activated with 28% ammonium hydroxide at 50 'C for 30

min. After spinning dry, the two glass wafers were carefully aligned and pressed together to

make a spontaneous bonding with about 5 lb of weight (metal plate) for a couple of hours or

overnight, prior to the thermal bonding process. Then, annealing was performed by fusing the

two glass wafers in a programmable furnace (Model BE51894C-1, Lindberg/Blue M, NC) at

550 'C for 12-15 hours with a ramp rate of 1.5 'C min-' and a cool-down rate of 2.5 'C min~ .

The detailed process flows are described in the Appendix B-2.

glass waf er nanochannel
patterning

microchannel glass cover
patterning bonding

Figure 2-3 Fabrication process of nanofluidic channels on glass substrate
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2.4. Summary

In summary, we can fabricate regular "thin" planar nanofluidic channels on both silicon and glass

substrates using standard photolithography techniques. The technique is simple and repeatable,

and nanochannels made by this method are mechanically robust. The fabrication on glass was

much simpler than on silicon. When using a glass chip, we can expect the perfect plug type flow

pattern due to the same surface potential at the walls of the glass chip. While the "thin" planar

nanochannels are a good model system for studying molecular dynamics in confined spaces,

higher fluidic conductance would be preferred for the applications of high-throughput molecular

sorting, filtration and separation. One approach to generate deep massively-parallel vertical

nanochannels with good control of lateral gap size of the channels using polyelectrolyte

multilayers (PEMs) is described in Chapter 3.



Chapter 3. Polyelectrolyte Multilayer for Controlling Gap

Size of Vertical Nanochannels

3.1. Introduction

Although it is now possible to fabricate a regular "thin" nanofluidic channel with uniform

thickness, a critical issue in nanofluidics is the reliable, reproducible fabrication of nanometer-

sized fluidic structures with high throguhput as large as standard microfluidic channels for

efficient molecular separation and manipulation. Figure 3-1 shows the conceptual comparison of

planar nanochannels and vertical nanochannels. The cross-sectional flow area (open pore volume

per unit length) of the vertical channels can be more than hundred-fold higher than the cross-

sectional area of the planar channels. Therefore, the sample throughput (volume flow rate) of the

vertical system can be up to three orders of magnitude higher than the throughput of the planar

system with a similar flow velocity, while they possess similar device characteristics due to the

28same critical dimension

Figure 3-1 Cartoon illustrates the comparison of (a) planar (low-aspect-ratio) nanochannel

system and (b) vertical (high-aspect-ratio) nanochannel system. They both have the same critical
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dimension (depth for planar channels and width for vertical channels) but the open volume of

vertical channels can be a few orders of magnitude larger than planar channels, from Mao et a128

This chapter describes a method to produce massively-parallel, vertical nanochannels with good

control of the channel gap size using polyelectrolyte multilayers as well as to fabricate high-

throughput vertical nanofluidic channels for enhancing nanochannel-induced fluidic conductance.

3.2. Fabrication of Vertical Nanofluidic Channel on Silicon

Since the overall fluidic conductance of the planar nanochannels is limited compared with more

traditional membrane materials such as gels, massively-parallel nanofluidic channels with fluidic

conductance as large as standard microfluidic channels would be highly desirable for efficient

molecular separation and manipulation applications. To obtain high throughput, we fabricated

vertical nanochannels with high aspect ratio as shown in Figure 3-2.



(a)
1. LPCVD nitride deposition

2. Photolithography and
RIE silicon nitride etching

3. DRIE or KOH etching

4. Silicon nitride removal

(b) 5. Therma ation

Bef xidation (-1100nm) (C) fterOxidation (-350nm

> High aspect ratio vertical nanochannels > Challenges: Required narrower &
uniform nanochannels

Figure 3-2 (a) Fabrication process of vertical nanochannels with DRIE/anisotropic etching and

the cross-sectional SEM images of nanochannels (b) before (-1100 nm) and (c) after (-350 nm)

oxidation.

Anisotropic etching of (110) silicon provides an attractive and effective method for fabrication of

high aspect-ratio structures with smooth and vertical sidewalls because of the high selectivity

between (110) and (111) planes (larger than 100:1). Figure 3-2(b) shows a cross sectional view of

a high aspect-ratio channel with a depth of -10 pm and a width of 1.1 lim. After depositing an

oxide layer as an insulator, we took the cross-sectional SEM image as shown in Figure 3-2(c). It

shows that vertical nanochannels are 250-350 nm wide. Since the oxidation rate within the

vertical channels could be retarded due to hindered transport of oxidizing species29, the gap size

might become non-uniform in very narrow, deep channels. Thus, the control of the uniform gap

size by thermal oxidation down to below 100 nm is complicated by the top-down method.

........ ... .... .......... .... - - - __ - - -- -' - - - __ - M I

Si(110) substrate



3.3. Controlling Gap Size using Polyelectrolyte Multilayer

Narrowing the gap size of nanochannels down to below 100 nm is highly desirable in order to

carry out molecular control and manipulation, yet the narrowness of these channels is greatly

limited by the deep reactive-ion etching (DRIE) step, which is a highly anisotropic etch process

used to create deep, steep-sided trenches in wafers, with aspect ratios of 20:1 or more. Too

narrow a trench will create a tapered profile, and also a rough sidewall29. The fabrication of

narrower and more uniform vertical channels to increase surface effects at the nanoscale can be

achieved by polyelectrolyte coating, which is the ideal processing tool to tailor highly perm-

selective nanofluidic channels because of its ease of controlling thickness per deposited layer,

modulating surface charge density and properties. The formation of self-assembled structures can

be considered as a bottom-up approach towards formation of nanostructures. Polyelectrolyte

multilayers are assembled using a layer-by-layer assembly process that is shown graphically in

Figure 3-2. In a typical process, a substrate is dipped into the first polyelectrolyte solution for a

long enough time to allow the polyelectrolyte to adsorb to the surface. After rinsing off loosely

bound polymer, the substrate is then dipped into a polyelectrolyte solution of opposite charge.

This second polyelectrolyte adsorbs to the surface due to electrostatic attraction and actually

overcompensates for the surface charge resulting in a reversal of the surface charge. The process

is repeated until the desired number of layers is deposited.



Figure 3-3 Schematic of a dipping technique for fabricating polyelectrolyte multi-layers, poly

allylamine hydrochloride (PAH) and poly sodium 4-sty-renesulfonate (PSS).

We have fabricated vertical nanofluidic channels by anisotropic etching of silicon. A gap size of

the vertical nanochannels as low as 50 nm was achieved using layer-by-layer deposition of the

polyelectrolyte, as shown in Figure 3-3.

at 25 times '* at 50 times*

Figure 3-4 SEM images of nanochannel cross-sections after PAH/PSS coating (a) 25 and (b) 50

times. The gap sizes are (a) ~-150 nm and (b) -50 nm.
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3.4. Conclusion

We developed a novel fabrication strategy for generating massively-parallel, regular vertical

nanochannels with a uniform, well-controlled gap size of -50 nm, by combining top-down and

bottom-up methods, where the smallest nanostructures achieved by bottom-up method can be

controlled by layer-by-layer deposition of polyelectrolyte multilayers (PEMs). It is expected that

the availability of well-defined high-aspect-ratio nanochannels with good control of channel gap

sizes down to near-molecular dimension (10 - 100 nm) will be widely beneficial for research in

the biological and biophysical sciences. To keep the uniform gap size along the channels, a new

bonding method need to be developed to eliminate the channel collapse or sag resulted from

traditional high temperature bonding methods such as anodic bonding and thermal fusion

bonding. It is discussed in Chapter 4.



Chapter 4. Polyelectrolyte Multilayer for Substrate Bonding

4.1. Introduction

In this chapter, we see that conventional bonding processes would change the depth of the

nanochannels defined in the silicon or glass substrates. Having found the collapsing or sagging

of the channel in conventional bonding processes at high temperature, we now present a new

easy bonding method employing polyelectrolyte multilayers at low temperature (chapter 4.2).

Silicon-Glass bonding
Typically, anodic bonding requires high temperatures (300-400 'C) and high electric fields (400-

1000 V) to generate a permanent bonding between silicon wafer and glass. Generally, the stacked

silicon and glass substrates are assembled and heated on a hot plate to high temperature

(-350 'C). The bonding method will work only with certain type of glass materials, because of

the required thermal matching between Si and glass. Typically borosilicate glass materials (for

example, Coming 7740 Pyrex) are well suited for anodic bonding.

Recently, Mao et a130 . established a criterion for the the survival or collapse of nanochannels,

in terms of the width and depth of the channel by optical observation. An optical micrograph of

the typical success or failure of nanochannels is shown in Figure 4-1. The channels turned from

bright to gray when they collapsed. Once its roof makes contact, a channel collapses quickly and

completely due to the attractive interfacial surface forces, except the narrow region along the

edges.



Maximum critical AR (w/d)-250

Figure 4-1 Optical observation of the survival or collapse of the channels. (A) Survived channels

with the depth of 80 nm and width of 20 [tm, spaced by 5 [tm. (B) Collapsed channels with the

depth of 80 nm and width of 50 [im, spaced by 5 ptm. Very small areas along the edge did not

collapse. Adapted from the work of Mao et also

The results show that the aspect ratio of the channel (width/depth) is an important factor to

determine the success or failure of the fabrication. The maximum aspect ratio of surviving

channels is around 250.

Glass-Glass bonding

Thermal fusion bonding at high temperature can provide good bonding strength and high

bonding yield. Lin et al31 . succeeded in sealing mcrofluidic channels on soda-lime glass at

580 'C for 20 min with a slight pressure applied. Fan et al.32 achieved effective bonding between

two Pyrex glass at 640 'C after 6 hours. Although glass-glass bonding at high temperature

(-600 'C for Pyrex) can be achieved successfully with large bonding strengths, the channels tend

to be distorted and even collapsed since the glass material at this high temperature will be

softened. Figure 4-2 (A) shows the optical image of 25 nm deep channels. This aspect ratio is

much larger than the one (-0.004) obtained for silicon-glass channels by using anodic bonding

techniques. The optical image of the 15 nm deep nanochannel with a width of 3 [tm is shown in

Figure 4-2 (B). It can be seen that nanochannels collapsed in some regions but survived in the

other regions.

.. .. ........



Maximum critical AR (w/d)-400

Figure 4-2 Optical micrograph of glass nanochannels. (A) 10 [tm wide and 25 nm deep
nanochannels survived after bonding. (B) 3 [tm wide and 15 nm deep nanofluidic channels
collapsed. Adapted from Mao et a130.

4.2. Polyelectrolyte Multilayer for Substrate Bonding

As an alternative for avoiding the collapse or sag of nanochannels using bonding process at high

temperature, silicon-to-glass bonding was here achieved by electrostatic interaction at lower

temperature (180 C) than conventional anodic bonding temperature (350 *C), and even at room

temperature, as shown in Figure 4-3.

Poly(allylamine hydrochloride) (PAH) (Mw-70,000) / Poly(acrylic acid) (PAA) (Mw-90,000, 25%

aqueous solution) multilayer thin films as a cationic and anionic polymers were assembled on

glass or silicon substrates using a spinner at a fixed rotation rate ( 3,000 rpm) for 1 min. All the

polymers were used after filtration with 0.2 [tm pore-sized membrane. The deposition step were

conducted as follows: PAH (pH 7.5), PAA (pH 3.5) and PSS (pH 4.7) solutions (10 mM with

respect to the molecular weight of each repeat unit in 18 MQ Milipore water) were prepared by

adjusting the solutions pH by either HCl or NaOH. NaCl (100 mM) was added to the cationic

PAH to adjust the solution ionic strength. The layer-by-layer deposition was carried out from

.:.... - --- Mmr INNINM=- - - - - . . ... . ....... ............ . . . . ......................... .........



starting with the cationic PAH on glass substrates which were cleaned and dried by piranha and

nitrogen gas for increasing the negative charge density on the surfaces. After the deposition of

each polyelectrolyte layer on the surface, followed by thorough rinsing with Milipore water

twice at the same spinning time and rate as the deposition process. After repeating the process

until reaching 10.5, 20.5 or 25.5 layers for a top glass substrate and 10 layers for a bottom

substrate with channels, the top and bottom substrates were assembled with the cationic PAH on

the top and the anionic PAA on the bottom as the outermost layer as shown in Figure 4-3 (a).

Two substrates which have counter charged outermost layer were bonded through three

different bonding methods, which are electrostatic interaction without heat, with heat and with

chemicals as shown in Figure 4-3 (b), (c) and (d), respectively. The increase of overall bonding

yield in (d) was caused by slow water evaporation kinetics at low temperature. To achieve the

result in Figure 4-3 (d), 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) (400 mM) and

N-hydroxysuccinimide (NHS) (100 mM) were prepared in DI water as crosslinking agents

between ammonium groups (-NH 2) of PAH and carboxlyate groups (-COOH) of PAA. The

mixture( 50:50 v/v) of the solutions was deposited on the bottom substrate with the anionic PAA

as the outermost layer in the biohood. Top substrate with the cationic PAH as the outermost layer

was placed on the bottom substrate and left bonded wafers for 6 hours in the biohood. The top

and bottom substrates were crosslinked in aqueous EDC/NHS solution by a carbodiimide

coupling reaction between the PAA and PAH chains. The covalent bonding made the PEM

bonding robust and extremely difficult to wash off. The PEM layers were stable even when

treated with methanol, 1 M HCl, and 1 M NaOH solutions for three days.



(A ilass

glass or silicon

> Chip scale bonding
B

(PAH/PAA)1O, (PAH/PSS)20.s

PAA
pH=3.5

0-
PAH

pH=7.5

> Experimental conditions

- PAH (pH=7.5), PAA (pH=3.5) and PSS (pH=4.7) were used

- Method 1. Electrostatic interaction w/o thermal treatment

- Method 2. Electrostatic interaction w/ thermal treatment at 180*C

- Method 3. Chemically assisted by EDC-NHS at 25*C

(PAH/PAA)10, (PAH/PSS)20.5
w/ EDC-NHS

The role of EDC-NHS
Retarding water evaporation

at low T increases bonding area

Figure 4-3 (a) The mechanism of electrostatic bonding by crosslinked PAH/PAA (b) bonding

result without thermal treatment (c) with thermal treatment at 180 'C (d) with 1-ethyl-3-(3-

dimethyl aminopropyl) carbodiimide (EDC) - N-hydroxysuccinimide (NHS), which is

crosslinking agent and catalysts at room temperature, 25 0C.

Figure 4-4 shows that nanochannels were tightly sealed with a glass substrate by electrostatic

bonding with the chemical crosslinking agents, EDC-NHS. Thus, this method can be applied to

larger width planar channels without collapsing.

(a) (b)

Figure 4-4 (a) The microscope images of bonded nanochannels under visible light and (b)

nanochannels with fluorescent dye.
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4.3. Conclusion

Since the main risk of micro-/nanochannel fabrication is the clogging or sagging of the apertures

during high temperature bonding, anodic bonding (-350 'C) for silicon-glass and thermal fusion

boding (-550 'C) for glass-glass, we have investigated the low temperature electrostatic bonding

using polyelectrolyte multilayers (PEMs) in lieu of the conventional bonding methods. We have

obtained clogging-free enclosed channels through electrostatic interaction of PEMs at 180 'C

without cross-linking agents, EDC-NHS, and at 25 'C with EDC-NHS between silicon and glass

substrates. The low-temperature bonding technique described here will provide an easy and

alternative process for fabricating reliable micro- / nanofluidic devices uniform gap size along

the channel. An important application of the devices is for medical or analytical use in contact

with biological fluids. Therefore, the construction of protein- or cell-resistant surface is a crucial

requirement. One strategy to reduce biofouling adsorption is surface modification by

poly(ethylene glycol) (PEG) which has protein- and cell-repellent properties. Chapter 5

demonstrates the use of a novel polymer to prevent protein adhesion.



Chapter 5. Polyelectrolyte Multilayer for Surface

Functionalization

5.1. Introduction

Silicon-based (e.g., silicon, glass, quartz, and PDMS) microfluidic devices have been

extensively employed as an analytical tool or an medical microsystem33 . However, these surfaces

result in non-specific adsorption of reagent/sample molecules from the surrounding fluid (so

called "biofouling"), which is often undesired for biological assays. When small sample

quantities, such as rare proteins are involved, any loss of sample through the system may result

in critical error in the final analysis3. In this chapter, we present a simple and widely applicable

method to fabricate surface modified microchannels by cationic polymer, Poly(allylamine

hydrochloride) (PAH), and non-biofouling materials such as polyethylene glycol (PEG).

5.2. Fabrication of PEG microchannels

Poly(dimethylsiloxane) (PDMS) is widely used to fabricate microfluidic channels because of

its favorable mechanical and optical properties and its simple manufacturing by rapid

prototyping. A microfluidic PDMS channel was fabricated by curing the prepolymer on silicon

masters that had protruding features with the impression of microfluidic channels (100 pim in

width, 10 pm in depth). To cure the PDMS prepolymer, a mixture of 10:1 silicon elastromer and

the curing agent was poured onto the master and held at 70 'C for 2 hours. The PDMS mold was
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then peeled from the silicon wafer. For bonding PDMS channels, a microfluidic mold and a glass

slide were plasma cleaned for 40 s (PDC-32G, Harrick Scientific, Ossining, NY). After plasma

treatment, the microfluidic mold was brought in contact with the substrate and firmly pressed to

form an irreversible seal.

Then, polylelectrolytes were injected into the channel, which was cleaned and dried by

nitrogen gas to increase the negative charge density on the entire surface. The layer-by-layer

deposition was carried out by starting with the cationic PAH (pH=7.5) followed by the anionic

PSS (pH=4.7), until reaching 5.5 layers with the outermost layer being PAH. After the deposition

of each polyelectrolyte layer inside the surface, we applied thorough flushing with Milipore

water.

Block copolymers3 5 comprise two or more homopolymer subunits linked by covalent bonds.

They have potential for a wide range of applications because of their unique properties that

cannot be found in homopolymer or blend systems. Block copolymers consist of incompatible,

chemically different homopolymers as blocks permanently connected to each other by

unbreakable covalent bonds within one chain. Amphiphilic block copolymers are a type of block

copolymer in which one block is hydrophilic and water-soluble, and the other block is

hydrophobic, hence water-insoluble. Amphiphilic block copolymers 36 are a good example of A-B

type diblock copolymers in which one block, A, is strongly attracted to a solid surface, and the

other block, B, is repelled by the same solid surface when they are adsorbed from solution.

As a block copolymer, we used poly(ethylene oxide)-block-poly(methacrylic acid) (PEO-b-

PMAA). A small amount (50 -200 pl) of PEG-b-PMAA (5 mM) injected into the positive

charged channel. Poly(methacrylic acid) (PMAA) possesses pH-responsive properties, where the

conformation and solubility of chain segments in aqueous media can be manipulated by pH 37-38.



The PMAA block forms negative charge in aqueous solution at pH > pKa. The detailed acid-base

chemistry is described in Appendix A. The PMAA block adheres onto a cationic PAH surface

and forms the "anchor", whereas the repelled non-charged PEO block forms a polymer brush, the

"buoy", that has a free end facing the solution as illustrated in Figure 5-1.

> Protein adsorption-resistant surfaces

PEObrush *PAH-(PEO-b-PMAA) adsorption on substrate
j Hydrophilic

2- Moves freely in aqueous solution

Figure 5-1 Schematic of asymmetric block copolymer chains adsorbed on the surface. The
anchor block (PMAA) forms a discontinuous pancake patchwork in contact with the wall. The
buoy chains (PEO) in pink are stretched in the solvent.

PEO adsorbed onto surfaces forms a highly hydrated layer that entropically and enthalpically

prevents protein adsorption, bacterial adhesion and cellular adhesion due to its strong affinity for

water molecules.

5.3. Non-specific protein adsorption on PEM-coated channels

To assess the non-biofouling nature of PEG microchannel, the fluorescein-labelled Lectin was

flowed through the channels (PEO treated and PEO untreated). The isoelectric point (pI), the pH

at which a particular molecule or surface carries no net electrical charge, for Lectin is around 4.7.

Since the net charge on the molecule is affected by pH of their surrounding environment and can

become more positively or negatively charged due to the loss or gain of protons (H+), Lectin
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forms positive charge dissolved in acetate buffer (pH = 5) at the pH conditions above the pI

value of itself, 4.7. To test for adhesion of Lectin within microfluidic channels, the biomolecues

were pumped through the microchannels for 30 min at a flow rate of 5 [LL min-. Then, the

channels were rinsed thoroughly with DI water and subsequently analyzed using an inverted

fluorescent microscope (IX7 1, Olympus).

The results show that the PEO treated surface reduces the intensity near the wall surface as

shown in Figure 5-2. This quantitative analysis indicates that the PEO coated channel was

resistant against protein adhesion. In comparison to controls (PEO untreated channel), the

relative adsorptions were less than 38% (before DI flushing) and 27% (after DI flushing).

(a) W/ PAH-PEO treatment
1400 . . . . -- W/o PAH-PEOtreatmen

1200-

1000

800
U
C 600

400

:200

-20 0 20 40 60 80 100 120 140 160
Distance (A.U.)

(b) ln

a /teamn

1200

1000

800

600

400

200-

0
-20 0 20 40 60 80 100 120 140 160

Figure 5-2 Microchannel (depth 10 ptm) filled with Lectine in acetate buffer pH5 (+) (a) before

and (b) after DI flushing.
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5.4. Conclusion

We have incorporated PEO into polyelectrolyte multilayers by attaching PEO to the backbone

of poly(methacrylic acid) (PMAA), a negatively charged biopolymer. Polylelectrolyte

multilayers topped with a PEO-b-PMAA block copolymer significantly reduced protein

attachment of Lectin. It can be an effective way of controlling cellular and bacterial adhesion by

enhanced resistance to proteins. Compared to the standard chemical grafting techniques used for

PEO surface functionalization, multilayer film depositing has the advantage of being rather

independent of the nature or topology of the material. Thus, PEM films have been constructed

using PEO-grafted polymers or by depositing a PEO layer on top of the films, yielding a non-

fouling multilayer film. These PEO coated channels are advantageous in that they use very small

volumes of samples / reagents and can be potentially scaled up for high throughput analysis.

However, controlling topographical features and spatial presentation of surface molecules is

important for the development of cell and protein arrays for drug discovery, diagnostic assays

and biosensors. To obtain features with controlled topographical features, technique providing

control over both surface topography and spatial presentation of surface molecules over a variety

of feature sizes are discussed in Chapter 6.



Chapter 6. Fabrication of selective anti-biofouling surfaces

6.1. Introduction

There has been great interest in micro- and nanopatterning to create functional biomolecular

arrays for in vitro diagnostics, biosensors, biochips, biomedical microdevices, and tissue

39-40
engineering . Cell patterning, the method of cell immobilization on a desired area, is an

especially important tool for investigating the interactions of cell-surface, cell-cell, cell-

41-42'
antibiotics, and cell-biomolecules -42. In nature, microbial communities inhabit matrices with

intricate spatial structure43 44. Many species of bacteria coexist as microcolonies separated by a

few hundred micrometer 45-46 . This spatial structure has been hypothesized to be important in

microbial ecology 47-50. However, on this small scale spatial structure is difficult to control in

natural environments. Furthermore, microscale spatial structure has not been controlled and

varied experimentally to understand its effect on the stability of bacterial communities. To

address these limitations, we have developed a technique for fabricating bacterial

micropatterning by constructing a synthetic community of P.aeruginosa PAOl, an opportunistic

pathogen in humans and a model organism widely used for biofilm studies.

Many approaches to protein patterning have been reported, including dip-pen lithography5,

inject printing5 2 , photolithography 53, microcontact printing (gCP)54 , and spotting55-56. Although

spotting, photolithography, and inject printing easily create micropatterns of cells and dip-pen

lithography shows itself to be suitable for fabricating nanopatterns, these methods depend

heavily on available facilities. Thus pCP has been introduced as an alternative method, being

simple, flexible, and well adapted for research laboratories not equipped with photolithographic
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tools and clean room facilities. The successful application of gCP of biomolecules from a

microstamp onto a surface, however, is dependent upon the time required to progress from

drying the stamp to printing proteins as well as upon the property of immobilizing surfaces 7 . In

addition, although pCP is a relatively simple and versatile technique of cell patterning, the non-

patterned regions (background) must be modified with biological barriers to prevent nonspecific

adsorption of cells after the process of printing of proteins onto the desired surface has been

completed. Therefore, one must develop a novel patterning method to create a functional surface

to capture and localize cells within particular regions combining with the background regions

where reduce nonspecific adsorption of cells. An efficient cell patterning for flexibility in size as

well as in the shape of the patterns could be of benefit.

To prepare the functional surface with the desired property of protein patterning, conventional

methods of surface modification have been performed using delicate multistep5 8-61. However, a

few of the available methods of chemical modification might limit the control of surface property

on the desired area because the modification area is difficult to control spatially 8 59'61.

Here we present an alternative approach, both simple and reliable, for the preparation of

functionalized surfaces using a soft-lithographic technique as well as poly(ethylene glycol)-

poly(lactide) diblock copolymer (PEG-PLA) as a novel polymer to prevent nonspecific binding

of cells. This method combines an efficient surface modification using polymeric thin film of

self-assembled polyelectrolyte multilayers (PEM) with micromolding in capillaries (MIMIC) of

PEG-PLA. First, the surface is modified with a self-assembled multilayer of PEM using a layer-

by-layer (LbL) technique (section 6.2). The passivation of the background with PEG-PLA can be

obtained using the MIMIC method (section 6.2). The functionalized surface can be easily applied



to micropatterns of cells on the desired area. The PEG-PLA coating on the background has

served as a biological barrier against the nonspecific adsorption of proteins because of the

resistant nature of PEG. In contrast to the widely used jiCP, it simultaneously provides both a

selective cell binding region (the exposed PEM region) and a biological barrier (the anti-

biofouling region involving PEG-PLA).

Our technique rests on a simple process to create the functionalized surface for efficient micro

patterning of cells in various sizes and shapes as well as using a variety of material and

substrates. It can be fabricated by the use of micromolding in capillaries (MIMIC) of

poly(ethylene glycol)-poly(lactide) diblock copolymer (PEG-PLA) and self-assembled

polyemetrolyte multilayers (PEM). Compared to other self-assembly techniques such as self-

assembled monolayers (SAMs) or Langmuir-Blodgett (LB) films, an LbL assembly is far more

6"-64versatile -64. Also, a variety of materials, including proteins, DNA, dyes, polymers, and

inorganic materials, can be incorporated into the films. In addition, a wide range of substrates

can be employed; these substrates include glass, silicon, silicon dioxide, metal, and polymers.

However, depending on the technique utilized, the choice of a specific surface might be limited

due to the interaction with the deposited molecules. For example, molecules containing a thiol

group always require a gold surface for deposition. In contrast, the MIMIC combined with an

LbL coating provides a general platform for biomolecular patterning compatible with a broad

range of materials.



6.2. Experiments

PEM Coating on Glass

A glass slide was cleaned using a piranha solution consisting of a 4:1 mixture of 50% aqueous

solution of H2SO 4 and 30% aqueous solution of H20 2, rinsed sequentially with deionized water,

ethanol, and acetone, and finally dried with nitrogen. The activated glass was spin-coated with

polyallylamine hydrochloride (PAH) at 4000 rpm for 15 s. To remove the unbound PAH, the

substrate was washed with distilled water for three times and then spin-coated with a solution of

polystyrene sulfonate (PSS) (20 mM; pH 9.0) at 4000 rpm for 15 s (Figure 6-1 a).

(a) (9 layer)

(c)
PEG 5k -PLA 2.6k (20mg/ml)

(d)

(e) Pseudomonas aeruginosa (PAO])

(e)

Figure 6-1 Schematic diagram of protein patterning on a functionalized surface prepared with

PEM coating and MIMIC of PEG-PLA. (a) substrate coating with PEM (PAH/PSS) (b)

placement of PDMS micromold onto the PEM surface by conformal contact (c) MIMIC of PEG-

PLA polymer by capillary action (d) removing the PDMS micromold (e) loading of proteins onto

the fabricated surface.

............. ............



This procedure was repeated until the desired number of polyelectrolyte layers was assembled

with a positively charged PAH as the outermost layer, because negatively charged proteins bind

well on positively charged polymeric surfaces owing to the strong electrostatic interaction force.

The preparation of functional surfaces using the MIMIC method

PDMS (Sylgard 184, Dow Corning, USA) molds having micro- or nano-structures were

fabricated against a complementary relief structure that was prepared using conventional

photolithography. Each PDMS mold was cut so that it formed a network with open ends. The

trimmed PDMS mold was placed on PEM-coated glass to achieve conformal contact (Figure 6-

lb). When poly(ethylene glycol)-poly(D,L-lactide) diblock copolymer (PEG5k-PLA2.6k; 20mg

ml') was placed at the open ends of the molds, the PEG-PLA spontaneously filled the empty

spaces through capillary action (Figure 6-1 c). PEG-PLA was bound with polyelectrolyte

multilayers for 1 h and then the PDMS micromold was peeled off (Figure 6-1d).

6.3. Results and Discussion

Preparation and characterization of the functional surface

To confirm the selective binding of PEG-PLA onto PAH as a top layer of PEM, contact angle

analysis was performed after the deposition of PEG-PLA over positively charged (PAH) surfaces

as shown in Figure 6-2. As a control experiment, the PEM surface was also examined. The

average contact angle of PEM surface having a PAH top-layer was about 510. The PEG-PLA

deposited onto the PAH surface showed a decrease in contact angle (25') compared to the
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contact angle for the PAH top-layer case. It indicated the successful coating of PEG-PLA onto

the PAH polymeric layer. The decrease of the water contact angle suggests that the buoy chains

(PEG) are exposed in the water, whereas the anchor block (PLA) is strongly bound onto the PEM

surface layer as shown in Figure 5-1.

Because ethylene oxide groups in PEG-PLA are hydrophilic, we can imagine that the PEG

portion is exposed and not buried in the PEM surface; although the precise nature of this

arrangement has not been firmly established, the PEG chains form a brush-like structure, and the

PEG-PLA deposited surface results in the decrease of the water contact angle.

PAH PSS PIG-PL4 on PEG-PLA on
PAH PSS

Figure 6-2 (a) image of water contact angles onto a PEG-PLA coated surface and sole PEM

surface having PAH as a top layer; the contact angles are 250 and 510, respectively. (b) the

change of water contact angles.



We also characterized the topology of the functionalized surface using atomic force

microscopy (AFM). When compared to each other, these images indicate that the topological

changes of the surface are attributable to the selective deposition of PEG-PLA onto the PEM

surface through the MIMIC process. Figure 6-3 shows the topographic changes of PEM and

PEG-PLA treated surfaces before and after the washing process. The flatness of PEM coated

surface confirms that LbL process has been correctly performed and is stable for the preparation

of a homogeneous thin film. After the deposition of PEG-PLA onto PEM using the MIMIC

process, the topographic contrast between PEG-PLA and PEM region is clearly shown and the

height of the edge region of the pattern is attributable to the increase in the amount of PEG-PLA

along the edge of the micromold because of capillary wetting of the PEG-PLA polymer during

the MIMIC process. During the final washing, the roughness is dramatically reduced from 114

nm to 23 nm due to the successful removal of PEG-PLA, which is only weakly bound to the

PEM surface. The measured height of deposited PEG-PLA (23 nm) confirms that the orientation

of the binding PEG-PLA polymer onto PEM is upward PEG, because the exposed length of

PEG5k chain is precisely matched with a recently reported value 65. The clear AFM image of a

sharp-line edge between the PEM and PEG-PLA region suggests the occurrence of a laterally

homogeneous and well-defined surface modification. The results hint at the possibility of

fabrication of smaller feature sizes with appropriate molds having small features as well as

mechanical properties resistant to the collapse of micro- or nanostructures.



(a) PEM coating (b) Beforewashing (c) Afterwashing

1.0 nm A0114.43 nm 23.60 nm

Figure 6-3 The characterization of the fabricated surface using AFM. (a) topological analysis of

homogeneously coated surface with PEM (b) the functionalized surface containing PEG-PLA

and PEM region using the MIMIC process before the washing step and (c) after the washing step;

the scanning area is - 30 x 30 pm.

Micro/nanopatterning of bacteria onto a functionalized surface

To investigate the feasibility of bacterial micropatterning, we tested it with the bacteria

Pseudomonas aeruginosa PAO1, an opportunistic pathogen in humans and a model organism

widely used for biofilm studies. As is shown in Figure 6-4, the images of micropatterns display

bacterial patterns reflecting the surface patterning. Larger bacterial densities observed in the

exposed PEM region indicate that the preparation of a functional surface was successful The

dramatically decreased bacterial density on the PEG-PLA region shows the reduced nonspecific

binding of the bacteria onto the background. When PEG-PLA is grafted to the surface, a close

association between water molecules and PEG exists due to hydrogen bonding. The formation of
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a hydration layer hinders the nonspecific adsorption of bacteria 66-68 . The experimental results

mentioned above confirm that the PEG-PLA diblock copolymer as a biological barrier is

successfully deposited onto the desired background region and that we can freely control the size

and shape of micropatterns of bacteria. The micropatterning of bacteria clearly demonstrates that

it is possible to fabricate uniform bacteria microarrays on the functionalized surface using

MIMIC of PEG-PLA and a multilayered coating of PEM.

40X 60X

Figure 6-4 Selective attachment of bacteria to chemically micropatterned channels. A suspension

of the bacteria P. aeruginosa PA01 was left in contact with the micropatterned surface for 10

minutes. This resulted in attachment to the PEM coated regions. In the top two panels, the PEM

coated regions had a 50x50 [tm square shape. A small number of squares is shown, out of the

many hundreds of identical squares in the microchannel. The lower three panels show bacteria

attached to an array of PEM stripes (20 and 50 [tm wide).

..... ................... ..- - -- ..........



6.4. Conclusion

We have proposed a simple and reliable bacterial patterning method combining MIMIC with

self-assembled PEM multilayers. We have also demonstrated a technique involving bacterial

patterning at the microscale. The use of PEG-PLA to prevent the nonspecific binding of bacteria

enables the high-resolution patterning of bacteria onto the desired area with flexibility in pattern,

size and shape. This approach requires no hazardous photolithography steps, use of toxic

solvents, or expensive equipment.

This method will be useful in integrating bacteria and micropatterns to study biofilm formation.

It provides a simple, user-configurable, and relatively inexpensive method for growing biofilms

in both static and flow conditions in order to understand the role of biofilm size and shape on

disruption by shear, diffusion-limitation, and hydrodynamic niche selection by bacteria.



Chapter 7. Summary and Outlook

7.1. Summary

The overall goal of this thesis was to exploit the versatility of the polyelectrolyte multilayer

(PEM) to fabricate a novel micro/nanofluidic device for high-throughput applications and

develop a new platform for creating parallel, reproducible bacterial patterning for studying the

chemical, physical, and environmental factors that govern biofilm development. Since

polyelectrolyte multilayers (PEMs) offer a simple, water-based, versatile platform for exploring

biomaterials with cell and bacterial control functionalities, it can incorporate micro- and

nanofabrication technology.

BioMEMS approaches have not yet been widely used in the biological and clinical communities

since they have lower sample throughput and until recently were quite limited compared to

traditional membrane materials such as gel in the smallest size that was achievable. To widely

use such devices, the fabrication process of micro/nanofluidic devices must be addressed.

Therefore, a first major thrust area of this research was the development of micro/nanofluidic

devices for high-throughput with near-molecular dimensions. We have developed novel

strategies for fabricating massively-parallel, high-aspect-ratio vertical nanochannels by a

combination of anisotropic etching and thermal oxidation. To reduce the gap of the nanochannels

down to 50 nm, polyelectrolyte multilayers (PEMs) were employed because the layers can be

controlled on the nanometer scale, providing precise control over layer thickness.

The other challenge in making BioMEMS devices widely applicable is to replace conventional

bonding methods such as anodic bonding and thermal fusion bonding. Since these bonding
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technique are usually performed at very high temperatures (350 'C for anodic bonding and

550 'C for thermal fusing bonding), micro- and nano structures can be easily distorted and

bended, resulting in unreliable bioanalysis systems. Therefore, we investigated low-temperature

bonding method using PEMs, because surface charge and surface roughness can be precisely

controlled depending on pH condition and ionic strength of the polyelectrolyte solutions during

the dipping process. We have demonstrated successful bonding through electrostatic interaction

of PEMs at 180 'C without cross-linking agents, EDC-NHS, and at 25 'C with EDC-NHS

between silicon and glass substrates.

A further challenge in the use of micro-/ nanofluidic devices for improved bioanalytical and

diagnostic devices is the non-specific adsorption of reagent/sample molecules. Hence, there is

considerable interest in the development of non- or low-fouling surfaces. We fabricated

polylelectrolyte multilayers topped with a PEO-b-PMAA block copolymer. PEMs were

deposited to increase the amount of loading of PEO-b-PMAA block copolymer as well as to be

independent of the nature or topology of substrates. The experimental results showed a dramatic

decrease of non-specific adsorption of Lectin on PEO treated channels (38% before DI flushing

and 27% after DI flushing) in comparison to controls (PEO untreated channel). This can be an

effective way of controlling cellular and bacterial adhesion by enhanced resistance to proteins.

As stated above, one potential method to switch surface properties that could potentially be

useful for patterning cells is the use of layer-by-layer assembly of polyelectrolytes. In the second

part of the thesis, we have explored the possibility of patterning bacteria by the use of

micromolding in capillaries (MIMIC) of poly(ethylene glycol)-poly(lactide) diblock copolymer

(PEG-PLA) onto polyelectrolyte multilayers (PEMs). The patterned surface therefore consists of



two sets of regions: PEMs and PEG-PLA. The first (PEMs) promotes adhesion of cells, whereas

the latter (PEG-PLA) hinders adhesion by preventing nonspecific binding. To test this method

we used P. aeruginosa PAO1 bacteria, depositing a drop on the micropatterned surface. The

coated surfaces by PEMs, which are relatively hydrophobic (contact angle, 51 'C) compared to

PEG-PLA coated regions (contact angle 25 C), showed excellent results for the micropatterning

of bacteria. These devices will be ideal to acquire a deeper understanding of bacteria-surface

interactions and the effect of biofilm size on subsequent biofilm dynamics, including

susceptibility to disruption by shear and the ability of a biofilm patch of a given size to harbor

multiple bacterial strains.

7.2. Outlook

Nanochannels on a chip have the potential to be used for biotechnological applications such as

immunoassay, proteomics, or DNA molecule separation. These solid-state nanochannels are

much more robust than polymer membranes, both chemically and mechanically. Gap sizes can

be well controlled by polyelectrolyte multilayers (PEMs) deposition. The uniformity of the

nanochannels allows stable operation and repeatability. It is expected that these nanochannels

could be essential in the development of bioanalysis system. In addition, the micropattern arrays

created using micromolding in capillaries (MIMIC) of poly(ethylene glycol)-poly(lactide)

diblock copolymer (PEG-PLA) onto polyelectrolyte multilayers (PEMs) make it possible to

fabricate different shapes and dimensions to control the spatial adhesion and growth of cells on

surfaces. These techniques have the potential to help shed shed light on the relationship



between the size of biofilm microcolonies on disruption by shear, diffusion-limitation, and

hydrodynamic niche selection by bacteria.

For commercial application, further research is clearly necessary. To use nanofluidic channels

for separation and manipulation of a wide spectrum of biomolecules including proteins,

organelles, and carbohydrates based on size and electrostatic interaction by changing the surface

charge density, additional experiments need to be carried out to determine the ultimate minimum

gap size that can be uniformly attained using polyelectrolyte multilayers (PEMs) deposition. The

work presented here represents a first step in this direction.



APPENDIX A

A.1. Review of Acid-Base Chemistry : Controlling the Degree of Ionization69

1. Definitions:

Bronstead and Lowry : acid is a substance that can donate protons; bases accept protons

Lewis : acid is an electron pair acceptor; base is an electron pair donator

(more general definition)

2. Acid-Base reaction:

An acid-base reaction in equilibrium can be written as follows:

Conjugate
base base

HA+ H20+-+ H30++ A-

acid Conjugate
acid

For a given set of reaction conditions, e.g. temperature and pressure, the ratio of reactants and

products reach a constant value at equilibrium. From the equilibrium reaction, we can define an

equilibrium rate constant, k,

[H3 0+ ][A-]
[HA][H 2 0]

For weak acid, k < 1,

In dilute aqueous solutions, [H20] is constant. Therefore, we can define another dissociation rate

constant, kA, for acids in aqueous solutions.



[H3 0+][A-]
[HA]

The expression for kA can be further simplified for the case of water because [H20] is constant:

k= [H30+][OH-] = 10-"M 2  (A.3)

In pure water [H30 or H+] = [OH-] = 10-7 M at 25 'C

Because the concentrations of the acidic and basic species can vary by orders of magnitude, it is

more convenient to refer to concentrations using logarithmic scale: pH = -log[H*]

3. Henderson-Hasselbach Equation:

From the expression of kA above, we can write an equation that relates pkA of a species to the pH

of its solution. This is known as the Henderson-Hasselbach Equation:

[A-]
pH = pKA + log [HA] (A.4)

A few useful rules of thumb can be interpreted from the Henderson-Hasselbach Equation.

1. pkA of an acid is equivalent to the pH of solution when molar concentrations of acid and

conjugate base are equal (midpoint). i.e., the pH value at which an acid is half-ionized.

2. If pH of solution = pkA + 1, then 90% of the species is deprotonated, i.e., more [A] than [HA]

3. If pH of solution = pkA - 1, then 90% of the species is protonated. i.e. more [HA] than [A]

4. All of the species is deportonated or protonated if pH is +/- 2 of its pkA-

5. When an acid becomes deprotonated, it becomes ionized while when a base becomes

protonated it becomes ionized.



0PAA
- polybase .

0

d , 50%

II
0)II
V Ia

pKA=6.5 pH pKA=8.8

Figure A-1 Titration curve of weak polyelectrolytes



APPENDIX B

B.1. Process Flow of Nanochannel Fabrication on Silicon

(a) Photolithography for nanochannel
(I-stepper) 40 nm

(b) Si etching using RIE etcher (40nm)

(c) Photolithography for microchannel
(I-stepper)

(e) Si Etching using RIE etcher (2um)

F I

(h) SiNx etching (5000A) using RIE for reservoir patterning

(i) Si Etching-through for reservoir formation

() SiNx etching using HF solution

(k) Thermal oxidation (4000A) for anodic bonding

Glass
(f) SiNx deposition (5000A) for KOH mask

(I) Anodic bonding

(g) Photolithography for SiNx etching

Figure B-1 Standard process flow of nanochannel fabrication on silicon



B.2. Process Flow of Nanochannel Fabrication on Glass

i" Pyrex wafers, red process

Step

Pattern nanochanneb
Piranha c-samng

HMDS cng
Resist coating(ImageReverse PR)

Prebake(30mins. 90C)
Exposure(3.6s)

Postbake(30mins, 90C)
Floodg60sec)

Development(9sec or until clear)
Descuning(min, 1000W)

Wet etching. BOE(1min30sec, -40-45nm)
Resist rengal, Piranha

Pattern microchannels
Piranha cleaing

dehy*draion(60inns)
Metal Mask(20am Cr, 100nm Au) deposition

lIOS coating
Resist coating(Standard PR)

Prebake(30mins, 90C)
Exposure(3sec)

Developrnent(~75sec or until clear)
Postbake(30Mins. 120C)

Au Etcing, Aqua Regia or Au etchant(30sec)
Cr Etching, CR-7(25sec)

Pyrex Etching(650:200:150, H20:HF:HNO3).08urn/min
Solvent Cleaning(AcetoneMethano,l water)

Au Strping, Aqua Regia or Au etchat(2rnis or unti clear)
Cr Striping, CR-7(2rnins or until clear)

Resist removal, Piranha

Pattern access holes I Bonding
Drilling holes on glass (by SensorPrep)

Surface cleaning, Pianha
Surface activation, ammonium hydroxide(3Omin)

Giass-dass bono(50C. oveight)

Acd-hood TRL red
HMDS TRLred
CoaterTRLred

PrebakeoenTRL
EVI TRL red

Postbakeoven_TRL
EV1 TRL red

Photo-etTRL Au
AsherTRL

Acid-hood_TRred
Acd-hoodTRLred

Acid-hood TRL red
UV-ozone_TRLred

ebeamAu
HMDSTRL red
Coater TRLred

PrebakeovenTRL
EV1 TRL red

Photo-wet TRL Au
Postbakeo enTRL
Acid-hood TRL red
Acd-hood TR Lred
Acd-hood TRL red
Photo-wet TRL Au
Acd-hood TRLred
Acid-hood TRLred
Acd-hood TRLred

Resonetics-Laser_EML
Acid-hood TRLred
Acd-hood _RTred
Box-Fumnace EL

Table B-1 Process flow of nanochannel fabrication on glass

Acton Machne

1_1
1_2
1.3
1_4
1.6
1_6
1_T
1_8
19
110
111

21
22
23
2_4
26
26
2T
28
29

2_10
2_11
2_12
213
2_14
2_15
2_16

31
32
33
34



B.3. Process Flow of Microchannel Fabrication on PDMS

(a) Bare silicon wafer (b) Photoresist(SU8) coating

(a) PDMS pouring / curing (b) Peeling off from the Si master

(c) Photolithography

(c) Punching holes

(d) SU8 master on silicon

(1)

(d) PDMS mold for chemical
pattering (1) / main channel (2)

(a) Bare glass slide (b) Bonding with PDMS for patterning (c) Injecting Teflon or OTS (d) Detaching PDMS (e) Bonding with PDMS channel

Figure B-2 Standard process flow of chemically patterned microfluidic channels on PDMS (A)

Master fabrication with SU8 (B) PDMS fabrication for chemical patterning (1) / main channel (2)

(C) PDMS bonding with chemically patterned glass slide

(A)

(B)

..... ........
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