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ABSTRACT

Monoclonal antibodies have emerged as a promising class of therapeutics for the
treatment of human disease, and in particular human cancer. While multiple mechanisms
contribute to antibody efficacy, the engagement and activation of immune effector cells -
mediated by the interaction of the conserved Fc regions of the antibody with the Fc
gamma receptors (FcyRs) on immune cells - is critical to the efficacy of several. This
thesis describes the engineering of antibody Fc domain interactions with FcyRs, using the'
yeast S. cerevisiae. In an initial step, a microbial system for the production of full-length
antibodies in S. cerevisiae in milligram per liter titers has been developed, which serves
as a platform for the engineering of antibody Fc domains with defined properties. The
presence of a single N-linked glycan on each chain of the antibody Fc, as well as the
specific composition of the glycoforms comprising it, are critical to the binding of the Fc
to FcyRs, and have largely limited the production of therapeutic antibodies to mammalian
expression systems. Using a display system that tethers full-length antibodies on the
surface of yeast, we identify and characterize aglycosylated antibody variants that bind a
subset of the human low-affinity FcyRs, FcyRIIA and Fc'yRIIB, with approximately wild-
type binding affinity and activate immune effector functions in vivo. In a separate
approach, we identify aglycosylated variants that weakly bind a third low-affinity
receptor, FcyRIIIA, and through subsequent engineering generate variants that bind all of
the low-affinity FcyRs with approximately wild-type binding affinity. By decoupling the
function of the antibody from its post-translational processing, these variants have the
potential to open up therapeutic antibody production to a far wider array of expression
systems than currently available. Finally, in parallel work, we use a similar system to
screen for glycosylated Fc variants with improved affinity and specificity for the
activating receptor FcyRIIIA compared to the inhibitory receptor FcyRIIB, properties
which have been hypothesized to lead to more potent antibody therapeutics.

Thesis Supervisor: K. Dane Wittrup
Title: J.R. Mares Professor of Chemical Engineering and Bioengineering
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Chapter 1. Introduction

Over the past two decades, monoclonal antibodies (mAbs) have emerged as a

promising class of therapeutics for the treatment of human disease, and in particular

cancer (1-3). To date there are 21 FDA-approved antibodies, nine for the treatment of

cancer. In addition, there are over 150 mAbs in various stages of clinical trial, primarily

against oncology targets, a number which has increased steadily in recent years (2). In

cancer treatment, mAbs have been approved for the treatment of breast cancer

(trastuzumab/herceptin), colorectal cancer (bevacizumab/avastin; cetuximab/erbitux;

panitumumab/vectibix), non-Hodgkin's lymphoma (rituximab/rituxan; ibritumomab

tiuxetan/zevalin; tositumomab/bexxar); and acute myelogenous leukemia (gemtuzumab

ozogamicin/mylotarg) and chronic lymphocytic leukemia (alemtuzumab/campath).

These mAbs target a number of cell surface proteins, such as the ErbB family receptor

tyrosine kinases, the EGF receptor (erbitux, vectibix) and ErbB2/Her2 (herceptin);

immune cell associated markers, such as the B-cell expressed CD20 (rituxan, zevalin,

bexxar), the myeloid-expressed CD33 (mylotarg) and lymphocyte-expressed CD52

(campath); as well as the soluble angiogenic factor VEGF (avastin).

Monoclonal antibodies contribute to improved therapeutic outcomes through

several mechanisms, some of which may occur simultaneously during treatment (4). In

one strategy, mAbs can be used to directly alter the signaling properties of a target cell by

interfering with an essential event that triggers aberrant cellular behavior, such as the

binding of a growth factor to a receptor. Here, the competitive binding of a mAb to the

ligand binding site of a receptor (erbitux) or the sequestration of ligand (avastin) serves to

block the signaling event. mAbs have also been used to deliver cytotoxic agents - such

as toxins, radionucleotides, and DNA damaging agents - to tumor cells. Here, the

specificity of mAbs for a tumor-specific antigen is used to distinguish cancerous cells

from healthy cells, in turn delivering an antibody-conjugated cytotoxic payload to the

tumor (zevalin, bexxar, mylotarg). Alternatively, unconjugated ("naked") mAbs have

been used to target tumor-specific antigens and trigger activation of the immune system's

native effector functions - those at work during the body's response to infection in the



antibody-mediated adaptive immune response - to initiate immune cell mediated tumor

clearance (rituxan).

While all of the above mechanisms contribute to therapeutic efficacy, immune

cell activation has been shown to play a critical role, in particular through an mAb's

engagement of Fc gamma receptors (FcyRs) (5). The FcyRs, differentially expressed on

immune cells, bind to the conserved Fc region of immunoglobulin G (IgG) - the most

abundant immunoglobulin (Ig) isotype in serum and the Ig of choice in mAb therapy -

and in immunity act to sense the presence of opsonized antigen. Here, the antibody acts

as a flexible adaptor molecule, marking an antigen of interest (such as, in the case of

mAb therapy, a tumor associated antigen) through the interactions of a diverse set of

antibody variable regions that allow for the recognition of a wide array of targets; and in

a second step, allow for the recruitment of common immune effector pathways through

the recognition of the conserved Fc domain. Of particular interest is antibody-dependent

cellular cytotoxicity (ADCC), which leads to phagocytosis of the bound pathogen and

release of inflammatory mediators (5), and in therapeutic antibodies directed against

tumor-specific antigens, the immune cell mediated killing of antibody-bound tumor cells.

The role of antibodies in immunity, the FcyR family that in part mediates

antibody function, and the physical interaction of the two are discussed in more detail

below, as well as previous efforts at the engineering of this interaction for improved

therapeutic properties.

The role of IgG in immunity

Antibodies play a critical role in the adaptive immune response as soluble

mediators for marking the destruction of specific pathogens, and comprise a key part of

the mechanism in which immunological memory against specific pathogens is achieved.

During infection, engagement of B cell receptors (BCRs) with non-self antigen derived

from a pathogen - together with a co-stimulatory signal initiated during the innate

immune response to infection - leads to the propagation of activated, antigen-binding B

cells. Ultimately, further selection and expansion of activated B cells leads to their

differentiation into memory cells (which allow for long-term immunological memory for

the recognition of a specific antigen) and plasma cells (which produce antibodies, the



soluble form of the BCR). Antibodies circulate and mark the infecting pathogen by

binding to the specific antigen recognized by the activated B cell. These antibody-coated

pathogens are then cleared through one of several mechanisms: direct neutralization, such

as through sequestration of soluble toxins or inhibiting the infection mechanism of a

virus; pathogen opsonization - which occurs when several antibodies bind to multiple

antigens (or multiple copies of a single antigen) expressed on a cell surface such as that

of a bacterium - which leads to phagocytosis and destruction of the pathogen by

recognition of the antibody by immune cells; and activation of the complement cascade,

present during innate immunity, which leads to lysis of the antibody-bound infecting cell.

B cells respond to a wide set of antigens through molecular diversity in their

BCRs, which is generated by the combinatorial rearrangement of multiple gene segments

present in the genome, and further diversity is generated after B cell activation through

somatic hypermutation, leading to BCRs with higher affinity for antigen. Together, these

segments comprise the variable, or V, region of the antibody. While antibodies are

unique in their variable regions, they share common effector pathways that are mediated

by a small set of framework constant regions. These functions are spatially distant in the

"Y-shaped" antibody structure, as one end of the antibody molecule, comprising the two

variable-domain containing Fab arms, binds antigen, while the opposite end, comprising

the Fc domain, which is connected to the two Fab arms by a flexible hinge, interacts with

the immune system.

During activation and maturation, B cells switch the constant regions associated

with the antigen-binding variable regions. There are five different Ig heavy chain

constant region isotypes - IgG, IgM, IgA, IgD, and IgE - and over the course of an

immune response a B cell will typically irreversibly switch to the production of IgG. In

addition, within the IgG isotype there are four subclasses (IgG1, 2, 3, and 4), which reflect

the order of their serum abundance. Most therapeutic mAbs are of human, murine, or

chimeric IgG origin, with the human IgG1 subclass most commonly used in therapy.

The human FcyR family

The human FcyR family, differentially expressed on immune cells, recognizes

IgG primarily in the context of antibody:antigen complexes. The hFcyR family consists



of the activating receptors FcyRI, FcyRIIA, and FcyRIIIA, as well as the inhibitory

receptor FcyRIIB. FcyRI binds Fc with high affinity, and is thought to be occupied by

monomeric IgG, and is thus incapable of binding antibody-bound antigen. Deletion of

FcyRI in murine models has no effect on therapeutic antibody activity, and it is thought

that this FcyR is dispensible for therapeutic efficacy (5). In contrast, FcyRIIA, FcyRIIB,

and FcyRIIIA (the "low affinity FcyRs") bind Fc with weak affinity (micromolar binding

constants), approximately two to three orders of magnitude weaker than FcyRI. These

FcyRs become activated only through multivalent interactions between immune cells and

antibody-coated target cells, and engagement of these receptors is thought to be critical to

therapeutic response.

The extracellular domains of the low-affinity FcyRs share similar two-domain

topologies, folding into highly similar three-dimensional structures. The signaling

properties of the FcyRs are controlled by the presence of cytoplasmic immunoreceptor

tyrosine-based activation motifs (ITAMs) or inhibitory motifs (ITIMs) associated with

the FcyR, either directly linked through the transmembrane domain, in FcyRIIA and

FcyRIIB, or through the association of a common gamma chain, in FcyRIIIA and FcyRI.

The FcyRs become activated through receptor crosslinking, a result of the simultaneous

engagement of multiple IgGs bound to a target antigen. The extracellular domains of

FcyRIIA and FcyRIIB are highly identical (sharing greater than 90% sequence identity),

and intracellularly differ in the presence of an ITIM in FcyRIIB, the lone inhibitory

receptor. In addition, allelic variation exists within both FcyRIIA (which can contain an

Arg or a His at position 131) and FcyRIIIA (which can contain a Val or Phe at position

176) - these variations, located near sites of contact between IgG Fc and FcyR, impact

binding affinity, and in some cases, biological response.

Interactions between IgG and FcyRs

The FcyRs bind to a cleft in the antibody Fc formed by the antibody hinge and the

loops of the CH2 domain (6, 7), making asymmetric contacts with the homodimeric Fc.

In addition to the lower hinge region, three CH2 loops make direct contacts with

receptor: the B/C loop, the C'/E loop, and the F/G loop. The C'/E loop, in addition to

mediating protein-protein interactions, encodes information for an essential post-



translation modification - the addition of a glycan to an asparagine residue (in human

IgG1, at position asparagine 297) - which is thought to allow the Fe to adopt an open

conformation capable of being bound by FcyR (8). Loss of Fe N-linked glycosylation -

either through enzymatic truncation, point mutation, expression in the presence of N-

linked glycosylation inhibitors, or prokaryotic expression - has been shown to ablate

FeyR binding and immune cell activation, leading to the view that N-linked glycosylation

of the IgG Fe is strictly required for activation of immune effector functions. In addition,

the binding of FeyRs, and subsequent biological response, is sensitive to the types of

sugar residues comprising the glycan. For example, the absence of a fucose residue

increases the affinity of FeyRIIIA for Fe, promoting a more potent activating response (9),

while the presence of terminal sialic residues switches the IgG to an anti-inflammatory

mode (10).

The differential engagement of the low-affinity FeyRs - in particular the lone

inhibitory receptor FeyRIIB and the activating receptor FcyRIIIA, the only FeyR

expressed on natural killer cells - has been shown to be important to therapeutic response.

Murine models have shown that lack of the inhibitory signal, or a large preference for

engaging activating receptor over inhibitory receptor, lead to greatly enhanced

therapeutic responses (11, 12), suggesting that the balance of signals coming from the

engagement of activating and inhibitory FeyRs on a given immune cell is a key factor in

antibody potency. In addition to the inhibitory signal, the strength of activating signals

also appears to be important to antibody efficacy. Clinical data of patients treated with

the FDA-approved antibodies rituxan and herceptin have shown a significant correlation

between objective response rate and allelic variation within FcyRIIIA, with patients

homozygous for a valine at position 176 of the receptor, instead of a phenylalanine,

having significantly better outcomes (13-16). The FeyRIIIA 176V allele (FcyRIIIA17 6v)

binds Fc several-fold more tightly than FeyRIIIA 176F, suggesting that the persistence of

engagement of this activating receptor is a key factor in therapeutic outcome. To this end,

numerous approaches have been taken to engineer the interaction of antibody Fc with

FeyR for improved immunotherapy (17).



Implications of antibody N-linked glycosylation to biotechnology

N-linked glycosylation, critical for the recognition of IgG by FcyR, occurs at

asparagine residues within the polypeptide motif Asn-Xaa-Ser/Thr (where Xaa can be

any amino acid except Pro), and is a common feature of the eukaryotic protein folding

and secretory pathway. While the initiation of this post-translational processing is

conserved across eukaryotic organisms, through the attachment of a common core

oligosaccharide to the asparagine residue, the downstream N-linked glycosylation

pathways and processing of the glycan vary widely among eukaryotes, resulting in

widely divergent glycan structures. The human N-linked glycan (depicted in Figure 3.10),

is a branched structure, resulting from the trimming of sugars from the core structure and

subsequent differential addition of terminal galactose and sialic acid residues, as well as a

fucose residue.

Other expression hosts commonly used in biotechnology for the production of

recombinant proteins differ greatly in their glycan processing. The prokaryote E. coli

lacks the N-linked glycosylation machinery, producing aglycosylated proteins; the yeast

S. cerevisiae attaches multiple mannose residues to the core structure, resulting in

hypermannosylation; and the yeast P. pastoris likewise attaches terminal mannose

residues, although without hypermannosylation. In addition to these microbial

expression systems, other expression systems, such as filamentous fungi (terminal

mannose residues), plants (attachment of non-human sugar residues), and insect cells, all

have non-human N-linked glycosylation patterns. In the context of therapeutic antibody

biomanufacture, such variation in the composition of the N-linked glycan - in addition to

altering FcyR binding affinity - can lead to the presence of sugars that are rapidly cleared

and/or immunogenic, greatly decreasing the serum half-life of the mAb. As a result,

production of therapeutic antibodies has largely been limited to mammalian cell lines

capable of attaching human glycans, or more recently, to yeast strains engineered to

allow for humanized glycosylation patterns (18).

Previous approaches to engineering antibody Fc domains

Numerous approaches have been taken to engineer the properties of the antibody

Fc and its interaction with FcyR, in particular with FcyRIIIA, which has been strongly



correlated with objective response. These approaches fall into two classes: altering the

composition of the N-linked glycan attached to the Fc, or altering the characteristics of

the polypeptide chain itself (17). In the glyco-engineering front, human cell lines have

been developed to preferentially express proteins with defucosylated N-linked glycans

(19), which allow for higher affinity binding to FcyRIIIA and more potent receptor

activation; in addition, P. pastoris strains engineered to attach homogeneous populations

of humanized glycoforms to IgG are also capable of eliciting enhanced FcyRIIIA binding

and immune cell activation (18).

Similarly, most efforts to engineer the polypeptide itself have focused on

increasing the binding affinity to FcyRIIIA, and have employed a variety of protein

engineering methods. In one approach, in silico prediction and experimental validation

was used to construct an Fc variant that binds FcyRIIIA with approximately 100-fold

increased affinity (20). Separate approaches have also aimed to selectively increase the

binding affinity to the activating FcyRIIIA compared to inhibitory FcyRIIB (21, 22), or to

the activating FcyRIIA compared to FcyRIIB (23). In one approach, alanine scanning

point mutagenesis was used to comprehensively define Fc positions that contribute to

FcyR specificity, and alanine point mutants combined to generate an Fc variant with

enhanced specificity (21). In a second approach, yeast display of randomly mutated Fc

libraries was used to identify point mutations that both improve binding to FcyRIIIA, as

well as those that impart FcyRIIIA-specific binding, and then mutations combined to

generate a variant Fc that binds FcyRIIIA with approximately 10-fold increased affinity

but imparts little change in binding affinity to FcyRIIB (22).

Summary of thesis work

In the following chapters, I describe the production and engineering of antibodies

and antibody constant domains in the yeast S. cerevisiae. Chapter 2 describes a microbial

system for the production of full-length antibodies in S. cerevisiae, achieving yields of

secreted antibody approximately 200-fold greater than those previously reported for this

yeast. In addition to enabling the laboratory-scale production of IgGs in low milligram

per liter titers, this system also serves as a platform for the engineering of antibody Fc



domains with defined properties, outlined in Chapters 3 through 5. A shortcoming of our

yeast expression system, and in general any microbial or non-human therapeutic antibody

expression system, is the inability of the host organism to place native N-linked glycans

on the Fc of the IgG. The presence of the N-linked glycan, as well as the specific

composition of the glycoforms comprising it, is critical to the binding of the Fc to FcyRs

on immune cells and subsequent immune cell activation. Thus, decoupling this binding

event from the post-translational processing of the antibody should allow for the

production of therapeutic antibodies in expression systems not currently accessible for

antibody biomanufacture. In Chapter 3, I describe the identification of aglycosylated

antibody variants that bind a subset of the human low-affinity FcyRs, FcyRIIA and

FcyRIIB, with approximately wild-type binding affinity and activate immune effector

functions in vivo. Building upon this work, Chapter 4 describes the engineering of

aglycosylated Fc variants that bind all of the low-affinity FcyRs with approximately wild-

type binding affinity. Finally, Chapter 5 addresses another challenge in antibody Fc

engineering, the engineering of binding specificity between activating and inhibitory

receptors, which has been hypothesized to lead to more potent antibody therapeutics.



Chapter 2. Secretion of full-length IgG from S. cerevisiae I

Introduction

The expression of heterologous proteins in microorganisms has long facilitated

the detailed characterization as well as biotechnological use of many proteins of interest.

Expression in hosts such as the bacterium Escherichia coli and the yeast Saccharomyces

cerevisiae offer several advantages, such as fast doubling times, high cell densities,

inexpensive cell culture and fermentation requirements, and well-characterized and easily

manipulatable genomes, making them highly accessible and productive systems.

Eukaryotic expression hosts offer the advantages of the eukaryotic protein folding

machinery, oxidative folding environment, and ability to attach N-linked glycans, a

common post-translational modification of eukaryotic proteins; S. cerevisiae in particular

is an extremely well characterized model organism, with much known about its genetics

and biochemistry.

Of particular interest to the biotechnology community is the expression of

immunoglobulins, a class of molecules utilized in immunity for the recognition and

subsequent clearance of pathogens. The advent of hybridoma technology (24) enabled

the production and characterization of monoclonal antibodies, a modality that has rapidly

become a platform of choice to specifically recognize myriad therapeutic targets, and in

particular oncology targets (2). In addition, the specific recognition of proteins of interest

conferred by antibodies has led to their widespread use as all-purpose reagents in

laboratory settings, enabling an array of immunoassays.

While antibody fragments such as scFvs and Fabs have been efficiently produced

in microbial expression systems, the expression of fully-assembled immunoglobulins in

microbial expression systems has met with more modest success. In E. coli, Simmons

and coworkers achieved ~ 100 mg/L titers under fermentation conditions, by developing

a dual cistron system for controlling the mRNA levels of heavy and light chain transcripts,

which was found to greatly affect the yield of fully-assembled antibody (25). More

1 Portions of this chapter are adapted from a manuscript under review, "Directed Evoluiton of a Secretory
Leader for the Improved Expression of Heterologous Proteins and Full-Length Antibodies in S. cerevisiae",
J. Andy Rakestraw*, Stephen L. Sazinsky*, Andrea Piatesi, Eugene Antipov, and K. Dane Wittrup.



recently, Mazor and coworkers reported a dicistronic system that allows for ~ 0.2 - 1

mg/L expression in shake flask culture (26)

Less progress has been made in the secretion of fully-assembled immunoglobulins

from S. cerevisiae, which has not been shown to secrete full-length IgG in titers sufficient

for use as an expression host (27). Wood and coworkers reported the intracellular

accumulation of low levels of IgM (28), and later, Horwitz and coworkers reported the

secretion and purification of fully-assembled human IgG, at yields of approximately 50

gg/L in 5 mL shake flask culture (29). Other yeasts, such as Pichia pastoris (30) and

filamentous fungi (31) have met with more success, with yields up to 30 mg/L reported

for P. pastoris and 900 mg/L for Aspergillus niger.

Such reports suggest that there is further capacity for IgG expression from S.

cerevisiae, and here we ask whether IgG secretion from S. cerevisiae can be improved by

altering the properties of the signal sequence that directs the movement of the IgG heavy

and light chains as they transit through the secretory pathway. Mutant signal sequences,

based upon the wild-type alpha mating factor 1 leader peptide (MFalpp) commonly used

to direct the secretion of heterologous proteins from yeast (32, 33) were previously

identified using a directed evolution approach, utilizing a cell surface secretion assay

(CeSSA) that allows for the quantitative enrichment of surface captured target protein

reflective of the true secretion properties of an individual variant (34). The screen

identified several MFalpp variants that improve the secretion of a model scFv, 4m5.3, in

some cases up to 16-fold (35). These leaders direct the improved secretion of additional

scFvs and the structurally unrelated proteins HRP and an IL-2 variant, from two- to five-

fold (35).

Below, we show that the combination of leader sequence evolution as well as

engineering of the host strain leads to the secretion of fully-assembled IgG in low mg/L

titers, an approximately 200-fold improvement over previously reported yields (29). In

the process, we characterize the IgG secreted from S. cerevisiae, highlighting some of the

challenges in using this expression host.



Results

Construction of S. cerevisiae hIgG1 secretion vectors. The yeast IgG secretion vectors,

created by Andy Rakestraw, are detailed in his thesis (35). Briefly, the human IgG1

heavy chain and human kappa light chain were cloned out of the vector 6-23 IgG (36), a

derivative of the mammalian hIgG1 secretion vector pPNL501 (generous gift of Michael

Feldhaus, formerly of Pacific Northwest National Labs), and placed in front of the

galactose inducible GAL10 promoter and alpha terminator on the auxotrophic shuttle

vectors, pRS316 and pRS314 (37), respectively. To direct the secretion of the

polypeptide, the wild-type alpha-factor pre-pro signal sequence (MFalpp), as well as the

evolved versions app8 and appS4 (35), were placed in front of the heavy and light chains.

The heavy chain secretion vector contains unique MluI and NheI restriction sites for

variable domain cloning; the light chain secretion vector contains unique NheI and BsiWI

sites for variable domain cloning, as well an N-terminal FLAG epitope tag following the

secretion signal and Kex2 Lys-Arg cleavage site, for characterization and purification.

Initial secretion of IgG from S. cerevisiae. As an initial model system for hIgG1

secretion from S. cerevisiae, the 4m5.3 variable domains (38) were cloned into the yeast

secretion vectors, co-transformed into BJ5464a and the PDI-overexpressing derivative

YVH10 (39), and assayed for their ability to direct IgG secretion. Yeast cell culture

supernatants of app8- and appS4-led 4m5.3 IgG displayed large (low mg/L) secretion

yields by fluorescein quench titration assay (Andy Rakestraw, unpublished results), yet

sequential Protein A and FLAG purification yielded little purified IgG (Andy Rakestraw,

unpublished results), suggesting the presence of relatively large amounts of antibody, but

not in a purifiable format.

The data suggest the presence of functional antibody variable domains, yet non-

functional or non-assembled constant domains. Western blots of yeast culture

supernatants confirm this hypothesis (Figure 2.1). Anti-Fc (polyclonal) blotting under

reducing conditions reveals distinct heavy chain bands, with two bands displaying

mobility approximately that of a hIgG1 kappa control, and two additional bands present

with much faster mobility, at approximately 30 kDa (fragment 1) and 10 kDa (fragment



2). The presence of these smaller, anti-Fc reactive bands suggests that the heavy chain is

proteolyzed during the secretion process.

To confirm heavy chain proteolysis, as well as characterize the fragments present

during secretion, 4m5.3 IgG was freshly secreted and purified with an anti-Fc polyclonal

antibody, and bands present from the purified protein subjected to N-terminal sequencing.

N-terminal sequencing of the two lower molecular weight bands revealed the following

mixture of N-termini:

Fragment #1: KVEPKS

Fragment #2: TISKAKG, AKGQPRE

When mapped to the hlgG1 sequence, these fragments suggest proteolysis after lysine

residues at positions K213, K334, and K338 (Figure 2.2), and give expected fragment

molecular weights of 26.3 kDa (234 amino acids), 12.7 kDa (113 a.a.), and 12.3 kDa (109

a.a.). K213 is located at the C-terminal end of the heavy chain CHI domain, adjacent to

the hinge region; K334 and K338 are located in the CH2 domain, near the CH2-CH3

domain interface (Figure 2.2). Given their location near relatively flexible regions of the

IgG structure, it's possible that these sites represent protease accessible regions of the

heavy chain.

Approaches to limiting heavy chain proteolysis. Experiments using control hIgG1,

treated with or without reduction with DTT and/or with and without boiling to denature

the polypeptide, reveal that proteolysis likely does not occur after secretion of IgG into

the cell culture supernatant, but intracellularly, as no heavy chain degradation products

are present during the secretion of an irrelevant control protein (data not shown). To

limit or eliminate proteolysis during the secretion process, as well as test the hypothesis

of site-specific, enzymatic proteolysis, a series of lysine to alanine point mutants were

constructed and analyzed by anti-Fc Western blotting (Figure 2.3). K334A alone does

not eliminate the ~10 kDa molecular weight band, as well as an -40 kDa band that likely

represents heavy chain residues 1-333 and 1-337, yet K334A/K338A appears to remove

both of these bands (Figure 2.3b), consistent with the N-terminal sequencing data.



Interestingly, K213A/K214A alone does not limit proteolysis, but the quadruple mutant

K205A/K21OA/K213A/K214A does, suggesting that other nearby sites contribute to

cleavage (Figure 2.3a). Given the presence of multiple lysine residues flanking K213,

we asked which combinations of alanine mutations would block proteolysis. The

minimal mutant, K21OA/K213A, limits the presence of the ~ 30 kDa band, suggesting

that this double mutant could alter protease recognition (Figure 2.3b). Secretion of the

quadruple mutant K21OA/K213A/K334A/K338A, which combines the minimal motifs at

both protease sites, yields full-length IgG under non-reducing conditions (Figure 2.3c).

Thus, removal of specific lysines limits proteolysis, although in the process appears to

reduce secretion yields, as evidenced by the faint bands present (compare Figure 2.3c to

Figure 2.6, left, with equivalent loading standards).

As an orthogonal approach, a search of known S. cerevisiae endoproteases

pointed to a family of enzymes, the yapsins, which cleave after mono- and dibasic

residues (40, 41). Much precedent exists for the unintended action of yapsin proteases in

the secretion of heterologous proteins from yeast, in particular implicating the enzymes

ypsl and yps2 (42-45). To probe the hypothesized role of the yapsins in proteolysis, as

well as potentially create an improved strain for the secretion of full-length IgG, the

single yapsin deletions AYPS1, AYPS2, and AYPS3 were constructed in the parent

YVH10 strain, through homologous recombination of a kanmx cassette into the native

YPS genes, and assessed for the extent of heavy chain proteolysis during 4m5.3 IgG

secretion (Figure 2.4). IgG secretion from all deletion strains does not vary significantly

than that from the wild-type strain, as similar, lower molecular weight anti-Fc reactive

bands are present for secretion from all strains.

In addition to altering the characteristics of the polypeptide and the strain, the

effect of induction temperature upon proteolysis was assessed (Figure 2.5). Interestingly,

and fortuitously, there is a strong correlation between induction temperature and

proteolysis, with almost complete proteolysis occurring at 37 'C induction, substantial

proteolysis occurring at 30 'C induction (the standard induction temperature used in the

above experiments), and limited proteolysis at 20 *C. At 20 *C induction, reducing and

non-reducing anti-Fc and anti-FLAG Western blots show the presence of fully-assembled

hIgGi with limited proteolysis (Figure 2.6). Interestingly, for 4m5.3, the light chain is



secreted in vast excess over the heavy chain, as evidenced by a faint high molecular

weight band of fully-assembled IgG present in the anti-FLAG blot, compared to the

intense lower molecular weight band (free light chain monomer) and the - 50 kDa band

(light chain dimer) (Figure 2.6, right). This is perhaps a feature of microbial expression

of antibody chains, as a vast excess of light chain was also observed during E. coli

expression (25).

Characterization of S. cerevisiae secreted IgG. To characterize the yeast-secreted IgG,

4m5.3 hIgG1 was expressed in 1 L shake flask culture and purified. Protein gels of

protein A and FLAG-purified supernatant show a band consistent in size with a full-

length human IgG1 (Figure 2.7). Additional, smaller molecular weight bands consisting

of partially assembled IgG are also purified. When reduced with DTT, the IgG bands

collapse into a 30 kDa light chain band and two Fc-containing bands at approximately 50

kDa. Treating the IgG with the N-glycosidase EndoH results in a slight increase in the

mobility of both heavy chain bands. The new mobility is consistent with that of the

DTT-reduced, non-N-glycosylated 4m5.3 N297Q mutant, which removes the lone N-

linked glycosylation site in hIgG1, demonstrating that the fully assembled IgG contains

N-linked Fc glycosylation. Further treatment of the IgG with mannosidase causes the

upper heavy chain band to collapse into the lower band, suggesting that a subpopulation

of the secreted heavy chain has some O-linked glycosylation in addition to the typical N-

linked Fc glycosylation. N-terminal sequencing of the upper and lower heavy chain

bands were both consistent with proper signal sequence cleavage (data not shown),

eliminating this as a possible explanation for the differences in mobility. It also appears

that some higher molecular weight N-linked glycosylated protein is present (lanes 6 and

8), likely indicative of uncleaved, glycosylated, leader peptide.

4m5.3 IgG secretion was further enhanced through manipulation of the host strain.

IgG secretion directed by the app8 and appS4 leaders was compared to the wild-type

leader with and without the overexpression of protein disulfide isomerase (PDI), a

chaperone previously shown to be beneficial to scFv expression (Figure 2.8) (39, 46).

The improved leaders, in combination with PDI, enhanced IgG secretion 50-fold over the

wild-type leader alone, with about 25-fold of that improvement due to the mutant leaders.



In previous studies, it has been shown that heterologous protein expression can put

significant negative selection pressure on low-copy plasmid retention resulting in a

substantial subpopulation of cells to be plasmid negative (47, 48). To compensate for

expression instability caused by the dual plasmid system, chromosomal integrations of

the two genes were made resulting in an additional four-fold improvement in secretion.

The total yield of 4m5.3 IgG secreted from the enhanced expression strain in five mL

culture was determined to be approximately 9 mg/L by fluorescein quench assay and

quantitative Western blotting. The total yield of a one-liter shake flask culture after

protein A and FLAG purification was determined to be approximately 1.5 mg/L.

Combined, these strategies impart a 200-fold improvement in IgG secretion over the

native leader alone making S. cerevisiae a productive host for the expression of full-

length IgG.

To test IgG functionality and specificity, the heavy and light chains of the 4m5.3

IgG were reformatted to express the anti-EGFR antibody 225 as well as the anti-CEA

antibody sm3E as hIgG1 chimeras (Figure 2.9). Antibody titers for 225 and sm3E in 1 L

cultures were similar to or better than the yields derived for 4m5.3 expression. The 4m5.3

IgG binds strongly and specifically to yeast cells labeled with fluorescein. The yeast-

produced 225 IgG binds to the EGFR expressing A431 cell line and is competed off

when cells are pre-incubated with murine 225 or when the IgG is pre-incubated with

soluble 404SG, a yeast produced version of the extracellular domain of EGFR,

demonstrating antigen specificity. Similarly, the sm3E IgG labels the CEA-expressing

LS174T cell line and can be competed off with sm3E scFv. Functional expression of

these three antibodies, derived from different mouse variable genes, and in some cases

further altered by humanization and affinity maturation, suggests that this system can

robustly express full-length antibodies regardless of their family or origin.



Discussion

Through a combination of leader sequence engineering and secretion optimization,

we demonstrate that S. cerevisiae can be used as a host for the expression of fully-

assembled IgG in milligram per liter titers, making it an accessible laboratory-scale tool

for antibody production. Such a system may enable the rapid production of reagents, the

engineering and characterization of antibodies of interest, or, as described in subsequent

chapters, serve as a platform for the high-throughput engineering of antibody Fc domains

with desired properties.

The yields we see represent an approximately 200-fold improvement over

previously reported IgG secretion yields from S. cerevisiae (29), and come from a variety

of sources. By far the greatest source of improvement is imparted by the mutant leaders

themselves, which account for an approximately 25-fold improvement. Over-expression

of protein disulfide isomerase, which has previously been shown to improve the

expression of disulfide-containing proteins (39) and immunoglobulin-derived scFvs (46),

contributes about a two-fold increase. Finally, chromosomal integration of the heavy

chain and light chain open reading frames (ORFs) accounts for an additional four-fold

increase. The contribution of signal sequence engineering alone highlights the success of

this approach, and points to its potential as a tool that can be used alongside, or in the

case of our work, in conjunction with traditional approaches to protein expression

improvement, which typically consist of host strain manipulation.

While we have achieved vast improvements in the secretion of fully-assembled

IgG from S. cerevisiae - in terms of yield, quantified at approximately two orders of

magnitude - there is still substantial room for improvement in this system. In particular,

proteolysis of the antibody heavy chain, while dramatically reduced, still greatly reduces

yield. Purification of yeast-secreted IgG from 1 L shake flask culture has shown that

only approximately 25% of the Protein A purified protein can also be FLAG purified

(data not shown), likely due to both proteolysis and the presence of unassembled heavy

and light chains. While constructing alanine point mutants at likely protease sites limits

proteolysis, it also appears to have generated mutations that reduce secretion, likely

offsetting the gains in yield due to improved processing. A better strategy will likely be



through strain manipulation, through identifying and deleting candidate proteases, which

also has the advantage of maintaining the native IgG polypeptide sequence. Our initial

look at the yapsin family did not identify any single gene deletions that limited

proteolysis, although it's possible that yapsin family members could still be the

proteolytic agent(s), as members of this family have overlapping substrate specificities

(41, 43), and thus a strain with multiple yapsin deletions could allow for non-proteolyzed

heavy chain secretion. Another possibility is that IgG secretion leads to elevated stress in

S. cerevisiae, and finding expression conditions that limit stress may solve the dual

problems of heavy chain proteolysis and O-linked mannosylation.

As constructed, our system is most suitable as a laboratory scale tool for the

production or engineering of IgGs. In addition to proteolysis and overall yield, the

largest hurdle in becoming a viable alternative for therapeutic antibody production is

glycosylation. The binding of antibody Fc domains to Fcy receptors (FcyRs) is highly

sensitive to the presence of a single N-linked glycan on the antibody Fc, and while

eukaryotes share a core glycan structure, the nature of the sugars attached to this core

structure varies widely across organisms. S. cerevisiae hypermannosylates N-linked

glycans (49, 50), producing a highly variable structure that almost certainly has different

FcyR binding properties. In addition, terminal mannose residues, such as those present in

typical yeast N-linked glycans, as well the O-linked glycans present on a sub-population

of the heavy chains we see, are recognized by mannose receptors and rapidly cleared, and

would dramatically reduce the circulation half-time of a yeast-secreted therapeutic

antibody. To this end, major efforts have been undertaken to glyco-engineer the yeast P.

pastoris, resulting in strains with humanized glycosylation patterns (51-54), and in

particular for IgG (18). An alternative approach, described in Chapters 3 and 4, would be

to develop aglycosylated variants of the IgG Fc in which the function of the Fc (to elicit

immune effector functions) is decoupled from its post-translation processing.



Materials and Methods

hIgG1 yeast secretion vector construction (35). The human IgG1 constant heavy chain

was PCR amplified from vector 6-23 IgG (55), a derivative of the human IgG1 kappa

expression vector pPNL501 (generous gift of Michael Feldhaus) introducing Mlul and

XhoI sites on the 5' and 3' ends respectively. The heavy chain was then subcloned into

the vector WTappD1.3 using the MluI and XhoI subcloning sites. The 4m5.3 variable

region was PCR amplified from WTappF4m5.3 with primers introducing Mlul and NheI

sites with which it was subcloned into the new heavy chain vector. The light chain was

PCR amplified from 6-23 introducing 5' and 3' NheI and XhoI restriction sites

respectively which were used for subcloning into the WTapp4m5.3 vector to make the 6-

23 light chain yeast vector. The 4m5.3 variable light chain region was amplified from

WTappF4m5.3 using primers introducing NheI and BsiWI sites used to subclone the VL

behind the WT prepro. Mutant prepro leaders were inserted by amplifying the leaders

introducing SphI and NheI sites and cloning them in front of the IgG heavy or light chain

ORF.

Small-scale secretion of IgG for characterization of cell culture supernatants. 4m5.3

containing heavy and light chain vectors were transformed into YVH10 and selected for

growth on SD-CAA plates (2% glucose, 0.67% yeast nitrogen base, 0.54% Na2HPO4,

0.86% NaH2PO 4-H2 0, 0.5% casein amino acids, plus 1.5% agar). A single colony was

inoculated into 5 ml SD-CAA, pH 6.0 and grown overnight at 30'C until saturation

(OD 600 ~ 5). Upon saturation (OD 600 ~ 5), cells were pelleted and resuspended in 5 mL

of phosphate buffered YPG, pH 6.0 (2% galactose, 2% peptone, 1% yeast extract, 0.54%

Na2HPO 4, 0.86% NaH2PO 4 H2O) and allowed to secrete for 72 hrs at a given induction

temperature. Cell culture supernatants were harvested by centrifugation, and either

directly assayed or stored at 4 *C until assayed.

For integration strains, the heavy and light chain ORFs were subcloned into

pRS304 and pRS306, respectively, with KpnI and Sac digests. Five micrograms of

vector were linearized by restriction digest and transformed into BJ5464a or YVH10

using electroporation, and selected for growth on SD-CAA plates.



Western blotting. For a given analysis, equal volumes of cell culture supernatant were

loaded onto 12% bis-tris gels (Invitrogen) and resolved by SDS-PAGE in MOPS running

buffer (Invitrogen). Proteins were transferred to nitrocellulose (BioRad), blocked with

5% dried milk in TBS plus 0.1% Tween 20 (TBST), and probed with a 1:2000 dilution of

anti-Fc HRP (Pierce) or 1:3000 anti-FLAG HRP (Sigma). Blots were incubated with the

Pierce West Dura luminescent substrate (Pierce) and imaged on a FluorS Imager

(BioRad).

N-terminal sequencing. Wild-type 4m5.3 hIgG1 was secreted from YVH10 in 1 L

shake flask culture, under similar conditions as described above, and allowed to secrete

for 72 hrs at 30'C. Cell culture supernatant was clarified by centrifugation followed by

vacuum filtration, then concentrated and exchanged into PBS, pH 7.4. IgG was purified

from concentrated supernatant by an anti-Fc polyclonal antibody conjugated to agarose

(Sigma).

5 pg of total purified protein was resolved by SDS-PAGE (described above) and

transferred to PVDF (BioRad). PVDF was incubated for 5 min with Coomassie dye,

destained with three exchanges of Coomassie destain solution for 60 min each, then

washed five times with ddH20. Upon drying, individual bands were excised from the

PVDF blot and submitted for seven cycles of N-terminal sequencing analysis (Tufts

University Core Facility).

Construction of hIgG1 point mutants. Site-directed mutagenesis was performed by

PCR amplifying the entire mutant plasmid using complementary primers containing the

desired point mutations in a 50 1d reaction, using Pfu Turbo polymerase (Stratagene).

The amplification was digested with one microliter of DpnI (New England Biolabs), and

two microliters were transformed into 50 microliters XL-1 Blue Supercompetent E. coli

(Stratagene), and selected for growth on LB plates supplemented with 100 gg/ml

ampicillin. The transformants were then sequenced to confirm the desired mutations.



YPS Chromosomal Deletions. The deletion strategy is an antibiotic cassette disruption

technique based on previously described protocols (56). The KanMX gene conferring

G418 resistance to yeast was amplified from the appropriate S. cerevisiae deletion strain

(Open Biosystems) by PCR with intergenic primers that allow for greater than 200 bases

of homology to the target gene on the 5' and 3' ends. The PCR product was then

transformed into YVH10 by electroporation, where the cassette inserts itself into the

target site on the chromosome by homologous recombination. Transformants were then

selected by growth on YPD plates containing G418 (Gibco). The location of the

integration was confirmed by colony PCR using one primer with homology to sequence

just outside of the insertion site and one primer with homology to the KanMX insertion

cassette, as well as by the absence of a PCR product using one primer with homology to

sequence just outside the insertion site and one primer with homology to the native gene.

Expression and purification of 4m5.3 hIgGi. Wild-type 4m5.3 or 4m5.3 N297Q

containing heavy and light chain vectors were transformed into either YVH10 or the PDI

and BiP over-expressing strain HBiPPDI (57) (generous gift of Anne Robinson,

University of Delaware) and selected for growth on SD-CAA plates. A single colony

was inoculated into 5 ml SD-CAA and grown overnight at 30 'C until saturation (OD 600

~ 5), and then used to inoculate 1 L of SD-CAA in a shake flask at 30 'C for ~ 24 hrs.

Upon saturation (OD 600 ~ 5), cells were pelleted and resuspended in 1 L of phosphate

buffered YPG and allowed to secrete for 72 hrs at 20 'C. Cell culture supernatant was

clarified by centrifugation followed by vacuum filtration, then concentrated and

exchanged into PBS, pH 7.4. IgG was purified from concentrated supernatant by Protein

A (Pierce) followed by anti-FLAG (Sigma) affinity chromatography.

For characterization of IgG glycosylation, 50 pg of purified IgG was treated with

EndoH (New England Biolabs) and/or jack bean mannosidase (Prozyme), then re-

purified with Protein A agarose (Pierce).

Cloning of 225 and sm3E as hIgG1 chimeras. The 225 variable regions were PCR-

amplified from the yeast surface display vector pCT-225, expressing 225 as a scFv (225

scFv DNA generously provided by Winfried Wels). The oligos 5-



agtcacacgcgtcaggtacaactgaagcagtcagg and 5'-tcatacgctagcagcggaaacggtgaccagggtcccttgg

were used to amplify the 225 Vh with 5' and 3' MluI and NheI sites for ligation into the

hIgGi heavy chain backbone; the oligos 5'-caacgtgctagcgacatcctgctgacccagtctccag and

5'-atgtaccgtacgtttgagctccagcttggtcccagc were used to amplify the 225 VI with 5' and 3'

NheI and BsiWI sites for ligation into the light chain backbone. Similarly, the sm3E

variable regions were PCR-amplified from the yeast secretion vector sm3E-His,

expressing a His 6-tag fusion of the sm3E scFv.

Flow cytometric analysis of IgG labeling. 1 x 107 YVH1O cells were washed three

times with 500 p1 carbonate buffer (4.2% NaHCO 3 and 0.034% NaCO 3, pH 8.4),

incubated for 30 min with either 4 pg/g1 NHS-PEG-fluorescein or NHS-PEG-biotin

(Nektar), and then washed three times with 1000 p1 PBS/BSA. Fluorescein-labeled yeast

were then incubated with 10 pg/ml 4m5.3 hIgGI or a hIgG1 kappa polyclonal control

antibody (Sigma) for 60 min at room temperature, washed, and then labeled with a 1:100

dilution of goat anti-human phycoerythrin conjugate (Rockland) for 30 min on ice. For

competition experiments, 10 gg/ml 4m5.3 hIgGi was pre-incubated with 10 pM

fluorescein (Pierce) for 60 min at room temperature, and the mixture then incubated with

fluorescein-labeled yeast.

Prior to labeling, A43 1NS cells (ATCC; kind gift of Jennifer Cochran), a

derivative of the EGFR-overexpressing epidermoid carcinoma cell line A431 (58) were

maintained in DMEM plus 10% FBS. At approximately 80% confluency, cells were

trypsinized, washed three times with ice cold PBS/BSA, and counted on a

hemocytometer. 2 x 105 cells were incubated with 5 Rg/ml yeast-produced 225 hIgG1 or

hIgGi kappa control antibody for 60 min on ice, washed, and then labeled with a 1:100

dilution of goat anti-human PE for 30 min on ice. For competition experiments, 5 jg/ml

yeast-produced 225 hIgGi was pre-incubated with either 1 pM EGFR ectodomain

(404SG) (59) for 60 min on ice, and the mixture then incubated with A431NS cells; or,

A431NS cells were pre-incubated with 50 jig/ml commercial murine 225 IgG (Lab

Vision) for 60 min on ice, and then the yeast-produced 225 IgG added to a final

concentration of 5 pg/ml and 25 pg/ml murine 225 IgG.



Prior to labeling, LS174T cells (ATCC), a CEA-overexpressing colorectal

adenocarcinoma cell line, were maintained in MEM supplemented with 10% fetal bovine

serum and 1% penicillin/streptomycin. At approximately 80% confluency, cells were

trypsinized, washed three times with ice cold PBS/BSA, and counted on a

hemocytometer. 2 x 105 cells were incubated with 10 nM yeast-produced sm3E hIgG1 or

hIgG1 kappa control antibody for 60 min on ice, washed, and then labeled with a 1:100

dilution of goat anti-human PE for 30 min on ice. For competition experiments, 200 nM

sm3E scFv was pre-incubated with LS174T cells for 60 min on ice, then sm3E IgG added

to a final concentration of 10 nM and 100 nM scFv.
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Figure 2.1
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Anti-Fc Western blot of yeast-secreted 4m5.3 IgG. Yeast cell culture supernatants of app8-led
4m5.3 IgG were analyzed by anti-Fc Western blotting under reducing conditions, with and
without the addition of the N-linked glycosidase EndoH. Abbreviations: hIgG1 (human IgG1
standard), WT (wild-type 4m5.3 IgG), +EA (addition of a Glu-Ala spacer following the Lys-Arg
Kex2 cleavage site at the C-terminus of the signal sequence), N297Q (non-N-glycosylated 4m5.3
N297Q point mutant), control (irrelevant protein secreted under similar conditions).
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Figure 2.2

N-terminal sequence data mapped to IgG structure. Location of the hypothesized protease
sites within hIgG1 secreted from S. cerevisiae. Lysine residues (red spheres) identified in the
structure directly precede fragments identified by N-terminal sequencing, and are mapped onto a
crystal structure of full-length hIgG1 (PDB ID: 1HZH). Numbers in parentheses next to amino
acids represent the corresponding fragment submitted for N-terminal sequencing (Figure 2.1).
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Effect of lysine to alanine point mutants upon heavy chain proteolysis. Anti-Fc Western
blotting of wild-type (WT) and lysine to alanine point mutants (designated by residue number) of
yeast-secreted, app8-led 4m5.3 IgG, under reducing (A, B) and non-reducing (C) conditions.
Abbreviations: h~gG1 (human IgG1 standard), CHI-Hinge (fragment corresponding to proteolysis
at the CHI-Hinge interface, at residue K213 in Figure 2.2), CH2-CH3 (fragment corresponding to
proteolysis at the CH2-CH3 interface, at residues K334 and K338 in Figure 2.2).
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Figure 2.4
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Yapsin deletion strains. Reducing anti-Fc Western blotting of wild-type, app8-led 4m5.3 IgG
secreted from YVH10 (WT) and a series of YVH1 0-derived deletion strains of the yapsin family
genes yps1, yps2, and yps3. Numbers below the yapsin gene indicate strains confirmed to have
the correct deletion, and subsequently transformed with the IgG secretion vectors. Abbreviations:
hIgG1 (human IgG1 standard).
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Figure 2.5
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Effect of induction temperature on IgG secretion. Reducing anti-Fc Western blotting of wild-
type, app8-led 4m5.3 IgG secreted from YVH1O at a series of induction temperatures, as
indicated. Abbreviations: hIgGi (human IgG1 standard).
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Analysis of IgG secretion at 20 *C. (Left) anti-Fc Western blotting of yeast-secreted, app8-led
4m5.3 IgG under reducing (+ DTT) and non-reducing (- DTT) conditions. (Right) anti-FLAG
Western blotting of yeast-secreted, app8-led 4m5.3 IgG under reducing (+ DTT) and non-
reducing (- DTT) conditions. Abbreviations: hIgG1 (human IgG1 standard), HC (heavy chain),
LC (light chain), LC2 (light chain dimer), FLAG-BAP (FLAG tagged standard).
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Figure 2.7
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SDS-PAGE of Protein A and FLAG purified 4m5.3 IgG1. Purified IgG was analyzed under
non-reducing (lanes 2-4) and reducing (lanes 5-10) conditions, with and without treatment of the
glycosidases EndoH and mannosidase. Abbreviations: standard (control human IgG1 standard),
WT (wild-type, yeast-secreted 4m5.3 IgG with app8 leader), N297Q (yeast-secreted 4m5.3
N297Q non N-glycosylated mutant with app8 leader).
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Figure 2.8
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Sources of improvement in antibody secretion. The effects of the leader sequence and strain
manipulation upon the secretion of a 4m5.3 IgG1 mouse/human chimera was quantified by
fluorescein quench titration assay. The VH and VL genes were expressed separately on two CEN
plasmids, under the control of the WTapp (WTpp), and transformed into BJ5464a cells or
YVH10 cells, which carry an additional copy of PDI (WTpp/PDI). Effects of the mutant leaders
app8 and appS4 were also assayed in YVH10 (app8/PDI and appS4/PDI). For the app8 leader,
these genes were also integrated (int.) into the chromosomes of YVH10 cells in place of CEN
plasmid expression (app8+PDI+int.).
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Cell labeling of yeast-secreted IgGs. (A) Labeling of fluorescein-conjugated yeast with purified
4m5.3 IgG followed by an anti-human PE-conjugated antibody and analysis by flow cytometry.
A type-matched, non-specific, human IgG1 kappa polyclonal antibody (Hu IgG1 polyclonal) and
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incubation of the 4m5.3 IgG with 10 pM fluorescein was also done to demonstrate specificity.
(B) Labeling of the EGFR expressing cell line A43 INS with yeast-produced 225 IgG. Specificity
was determined through competition assays: yeast 225 IgG was pre-incubated with yeast-
produced EGFR ectodomain, 404SG, or the EGFR-expressing cells were pre-labeled with murine
225 IgG. (C) Labeling of the CEA presenting cell line LS174T with sm3E IgG. Specificity was
demonstrated by pre-incubating the cells with the sm3E scFv.
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Chapter 3. Engineering Aglycosylated IgG variants that Productively
Engage Fc gamma Receptors 2

Introduction

Fcy receptor (FcyR) engagement is essential to the function of immunologlobulin

G (IgG) in both immunity (60) and in antibody-based therapy (5, 17). IgGs act as the

adaptor between a pathogen and the immune response by simultaneously binding antigen

through their variable regions and activating an immune response through interaction of

conserved Fc regions with FcyRs on cells of the immune system. The human FcyR

(hFcyR) family consists of the activating receptors FcyRI, FcyRIIA, and FcyRIIIA, and

the inhibitory receptor FcyRIIB. While FcyRI binds IgG with high affinity (nanomolar

binding constants), FcyRIIA, FcyRIIB, and FcyRIIIA bind IgG with micromolar affmity,

becoming activated only via avid multivalent interactions with opsonized antigen (60).

The binding of IgG to FcyR is highly sensitive to the presence of glycosylation at a single

N-linked glycosylation site at asparagine 297 (N297) in its CH2 domain (8, 61), with a

loss of binding to the low-affinity FcyRs observed in N297 point mutants (21, 62),

enzymatic Fc deglycosylation (63), recombinant IgG expression in the presence of the N-

linked glycosylation inhibitor tunicamycin (64), or expression in bacteria (26, 65). In

addition, the nature of the carbohydrate attached to N297 modulates the affinity of the

FcyR interaction (9, 10). The sensitivity of FcyR binding to specific glycoforms has

limited therapeutic antibody biomanufacture to mammalian expression systems, and has

led to the development of glycosylation-engineered mammalian cell lines (9, 19) and

microbial strains with humanized glycosylation (66) as methods of enhancing antibody

cytotoxicity.

In crystal structures of the complex, FcyR/Fc contact is mediated not only by

protein-protein contacts, but also by specific interactions with the glycan on the Fc that

are proposed to contribute to binding affinity (6, 7). Additional intramolecular contacts

are made between the Fc-linked glycan and residues on the IgG CH2 domain, and it is

2 This chapter has been adapted from: Sazinsky SL, et al. (2008) Aglycosylated Immunoglobulin G1
Variants Productively Engage Activating Fc Receptors. Proc Natl Acad Sci U S A. Copyright 2008
National Academy of Sciences, U.S.A.



thought that these interactions stabilize an open Fc conformation capable of being

engaged by FcyR (8). Successive truncation of an IgG1 glycan results in an incremental

loss of binding affinity (63) and concomitant incremental collapse of the open Fc

conformation (67). However, glycosylation is not strictly required for engagement of all

immunoglobulin receptors with their corresponding Fc ligands, notably in the binding of

IgE Fc to Ig&R (68). Interestingly, the IgE Fc adopts a similar mode of binding to FcR as

the IgG1 Fc in the IgG1 Fc:FcyRIII complex and both receptors and Fcs share structural

similarity (69). In the IgG1 Fc:FcyRIII complex, extensive contacts are made by both

chains of the IgG1 hinge region, with additional receptor contacts made by the B/C loop,

F/G loop, and both sidechains and glycosylation of the C'/E loop of the CH2 domain (6,

7) (Figure 3.1). It is particularly striking that this loop plays a part in receptor recognition

through both direct side chain contacts as well as in encoding information for a critical

post-translational modification.

In the present study, we reasoned that by optimizing the protein-protein

interactions about the C'/E loop:FcyR interface at the expense of glycosylation, we could

identify aglycosylated IgG1 variants that maintain engagement to FcyRs. Here, we

demonstrate that a small subset of substitutions at both N297 and T299 of the

glycosylation motif lead to aglycosylated Fcs that maintain engagement of FcyRs, and in

a particular example are active in vivo. Such aglycosylated antibodies would be facile

templates for further efforts to engineer Fc effector functions and potentially enable a far

wider range of options for therapeutic antibody biomanufacture.



Results

Screening for aglycosylated Fc variants that bind FcyRHIA. To determine if

glycosylation of the Fc was an absolute requirement for FcyR engagement by hIgG1, we

constructed saturation mutagenesis libraries at the Fc C'/E loop and screened them by

displaying the full-length IgG variants on the yeast cell surface (Figure 3.2). In this

display system, the femtomolar affinity fluorescein-binding 4m5.3 single-chain antibody

(38) was reformatted as a hIgG1, allowing 4m5.3 hIgG1 library variants to be captured on

fluorescein-labeled yeast from which they are secreted, by using a cell surface secretion

capture assay (34) in conjunction with an engineered leader sequence that allows for the

improved secretion of fully-assembled hIgG1 from S. cerevisiae [(35); Chapter 2; and

Rakestraw JA, SLS, Piatesi A, Antipov E, & KDW, submitted). Three saturation libraries

centered about the C'/E loop - theoretically encoding all amino acid combinations at

residues 296-299, 297-299, and 297-300 - were pooled and screened for binding to

fluorophore labeled tetramers of a soluble form of the FcyRIIA131R allele by multiple

rounds of fluorescence activated cell sorting (FACS).

Using this screening strategy, in addition to glycosylated variants and the wild

type clone, mutants lacking the canonical Asn-X-Ser/Thr N-linked glycosylation motif

were enriched from the C'/E loop libraries for binding to FcyRIIA (Figure 3.3a). After

two rounds of screening three aglycosylated motifs were identified: the double mutants

S298G/T299A, S298G/T299G, and the single mutant T299A. After a third round of

screening at increased stringency, the sublibrary was dominated by the S298G/T299A

variant, suggesting it as the highest-affinity FcyRIIA binding motif in the library (Figure

3.3b).

To study the contributions of the S298G and T299A mutations to receptor binding,

a series of point mutants were constructed, secreted from yeast, and assayed for their

ability to bind to FcyRIIA 131R (Figure 3.3c). Both the S298G and T299A mutations alone

retain binding to FcyRIIA at comparable or increased levels to wild-type IgG1, and the

S298G mutation in the aglycosylated T299A background yields a variant capable of

binding FcyRIIA to a much greater extent. The S298G/T299A double mutant is incapable

of rescuing binding in the N297Q, N297D, and N297A backgrounds, suggesting there is



a strong requirement for asparagine at position 297 for FcyRIIA binding even in the

absence of conjugated carbohydrate, a finding consistent with its conservation in the

initial library screen.

S298G/T299A is aglycosylated and binds to FcyRs. To confirm that the potential

aglycosylated motifs identified from the yeast-based screen indeed lacked the N-linked

glycan and were capable of engaging FcyRs, wild-type, S298G/T299A, and the non-

receptor binding N297Q aglycosylated control were expressed and purified from HEK

293 cells. Both N297Q and S298G/T299A exhibit increased mobility by reducing SDS-

PAGE (Figure 3.4a) and critically, are not recognized by the mannose-specific lectin

LCA (Figure 3.4b), consistent with the expected absence of N-linked glycosylation.

Surface Plasmon Resonance (SPR) measurements show that S298G/T299A binds to both

FcyRIIA alleles, FcyRIIA131R and FcyRIIA131H, and to FcyRIIB; however, this mutant

does not bind to FcyRIIIA nor the complement component Cl q and binding to FcyRI was

weakened by 10-fold. (Figure 3.4c). S298G/T299A binds FcyRIIA131R with a

dissociation constant (Kd) of 1.7 pM, approximately three-fold stronger than wild-type Fc,

and binds FcyRIIA131H with a Kd of 7.0 ptM, slightly weaker than wild type. A small

increase in affinity compared to wild type for FcyRIIB was also observed, suggesting a

preferential binding of FcyR with an arginine at position 131 (Figure 3.5).

To determine whether S298G/T299A can engage native FcyRs as expressed on

the cell surface, CHO cell lines stably transfected with FcyRIIA 131R, FcyRIIA131H, and

FcyRIIB were labeled with 4m5.3 hIgGI immune complexes (ICs) (Figure 3.4d, and data

not shown). Both wild-type and S298G/T299A IgG ICs label all receptor-expressing

CHO cells in a concentration dependent manner, demonstrating that S298G/T299A binds

FcyRs in this context as well. Consistent with the soluble binding measurements,

S298G/T299A IgG ICs label FcyRIIA131R and FcyRIIB expressing CHO cells at similar

levels as wild type; however, S298G/T299A shows only intermediate labeling of the

FcyRIIA131H allele compared to wild type and the aglycosylated control.

S298G/T299A activates FcyRIIA in vivo. To determine whether this aglycosylated IgG

is functional in vivo, a murine platelet clearance model was used to test the extent of



S298G/T299A activity. The platelet integrin antigen-binding antibody 6A6 was

reformatted as a mouse-human IgG1 chimera and the S298G/T299A mutations

subsequently introduced into the human Fe domain. The antibody was tested in a

transgenic mouse model, in which the endogenous murine FeyRs have been deleted by

gene targeting and the human activation FeyR, hFcyRIIA13 R, is expressed as a transgene,

thus maintaining cell type expression appropriate for the human transgene (70). Mice

with this genotype were treated with wild-type, N297A, and S298G/T299A 6A6 hIgG1

purified from HEK 293 cells and the extent of platelet clearance measured over time

(Figure 3.6). After four hours, S298G/T299A-6A6 treated mice (n=3) showed a

statistically significant drop in platelet count when compared to those treated with

N297A-6A6 or PBS, exhibiting a response that was comparable to wild-type-6A6 and

demonstrating the ability of S298G/T299A to productively engage FcyRIIA in vivo and

result in platelet clearance.

Model of S298G/T299A-FcyRIIA interaction. To explore the structural basis for FcyR

binding of this aglycosylated Fc domain variant, we constructed homology models of

Fc:FcyRIIA complexes based on the previously solved structures of the IgG1 Fc, the

FcyRIIA structure (71) and the Fc:FcyRIII complex (7) (Figure 3.7). Three features

emerge from this modeling. First, in the model of the wild-type interaction, there is only

limited interaction between the two N-linked glycans and FcyRIIA (Figure 3.7a). The

asymmetric nature of the IgG1 Fc: FcyRIIA interaction predicts that the glycan attached

to the B chain of the Fc dimer may interact with residues K 117, T 119, F121, S126, and

F129 of the receptor, whereas the glycan attached to the other chain (the A chain) does

not make contact with FcyRIIA. These glycan:FcyR contacts provide negligible

calculated screened electrostatic intermolecular interactions (approximately zero

kcal/mol), compared to the much larger intramolecular ones between glycan and Fc

[roughly -1.3 kcal/mol, with a dominant contribution from N297/glycan(B)-D265(B)]

and suggest that both oligosaccharides are primarily interacting with their respective Fc

chains. Second, N297 is important for the Fc: FcyRIIA interaction. Aglycosylated N297

has the potential to make hydrogen bond interactions across the interface with S126 of

the receptor (Figure 3.7b). These interactions may be mediated by a bridging water



molecule that can be observed nearby in an unbound FcyRIIA crystal structure (71).

Replacement of N297 with glutamine or alanine disrupts this interaction (and fails to

make similar, stabilizing ones) and is consistent with the observed absence of binding for

such mutants (Figure 3.3c, Figure 3.8a). Interestingly, replacement with aspartic acid

may be able to make a similar interaction, however the greater desolvation penalty of the

charged side chain upon FcyR binding likely results in the reduced binding of this variant.

Finally, the intermolecular interaction between the aglycosylated S298G/T299A

mutant and FcyRIIA includes a salt bridge formed between D265 on the B chain of the Fc

dimer and KI 17 on the FcyR. In the wild-type structure, this interaction is shielded from

solvent by the oligosaccharide chain (Figure 3.7c). In the aglycosylated S298G/T299A

mutant this salt bridge is exposed to the solvent (Figure 3.7d), which nearly halves the

screened electrostatic interaction energy compared to wild type (-5 kcal/mol vs. -10

kcal/mol). However, this effect is more than compensated in the S298G/T299A mutant

by a reduced desolvation penalty (72), a measure of the loss of electrostatic interactions

with solvent upon binding, resulting in an overall stabilized structure. This effect is

illustrated (Figures 3.7e,f) by a reduction in the residual electrostatic potential present on

D265(B) in the mutant compared to the wild-type; similarly, the Figure also shows the

S298G mutation results in a reduced desolvation penalty that contributes to the stability

of the mutant complex. Thus, the predictions made by this homology model provide a

hypothetical mechanism for the stability of the aglycosylated Fc:FcyR complex, resulting

from hydrogen bonding and electrostatic interactions altered in the aglycosylated mutant.

Aglycosylated Fc variants that bind FcyRIHIA. To evaluate the contribution of

individual sidechains in the C'/E loop to FcyR engagement, as well as the nature of the

specificity between FcyRIIA and FcyRIIIA seen in S298G/T299A, we constructed the

full set of single point mutations at positions 297, 298, and 299, and assayed yeast-

secreted IgG variants for binding to both FcyIIA and FcyIIIA (Figure 3.8). Side chain

scanning of 297 and 299 revealed additional mutations that remove the glycosylation

motif but retain residual weak receptor binding: T299H to FcyIIA, and N297D and

N297H to FcyIIIA176V (Figures 3.8a,c-e). T299A is the only aglycosylated mutant

identified that displays dual specificity, exhibiting improved binding to FcyIIA while



retaining moderate binding to the FeyIIIA 176 allele. Interestingly, the nature of the

sidechains at position 299, and not just glycosylation, greatly impacts receptor binding, as

the yeast-expressed glycosylated T299S mutant binds all receptors to a much lesser

extent than the wild-type Fc.

In contrast to positions 297 and 299, where mutations largely disrupt the N-linked

glycosylation motif Asn-X-Ser/Thr, multiple substitutions in a glycosylated Fc

background are tolerated at position 298 (Figure 3.8b). FcyRIIA binding is much more

sensitive to substitution at position 298, with only glycine (S298G) maintaining a level of

binding that is comparable to wild type. In contrast, FcyRIIIA tolerates an array of

substitutions at position 298, and the data highlight potential mutations for engineering

FcyRIIIA vs. FcyRIIA/IIB specificity, such as the previously identified S298A and

S298N mutations (21, 22). Only S298G maintained engagement to both FcyRIIA and

FcyRIIIA in our assay, a finding that taken together with a preference for threonine at 299

(T299) suggests an explanation for the conservation of the motif N-S/G-T in IgG CH2

domains across virtually all species (data not shown).

While our initial efforts focused on FcyRIIA resulted in specificity for FcyRIIA

and FcyRIIB at the expense of FcyRIIIA binding (Figure 3.4c), the sidechain scanning

data suggested that aglycosylated Fcs that bind FcyRIIIA with comparable affinity to

wild type could also be identified. Within the C'/E loop, rational design of double

mutants based upon the weakly FcyRIIIA-binding N297D and N297H substitutions

yielded variants that bound FcyRIIIA 176V at levels 10 to 40% of wild type and with

specificity for FcyRIIIA (Figure 3.9), a desired property in engineering Fcs with

enhanced immune effector functions (17). In a separate strategy, the consensus mutations

K326E, K290E, and K290N - identified in a separate screen for improved FcyRIIA

binding (data not shown) as well as through the efforts of previous groups (22, 73) - were

introduced into the T299A background. Incorporation of the K326E mutation, located at

the base of the F/G loop, led to enhanced binding for FcyRIIIA, approaching wild type

levels for FcyRIIIA176V and weakly binding FcyRIIIA17 6F (Figure 3.9). This result

suggests that additional second-site mutations at contact interfaces other than the C'/E

loop can lead to aglycosylated FcyRIIIA- and FcyRIIA-binding Fcs with a range of

affinities and specificities.



Discussion

Until this study the general knowledge of the binding interaction between IgG and

FcyRs indicates a dependence on the N-linked glycan attached to asparagine 297 on the

IgG heavy chain. The Fc variants described here clearly demonstrate that glycosylation is

not a strict requirement for FcyR engagement, either in vitro or in vivo. In an initial

strategy, by generating aglycosylated Fc variants that bind to FcyRIIA and FcyRIIB we

could demonstrate that the set of mutations necessary to switch from a wild-type

glycosylated binder to a functionally aglycosylated binder is fairly small - in our case it

involved the introduction of only two point mutations. In a second more directed

screening strategy, we could further demonstrate that by introducing additional

modifications into our aglycosylated mutants we can combine features from single

mutants discovered from different screenings, thereby modulating the overall affinity

features of the IgG variant. This combinatorial behavior of the contribution of single

mutations is of special interest for the engineering of IgG variants with very well defined

binding properties.

In addition to the enhanced FcyRIIA13 1R binding observed in the aglycosylated

S298G/T299A variant, we were able to restore binding to FcyRIIIA 176V to near wild-type

levels, suggesting that further engineering can also lead to aglycosylated variants with

wild-type or improved binding to FcyRIIIA. In particular, we anticipate that introducing

mutations into the T299A background, which weakly binds both FcyRIIA and FcyRIIIA,

will lead to fully FcyR competent aglycosylated antibody variants. Building upon these

aglycosylated FcyRIIIA-binding variants will be essential for their potential use as

cytotoxic antibodies, which have emerged as a promising class of therapeutics for

treatment of human cancer in recent years (3). Support for a critical role for FcyR

engagement in the mechanism of anti-tumor activity, and specifically for FcyRIIIA, has

come from three independent studies which found a strong positive correlation between

patient response and the presence of specific alleles of the activating FcyR FcyRIIIA that

conferred enhanced binding for the IgG1 Fc domain of the antibody (13, 15, 16). While

the S298G/T299A variant does not bind complement, the above studies, as well as

murine models that demonstrate a dominant role for FcyR engagement in therapeutic



antibody activity (5), suggest that restoration of complement binding would be

unnecessary for engineered Fc variants. In addition to their ability to bind FcyR, it will

also be important to assess the stability of these variants, as previously characterized Fc

variants (74) and deglycosylated wild-type Fc (75) have displayed reduced thermal

stability.

Given the small number of mutations required to achieve N-linked glycosylation-

independent FcyR binding, it is striking that all naturally occurring IgGs utilize this post-

translational modification nevertheless. Among different antibodies there is variation in

the fucose and galactose-sialic acid attached to the core glycan structure (Figure 3.10),

and it has been reported that these variations dramatically influence the antibody activity.

The absence of fucose in the glycan was reported to enhance the affinity of FcyRIIIA for

IgG up to 50-fold (9) and thereby switching the antibody into an inflammatory mode.

This is required, for example, for cytotoxic antibodies, but also occurs when

autoantibodies generate pathogenic immune complexes and activate autoimmune

cascades. In contrast to fucose, the presence of terminal sialic acid was demonstrated to

be the critical factor for the anti-inflammatory action of high dose IVIG (10, 76). Sialic

acid reduces the affinity of FcyRs to IgG by 5-10 fold (10) and, in addition, marks IgGs

and subsequently allows them to bind to non-FcR lectins (76) and mediate downstream

actions through these novel interactions, resulting in anti-inflammatory responses,

including the upregulation of FcyRIIB on effector macrophages (77). The conservation of

the N-S/G-T glycosylation motif among different species at the expense of this post-

translational variability supports the view that the glycan, although not necessarily

required for FcyR binding, serves as a platform for further modulation of the IgG's

activity, enabling post-translational switching or tuning of the IgG function between an

anti-inflammatory or inflammatory mode.

Finally, our demonstration that IgG variants can be generated that have uncoupled

FcyR binding from N-linked glycosylation opens up new possibilities for protein

engineering and biomanufacture. Our results suggest that receptor binding affinity and

specificity can be engineered on the simpler template of an unmodified polypeptide chain,

and these properties selected for by yeast surface display of aglycosylated Fc mutant



libraries. Such mutants could then be produced in essentially any recombinant

expression system without loss of the desired altered effector functions.



Materials and Methods

Library construction. Libraries were constructed by homologous recombination of a

mutated heavy chain constant region insert into the 4m5.3 heavy chain yeast secretion

vector template according to previously published methods (78). The 4m5.3 heavy chain

secretion vector was previously constructed from the pRS316 shuttle vector by insertion

of the GAL1O promoter and alpha terminator, signal peptide, and 4m5.3 variable heavy

chain domain upstream of the hIgG1 CHI to CH3 constant domains [(35); Chapter 2; and

Rakestraw JA, SLS, Piatesi A, Antipov E, & KDW, submitted).

4m5.3 heavy chain template vector was prepared by digestion with NheI (New

England Biolabs) and XhoI (New England Biolabs), which flank the 5' region of the

hIgGi CHI domain (NheI) and 3' region of the CH3 domain (XhoI). Saturation

mutagenesis of the C'/E loop was performed by gene reconstruction with the

oligonucleotides 297-299NNK (all oligos from Integrated DNA Technologies), 296-

299NNK, and 297-300NNK for each of the three libraries, respectively. In a first PCR

step the mutagenic oligo and reverse primer 4m-CH3-epPCR-rev were used to amplify

the region 5' of the C'/E loop through the 3' region of the CH3 domain, using the wild

type vector as a template. In a second PCR step, this PCR product was used along with

the forward primer 4m-CH1-epPCR-for to amplify the 3' region of the 4m5.3 variable

heavy chain to the 3' end of the CH3 domain, reconstructing the heavy chain CHI to

CH3 gene insert with -50 base pairs of overlap with the digested template vector for

efficient yeast homologous recombination.

Gene inserts were transformed with digested template vector by electroporation

into the yeast strain YVH10/LC, a derivative of the yeast strain YVH10, containing a

chromosomally integrated copy of the 4m5.3 light chain yeast secretion vector. The 296-

299 and 297-300 saturation libraries had ~6xl0 7 transformants, 60-fold greater than their

theoretical diversity at the DNA level (324 ~ 1.0x10 6); the 297-299 library had -4x10 7

transformants.

Oligonucleotides.

297-299NNK (5'-AGCCGCGGGAGGAGCAGTACNNKNNKNNKTACCGTGTGGTCAGCGTCCT)

296-299NNK (5'-CAAAGCCGCGGGAGGAGCAGNNKNNKNNKNNKTACCGTGTGGTCAGCGTCCT)



297-300NNK (5'-AGCCGCGGGAGGAGCAGTACNNKNNKNNKNNKCGTGTGGTCAGCGTCCTCAC)

4m-CH1-epPCR-for (5'-ATGGAATACTTGGGTCAAGGAACCTCAGTCACCGTCTCCGCTAGC)

4m-CH3-epPCR-rev (5'-ATTTTGTTACATCTACACTGTTGTTATCAGATTTCGCTCGAGTCA)

297NNK (5'-CCGCGGGAGGAGCAGTACNNKAGCACGTACCGTGTGGTCAG)

298NNK (5'- GCGGGAGGAGCAGTACAACNNKACGTACCGTGTGGTCAGCG)

299NNK (5'- GGAGGAGCAGTACAACAGCNNKTACCGTGTGGTCAGCGTC)

297NHC (5'- CCGCGGGAGGAGCAGTACNHCAGCACGTACCGTGTGGTCAG)

298NHC (5'- GCGGGAGGAGCAGTACAACNHCACGTACCGTGTGGTCAGCG)

299NHC (5'- GGAGGAGCAGTACAACAGCNHCTACCGTGTGGTCAGCGTC)

N, H, and K encode the following groups of nucleotide bases: N encodes all four

nucleotides; K encodes G and T; H encodes A, C, and T.

Library screening. Library screening was performed using the cell surface secretion

assay (CeSSA) (34). Briefly, libraries were grown in SD-CAA (2% glucose, 0.67% yeast

nitrogen base, 0.54% Na2HPO 4, 0.86% NaH2PO4 H20, 0.5% casein amino acids) at 30 'C

to an OD 600 of - 5, and then induced in YPG (2% galactose, 2% peptone, 1% yeast

extract, 0.54% Na2HPO4, 0.86% NaH2PO 4-H20) for 12 hrs at 20 'C. Following this pre-

induction phase, yeast were labeled with fluorescein-PEG-NHS (Nektar) and re-induced

in YPG containing 15% PEG (w/v) at 20 *C for 36 hrs. Cells were washed with PBS

containing 0.1% (w/v) BSA (PBS/BSA) and labeled with biotinylated hFcyRIIA 131R

preloaded onto streptavidin-Alexa 647 (Invitrogen). The library was sorted on a BD

FACSAria (Becton Dickinson) and collected cells grown in SD-CAA supplemented with

penicillin/streptomycin (Invitrogen), for a total of three rounds of screening. Library

populations were labeled at increasingly stringent concentrations of FcyRIIA tetramer as

follows: round one (50 nM FcyRIIA tetramer), round two (2 nM FcyRIIA tetramer), and

round three (80 pM FcyRIIA tetramer). All clones isolated from screening were re-

transformed into YVH1O/LC and individually assayed for FcyRIIA binding.

Site Directed Mutagenesis. For sidechain scanning of positions 297, 298, and 299,

mutagenesis of the 4m5.3 heavy chain yeast secretion vector was performed using the

Quikchange Multi Site-Directed Mutagenesis Kit (Stratagene) and the degenerate oligos

297NNK, 298NNK, 299NNK, 297NHC, 298NHC, and 299NHC. Clones were identified



and confirmed by subsequent sequencing and re-sequencing. All other point mutants

were constructed by PCR-amplification of the entire vector using complementary primers

containing the desired point mutations.

Characterization of yeast-secreted Fc mutants. Fc mutants freshly transformed into

YVH10/LC were grown in 5 ml SD-CAA at 30 *C until an OD 600 ~ 5, then induced in 5

ml YPG at 20 *C for 72 hrs. Cell culture supernatants were loaded onto fluorescein-

conjugated yeast overnight at 4 *C; yeast were then washed with PBS/BSA, labeled with

10 nM of biotinylated FcyR preloaded onto streptavidin-Alexa 647 at 4 *C for > 2 hrs,

and analyzed by flow cytometry. Labeling with 10 tg/ml Protein A-Alexa 647

(Invitrogen) was performed as a separate IgG loading control for all samples.

Mice. y- FcyRIIB~'~ mice were generated in the Ravetch laboratory, backcrossed for 12

generations to the C57BL/6 background and crossed to hfeyRIIA5 mice (The Jackson

Laboratory, Bar Harbor, ME). Female mice at 2 to 4 months of age were used for the

experiments and maintained at the Rockefeller University animal facility. All

experiments were performed in compliance with federal laws and institutional guidelines

and have been approved by the Rockefeller University (New York).

Cell culture. CHO cells were cultured according to the ATCC guidelines. CHO-

hFcyRIIA13 1H, CHO-hFcyRIIA13 1R and hFcyRIIB were obtained by transfection of the

pCMV-Script-hFcyRIIA13 1H, CHO-hFcyRIIA13lR and hFcyRIIB plasmids and subsequent

selection with 1 mg/ml geneticin (Invitrogen).

Antibodies and recombinant proteins. The 6A6-human Fc chimeric variants and

soluble hFcy-receptors were produced by transient transfection of 293T cells and

subsequent purification from culture supernatants. For protein production, cells were

cultured in DMEM medium supplemented with 1% Nutridoma SP (Roche). Cell culture

supernatants were harvested 6 days after transfection, and protein was precipitated by

ammonium sulfate precipitation. The 4m5.3-human Fc chimeric variants were produced

by transient transfection of 293F cells (Invitrogen) and subsequent purification from cell



culture supernatants. For protein production, cells were cultured in Freestyle 293F

Expression Medium (Invitrogen). Recombinant receptors were purified with Ni-NTA

(Qiagen) and recombinant antibodies were purified with protein G sepharose (GE

Healthcare) or immobilized protein A (Pierce) by affinity chromatography. All proteins

were dialyzed against PBS. Purity was assessed by SDS-PAGE followed by Coomassie

Blue staining.

Immune complex binding assay. For studying immune complex binding to surface

FcyRs, ICs were generated by incubating 10 gg of the respective 4m5.3 (anti-FITC)

chimera with 10 pg of BSA-FITC (Sigma) in 1 ml PBS for 2 hours at 37 *C while

shaking gently. CHO cells were stained for 2 hours at 4 'C with 1 pg, 0.5 gg, 0.2 gg or

0.1 gg of ICs, washed with PBS and analyzed by FACS analysis.

Surface Plasmon Resonance analysis. To determine the interaction between soluble

hFcy-receptors RIa (R&D Systems), RIIA 3 1H, RIIA13 1R, RIIB, RIIA, CIq (Calbiochem)

and 4m5.3 antibody chimera, steady state affinity measurements on a Biacore T100

biosensor were performed. Antibodies were immobilized at high densities to CM5 sensor

chips (Biacore) by standard amine coupling. Soluble hFcy-receptors were injected in 5

different concentrations through flow cells at room temperature in HBS-EP running

buffer (Biacore) for 3 min at a flow rate of 30 pl/min and dissociation was observed for

10 min. Kd values were calculated after subtraction of background binding to a control

flow cell using Biacore T100 Evaluation software.

Lectin blot. 10 pg of 4m5.3 wt, N297Q, and S298G/T299A antibody chimera were

resolved by SDS-PAGE using a polyacrylamide gel (NuPAGE, Invitrogen) under non-

reducing conditions. Proteins were transferred to a polyvinylidene difluoride (PVDF)

membrane (Millipore), blocked with Western Blocking Reagent (Roche), and followed

by incubation with biotinylated LCA lectin (2 gg/ml, Vector Laboratories) and alkaline

phosphatase-conjugated goat anti-biotin antibody (Sigma). Bound antibody was

visualized with 4-nitro blue tetrazolium chloride/5-bromo-4-chloro-3-indolyl phosphate

(Roche).



In vivo model systems. Mice were injected intravenously with 50 ptg 6A6-hFcl wt,

N297A, or S298G/T299A in 100 g1 PBS. Platelet counts were determined before

injection and at 4, 24, and 72 hours after injection by blood collection of 50 tl from the

retro-orbital plexus and measuring platelet counts of a 1:10 dilution in PBS/5% BSA in

an Advia 120 hematology system (Bayer). Platelet clearance for mice treated with each

6A6-hIgG1 variant was analyzed 4 h post-injection by a one-way ANOVA test using

SIGMASTAT. Error bars represent the standard deviation of three mice per group.

Computational modeling. Beginning from the crystal structure of the extracellular

portion of the FcyRIIIB receptor bound to the Fc region of the human IgG1

immunoglobulin (PDB ID lE4K) (7), structures were prepared using methods from

Lippow et al. (79). Hydrogen atoms were placed and the sidechains of HI 16(C) and

H131(C) on the receptor were flipped by 1800 around X2 and treated in their neutral, c-

protonated form. In the Fc fragment, all histidine sidechains were neutral and protonated

as indicated, to maximize hydrogen bonding potential: 268(A)-8, 268(B)-&, 285(A)-8,

285(B)-6, 310(A)-6, 310(B)-&, 429(A)-6, 429(B)-6, 433(A)-6, 433(B)-8, 435(A)-6, and

435(B)-6. A preliminary homology model of the corresponding FcyRIIA complex was

constructed on this backbone as follows. All non-alanine, non-glycine residues further

than 4.75 A from an interface residue were replaced by alanine. Both glycosylated and

aglycosylated forms of the structure were prepared, and in the glycosylated structure, a

sliding, restrained harmonic minimization was performed on the sidechain of the N-

glycosylated N297(B). Partial atomic charges for the N-glycosylated N297(C) residues

were derived by fitting to the electrostatic potential using the restrained fitting methods of

Bayly et al. (80) for each monosaccharide. The charges associated with hydrogens

missing in the polysaccharide were added to their parent atoms to ensure charge

conservation. To generate the FcyRIIA receptor structure, all FcyRIIIB interfacial

residues were mutated to their FcyRIIAR131 counterparts using the dead-end elimination

and A* protocol described by Lippow et al. (79) in the presence of wild-type or mutant

Fc region. For each mutant sequence, the global minimum energy conformation, as well

as a collection of progressively higher energy conformations, was identified in the



context of discrete rotameric conformational freedom of all placed sidechains except the

glycosylated form of N297. All of the Fc mutants examined were generated in the

presence of the receptor during this conformational search. Note that one interfacial

residue in the linker region of the FcyR structure (E86 in the FcyRIIA sequence) was left

as a glycine, as all glutamate rotamers searched had a van der Waals clash with the

receptor backbone. In the unbound FcyRIIA crystal structure (71), the two domains of

the receptor separate slightly to accommodate this larger residue. The solvent screened

electrostatic interactions and the residual electrostatic potential upon binding for these

structural models were computed by solving the linearized Poisson-Boltzmann equation

as described by Lee and Tidor (72). PARSE radii and charges were used for all

examined complexes (81).
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Figure 3.1

Cartoon representation of the crystal structure of the hIgG1 Fc complex with hFcyRIII (PDB ID
lE4K). FcyRI is shown in green, and both chains of the Fc in pale blue. Fc contact surfaces are
colored: lower hinge (orange), B/C loop (blue), C'/E loop (red), and F/G loop (purple). Fc
glycosylation is shown in yellow. The highlighted area shows an enlarged view of the C'/E loop
interaction with FcyRII. Fc residues 296-300 are shown as sticks.
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Full-length hIgG1 Fc display on the yeast cell surface. Yeast transformed with 4m5.3 heavy
chain and light chain secretion vectors are conjugated with NHS-PEG-fluorescein, then induced
for secretion in PEG-containing medium. IgG variants are preferentially captured on the
fluorescein-labeled yeast cell from which they were secreted (34). The displayed library is
subsequently screened with preformed tetramers consisting of biotinylated soluble hFcyRs and
fluorophore conjugated streptavidin (SA).

Figure 3.2

... ......... ::- ::: ............... 
Sff i . - , . ............ .

hFcR-SAPE



IIyN8TY*OO
YNGGY (3)
YNSOK (2)
YNGGD

YNGGQ

DNGAY
YNGAY

YNGAs
YNSAY

29YNsTY2 00

YNGAY (16)
YNGAD (3)
YNGAG (2)
YNGAV (2)
YNGAT
YNGAI
YNGAW

YNGGI
YNSAY

C

1200.

1 000

400-I3 (

Aglycosylated C'/E loop variants with FeyRIA binding.
(A) Unique sequences of aglycosylated Fc variants isolated for FcyRIIA binding after two rounds
of FACS. Displayed sequences represent the residues randomized in the saturation libraries,
positions 296-300, with the wild-type sequence underlined. Numbers in parentheses denote
number of times a particular mutant was isolated; in some cases, identical protein sequences were
isolated from multiple unique clones at the DNA level. Sequences of glycosylated variants
enriched from the screen have been omitted.
(B) Unique sequences of aglycosylated Fc variants isolated for FcyRIIA binding after a third
round of FACS, using a more stringent screening strategy.
(C) Binding of yeast-produced 4m5.3 hIgG1 variants to 10 nM FcyRIIA13 1R streptavidin-Alexa
647 tetramers. IgG from yeast culture supernatants was loaded onto fluorescein-conjugated yeast
and median fluorescence intensity (MFI) of receptor labeling was measured by flow cytometry.
Protein A Alexa 647 labeling of all samples was assessed to determine similar IgG loading (data
not shown). All data represent the average of two trials.
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Figure 3.4
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Variant Ria RIIA131H PIA131R R IuB RII17SF RII17V C1q

wt 0.04 5.5 5.0 9.8 13 4.6 0.3

N297Q 0.A n.b. n.b. n.b. n.b. n.b. n.b.

S298G/ 0.3 7.0 1.7 5.7 n.b. n.b. n.b.
T299A

S298G/T299A binds to soluble and cell surface FcyRHA and FcyRIIB.
(A) Reducing SDS-PAGE of HEK-produced wild-type 4m5.3 hIgG1 and the aglycosylated
variants S298G/T299A and N297Q.
(B) Glycan blotting with the mannose-specific lectin LCA (upper panel). Coomassie staining of
SDS-PAGE was assessed to demonstrate similar protein loading (lower panel).
(C) Dissociation constants (Kd) for binding of FcyRs and Clq to wild-type 4m5.3 hIgG1 and
aglycosylated variants; n.b. indicates no binding detected.
(D) Labeling of CHO cell lines stably transfected with FcyRs with 4m5.3 IgG immune complexes.
Cells were incubated with 1 pg of ICs and analyzed by flow cytometry.
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C'I/E loop contacts with FcyRs. hFcyR family sequence alignment near predicted contacts with
the hIgG1 C'/E loop. Asn-Ser-Thr glycosylation motif shown in red. Position 131 of the aligned
FcyRs is shown in blue. Dotted lines represent predicted contacts between residues on the Fc and
FcyR (82).
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Figure 3.6
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Platelet clearance in murine FcyR knockout, hFcyRIIA131R transgenic mice treated with chimeric
anti-platelet antibody 6A6 hIgG1 or the aglycosylated variants N297A and S298G/T299A. Mice
(n=3) were injected with either antibody or PBS control and bled at 4, 24, and 72 h post-injection.
Normalized to platelet counts prior to injection, counts 4 h following injection of the 6A6
antibodies were 15.8 ± 13.9 % for wt, 39.5 ± 5% for S298G/T299A, 71.0 + 6.1% for N297A and
85.7 ± 11.0% for those treated with PBS only. S298G/T299A treated mice displayed a
statistically significant difference in platelet reduction compared to N297A (P = 0.017) and PBS
(P = 0.002), but not a statistically significant difference compared to wt (P = 0.068).



Figure 3.7
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Homology model of wild-type and S298G/T299A Fc interactions with FcyRHA.
(A) Structure of the wild-type B chain Fc fragment bound to the constructed FcyRIIA13 1R
homology model. The highlighted portion of the B chain shows the large N-glycosylated residue
making primarily intramolecular interactions. The portion of FcyRIIA (chain C) highlighted as
orange sticks shows those side chains that were conformationally relaxed, through rotamerization,
during model construction.
(B) Structure of the aglycosylated N297(B) interactions with a superposition of the possible
discrete side chain conformations (rotameric states) of N297(B), Ti 19(C), and S 126(C) in the
S298G/T299A mutant form of the Fc fragment.
(C,D) Structure of the Ki 17(C)-D265(B) salt bridge in the wild-type structure (panel C) enclosed
within the binding cavity in the presence of the oligosaccharide, and the same salt bridge as seen
in the aglycosylated S298G/T299A mutant (panel D).
(E,F) Residual potential after binding mapped onto the interaction face of the B chain of the Fc
fragment in the wild-type (panel E) and S298G/T299A mutant (panel F) structures. White regions
indicate areas of ideal complementarity between the Fc fragment and FcyRIIA13

1R, while deep red
or blue regions indicate areas of poor complementarity due to ligand desolvation costs
uncompensated by interactions made upon binding. Red corresponds to negative residual
potentials and blue to positive residual potentials. The coloring scale, identical in both panels, is
indicated in units of kT/e.
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Figure 3.8
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Sidechain scanning of Fc positions 297, 298, and 299.
(A-C) Yeast-secreted 4m5.3 hIgG1 point mutants were loaded on fluorescein-conjugated yeast
and assayed for binding to 10 nM FcyRIIA13 1R, FcyRlIIA76 , and FcyRIIIA176F streptavidin-
Alexa 647 tetramers by flow cytometry. All data represent the average of two trials and are
normalized to the wild-type signal; * indicates binding to variant not determined.
(D,E) Histograms of FcyRIIA131R streptavidin-Alexa 647 and FcyRIIIA 76V streptavidin-Alexa
647 tetramer labeling of weakly binding aglycosylated clones.
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Designed aglycosylated Fc mutants with FcyRiIA binding.
Yeast-secreted 4m5.3 hIgG1 C'/E loop double point mutants (A) or T299A point mutants with the
'second-site' mutations K326E and K290E/N (B) were loaded on fluorescein-conjugated yeast
and assayed for binding to 10 nM FcyRIIIAl' 6 , FcyRIIIA1 76F, and FcyRIIA131R (for panel A only)
streptavidin-Alexa 647 tetramers by flow cytometry. All data represent the average of two trials
and are normalized to the wild-type signal.
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Figure 3.10
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Composition of the N-linked glycan attached to Asn297. GlcNAc, N-acetylglucosamine; Man,
mannose; Gal, galactose; Sial, sialic acid. Dark lines represent core glycosylation, dotted lines
represent glycoforns variably attached to the core structure.



Chapter 4. Engineering Aglycosylated Fc variants with FcyRIIIA
binding

Introduction

Over the past several decades, antibody-based therapy has emerged as a

promising mode of treatment of human disease, and in particular in the treatment of

human cancer (1, 2). While multiple mechanisms contribute to the efficacy of

therapeutic antibodies (1, 4), activation of immune effector functions has been shown to

play a critical role in the efficacy of several therapeutic antibodies, in particular through

an antibody's engagement of the Fcy receptors (FcyRs) of immune cells (5). Here, as in

immunity, IgGs act as the adaptor between a target cell or pathogen and the immune

response by simultaneously binding antigen through their variable regions and activating

an immune response through interaction of their conserved Fc regions with FcyRs on

immune cells.

The human FcyR (hFcyR) family consists of the activating receptors FcyRI,

FcyRIIA, and FcyRIIIA, and the inhibitory receptor FcyRIIB. While FcyRI binds IgG

with high affinity (nanomolar binding constants), FcyRIIA, FcyRIIB, and FcyRIIIA bind

IgG with micromolar affinity, becoming activated only via avid multivalent interactions

with opsonized antigen (60). In particular, the efficacy of therapeutic antibodies is

strongly correlated to the allelic forms of FcyRIIIA possessed by a given individual.

Populations homozygous for a valine at position 176 of FcyRIIIA (FcyRIIIA176 ), as

opposed to a phenylalanine (FcyRIIIA176F), have dramatically improved objective

response rates (13-16), likely due to a several-fold stronger binding of wild-type hIgG1

for the FcyRIIIA 176V allele.

Recently we demonstrated that aglycosylated human IgG1 Fc variants are capable

of engaging a subset of the low-affinity FcyRs with approximately wild-type binding

affinity and activating immune effector cells in vivo, demonstrating that N-linked

glycosylation of the Fc is not a strict requirement for FcyR engagement. Numerous

previous studies have shown that the binding of IgG to FcyR is highly sensitive to the

presence of a single N-linked glycosylation site at asparagine 297 (N297) of the Fc, with



deglycosylation resulting in a complete loss of FcyR binding (8, 21, 25, 62-64). Thus,

aglycosylated variants that maintain engagement to FeyRs have the potential to open up

therapeutic antibody production to virtually any expression system, removing the post-

translational variation in N-glycan synthesis that occurs across organisms, or in the case

of the common prokaryotic expression host E. coli, the complete absence of N-linked

glycosylation. Such variation in the nature of the N-linked glycan imparts substantial

changes in the affinity to FcyR and subsequent biological response (9, 10), and

additionally can lead to the presence of sugars that are rapidly cleared and/or

immunogemc.

Our initial screening methodology focused on engineering the Fc C'/E loop,

which contains the N-linked glycosylation site (Asn297-Ser 298-Thr299) as well as makes

direct contacts with FcyR (Figure 3.1). A library screen of all possible C'/E loop

variants yielded a variant (S298G/T299A) that binds FcyRIIA and FcyRIIB with

approximately wild-type affinity, but not FcyRIIIA. A second approach, based on

screening each single point mutation within the C'/E loop, then combining candidate

mutations, identified variants that weakly bind FcyRIIIA 17 6V - T299A, N297D, N297H,

and the double mutants N297D/S298T, N297D/S298A, and N297H/S298A -

demonstrating that aglycosylated Fcs can engage this FcyR as well. However, given the

importance of FcyRIIIA to therapeutic outcome, it is likely that these variants would have

limited therapeutic utility.

Building upon our previous work, we report here aglycosylated hIgG1 variants

that can engage all of the low-affinity hFcyRs with approximately wild-type or improved

binding affinity, thus identifying variants that might effectively substitute for the wild-

type, glycosylated hIgG1 . In doing so, we have focused on engineering additional loops

of the Fc domain that make contact with FcyR, screening libraries that encode all possible

amino acid diversity within segments of these loops to enrich variants with improved

FcyRIIIA176F binding. Such variants, when placed in the previously identified

aglycosylated backgrounds that allow for weak FcyRIIIA176v binding, yield fully FcyR

competent aglyco Fcs with a range of affinities. In addition, we find that our approach of

searching sequence space at contact loops in a focused manner, which allows us to

theoretically screen all possible amino acid diversity at these sites in short segments,



uncovered variants with mutations that act cooperatively, and thus not easily predicted by

combining the properties of single point mutations identifiable through other protein

engineering strategies.



Results

Engineering approach and screening methodology. Previously, we showed that the

binding affinity of aglycosylated Fcs can be modulated by placing 'second-site'

mutations selected for improved binding to FcyRs in a glycosylated background into an

aglycosylated background. Here, combining a mutation located near a contact interface

(K326E) with the mutation T299A improved FcyRIIIA binding relative to T299A alone,

while second-site mutations at a site distant from the contact interface (K290E/N) had no

effect upon aglycosylated Fc binding (Figure 3.9). This result suggested that modulating

the interactions about the Fc contact loops with FcyR, in a glycosylated background,

could likewise translate into improved binding affinity in an aglycosylated background.

To accomplish this, we set out to systematically ask which combinations of mutations at

Fc contact loops yield improved FcyRIIIA binding.

Here, we constructed saturation libraries about three contact sites within the Fc -

the lower hinge, the B/C loop, and F/G loop (Figure 4.1) - and screened them by

displaying these full-length hIgG1 variants on the surface of yeast. In this display system,

the femtomolar affinity scFv 4m5.3 (38) has been reformatted as a hIgG1, allowing 4m5.3

hIgG1 Fc library variants to be captured on fluorescein-labeled yeast from which they are

secreted (Figure 3.2) by adapting features of a cell surface secretion capture assay (34)

and the improved secretion of full-length hIgG1 from S. cerevisiae (Chapter 2). Contact

interface libraries were constructed by fully-randomizing four amino acid stretches using

degenerate NNK codons (N=ATCG, K=GT), which encode all 20 possible amino acids

in 32 codons. This design approach allows for over-sampling the codon diversity (324 ~

1x10 6), and thus amino acid diversity, in these yeast-based libraries, which often have a

transformation efficiency on the order of 1x10 7. The following libraries were constructed

and pooled by contact region: lower hinge (234-237, 236-239), B/C loop (265-268, 267-

270), and F/G loop (326-329, 327-330, 329-332, 331-334). As a target we chose the

FcyRIIIA176F allele, which, given its weaker binding for wild-type Fc, likely represents a

more stringent, as well as therapeutically relevant, barrier for improved FcyRIIIA binding.

Libraries were pooled by loop and individually screened by two rounds of enrichment on



FcyRIIIA176F coated magnetic beads followed by three rounds of fluorescence activated

cell sorting (FACS) at increasing stringency.

B/C and F/G loop variants enriched for improved FcyRIIIA binding. The sequences

of variants enriched for FcyRIIIA176F binding after the second and third rounds of FACS

(rounds four and five in total) for the B/C and F/G loop libraries are shown in Figure 4.2.

Enrichment of only wild-type clones was observed from the lower hinge libraries.

Clones enriched from the B/C loop libraries (Figures 4.2a,b) show an absolute

preference for D265, consistent with the importance of this residue in binding FcyR (21,

83). The majority of clones enriched from the screen have substitutions at positions 266-

268, indicating that variation within the 265-268 sublibrary more strongly contributed to

FcyRIIIA17 6F binding. Enriched variants show a strong preference for mutation of H268

to Glu, and to a lesser extent a likewise negatively charged Asp. At position 266 there is

a strong preference for either Leu or the wild-type Val, while position 267 appears to be

more promiscuous to substitution, with enrichment of the wild type Ser, as well as more

frequently Ala, Glu, and Asp. Of the clones enriched from the 267-270 sublibrary (i.e.

those clones with mutations at positions 269 and/or 270), there is a strong preference for

retaining negative charge at E269 and D270, either as the wild-type residue or as E269D

or D270E.

Clones enriched from the F/G loop libraries (Figures 4.2c,d) fall into two broad

classes of loop diversity - those enriched from the 326-329 sublibrary and those with

substitutions at the opposite end of the loop, primarily at position 332 and to a lesser

extent at 334, both of which have been previously identified as modulating FcyRIIIA

binding affinity (20-22). Substitution of 1332 with Glu dominates the screen, and has

been previously shown to greatly enhance binding to all FcyRs, including FcyRIIIA 176V

and FcyRIIIA176F (20). Virtually all clones potentially enriched from the 331-334

sublibrary (i.e. those with mutations at positions 333 and/or 334, or those lacking

mutations at positions 329 and 330 found in the 329-332 sublibrary) also contain a

substitution at position 334, with a preference for Val and Ala, and to a lesser extent Ser,

Glu, and Gln. These data are consistent with previous studies, in which K334A, K334E,

K334Q, and K334V were shown to strengthen binding FcyRIIIA (21), and the frequent



enrichment of K334E and K334N from a random mutagenesis library for improved

binding to FeyRIIIA (22).

Within the clones enriched from the 331-334 sublibrary there is a strong

preference for either the wild-type Pro at position 331 or Ser or Ala. P331A alone has

been shown to have no effect on FcyRIIIA176 v binding affinity, and P331S alone to

reduce FcyRIIIA176v binding (21). Interestingly, when P331 is mutated, it is almost

always derived from the 331-334 sublibrary and not the 329-332 sublibrary, suggesting

that the context of flanking residues is important to binding. Clones enriched from the

329-332 sublibrary have a strong preference for substitution at position 330, and thus

mutation of the wild-type Pro at position 331, within the background of 1332E and A330x

may be disfavored. Previous studies have shown that A330V alone slightly improves

FeyRIIIA176F binding (22) and A330L in the context of 1332E imparts improved
FceyRIIIA76
FcyRIIIA 1 76F binding (20).

In contrast, relatively little is known about how diversity at positions 326-328,

and in particular positions 327 and 328, impact FcyR binding. The variants enriched for

improved FcyRIIIA176F binding from our screen from the 326-329 sublibrary show a

strong preference for substitution of K326 with the hydrophobes Ile, Leu, and Val.

K326A has previously been shown to increase binding to all FcyRs (21), while K326E,

and to a lesser extent K3261 and K326Q, were frequently enriched in a screen for

improved binding to FcyRIIIA176V (22). In addition, multiple substitutions at position

326 impart improved binding to the complement component Clq (73). In our screen

A327 has a strong preference for Asp, although tolerates additional residues as well, with

the similarly negatively charged Glu, the wild-type Ala, and Gly appearing multiple

times; similarly, L328 has a strong preference for Ala and appears to tolerate multiple

substitutions, with Gly appearing multiple times. Within the clones enriched from this

sublibrary, P329 is absolutely conserved, consistent with its substitution being disfavored

within the 329-332 library. P329A alone has been shown to reduce binding to all FcyRs

(21).

Binding of HEK secreted B/C and F/G loop variants. To determine whether variants

enriched from this yeast-based screen impart improved FcyRIIIA binding when expressed



from a more standard host, a subset of variants were subeloned into mammalian

expression vectors, secreted from HEK 293 cells, and assayed for their relative ability to
16Fbind FcyRIIIA1 . Most B/C loop variants tested displayed a slight increase in binding

affinity to FcyRIIIA 176F compared to wild-type Fc (Figure 4.3a). Within the

S267A/H268E background, there is a slight preference Leu at position 266 compared to

the wild-type Val at position 266, suggesting that either of these residues can mediate

FcyRIIIA 176F binding. Within the V266L/H268E background, there is a slight preference

for Ala or Asp over the wild-type Ser at position 267, although substitution to Thr results

in a variant with reduced FcyRIIIA 176F binding. Interestingly, the addition of D270E in

the S267A/H268E background results in decreased binding to FcyRIIIA. The D270E

mutation alone has been shown to impart slightly improved binding to FcyIIIA but

weakened binding to FcyRIIA 3 1 R and FcyRIIB (21, 22) - FcyRs with Arg at position 131

of the receptor - suggesting that multiple mutations within this loop may not act in an

additive fashion.

Since the consensus mutations from our screen at positions 1332 and K334 have

been extensively characterized, we chose to look in more depth at the contributions of

positions 326, 327, and 328 of the Fc to FcyRIIIA binding (Figure 4.3b). As a whole,

these F/G loop variants bind FcyRIIIA 176F to a greater extent than the sampled B/C loop

variants, with two F/G loop variants, K3261/A327Y/L328G (IYG) and

K326I/A327E/L328E (IEA), binding FcyRIIIA 176F to a much greater extent than wild-

type Fc. Interestingly, the presence of a Tyr at position 327 in the K3261/L328G

background imparts a large increase in binding affinity, as K3261/L328G alone binds at

near wild-type levels.

To assess the contribution of the individual mutations within these clones, as well

as ask whether additional improved variants exist - such as those that could be present if,

for example 10-fold more clones were sequenced and analyzed - we performed a detailed

point mutant analysis of both the IYG and IEA variants (Figure 4.4). K3261 alone

imparts an increase in binding affinity to FcyRIIIA 176F, suggesting that part of the large

increase in binding affinity of the IYG and IEA variants compared to wild-type is due to

the presence of this mutation. Interestingly, no other combination of mutations other than

the triple mutant imparts improved binding in the IYG variant (and in most cases



dramatically weakens binding), suggesting that for this variant substitution at A327 and

L328, in the K3261 background, act cooperatively to impart improved receptor binding.

Similarly, substitutions at A327 and L328 in the IEA variant also act in a coordinated

way with K3261. L328A by itself weakens receptor binding, but when placed alongside

K3261 results in a double mutant with strengthened binding compared to K3261 alone.

Likewise, A327E alone and A327E/L328A weaken receptor binding, yet in the context of

the IEA variant yield substantially improved FcYRJIIA176F binding.

Binding of aglycosylated F/G loop variants. To assess whether enriched variants from

our screens could lead to aglycosylated Fcs with improved FcyRIIIA binding, the T299A

mutation was placed in the F/G loop variants described above, secreted from HEK cells,

and as a stringent test of binding affinity, assayed for their ability to bind FcyRIIIA176F

(Figure 4.5). Only T299A/K326I/A327Y/L328G (T299A/IYG) and

T299A/K326I/A327E/L328E (T299A/IEA) bound FcyRIIIA17 6 F with detectible affinity,

consistent with these mutations imparting the largest improvements in binding affinity in

the glycosylated background. In this assay, T299A/IYG binds FcyRIIIA176F to a slightly

greater degree than wild type hIgG1, and T299A/IEA to a slightly lesser degree. In

addition, both of these aglycosylated variants bind FcyRIIIA 176V, FcyRIIA13 1R, and

FcyRIIB at approximately wild-type or improved levels (Figure 4.6), demonstrating not

only that aglycosylated Fc variants can be engineered that bind FcyRIIIA, but that such

variants can be engineered to bind the panel of human low-affinity FcyRs as well. In

particular, the binding to FcyRIIB (Figure 4.6b) appears to be greatly strengthened

compared to wild-type Fc for the T299A/IYG and T299A/IEA variants, and given the

high sequence identity between receptors, likely greatly strengthened for FcyRIIA

(Figure 4.6a) as well (the similar signals in this panel likely represent saturation of

binding, as there is little reduction in signal with a 10-fold decrease in receptor labeling

concentration).

Modulating FeyRIIA and FcyRIIB binding of aglycosylated variants. Given the

large increase in binding to FcyRIIA and FcyRIIB imparted by using the T299A mutation

to place the F/G loop variants in an aglycosylated background, we next sought to reduce



the binding of the aglycosylated variant Fcs to these two receptors by placing the

K3261/A327Y/L328G (IYG) F/G loop variant in alternative aglycosylated C'/E loop

backgrounds. Previously, we identified the aglycosylated double mutants N297D/S298T

(DTT), N297D/S298A (DAT), and N297H/S298A (HAT), which weakly bind

FcyRIIIA176V, but have no detectible binding to FcyRIIA 13 1R (Figure 3.9a), suggesting

that these variants preferentially bind FcyRIIIA. The variants T299A/IYG, DTT/IYG,

DAT/IYG, and HAT/IYG all display varied FcyR-binding profiles (Figure 4.7), with the

DTT/IYG, DAT/IYG, and HAT/IYG variants having greatly reducing FcyRIIA and

FcyRIIB binding compared to T299A/IYG (Figures 4.7a,b), consistent with the binding

properties of T299A, DTT, DAT, and HAT alone. All variants appear to bind the

FcyRIIIA17 6V allele equally as well as wild-type Fc (Figure 4.7c), and most (DTT/IYG,

T299A/IYG, and DAT/IYG) display similar, if not slightly improved binding for the

FcyRIIIA176F allele (Figure 4.7d). Interestingly, HAT/IYG has greatly reduced binding

for both FcyRIIA and FcyRIIB, and is thus essentially FcyRIIIA specific. The DTT/IYG

and DAT/IYG variants come closest, in this assay, to displaying near wild-type binding

for all low affinity FcyRs - DAT/IYG has similar binding as wild-type Fc for FcyRIIA

and increased binding for FcyRIIB; DTT/IYG has reduced binding for FcyRIIA and

similar binding as wild-type for FcyRIIB. Taken together with the T299A/IYG variant,

these variants clearly demonstrate that aglycosylated IgG variants can be engineered to

bind all of the low-affinity FcyRs, and with a range of affinities and specificities.



Discussion

In the present study, we demonstrate that aglycosylated IgG variants can be

engineered to engage FcyRIIIA at wild-type or improved levels, and that these variants

can bind to all of the human low-affinity FcyRs. Such variants represent a further step

towards the development of fully-functional aglycosylated IgGs and the potential

production of therapeutic antibodies in virtually any expression system without regard to

post-translational processing.

In engineering these aglycosylated variants, we chose a modular design strategy,

based upon the hypothesis that properties imparted by altered contact loops will be

additive. In our previous work, we identified a series of C'/E loop mutations that impart

a range of aglycosylated FcyR binding properties. By combining these mutant

aglycosylated C'/E loops with an altered F/G loop isolated for improved FcyRIIIA 176F

binding, we have generated a series of aglycosylated Fc variants capable of binding

FcyRIIIA whose relative receptor binding properties mirror those of the C'/E loop

variants alone.

In addition, in screening for variants with improved FcyRIIIA binding, we chose a

directed evolution approach that allowed us to experimentally explore the sequence space

at the sites of Fc:FcyR interaction in a vastly more comprehensive manner than

previously reported approaches, which have included alanine scanning point mutagenesis

(21), screening random mutagenesis libraries of the entire Fc region (22), and in silico

prediction and experimental validation of variants (20). While it's likely that combining

previously described point mutations present in the literature would have also led to

variants with the properties we describe here, it was our hope that the approach we took

would allow us to add further insight to the current knowledge of Fc:FcyR interactions,

and in particular the engineering of these interactions.

The strength of this approach is highlighted in the variants enriched with

substitutions at positions 326-328. While many groups have identified substitutions at

position 326 that strengthen FcyR binding affinity (21, 22, 73), there has been no

demonstration that substitutions at positions 327 and 328 can also lead to improved

variants. In the context of the two best variants from our screen, IYG and IEA, our data



show that mutations at positions 327 and 328 are not additive, yet act in a cooperative

fashion to improve binding affinity. Such variants would not be found by combining

single point mutations identified for improved binding, and are extremely unlikely to be

found in screens of random mutagenesis libraries.

Our yeast display system allows for the rapid screening of millions of variants,

and for the most part enriches variants with properties that translate to improved binding

when secreted from mammalian cells. It is not without artifacts, however, and this is

particularly apparent in the clones enriched from the B/C loop libraries. While there is a

clear preference for several similar variants from these libraries, our screening assay

suggests that these variants as a whole do not substantially improve receptor binding.

This may reflect a limit to the degree to which this loop is capable of improving

FcyRIIIA binding (i.e. it has reached its near optimized level), and/or potentially reflect

variations in the affinity that these mutations impart in yeast-secreted antibodies

(containing yeast N-linked glycoforms) compared to HEK-secreted antibodies

(containing human glycosylation patterns).

Having shown that aglycosylated variants with these receptor binding properties

can be identified, it will be important to quantitatively describe their binding affinity to

the panel of human FcyRs, as well as test their activity in in vitro and in vivo models.

Murine models and clinical data suggest a strong correlation between therapeutic activity

and the presence of the low-affinity FcyRs (5) - FcyRIIA, FcyRIIB, FcyRIIIA - and thus

the variants described here may effectively substitute in these models for wild-type Fc. It

will also be important to assess the biophysical properties and serum half-life of these

IgGs, as previous work has shown reduced stability of deglycosylated wild-type hIgG1

(75) as well as the reduced stability of a glycosylated Fc variant engineered for improved

FcyR binding (74). Previous studies have shown that lack of glycosylation does not

affect serum half-life (25), and that most substitutions within these contact loops have

little effect upon FcRn binding (21).



Materials and Methods

Loop saturation mutagenesis library construction. Libraries were constructed by

homologous recombination of a mutated heavy chain constant region insert into the

4m5.3 heavy chain yeast secretion vector template according to previously published

methods (78). The 4m5.3 heavy chain secretion vector was previously constructed from

the pRS316 shuttle vector by insertion of the GALlO promoter and alpha terminator,

signal peptide, and 4m5.3 variable heavy chain domain upstream of the hIgG1 CHI to

CH3 constant domains (35). The 4m5.3 heavy chain template vector was prepared by

digestion with NheI (New England Biolabs) and XhoI (New England Biolabs), which

flank the hIgG1 constant domains.

Saturation mutagenesis of the lower hinge was performed by gene

reconstruction with the degenerate oligonucleotides 234-237NNK (all oligos from

Integrated DNA Technologies) and 236-239NNK; the B/C loop with 265-268NNK and

267-27ONNK; and the F/G loop with 326-329NNK, 327-33ONNK, 329-332NNK, and

331-334NNK (see Oligonucleotides below for sequences of all oligonucleotides used

during library construction). Degenerate oligos were designed as 52-mers, with 20 bases

of the wild type sequence flanking NNK codons (N=ATCG, K=GT) on both sides.

Briefly, in a first PCR step a template for incorporation of the degenerate oligo was

created by PCR amplifying the region directly 3' of the desired loop insertion site

through the 3' region of the CH3 domain, using the wild type vector as a template. For a

given library, this step used the forward primer ###-###flank-for (e.g. 265-268flank-for)

and the reverse primer 4m-CH3-epPCR-rev; ###-###flank-for is a 20-mer consisting of

the same 3' wild-type sequence in the degenerate oligo, which allows for incorporation of

the degenerate oligo in a second PCR step. In this second step, the gel purified PCR

product from step one was used as a template for the PCR incorporation and

amplification of the degenerate sequence, using the forward primer ###-###NNK (e.g.

265-268NNK) and the reverse primer 4m-CH3-epPCR-rev.

Gene assembly was performed by PCR extension of the above, gel purified

PCR product with a second PCR product, consisting of the 5' region of the gene with 20

bp of overlap with the 5' wild-type sequence of the degenerate oligo. This PCR product



was amplified from the wild-type vector using the forward primer 4m-CH1-epPCR-for

and the reverse oligo ###-###flank-rev (e.g. 265-268flank-rev); ###-###flank-rev is a 20-

mer consisting of the same 5' wild-type sequence in the degenerate oligo, allowing for

extension of the two PCR products to re-construct the entire CH1-CH3 regions. In a final

step, the gel purified extended PCR product was amplified with the oligos 4m-CH1-

epPCR-for and 4m-CH3-epPCR-rev, which amplify the 3' region of the 4m5.3 variable

heavy chain to the 3' end of the CH3 domain, reconstructing the heavy chain CHI to

CH3 gene insert with ~50 base pairs of overlap with the digested template vector for

efficient yeast homologous recombination.

Gene inserts were then transformed with digested template vector by

electroporation into the yeast strain YVH1O/LC, a derivative of the yeast strain YVH1O

(39), containing a chromosomally integrated copy of the 4m5.3 light chain yeast secretion

vector. All saturation libraries had approximately 1-2x10 7 transformants, 10- to 20-fold

greater than the theoretical diversity at the DNA level (324 ~ 1.Ox106).

Oligonucleotides.

4m-CH1-epPCR-for (5'-ATGGAATACTTGGGTCAAGGAACCTCAGTCACCGTCTCCGCTAGC)

4m-CH3-epPCR-rev (5'-ATTTTGTTACATCTACACTGTTGTTATCAGATTTCGCTCGAGTCA)

234-237NNK (5'-CACCGTGCCCAGCACCTGAANNKNNKNNKNNKCCGTCAGTCTTCCTCTTCCC)

236-239NNK (5'-GCCCAGCACCTGAACTCCTGNNKNNKNNKNNKGTCTTCCTCTTCCCCCCAAA)

234-237flank-for (5'-CCGTCAGTCTTCCTCTTCCC)

234-237flank-rev (5'-TTCAGGTGCTGGGCACGGTG)

236-239flank-for (5'-GTCTTCCTCTTCCCCCCAAA)

236-239flank-rev (5'-CAGGAGTTCAGGTGCTGGGC)

265-268NNK (5'-AGGTCACATGCGTGGTGGTGNNKNNKNNKNNKGAAGACCCTGAGGTCAAGTT)

267-270NNK (5'-CATGCGTGGTGGTGGACGTGNNKNNKNNKNNKCCTGAGGTCAAGTTCAACTG)

265-268flank-for (5'-GAAGACCCTGAGGTCAAGTT)

265-268flank-rev (5'-CACCACCACGCATGTGACCT)

267-270flank-for (5'-CCTGAGGTCAAGTTCAACTG)

267-270flank-rev (5'-CACGTCCACCACCACGCATG)

326-329NNK (5'-ACAAGTGCAAGGTCTCCAACNNKNNKNNKNNKGCCCCCATCGAGAAAACCAT)

327-33ONNK (5'-AGTGCAAGGTCTCCAACAAANNKNNKNNKNNKCCCATCGAGAAAACCATCTC)

329-332NNK (5'-AGGTCTCCAACAAAGCCCTCNNKNNKNNKNNKGAGAAAACCATCTCCAAAGC)

331-334NNK (5'-CCAACAAAGCCCTCCCAGCCNNKNNKNNKNNKACCATCTCCAAAGCCAAAGG)

326-329flank-for (5'-GCCCCCATCGAGAAAACCAT)

326-329flank-rev (5'-GTTGGAGACCTTGCACTTGT)



327-330flank-for (5'-CCCATCGAGAAAACCATCTC)

327-330flank-rev (5'-TTTGTTGGAGACCTTGCACT)

329-332flank-for (5'-GAGAAAACCATCTCCAAAGC)

329-332flank-rev (5'-GAGGGCTTTGTTGGAGACCT)

331-334flank-for (5'-ACCATCTCCAAAGCCAAAGG)

331-334flank-rev (5'-GGCTGGGAGGGCTTTGTTGG)

Library screening. Library screening was performed using the cell surface secretion

assay (CeSSA) (34). Briefly, pooled loop libraries were grown in SD-CAA (2% glucose,

0.67% yeast nitrogen base, 0.54% Na2HPO 4, 0.86% NaH2PO 4-H20, 0.5% casein amino

acids) to an OD 600 of - 5, and then induced in YPG (2% galactose, 2% peptone, 1% yeast

extract, 0.54% Na2HPO 4, 0.86% NaH2PO4-H20) for 12 hrs at 20 *C. Following this pre-

induction phase, yeast were labeled with fluorescein-PEG-NHS (Laysan Bio) and re-

induced in YPG containing 15% PEG (w/v) at 20 'C for 36 hrs. Cells were then washed

with PBS containing 0.1% (w/v) BSA (PBS/BSA).

For the first two rounds of screening, libraries were incubated with biotinylated

hFcyRIIIA176F preloaded onto streptavidin magnetic beads (Invitrogen), and enriched

variants captured by magnetic separation, with non-bound yeast discarded (Margaret

Ackerman, manuscript submitted). Beads were washed with PBS/BSA, then placed in

SD-CAA supplemented with penicillin/streptomycin (Invitrogen) to amplify captured

yeast cells. Starting with the third round of screening, yeast were labeled with

biotinylated hFcyRIIIA176F preloaded onto streptavidin-Alexa 647 (Invitrogen). The

subpopulations were sorted on either a BD FACSAria (Becton Dickinson) or a MoFlo

Cell Sorter (Cytomation Inc) and collected cells grown in SD-CAA supplemented with

penicillin/streptomycin (Invitrogen), for three additional rounds of screening (five rounds

in total). Library populations were labeled for FACS sorting at increasingly stringent

concentrations of FcyRIIIA176F tetramer as follows: round three (500 pM), round four (50

pM), and round five (50 pM).

Cloning and Site Directed Mutagenesis. Clones enriched from the yeast-based screen

were cloned from the yeast secretion vectors into the gWIZ mammalian expression vector

(Genlantis) by a variation of the Quikchange mutagenesis protocol (84). Fc domains



were PCR amplified from the pRS316 based heavy chain yeast secretion vector with the

oligos:

gWIZ-Fc-for = (5'-GAGCCCAAATCTTGTGACAA)

gWIZ-SalI-rev = (5'-TCACACGTGTCGACTTATCATTTACCCGGAGACAGGGAGA)

which allow for > 20 bp of homology to the wild-type segment in the gWIZ vector. PCR

products were gel purified and used as oligos for PCR-amplification of the entire variant

vector, incorporating the sequence of the Fc variant.

Point mutants were constructed by PCR-amplification of the entire vector using

complementary primers containing the desired point mutations.

Characterization of HEK-secreted Fc mutants. Unless otherwise noted, Fc variants

were transiently transfected into HEK 293F cells (Invitrogen) in a 6-well plate format.

Cell culture supernatants were loaded onto fluorescein-conjugated yeast overnight at

4 'C; yeast were then washed with PBS/BSA, labeled with biotinylated FcyR preloaded

onto streptavidin-Alexa 647 at 4 'C for > 2 hrs, and analyzed by flow cytometry.

Labeling with 10 pg/ml Protein A-Alexa 647 (Invitrogen) was performed as a separate

IgG loading control for all samples. FcyR labeling fluorescence for individual variants

was normalized by the surface IgG loading of a variant relative to that of wild-type IgG,

as determined by relative Protein A-Alexa 647 labeling. There was strong agreement

(within 10% difference) between this approach to signal normalization and gating on a

population of cells to give similar surface loading signals.

Antibodies and recombinant proteins. The 4m5.3-human Fc chimeric variants were

produced by transient transfection of 293F cells (Invitrogen) and subsequent purification

from cell culture supematants. For protein production, cells were cultured in Freestyle

293F Expression Medium (Invitrogen). Recombinant antibodies were purified with

immobilized protein A (Pierce) by affinity chromatography. All proteins were dialyzed

against PBS. Purity was assessed by SDS-PAGE followed by Coomassie Blue staining.
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Figure 4.3
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Relative binding of clones enriched from screen. B/C loop (A) and F/G loop (B) 4m5.3 Fc
variants enriched for improved FcyRIIIA17 6F binding from the yeast-based screen were expressed
from HEK cells and assayed for relative binding to FcyRJIIA17 6F compared to wild-type (WT).
Fluorescein-labeled yeast were incubated with cell culture supernatants, then labeled with either
0.5 nM or 5.0 nM of streptavidin Alexa 647 FcyR tetramer, and then cells analyzed by flow
cytometry. Data represent the average of two trials, normalized by the relative IgG surface
loading of a given variant compared to wild-type, as determined by a separate Protein A 647
loading control. Dashes represent the same residue as the wild-type sequence.
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Figure 4.4
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Mutational analysis of IYG and IEA variants. 4m5.3 Fc variants, comprising the ensemble of
mutations present in the K3261/A327Y/L328G (1YG) and K3261/A327E/L328A (IEA) variants
were assayed for binding to FcyRIIIA176F. Fluorescein-labeled yeast were incubated with cell
culture supernatants, labeled with 5 nM of streptavidin Alexa 647 FcyR tetramer, and then cells
analyzed by flow cytometry. Data represent the average of two trials, normalized by the relative
IgG surface loading of a given variant compared to wild-type (WT), as determined by a separate
Protein A 647 loading control. Dashes represent the same residue as the wild-type sequence.
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Figure 4.5
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FcyRIIA binding of aglycosylated F/G loop variants. Aglycosylated variants of the F/G loop
clones enriched for improved FcyRIJA17 6F binding, described in Figure 4.3, as well as the most
frequently enriched B/C loop clone (V266L/S267E/H268E), were assayed for binding to
FcyRIIA176F. The T299A mutation, which confers weak aglycosylated binding to FcyRIIIA 76V,
was introduced into all clones. Fluorescein-labeled yeast were incubated with cell culture
supernatants, labeled with either 0.5 nM or 5.0 nM of streptavidin Alexa 647 FcyR tetramer, and
then cells analyzed by flow cytometry. Data represent the average of two trials, normalized by
the relative IgG surface loading of a given variant compared to wild-type, as determined by a
separate Protein A 647 loading control. Dashes represent the same residue as the wild-type
sequence.
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FeyR binding of T299A/IEA and T299A/IYG variants. T299A/IEA and T299A/IYG were
assayed for relative binding to the panel of human FcyRs: (A) FcyRIIA13 1R, (B) FcyRIIB, (C)
FcyRIIAl 76V, and (D) FcyRIIIA176 F. Fluorescein-labeled yeast were incubated with cell culture
supernatants, labeled with either 0.5 nM or 5.0 nM of streptavidin Alexa 647 FcyR tetramer, and
then cells analyzed by flow cytometry. Data represent the average of two trials, normalized by
the relative IgG surface loading of a given variant compared to wild-type, as determined by a
separate Protein A 647 loading control.
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Figure 4.7 (a, b)
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Figure 4.7 (c, d)
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Fc'yR binding of aglycosylated lYG variants. T299A/K32611A327Y/L328G (T299AIIYG),
N297D/S298T/K32611A327Y/L328G (DTT/IYG), N297D/S298A1K3261!A327Y/L328G
(DAT/IYG), and N297H/S298A/K3261/A327Y/L328G (HAT/IYG) were assayed for relative
binding to the panel of human FcyRs: (A) FcyRIIA13 1R, (B) FcyRIIB, (C) FcyRIIAl' , and (D)
FcyRIIIA176 F. Fluorescein-labeled yeast were incubated with 20 pg/ml purified IgG, labeled with
streptavidin Alexa 647 FcyR tetramers at a range of concentrations, and then cells analyzed by
flow cytometry. Data represent the average of two trials; MFI = median fluorescence intensity.
Similar IgG surface loading of a given variant compared to wild-type was confirmed by a
separate Protein A 647 loading control.
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Chapter 5. Engineering Fc variants with specificity for FcyRIIIA

Introduction

The activation of immune effector functions, in particular through the engagement

of cellular Fcy receptors (FcyRs), is a critical mechanism in the efficacy of several

therapeutic antibodies (5). In immunity, antibodies act as a bridge between a pathogen

and immune effector cells, simultaneously binding antigen through their variable regions,

while activating immune cells through interaction of their conserved Fc domains with the

FeyRs of immune cells. This process, termed antibody-dependent cellular cytotoxicity

(ADCC), leads to phagocytosis of the bound pathogen and release of inflammatory

mediators (5), and in therapeutic antibodies directed against tumor-specific antigens, can

lead to immune cell mediated killing of antibody-bound tumor cells.

The human FeyR (hFcyR) family consists of the activating receptors FeyRI,

FeyRIIA, and FeyRIIIA, and the inhibitory receptor FeyRIIB. While FeyRI binds IgG

with high affinity (nanomolar binding constants), FcyRIIA, FeyRIIB, and FcyRIIIA bind

IgG with micromolar affinity, becoming activated only via avid multivalent interactions

with opsonized antigen. Several studies point to the importance of the low affinity FeyRs

in therapeutic efficacy (5) and have suggested ways in which modulating the properties

of the IgG Fe and its interaction with FeyR may enhance therapeutic response (17).

Enhanced ADCC has been observed in mice lacking the lone inhibitory receptor

FeyRIIB (11), and additional murine models suggest that the ratio of the binding affinity

of a therapeutic IgG for an activating receptor compared to that of the inhibitory receptor

(the activating to inhibitory, or A/I ratio) is predictive of therapeutic outcome (12). Other

studies, including clinical data, point to the importance of allelic variation within human

FeyRIIIA in therapeutic outcome (13-16). Populations homozygous for a valine at

position 176 of FeyRIIIA (FeyRIIIA 176V), as opposed to a phenylalanine (FcyRIIIA176F),

have dramatically improved response rates, likely due to a several-fold stronger binding

affinity of wild-type hIgG1 for the FcyRIIIA17 6V allele.



Such observations have led to the development of Fe variants with improved, and

more specific binding to FcyRIIIA, either through engineering the glycan attached to

asparagine 297 (N297) of the Fc (9, 18, 19, 85), or through modifying the characteristics

of the Fc polypeptide itself (20-22). The three most well characterized polypeptide

variants, S239D/A330L/1332E (20), F243L/R292P/Y300L/V305I/P396L (22), and

S298A/E333A/K334A (21), achieve improved FeyRIIIA binding with a range of

FcyRIIB affinities. S239D/A330L/1332E confers an ~ 100-fold increase in FcyRIIIA

binding as well as increased FcyRIIB binding; F243L/R292P/Y300L/V305I/P396L has

an ~ 10-fold increase in FcyRIIIA binding and approximately wild-type FcyRIIB binding;

and S298A/E333A/K334A has increased binding affinity for FcyRIIIA and dramatically

reduced affinity for FcyRIIB. These Fc variants have been shown to have dramatically

enhanced ADCC in in vitro models, as well as reduced tumor progression in xenograft

models. Interestingly, a recent study using cell based assays showed a correlation

between immune cell activation and binding affinity to activating receptors, but little

correlation with FcyRIIB binding (23), raising the question of whether enhanced

therapeutic outcome can be achieved by optimizing the activating receptor binding

properties alone, or whether binding to the inhibitory receptor, FcyRIIB, also plays a role

in therapeutic outcome.

In the present study, we have sought to, in a comprehensive manner, expand the

window of specificity for the activating FcyRIIIA over the inhibitory FcyRIIB that can be

engineered into the human IgG1 Fc domain. Here, we have focused on screening for

variants with enhanced FcyRIIIA17 6F binding but dramatically reduced FcyRIIB binding,

simultaneously improving binding to the less-responsive low-affinity FcyRIIIA allele

population while eliminating or reducing the inhibitory component to immune cell

activation. We describe a screen that samples amino acid diversity at the loops of the Fc

that make contact with FcyR, asking what combinations of mutations at these sites impart

specificity in an experimentally much more comprehensive manner than previously

reported. Our screen returns previously identified mutations within these loops that

impart specificity, as well as additional mutations flanking these residues, not previously

reported, that enhance specificity.



Results

Engineering approach and screening methodology. Recently, our group developed

and characterized a method for the improved enrichment (or depletion) of extremely

weak binding proteins from yeast-display libraries using the avidity enhancement of

antigen-coated magnetic beads (Margaret Ackerman, manuscript submitted). Depletion

of binders from yeast-display libraries can be efficiently accomplished through

successive rounds of incubation of libraries with target antigen-coated beads without

library re-amplification, increasing the likelihood of eliminating binders from the

population with each pass. This methodology is similar to the one described by

Stavenhagen and coworkers to engineer Fc specificity with yeast display libraries (22),

but as discussed later, has some key differences that likely improve specificity screening.

To screen for receptor specificity, we set out to systematically ask what

combinations of mutations at Fc contact loops yield FcyRIIIA-specific binding,

experimentally exploring the sequence space at these interaction sites in a vastly more

comprehensive manner than previous approaches, which have included alanine scanning

point mutagenesis (21), screening random mutagenesis libraries of the entire Fc region

(22), and in silico prediction and validation of variants (20). While mutations distant

from Fc:FcyR contact interfaces have been shown to impart specificity (21, 22), likely

through conformational changes in the Fc, we reasoned that focusing on sampling amino

acid diversity within the loops of the Fc in direct contact with FcyRs would have the

greatest impact on specificity.

Here, we constructed saturation libraries about three contact sites within the Fc -

the lower hinge, the B/C loop, and F/G loop (Figure 4.1) - and screened them by

displaying these full-length hIgG1 variants on the surface of yeast. In this display system,

the femtomolar affinity scFv 4m5.3 (38) has been reformatted as a hIgG1, allowing 4m5.3

hIgGi Fc library variants to be captured on fluorescein-labeled yeast from which they are

secreted (Figure 3.2) by adapting features of a cell surface secretion capture assay (34)

and the improved secretion of full-length hIgG1 from S. cerevisiae (Chapter 2). Contact

interface libraries were constructed by fully-randomizing four amino acid stretches using

degenerate NNK codons (N=ATCG, K=GT), which encode all 20 possible amino acids



in 32 codons. This design approach allows for over-sampling the codon diversity (32 4 ~

1x10 6), and thus amino acid diversity, in these yeast-based libraries, which often have a

transformation efficiency on the order of 1x10 7. The following libraries were constructed

and pooled by contact region: lower hinge (234-237, 236-239), B/C loop (265-268, 267-

270), and F/G loop (326-329, 327-330, 329-332, 331-334).

Yeast capture libraries were depleted multiple times in succession on FcyRIIB

coated magnetic beads, then screened for binding to the FcyRIIIA176F allele, initially on

receptor-coated magnetic beads, and during later rounds of screening, at increasing

stringency by fluorescent activated cell sorting (FACS). Given its weaker binding for

wild-type Fc, FcyRIIIA176F likely represents a more stringent, as well as therapeutically

relevant, barrier for improved FcyRIIIA binding.

Variants enriched for FcyRIIIA176F specific binding. All variants enriched for

FcyRIIIA specific binding from the B/C loop libraries originated from the 267-270

sublibrary, suggesting that this region of the loop dominates specificity (Figure 5.1a,b).

Among the clones isolated, there is an absolute preference for substitution at D270,

predominately to Glu, consistent with previous studies that have shown that the D270E

variant slightly strengthens binding to FcyRIIIA176F while reducing binding to FcyRIIB

(21, 22). In addition, H268 is altered in virtually all clones, with a slight preference for

the acidic residues Asp and Glu, although multiple substitutions are present, with Met

and Thr also occurring at this position multiple times. The most abundant residue present

at position 269 is Asp, with the similarly negatively charged wild-type Glu also appearing

multiple times. Position 267 displays the least variation among the clones enriched from

the screen, with a strong preference for the wild-type Ser, or in some variants, Asp.

Similarly, all variants enriched for FcyRIIIA-specific binding from the pooled

F/G loop libraries are derived from the 329-332 sublibrary, suggesting that this region of

the loop dominates specificity (Figure 5.1c,d). Enriched variants display a strong

consensus motif, containing P329A, A330L/V/I/E, and 1332E/D, with a strong preference

for 1332E. 1332E alone has been shown to increase binding to all FcyRs (20), and A330L,

when placed in the S239D/1332E background, improves receptor specificity, slightly

strengthening FcyRIIIA binding while weakening FcyRIIB binding (20). A330V alone



has been shown to confer FcyRIIIA-specific binding (22); P329A alone greatly reduces

binding to all FcyRs (21).

Characterization of FcyRIHIA176F-specific loop variants. To characterize the variants

enriched from our yeast-based screen, we cloned pools of clones into mammalian

expression vectors, sequenced to confirm clone identity, and expressed individual IgG

variants from HEK 293 cells. Cell culture supernatants were loaded onto fluorescein-

labeled yeast, then variants analyzed for their ability to bind fluorescently labeled FcyR-

streptavidin tetramers, and data normalized by relative surface IgG loading. All variants

analyzed in this assay display substantial improvements in FcyRIIIA 176F binding

specificity, although the degree of specificity varies across the clones analyzed (Figure

5.2). The F/G loop variants, all highly similar in sequence, have dramatic increases in

FcyRIIIA176F binding and large reductions in FcyRIIB binding, with one clone,

P329A/A330E/1332E (AE*E) displaying undetectable FcyRIIB binding at the

concentration of receptor used in the screening assay (Figure 5.2b). Scanning across the

F/G loop variants, it appears that the presence of Glu at 332 as opposed to Asp imparts

improved FcyRIIIA17 6 F binding in the P329A/A330L background, and that the

hydrophobic residues Leu and Val impart similar binding properties in the P329A/1332E

background, while an Ile at this position reduces binding affinity.

Substantial variation, in both sequence and binding properties, exists in the B/C

loop clones analyzed (Figure 5.2a). A subset of clones achieve specificity by virtually

eliminating (at the concentration tested) FcyRIIB binding, while maintaining

FcyRIIIA 176F binding at near wild-type, or even reduced, levels. Another subset reduces,

although does not ablate, FcyRIIB binding, yet realizes improvements in specificity

through additional increases in FcyRIIIA176F binding. Among the clones analyzed, some

observations can be made about the role of individual mutations within the context of

other mutations within a variant. Within the S267D/D270S background, the presence of

Asp at position 267, as compared to Met, substantially increases binding to both FcyRs;

similarly, within the H268E/E269D background, the presence of a Glu at position 268, as

opposed to Met, also substantially increases binding to both FcyRs. Within the

H268E/E269D background, the presence of Glu at position 270, as opposed to Gln,



imparts increased binding affinity to both receptors. Finally, within the H268T/D270E

background, an Asp at position 269, as opposed to the wild-type Glu, allows for greatly

improved FcyRIIIA176F binding without a detectible increase in FcyRIIB binding.

Effect of P329A in F/G loop clones. To understand the contribution of individual

mutations from the most interesting variants identified from our screen, we constructed

point mutants and assayed them for receptor binding. The F/G loop variant A330L/1332E

has been previously identified and characterized, as part of a triple mutant

S239D/A330L/1332E, and we sought to understand the contribution of the P329A

mutation that was universally enriched from our screen (Figures 5.1c,d). Compared to

A330L/1332E, P329A/A330L/1332E appears to yield a slight decrease in FcyRIIIA176F

binding, yet weakens FcyRIIB binding to a greater extent (Figure 5.3). Similar to the

results from the initial screen using cell culture supernatants (Figure 5.2b), the presence

of Glu at position 330 in the variant P329A/A330E/1332E, compared to Leu in

P329A/A330L/1332E, significantly weakens binding to all FcyRs, yielding a variant with

virtually no FcyRIIB and FcyRIIA binding, and strengthened (compared to wild-type Fc)

binding to FcyRIIIA176F. The F/G loop only variants have weakened binding to all FcyRs

compared to the previously described S239D/A330L/1332E. In this assay, the S239D

mutation, in the context of A330L/1332E, strengthens binding to all FcyRs, albeit appears

to enhance binding to FcyRIIB and FcyRIIA131R to a greater extent than to FcyRIIIA176F

Overall, the variant enriched from the screen, P329A/A330L/1332E, appears to have

weakened FcyRIIIA17 6 F binding compared to S239D/A330L/1332E, yet dramatically

reduced FcyRIIB binding.

Mutational analysis of the B/C loop clone H268T/E269D/D270E. To understand the

contribution of individual mutations in the triple mutant H268T/E269D/D270E (TDE),

the most promising B/C loop variant from the initial screen (Figure 5.2a), we compared

the relative receptor binding of the previously identified variant D270E, which has been

shown to confer FcyRIIIA specific binding, to H268T/E269D/D270E and the double

mutants H268T/D270E and E269D/D270E (Figure 5.3). Similar to previous reports,

D270E alone slightly increases FcyRIIIA17 6F binding while greatly reduces FcyRIIB



binding. Placing H268T in the D270E background reduces binding to FeyRIIIA176F

similar to that of wild-type Fc, which is consistent with the data from the initial screen

using cell culture supernatants (Figure 5.2a). In contrast, placing E269D in the D270E

background results in a double mutant with strengthened FcyRIIIA176F binding compared

to D270E alone, and with similar, barely detectible binding to FcyRIIB. E269D/D270E

binds FcyRIIIA176F to a greater extent than H268T/E269D/D270E, further suggesting that

H268T has a deleterious effect on receptor binding. Interestingly, E269D/D270E was

among the myriad clones enriched from the yeast-based screen (Figure 5.1a), suggesting

that further screening of HEK-expressed variants from the enriched population would

have uncovered this variant, as well as potentially additional variants with desirable FcyR

binding properties.

Effect of loop grafting on receptor binding properties. Since the initial library screen

for receptor specificity only looked at Fc variants with diversity in four amino acid

stretches, which were confined to individual loops at the Fc:FcyR contact interface, we

sought to improve the properties of the variant Fcs by grafting B/C and F/G loops from

enriched variants into a single Fc (Figure 5.4). We reasoned that since the Fc

homodimer binds the monomeric FcyR asymmetrically (6, 7) - with the F/G loop from

one chain of the Fc making extensive contacts with FcyR and the B/C loop from the other

chain of the Fc making extensive contacts - the binding properties of such loop grafted

variants would be additive. Both H268T/E269D/D270E/P329A/A330L/1332E

(TDE/AL*E) and H268T/E269D/D270E/P329A/A330E/I332E (TDE/AE*E) have

slightly strengthened binding to FcyRIIIA 176F compared to the F/G loop only variants

P329A/A330L/1332E (AL*E) and P329A/A330E/1332E (AE*E), consistent with the B/C

loop variant H268T/E269D/D270E (TDE) imparting slightly improved binding to

FcyRIIIA176F compared to wild-type Fc (Figure 5.4a). Interestingly, the presence of the

mutant B/C loop dramatically reduces binding to FcyRIIB (Figure 5.4b), as TDE/AE*E

appears to have completely ablated FcyRIIB binding and TDE/AL*E substantially

reduced FcyRIIB binding.



Comparison of engineered variants to published variants. As a final test of our

engineering approach, we sought to compare the B/C and F/G loop-grafted variants to the

previously reported variants mentioned above: S298A/E333A/K334A, engineered by a

group at Genentech using alanine scanning mutagenesis (21); S239D/A330L/1332E,

engineered by a group at Xencor using in silico prediction and screening (20); and

F243L/R292P/Y300L/V3051/P396L, engineered by a group at Macrogenics using yeast

display libraries of randomly mutated Fc domains (22). These variants display a range of

affinities and specificities in our assay (Figure 5.5), and the relative data correlate well

with previously reported affinities and specificities (20-22): S298A/E333A/K334A has

been reported to increase binding affinity to FcyRIIIA176F while nearly abrogating

binding to FcyRIIB; S239D/A330L/1332E to greatly enhance binding to both receptors;

and F243L/R292P/Y300L/V3051/P396L to greatly strengthen binding affinity to

FcyRIIIA 176F while maintaining FcyRIIB binding at near wild-type levels.

As a comparison, we chose the loop grafted variants TDE/AL*E and TDE/AE*E,

as well as the variants, E269D/D270E/P329A/A330L/1332E (*DE/AL*E) and

E269D/D270E/P329A/A330E/1332E (*DE/AE*E), in which position 268 is maintained

as the wild type His, motivated by the slight improvement in FcyRIIIA176F binding for

E269D/D270E compared to H268T/E269D/D270E (Figure 5.3a). The pairs TDE/AL*E

and *DE/AL*E, and TDE/AE*E and *DE/AE*E, display similar binding curves to all

receptors (Figure 5.5), suggesting that the H268T mutation - in the context of the loop

grafted variants - has little effect on receptor binding properties. The properties of the

loop grafted variants are most similar to S298A/E333A/K334A, achieving strengthened

FcyRIIIA176F binding with similar, near abrogated FcyRIIB binding (Figures 5.5, 5.6).

TDE/AL*E and *DE/AL*E appear to bind FcyRIIIA176F at levels intermediate that of

F243L/R292P/Y300L/V3051/P396L and S239D/A330L/1332E, suggesting an

approximately 10-fold to 100-fold improvement in binding affinity to this allele; 10-fold

and 100-fold enhancements have been previously measured for these variants by SPR (20,

22). Variants with a Glu at position 330 (TDE/AE*E and *DE/AE*E) have smaller

increases in FcyRIIIA 176F binding - similar, if not strengthened compared to

S298A/E333A/K334A - with undetectable binding to FcyRIIB in this assay.



Discussion

Previous approaches to engineering improved binding affinity and specificity

within the IgG Fc domain for FcyR have varied widely in their methodology, throughput,

and exploration of Fc sequence space. In an initial analysis to understand the

contribution of individual Fc positions to receptor binding, Shields and coworkers

constructed a comprehensive set of surface exposed alanine point mutants within the

human IgGi Fc and individually assayed each variant for relative FcyR binding, then

combined mutations identified by their alanine scanning mutagenesis to construct

variants with enhanced properties (21). More recently, Lazar and coworkers used

computational modeling of Fc:FcyR interactions to screen variants in silico, then

experimentally validate candidate mutations, individually and in combination (20). Also

more recently, Stavenhagen and coworkers used a directed evolution approach, screening

randomly mutated yeast-display Fc libraries for improved binding to FcyRIIIA, as well as

for loss of FcyRIIB binding followed by enrichment for FcyRIIIA binding (22), then

similarly analyzed consensus mutations from enriched clones, individually and in

combination, to generate variants with defined properties.

The approach we describe here is similar to the one employed by Stavenhagen et

al, yet with modifications in display system design, and importantly, in library

construction and screening methodology. Similar to Stavenhagen et al, we chose to use a

directed evolution approach to experimentally screen large collections of variants, taking

advantage of the eukaryotic protein processing of S. cerevisiae to display Fc variants on

the surface of yeast. In our system, we have chosen to present the Fc in the context of the

fully-assembled human IgGi using a cell surface secretion capture assay (34). In addition,

we chose to build upon this approach by: 1) focusing on better sampling the sequence

space about the Fc:FcyR contact loops, which we would predict would have the largest

impact upon binding specificity, and before this study had not been comprehensively

addressed, and 2) employing an improved methodology for screening for binding

specificity from yeast-displayed libraries, based upon recent work from our group

(Margaret Ackerman, manuscript submitted).



While sites distant from the contact interface have been shown to have effects

upon binding affinity and specificity (21, 22), we hypothesized that a large component of

the binding properties of the Fc domains could be modulated by focusing directly on the

loops of the Fc that make contact with FcyR. While variants within these loops have

been previously identified through all of the approaches outlined above, we hypothesized

that we could uncover additional mutations missed by these previous screening

approaches by a more thorough examination of sequence space, completely sampling all

combinations of mutations within these loops in four amino acid stretches.

We also use a stringent screening approach for finding variants with dramatic

losses in binding to the inhibitory FcyR, FcyRIIB. As in (22), we use the avidity

enhancement of magnetic beads to remove FcyRIIB-binding clones from the library, yet

rather than re-amplifying the library before performing positive enrichment for FcyRIIIA

binding clones in a second round of screening, we subject the depleted population to

additional rounds of depletion on FcyRIIB-coated magnetic beads, then an ultimate

positive selection for FcyRIIIA binding, before re-amplifying the sublibrary. Our data

have shown absorption of yeast-displayed binding clones in a model system on magnetic

beads to be approximately 80% efficient, with successive rounds of depletion before re-

amplification pushing the efficiency of absorbing binding clones to > 95%.

The variants enriched from our screen from both the B/C loop and F/G loop

libraries are similar to those previously identified, although contain elements that allow

for enhanced receptor specificity, in particular through reduced FcyRIIB binding,

consistent with our screening approach. In particular, all of the clones enriched from the

B/C loop libraries contain substitutions as D270, which has previously been identified as

modulating FcyR specificity (21, 22). Our approach reveals a flanking mutation, E269D,

that when placed in the D270E background, enhances FcyRIIIA17 6F binding while

maintaining greatly reduced FcyRIIB binding. Within the F/G loop, there is a clear

consensus for variants with substitutions at positions 330 and 332 (to Glu), a background

that has been previously identified by in silico screening (20). Our screen also results in

an absolute preference for variants with the flanking mutation P329A, which reduces

FcyRIIB binding, with a slight decrease in FcyRIIIA 176F binding. In addition, our

approach also identifies variants with diversity at position 330, in particular



P329A/A330E/1332E, which, while improving FcyRIIIA176 F binding, has undetectable

FcyRIIB binding.

Having identified loop variants with desired properties from our screen, we also

demonstrate modularity in the engineering of Fe domain variants with desired properties

by combining mutant B/C and F/G loops. Grafting in the most specific B/C loop

(H268T/E269D/D270E) into two of the most specific F/G loops (P329A/A330L/1332E

and P329A/A330E/1332E) yield combined variants with additive properties - enhanced

FcyRIIIA 176F binding and decreased FcyRIIB binding. These combined variants have A/I

ratios that rival if not exceed those of previously reported variants and display virtually

no binding to the inhibitory receptor, and thus should prove valuable tools for parsing out

the contributions of individual FcyRs to therapeutic response, as well as in the design of

therapeutic antibodies with optimal FcyR binding properties.



Materials and Methods

Loop saturation mutagenesis library construction. See Chapter 4, Materials &

Methods.

Oligonucleotides. See Chapter 4, Materials & Methods.

Library screening. Library screening was performed using the cell surface secretion

assay (CeSSA) (34). Briefly, pooled loop libraries were grown in SD-CAA (2% glucose,

0.67% yeast nitrogen base, 0.54% Na2HPO4, 0.86% NaH2PO4-H 20, 0.5% casein amino

acids) to an OD 60 0 of~ 5, and then induced in YPG (2% galactose, 2% peptone, 1% yeast

extract, 0.54% Na2HPO 4, 0.86% NaH2PO 4-H2O) for 12 hrs at 20 'C. Following this pre-

induction phase, yeast were labeled with fluorescein-PEG-NHS (Laysan Bio) and re-

induced in YPG containing 15% PEG (w/v) at 20 'C for 36 hrs. Cells were then washed

with PBS containing 0.1% (w/v) BSA (PBS/BSA).

For the first two rounds of screening, pooled libraries were subjected to multiple,

successive depletion steps for FcyRIIB binding followed by positive enrichment for

FcyRIIIA 176F binding on magnetic beads. Depletion was carried out by incubating pooled

libraries with biotinylated hFcyRIIB preloaded onto streptavidin magnetic beads

(Invitrogen) for 2 h at 4 0C with rotation, followed by magnetic separation, removal of

unbound yeast, and subsequent further incubation of the depleted population again with

FcyRIIB-coated magnetic beads, for a total of four successive depletions. Following the

final depletion step, positive enrichment for binding to hFcyRIIIA176F was performed by

incubating the unbound yeast population with FcyRIIIA 176F coated magnetic beads,

magnetic separation, washing with PBS/BSA, and elution and propagation of captured

clones by growth of captured magnetic beads in SD-CAA supplemented with

penicillin/streptomycin at 30 'C. Starting with the third round of screening, following

successive depletion, yeast were labeled with biotinylated hFcyRIIIA176F preloaded onto

streptavidin-Alexa 647 (Invitrogen). The subpopulations were sorted on either a BD

FACSAria (Becton Dickinson) or a MoFlo Cell Sorter (Cytomation Inc) and collected

cells grown in SD-CAA supplemented with penicillin/streptomycin (Invitrogen), for three
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additional rounds of screening (five rounds in total). Library populations were labeled

for FACS sorting at increasingly stringent concentrations of FcyRIIIA 176F tetramer as

follows: round four (800 pM), round five (200 pM).

Cloning and Site Directed Mutagenesis. See Chapter 4, Materials & Methods.

Characterization of HEK-secreted Fc mutants. Unless otherwise noted, Fc variants

were transiently transfected into HEK 293F cells (Invitrogen) in a 6-well plate format.

Cell culture supernatants were loaded onto fluorescein-conjugated yeast overnight at

4 'C; yeast were then washed with PBS/BSA, labeled with biotinylated FcyR preloaded

onto streptavidin-Alexa 647 at 4 'C for > 2 hrs, and analyzed by flow cytometry.

Labeling with 10 ptg/ml Protein A-Alexa 647 (Invitrogen) was performed as a separate

IgG loading control for all samples. FcyR labeling fluorescence for individual variants

was normalized by the surface IgG loading of a variant relative to that of wild-type IgG,

as determined by relative Protein A-Alexa 647 labeling. There was strong agreement

(within 10% difference) between this approach to signal normalization and gating on a

population of cells to give similar surface loading signals.

Antibodies and recombinant proteins. See Chapter 4, Materials & Methods.
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Sequences of B/C and F/G loop variants enriched for FcyRIIIA176 F specific-binding.
Sequences of B/C loop clones enriched after the fourth (A) and more stringent fifth (B) rounds of
screening. Sequences of F/G loop clones enriched after the fourth (C) and more stringent fifth
(D) rounds of screening. Dashes represent the same residue as the wild-type sequence. Numbers
in parentheses represent the number of times a particular clone was present in the population
sequenced.
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Figure 5.2
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Relative binding of clones enriched from screen. B/C loop (A) and F/G loop (B) 4m5.3 Fc
variants enriched for FcyRIIIA17 6F specific binding from the yeast-based screen were expressed
from HEK cells and assayed for relative binding to FcyRIIIA176F and FcyRIIB compared to wild-
type (WT). Fluorescein-labeled yeast were incubated with cell culture supernatants, labeled with
5.0 nM of streptavidin Alexa 647 FcyR tetramer, and then cells analyzed by flow cytometry.
Data represent the average of two trials, normalized by the relative IgG surface loading of a given
variant compared to wild-type, as determined by a separate Protein A 647 loading control.
Dashes represent the same residue as the wild-type sequence.
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Figure 5.3
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Mutational analysis of lead clones enriched for FcyRIHA specific binding. Relative binding
of the previously described D270E variant compared to the enriched B/C loop clone
H268T/E269D/D270E and the component double mutants H268T/D270E and E269D/D270E.
Similarly, relative binding of the previously described S239D/A330L/I332E variant and the F/G
loop only clones A330L/I332E, P329A/A330L/I332E, and P329A/A330L/1332E to (A)
FcyRIIIA176F, (B) FcyRIIB, and (C) FcYRIIA131R. 4m5.3 Fc variants were expressed from HEK
cells, purified with Protein A agarose, and 20 sg/ml of antibody loaded onto fluorescein-labeled
yeast. Yeast were labeled with streptavidin Alexa 647 FcyR tetramers and analyzed by flow
cytometry. Data represent the average of two trials; similar IgG surface loading of a given
variant compared to wild-type was confirmed by a separate Protein A 647 loading control.
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Effect of loop grafting of candidate B/C and F/G loop variants. Relative binding of
H268T/E269D/D270E (TDE), P329A/A330L/1332E (AL*E), P329A/A330E/1332E (AE*E), and
the loop grafted versions TDE/AL*E and TDE/AE*E to (A) FcyRIIIA 7 6F, (B) FcyRIIB, and (C)
FcyRIIA131R. 4m5.3 Fc variants were expressed from HEK cells, purified with Protein A agarose,
and 20 gg/ml of antibody loaded onto fluorescein-labeled yeast. Yeast were labeled with
streptavidin Alexa 647 FcyR tetramers and analyzed by flow cytometry. Data represent the
average of two trials; similar IgG surface loading of a given variant compared to wild-type was
confirmed by a separate Protein A 647 loading control.
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Figure 5.5 (a, b)
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Figure 5.5 (c, d)
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Figure 5.5 (legend)

Comparison of engineered variants to published variants. Relative binding of the engineered,
loop-grafted FcyRIIIA-specific variants compared to previously published variants, to (A)

I131R ( RI 176F
FceyRILA" , (B) FcyRIIB, (C) FcyRIIIA"', and (D) FcyRIIIA' . Variant abbreviations:

WT
TDE/AL*E
TDE/AE*E
*DE/AL*E
*DE/AE*E
Macrogenics
Genentech
Xencor

wild-type
H268T/E269D/D270E/P329A/A330L/1332E
H268T/E269D/D270E/P329A/A330E/1332E
E269D/D270E/P329A/A330/1332E
E269D/D270E/P329A/A330E/1332E
F243L/R292P/Y300LN305I/P396L
S298A/E333A/K334A
S239D/A330L/1332E

4m5.3 Fc variants were expressed from HEK cells, purified with Protein A agarose, and 20 ig/ml
of antibody loaded onto fluorescein-labeled yeast. Yeast were labeled with streptavidin Alexa
647 FcyR tetramers and analyzed by flow cytometry. Data represent the average of two trials;
similar IgG surface loading of a given variant compared to wild-type was confirmed by a separate
Protein A 647 loading control.
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Figure 5.6
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Comparison of engineered variants to published variants. Data from Figure 5.5, replotted to
illustrate the changes in FcyRIIIA 76F and FcyRIIB binding in comparison to wild-type Fc. Data
represent the points at 5 nM FcyRIIIA176F tetramer and 10 nM FcyRIIB tetramer. Additional
abbreviations from Figure 5.5 legend: Mac (Macrogenics), Gen (Genentech), Xen (Xencor).
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