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Abstract

In this thesis, I investigated the effectiveness of a Wolter Type I neutron microscope
as a focusing and imaging device for thermal and cold neutrons sources by simulating
the performance of the optics in a standard neutron ray-tracing package. I used the
simulation to optimize the Wolter mirror geometry for a particular case, deducing
the primary constraints of the system on the delivery of maximal flux density to the
focal spot and the advantages of nesting the mirrors. I explore the imaging aspects
of the optics by simulating surface imperfections, such as figure errors and finish
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Chapter 1

Introduction

Neutron scattering methods are among the most important tools for studying the

structure and dynamics of matter. The unique properties of neutrons as deeply

penetrating, spin-interacting, and neutral make them choice particles for the probing

of bulk materials, magnetic thin films, and nuclear structures. They are the preferred

over x-rays and electrons in biological microscopy as they interact well with nitrogen

and hydrogen while imparting comparatively less damage to the sample itself. In any

microscopy or reflectometry experiment, a well-defined beam is essential. However,

the assortment of instruments used to define neutron beams is still small in comparison

to x-rays, mostly because neutrons are weakly interacting, making neutron beams are

difficult to manipulate.

The purpose of this work will be to investigate and demonstrate the effectiveness

of a novel neutron optics that might make neutron microscopy practical. This optics is

based on an existing x-ray optics design known as Wolter optics. Its design consists

of two Nickel-coated con-focal mirrors (elliptical or parabolic mirror followed by a

hyperbolic mirror) that reflect neutron beams at grazing incidence from one focus to

the other. The advantage of Wolter optics is that its geometry satisfies the Abbe sine

condition almost exactly, the geometric condition that eliminates coma, resulting in

near-perfect imaging of small, off-axis objects. In addition, every neutron is reflected

only once by each mirror, limiting the effects of surface roughness and reflectivity on

image quality and intensity.



The aim of this analysis is to explore the effectiveness of Wolter Type I neutron

microscope as both a focusing and imaging device for cold and thermal neutron

sources. To do this a simulation of the mirror design was written in McStas, a standard

neutron ray-tracing software package. The module was used to conduct numerical

experiments in order to illuminate the basic trends of the optics as a function of the

geometry and properties of the mirror and source. Tests concentrated on optimizing

the mirror for a few cases of focusing and imaging applications and measuring its

performance by ways of flux-density and image quality at the focal spot. Variations

on the basic mirror design, such as nesting the mirrors, were explored and evaluated,

comparing to cases where no optics were present. Finally, the simulation was used to

model a set of real mirrors that were tested at the MIT Nuclear Reactor Laboratory.

Chapter two defines the complete geometry of the Wolter-Type I microscope, the

reflective properties of mirrors, and the simulation of the optics in McStas. Chapter

three describes how the optics was optimized in order to achieve maximum flux at

the focal spot, discussing the advantages of supermirrors and nesting. Chapter four

focuses on the imaging aspects of the optics, particularly sources of surface error

that distort image quality. Finally, Chapter five describes the testing of a real set of

mirrors at the MIT Nuclear Reactor Laboratory.



Chapter 2

Wolter Optics: Geometry and

Design

2.1 Specular Reflection

Alongside refraction and diffraction, reflection is one of three common optical methods

for manipulating a beam while maintaining coherence. In the case of reflecting light,

an incoming electromagnetic wave causes electrons in an atom to oscillate, which then

produce dipole radiation. In this case, total reflection at a surface occurs when the

the incident waves and the outgoing waves from each scatterer interfere in a way that

leaves an identical wave-front, propagating back into the medium it came from at a

new direction. We can explain reflection for neutrons in a similar way by treating

neutrons as matter-waves.

We know from quantum mechanics that all can be treated as waves with wave-

length A relating to their momentum p by the de Broglie relation:

p = h (2.1)
A

where h is plank's constant. The relation between wavelength and energy is subse-

quently
h2 k2

E = 2(2.2)
2m

15



where m is the particle mass and k = 2 is defined as the magnitude of the waveA

vector. As in the case of electromagnetic waves, reflection for neutron waves is an

interference phenomenon. The difference is that because of the neutrality of neutrons,

the scatterer is the point-like nucleus instead of the electron cloud. Like with dipole

radiation, the sum of all incident and scattered waves appears to be a reflection of

the original wave-front off the surface. For ideally smooth surfaces, reflection will be

specular, with the angle of incidence O equalling the angle of scattering 0, measured

from the surface plane (Fig. 2.1). Total reflection (no transmission) for neutrons

occurs when the the angle of incidence 02 is less than the critical angle

C= IbA (2.3)

where the p is the atomic density of the material and b is the scattering length

which characterizes the strength of the nuclear interaction [4]. It is clear from (2.3)

that surfaces with high values of pb are desired to maximize 0c for any given energy.

Nickel has one of the highest values (pb = 9.41 x 101 m-2) and is consequently the

most common material used to coat reflecting surfaces. For thermal to cold neutrons

(A = 1 - 8 A) corresponding to respective energies of 811 meV, the critical angles

ranges from 1.73-13.4 mrad. Thus, neutrons of these typical energies, like x-rays, will

reflect only at grazing incidence, necessitating the development of grazing-incidence

optics in the arena of beamline instrumentation.

A

n

Figure 2-1: Specular reflection off an ideally smooth surface, where 64 = 63.



2.2 Mirror Geometry

In 1952, Hans Wolter introduced three geometries for glancing x-ray telescopes, each

involving a two-mirror system of confocal conic sections. The three types of telescopes

are illustrated in Fig. 2.2. All three geometries are alike in that they utilize exactly

two reflections to focus an incoming x-ray beam into a focus of one conic section.

CONFOCAL HYPERBOLOID -
PARABOLOID .

a r(: T ype I

REFLECTING SURFACES

HYPER BOLOID ,..-V

PAR ABOLOID .

REFLECTING SURFACES

PARABOLOID
REFLECTING SURF ACES

F Fm : Type III

-,. - .ELLIPSOID

Figure 2-2: Type 1, 11 and III Wolter Telescopes.

All three are also telescopes in that they focus highly collimated beams. Since typical

neutron sources from reactors produce divergent beams, they call for a microscope

analogue of the Wolter telescope. For the geometry of the Wolter Type I telescope,

this coincides with replacing the paraboloid with an ellipsoid. The schematic in Fig.

2.3 defines the Wolter Type I microscope geometry in terms of the length of the system



Mirror 1: Mirror 2:
ellipsoid hyperbolojd

Figure 2-3: Schematic drawing of Wolter Type I microscope consisting of confocal
ellipsoid and hyperboloid mirrors. The source is located at the left focus of the
ellipsoid, corresponding to the origin of the coordinate system. The image is formed
at the left focus of the hyperboloid at (0, 0, L) where L is the length from the source
to the image. The right focus of the ellipsoid is coincident with the right focus of
the hyperboloid (the right sheet is not shown). ri is the radius of the two mirrors at
their point of intersection, z is the axial distance to the intersection from the origin,
and 84 is the grazing angle on either side of the intersection point and is forced to be
the same for both mirrors. fsource and fimage are the focal distances from each focus
to the intersection while 0 1 and 0 2 are the angles subtending the intersection point
from each focus.

L, the radius of the mirrors at the point of intersection ri, and the magnification of

the system M. The magnification of the ellipsoid-hyperboloid system in Fig. 2.3 is

defined as the ratio of focal lengths

M - 6 - "mg (2.4)
0 2  fsource

and is also the ratio of image to source size. Only rays that reflect off the ellipsoid

will reflect off the hyperboloid and into the focal spot. Neutrons that are not doubly

reflected are not focused. The last condition in place is for the grazing angle at the

intersection E8 to be the same for both mirrors, making the intersection of the two



mirrors smooth. The equation for this condition is

E2 = -(61 + 62) (2.5)
4

and arises from the geometrric properties of the ellipse and the hyperbola. The

standard equations governing the ellipsoid and hyperboloid are

F(z, r) = b2(z - zo) 2 + a2r 2 - a2b2  0 (2.6)

a2 - b2 C2

and

F(z, r) = b2(z - zo) 2 - a2r 2 - a2b2  0 (2.7)

a2 + b2 = C2

where a, b, and zo in each equation is the semi-major axis, semi-minor axis, and the

position of the center along the optical axis (z-axis) respectively. Using geometry, we

can solve for c and zo for both conic sections and find for the ellipsoid

c = + zi (2.8)
2 _tan()2 - 20i)

zo = C

and for the hyperboloid

c = [ - zi (2.9)
2 tan(8)2- 26i)

zo = L + c

We can subsequently solve the equations in (2.6) and (2.7) for a and b by evaluating

both equations at the intersection (zi, ri). Finally, two additional parameters that

define the system are the physical lengths of the mirrors which partly determine the



effective cross-section of the mirrors, or the area of the total beam that they collect.

2.3 Geometric Advantages for Imaging

Figure 2-4: In the case of a single reflection (a) the Abbe sine condition cannot be
satisfied. It may be satisfied if an even number of reflections occurs (b). [3]

For any optic, aberration, or the failure of rays to converge at the focal spot,

degrades image quality. Two common types of aberrations are spherical aberrations,

affecting off-axis points in the source, and astigmatism, where rays reflecting through

different planes are focussed at different points along the optical axis. Because Wolter

mirrors are aspheric and axially symmetric, images from extended sources are free

from spherical aberrations and suffer only from third-order astigmatism. In addition,

the Wolter Type I microscope nearly exactly satisfies the Abbe sine condition

sin a
sin a' (2.10)

where a and a' are the angles between the rays and the optical axis shown in Fig.

2.4. If the condition is satisfied exactly, the magnification is constant over the entire

mirror and the focal spot is a perfectly scaled image of the source (it is a coma-free

optic). It can be shown that this condition is nearly satisfied for the Wolter Type I

microscope provided that the diameter of the mirrors (and consequently 6 1 and 82)



are small [3]. The result is a near-perfect imaging optic, where image distortion is

due to surface imperfections rather than the geometry of the optics.

2.4 Ray-Tracing

Using the parameters and equations above, we are able to simulate the focusing

properties of the Wolter Type I microscope by tracing the path that each neutron of

a given velocity takes through the optics. Given an incoming velocity z7i, the velocity

vS of the specularly reflected neutron can be computed from the surface normal h by

vS =i - 2(6Y.i)n (2.11)

where ft for the hyperboloid surface F(z, r) in (2.7) is

n = VF(z, r) -a (2.12)

b2(Z - Z)

Every change to the path of the neutron can thus be modeled by a specular reflec-

tion from either the ellipsoid and hyperboloid if all defining parameters are known.

Whether a nuetron is actually reflected or absorbed by the surface is determined by

a reflectivity curve R(O6) particular to the surface and the wavelength of the nuetron.

Usually R(O6) is the Fresnel reflectivity curve. In the simplest approximation, R(O6)

is the step function

R(0)= 1 if O6 < Oc (2.13)
0 if O > Oc,
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Chapter 3

Optimizing for Maximum Flux

Density

Most often, the purpose of non-imaging focusing optics is to irradiate a sample with

as much flux as possible. Depending on the application of beam, constraints such

as spot size, the length of the system, and source properties, also factor into the

optimization process. To assess the collecting power of the Wolter Type I microscope,

the optic was simulated in the ray-tracing software package McStas and optimized

for different system lengths and magnifications. Basic geometric factors, such as the

effective cross section of the mirror, as well as mirror reflectivity were observed as

the primary constraints on delivered flux to the focus. Beyond standard geometric

optimization, nesting and supermirrors were found to be two effective techniques to

enhance collection. Finally, for thoroughness, the effectiveness of the. Wolter system

was demonstrated by a simple comparison to the case where no optics is present.

3.1 Supermirrors

One straightforward approach to maximizing the focusing power of an optic is to

maximize its reflectivity. This can be achieved by increasing the critical angle of the

reflecting surface and is done by way of multilayers in supermirrors. Common neutron

supermirrors consist of hundreds to thousands of alternating Nickel-Titanium layers



Minor 1: Mirror 2:
elipsoid hyperboloid

Figure 3-1: Schematic drawing of Wolter Type I microscope consisting of confocal
ellipsoid and hyperboloid mirrors. Mirror geometry defined by system length L,
magnification M, and mirror radius at intersection ri. Remaining parameters defined
in Fig. 1 of Chapter 2.

and have larger critical angles than single-layer Nickel mirrors due to interference

effects [2]. The relation between the critical angles 0m and 0c in supermirrors and

single-layer Ni mirrors respectively is

0m = moe (3.1)

where the factor m depends on the number of layers in the supermirror. Typical

values of m are 2 for 100 layers and 3 for 500 layers.

3.2 Optimizing Geometry

In several simulated tests, Wolter Type I m = 3 supermirrors were optimized to yield

the maximum flux density at the focal spot. Fig. 3.1 is a schematic of the optimized

Wolter mirror geometry defined in Chapter two, where the parameters of the system

are the distance between the foci L, radius ri, magnification M, and the length of the



mirror segments 1mirror Generally, the lengths of the mirror segments will scale with

ri by virtue of manufacturing constraints. In this simulation, we chose lmirror = 10ri

and capped the length of the segments at 700 mm. The source used in this simulation

was circular, uniformly divergent, and monochromatic (r = 5 mm, divergence = 1

deg, E = 5 meV). A beamstop was placed at the entrance of the ellipsoid to remove

neutrons whose trajectories did not intersect with the first mirror and therefore would

not contribute to the focal spot.

0.03 -

0.03-

0.025-

0.02-

0.015-

0.01 -

0.005-

Relative Intensity vs r,
Max 0. in Mirror 2

16.2 18.7 21.2 23.9 26.6 29.5 32.4.9

UV
35 40 45 50 55

ri [mm]
60 65 70 75

Figure 3-2: Relative flux detected at focal spot for L = 10 m, M = .1, rsource = 5 mm
system as a function of ri. Effective cross-section of the mirror bounded by critical
angle Om ~ 21 mrad in Mirror 2 (hyperboloid).

3.2.1 Effective Cross-Section of Single Mirror System

For a given M and L, flux density at the focal spot was measured as a function of

mirror radius ri. Generally, we expect the effective cross-section of the mirrors, and

therefore the flux delivered to the focal spot, to increase with ri. In the simulation,

we observe that this is the case until the grazing angle O6 reaches the critical angle

I
* I

*

*

4*

I
*

7

4*

4*

.. ..... ... .



Relative Intensity vs r
0.07

250 260 270

r,
280

[mm]
290 300

Figure 3-3: Relative flux detected at focal spot for L = 10 m, M = .3, rsource = 5
mm system as a function of ri. Effective cross-section of the mirror bounded by beam
radius ream = 284 mm at Mirror 1 (ellipsoid).

(0m ~ 21 mrad for 5 meV neutrons) or until the entrance radius of the ellipsoid begins

to exceed the beam radius at the ellipsoid entrance. Fig. 3.2 shows the case bound by

the critical angle for a L = 10 m, M .1 system. Here the sharp drop in flux can be

fully attributed to the critical angle in the hyperboloid, as ri is 12 cm below the beam

radius at the ellipsoid. Fig. 3.3 shows the case bound by beam radius (rbcam = 284

mm) for a L = 10 m, M = .3 system, where O6 never exceeds 14 mrad.

3.2.2 Flux Density and Magnification

Fig. 3.4 shows the flux density for system lengths L = 10 m and L = 25 m as a

function of magnification, where each case .03 < M < .9 untilizes the optimal radius

ri. The largest difference in flux density between the 25 m and 10 m system occurs

when .1 < M < .4 but converges to nearly identical values for magnification below

that range. The difference in collection is attributed to the decrease in the effective

0.06-

0.05-
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0.02-
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Flux Density vs. Magnification
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Figure 3-4: Flux density detected at focal spot for L
as a function of magnification M.rsource 5 mm.

4.5

0.7 0.8 0.9 1

= 10 m and L = 25 m systems

cross-section with increasing distance from the source. Although both cases exhibit a

sharp decrease in total flux for M < .3, flux density is maximal in this range, clearly

showing that the lowest magnification is favorable. From Fig. 3.4 it can be seen that

for our given source size of 5 mm, submillimeter samples will receive the most flux

density from Wolter mirrors. However, as long as the flux density is unifor~m across

the sample, for a given M, we can vary the size of the source to produce the image

size of choice.

3.2.3 Flux Density and Source Size

Fig. 3.5 shows the flux density at the focal spot as a function of source radius for

M = .3 and M = .1. The flux density is shown to stay nearly uniform for sources

1 - 10 mm in radius, demonstrating the near-absence of off-axis aberration. For the

case of M = .3, an increase in source size from 1 mm to 10 mm (an increase in sample

* L=25 m
* L=10 m

- * -

- -

-
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Figure 3-5: Flux density detected at focal spot as a
L = 10 m systems of M .1 and M = .3.

function of source radius for

size from .3 mm to 3 mm) would cost about 450 p/mm2 in flux density. For M = .1,
the same increase in source size (.1 mm to 1 mm in sample size) would cost about 150

p/mm 2 . This indicates that at least for small sample sizes (< 1 mm in radius), the

smallest magnification is preferred. It is possible that in using systems of small M

to achieve larger spot sizes (> 3 mm), too much aberration might occur due to the

necessarily large source. In this case, a system with a large M and a smaller source

might actually yield higher flux on the sample.

3.3 Nested Mirrors

Though finding the optimal radius of single mirrors maximizes their collective power,

most of the flux from the source escapes the cross-section of the single mirror, as can

be seen from the area of the curve in Fig. 3.2. However, this flux can be recovered

by way of nesting several mirrors of identical length and magnification within and

Flux Density vs. Source Radius
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Relative Intensity vs Number of Layers
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Figure 3-6: Relative intensity detected
L = 10 m, M = .1 nested system.

60 65 70

at focal spot with the addition of mirrors for

outside the optimal radius. The fact that Wolter Type I mirrors are full figures of

revolution make them easy to nest in this way. Fig. 3.6 shows the increase in relative

flux at the focal spot with the addition of each mirror to the M = .1, L = 10 m

system. Plotting the individual contributions to the relative intensity from each layer

(Fig. 3.7) we can show that after adding only 4 layers to the system, all available

flux is collected, producing a flux density of 15, 300 p/mm2 at the focal spot.

3.4 Case with No Optics

The set-up for the no optics case consisted of a source and a detector 200 mm apart,

and two pinholes, one placed at the source and the other placed at the detector. The

pinhole at the detector serves to define the sample size (r = .05 mm to 1 mm) while

the pinhole at the source absorbs any unused portion of the beam by the sample. The
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*
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Figure 3-7: Contributions to relative intensity at focal spot from individual mirrors
in nested system (blue) superimposed over collection from single-mirror system as a
function of ri (red). Both are L = 10 m, M = .1 systems.

radius of the pinhole at the source is

rpinhole = D tan div + rsample (3.2)

where the distance between the source and detector is D = 200 mm and the maximum

divergence of the source is 0 di= 1 degree. For the given parameters of this test, source

size places no restrictions on the flux reaching the sample, and maximum acceptance

of the sample is always achieved. For rpinhole = 12.7 mm the uniform flux density

at the sample was measured as a function of sample radius. As expected, the flux

density remains uniform across the sample at about 2000 p/mm2 . Comparing this to

the flux density of 15,300 p/mm2 delivered by the M = .1, L = 10 m nested system,

we see the relative effectiveness of the Wolter Type I microscope as a focusing device.
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Chapter 4

Simulation of Surface Errors

Typically, polished optical surfaces exhibit two types of surface error that affect the

quality of the image at the focal spot. One type, associated with large, slowly-varying

deformations of the ideal surface profile, are called figure errors. The second type,

associated with small, high-frequency deviations arising from surface roughness, are

called finish errors. Both errors depend highly on the manufacturing and polishing

process and are specific to each set of mirrors produced. Therefore, though the

analysis of errors in this chapter can be generalized to like surfaces, this analysis

will be applied specifically to the set of four mirrors used in the experiment at MIT

described in the next chapter.

4.1 Figure Errors

4.1.1 Slope Errors

During the manufacturing of the mirrors, deviations from the ideal profile, known as

figure errors or slope errors, occur in the mirror. Figure errors alter the trajectory

of reflected neutrons, leading to a distortion of the focal spot. The height deviations

are large compared to the wavelengths of the neutrons and change slowly along the

length of the mirror (large spatial periods) so that the effect on trajectory is purely

geometric. Though figure errors occur both axially (along the z-axis) and radially



(along the azimuthal angle), in Wolter-type geometries, the radial error contributions

to the distortion of the focal spot are small compared to the axial contributions. A

recent discussion of radial vs. axial errors for a Wolter I telescope gives a quantitative

comparison (Chon, Namba, and Yoon, 2007)[1]. The curve of the height deviations

Ar(z) for the hyperboloid surface is plotted in Fig. 4.1, where ranges from -. 2 <

Ar(z) < .7 pm, experiencing a maximum at the edges of the mirror. The continuous

curve in Fig. 4.1 is a cubic spline interpolation of discrete data points measured from

the surface. Including the height deviations, the equation describing the hyperboloid

Low-Frequency Deviations Curve from
Ideal Profile in Hyperboloid

0 5 10 15 20 25 30 35
Length Along Mirror z [mm]

Figure 4-1: Low-frequency hieght deviations Ar(z) from ideal profile in hyperboloid
along mirror length z.

surface becomes

F'(z, r, Ar(z)) = b2(z - zo)2 - a2(r + Ar(z)) 2 - a2b2= 0 (4.1)

with the new surface normal n'

n' = VF' =- i+ An -

0

+ 0

-a2 (r + Ar(z)) ar
(4.2)

..................................................................................



The change in the grazing and reflecting angle AO is then the angle between n' and

n' and can be calculated for every point along the surface of the mirrors.

4.1.2 Spatial Errors

In addition to errors in slope, there are the height deviations themselves. If taken

into account, the height deviations make the neutron ray appear to be coming from

a shifted point on the source, which consequently correspond to a positional shift in

focal spot. However, the poisitional shifts in the focal spot due to the slope errors

alone greatly dominate the positional shifts from the height deviations. We can show

this by first translating the hight deviation Ar into a displacement Azi + Az 2 along

the ideal surface as shown in Fig. 4.2. The shift Az 2 correponds to an arbitrary shift

of the perturbed surface function to an intersection point with the incident ray. The

reflected ray is then identified with ray 2 instead of ray 1. Tracing ray 2 back to where

it intersects the ideal surface results in an additional shift Azi for the intersection

point, which in turn corresponds to a shift of the ray's origin at the source. By shifting

the point of reflection by Az1 + Az 2 , we've completely incorperated the spatial surface

errors into a shift in the ray's origin at the source that directly maps to a positional

shift in the focal plane. For grazing incidence, we can estimate the maximum position

shift at the source to be ~ Ar which is on the order of 10- 4 mm. In light of this

argument, we assume that distortions to the focal spot from the spatial part of the

figure errors are neglible. The relative intensity of neutrons that scatter at an angle

AO, from the incident angle from slope errors in the hyperboloid are shown in Fig.

4.3. We find that |A05 l < .1 mrad which suggests that the effect of figure errors on

imaging is small. The effect will be discussed together with the effect of finish errors

in the next section.



ray2 rayl

Figure 4-2: Translation of height error Ar to displacement Azi + Az 2 of ray along

the ideal surface.

Scattering from Figure Errors in Hyperboloid
vs. A 0, from Specular
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Figure 4-3: Relative intensity of neutrons that scatter at an angle AO, from the

specular due to slope errors in the hyperboloid mirror.

4.2 Simulation of Error due to Surface Roughness

4.2.1 Scattering from Sinusoidal Grating using Rayleigh-Rice

Theory

Diffraction-like scattering occurs when the deviations from the ideal profile of a surface

are comparable to the projected wavelength of the scattered beam. In this case

reflected beams of the same wavelength and incident angle will interfere due to the

.............................



path length differences introduced by the surface height deviations. For the simple

case of a one dimensional reflective sinusoidal grating shown in Fig. 4.4, the height

deviation is

h(z) = a sin(27rfgz + a) (4.3)

where a is the amplitude, a is an arbitrary phase, and

(4.4)

The angles of scattering from the surface plane of frequency fz are given by the

h(z)

Figure 4-4: Sinusoidal grating surface h(z) = a sin(27rfgz + a) of amplitude a, spatial
period A, and spatial frequency fg = .

grating equation

cos(O6) - cos(64) = nfzA n = 0, t1, t2... (4.5)

where A is the neutron wavelength, 02 is the angle of incidence, and the scattering angle

On corresponds to the nth order of diffraction. For a smooth surface, contributions to

orders above n = ± 1 are negligible and scattering is dominated by the n = 0 specular

order and n = ±1 orders. Thus for a smooth sinusoidal surface of frequency fg, there

will be two off-specular directions in addition to the specular through which neutrons

of a particular wavelength and angle of incidence will scatter. Generally, the fraction

of incident neutrons that scatter into a solid angle Q, is obtained by integrating the

1.A



bidirectional scatter distribution function (BSDF):

dIs = BSFD(i, A,Os) sin OdQ, (4.6)
Ii

Here, sin 0, is a geometric obliquity factor where Os is the scattering angle. For the

case of a smooth and clean (defect-free) surface, the BSFD is derived using Rayleigh-

Rice vector perturbation theory [6]. In the one dimensional case, Rayleigh-Rice theory

yields the equation

1 d1 167r2

idO 8  A3 sin Oi sin2  v/ RF(Oi)RF (0s)S(fz) (4.7)

where RF(Oi) and RF(Os) are the incident and specular Fresnal reflectivity curves for

zero roughness and S(fz) is the power spectral density function in terms of the spatial

frequency. The PSD function of a surface profile h(z) of length L is defined as

1
S(fz) = lim IZ(fz, L) 2 (4.8)

L-.+oo L

where Z(fz, L) is the fourier transform of h(z) into the frequency domain and is given

by
SL/2

Z(fz, L) = h(z)e-i 21rfzzdz (4.9)
-L/2

Integrating S(fz) over all present frequencies would thus yield the average "roughness

energy" per length,

2 = J S(fz)dfz (4.10)

or average "roughness power" of the surface a2 . For the sinusoidal grating in (4.3), the

power of the surface is contained entirely in a single frequency, the spatial frequency

fg of the grating. The PSD function is then accordingly

2

S(fz) = a[(fz - fg) + 6(fz + fg)] (4.11)4



resulting in a non-zero intensity at the scattering angles

,± = arccos(cos 02 ± fgA) (4.12)

Assuming reflectivity of unity, we integrate (4.7) over all frequencies and find that

the fraction of incident neutrons scattering into the first diffraction orders is

11= (2A )2 sin O6 sin 09± (4.13)

Rewriting this in terms of the momentum transfer of the specular and scattered beams

47r sin
q = (4.14)

A47r sin 0,

and the total roughness squared o.2 we have

1 - g (4.15)

However, the fractions in (4.15) do not add to unity. This is because (4.7) only

describes the fraction of neutrons scattered diffusely and does not account for the

specularly scattered portion. Since flux is conserved, we expect the fraction scattered

into the specular to be approximately 1-I±/Ij-I_ /I. That is, we expect the fractions

scattered specularly and diffusely to add to one. In general, upon the introduction

of roughness, the flux reflected into the specular will be modified by an exponential

factor known as the Debye-Waller factor [5]. The resulting specular reflectivity is

then

'spec RF (ij) exp(-- 2q2) (4.16)
Ii



Taking RF(0i) to be unity and expanding the exponent in (4.16) up to the linear

term, the fraction of specularly scattered neutrons becomes

'spe 1,I - 1- cr qqs (4.17)
Ii

if sin 6O ~ sin 6,. Thus, we find that the fraction scattered diffusely (4.15) and the

fraction scattered specularly (4.17) add to one as long as deviations from the specular

are small and oaqj < 1. The latter condition is known as the Rayleigh-Rice criterion

for smooth surface scattering and is the condition for which (4.7) is consistent with

(4.15).

4.2.2 Scattering from a Fractal Surface

A polished, isotripic surface can be thought of as an infinite sum of sinusoids that

span a continuous range of spatial frequencies and amplitudes. Typically, an optically-

polished surface exhibits a fractal surface structure whose PSD is modeled by power-

law function:
C

S(f) = (4.18)
fas

where the index a is real and spans 1 < a < 3 and C is a normalization factor. Fig.

4.5 shows a plot of the power-law PSD that Willingale uses to model the surface of

an electroless nickel plated, gold-coated Wolter-Schwarzwild Type I wide field camera

mirror [7]. Willingale's combined measurements of the surface estimate C to lie within

the range 2410 - 4455 and a = 2.41, where the PSD function itself is in units of A 2

mm and the frequency is in mm-1. For the rest of his discussion, he uses 3000 for C,

which is also what I will do here. Additionally, I halve C whenever the PSD function

is two-sided, meaning that it is a function of both negative and positive frequencies,

as it is in Fig. 4.5. As with the single frequency grating, the positive frequencies map

to scattering angles 0, < O6, while the negative frequencies map to 0, > O6.
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Figure 4-5: Power-law PSD function with C = 3000, a = 2.41, for the frequency
range fmin = 4 mm 1 < Ifz| < fmax = 50 mm

Choosing the Frequency Range for the BSDF

Let us rewrite the BSDF in (4.7) in terms of fz, qi, and q,(fz)

I dfz

and let us integrate over all spatial frequencies to find the total fraction of neutrons

that scatter away from the specular

Iff = qi yIRF(qi) J RF(qs (fz))qs(fz)S (fz dfz (4.20)

The power-law PSD function is perfectly symmetric around fz = 0 but has a singu-

larity which causes the integral in (4.20) to diverge in the near-zero frequency range.

However, according to the grating equation, the singularity at fz = 0 corresponds

to scattering into the specular beam. Likewise, near-zero frequencies correspond to

figure errors of long spatial period rather than surface roughness. Consequently, this

low frequency range must be excluded from the range of integration in (4.20). To de-

fine a reasonable division between the figure error and finish error range, we look at



the fourier transform of the measured surface profile which includes figure error (Fig.

4.6). In both the Ellipsoid and Hyperboloid profiles, the maximum present frequency

was found to lie in the 3 mm- 1 to 10 mm-' range and 4 mm-'. Consequently the

minimum frequency contributing to finish errors was chosen to fmin = 4 mm- 1 .

Single-Sided Amplitude Spectrum
X 10 4 ofAr(z) in Hyperboloid
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Figure 4-6: Fourier-Transform |AR(f) of the error in the surface profile Ar(z) of the
hyperboloid mirror.

For positive frequencies, the upper limit of integration fmnax is bound by the min-

imum scattering angle 0, = 0 that corresponds to scattering along the plane of the

surface. Fig. 4.7 shows the relationship between the angle of incidence O and that

frequency which corresponds to scattering in the 0. = 0 direction. The plot shows

the cases for neutron wavelengths A = 4,6, and 8 A in the frequency range 50 - 120

mm-1 where the curves of O for A = 4 A and A = 6 A are truncated at the respective

critical angles. The dotted horizontal line indicates the maximum grazing angle (10

mrad) that occurs for the mirrors as determined by the ray-tracing simulation. From

the curves it is estimated that the maximum frequency that contributes to scattering

above the surface the plane for O < 10 mrad is < 90 mm- 1 for all neutron wave-

lengths. Though the surface plane provides an absolute upper limit to the maximum

frequency fax, contributions to (4.20) from f2 < fmna, may still be small enough

to ignore. If the Rayleigh-Rice criterion a2 q? < 1 is satisfied, we know from (4.16)
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Figure 4-7: Relationship between maximum spatial frequency that contributes to
scatteing above the surface plane and the angle of incidence 02. The three curves
are for neutron wavelengths 4,6, and 7 A. The dotted line is the maximum occuring
grazing angle in the mirrors for our experiment.

that the contribution from the frequency range fin < fi < f, < f2 to our diffusely

scattered fraction in (4.20) is

AIiff _ exp( q) - exp( 2 (f2 )q,) (4.21)
Ii

where o 2(f') is just our PSD (4.18) integrated from fm i to f'

o 2 (f') = S(fz)df2 = _1) - _1I (4.22)
if'',i (a' - 1) f f

Fixing fi and f2, we can plot AIdif f/ I as a function of 62. This is done in Fig.

4.8 for case fi = 50 mm-1 and f2 = 90 mm- 1 from which we find that the max-

imum contribution of the range fi < fz < f2 to the fraction of diffusely scattered

neutrons is < .25%. Comparing this to the total contribution from all frequencies

fz > f m in (Fig. 4.9), we find that the maximum relative error AIdif f/Idiff introduced

by neglecting the frequencies is 2.2% and occurs for the lower angles of incidence (Fig.

4.10). Calculating AIfgf /Idiff for lower values of fi, it was determined that the total

.. :::: - . . . . . ..................... ......................... - -I-,-.- S - MMM - - --
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Figure 4-8: Contributions for the frequencies 50 - 90 mm~1 to the diffusely scattered
fraction Aldiff /Ij for neutron wavelengths 4,6, and 7A.

integral in (4.20) is insensitive to the upper limit fmax for values as low as 35 mm-1,

introducing errors < 5% into the diffusely scattered fraction. All things considered,

we choose fmax = 50 mm- 1 so as to keep the error below 2.2%. Thus (4.20) becomes

dif ffin fmax
dif = qi /RF(qz) [ jfn RF R(s (fz))qs (fz)S(fz)dfz+ ]F (qs(fz))qs(fz)S (fz) dfz

-fmax fmn
(4.23)

where fmin = 4 mm-1 and fmax = 50 mm-1.

Rayleigh-Rice Criterion: Constraints on Wavelength and Angle of Inci-

dence

The criterion for (4.23) is the Rayleigh-Rice criterion oqj << 1 which allows the

first-order approximation in (4.17). Fig. 4.11 plots oa2 ft (a) and the second-order

correction a4qi'/2 (b) for 0 < O < 10 mrad for our chosen frequency range. For the

given range in O6, the second-order corrections never exceed .01 or 1% of the total

scattering. To see the effect of this correction on (4.23), we plot Ispec/Ii - Idif f/I

without the second-order correction in Fig. 4.12a and then with a rough version of it
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Figure 4-9: The total diffusely scattered fraction 'dif f/Ij as a function of incident
angle Oi for all frequencies f2 > fman.

Contributions from High Frequencies
to Diffusely Scattered Fraction
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4-10: Fraction of diffusely scattered flux due to spatial frequencies 50 - 90
The red, blue, and green curves are for neutron wavelengths 4,6, and 7A

respectively.

in Fig. 4.12b, where the correction amounts to subtracting o q from Idif f /I. With

the correction in place, we see that the maximum error in (4.23) for the given range

in O6 reduces to .2%. However, accounting for the correction in the non-integrated

.........



1st Order Term in Debye Waller Factor vs 0,
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Figure 4-11: First (a) and second order (b) term in the Debye Waller factor as a
function of incident angle for frequencies 4 < fz < 50 mm-1 . The red, blue, and
green curves are for neutron wavelengths 4,6, and 7A respectively.

BSDF in (4.20) is complicated and makes the application of the equation in the

simulation more difficult. Since the maximum error in the first-order approximation

is only 1%, we choose to apply (4.20) without correction, keeping in mind that error

will increase for mirror geometry with larger angles of incidence and larger critical

angles that reflect neutrons of shorter wavelengths. In addition to this, corrections
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Figure 4-12: First (a) and second order (b) approximations of the total fraction of
scattered flux due to both figure and finish errors as a function of incident angle.4 <
fz < 50 mm- and the red, blue, and green curves are for neutron wavelengths 4,6,
and 7A respectively.

for second-order (m = t2) diffraction become present for o.2q; ~ 1, but are less than

.1% [6].



4.2.3 Simulating Diffuse Scattering with the BSDF

The sine-corrected BSDF in (4.7) is plotted in Fig. 4.13 for Willingale's PSD function

in the chosen frequency range fmin = 4 mm -1 < Ifz| < fmax = 50 mm -1. The

assymetry of the BSDF is due to the sine obliquity factors and is more pronounced

with decreasing O6. The empty region around AO, = 0 corresponds to near-specular

x10, BRDF*sin O, for)= 4 A

0. = 3.8 mrad

12- 0. = 9.8 mrad

10-
E

8-

C~ 6-

LL

0
-1.5 -1 -0.5 0 0.5 1 1.5

AO [mrad]

Figure 4-13: Sine-corrected BRDF (BSDF) for a power-law PSD function with pa-

rameters C = 3000 and a = 2.41. 4 < f, < 50 mm- 1. The solid line corresponds to

63 = 3.8 mrad while the dotted line corresponds to 64 = 9.8 mrad.

scattering due to figure errors. As shown in the plot, this region becomes narrower

for higher angles of incidence with increasing contributions to diffuse scattering from

the lower frequencies. We can compare the calculated distribution in Fig. 4.13 with

a histogram of the simulated scattering distribution in Fig. 4.14, which plots the

realtive intensity if diffustly scattered neutrons in the Hyperboloid as a function of

AO, for all occuring O and 4A < A < 8A. The simulation results are as what we would

expect from Fig. 4.13, with an additional softening of the boundary between figure

and finish regions due to varying 62 and A. The simulated overlap between scattering

due to the figure errors and scattering due to the finish errors in the hyperboloid is

shown in Fig. 4.15. The overlap may be made smoother by extending fm2n of the

BSDF to lower frequencies. However, this will increase the roughness o significantly,



introducing greater error into the Rayleigh-Rice BSDF calculation. Though not ideal,

the overlap is sufficient to cover all 0, between the two regions while keeping the error

discussed in the previous section small.

Scattering from Finish Errors in Hyperboloid
X 10' vs. A Os from Specular
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Figure 4-14: Simulation of relative diffusely scattered flux as a function of AO, in the
hyperboloid mirror. 4A < A < 8A and O6 < 1.

4.3 Simulating the Effect of Figure Errors and Fin-

ish Errors on Focal Spot

The effect of figure and finish errors on the half power diameter (HPD) of the focal

spot was simulated for the set-up of the MIT Experiment. To replicate the source

from the MIT reactor, a Maxwellian source emmiting neutrons of A = 1 - 8 A from

a T = 328 K distribution was placed 2,451 mm upstream from the first focus where

a pinhole (r = 1 mm) served to define the focal source. The maximum divergence of

the beam was defined by the projection of the 2 x 3 in Maxwellian window onto the

focal source and was approximately 1 deg. The geometric parameters of the 4 nested

Ni shells are defined in Table I of Appendix A. The total source to image distance L

is 3200 mm while the magnification M is .25.

... ......... ......... .............
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Figure 4-15: Overlap of relative scattering from roughness (red) and figure errors
(blue) as a function of AO, in the hyperboloid mirror simulation. 4A < A < 8A and

O < 1.

Three cases were simulated: one for the ideal mirrors, one for mirrors suffering

from figure errors only, and one for mirrors suffering from both figure and finish errors.

The azimuthally-integrated focal spots are shown in Fig. 4.16a-b for each case, with

half power diameters of .356, .369, and .394 mm respectively where the expected

HPD for the no error case is .5/V2 = .354 mm. The simulated HPD of the third

case is significantly lower than the experimentally measured HPD of .7 mm. Most

of the additional error is known to come from slight distortions of the shells due to

imperfect mechanical fitting of the holder. However, a small change to the finish error

contribution to the HPD may arise once the actual PSD of the mirrors is measured

and used.
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Figure 4-16: Relative intensity at focal spot integrated over azimuthal angle vs. radial
postion. (a) is for the no error case, (b) includes the effect of figure errors, and (c)
includes both figure and finish errors.
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Chapter 5

Testing of Wolter Microscope at

MIT Nuclear Reactor

Once ray-tracing calculations confirmed that the flux delivered by an existing nested

Ni mirror design was detectable at the MIT Nuclear Reactor, two of the outer shells

were built and tested. A photograph of the nested Ni mirrors is shown in Fig. 5.1.

The mirrors have a system length of 3200 mm, a magnification of .25, and are defined

by the geometric parameters listed in Table 1 of Appendix A. A 2 mm cadmium

pinhole was placed 2, 451 mm downstream from the 3 x 2 inch reactor window, at the

first focus of the ellipsoid. A detector was placed at the focal spot, 3200 mm away

from the cadmium pinhole. Ray tracing determined that only neutrons below 5 meV

could be focused due to the low critical angle of Ni, experiment agreed with. However,

there was discrepancy between the simulated HPD of .394 mm and the experimentally

measured HPD of .7 mm. Most of the difference is attributed to slight distortions of

the shells due to imperfect mechanical fitting of the holder.

Fig. 5.2 shows the detected image between the optics and the image focal plane

for the two nested mirrors. The two light rings indicate that both mirrors contribute

to the focal spot. Full data analysis and comparison with the calculations will be

presented in a future publication.



Figure 5-1: Experimental testing of nested Ni mirrors at the MIT Nuclear Reactor

Laboratory.

Figure 5-2: Two converging light rings from the two nested shells detected in front

of the focal plane.
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Chapter 6

Conclusions

Wolter optics is an existing x-ray optic that can be a viable focusing and imaging

device for many neutron applications. The aim of this work was to investigate the

effectiveness of Wolter Type I neutron microscope in focusing and imaging cold and

thermal neutron sources by simulating the optics in a standard neutron ray-tracing

software package.

To assess the focusing power of the optics, the simulation was used to optimize

the mirrors for maximum flux density at the focal spot. Maximum flux density was

found to occur for systems of lowest magnification (highest demagnification) and

remained uniform and constant for varying source size. The maximum flux density

delivered to the focal spot depended primarily on the cross-section of the mirrors,

which was bounded by the critical angle of the mirrors, the size of the beam at the

mirror entrance, and the physical length of the mirror segments. However, it was

shown that it is possible to collect all the available flux by nesting the mirrors, which

is particularly easy to do for Wolter geometry. The optimized system was compared

to a scenario where no optics was present, demonstrating its high degree of focussing

power.

To assess the imaging power of the optics, figure and finish errors for a real set

of mirrors were simulated using geometry and Rayleigh-Rice perturbation theory

respectively. The contribution of the surface errors to focal spot distortions were

found to be small and could be partially credited to the fact that the optics requires



only two reflections.

Finally, the simulated set of nested Ni mirrors were built and tested at the MIT

Nuclear Reactor Laboratory. The optics was shown to successfully concentrate neu-

tron flux at the focal spot, where most experimental observations were in agreement

with the simulation.

In conclusion, Wotler optics has the potential to be a useful addition to neutron

beamline instrumentation, both for its ability to concentrate large beams onto small

samples and for its near-perfect imaging capabilities. Through further investigation

of Wolter optics, by both simulation and experiment, we can continue to assess the

scope of these advantages and the extent of their effectiveness in different neutron

applications.



Appendix A

Tables

Table A. 1: Parameters of Ellipsoid and Hyperboloid in Nested Mirrors for Experiment

aH [mm] bH [mm] aE [mm] bE [mm] 1H [mm] lE [mm] ri [mm] Ei [deg]
533.28210 7.2963186 2133.3819 14.592664 30.000 31.097 14.298 0.40000
533.28266 7.6654392 2133.3928 15.330969 30.000 31.097 15.021 0.42022
533.28237 8.0532169 2133.4040 16.106622 30.000 31.097 15.781 0.44148
533.28112 8.4605928 2133.4153 16.921513 30.000 31.096 16.579 0.46381
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