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ABSTRACT

The emergence of less restricted fare structures in the airline industry reduced the capability of airlines to

segment demand through restrictions such as Saturday night minimum stay, advance purchase, non-

refundability, and cancellation fees. As a result, new forecasting techniques such as Hybrid Forecasting

and optimization methods such as Fare Adjustment were developed to account for passenger willingness-

to-pay.

This thesis explores statistical methods for estimating sell-up, or the likelihood of a passenger to purchase

a higher fare class than they originally intended, based solely on historical booking data available in

revenue management databases. Due to the inherent sparseness of sell-up data over the booking period,

sell-up estimation is often difficult to perform on a per-market basis. On the other hand, estimating sell-

up over an entire airline network creates estimates that are too broad and over-generalized. We apply the

K-Means clustering algorithm to cluster markets with similar sell-up estimates in an attempt to address

this problem, creating a middle ground between system-wide and per-market sell-up estimation.

This thesis also formally introduces a new regression-based forecasting method known as Rational

Choice. Rational Choice Forecasting creates passenger type categories based on potential willingness-to-

pay levels and the lowest open fare class. Using this information, sell-up is accounted for within the

passenger type categories, making Rational Choice Forecasting less complex than Hybrid Forecasting.

This thesis uses the Passenger Origin-Destination Simulator to analyze the impact of these forecasting and

sell-up methods in a controlled, competitive airline environment. The simulation results indicate that

determining an appropriate level of market sell-up aggregation through clustering both increases revenue
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and generates sell-up estimates with a sufficient number of observations. In addition, the findings show

that Hybrid Forecasting creates aggressive forecasts that result in more low fare class closures, leaving

room for not only sell-up, but for recapture and spill-in passengers in higher fare classes. On the contrary,

Rational Choice Forecasting, while simpler than Hybrid Forecasting with sell-up estimation, consistently

generates lower revenues than Hybrid Forecasting (but still better than standard pick-up forecasting).

To gain a better understanding of why different markets are grouped into different clusters, this thesis

uses regression analyses to determine the relationship between a market's characteristics and its estimated

sell-up rate. These results indicate that several market factors, in addition to the actual historical

bookings, may predict to some degree passenger willingness-to-pay within a market. Consequently, this

research illustrates the importance of passenger willingness-to-pay estimation and its relationship to

forecasting in airline revenue management.

Thesis Supervisor: Peter P. Belobaba

Title: Principal Research Scientist, Department of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

As the airline industry evolves to adapt to an ever-changing competitive climate, airlines are searching for

every opportunity to increase their revenue. While there are numerous economic factors that are largely

uncontrollable by the airlines, the area of airline revenue management (RM) remains a constant area of

focus. Airline revenue management is the practice of controlling a fixed and perishable resource-an

inventory of seats on an aircraft for a future flight-by allocating a certain number of seats to specific

predetermined fares, known as fare classes. Setting the proper booking limit, or the maximum number of

seats made available to a specific fare class, is crucial to ensuring that there are not too many seats

available to lower fare class passengers. If this occurs, the future flight will sell out too quickly and

generate a smaller amount of revenue than if it had "protected" more seats for later-booking, higher-

paying customers. Likewise, if there are too many seats left for higher-paying passengers, planes will

depart with empty seats, which again reduces revenue.

The goal of airline revenue management is to maximize revenue by getting every passenger to pay his or

her maximum willingness-to-pay (WTP). For instance, if a passenger's maximum WTP is $300, and he

or she only pays $250, there is $50 of "lost" revenue to the airline (also known as "consumer surplus").

In order to achieve this goal, creating the proper booking limits for each fare class on each flight is

essential. There are several pieces of revenue management that play a vital role in maximizing revenue.

A fundamental part of the puzzle in RM systems is the demand forecasting model, which relies on both

historical bookings for the same flight in the past (same time and day of the week, season, etc) and the

actual bookings-to-date for the specific flight in question. The model uses these data to create fare class

forecasts that are fed into a seat allocation optimizer, which determines the appropriate number of seats to

make available to a specific class. Inside the forecasting model, in addition to the historical and current

bookings, there lies an estimate of what is called "sell-up."
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The sell-up estimate accounts for the potential for passengers to buy the next higher fare class than they

originally intended to purchase (given that it was unavailable), moving closer to their maximum WTP.

There are several different methods to estimate sell-up, whether it is determined separately from the

forecasting algorithm or within the algorithm using the historical data at hand. In addition, one may

determine these sell-up estimates and aggregate them on different levels. This may be by market (city-to-

city pairing), by groups of markets that share similar characteristics, or on a system-wide basis.

The goal of this thesis is to investigate statistical methods for forecasting and estimating sell-up. More

specifically, it will determine the appropriate levels of market aggregation for these estimates based on

the characteristics of each market, airline networks, and various fare structures in order to emulate the

various aspects of the airline industry.

1.1 The Airline Industry and the Need for Revenue Management

Since deregulation of the U.S. airline industry in 1978, information technology and operations research

(OR) have contributed greatly to the industry's performance. Several advances and new capabilities in

both computing power and in OR methods and theory enable the airlines to maximize their profit in

regards to aircraft planning, crew schedule planning, and airline revenue management. Barnhart et al.

discuss the gains from OR in each of these areas, emphasizing that even though there is no one single

optimization model to perfectly model an airline's profit maximization problem, it may successfully be

broken into more manageable pieces that work together (Barnhart, Belobaba, & Odoni, 2003).

For example, an airline must first determine what origin-destination (O-D) markets to serve based on

demand and competition, followed by the creation of a feasible schedule. Next, the airline must assign its

fleet of aircraft to the routes in the schedule, based on the demand matching the capacity of aircraft

assigned to the route, costs, aircraft maintenance needs, and the feasibility of the schedule, among other

things. Finally, the airline must assign crew to those flights and aircraft, subject to factors such as work

hour constraints and pilot qualifications. While these decisions are crucial to the success of the airline,

revenue management plays a vital role in actually filling the aircraft with the optimal, revenue-

maximizing passengers.

The goal of revenue management is to establish booking policies that maximize an airline's profits, or

because short term costs are fixed, to maximize an airline's revenues. Both McGill and van Ryzin, as

well as Barnhart et al. describe revenue management as developing these policies to determine the

appropriate number of seats made available for each booking class, largely in an effort to save, or

"protect," seats for the business passengers who tend to book closer to departure and pay more (McGill &

- 18 -
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Van Ryzin, 1999), (Barnhart, Belobaba, & Odoni, 2003). At the start of the progression of airline

revenue management in the early 1980s, computer reservations systems stored data from the booking

process. This advanced further in the mid-i 980s to a system that could track flight reservations and

compare them to an ideal booking curve for the flight over time. Today's revenue management systems,

now considered to be the third generation of systems, are comprised of multiple components, as described

in Figure 1.

Historical Actual
Revenue Data Booking Data Bookings No-Show Data

Forecasting Model

ptimization Model f Overbooking Model

Recommended

Booking Limits

Figure 1: Third-Generation Airline RM System (Belobaba, Fundamentals of Pricing and Revenue Management, 2009)

First, historical booking data from the same flight in the past (keeping in mind seasonal, day-of-the-week,

and other elements) and the actual booking progress data combine to create a forecast for the upcoming

flight on a per-class basis. This forecasting model, in conjunction with the revenue data, or pricing

information and value for each fare class, are inputs into the optimization model that work to create the

best booking strategy to maximize revenue on the flight leg. At the same time, the optimization model,

forecasting model, actual bookings-to-date, and the no-show data from similar historical flights combine

to create an overbooking model, which determines an appropriate number of seats of each class to make

available with the consideration that people will not show up for various reasons. Finally, the

optimization model and the overbooking model provide inputs to create the recommended booking limits

per class for the flight leg. In addition, revenue management analysts often review these booking limits to

ensure sensibility and also to edit booking limits that should change due to sudden unforeseen increases

or decreases in demand.
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These RM models provide tools for airlines to optimize flight revenues based on the airline's operating

network schedule and fleet. The use of airline revenue management and the advent of seat inventory

optimization and overbooking models give airlines a sizeable advantage over those who do not use them,

with simulations and actual experience citing a 4-6 percent increase in revenue (Barnhart, Belobaba, &

Odoni, 2003).

1.2 The Rise of Low Cost Carriers and Changing Fare Structures

In his PhD dissertation, Emmanuel Carrier discusses the growth of low cost carriers (LCCs) in the market

as a competitive response to the industry's extensive use of hub-and-spoke networks and price

discrimination strategies. A hub-and-spoke network enables legacy carriers to provide numerous travel

options, all connecting through a hub. This diverse set of origin-destination markets produces more

destinations for all travelers. In addition, the network legacy carriers' use of price discrimination

effectively separated the demand between leisure and business passengers through the use of fare

restrictions. Business travelers, who tend to be more price inelastic, were forced to pay more to avoid

such restrictions, especially that of the "Saturday Night Minimum Stay" requirement. Because business

travel is done primarily during the week, rarely does a business traveler wish to stay over a weekend. On

the contrary, price sensitive leisure passengers were offered lower fares as long as they could meet

advance purchase, non-changeable, and non-refundability restrictions in addition to the minimum stay

requirement. This segmented the demand between price-oriented (leisure) and product-oriented

(business) travelers (Carrier, 2008).

With network carriers focused on providing the most travel options and gaining the most revenue from

high yield-business travelers, the door opened for LCCs to focus on providing non-stop point-to-point

service in major markets. In response to the legacy carriers' strongholds on various hub cities, several of

the major LCCs operate with service into and out of high demand "focus cities." In effect, these are small

hubs for the LCCs. With the network carriers' pricing policies gradually creating increasingly more

expensive tickets, some business passengers began to avoid the higher priced tickets by opting to stay

over Saturday nights, among other things.

Carrier asserts that LCCs established their fare structures using two main strategies with the hopes of still

having a segmented market-creating a lower fare dispersion (fare difference between the highest and

lowest classes), but still achieving demand segmentation solely through advance purchase requirements

and accurate demand forecasting for their revenue management systems. The LCCs effectively removed

the entire Saturday Night Stay requirement by offering fares on a one-way basis. With the removal of
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most travel restrictions, a "semi-restricted" fare structure is now available to the markets served by LCCs.

Potential issues for legacy carriers rose, the most important being whether or not to match the lowest fares

and fare structures in the competitive markets, as well as the question of whether or not their current

revenue management systems could adapt to an unrestricted or semi-restricted fare structure. The former

did happen, with the several legacy airlines creating their own low-cost subsidiary airlines featuring

overall fare "simplification" to match the LCCs, and the latter is discussed later in this thesis.

1.3 Thesis Objective

Central to an airline's revenue management system is its ability to create forecasts that are not only

accurate, but favorable enough to protect the high-fare seats so that the spiral-down effect, or the systemic

under-forecasting of high-fare seats in response to a lack of high-fare class demand and purchases, does

not occur. (Spiral down will be discussed more in Chapter 2.) In order to combat the erosion of

protection levels of these seats, and thus the overall revenues, an effective method of estimating sell-up is

a necessity to keep the forecasts at their revenue-maximizing levels. Sell-up is further defined as the

occurrence of a price-oriented passenger (one who will always purchase the lowest available class) paying

more for the next available higher fare class (as long as it is less than or equal to his or her maximum

willingness-to-pay) when the revenue management system closes the originally sought-after lower fare

class.

Past work on the estimation of sell-up includes development and analysis in the Passenger Origin-

Destination Simulator (PODS) on two separate data-based estimation methods, each with the option of

estimating sell-up on a per-market Origin-Destination basis, or over the entire airline system. An

alternative to this approach is to estimate the sell-up for similar markets as a group, as defined by several

characteristics and parameters of each market. This thesis will discuss and apply a clustering algorithm to

sell-up estimation in conjunction with Hybrid Forecasting, a new forecasting approach that incorporates

passenger willingness-to-pay, and analyze the results. The data-based sell-up estimation methods will be

compared and contrasted with "input" sell-up estimation methods, in which the airline chooses an

arbitrary estimate of sell-up. The sell-up estimates for the input methods are determined independently of

previous booking data. Following the clustering results, the thesis includes a chapter that focuses on the

use of regression analysis to determine the relationship between a market's sell-up estimate and the

market's characteristics.

Furthermore, this thesis formally introduces the method of Rational Choice Forecasting, which develops

forecasts and sell-up estimation internally, as compared to Hybrid Forecasting. Rational Choice
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Forecasting is a regression-based forecasting method based on booking observations and the partitioning

of demand and passenger types.

1.4 Thesis Organization

This thesis contains eight chapters. The introduction lays out the current situation in the airline industry

today, with the development of the potential problems facing airline revenue management. The literature

review contains all pertinent information on techniques and forecasting methods already established to

adapt to today's airline fare structure environment. The next chapter on sell-up estimation discusses the

current efforts to combat spiral down including methods used to estimate passenger willingness-to-pay.

The following chapter describes Rational Choice Forecasting, a new linear regression-based forecasting

method that creates forecasts that incorporate passenger sell-up probabilities in a single step, to include its

use with fare adjustment. The next chapter introduces the clustering algorithm, a new method for market

aggregation and application of sell-up estimation. Chapter 6 lays the groundwork for all testing in the

thesis, using various airline networks and fare structures. It includes the application and results for all

new sell-up estimation methods presented in the thesis compared to past sell-up estimation methodology,

with their application to Hybrid Forecasting and Rational Choice Forecasting. The Passenger Origin-

Destination Simulator (PODS) serves as the primary method for creating a controlled simulated

environment for testing and analyzing these various revenue management methods. Chapter 7 highlights

the results of a regression analysis describing the relationship between sell-up estimates and various

market characteristics, independent of the actual booking data. Last, the conclusion describes the impacts

of the thesis in addition to laying the groundwork for future work and research directions.
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LITERATURE REVIEW

2.1 Airline Revenue Management

The first notion of the existence of airline revenue management began in 1972 at the British Overseas

Airways Corporation (now British Airways), where they presented a two-class fare structure-one class,

or the "earlybird" class, would be available for 21-day advance purchase and offer a discounted fare in

order to fill seats that would otherwise be empty. The problem arose when, in an effort to avoid filling

the airplane with all earlybird passengers, the airline needed to determine how many seats to protect for

the later, higher paying customers. Littlewood claimed that in order to maximize the flight's revenue in

this two-class situation, the airline should accept a discount fare booking as long as its revenue exceeded

the expected revenue of a future full fare booking (Littlewood, 1972). This later became known as

Littlewood's Rule, and thus gave rise to the field of yield management, or revenue management in today's

terms. The literature review below describes the important and relevant seat allocation optimization

methods, in addition to the evolution of the airline industry and the adaptation of revenue management

systems.

2.1.1. Important Seat Allocation Optimizers (EMSRb, DAVN, Bid Price
Control)

In order to maximize revenue on a particular flight, there are two necessary steps. First, one must

establish the fare structure. Despite current practices of lessening or removing the booking restrictions

applied to each fare class, the practice of differential pricing, or the assignment of different fares to

different fare class products is crucial to separate demand. Differential pricing creates the need for the

second step, seat inventory control, or managing the amount of seats available for purchase for each fare

class product. There are multiple methods to perform seat inventory control. Belobaba discusses the

basic options available to airlines today through revenue management software or in-house development
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(Belobaba, Airline Network Revenue Management: Recent Developments and State of the Practice,

2002), (Belobaba, Fundamentals of Pricing and Revenue Management, 2009). Here, we will examine

three of them.

Developed in his doctoral thesis, Belobaba established the most commonly used basic seat allocation

model, the Expected Marginal Seat Revenue (EMSR) heuristic (Belobaba, Air Travel Demand and

Airline Seat Inventory Management, 1987). He later refined it to EMSR Version B, or EMSRb

(Belobaba, The Revenue Enhancement Potential of Airline Revenue Management Systems, 1992). In

summary, the airline of interest has serially nested booking classes, which means that for a given aircraft

capacity, all of the seats in the cabin are available to the highest, or most expensive booking class. For

example, if an aircraft has a 120 seat capacity, and all 120 passengers will pay the highest fare, 120 seats

should be available at the highest fare. Realistically, however, the goal of the heuristic is to determine

how many seats to protect for these higher paying customers, and then establish booking limits for the

lower classes. After the highest booking class protection level is determined, the heuristic then calculates

how many seats to protect for the second highest booking class from the rest of the lower booking class

passengers. This process repeats down to the second lowest booking class, creating a nested effect:

Authorized -----
Booking Limit BL 2 Protected for 1+2 from 3 and 4

BL 3 Protected for 1+2 +3 from 4

BL 4

Figure 2: Nested Seat Protection with Booking Limits (Belobaba, Fundamentals of Pricing and Revenue Management,
2009)

In order to establish limits for each booking class, EMSRb uses the airline's estimates of mean demand

and standard deviation for each booking class (given a certain probability distribution), assuming that the

demand is independent for each booking class on each flight leg. Other assumptions include that the

demand for each class is stochastic, and that fare classes book in order from the lowest class to the highest

class. The expected marginal seat revenue for each incremental seat is then determined as the average

fare for the booking class multiplied by the probability that the demand for the seat will actually

materialize. Therefore, if the expected marginal seat revenue for one additional seat is higher than if the

seat was given to the next lowest class, it will remain protected for the higher class. Starting from the

highest booking class, the heuristic determines the booking limits by subtracting the number of seats to be
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protected for the given class from the remaining capacity on the flight leg. Note that this process repeats

throughout the booking period as long as the remaining demand and standard deviations, as well as the

remaining capacities, are updated. For more thorough detail, reference Belobaba's thesis and paper

mentioned above.

While this method is employed by numerous airlines, claiming increases of 2-4 percent compared to

situations where airlines do not use a seat inventory control algorithm, the EMSRb method has

shortcomings (Belobaba, Application of a Probabilistic Decision Model to Airline Seat Inventory Control,

1989). The EMSRb method maximizes revenue for single leg flights and assumes that the demand for

each leg is independent. However, with the current widespread use of hub networks, many passengers

have connections, which creates network issues for the EMSRb heuristic-the assumption of

independence for each leg's demand does not hold. Therefore, maximizing the revenue on one flight leg

does not guarantee that the entire network's revenues will be maximized. For more explanation and

detailed examples of why this causes problems, refer to (Belobaba, Airline Network Revenue

Management: Recent Developments and State of the Practice, 2002). In order to account for flights

across a network, two methods are widely used-displacement adjusted virtual nesting (DAVN) and bid

price control, which belong to what many consider the 4th generation, or the "path-based" RM system.

In order to determine the availability of a booking class on a flight leg that may be just one piece of a

larger Origin-Destination (O-D) itinerary, DAVN uses the following mechanism. The total network value

of an itinerary is not always its O-D fare, for this would place too much value on a connecting itinerary

and leave few seats to be protected for just the "local," or non-connecting single leg passengers. Rather,

the DAVN mechanism sets the network value of the itinerary to the total O-D fare minus the potential

revenue loss of displacing a passenger from their local flight leg, whether it is on down-line legs or up-

line legs in the original itinerary. For example, suppose a passenger wishes to fly from Denver to

Pittsburgh through Chicago for $500. Given that the passenger will displace a local Denver to Chicago

passenger whose value would be $150 and then another Chicago to Pittsburgh passenger whose value

would be $125, the total network value of the original Denver to Pittsburgh passenger's fare would be

$500 - ($150 + $125) = $225. Note that the local passengers were given values of $150 and $125, which

are not necessarily fares, for there are several different methods for estimating displacement costs. Using

this method, DAVN places each of these values into "virtual buckets," or bins with a given network value

range hidden in the airline's computers and revenue management system. Then, like the EMSRb method,

the airline then determines the availability and protection levels for each of these buckets.
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Another network seat allocation method, similar to DAVN in that it uses displacement adjusted network

values for a flight leg, is bid price control. This method uses a simple rule that determines if a "bid price"

for an itinerary should be accepted or rejected. The bid price method determines the value of the itinerary

as the O-D Fare minus the Network Displacement Cost. The method says to accept the request if this

value is greater than the value of the last, or lowest-valued seat on a leg in the connecting itinerary. This

rule for accepting may then be expressed as:

Accept if: O-D Fare > Value of Last Seat on Leg + Network Displacement Cost

O-D Fare > Minimum Bid Price

Therefore, if the request is greater than the minimum value of the bid price determined above, the seat is

available for purchase. Note that this is less complicated and requires less data storage than the DAVN

method, for the airline only needs to store bid prices for each future flight leg based on the current

bookings, rather than entire virtual bucket booking limits for every class on every flight leg. In

simulations, these network O-D Controls (DAVN and Bid Price Control) in the 4th generation of RM

systems are responsible for 1-2 percent increases in revenue over existing leg-based methods. This 1-2

percent increase is in addition to the 4-6 percent increase in revenue just due to fare class mix, or seat

allocation optimization and overbooking methods. For greater detail on DAVN and Bid Price Control

methods, see (Belobaba, Airline Network Revenue Management: Recent Developments and State of the

Practice, 2002) or (Belobaba, Fundamentals of Pricing and Revenue Management, 2009).

2.1.2. Traditional Forecasting Models

Forecasting is an integral part in determining the optimal booking limits in revenue management. While

airlines have databases of historical purchases for every class on every flight, these data do not indicate

the true uncensored demand for that fare class. Rather, the data is censored by the booking limits on the

previous flights that prevented a potential passenger from purchasing the fare, which also denies the

airline from realizing that passenger's demand. It is therefore the goal of the airline to find the

uncensored demand in order to create accurate forecasts for the disaggregate fare class level for each

flight. According to McGill and Van Ryzin, several attempts were made by American Airlines and Sa to

estimate unconstrained demand on an aggregate level through regression and time series data analysis

(McGill & Van Ryzin, 1999), (Sa, 1987). However, at the disaggregate fare class level, the best tool for

forecasting demand is the use of demand data from the same flight in recent weeks.
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Forecasts must contain an element of the historical bookings in addition to having the capability of

adjusting for current bookings throughout the booking process. What sounds like a classic time series

analysis problem, forecasting in airline revenue management requires computationally fast and simple,

yet accurate estimates of demand. Talluri and van Ryzin devote an entire chapter of their book to various

estimation and forecasting methods, to include stationary and non-stationary time series forecasting, ad

hoc forecasting, Bayesian forecasting and neural network forecasting, which is a type of machine learning

(Talluri & Van Ryzin, 2004). While all of these are outstanding methods to forecast demand, several

require individual attention and analysis before one can determine the proper application of the

forecasting method. For example, in the time series case, one must first make sure the data is stationary,

determine the appropriate lagging measure, and apply a certain auto-regressive and/or moving average

process to create a forecast. If the data was non-stationary, it must then be converted back to its original

form. Another forecasting method presented is neural networks, which in short, unlike the other methods,

determines its own "best" functions for forecasting demand based on a given input. For example, given

ten inputs of historical demand, the neural network uses machine learning (setting aside a portion of the

data as a training set) to create three outputs of demand. The potential problem is that the functions lay

within a "black box," making it difficult to see and understand what is going on with the forecast, an

essential piece of explaining how each forecast is developed to revenue managers.

While "ad hoc" forecasting (exponential smoothing with trend and seasonality) is prevalent in the revenue

management world, in regards to this thesis, the most important basic forecasting method presented is

pick-up forecasting (or standard forecasting). Pick-up forecasting essentially uses historical bookings for

a given flight and class to determine the future bookings-to-come forecast.

-3 Days -2 Days -1 Day 0 Days Flight Date Bookings-in-Hand Bookings-to-Come

8 13 3 13 9-Jan 37 0
11 5 4 2 10-Jan 22 0

6 2 6 8 Today 22 0

6 3 2 7.67 12-Jan 11 7.67

1 2 3.75 7.67 13-Jan 3 11.42

4 5 3.75 7.67 14-Jan 4 16.42

Table 1: Incremental Bookings: an Example of Pick-up Forecasting (Talluri & Van Ryzin, 2004)

For example, given a certain daily flight and a given class denoted above in Table 1, one may wish to

determine the forecasted bookings-to-come for the next three days. Pick-up forecasting determines the

number of bookings for 12 January simply as the mean of the bookings occurring on the day of the flight

for the previous days, or (13+2+8)/3. The same holds true for the -1 Day situation, as well as the -2 Days
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situation. The bookings-to-come forecast is simply the sum of the forecasts for the days of booking

remaining for a particular flight in the future.

Another method for forecasting demand is a simple regression-based forecaster, which, like pick-up

forecasting, is used in the Passenger Origin-Destination Simulator (PODS), which will be discussed later.

According to Hopperstad, this method simply regresses the predicted bookings-at-departure (a cumulative

number) on the given historical bookings up to the current time frame for a given flight and a given class.

Once the coefficients are determined, one can solve for the predicted bookings-at-departure. The

predicted bookings-to-come is simply the predicted bookings-at-departure minus the cumulative historical

bookings-in-hand (Hopperstad, 2005).

2.2 Low Fare Airlines and Simplified Fare Structures

Swelbar discusses the current situation in the airline industry, citing many challenges (Swelbar, 2009).

What Swelbar refers to as "midscale airlines," comprised mainly of major LCCs, have a sizeable

advantage over the network legacy airlines in terms of costs. In 2008, the midscales had a 5.55 cents per

available seat mile advantage over the network airlines, with 1.01 cents of that being labor and related

costs. This benefits the midscales greatly when it comes to revenue management and pricing, for they are

able to offer lower fares while still maintaining profitability. However, the overall trend for the oil prices

remains volatile. Between 1995 and 2004, the fuel cost per available seat mile remained between one and

two cents. In 2008, this jumped to around five cents, causing profitability to become more difficult.

Additionally, between 2000 and 2008, the US airlines lost over $34 billion (Swelbar, 2009). This

information only reinforces the importance for the airlines to squeeze every cent of revenue out of its

business through various methods. One of those methods, airline revenue management, is a vital tool for

every airline. This thesis focuses on just one aspect of airline revenue management, but it is still

important to note that improving an airline's revenue by just half a percent could be crucial to the airlines

staying profitable.

An inherent assumption in most revenue management systems is the independence of demand between

fare class types. This assumption worked well in the past, before the emergence of LCCs. Previously,

legacy carriers embraced a fully differentiated fare structure that automatically separated demand and

split it among the fare classes through the use of restrictions, such as the Saturday night minimum stay,

advance purchase, cancellation fees, and refundability restrictions. For example, if a business traveler did

not want to spend a weekend at his destination, or needed to change his plans at the last minute, the low-

cost fare would not be available to him. Likewise, a leisure traveler who was able to make solid plans
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further in advance for a vacation and who was staying over a weekend was able to purchase a lower fare.

These fare structures therefore segmented demand, enabling the assumption of the independence of

demand for each different fare product. However, the emergence of the LCCs caused these thoughts to

change. With much lower operating costs, LCCs were able to able to offer much cheaper fares, gaining a

significant amount of market share. They also began to offer a simpler, less-restrictive fare, leaving

legacy carriers no choice but to match restrictions and prices.

2.2.1. Impacts of New Fare Structures on RM Systems and the Spiral Down
Effect

Revenue management systems suffered significantly, as these new fare structures created demand patterns

that violated their crucial assumption. Belobaba claims that the fallout of the differential pricing

mechanism raises many questions about the ability of RM methods to account for new "unrestricted" fare

structures (Belobaba, Fundamentals of Pricing and Revenue Management, 2009). If a business passenger

needs to travel, despite having a very high willingness-to-pay, a low-priced unrestricted fare is obviously

preferred over the former high-priced, unrestricted fare product. Now, nothing will prevent former high-

paying customers from purchasing in the lowest fare class and receiving the same freedoms and lack of

restrictions. RM systems will subsequently forecast more demand to the lower classes, and thus under-

forecast the demand for higher-priced seats. Furthermore, even more low-class seats (and fewer higher-

class seats) would in-turn be purchased, reinforcing the over-forecasting of demand for low-class seats,

creating a vicious cycle known as the spiral-down effect. This spiral-down phenomenon leaves virtually

no seats left at the higher fare, resulting in huge revenue losses to the airline, and is shown in Figure 3.
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Number of
low-class
bookings
increases

High-yield Number of
pax buy down high-class

to lower bookings
classes decreases

Fewer Forecast of
available more low-

high-class class
seats bookings

More
available low-

class seats

Figure 3: The Spiral-Down Effect

For a mathematical representation of the spiral down model, reference Cooper et al. (Cooper, Homem-de-

Mello, & Kleywegt, 2006).

According to Richard Zeni, once the LCCs became more established, their costs also increased with more

experienced workers and rising maintenance hours. In addition, the increase in fuel costs put more

pressure on the current unrestricted fare structure dilemma that they helped create (Zeni, 2007). This

created the need for RM systems to adapt to the new fare environment, to which much of today's research

is devoted. It is the goal of the RM system to continue to close down lower fare classes, despite there still

being demand for them, so that higher-priced seats are still available for passengers with a higher

willingness-to-pay. Therefore, incorporating this concept of estimating passengers' willingness to "sell-

up" into the higher fares is crucial to combat spiral down and the potential revenue losses of an

unrestricted fare structure.

In addition, there are other prospective methods to create sell-up adjusted forecasts that bypass the use of

historical bookings. Zeni suggests that just by looking at the historical booking environment, the demand

is already constrained by the fact that not every fare class is open and available for purchase. The goal of

forecasting demand is to use the unconstrained demand, demand that is uncensored by any conditions,

such as a fare class being closed. The use of online airline search engines, he believes, is the answer. He

writes that by monitoring the number of searches and purchases for a city-to-city market pairing
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represents a viable way to account for demand. If the booking activity for a market is high, perhaps the

price is too low and the lower fare class should be closed. Likewise, if there is little activity, opening a

lower fare class would be a viable option. Therefore, estimated demand would no longer depend on the

past; rather, these estimates are purely current and accurate estimates for a future departure date (Zeni,

2007). While this seems like an acceptable idea, it may not be practical at this moment. This thesis

focuses more on the adaptation and analysis of the current use of historical bookings to create forecasts.

2.3 Revenue Management Tools for Today's Environment

Gorin and Belobaba examined the effects of low-cost carrier entry on the incumbent airlines. Their

experiments in the Passenger Origin-Destination Simulator (PODS) showed that the entry of a low-cost

carrier dramatically reduces the revenues of their competition, as expected. Revenue losses for an LCC's

head-to-head competitor range between 5 and 11 percent, depending on various parameters, such as price

matching and the LCC average capacities. However, the incumbent airlines' best tool to combat revenue

loss is choosing a proper revenue management strategy. The experiments show that matching the pricing

strategy reduces revenue loss by limiting the number of local passengers stolen by the LCC. In addition,

choosing a Network RM system is the most robust solution, for it consistently offers incremental benefits

between 1.2 and 1.4 percent over a leg-based RM system in a variety of scenarios with LCC competition

(Gorin & Belobaba, 2004). In addition to their experiments, new forecasting and optimization methods

provide relief against revenue loss in unrestricted fare environments.

2.3.1. Price-Oriented versus Product-Oriented Demand

Boyd and Kellesen discuss the two types of demand relevant to airline revenue management and the

booking process in changing and less restricted fare structures (Boyd & Kallesen, 2004). The key

assumption in most revenue management models is that the demand for each fare class is exogenous and

independent. However, recent fare structures that remove restrictions designed to segment demand on a

fare class basis remove the applicability of this assumption. For example, in a two class fare structure, if

the cheaper fare is available and has the same restrictions (or lack thereof) as the more expensive business

fare, the business passengers will buy down to the lower fare. Therefore, with the removal of advanced

purchase, minimum stay, and other restrictions, the only difference separating a leisure and business

traveler is the maximum willingness-to-pay. This is what is known as priceable demand. In this thesis,

this type of passenger will also be referred to as "price-oriented." On the contrary, for a flight with a

more restricted fare structure designed to segment passengers, there is yieldable demand. This thesis also

considers this type of demand as "product-oriented." Boyd and Kallesen ask the simple question, "Are
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airline fare classes different products (yieldable demand) or different prices for the same product

(priceable demand)? Airlines cannot simply choose one or the other, for different results will come from

both extremes. However, it is important to research the types of markets each flight serves. For example,

for a less restricted market, often served by low cost carriers who introduced the concept of simplified

fares, airlines often choose to match the policy by implementing an unrestricted fare structure assuming

more price-oriented, or leisure demand.

If airlines create forecast models that incorrectly forecast the demand, either too much low-fare demand

will be forecasted (spiral down), resulting in more lower class seats sold and less revenue, or too much

high-fare demand will be forecasted, resulting in more higher class seats, but no one to sit in them. The

resulting problem remains that if the demand is price-oriented in a multi-fare class environment, how does

one determine the customer's maximum willingness-to-pay? This information is therefore considered

"censored," because a passenger's true willingness-to-pay may be masked by their purchase of lower

fares with the same restrictions as higher priced fares. The passenger's maximum willingness-to-pay

must then be estimated in an effort to get the passenger to sell-up into the higher fare if the lower fare

class is closed.

Forecasting Model for:

Yieldable Priceable

Actual

Table 2: Effects of Using the Wrong Forecasting Model (Boyd & Kallesen, 2004)

Table 2 shows the scenarios of the effects of using forecasting models designed for either yieldable or

priceable demand, when the demand is actually yieldable or priceable. The lower left scenario shows the

classic case of spiral down, where a forecasting model built for yieldable demand will eventually

overestimate low fare demand because all of the demand is truly priceable. The opposite case in the

upper right, showing a priceable demand forecasting model being applied to yieldable demand, results in

spoilage of seats because too many higher-class seats were protected.

Boyd and Kallesen suggest that airlines develop the price versus product-oriented demands separately,

and then combine these into a single hybrid forecast, which is presented in the following section.
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2.3.2. Q and Hybrid Forecasting

Given that there are two types of passengers, product-oriented (business) passengers and price-oriented

(leisure) passengers, the Q-forecasting method was developed by Belobaba and Hopperstad in application

to the price-oriented demand (Belobaba & Hopperstad, Algorithms for Revenue Management in

Unrestricted Fare Markets, 2004). Q-forecasting counters the spiral down effect that resulted from a lack

of product differentiation in unrestricted fare structures. In an unrestricted fare environment, it is

assumed that all passengers are price-oriented, for they will all want to purchase the lowest open class,

given it does not have any different fare restrictions. The purpose of Q-forecasting is to generate

forecasts by passenger willingness-to-pay for price-oriented demand. In short, the method works as

follows:

Sell-up probabilities are first established between the lowest fare class (Q) and the rest of thef fare

classes. Note that these will change over the time frames, for later booking product-oriented travelers will

be more price-inelastic and have a higher sell-up rate. The number of observed bookings for each time

frame and class are converted into the equivalent number of Q-class bookings by dividing by the

probability of sell-up from Q to fare classf Next, pick-up forecasting and detruncating are applied to the

total Q-class equivalent bookings to estimate the total unconstrained Q-class bookings for the time frame.

This Q-class equivalent forecast is then partitioned into the other fare classes via the sell-up probabilities.

This process is repeated for all other time frames, followed by the summation over each fare class to

develop the total bookings-to-come forecast per fare class.

Another method of forecasting, known as Hybrid Forecasting, exists for use in semi- and fully restricted

fare structures where both price and product-oriented demand exists. Hybrid Forecasting uses a

combination of Q-forecasting to estimate price-oriented demand and standard pick-up forecasting to

estimate product-oriented demand. For Hybrid Forecasting, a product-oriented person is defined as a

passenger who purchases a fare class higher than the lowest open fare class. The bookings-to-come

forecast developed from pick-up forecasting is added to the bookings-to-come forecast created from the

Q-forecasting method, which results in the overall per class forecast for the flight. For more information

on Q- and Hybrid Forecasting methodology and revenue impacts, see (Reyes, 2006).

2.3.3. Fare Adjustment

Fiig et al. discuss the development of a new method of revenue optimization that is unaffected by changes

in fare structure, whether it is the less restricted fares influenced by the growth of LCCs in certain

markets, or the traditional restricted fare structure that partitions demand. In addition, this method allows
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the continued use of traditional revenue management systems, even though they operate under the

precarious assumption that demand is independent for each fare class. This method, referred to as "fare

adjustment," alters the fares based on an estimated price elasticity cost, lending itself as a useful

application for any RM optimization method (Fiig, Isler, Hopperstad, & Belobaba, 2010).

Consider a case in an unrestricted fare structure, meaning that there are no restrictions partitioning

demand and separating it into different fare classes. Given the lowest open fare class k, the total quantity

sold in k, Qk, the demand for classj, d;, the total revenue for class k, TRk, and the fare for class k,fk, the

following equations are established:

Qk - XL =1 dj and TRk = f Qk

The total quantity sold is the sum of the total demand in all classes down to class k (1 denoting the highest

class), because everyone with a higher willingness-to-pay will still pay less for the same level of

restrictions. The total revenue for class k is then the fare for class k times the total quantity sold.

The next step is to find the incremental revenue, or the revenue loss due to buy down by opening up an

additional lower fare. This is not simply the demand times the fare, dk x fk, but a smaller amount

because the demand at the higher class k-I will now buy down to the lower class k. Therefore, the

revenue loss due to buy down for class k-1 is Qkl(fk_1 - fk). This adjustment, or reduction amount,

when applied to the original thought of incremental revenue yields the equation dkfk - Qk-1(fk-1 - fA).

Fiig et al. describe this "adjusted fare" as the marginal revenue for class k, MRk, which may be rewritten

as:

TRk- TRk_1
MRk = Qk-Qk-1 fk

Thus, according to Fiig et al., the optimization rule when applying fare adjustment to any fare structure is

to "order the fares in decreasing marginal revenue and open fares until capacity is reached or the marginal

revenue becomes negative" (Fiig, Isler, Hopperstad, & Belobaba, 2010).

In regards to sell-up, in the case of the fully undifferentiated fare structure, this formula may be again

rewritten with sell-up probabilities. The demand for k, the lowest open fare class, is dk = Qk, for the

demand for all other fare classes is zero. Denote the sell-up probability from the lowest class n to the

class k as PSUPk, and the base demand as Q,. Therefore, the demand Qk = Qnpsupk, and the marginal

revenue fare adjustment equation may be rewritten as:
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, ft psup - fk_1PsuPk_1

PSUPk - PSUPk-1

Because the application of this method transforms the original fare structure into a set of marginal

revenues for each fare class, the fare products for each class may now be considered independent,

enabling the correct use of RM optimizers. However, an important part of determining which fare

products to have available remains a crucial step. Based on demand with an associated total revenue, a

convex hull of feasible fare product choice sets is developed with the maximum capacity set as the

constraint. The set of fare products with the maximum total revenue on the "efficient frontier," subject to

the capacity constraint, is chosen (Fiig, Isler, Hopperstad, & Belobaba, 2010).

2.4 Chapter Summary

The evolution of airline revenue management is remarkable in that new methods and heuristics are

constantly in development to adapt to the ever-changing airline environment. From Littlewood's Rule in

1972, to Belobaba's adaptation to a nested fare structure with the EMSRb heuristic, to network

optimization techniques with DAVN and Bid Price Control, methods for seat allocation will never be

perfect, but will enable airlines to further extract every dollar possible from their flight networks.

The rise of the LCC brought about a new problem of adapting to different fare structures. The use of Q
and Hybrid Forecasting enables airlines to estimate passenger sell-up probabilities and adapt to both

price-oriented and product-oriented demand. This, coupled with fare adjustment's ability to adapt to any

fare structure, serve as crucial tools for today's airlines.
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SELL-UP ESTIMATION

3.1 The Importance of Forecast Accuracy

Weatherford and Belobaba suggest that forecast accuracy is vital to the performance of a revenue

management system (Weatherford & Belobaba, 2002). Forecasts for future demand in current revenue

management systems are not based on consumer choice models that would feature a price elasticity

component; rather they are mostly based on exponential smoothing and moving average functions of

previous demand for the same flight on the same day in earlier weeks and similar seasons. With the

demand forecast having both a mean and a standard deviation input for the basic EMSR models used

widely throughout the airline industry, the consequences of inaccurate forecasting are very interesting.

Weatherford and Belobaba propose that overestimating or underestimating the forecasts in a simulated

single flight leg environment using EMSRb does not produce symmetrical or proportional results. For a

predominately business flight, revenue decreases as the overestimation error increases, which is largely

due to closing lower fare classes too early, leaving too many seats open for too few business passengers.

In addition, underestimating the demand forecast for a business flight causes too few seats to be available

for business passengers, resulting in a larger loss of revenue than in the equivalent overestimation case.

The interesting results reside in the case of the leisure flight. As expected, underestimating the demand

results in too few seats left for higher-paying passengers, with results similar, but less extreme to the

business flight case above. However, overestimating the demand for the leisure flight creates cases where

there was an increase in revenue. While one would expect overestimation to allow too many seats for

non-existent higher-paying passengers, moderate (12.5%) overestimation forced many of the leisure

passengers without seats to purchase the higher priced seats. This is a look into the idea of sell-up, the
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occurrence of passengers buying the next higher fare class than they originally intended because it was

closed down (Weatherford & Belobaba, 2002).

3.2 Recent Research in Sell-up Estimation

Belobaba and Weatherford adapted Belobaba's EMSRb heuristic by incorporating sell-up into the model,

with the goal of adjusting the EMSRb fare ratios to increase protection levels for higher classes (Belobaba

& Weatherford, Comparing Decision Rules that Incorporate Customer Diversion in Perishable Asset

Revenue Management Situations, 1996). This would increase revenues by accounting for sell-up

potential into these higher classes. More specifically, the model is:

PU) =Rn+1 - R1 ,n X PSUPn+1,n
R1,n(1 - PSUPn+1,n)

where ir is the protection level for class 1 to n, P(wr) is the probability of selling the 7reth seat in class n

or higher, Rn+1 is the revenue from the class below class n, R1 ,n is the weighted average for revenue for

classes 1 to n, and psuPn+1,n is the probability of sell-up from class n + 1 to n (Belobaba & Weatherford,

Comparing Decision Rules that Incorporate Customer Diversion in Perishable Asset Revenue

Management Situations, 1996).

In a simulation study, with a four airline competitive environment, the airline that switched to the EMSRb

sell-up model from a base EMSRb model realized revenue gains of up to 1.8 percent. However,

overestimates in sell-up created large revenue losses for the airline. Because of this, coupled with the fact

that airlines would have to input the expected sell-up rates, the method was not used by many airlines.

Andersson discusses a research project at Scandinavian Airlines (SAS) that focuses on estimating

passenger preference when their desired class is unavailable for a particular flight. Their model captures

the three options for a passenger: choose a competitor, choose a different flight, or sell-up into a higher

class on the same flight (Andersson, 1998). More specifically, SAS chose to apply a logit choice theory

model to determine the probability of a passenger choosing flight i, classj from the choice set S, where

flight k, and class 1 are additional classes available after flight i, classj are unavailable:

exp (#ix 1 )
P(iji,j E S) = exp (fik)

ZE s eX p (O8Xki)

The P utility function parameters in the model above were determined from passenger behavior data and

interviews conducted by SAS.
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Using this choice model, it is possible to define two more probabilities:

P(k, 1lk, 1 E S_): This is the probability that flight k, class 1, is chosen after flight i, classj, is closed.

P(k, 1lk, I E S): This is the probability that flight k, class 1, is chosen regardless if flight i, classj, is

closed (all flights and classes open).

Using these probabilities, it is possible to determine a sell-up and recapture rate, or aijk:

P(k, 11k, l E S_) - P(k, lk,l E S)
aijkl - P(iilii C S)

This aiik, denotes the probability of a passenger getting rejected from flight i, classj, and choosing flight

k, and class 1, combining both recapture and sell-up.

In addition, Andersson discusses the potential markets where the model will make the largest impact for

either sell-up or recapture. When other carriers offer fewer flights for a certain market, SAS will have an

advantage for sell-up, regardless of how many flights they offer. However, when SAS offers fewer

flights than other carriers for a certain market, they will have less recapture.

The model then uses the probability a that a passenger will sell-up to determine booking class closure

rules: The marginal expectation claims that the airline should be indifferent between class 1 and class 2

purchases if the class 2 revenue equals the expected revenue from class 1. For a two class system, with

the net revenue denoted as riand r2 , for classes 1 and 2, respectively, the "optional" net revenue for class

2 is:

r2 = r1 a + (1-oc) fPc (x; T)dx

The expectation of net revenue for retaining a seat in class 2 is the revenue for class 1 multiplied by the

probability it actually happens. This is the sell-up probability plus the probability of no sell-up times the

probability of at least a certain number (LI) of class 1 passengers requesting a class 1 booking over the

time, T. Therefore, if a > f2/fl, then all class 2 booking requests should be rejected, for it is more likely

that either the passengers will sell-up or there will be enough class 1 passengers to create more revenue.

Unlike Andersson, Talluri and Van Ryzin created a dynamic programming based optimization model to

capture sell-up and buy-down behavior (Talluri & Van Ryzin, 2004). They claim that there is no
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complete revenue management methodology that contains a complete and correct passenger choice

decision model, or more specifically, models passenger choice as a function of all of the available fare

classes. This is an extremely difficult concept because it is impossible to observe no-purchase decisions

from viewing the booking history for a particular flight. It is important to note that their model applies to

a single leg, and is very complex, using a multinomial logit model. Applying this methodology to a

network level would be computationally expensive, so approximation methods must be developed.

However, their application of consumer choice in revenue management is an important alternative

approach to addressing the sell-up and buy-down issues.

Like Zeni, Ratliff and Vinod suggest that in order for RM systems to combat restriction-free pricing, they

must consider consumer choice behavior and essentially develop a demand curve in order to have optimal

booking class closure times. Ratliff says that there is an abundance of data from online booking sources

in the form of requests, which whether or not they actually result in a booking, still represent a source of

unconstrained demand (Zeni, 2007), (Ratliff & Vinod, 2005). If gathered correctly, this would be more

valuable than the current method of using historical bookings, which fails to represent a true notion of

uncensored demand due to zero no-purchase data, such as bookings lost to competition or from fare class

closure. In addition to a simple demand model, this online data may be used in a consumer choice model,

analyzing factors such as price and cross elasticities, sell-up, buy-down, and recapture possibilities.

3.3 The FRAT5

In order to evaluate a passenger's willingness-to-pay, some revenue management models make use of an

estimate of a passenger's likelihood to sell-up based on a given fare ratio, which is known as the FRAT5,

or the fare ratio between the lowest base "Q" fare and the fare in question at which 50% of passengers are

willing to sell-up. Visually, this is much easier to describe in Figure 4.
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1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Fare Ratio (f fare/Q fare)

Figure 4: Development of FRAT5 Values

Figure 4 shows how FRAT5 values are obtained for one time frame in the booking process. The

probability of sell-up (psup) from the base fare Q to a higher classf, is simply an inverse exponential

function of the fare ratio between Q andf, as well as a sell-up constant (supcon), which includes the user

input of the desired FRAT5 value, or fare ratio at which 50% of the passengers will sell-up into classf:

-supcon- f aref _1
PSUPQ_.f (aref) = e UareQ

Where:

In (0.5)
supcon FRAT - 1

faref: fare of the higher class,f

fareQ: fare of the lowest class, Q
FRAT5: user input for the fare ratio at which 50% of the passengers will sell-up into class f from class Q

As one moves from left to right across Figure 4, increasing the FRAT5 values, passengers are predicted to

be less price sensitive, or more willing to sell-up. Also, recall that Figure 4 represents FRAT5 values for

just one time frame. As one moves later through the booking process, FRAT5 values will increase, for

more passengers with a higher willingness-to-pay (i.e. business passengers) purchase their tickets closer

to the departure date, and sell-up is more prevalent overall. To account for this, different series of FRAT5

values were created to model passenger behavior based on the time frame. Three of these FRAT5 series,

known as "input FRAT5s" throughout this thesis, are shown in Figure 5.
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Figure 5: Input FRAT5 Curves

In Figure 5, note that a higher FRAT5 curves implies more aggressive passenger sell-up behavior. For

example, at time frame 16, FRAT5 "A" has the highest value at 4.0, meaning that passengers booking in

that time frame will sell up 50% of the time when the fare ratio equals 4.0. However, FRAT5 "E" only

assumes that 50% of passengers will sell up when the fare ratio is 2.0, which is much less aggressive than

FRAT5 "A." See Michael Reyes' thesis for more information on FRAT5s and traditional sell-up

methodology (Reyes, 2006).

3.4 Methods to Estimate Sell-up

Sell-up focuses primarily on price-oriented behavior. Therefore, in a completely unrestricted fare

environment, every passenger is considered price-oriented, for there are no restrictions partitioning the

demand. All passengers will want to buy the lowest open fare class. In a semi-restricted fare structure,

those passengers whose decisions do not depend on restrictions are considered price-oriented. All price-

oriented passengers will try to buy the lowest fare class, or class Q, when possible. If the Q-class is

closed, the price-oriented passenger may pay more for the next available fare class above Q (there may be

more than just Q closed), as long as it does not exceed their predetermined maximum willingness-to-pay.

If the passenger buys a fare higher than Q, this is considered sell-up.

As mentioned previously, sell-up may be estimated by an input FRAT5 curve. However, even though

these curves are based on various airline data, they are not determined from the historical data at hand

from the booking process. Therefore, estimating sell-up instead of using an input FRAT5 should provide

a more robust solution applicable to any situation where enough sell-up exists. Using the historical

-42 -

4.5

-- FRAT5 "A"
4.

n FRAT5 "C"
3.5

---de-FRAT5 "E"
0

1z 3
(t

2

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time Frame



SELL-UP ESTIMATION

bookings, there currently exist two methods to estimate sell-up, as described in detail in Charles Guo's

thesis and presentation (Guo, Estimation of Sell-up Potential in Airline Revenue Management Systems,

2008), (Guo, Review: Methods for Estimating Sell-up Potential, 2008). A summary of the two methods

to estimate sell-up are provided in the following sections.

3.4.1. Direct Observation

Suppose you are given s samples of data in a given time frame, where each sample refers to a recorded

number of bookings in the lowest open fare class. For example, if there are only bookings in M-class for

a given sample, then M was the lowest open class.

Sample Bookings

Y 3

B 8

M 10 14

Q 20 28

Number of Samples 6

Table 3: Sample Data for Sell-up Estimation Examples

Using this data, one can develop sell-up estimates with the following methods.

The Direct Observation (DO) estimation method is the simpler of the two methods, focusing solely on the

average number of bookings per fare class. Using the example established in Table 3, the following

shows the application of the DO method.

Average Sell-Up Probability

Y 3 0.1250
B 8 0.3333
M 12 0.5000

Q 24 1.0000

Table 4: Direct Observation Estimation Example

Given s samples, for classes 1, 2,..., Q, the DO method uses the average (bf,s) bookings to determine the

sell-up probabilities, pf,,, for each class. The sell-up probabilities are simply the ratio of the average

number of bookings per class to the number of Q class bookings:

Pfs - bfs
bQ's
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3.4.2. Forecast Prediction

The Forecast Prediction (FP) method is slightly more complex than the DO estimation method.

Average Total Initial Sell-Up Probability Total Q Bookings Revised Sell-Up Probability
Y 3 3 0.20 15 0.1463
B 8 8 0.40 20 0.3902
M 12 24 0.60 40 0.5854
Q 24 48 1.00 48 1.0000

Average Q 20.5

Table 5: Forecast Prediction Estimation Example

In summary, given s samples, for classesf= 1,2,..., Q, the first step for FP estimation is to find the

average (bfs) and total bookings for each fare classf and number of samples s. Then, select an arbitrary

initial sell-up estimate from Q tof for each fare class for only the first iteration of the estimation process.

Given s samples, FP uses the sell-up probability from the previous number of samples, pf,s_1, to scale the

current number of bookings in each classf, or tf,, to the equivalent number of bookings for Q. Then, the

sum of the scaled number of Q bookings is divided by s to produce the average forecasted booking values

for Q:

b = (tr,sX(Pi -1)

Last, the probability of selling up from Q to another fare classf after a given number of samples is:

Pfs = b Qs

1, f =Q

3.5 Fitting Time Frame Sell-up Estimates

The average sell-up estimate per time frame (a single FRAT5 value), created from the sell-up

probabilities obtained in one of the above methods, may serve as inputs for an entire FRAT5 curve over a

given number of time frames. However, this method does not guarantee that the FRAT5 curve will be

smooth, monotonically increasing, lie in a particular range of values, or have a sell-up estimate in every

time frame. In order to convert the data-based sell-up estimates per time frame into a FRAT5 curve, a

data fitter, or smoothing technique, may be applied to the time frame FRAT5 estimates. (In the following

example, 16 time frames are used). In this thesis, both a logistic fitter and regression-based cross-time

frame fitter are applied to the data.
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Logistic Fitter

For the logistic fitter, the goal is to minimize the sum of the squared differences between the developed

FRAT5 curve and the actual sell-up estimate per time frame. Both a two parameter and three parameter

version of the cross-time frame fit will be used.

For the two parameter version, pick x1 and x2 such that

Ztf(f 5tftf - f 5letf) 2 is minimized

Where: f5tftf = actual sell-up estimate per time frame tf

f letf = logistic equation estimate, time frame tf

= frat5n + frat5x-frat5n
1+e-x(tfx2)

frat5n = min estimated frat5 (hard-coded to 1.1)

frat5x = max estimated frat5 (input)

Furthermore, for the three parameter version, pick x1, x2, and x3 such that

Ztf(f 5tftf - f 5letf) 2 is minimized

Where: f 5tftf = actual sell-up estimate per time frame tf

f5letf = logistic equation estimate, time frame tf

=frat5n+1+e-x2(tf-x3)

frat5n = min estimated frat5 (hard-coded to 1.1)

The basis for the minimum and maximum values is to produce FRAT5 estimates that are monotonically

increasing over the 16 time frames, below a value of 2.0 for time frame 1, and to have a difference of at

least 1.0 between time frame 1 and time frame 16. In addition, some constraints are necessary to obtain a

reasonable fit. When looking at a given market, for a single time frame, across the historical observations

(26 departure days in this case), a FRAT5 value may be determined only if there were at least two

occurrences of sell-up to a higher fare class. In addition, for a given market, there must be FRAT5 values

in at least four of the 16 time frames for a logistic cross-time frame fit to occur. If a market does not

receive a logistic fit, then there were simply not enough occurrences of sell-up, and an alternate method

must be applied, such as giving the market an input FRAT5 curve.
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Consider the following example for a given market with FP estimated FRAT5 values over the 16 time

frames. Applying a two parameter logistic cross-time frame fitter to this data produces the following

results, with values for the two parameters: x1 = 0.3131, x2 = 14.7337

Time Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
FRAT5 value 1.20 1.23 1.24 1.28 1.33 1.35 1.40 1.45 1.57 1.80 2.00 2.32 2.51 2.88 3.19 3.35

Table 6: Sample FP Estimated FRAT5 Values

4

+ FP Estimates
3.5

- 2 Param Fit

3

2.5

2

1.5

1 2 3 4 5 6 7 8 9

Time Frame

10 11 12 13 14 15 16

Figure 6: 2-Parameter Logistic Fit Applied to FRAT5 Data

Note that the shape of the fitted FRAT5 curve depends solely on the values of the two or three parameters

from the logistic smoother. To distinguish the differences between markets, or to determine their

similarity in estimated sell-up, these parameters are perfect to provide a basis for comparison, instead of

comparing 16 different sell-up estimates from the 16 time frames. This will be of great importance in

Chapter 5.

Regression Fitter

For the regression-based cross-time frame fitter, a slightly different method is used. Instead of directly

smoothing the FRAT5 estimates, the methodology begins with the average elasticity constant per time

frame, econtf.

The elasticity constant per time frame is the average of the elasticity constants for each combination of

fare classes where sell-up may occur. The elasticity constant for sell-up from class k to classj is:
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o In (PSUPk-+i)

frat; - fratk

Where:

PSUPk-_, is the probability of sell-up from fare class k to classj, and

fratj is the fare ratio to the lowest fare class for classj.

Next, a linear regression is performed, with the goal of picking bint and bslope, such that

_tf (bint + bslope -tf - econt) 2 is minimized.

The estimated average elasticity constant, bint + bslope - tf, may then be used to create a FRAT5

estimate for the time frame:

-In (0.5) +
bint + bslope - tf

3.6 Chapter Summary

This chapter on sell-up estimation lays the groundwork for the new research presented in this thesis. The

differences between price- and product-oriented passengers is evident in all sell-up models and serves as a

basis for examining the effects on passengers in various markets with different fare structures. The

implementation of sell-up adjusted forecasts walks a very fine line. If the forecast is too heavy towards

the lower classes, and does not account for buy-down in unrestricted fare structures, the airline's revenues

are subject to spiral down. In addition, if the forecasts favor the high-yield passengers too much and are

wildly inaccurate, revenues will drop as too many seats will fly empty. Recent research in the sell-up

sector of revenue management has driven the field to pursue a sensible, but simple, approach to

estimating sell-up. Several questions remain, such as what model serves as the best approach, and on

what level should the sell-up estimates be determined and aggregated.

One method of estimating passenger willingness-to-pay, the FRAT5, is a crucial element that aids in

developing many sell-up models. Whether or not the FRAT5 is used directly in the model, in most cases

the FRAT5 may be reported in order to give a sense of the aggressiveness of the model's sell-up

estimates. Recent development of the two methods to estimate sell-up will propel their use in conjunction

with various other revenue management tools in several competitive environments to determine their

applicability in the real world.
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RATIONAL CHOICE (RC) FORECASTING

4.1 Introduction

Rational Choice (RC) Forecasting was developed by Miller, Zawack, and Schrag from Northwest Airlines

as an alternative to standard forecasting, Q forecasting, and Hybrid Forecasting (Kayser, Belobaba, &

Hopperstad, 2008). The basis for RC forecasting is that it removes the complexity of the Hybrid and Q
Forecasting and creates its estimates from the historical bookings in one step, based on a linear regression.

This is much faster and simpler than the four-step process required for the aforementioned Q and Hybrid

Forecasting, where sell-up probabilities were needed to convert historical bookings into Q-equivalent

bookings, followed by detruncating, forecasting, and using the sell-up probabilities again to repartition the

Q-equivalent bookings into demand by fare class. Avoiding these steps removes the difficulties of storing

all of the data as well as reducing the chance of making an error with fewer steps. The beauty of Rational

Choice is that sell-up is already incorporated in the forecast just by the structure of the linear regression,

and may be determined by looking at the segmented demand forecast. (There is no external FRAT5

necessary.) The following sections further describe the RC Forecasting process and methodology.

4.2 Methodology

Rational Choice Forecasting creates partitioned passenger type forecasts irrespective of the assumption

that passengers arrive in an inverted willingness-to-pay order, as required by other forecasting methods.

The observed historical bookings serve as the basis for partitioning the demand into different passenger

categories. An "observation" in the following discussion is the event where the following data was

recorded: the lowest open fare class, the fraction of the time frame that the lowest open class was

available, and the observed bookings during this time in Y, B, M, or Q classes (from highest to lowest

fares). The RC Forecasting methodology is summarized in the following flowchart:
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3. Run a linear regression to obtain coefficients for the customer types
(independent variables) that explain the observations (dependent variables)

4. Group the customer types into one of the fare classes in order to create the

Grp tforecast per fare class I
Figure 7: Rational Choice Process

4.2.1. Customer Types

Passenger categories are established based on their potential booking behavior. The first division is

between product-oriented (business) and price-oriented (leisure) travelers. The second division

establishes customer types within product- and price-oriented passengers. Product-oriented passengers all

have a desired fare class, based on a set of restrictions and their maximum willingness-to-pay (WTP).

Price-oriented passengers are assumed to all have a maximum willingness-to-pay, set at a particular fare

class.

Product-Oriented Price-Oriented

wtp B wtp M wtp Y wtp B wtp M wtp Q

won't M/Q won't Q not Y not B not M

1 7CutmrTpsoRCFrcti

_______ 11 1 _ _

___ ___1 1 1 1

__ __ _ __ 1 1 1 1

Table 7: Customer Types for RC Forecasting

Booking In: Lowest Open Class:

Y B, M, or Q

B M or Q

M Q

Y Y

B B

M M

Q Q

-50-

[ML



RATIONAL CHOICE FORECASTING

For example, consider the four-class fare structure in Table 7, with Y, B, M, and Q fare classes

established in decreasing fare price. In order of increasing willingness-to-pay, there exist four price-

oriented passenger categories: "wtp Q, not M"; "wtp M, not B"; "wtp B, not Y"; "wtp Y." Therefore, if a

booking occurs in Q class when Q is the lowest open class, it could have been any of the four price-

oriented passenger types because all will be willing to pay at least Q. This is denoted by the "1" in Table

7, meaning that given the lowest open class, a purchase in that booking class could have been from any

customer type marked with a "1."

A similar process holds true for the product-oriented passengers. For the four class example, there are

three categories of product-oriented passenger types-the first of which are those business passengers that

will buy Y because they are willing to pay Y, but will not fly in B, M, or Q, because of various

restrictions associated with those lower fare classes (denoted as "wtp Y, won't B/VQ" in Table 7 above).

This pattern applies to the two other product-oriented passenger types-those that are willing to pay for

class B, but won't fly in M or Q classes, and those that are willing to pay for class M, but won't fly in

class Q. A business passenger is assumed to not want the base Q fare. However, they could want the

lowest fare available as long as that fare is above the Q fare.

This means that if the lowest open fare is B, M, or Q, and a passenger books in Y, then it must have been

a "wtp Y, won't B/M/Q" product-oriented passenger. However, if Y is the lowest open fare class, and

there is a booking in Y, it could be the product-oriented "wtp Y, won't B/M/Q" passenger, or the price-

oriented "wtp Y" passenger. This possibility of a booking being either price or product-oriented is also

true for other cases where B or M is the lowest class open. Therefore, this effectively removes the

assumption that if there is a booking in the lowest open fare class it must be a price-oriented passenger,

which is inherent to the Q and Hybrid Forecasting models.

In addition to the basic customer types and lowest open class scenarios shown in Table 7, each customer

type is color-coded to denote the class to which customer type belongs. The key assumption is that if the

customer type can book in more than one class based on their willingness-to-pay, the forecast for that

customer type is allocated to the highest class possible for them. For example, if a price-oriented "wtp Y"

customer books in M class because M is the lowest open class, the observation will be allocated towards

the Y total forecast. Step 4 of the RC process in Section 4.2.4 further explains how the forecasts for each

customer type are combined into actual forecasts for the fare classes.
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4.2.2. Mapping the Observations

The premise of RC forecasting is to keep all options of different customer types available for who made a

specific booking. Therefore, the next step is to connect each booking observation to all possibilities of

customer types depending on the lowest open class during the time frame when the booking observation

occurred. The process, referred to as "mapping" observations to customer types, expands Table 7 for all

lowest open class possibilities and is shown in Table 8 below:

Product-Oriented Price-Oriented

wtp Y wtp B wtp M wtp Y wtp B wtp M wtp Q
Open Classes won't B/M/Q won't M/Q won't Q not Y not B not M

Y 1

B

M 1

Q _ _ __ _ _ _ 1 1 1 1

Product-Oriented Price-Oriented
wtp Y wtp B wtp M wtp Y wtp B wtp M wtp Q

Open Classes won't B/M/Q won't M/Q won't Q not Y not B not M

Y 1

B 1

M 1 1 1 1

Product-Oriented Price-Oriented

wtp Y wtp B wtp M wtp Y wtp B wtp M wtp Q
Open Classes won't B/M/Q won't M/Q won't Q not Y not B not M

Y 1

B 1 1 1

Product-Oriented Price-Oriented
wtp Y wtp B wtp M wtp Y wtp B wtp M wtp Q

Open Classes won't B/M/Q won't M/Q won't Q not Y not B not M
Y 1

Table 8: Mapping Customer Types

Booking In:
Y
B

ooking In:

This table may be read as follows: Looking at the scenario where M is the lowest open class, if there is an

booking observation in class M, then it could have been any of the three price-oriented customer types

who had a willingness-to-pay of at least M, or the product-oriented customer type who was willing to pay
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for M, but wouldn't fly in Q class. This chart lays the foundation for the "A" matrix, which then serves as

the basis for linear regression.

Recall that each overall observation consisted of the set of bookings in Y, B, M, and Q, given that a

certain class was the lowest open. These observations serve as the dependent variables for the regression,

and the transpose of the observation vector will match up accordingly with the corresponding case in the

mapping charts in Table 8. Consider the following example in Table 9 of three observations, showing the

lowest open class, the fraction of the time frame that that was the lowest open class, and the observed

bookings within each observation.

Observed Bookings

Observation Lowest Open Fraction TF Open B M Q
1 Q 1 0 1 0 2

6 B 0.5 1 1

24 M 1 0_1 1

Table 9: Sample Set of Observations

The next step is to map this sample set of observations into the "A" matrix using Table 8 from above to

determine all possible customer types per observation given a particular lowest open class. The customer

type possibilities, originally shown by "1 "s, are weighted by the amount of the time frame that the

particular class was the lowest open.

Observed wtB P M wtp B wtp M wtp Q
Observation Bookings vo Q not Y not B not M

1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
2 0 0 0 1 1 1 1

6 1 0.5 0 0 0 0 0 0
1 0 0.5 0 0.5 0.5 0 0

24 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 1 1 1 0

Table 10: "A" Matrix Derived from Sample Observations

The "A" Matrix above serves as the basis for the linear regression, with the goal of determining the best

coefficients for each customer type to predict the observed bookings for each observation.
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4.2.3. Linear Regression

The third step of RC Forecasting uses a linear regression to minimize the sum of squared residuals

between each observed number of bookings within an observation and the estimated number bookings in

each class determined from the regression coefficients (forecast values per class type) and the values for

the independent variables. In math, the generalized formulation is:

Let: neq = number of observations (i = 1..neq)
nfcls = number of fare classes (i= 1..nfcls)
lof = lowest available class, observation i
flof = fraction of time frame that class lof was open for observation i
blof = observed bookings, class lof, equation i

For each observation i and fare classj, define the least squared parameters as:

A11 =flof given that lof sf, wheref is the fare class in question, otherwise Aj = 0
Bi = blof

Determine the forecast for each class,fcj, that minimizes the sum of squared differences between the

estimated and observed bookings:

neq nfcls 2]

argmin fc; - Ai, - Bi)
subject to: fc; 0 Vj

The explanatory variables in the linear regression are the passenger type possibilities available for the

observation, which are also weight-adjusted by the fraction that the lowest open class was available

during the time frame. For the four-class example above, the regression equation is:

Obs_Booking = fl1 (wtp Y,won'tB/M/Q) + fl2(wtp B,won't M/Q) + fl3(wtp M,won't Q)
+ fl4(wtp Y) + f 5(wtp B,not Y) + 6 (wtp M,not B) + fl7(wtp Q,not M)

subject to: fli 0 Vi

Note that the regression coefficients must be greater than or equal to zero because they serve as the actual

forecasts for each customer type.
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In the generalized form, additional information about each forecast may be determined, to include the

forecasting error (Kayser, Belobaba, & Hopperstad, 2008). This helps to determine if some fare classes

receive more accurate forecasts than others.

For the lowest available fare class k, define variance in terms of the residual, resid, from the least squares

fit as:

Let: neqkk= number of equations where k is the lowest open class

>LIof 1=k resid_2
vark -- of~

neqkk

The forecasting error, or variance, for a particular classf is:

nfcls

fcef = fcf vark ff

k=f Ej=1 f C

4.2.4. Forecast Allocation

The last step of the RC process aggregates the p coefficients by mapping each coefficient to the highest

possible class associated with the passenger type as discussed in the first step of the RC methodology.

The sum of the regression coefficients for each passenger type belonging to a certain fare class constitutes

the total forecast for that class.
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Observed Y . wtp B Wtp M wtp B wtp M wtp Q
Observation Bookins woin Q w on't not Y not B not M

1 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

2 0 0 0 1 1 1 1

6 1 0.5 0 0 0 0 0 0

1 0 0.5 0 0.5 0.5 0 0

24 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 1 1 1 0

Total Forecast

B 0.7179

Coficet 0.9617 10 2.12

Q 2.2120

Table 11: Rational Choice Forecast Allocation

Table 11 shows how the forecasts are generated from the linear regression in the four-class example.

Note that some passenger types received a "zero" forecast, which means it was constrained to be greater

than or equal to zero in to the Rational Choice formulation.

4.3 RC Expanded

The previous Rational Choice method assumed seven passenger types, three of which were product-

oriented. However, the product-oriented passengers were assumed to want exactly one fare class and

nothing else based on the set of restrictions associated with the fare. However, the RC Expanded

methodology presents an alternative approach and assumes that a product-oriented passenger may still be

sensitive to price and accept more than just one fare class option. For the four-class example, three new

product-oriented passenger types are introduced in addition to the existing three: "wtp Y, won't M/Q";

"wtp Y, won't Q"; "wtp B, won't Q." For example, a product-oriented "wtp Y, won't M/Q" passenger

with a willingness-to-pay set at Y may now purchase a Y or B class fare, instead ofjust the Y fare in the

previous Rational Choice formulation. The new set of customer types for RC expanded is:
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Estimated Observed Squared
Bookings Bookings Error

0.6283 0 0.3948

0.7179 1 0.0796

0.9617 0 0.9249

3.1770 2 1.3854

0.6283 1 0.1381

1.6830 1 0.4665

0.6283 0 0.3948

0.7179 1 0.0796

1.9268 1 0.8590
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Product-Oriented Price-Oriented
wtp B wtp B3 :wtp M witp B wtp M wtp Q

won' t Q won't Q won't Q not Y not B not M

1 1 1 11_ __1_ _

1 1 1 1 1 1 _ _ _ _

__ __ 1 1 1 1 1 1 _ _

___ _ __ _ __ __ _ __1 1 1 1

Booking In: Lowest Open Class:

Y B, M, or Q

B M or Q

M Q

Y Y

B B

M M

Q Q

Table 12: Passenger Types for Rational Choice Expanded Forecasting

In general, the RC Expanded method creates many more product-oriented passenger types as the number

of fare classes increases. For every additional fare class, creating a new total of n fare classes, this creates

n-I additional passenger types. While this four-class example only has six product-oriented passenger

types, a 26-class fare structure will have 325 product-oriented passenger types, in addition to the four

price-oriented passenger types.

The remaining steps of the RC Expanded methodology, to include the customer type mapping, linear

regression, and customer type forecast allocation, follow the same process as the basic Rational Choice

method. It is important to note again that the forecast allocation still operates under the assumption that

the forecast for the customer type is allocated to the highest possible class that the customer type in

question may purchase. Referring to Table 12 above, for the "wtp Y, won't Q" product-oriented

passenger, their forecast is allocated to Y because their maximum willingness-to-pay is Y, even though

they may purchase a B or M fare.

4.4 RC with Fare Adjustment

In order for a revenue management optimization method to use adjusted fares, estimates of sell-up are

necessary, as discussed in section 2.3.3. However, instead of getting sell-up estimates from an input

FRAT5 or a FRAT5 estimation method (FP or DO), one may use the Rational Choice price-oriented

partitioned forecasts, making Rational Choice Forecasting with fare adjustment a very simple process.

Only the price-oriented passenger types are used because sell-up only occurs with price-oriented

passengers.
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The price-oriented passenger types for both the basic and expanded Rational Choice formulations

represent the partitioned forecasts. To create estimates of sell-up between each possible fare class

pairing, it is necessary to aggregate the partitioned forecasts into willingness-to-pay categories:

wtp Y }wtp Y wtpB

wtp B, not Y wtp M

wtp M, not B

wtp Q, not M

Using these non-partitioned forecasts, the sell-up estimate from fare class k to fare classj, PSUPk-_, , is

created for all possible sell-up pairs. For n fare classes, there are (n) sell-up combinations. For example,

the six sell-up pairs for this four class example are:

Q--+Y: (wtp Y) /(wtp Q)
Q--B: (wtp B) /(wtp Q)

Q--M: (wtp M) /(wtp Q)
M-+Y: (wtp Y) /(wtp M)
M--B: (wtp B) /(wtp M)
B--Y: (wtp Y) /(wtp B)

Next, each estimate of sell-up is converted into an elasticity constant, or econk-_:

_ In (psupk _,) -
econk, - = n - PU~

~n frat; - fratk

where fratk is the fare ratio to the lowest fare class (Q in the example) for class k.

The average elasticity constant for the sell-up combinations for the time frame in question, econtf, may

be used to create a FRAT5 estimate for the time frame. Even though this estimate is not used in the fare

adjustment process, it is still worthy of noting to compare sell-up probability estimates between different

forecasting methods:

_ -ln (0.5)
econtf

The purpose of creating the average elasticity constant is to aggregate the (n) sell-up estimates for the

fare class combinations to just n sell-up estimates between the lowest base fare class (Q) to each of the

other n-1 fare classes in question, which is what the fare adjustment method uses. Therefore, using the
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average elasticity constant for the time frame and the fare ratio between class Q and class k, the

probability of sell-up between class Q and class k, PSUPQk, is:

- econtf.-(farek _1

PSUPQk = e kfareQ ,for k * Q
1, fork = Q

The last step of the fare adjustment process using Rational Choice forecasts is to create the adjusted fares

using the probabilities of sell-up for each class k. The adjusted fare for each class k, f', is:

, fkpsupk - fk_1PsuPk_1

PSUPk - PSUPk_1

Consider a single departure, whose booking process is divided into the 16 time frames that span a given

booking period. Because of variable estimates of PSUPQk between each departure per time frame, two

smoothing techniques were applied to the sell-up estimates before they were used to create the adjusted

fare per time frame.

The first method places the sell-up estimates into a historical database and uses a moving average of the

sell-up estimates per time frame per class over the past 26 samples. The sell-up estimates for this method

are averaged on a path basis. The second method, or the "market" method, uses the same moving

average smoother, but applies it to all paths associated with a market, thus aggregating the sell-up

estimates from the "path" method.

4.5 Chapter Summary

Rational Choice Forecasting serves as a very logical and sensible method to create class forecasts.

Avoiding the multi-step processes inherent to Q-and Hybrid Forecasting, as well as the assumption that

passengers arrive from lowest to highest willingness-to-pay order, Rational Choice uses booking

observations based on conditional reasoning and just one linear regression to create a forecast. While

other methods incorporate separate estimates of sell-up into their model, all occurrences of sell-up are

already covered by the observations used and passenger types created within the Rational Choice

forecasts.

The most difficult aspect of Rational Choice Forecasting is to account for all possible passenger behavior

types. Establishing the customer types enables the mapping of each observation, conditioned on the

lowest open class, into the "A" matrix used in the linear regression. Using the observed bookings as the

dependent variables, with the customer types as independent variables, the linear regression seeks to
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minimize the squared difference between the two by giving each customer type a regression coefficient.

This coefficient, when allocated to a certain class, serves as the forecast for the given class.

Rational Choice Expanded Forecasting does not change the basic methodology of Rational Choice

Forecasting, but just creates additional customer types based on the assumption that product-oriented

customers may too have a "price-oriented" aspect of being sensitive to price and be willing to fly in

multiple fare classes given a maximum willingness-to-pay. However, the total number of product-

oriented customer types grows non-linearly with the number of classes used.

Another extension of Rational Choice Forecasting is its use with fare adjustment. Based on the price-

oriented customer type structure, Rational Choice Forecasting is able to easily provide sell-up

probabilities, an essential piece that the fare adjustment formula uses to create the adjusted fares for an

RM optimizer. Additionally, using an elasticity constant created from the sell-up probabilities between

combinations of classes, a FRAT5 value may be reported for each time frame. This is important for

reporting purposes and will be referenced in later portions of the thesis.
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CLUSTERING

5.1 Introduction

In Section 3.4, two methods were discussed that estimate sell-up based on historical bookings for a given

time frame. These methods, Direct Observation and Forecast Prediction, create sell-up estimates that may

be applied to a forecasting method to create forecasts by willingness-to-pay for a given market. However,

a question of the level of aggregation remains. Should sell-up be estimated on a per-market basis, or

should it be estimated over the whole system, or network? (Recall that the input FRAT5 curves were

applied over the whole system.) Both market-level and system-wide aggregation methods were recently

developed and in testing, created revenues comparable and often slightly better than those of an input

FRAT5, with system-based estimation performing better than input FRAT5s and market-based

estimation.

However, some fundamental issues may exist with both system-wide and market-based sell-up

estimation. Despite having more data over the entire system, the system-wide estimates may be too

broad, giving some markets sell-up estimates that are uncharacteristic of that market. On the other hand,

giving a market its own specific sell-up estimate is much more difficult due to a shortage of sell-up

occurrences over the booking process. In order to disaggregate the system-wide estimation, perhaps a

more sensible option is to group, or cluster, similar markets that will have analogous sell-up properties

and characteristics. Then, individual sell-up estimates for each market may be clustered, and the markets

belonging to each cluster will all receive the same sell-up estimate. This provides a middle ground

between the system-wide and per-market sell-up estimation used previously, creating a more robust

solution.
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In order to define "similarity" between sell-up estimates for markets, the parameters from the logistic

cross-time frame fit smoother will be used, since they determine the overall shape of the FRAT5 curve.

Therefore, instead of needing a sell-up estimate for each of the 16 time frames for a given market, just

two or three parameters can define the shape of the FRAT5 curve. For a given number of clusters, those

markets belonging to a specific cluster will all use the same parameter values from the cluster mean, and

thus have the same FRAT5 curve. In order to determine which markets will be assigned to a given

cluster, the K-means clustering algorithm will be used.

5.2 K-Means Algorithm

The purpose of any clustering method is to assign observations to clusters such that the sum of the

pairwise dissimilarities between two observations in a given cluster is smaller than if the observations

were in different clusters. According to Hastie et al., in every clustering algorithm there exists an

encoder, k = C(i), that assigns the ith observation to the kh cluster. The goal of clustering is to use the

specific encoder to assign values to each pair of observations through a distance metric d(xi, x'). In order

to properly assign observations to clusters, one should seek to adjust the cluster assignments until a loss

function is minimized. The loss function in this case determines the amount to which the overall

clustering goal is not met, and is defined by

K

W (C) = Y I d (xi,x!).
k=1 C(i)=k C(i')=k

The K-means algorithm is a type of iterative descent method. Instead of trying every possible

combination of cluster assignments for a given number of observations and clusters, an iterative descent

method begins with an initial partition and changes the cluster assignments to improve the loss function in

each step. Once the algorithm fails to improve the loss function, it terminates with the current cluster

assignments as the solution. However, a potential pitfall occurs if these solutions converge at local

minimum, but not the global minimum. Note that this is still more feasible than enumerating the total

number of cluster assignments possible for N observations and K clusters:

K

S (N, K) = 1Y(-1) K-k (K)kN

k=1

Having just 20 observations and 5 clusters yields 7.492 x 1011 possible combinations, making the

iterative descent method much more efficient.
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The K-means algorithm uses the squared Euclidean distance between observations as the dissimilarity

metric, where p is the number of features, or dimensions, for each independent observation:

P

d(xi,xti) = (xt; - x,1)12 X XI12

j=1

There are two steps to the K-means algorithm, which uses an alternating optimization method between the

two steps. First, in order to find the cluster means, {mi, ..., mKJ, the algorithm seeks to minimize the total

cluster variance for a given cluster assignment C. The total cluster variance is given by

K

min K INk I xi -mk||2,
C,{mkl 1 k=1 C(i)=k

producing the means of the currently assigned clusters for a current set of observations S:

5s = argmin ||x1 - m|| 2

iES

Second, based the current set of means, one will minimize the total cluster variance by allocating each

observation to the nearest current cluster mean, or mathematically,

C(i) = argminlxi - mk| 2.
1:5k:SK

These two steps are repeated until the cluster assignments for observations to cluster means no longer

change, indicating convergence to a minimum cluster variance (Hastie, Tibshirani, & Friedman, 2001).

In regards to the clustering application presented in this thesis, recall that the logistic-fit parameters, x1

and x2 (or xl, x2, and x3 for the three parameter version), define the shape of the FRAT5 curve for each

market. Visually, each market's parameter values can be expressed in a scatter plot, as shown in Figure 8.

Applying the K-means clustering algorithm essentially asks the question, "Given that you have to use k-3

clusters, where do you place the cluster centers in order to minimize the total squared Euclidean distance

from the center of each cluster to each point assigned to the cluster?"
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Figure 8: K-Means Clustering Example

In Figure 8, each market is represented by its xl and x2 parameter. Those markets belonging to Cluster 1,

as indicated by the blue markers, have a within sum-of-squares based on the Cluster l's mean, as shown

by the blue circle. The K-means algorithm seeks to minimize the total cluster variance, which is simply

the sum of the three clusters' within sum-of-squares.

This algorithm works for different dimensions beyond the two-dimensional case above, and also for

higher values of K. However, choosing the correct K value is not entirely intuitive.

5.3 Determining the Number of Clusters: Gap Statistic

With each additional cluster center, the total within sum-of-squared distances, denoted as WK, will

decrease. However, the decrease is non-linear, reaching a saturation point where every additional cluster

provides minimal benefit. This is often denoted by an "elbow," or sharp curve in the data, as shown in

Figure 9. The gap statistic is one recently developed approach that scientifically quantifies the degree of

this "elbow" (Tibshirani, Walther, & Hastie, 2001).
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Figure 9: Within Sum-of-Squares Example

Figure 9 shows that there is minimal benefit gained after about three to five clusters, but it is difficult to

determine exactly where a distinct elbow occurs beyond that of two clusters. The Gap Statistic Method's

approach is to compare the log of the values of WK to those from a reference distribution. In this case, a

uniform distribution of the data is applied over the range of values covered by observations of interest. If

this were used with x1 and x2 parameters, the reference uniform distribution would lie in a two-

dimensional box. Next, the same clustering method is applied to the uniform distribution, and new WK

values are obtained. This data series is denoted as the "Expectation" for the within sum-of-squares, and is

shown in Figure 10.

0 .&
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0
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-2

-2.5
Number of Clusters

Figure 10: Observed and Expected Log (WK) Example
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The Gap Statistic Method sets the optimal number of K clusters where the observed WK falls farthest

from the expected WK. In other words, the gap statistic is the difference between the expected and

observed WK, with the optimal k set to its maximum value. As seen in Figure 11, for this example data,
the Gap Statistic sets k=3 as the optimal number of clusters.

I I

1 2 3 4 5 6 7 8 9 10

Number of Clusters

Figure 11: Gap Statistic versus Number of Clusters Example

It is also important to note that the gap statistic is not entirely convex, and is therefore important to look at

the entire curve over all values of k. If there are other increases, or local maxima in the gap statistic

curve, this may mean that there are smaller subclusters within larger, better-defined clusters. For example,
if the data is grouped in such a way that there only appears to be one large clump of data, the gap statistic

still offers a suggestion about where other divisions may be made.

While the gap statistic offers a sound and statistically-based method for determining the number of

clusters, the goal of its use in regards to this thesis is simply that of determining the number of clusters

that will maximize revenue. The gap statistic may offer a best guess at an appropriate number of

clusters-however, there is no guarantee that the optimal k value will actually produce the best revenue.

The experiments that test these thoughts are included in the following chapter.

5.4 Chapter Summary

With sell-up estimation playing an increasingly pivotal role in airline revenue management, it is vital to

determine proper estimates for a given market. However, the over generalization of a system-wide or

network-based estimate does not distinguish sell-up estimates for specific markets. In contrast, estimating

sell-up on a market basis results in over-specification and often too sparse of a sell-up data set across all
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time frames. The K-Means clustering algorithm enables the grouping of similar observations based on a

certain number of defining characteristics. In this thesis, those characteristics are the parameters that

define shape of the FRAT5 curve for a given market. When clustering on these parameters, markets that

have similar sell-up characteristics will be grouped, and will all receive the same parameters from the

cluster mean. This greatly increases the distinction of sell-up estimates compared to a system-wide

estimation method, and increases the number of sell-up data points for a given cluster, where the market-

based estimation method fails. While there is no clear way to predict what exact number of clusters will

result in the highest revenue, various methods such as the gap statistic provide a good starting point. To

determine the effectiveness of these clustering methods and their variants in different environments, the

following chapter uses the Passenger Origin-Destination Simulator (PODS) to evaluate their performance.
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CHAPTER 6

SIMULATION OF FORECASTING, SELL-UP
ESTIMATION, AND CLUSTERING METHODS

6.1 The Passenger Origin Destination Simulator (PODS) General
Background

Developed in the mid-i 990s at Boeing by Hopperstad, Berge, and Filipowski, the Passenger Origin-

Destination Simulator (PODS) creates a competitive environment to test airline revenue management

systems and strategies. With multiple airlines serving numerous markets, PODS is capable of simulating

airline competition over a multiple-day booking period with several different networks. There are many

components in PODS, and only a brief overview is presented below. For more information, see (Tam,

Belobaba, & Hopperstad, 2008), (Hopperstad, 2005), or many other MIT PODS-based theses and

dissertations.

6.1.1. Passenger Choice Model and Revenue Management System
Components

At the heart of PODS lies the Passenger Choice Model, which simulates passenger preference and

bookings that feed into the Revenue Management System. The RM System includes a booking database,

forecaster, and RM optimizer.
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PASSENGER CHOICE

Demand Generation

Decision Window Model

Passenger Characteristics

Passenger Choice Set

Passenger Decision

Figure 12: PODS Structure (Tam, Belobaba, & Hopperstad, 2008)

In the Passenger Choice Model, the first step for PODS is demand generation. The demand by market

was developed by PODS Consortium members to reflect real world markets. In addition, the demand is

divided between leisure and business passengers, roughly based on a 65% leisure to 35% business

passenger mix. However, different simulation networks used in PODS may have slightly different

passenger type proportions for various markets.

For every passenger generated, he or she is assigned passenger characteristics beyond that of their desired

origin and destination, to include a time of travel preference, a maximum willingness-to-pay based on a

demand curve for both business and leisure passengers, and a disutility value for various restrictions and

limitations for the fare structure set in PODS. For the departure time parameter, the Boeing Decision

Window Model is used to determine whether or not a path fits within each passenger's window. If not,

the excluded path class option will receive an additional disutility.

Based on all of the passenger requirements, PODS determines the complete available set of fare options

to each passenger with all disutilities included. However, if the passenger fails to meet other

requirements such as advance purchase or maximum willingness-to-pay, or if the RM system of the

airline closed down the desired class, the particular fare is unavailable to the passenger. Last, the

passenger decides on the lowest-cost feasible option. This is the fare with the best total value to the

passenger-that is the lowest fare price plus fare restriction disutility plus path quality disutility (for non-

stop versus connecting paths). This simulated purchase then becomes a historical booking.
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The interest of this thesis lies in the forecasting block in the RM system side of PODS. The forecasting

section uses current and historical bookings to adjust the forecast for future bookings for the revenue

management optimizer. There are numerous different methods of forecasting in airline revenue

management, but through their simulation in PODS, it is possible to test their effects while holding all

other conditions equal. The item of interest is the method for estimating sell-up (passenger willingness-

to-pay), which will adjust the forecast fed into the RM optimizer.

Revenue management research greatly depends on creating controlled environments to test new methods

and algorithms. Through the creation of these environments, PODS serves as the main testing ground for

new methodology and analysis presented in this thesis. Specifically, multiple networks reflecting

different fare environments (restricted and unrestricted) are used to evaluate the potential impact that new

methods will have in the real world.

The PODS booking process for a single departure in our tests consists of a 63-day period, which is

divided into 16 time frames. As the departure date nears, the length of each time frame shortens, from a

duration of 7 days for Time Frame 1 beginning 63 days from the departure date, to a duration of one day

for time frame 16, the day before departure. While booking limits are re-optimized before every time

frame, passengers may book flights and airlines may close or reopen fare classes within each time frame.

Each 16 time frame booking process serves as one "sample," or departure. One "trial" in PODS consists

of 600 samples, the first 200 of which are burned. This removes autocorrelation between samples that

may exist due to initial conditions inherent to statistical methods used in the simulation. The overall

results for the performance of each airline in the simulation are the average of the last 400 samples. Last,

a typical PODS "run," consists of five trials for smaller, simpler networks, or two trials for more complex

networks, with the performance for each airline defined as the average of the sample averages from each

trial.

6.2 Simulation Environment

Various competitive airline networks can be used as the basic structure for setting up a simulation

experiment in PODS. Because different revenue management methods are often designed to operate in

variety of environments, it is useful to test them under multiple conditions. These situations are

encapsulated by the numerous different controllable attributes for each network in the simulation. The

most important factors to consider in the experiments are the airlines' fare structures with various

restrictions, as well as the size and complexity of the network and markets served by the airline of

interest. This thesis makes use of two airline network structures, known as Network D6 and Network T.
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While it is possible to enumerate many possible fare structures in PODS, the thesis will focus on the

choice of two fare structures for the airline of interest for both Network D6 and Network T.

6.2.1. Network D6 Semi-Restricted and Unrestricted

Network D6 is the more simple of the two networks used in the simulations. It is a dual airline

competitive network, with each airline operating out of its own central hub, serving 40 spoke cities.

Traffic flows only from west to east, and must connect through each hub, HI for Airline 1 (AL1), or H2

for Airline 2 (AL2). There are no hub bypass, or point-to-point, services offered. Airline 1 legs are

denoted by blue in Figure 13, with the red indicating those legs that belong to AL2.

Figure 13: Network D6 Map

Throughout the PODS simulations, the experiments are conducted so that the airline of interest is AL1.

Various revenue management methods are all tested on AL1, leaving AL2 as the control. With 40 spoke

cities, ALl has 126 legs, serving 482 O-D markets. In addition, ALl offers six fare classes for all flights,

which serve as the basis for distinction between the two Network D6s.

If both ALl and AL2 offer a semi-restricted fare structure, the network is referred to as Network D6

Semi-restricted. Their fare structures are functions of whether or not advance purchase, Saturday night

minimum-stay requirement, cancellation fee, or non-refundability is included for a specific fare class.

The fare structure design is denoted in Table 13 below.
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2 3 NO YES NO

3 7NOYEYS

4 14 NO YES YES

5 14 NO YES YS

6 21 NO YES YES

Table 13: Network D6 Semi-restricted Fare Structure

In the baseline scenario in Network D6 Semi-restricted, both ALI and AL2 use the EMSRb seat

allocation heuristic with standard forecasting.

Contrary to the semi-restricted fare environment, both AL1 and AL2 may offer a fully-unrestricted fare

structure. This network is referred to as Network D6 Unrestricted. As shown in Table 14, there are

literally no differences in restrictions between the fare classes.

1 0 NO NO NO

2 0 NO NO NO

3 0 NO NO NO

4 0 NO NO NO

6 0 NO NO NO

Table 14: Network D6 Unrestricted Fare Structure

The baseline scenario for testing in Network D6 Unrestricted consists of AL1 using EMSRb (most likely

with a form of Hybrid or Rational Choice Forecasting), while AL2 uses Adaptive Threshold Revenue

Management, with a target load factor of 90 percent (AT90).

While Network D6 Semi-restricted is a more realistic representation of U.S. domestic fare structures,

Network D6 Unrestricted captures the extreme case of the potential effects of spiral down. While this is

an abnormal situation, where not even an advance purchase requirement segments demand, it is useful for

the testing of revenue management methods focused on estimating passenger willingness-to-pay that seek

to prevent spiral down. It is not completely unlikely, as these situations can arise in markets where a low

cost carrier is present and offers extremely low-priced fares with virtually no restrictions.

Although Network D6 consists of only two airlines and two hubs, it serves as a good initial testing ground

for revenue management methods. Its lack of complexity keeps competitive influences to a minimum,

with ALl's performance more dependent on the methods that define its revenue management system.
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6.2.2. Network T1 and Network T4

Network T serves as a more complex network for PODS simulations. Increasing the competition from

Network D6, AL1 is now part of a four carrier network, serving 40 spoke cities. Each airline operates out

of its own central hub (again traffic moving west to east), and each has its own baseline revenue

management system. In the base case, AL1 is still the airline of interest, initially using a leg-based

EMSRb revenue management system. Airline 2 (AL2) and Airline 4 (AL4) both use network-based

DAVN, while Airline 3 (AL3) is an LCC, using Adaptive Threshold Revenue Management, with a target

load factor of 90 percent.

YVR

EMSRb
Leg RM OUGCNetwork RM eu

(DAVN)

TWO~

WPHLLG

0" A

OW, AU 0

e STL OR

LCC LF

RM MI

AUS M SY

Figure 14: Network T Map

Out of the 572 markets created by the 40 spoke cities, the markets serviced by AL3 are known as LCC

markets. Because of these markets, the other airlines operate with two fare structures, one for the 296

LCC markets and another for 276 non-LCC markets. Like Network D6, the fare structures will serve as

the basis for distinction between the two versions of Network T.

In Network T1, the three airlines serving the non-LCC markets use a "More Restricted" Fare Structure as

shown in Table 15.

- 74 -

...... .... .... ......... .... ..... ..... .. ...... . ...... .. .... ........ .... .



SIMULATION OF FORECASTING, SELL-UP ESTIMATION, AND CLUSTERING METHODS

Table 15: More Restricted Fare Structure for Network T Non-LCC Markets

However, for all four airlines serving the LCC markets, a "Less Restricted" Fare Structure is used, as

shown in Table 16 below.

1 0 NO NO NO
2 0 NO YES NO
3 7 NO NO ES
4 7 NO YES YES
5 14 NO YES YES
6 14 NO YES YES

Table 16: Less Restricted Fare Structure for Network T1 LCC Markets

As an alternate to Network TI, in Network T4, LCC markets for all airlines have a fully unrestricted fare

structure. It is important to note that the non-LCC markets will have the same fare structure that they had

in Network T1, as shown in Table 15. The new unrestricted fare structure for Network T4's LCC markets

is below in Table 17.

S 0 _ NO _ NO NO

2 0 NO NO NO

4 0 NO NO NO

5 0 NO NO NO

6 0 NO NO NO

Table 17: Unrestricted Fare Structure for Network T4 LCC Markets

In addition, there are other Network T characteristics worthy of noting. While the fare structures for non-

LCC markets differ from LCC markets, fare ratios are also much different. With LCC markets ranging

from $105 for a Class 6 fare to $366 for a Class 1 fare, the average fare ratio (highest to lowest fare) is

equal to 3.5. However, in the non-LCC markets, fares differ from $161 to $804 for Class 6 and Class 1,

respectively, creating an average fare ratio of 5.0.
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Also, unlike Network D6, the business-leisure percent of passenger demand is not set to a constant 35-65

for all markets, respectively. Rather, cities are first classified as having high (90%), medium (60%), or

low (40%) business demand. Then, depending on what two cities serve as the origin and destination,

markets are classified into one of five percent business demand bins, creating a bell-shaped curve

centered at a business demand of 36 percent, and ranging from 16 percent to 81 percent.

Looking at the four networks described, it is easy to notice that there are two distinct classifications of

networks in terms of fare structure. Network D6 Semi-restricted and Network TI both use fare structures

that incorporate at least a few restrictions and advance purchase requirements in order to segment

demand, with Network TI being more complex and susceptible to many competitive feedback effects.

Network D6 Unrestricted and Network T4 serve as the more extreme environments with fare structures

that create a higher likelihood of spiral down. These two networks are better testing grounds for sell-up

and passenger willingness-to-pay estimation. While it is impossible to create an environment completely

reflective of a real-life network, these networks provide a reasonable, controllable platform for simulating

airline revenue management methods, and statistical methods for sell-up rate estimation in particular.

6.3 Hybrid Forecasting with Data-based Sell-up Estimation

As presented in Section 3.4, data-based sell-up estimation methods provide a viable alternative to input

FRAT5s. Both Direct Observation (DO) and Forecast Prediction (FP) make use of historical bookings in

order to estimate sell-up probabilities for each class, which then lead to an average FRAT5 value for a

given time frame for a market. Then, based on the FRAT5 values per time frame, either a logistic or

regression-based cross-time frame fitter is applied. The FRAT5 curves may be determined on an

aggregated system-wide basis, or kept at the single market basis, both of which are tested in this section.

This section will set the baseline for testing the clustering process, which acts as the middle ground

between system and market estimation.

The airline of interest for these experiments is Airline 1 (ALl), which will use the EMSRb seat allocation

heuristic with Hybrid Forecasting, unless otherwise noted. In Network D6, AL2 uses EMSRb in the

semi-restricted case or AT90 in the unrestricted scenario. In Network T, the competitor airlines' revenue

management systems are described in Figure 14. If the experiment takes place in a network that has fully

unrestricted fares, AL1 will use Q-forecasting instead of Hybrid Forecasting because no product-oriented

demand exists with completely unrestricted fares. The simulation setup in PODS for testing in all

networks is shown in Table 18 below.
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Aggregation Level Fitter

FP System Regression
Logistic

Market Regression

Logistic

DO System Regression

Logistic

Market Regression

Logistic

Table 18: Data-based Sell-up Estimation Experiment Setup

Network D6 Unrestricted

In order to better understand the workings of sell-up estimation, Network D6 Unrestricted will serve as

the first simulation environment. Much of the performance of AL1 in this network depends on sell-up

estimation, which is clearly defined by the FRAT5 curves, as shown in Figure 15 and Figure 16 below.

5.

4.5

4.

0 3.5
c 3 - System-R

2.5 - System-L

2-Market-R

1 ---rI- Market-L
1.5 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time Frame

Figure 15: FP FRAT5 Curves for Network D6 Unrestricted

- 77 -



CHAPTER 6
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Figure 16: DO FRAT5 Curves for Network D6 Unrestricted

The solid curves without the error bars represent the FRAT5 curve developed over the entire system via

both the logistic and regression cross-time frame fitters. The other two curves in each of the figures

represent the mean of the FRAT5 curves developed for each of the 482 markets, with the error bar

showing one standard deviation above and below the average. It is evident that estimating over the

system creates much more aggressive FRAT5 curves, not only ending at a higher fare ratio, but also rising

earlier and steeper than the market-based curves. This is largely due to the number of sell-up

observations accumulated over the entire system as compared to a single market, in which fewer

observations exist. Figure 17 provides good insights on how these curves impact revenue.

Figure 17: Data-based Sell-up Estimation Revenue in Network D6 Unrestricted
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Compared to the input FRAT5c, the data-based estimation method over the whole system improves not

only the revenue, but also the usability of the curve-it is more sensible to apply a curve that was

developed from historical booking data rather than an arbitrary input FRAT5, especially if it improves the

revenue. These revenue results also show that in this fare environment, lower, less aggressive FRAT5

curves perform worse. The market-based regression-fit curve performs the poorest out of all curves,

about 8.5 percent worse than the input FRAT5c, and only reaches an average fare ratio of about 3.2.

Meanwhile, the system regression and logistic-fitted curves perform remarkably well, staying at low

FRAT5 values in early time frames and then rising to the maximum FRAT5 value of 5.0 in later time

frames.

These trends are also evident in AL l's load factors and yields. Having a more aggressive FRAT5 curve

implies that ALl expects more passengers to be willing to sell-up to a higher fare class throughout the

booking process. This will lead to more fare class closures beginning in earlier time frames and

continuing throughout the booking process, causing a reduction in load factors and an increase in yield.

90.5

90

89.5
* System-R

t 89 - System-L

* Market-R
88.5 * Market-L

88

87.5

Frat5c FP DO

Figure 18: Data-based Sell-up Estimation Load Factors in Network D6 Unrestricted
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Figure 19: Data-based Sell-up Estimation Yields in Network D6 Unrestricted

Figure 18 and Figure 19 show that those methods with higher, more aggressive curves result in lower load

factors with higher yields, as compared to market-based regression-fit case. To further analyze the effects

of the FRAT5, consider a comparison of the fare class (FC) closure rates between the most aggressive

curve (FP system-based logistic-fit) and the least aggressive curve (FP market-based regression-fit).

Because the fare environment is fully unrestricted, without any advance purchase requirement, the

FRAT5 curve's estimate of sell-up greatly impacts the class closure rates.

Figure 20: Difference in Fare Class Closure over Time: System-based Logistic-Fit minus Market-based Regression-Fit

To help visualize this, Figure 20 shows the difference in the percentage closed for each of the six fare

classes over time. For positive values, the system-based logistic-fit has a greater percentage of the fare
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class closed. The more aggressive, system-based logistic-fit curve causes higher closure percentages in

lower classes (FC 4, FC 5, and FC 6) compared to those of the market-based regression-fit. In later time

frames, the market-based regression-fit has more of the higher fare classes closed. With only price-

oriented demand, this results in a substantial loss in revenue, lower yield, and higher load factors when

compared to the system-based logistic-fit case.

Another interesting impact of FRAT5 sell-up estimates is its ability to mitigate the harsh effects of spiral

down, especially in an unrestricted fare environment like that of Network D6 Unrestricted. To visualize

this, the forecast per path over the booking process from the baseline input FRAT5c serves as a good

starting point.

7
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M5-
a. 4mF 3 FC 6
0. 4
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'U

1 3 FC 4
0

LL

2U FC 3

* FC 2
1

* FC 1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Figure 21: Average Forecast per Path: EMSRb with QF (FRAT5c) in Network D6 Unrestricted

Initially, Q-forecasting (QF) causes the average forecast per path distribution to place more weight on the

middle to high fare classes. This is due to the FRAT5c curve suggesting that half of the people will be

willing to sell-up to a higher fare class, up to three times the base fare, by the end of the booking process.

To account for this, FC 6's forecast becomes smaller compared to what the actual fare class mix is by the

end of the booking process. This is shown by the average cumulative bookings per path over the 16 time

frames, as shown in Figure 22.
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Figure 22: Average Cumulative Bookings per Path: EMSRb with QF (FRAT5c) in Network D6 Unrestricted

Despite having a large forecast for the middle to high fare classes, the fare class mix after 16 time frames

is still dominated by the lower classes. However, keep in mind that there were no restrictions or advance

purchase requirements to help segment demand, and therefore the sell-up estimate was the primary factor

in keeping lower classes closed, forcing some bookings into higher fare classes. Figure 23 combines the

average forecast with the average cumulative bookings over time, in order to create a picture of the

evolution of turning a forecast into bookings.

Figure 23: Forecast + Bookings per Path: EMSRb with QF (FRAT5c) in Network D6 Unrestricted

Despite the use of Q-forecasting, there still exists some evidence of spiral down. Overall, there is slight

over-forecasting of total bookings; however it is important to see the growth of FC 5 and FC 6 from the
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initial forecast to the final bookings. Additionally, despite having a large forecast of one passenger per

path in FC 1, the end share for FC 1 in the fare class mix is minimal. Using Figure 23 as a baseline, it is

possible to see the positive effects of both Q-forecasting as a whole, as well as the use of the newer data-

based sell-up estimation methods.

If ALI only uses the EMSRb seat allocation heuristic, with no Q-forecasting, one should expect the

complete spiral down of the forecast and bookings into all FC 6, as evident in Figure 24 below.

Figure 24: Forecast + Bookings per Leg: ALl EMSRb with no QF in Network D6 Unrestricted

However, if AL1 employs the use of Q-forecasting with an even more aggressive FRAT5 curve compared

to that of the input FRAT5c, then one should expect a higher forecast for the higher fare classes and an

even greater prevention of spiral down. Figure 25 shows the forecasting and booking evolution from the

use of the aggressive FP system-based logistic-fit curve.
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Figure 25: Forecast + Bookings per Path: AL1 EMSRb with QF (FP System Logistic-fit) in Network D6 Unrestricted

Compared to the input FRAT5c, the FP system-based logistic-fit curve created a much higher forecast for

the higher fare classes. Maintaining these higher levels throughout the booking period caused the end

fare class mix to include fewer lower class bookings than the input FRAT5c. Also, there is less evidence

of spiral down, as well as over-forecasting compared the input FRAT5c.

While these data-based sell-up estimation methods worked well in Network D6 Unrestricted, they should

also be tested in a more realistic and more competitive environment in Network T.

Network T4

Network T4 parallels Network D6 Unrestricted because a completely unrestricted fare structure is used

for all LCC markets, while a more-restricted fare structure is used for the non-LCC markets. Airline 1

will again use EMSRb, now with Hybrid Forecasting instead of Q-forecasting because there now exist

both price- and product-oriented demand. When ALl uses system-based sell-up estimation, it

distinguishes between non-LCC and LCC markets, creating a single FRAT5 curve for each, as shown in

Figure 26 for the FP case.
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Figure 26: FP System-based FRAT5 Curves in Network T4

The system-based logistic-fit curves are much more aggressive than the regression-fit curves for both the

non-LCC and the LCC markets. Also, it is worthy to note that this method indicates a higher likelihood

of sell-up in non-LCC markets indifferent of the method. In Network T, recall that non-LCC markets

have a average fare ratio of 5.0 while LCC markets have a average fare ratio of 3.5, which means that

sell-up to higher fare ratios (above 3.5) will exist much more in non-LCC markets. Based on this chart,

one would expect a higher yield for the system-based logistic-fit scenario, with a fare class mix favoring

more towards the higher classes.
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Figure 27: FP Market-based FRAT5 Curves in Network T4
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Looking at the market-based curves, it is evident that on average the logistic-fit creates higher, more

aggressive FRAT5 curves than the regression-fit, as it did in the system-based case. While only the

FRAT5 curves from the FP method are shown, the DO curves behave similarly and generally follow the

same pattern. To measure the effect of the different curves, Figure 28 shows the revenue performance for

AL1 in Network T4.

Figure 28: Data-based Sell-up Estimation Revenue in Network T4

Compared to the results in Network D6 Unrestricted, both logistic-fit methods continue to perform well

with the market-based regression fit performing poorly. However, unlike in Network D6 Unrestricted,

the system-based regression-fit also performs poorly, most likely due to the very low FRAT5 curves

generated by the regression-fit. Here, both FP and DO logistic-fit methods create revenue gains over the

baseline input FRAT5c curve of up to 0.24%, which is also 5.94% greater than ALl using just EMSRb

without Hybrid Forecasting. To take a closer look, the load factors and yields shown in Figure 29 and

Figure 30, respectively, provide more detail.
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Figure 29: Data-based Sell-up Estimation Load Factors in Network T4

Figure 30: Data-based Sell-up Estimation Yields in Network T4

Compared to the input FRAT5c, the logistic-fit methods create similar load factors but slightly higher

yields, in accordance with their higher, more aggressive FRAT5 curves. However, the regression-fit

cases are a different case. With the system-based regression-fit curves being much lower than the

logistic-fit curves, AL l's load factor was similar to that of the input FRAT5c scenario, but its yield

suffered significantly, causing a large drop in revenue. However, the market-based regression-fit case

presents an even more interesting scenario, where despite having on lower curves on average, its yield

was very high compared to that of the higher, more aggressive logistic-fit curves. But upon further

analysis of fare class mix, the increase in yield was not due to more high fare class bookings, but rather to
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a lack of FC 6 bookings when compared to the other methods. This is also shown by the very low load

factors, resulting in an overall decrease in revenue.

Network Ti

To further test the performance of system-based and market-based estimation for FP and DO, Network T1

provides another interesting test case. Network T I's more restricted fare structure, even for the LCC

markets, will make sell-up observations rarer, but nevertheless it is important to see if there exists any

improvement.
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Figure 31: Data-based Sell-up Estimation Revenue in Network T1

Figure 31 shows similar performance trends for data-based sell-up estimation when compared to Network

T4, but the increases in revenue over the FRAT5c for the logistic-fit scenarios are much smaller. This is

primarily due to the fare structure that better segments demand in LCC markets. Again, regression-fit

performance is well below that of the input FRAT5c and the logistic-fit performance. Also, compared to

Network T4, the overall revenue is much higher (approximately $1.81 million to $1.66 million) with the

more restricted fare structures.

Based on the results from Network D6 Unrestricted, and Networks T4 and T1, it is evident that FP and

DO logistic-fit sell-up estimation methods improve revenue compared to that of an input FRAT5c. In

addition, there is no clear advantage between system-based and market-based estimation, or between FP

and DO. These results and information will serve as a good level of comparison for alternate market sell-

up aggregation levels developed through clustering, presented in Section 6.4.2.
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6.4 Alternative Methods for Estimating Sell-up

Current methods for estimating sell-up include input FRAT5s and the FP and DO data-based sell-up

estimation methods aggregated on the system and market levels. This section attempts to both develop

and test new methodology, designed to examine both the fundamentals of input FRAT5s, as well as the

aggregation levels of the data-based sell-up methods. These new methods are first tested in Network D6

Unrestricted, the simplest network where the most sell-up may occur, making the use of a FRAT5 curve

vital to performance. In order to gain a better understanding of how FRAT5 curves impact sell-up and

revenue performance, we first turn to an analysis through the use of particular input FRAT5s.

6.4.1. Hybrid Forecasting with Piecewise Sell-up Estimation

The shape of a FRAT5 curve estimates the expected amount of sell-up over the booking period. In early

time frames, there are more leisure passenger bookings. This means that the FRAT5 curve should be

lower to accommodate a lower willingness-to-pay. However, in later time frames closer to departure, one

would expect the value of the FRAT5 curve to be much higher with a greater number of business

passenger bookings. Overall, with the progression of leisure bookings to business passenger bookings,

one should expect the curve should be monotonically increasing. With this hypothesis, many questions

arise. First, what area of the FRAT5 curve is more important to estimate correctly? Is it worse to

overestimate willingness-to-pay in earlier time frames or to underestimate willingness-to-pay in later time

frames? If the estimate is too high early on, one should expect fewer low class bookings, leaving too

many empty seats at departure. However, if the estimate is too low, very low yields and high load factors

will create a drastic decrease in revenue. It is clearly important to determine the best level of the FRAT5

curve for a given time frame within the booking period.

In order to analyze and determine the proper value of a FRAT5 for a given time frame, or set of time

frames, testing flat FRAT5s may provide a good starting point. This may also offer insights into the

FRAT5's effects on fare class bookings throughout the booking period. While a later time frame's

booking limits are not independent of previous bookings, and are greatly dependent on the FRAT5 value,

this method is still worthy of consideration. For this experiment, the following FRAT5s will be tested in

Network D6 Unrestricted, as shown in Figure 32.
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Figure 32: Flat FRAT5 Experiment in Network D6 Unrestricted

In addition to a flat FRAT5 between 1.1 (the minimum FRAT5 value) and 5.0 (the maximum value), the

input FRAT5c and FP and DO system-based logistic-fit curves are tested for comparison.

Network D6

The flat FRAT5s produced very surprising results, with the higher FRAT5 curves almost matching the

revenue of the data-based estimation methods, as shown in Figure 33.
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Figure 33: Flat FRAT5 Revenue in Network D6 Unrestricted
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It is evident that a higher flat FRAT5 curve performs better than lower curves, meaning that it is better to

be too high for early time frames than too low for later time frames, when the most sell-up will occur into

the highest fare classes. For example, the flat FRAT5 set to 1.1 barely performed better than the baseline

case of not using Q-forecasting at all, and was about 24% below that of the best data-based sell-up

methods.

Looking at Figure 34, it is easier to comprehend how the

time frame over the entire booking period.

FRAT5 curves impact bookings per class per

16
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13

12

11
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4-

-50

More Flat 5.0 Passengers

50

More FP Passengers

Figure 34: Passengers per Class per Time Frame: FP minus Flat 5.0 in Network D6 Unrestricted

The FP FRAT5 curve's low levels in early time frames result in many more bookings in lower classes,

especially FC 5 and FC 6, when compared to the Flat 5.0 FRAT5. Because the Flat 5.0 FRAT5 has more

open space due to its very high estimates of sell-up in all 16 time frames, some FC 6 bookings are seen

throughout the rest of the booking period. Overall, there is not a large difference in bookings once the FP

curve reaches the level of the Flat 5.0 curve. The only main difference between Flat 5.0 and FP
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estimation is the early lower class bookings, which in the end result in the small 0.21 percent advantage in

revenue.

Another interesting comparison is between the Flat 5.0 and Flat 3.0 curves, as shown in Figure 35.

-50

More Flat 3.0 Passengers

50

More Flat 5.0 Passengers

Figure 35: Passengers per Class per Time Frame: Flat 5.0 minus Flat 3.0 in Network D6 Unrestricted

The lower Flat 3.0 curve consistently creates more bookings in the middle classes, namely those of FC 3

through FC 5. However, it is interesting to note that the Flat 3.0 curve only creates more FC 6 bookings

in the first two time frames (as expected with the lower curve), but has much fewer FC 6 bookings in the

rest of the time frames, especially nearing departure. This is due primarily to Flat 5.0 being so aggressive

early on that FC 6 is opened in later time frames. In addition, Flat 5.0 has more passengers in higher fare

classes in later time frames, as expected with the higher FRAT5 curve.

To make sense of these various flat FRAT5s, it is important to realize that some curves may have an

advantage over others for a particular time frame. For example, looking at how FP performed better than

Flat 5.0 in earlier time frames suggests that a lower flat FRAT5 should be used earlier on. Repeating this
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process to find top performing flat FRAT5s in certain time frames, while under the realization that

performance in a particular period is dependent on what happened in previous time frames, one can

formulate a piecewise flat FRAT5 curve. This would essentially be a step function, made of certain levels

of flat FRAT5s and divided at particular time frames. For this experiment, there are three pieces, or three

steps, made from two divisions.

I I

I I I I I I I I I I I

11 12 13 14 15 164 5 6 7 8 9 10

Time Frame

1 2 3

Figure 36: Piecewise Flat FRAT5 Development

The initial values of each FRAT5 level are set at 1.5, 3.0, and 5.0, with the time frame breaks between TF

2 and 3, and between TF 11 and 12. First, the time frame breaks are held constant, and the levels vary

until a maximum revenue case is achieved. Then, using the three best FRAT5 levels, the time frame

breaks are varied until the overall "best" piecewise FRAT5 curve is found. Using this method, the

following piecewise FRAT5 curve was developed in Figure 37, with its comparison to the FP data-based

estimation curve.

- 93 -

................................................ ... -- -- --. ................ ...... . .. ...... ..



CHAPTER 6

Figure 37: Best Piecewise FRAT5 versus FP FRAT5 Curve in Network D6 Unrestricted

The best piecewise FRAT5 has levels of 1.3, 2.5, and 5.0, with respective time frame periods of TF 1-4,
TF 5-10, and TF 11-16. It is interesting to note how this relates to the PODS booking curve, specifically

in regards to the percent of business versus leisure passengers in each time frame.

18 .

" Business

" LeisureIi
7 8 9 10

Time Frame

1 2 3 4 5 6 11 12 13 14 15 16

Figure 38: Percent Bookings per Time Frame in PODS

Using what was just determined as the "best" time frame breaks in piecewise FRAT5, one can see how

they line up with the type of passenger booking in the particular time period. In the first period of TF 1-4,

there are primarily leisure passenger bookings. In the middle period of TF 5-10, there is a mix of

passengers, and the last period of TF 11-16 has primarily business passengers. With leisure passengers as

the least likely to sell-up because of a lower maximum willingness-to-pay, a FRAT5 level of 1.3 makes
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sense. In later time frames, where mostly business passengers are booking, a higher FRAT5 level of 5.0

is used.

This informal method of choosing the best piecewise FRAT5 curve actually performed quite well,

translating into the best revenue producing FRAT5 curve, creating almost a one-half percent revenue gain

over FP system-based sell-up estimation.

Figure 39: Best Piecewise versus FP FRAT5 Revenue in Network D6 Unrestricted

When comparing the FP estimated FRAT5 with the best piecewise FRAT5, the largest difference lies

between TF 5 and TF 10. In that period, the FP curve rises from 2.5, nearly reaching 5.0, while the best

piecewise curve maintains a level value of 2.5. To better understand the effects of this and the origin of

the extra half percent of revenue, Figure 40 provides a closer look.
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Figure 40: Passengers per Class per Time Frame: FP Estimation minus Best Piecewise in Network D6 Unrestricted

Compared to the FP estimated FRAT5, the best piecewise FRAT5 curve created more bookings in FC 5
and FC 6 in the first period from TF 1 to TF 4. This is due to the fact that the best piecewise curve

maintained a level value at 1.3 while the FP estimated curve began to climb. In the middle time frames

between TF 5 and TF 10, there is a shift to the piecewise curve creating more bookings in FC 4 and FC 5.

In the final time frames, it is evident that the piecewise curve creates slightly more FC 1 and FC 2

bookings compared to the FP estimated curve. Because of FP's over-aggressiveness in the middle period

between TF 5 and TF 10, FP does create more FC 6 bookings in later time frames, similar to what

occurred with the Flat 5.0 FRAT5 curve.

There appears to be distinct advantages for different sets of fare classes in accordance with (1) where the

time frame breaks are and (2) what the FRAT5 levels are for the given period. For example, between TF

1 and TF 4, there are primarily more FC 1 and FC 2 bookings for the piecewise FRAT5 because its

FRAT5 value for that period is 1.3. This corresponds to most of the bookings in that period having a fare

ratio less than that FRAT5 value, for the average fare ratios are 1.26 for FC 5 and 1.00 for FC 6.
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With the piecewise FRAT5 performing very well in Network D6 Unrestricted, it is important to determine

how well it functions in other environments. In Network D6 Semi-restricted, the same process for

determining the "best" piecewise input FRAT5 curve was repeated, achieving similar results.

Figure 41: Best Piecewise FRAT5 versus FP FRAT5 Curve in Network D6 Semi-restricted

The best piecewise FRAT5 for Network D6 Semi-restricted has the same time frame breaks as the

Network D6 Unrestricted, as well as the same values for the first and third periods. The only difference is

that the middle level is at 3.5 instead of 2.5. Using the piecewise input FRAT5 proved beneficial for AL1

as it did in the unrestricted case, producing a 0.17% increase in revenue over the best data-based sell-up

estimation method (FP). The revenue increase was not quite as great simply due to the increased

segmentation of the semi-restricted fare structure and there being a smaller opportunity for sell-up to

occur.

Network T4

To apply the piecewise FRAT5s created in both Network D6 Unrestricted and Network D6 Semi-

restricted to Network T4, there exist several options. For example, using the fare structure parallels

between Network D6 and Network T4, one option is to use the piecewise FRAT5 created in Network D6

Unrestricted and apply it to the LCC markets in Network T4, while using the piecewise FRAT5 created in

Network D6 Semi-restricted and apply it to the non-LCC markets in Network T4. In addition, one may

apply the same piecewise curve to both categories of markets in Network T4, and another option is to

apply the average of the two piecewise curves to each kind of market. These test options are listed in the

table below.
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LCC Markets Non-LCC Markets

Piecewise #1 1.3 2.5 5.0 1.3 3.5 5.0

Piecewise #2 1.3 3.5 5.0 1.3 3.5 5.0
Piecewise #3 1.3 2.5 5.0 1.3 2.5 5.0
Piecewise #4 1.3 3.0 5.0 1.3 3.0 5.0

Table 19: Network T4 Piecewise FRAT5 Curves

Applying these input piecewise FRAT5 curves in Network T4 created outstanding results, better than the

input FRAT5c and both FP and DO data-based estimation methods (system-based logistic-fit).

Figure 42: Piecewise FRAT5 Revenue: Network T4

Looking at Figure 42, it is evident that applying the piecewise FRAT5 developed from Network D6

Unrestricted to both the non-LCC and LCC markets in Network T4 created the highest revenue, 0.45%

over that of the input FRAT5c and 0.22% greater than DO data-based estimation. This method is

followed closely by assigning the piecewise FRAT5 curve from D6 Unrestricted to the LCC markets and

the piecewise FRAT5 curve from D6 Semi-restricted to the non-LCC markets.

Despite being an arbitrary input FRAT5 not statistically estimated from booking data, piecewise

methodology works well and outperforms the best data-based method in all three networks tested. Later

in this thesis, a new methodology to transform the input piecewise step function into an actual data-based

method for creating a piecewise FRAT5 will be presented. In short, this method will take the aggregation

level advantage from clustering (presented in the following section) and combine it with the performance

of the piecewise FRAT5 in hopes of creating a "clustered piecewise FRAT5."
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6.4.2. Hybrid Forecasting with Clustered Sell-up Estimation

6.4.2.1. Clustered With Logistic-fit

Using the K-means clustering algorithm presented in Section 5.2, it is possible to cluster markets based

on their FRAT5 curve, which defines each market's estimate of sell-up. Recall that the logistic fitter

created the best-performing FRAT5s on both the system-wide and the per-market aggregation levels. The

logistic-fit parameters, xl and x2 for the two parameter version, and xl, x2, and x3 for the three

parameter version, define the shape of the FRAT5 curve and serve as the basis for clustering. The goal of

this process is to use these parameters, as well as a desired number of clusters, in order to place the

markets into similar groups, estimate the FRAT5 for the given cluster, and assign all markets within a

cluster the same estimated FRAT5 curve.

In PODS, the process begins with the simulation run of ALl using an input FRAT5. From each trial, the

logistic parameters for FP and DO from each of the 400 samples are estimated and recorded, but are not

used. At the end of the simulation, there exist two or three logistic parameters averaged over the 400

samples for each market and over the number of trials in the simulation, as well as the average number of

recorded "observations" used to determine the parameters. In this sense, the term "observations" means

the number of "good" samples out of 400, multiplied by the number of trials run in the simulation (400

samples per trial, five trials in Network D6, two trials in Network T). Recall that there are rules for a

sample to be considered "good:" for a single time frame there must be at least two occurrences of sell-up

across the previous 26 historical observations in order to find a FRAT5 value for the time frame

(estimated via FP or DO methods). If there are at least four time frames that have a FRAT5 for the

sample, then the logistic fitter may be applied, and kept if the logistic parameter values are not at the

upper or lower bounds. If the market does not meet these requirements, then it does not receive any

logistic-fit parameters, causing it to be left out of the clustering process. If a market is not clustered, it

instead receives an input FRAT5c for use in Hybrid Forecasting. If the market is clustered, it will receive

the logistic-fit parameters from the cluster center (cluster mean). Following this process, the PODS

simulation is re-run with the markets using their new clustered estimates of sell-up or with their continued

use of the input FRAT5c.

Network D6 Unrestricted

Network D6 Unrestricted serves as the first network for testing the clustering process. In this

environment, ALl uses EMSRb with Q-forecasting, where sell-up is estimated via the 2-parameter

logistic-fit for both FP and DO estimation methods. Airline 1 is in competition with AL2, which uses
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AT90 revenue management. First, to better understand the clustering process, scatter plots of the two

parameters for FP and DO, as well as the total within sum-of-squares provide a comparison of the spread

of the data.
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Figure 43: FP 2-Parameter Scatter Plot in Network D6 Unrestricted
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Figure 45: FP and DO Clustering Within Sum-of-Squares in Network D6 Unrestricted

To determine the total within sum-of-squares, the data are first scaled so that they all have a range of 1.0.

Doing this creates a normalized representation of the spread, preventing one parameter with a larger range

(such as x2 in this case) from dominating the total cluster variance. In the logistic-fit data, the lower DO

total within sum-of-squares line suggests that DO creates more distinct clusters than FP, at least for up to

and including five clusters. Beyond about seven clusters, little is gained by increasing k, the number of

clusters. Another representation of this is the market distribution over the given number of clusters.

Figure 46: FP Estimation: Effects of Increasing k on the Number of Markets per Cluster in Network D6 Unrestricted

Looking at the FP case, it is evident that adding additional clusters beyond a certain point only breaks off

a couple market data points and makes them their own cluster, minimally reducing the total cluster
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variance. In this case, increasing from four to five clusters only moved one market into the fifth cluster,
which was previously the largest outlier causing the most damage to the total cluster variance. In order to

determine the statistically proper number of clusters, the gap statistic, as presented in Section 5.3,
provides another good reference point.

Figure 47: FP and DO 2-Parameter Logistic-fit Gap Statistic in Network D6 Unrestricted

According to the gap statistic methodology, the optimal number of clusters is the point at which the

maximum value of the gap statistic curve occurs. In both FP and DO cases, this method suggests that

k= 1. Looking back at the scatter plots, this makes sense because most of the data appears to be confined

in a single grouping. However, another important feature of the gap statistic is that any increase in the

gap curve suggests a number of clusters where a given number of "sub clusters" may exist. Figure 47

suggests that a potential number of clusters other than k=1 may be at six for FP and five or nine for DO.

While there is no guarantee that the optimal number of clusters determined by the gap statistic is also the

revenue-maximizing number of clusters, this method in addition to examining the market distribution and

within sum-of-squares reinforces that a reasonable number of clusters will probably lie between two and

seven. However, in Network D6 Unrestricted, more clustering options beyond seven clusters are tested,

as shown in Figure 48 for FP and Figure 49 for DO.
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Figure 48: FP 2-Parameter Clustering Revenue per Cluster in Network D6 Unrestricted
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Figure 49: DO 2-Parameter Clustering Revenue per Cluster in Network D6 Unrestricted

The clustering method performed remarkably well for both FP and DO in Network D6 Unrestricted.

Clustering outperformed the best previous aggregation level, system-based logistic-fit, by 0.26% for FP

and by 0.24% for DO. Overall, FP slightly edges DO in terms of revenue gain, and for both cases, the

revenues peak at k=2 clusters, while hovering around 0.20% before falling off at larger numbers of

clusters. Compared to the input FRAT5c, the best clustering methods provide revenue increases of 0.75%

and 0.73% for FP and DO, respectively. These are extremely promising results, showing that clustering

not only successfully provides a middle ground between system and market-level aggregation, but

grouping similar markets based on sell-up estimation improves the overall revenue.

- 103 -

1022000

1020000

1018000

1016000

1014000

1012000

.................... ... ................. .. .. .. .. .. ....................... .... ........... ........ - --- _ _

0 .e .1e 10 -'e. 44- -Sek 44- ee 'P N: INP 1\1 1 NIP X NO NOCIO' \ G V G



CHAPTER 6

89.6 0.0936
89.4 - 0.0934
89.2 - 0.0932

089 0.093 '"'
88.8
8. 0.0928 .88.6
8 . 0.0926 -

-a 88.288.2 -0.0924 >_

88 0.0922

87.8 0.092
87.6 0.0918

Load Factor - Yield

Figure 50: FP 2-Parameter Clustering Load Factors and Yields in Network D6 Unrestricted
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Figure 51: DO 2-Parameter Clustering Load Factors and Yields in Network D6 Unrestricted

Looking at the load factors and yields for the FP and DO clustering methods, most of the benefit gained

by clustering results from achieving slightly higher load factors and obtaining the highest yields compared

to all other data-based estimation methods. This is likely due to markets receiving a proper FRAT5 curve

depending on their cluster membership, preventing the under-protection (high LF with FRAT5c) or over-

protection (low LF with System and Market) of seats caused by other methods that were too broad or too

specific in estimating sell-up. In the following analysis, focus is given to k=3, 5, and 7 clusters, both

great performers in revenue and in the middle of the range of a sensible number of clusters.

These promising revenue results are highly dependent on the FRAT5 curves themselves. The clustering
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method created very reasonable FRAT5 curves, as shown in Figure 52 below.

Figure 52: FP 2-Parameter 3 Cluster FRAT5 Curves in Network D6 Unrestricted

Figure 52 shows that the curves are well defined and spaced far enough apart to be distinguishable. This

spread over the time frames and fare ratios is sensible because it creates three categories of markets, one

that demands a very aggressive FRAT5 curve (Cluster 1 with 37 markets), one that demands a low

unaggressive curve (Cluster 3 with 27 markets), and another that has a middle-of-the-road curve (Cluster

2 with 392 markets). Even when the number of clusters increases to k=5 and k=7, the curves continue to

be well spaced and defined.
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Figure 53: FP 2-Parameter 5 Cluster FRAT5 Curves in Network D6 Unrestricted
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Figure 54: FP 2-Parameter 7 Cluster FRAT5 Curves in Network D6 Unrestricted

The seven cluster case shown above continues to produce well-defined FRAT5 curves, but in relation to

the market distribution between clusters, some of the outlying curves receive only a minimal number of

markets. For example, in Figure 54, Cluster #7 is by far the least aggressive FRAT5 curve and has only

one market. Also, while only the FP curves are shown, it is important to note that the clustering method

for DO creates extremely similar FRAT5 curves to FP. While the 2-parameter logistic-fit performed very

well in regards to clustering, we also test the 3-parameter version.

To determine if the 3-parameter logistic-fit creates sensible results, the clustering method was applied for

k=3, 5, and 7 clusters to both the FP and DO cases.
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Figure 55: FP 2-Parameter versus 3-Parameter Revenue in Network D6 Unrestricted
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Figure 56: DO 2-Parameter versus 3-Parameter Revenue in Network D6 Unrestricted

The results indicate that the 3-parameter logistic-fit versions of FP and DO, while still better than the

system or market-based methods, do not match the revenue levels of the 2-parameter fitter. To better

understand why this occurs, it is evident that the 3-parameter method creates FRAT5 curves that are much

less aggressive than the 2-parameter method, as shown in Figure 57.
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Figure 57: FP 3-Parameter 3 Cluster FRAT5 Curves in Network D6 Unrestricted

The DO 3-parameter method also created very similar curves to those of the FP method shown above.

The 2-parameter clustered curves are much more aggressive than the 3-parameter curves, as shown by the

3-parameter curves barely reaching a FRAT5 level over 4.0.
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Network T4

Network T4 provides a good test setting to determine how well clustering does in a more complex

environment. In this network, clustering is performed irrespective of whether a market is classified as an

LCC or non-LCC. Also, using what was learned in the Network D6 Unrestricted simulations, only 2-

parameter logistic-fit methods are tested in Network T4 at k values of 3, 5 and 7 clusters. Because

Network T4 has both a fully unrestricted fare structure as well as a more restricted fare structure for non-

LCC markets, one would expect clustering to still perform well, but not to the extent of the performance

in Network D6 Unrestricted, simply due to the smaller opportunity for sell-up to occur in the non-LCC

markets.

Figure 58: FP 2-Parameter Cluster Revenue in Network T4
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Figure 59: DO 2-Parameter Cluster Revenue in Network T4

Similar to Network D6 Unrestricted, the clustering method worked very well in Network T4, boasting a

revenue increase of 0.19% over the best previous FP logistic-fit aggregation level, and 0.17% better than

the best previous DO logistic-fit aggregation level. Compared to the input FRAT5c, these increases

amount to 0.44% and 0.40%, for FP and DO, respectively.

Figure 60: FP 2-Parameter Clustering Load Factors and Yields in Network T4

Additionally, the load factors and yields indicate that there are more passengers traveling under the

clustering methods, while keeping yield at a moderate level. The results for the DO load factors and

yields are quite comparable to those of FP estimation. Much like the FRAT5 curves for the clusters in
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Network D6 Unrestricted, the curves for Network T4 are well-spaced, with analogous results for FP and

DO.

Figure 61: FP 2-Parameter 3 Cluster FRAT5 Curves in Network T4

As mentioned previously, clustering also provides an advantage in Network T by not forcing LCC and

non-LCC markets to obtain separate FRAT5 curves, as it did in the system-based aggregation level.

Figure 61 shows the importance of not separating the markets. While the middle FRAT5 curve has a

similar mix of LCC and non-LCC clustered markets, the highest curve obtains most of the non-LCC

markets, but also still has some of the clustered LCC markets. The opposite happens for the lowest curve.

This means non-LCC markets generally receive more aggressive sell-up estimates compared to the LCC

markets, but it is not impossible for an LCC market to have high degrees of sell-up. Keep in mind that

LCC markets are often limited by the fare ratios of the fare classes within the market. Also, having a lot

of sell-up (more in LCC markets with the unrestricted fare structure) does not necessarily imply a higher,

more aggressive FRAT5 curve.

Network Ti

Based on the performance of the clustering in Network D6 Unrestricted and Network T4, the method

appears to be very strong in situations where sell-up is likely to occur. However, Network T 1 provides

answers about the clustering method's applicability in environments where less sell-up exists, ensuring

that it is not detrimental to performance.
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Figure 62: FP 2-Parameter Cluster Revenue in Network T1

Figure 63: DO 2-Parameter Cluster Revenue in Network T1

Compared to the best previous aggregation level (market for both FP and DO cases), clustering provides a

modest 0.04% and 0.06% increase in revenue for FP and DO, respectively. However, compared to the

FRAT5c, clustering produced revenue increases of 0.13% and 0.12% for FP and DO, respectively. While

these increases are not nearly as high as Network D6 Unrestricted or Network T4, it is important to keep

in mind that the fare structures for the LCC markets are much more restricted compared to Network T4.

In addition, despite being a small increase, the clustering method still improved revenue in Network T 1.
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Raising the Demand Multiplier to Increase Sell-up Observations

Despite the clustering method's increases in revenue in all three networks that were tested, the proportion

of markets that did not estimate logistic parameters and therefore were not clustered is significant, as

shown in Table 20.

# Markets % Markets
Network D6 Unrest. FP 26 -5.4

DO 26 5.4
Network T4 FP 325 56.8

DO 331 57.9
Network Ti IPP 396 69.2

DP 402 70.3

Table 20: Markets without Sell-up Parameters per Network

While only 5.4% of markets in Network D6 Unrestricted do not have sell-up logistic-fit parameters, the

network has a completely unrestricted fare structure. More realistic markets that include more restricted

fare structures, especially for the non-LCC markets, have many more markets without fits, about 57% in

Network T4 and about 70% in Network T 1.

The lack of observations with logistic-fit parameters could mean several things. First, if a market does

not have logistic-fit parameters, there were not enough occurrences of sell-up between fare classes to

create enough time frame FRAT5 estimates and therefore a logistic fit. However, because these markets

still receive an input FRATc (a moderate level FRAT5 curve reaching a maximum FRAT5 value of 3.0),

they still have an estimate of sell-up. Perhaps this is not an issue because the FRAT5c may actually be a

good description of sell-up in the market, when it does actually occur. Second, if a market uses an input

FRAT5c, this in a way ruins the data-based estimation of sell-up by adding an arbitrary curve. However,

an argument against this is that if sell-up does not occur often in the market, then the estimate of sell-up

does not really matter.

In an effort to reduce the number of markets not having logistic-fit parameters, thus increasing the

number of markets with data-based sell-up estimation, one method is to increase the demand level in

PODS. The demand level is simply a constant multiplied to the passenger generator in PODS. If there

are more bookings, there will be more occurrences of sell-up, and thus more markets with a logistic-fit.

Increasing the demand multiplier (DM) also obviously increases the load factors beyond what is

reasonable in the real world. With the original DM for Network T4 set to 1.0, ALl achieves load factors

of approximately 79 percent. The methodology for this experiment is to increase the DM to a higher level
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and obtain new logistic-fit parameters for each market, cluster the markets based on those parameters, and

rerun PODS at the original DM of 1.0 with each market receiving the logistic-fit parameters from the new

cluster means. Increasing the DM produces the following effect on the number of markets without

logistic-fit parameters, as shown in Figure 64.

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

Demand Multiplier

Figure 64: Effects of Increasing DM to Generate Sell-up Parameters in Network T4

By DM = 1.25, the number of markets with zero observations and thus zero logistic-fit parameters levels

off to reach about 50 markets, or about 9 percent of the total markets in Network T. However, between

DM = 1.25 and DM = 1.50, the load factors range between 86 and 89 percent, which is less realistic than

the DM = 1.0 case. In addition, given that a market has sell-up parameters, the number of observations

("good" samples, as described earlier) that create those parameters increase with a higher DM, as shown

in Figure 65.
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Figure 65: Effects of DM on Average Number of Observations of Sell-up per Market in Network T4

For FP, increasing the DM to 1.25 causes about a 75 percent increase in the average number of

observations of sell-up per market, and increasing to a DM of 1.50 creates a 105 percent increase in the

average number of observations. Because of this, not only will more markets have logistic-fit parameters,

but the number of observations used to create the parameters increases, making the parameters more

accurate.

One argument against this methodology is that the new sell-up estimates will not be accurate, and be too

aggressive, thus overestimating a passenger's willingness-to-pay. To examine this further, the evolution

of the FRAT5 curves for each cluster will provide more insight. For the three cluster case, Figure 66 and

Figure 67 show that the corresponding cluster curves (relabeled as Cluster #1 for the highest curve down

to Cluster #3 for the lowest curve) increase in height and aggressiveness as the DM increases. The only

anomaly is the decrease in height of Cluster #1 for the DO case as DM increased. This is likely due to the

fact that at DM = 1.0, only 88 markets belonged to this cluster, whereas more accurate curves were

developed at higher DMs with 147 markets in the cluster at DM = 1.50.
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Figure 66: Effects of DM Increase on Cluster FRAT5s for FP in Network T4
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Figure 67: Effects of DM Increase on Cluster FRAT5s for DO in Network T4

Despite having fewer markets without sell-up observations, and increasing the average number of sell-up

observations per market, the use of the new FRAT5 curves in PODS at the original DM level of 1.0

produces a small, but negative effect on revenue, as shown in Figure 68.

- 115 -

. .......... ............ :::w ...........................................................



CHAPTER 6

Figure 68: Revenue Impacts of the Change of Sell-up Parameter DM Level in Network T4

While the revenue losses are very small, the higher FRAT5 curves per cluster suggest that the sell-up

estimates are too high, causing the overprotection of seats. In addition, this supports the hypothesis that

markets with few sell-up observations do not need an accurate estimate of sell-up because there is not

much sell-up to begin with. To better understand if this might be the case, it is important to look at which

markets moved from having zero sell-up parameters, and to which cluster they moved to.

Figure 69: Cluster Distribution of Markets per DM for FP in Network T4

Just looking at the FP three cluster scenario, it is evident that increasing the DM to 1.25 caused most of

the former Cluster "0" markets (those markets with no sell-up observations) to move into the lower

clusters, mostly to Clusters #2 and #3. Increasing the DM further to 1.50 caused a greater upward shift of
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markets into clusters with higher FRAT5 curves. Similar results also occur for the DO three cluster

scenario.

Table 21 provides further information about what specific clusters the markets move into upon gaining

logistic-fit parameters at the new DM of 1.25. Those markets that originally had zero observations are

identified as belonging to "Cluster #0".

Movingfrom Cluster #0 into:

Cluster Total LCC % LCC Avg Yield Avg Fare Ratio Avg % Business
0 57 41 71.9 0.202 4.033 39.6
1 32 9 28.1 0.271 4.693 43.2
2 124 36 29.0 0.208 4.505 45.6

3 112 75 67.0 0.150 4.038 35.8

Table 21: Market Location after Increasing DM for FP 3 Cluster Scenario in Network T4

Of the original 325 markets (56.8% of the total markets), only 57 of them remain in Cluster #0, still not

receiving and logistic-fit parameters for sell-up. However, as mentioned before, most of the markets

move into the lower two clusters. Of the markets that move to Cluster #3, about two-thirds of them are

LCCs, while the markets that move into Cluster #2 are predominately non-LCCs. It is also interesting to

see that there is a relationship between the cluster that the market moved into and the characteristics of the

markets in those clusters. For example, those markets that moved into a higher cluster have a higher

average yield, implying that a higher FRAT5 curve has a positive correlation with average yield in a

market. In addition, the average fare ratio of the markets increases with higher FRAT5 curves. Finally,

in relation to the percent of LCCs, the average percent of business passengers in the newly-assigned

markets is generally higher for higher FRAT5 curves. This information provides a good transition into

the next topic within clustering.

While the PODS simulations provide answers about the clustering method's applicability, many questions

still exist about why a market is assigned to a specific cluster. What drives cluster membership beyond

that of the simple logistic parameters that estimate sell-up? Are there any specific market characteristics

that are common in markets belonging to a particular cluster? For example, to what degree do

characteristics such as yield, whether or not the market is an LCC, business passenger percentage, fare

ratio, load factor, or whether or not the market has a route advantage play a role in a market's cluster

categorization? These questions will be addressed through detailed statistical regression methods in

Chapter 7.
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6.4.2.2. Clustered Piecewise

As discussed in Section 6.3, the input piecewise FRAT5 curve performed very well in all three networks

that were tested. Combining the performance of the piecewise FRAT5 step function with the advantages

of the aggregation levels of clustering, it is possible to create a data-based, clustered piecewise FRAT5.

Another reason for pursuing this direction is that the piecewise step function FRAT5 offers some

advantages over the logistic-fit curves.
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Figure 70: FP Logistic-fit versus Best Piecewise FRAT5 Curve in Network D6 Unrestricted

Compared to the FP system-based logistic-fit, the piecewise FRAT5 (which performed better than the

logistic-fit curve) estimates much lower levels of sell-up between TF 5 and TF 10, where the logistic-fit

curve is more aggressive. This is essentially the nature of any logistic-fit curve, as it is constructed on

only two parameters. Therefore, instead of fitting up to 16 time frame observations of FRAT5 values to a

logistic-fit curve, which may be over-aggressive in middle time frames, the same data points could be

used to construct a piecewise step function FRAT5 curve. This fulfills the goal of constructing a data-

based piecewise FRAT5 curve. In addition, employing the advantages of the clustering process ensures

that markets will not be under or over generalized.

In a given PODS sample, a FRAT5 value is reported for a time frame for each market if there were at

least two occurrences of sell-up in the previous 26 historical departures. To create a piecewise clustered

FRAT5, one must first divide the 16 time frames into three periods. For this experiment, the same

periods as the original piecewise curve are used-TF 1-4, TF 5-10, and TF 11-16. Because a market is

not guaranteed to obtain a FRAT5 value for every time frame, the average value over the period is used.
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In order to deal with outliers (mostly FRAT5 estimates derived from very few observations), if an

observation is more than one standard deviation away from the mean for that period, then the observation

is removed. However, for period one, this only applies to the upper standard deviation above the mean.

Likewise, for the period three, this only applies to the standard deviation below the mean. This ensures

that the FRAT5 curve is not influenced by outliers and that it generally increases over time, in accordance

with the assumption that later booking passengers have a higher willingness-to-pay. In Figure 71 below,

the data points in the shaded region are removed.
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Figure 71: Removal of Outliers in Clustered Piecewise FRAT5 Curves

If more than four out of 16 time frame FRAT5 values are missing for a market, that market is removed

from the clustering process and receives an input FRAT5c. For each market that may be clustered, there

exist three average FRAT5 values-one per period-that serve as the basis for clustering. Then,

following the same process for the logistic-fit parameter clustering, the markets are clustered, each given

a new set of 16 FRAT5 values (based on the three cluster means), and re-run in PODS.

Network D6 Unrestricted

Compared to logistic-fit clustering, piecewise clustering over the average FRAT5 per time period creates

much less aggressive FRAT5 curves, as shown for the FP estimation case in Figure 72. This is likely due

to the fact that for period three, FRAT5 observations from early time frames in the period like TF 11 or

12, are much lower and bring down the average FRAT5 for the period. For logistic-fit clustering, the

curve is able to adapt to lower values in earlier time frames and still reach the maximum FRAT5 value of

5.0, as shown by the gray curves in Figure 72.
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Figure 72: FP Clustered Piecewise FRAT5 Curves in Network D6 Unrestricted

These less aggressive FRAT5 curves in an unrestricted network negatively impact ALl's performance.

In fact, the best clustered piecewise FRAT5 curves perform worse than the baseline input FRAT5c. This

is due to the very high load factors and low yields, inherent to a case where sell-up is underestimated,

causing high fare class seat protection to spiral down.
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Figure 73: FP Clustered Piecewise Revenue in Network D6 Unrestricted
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Figure 74: FP Clustered Piecewise Load Factors and Yields in Network D6 Unrestricted

Unfortunately the clustered piecewise FRAT5 curves performed much worse than FP system-based sell-

up estimation, FP logistic-fit clustering, and the input piecewise FRAT5 curve.

Network T4

Applying the clustered piecewise FRAT5 methodology to the larger, more complex Network T4 produces

similar results.
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Figure 75: FP Clustered Piecewise FRAT5 Curves in Network T4
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While the FRAT5 curves in the first two periods (TF 1 to TF 10) appear to be sensible, remaining lower

than the logistic-fit curves (the goal of the clustered piecewise methodology), the curves in the third

period (TF 11-16) are much lower than the logistic-fit curves. This is similar to the Network D6

Unrestricted curves, where the use of the average values in the third period prevents them from obtaining

higher FRAT5 values.
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Figure 76: FP Clustered Piecewise Revenue in Network T4

As a result, the best piecewise clustering method (3 clusters) creates similar revenue as the input FRAT5c,

which also has FRAT5 curves that remain lower than the logistic-fit clustering throughout the booking

period.

Overall, creating a data-based piecewise FRAT5 for clustering does not improve revenue. A lot of data

pruning must first occur to remove the effects of outliers, especially when using a method that depends

solely on averages. Using the logistic fitter, outliers either had no effect on the curve, or they caused no

fit to occur, resulting in a market using an input FRAT5c. Comparing the two methods, the logistic-fit

more often enables the FRAT5 curve to reach its maximum value at 5.0 in later time frames. Having a

curve in this area is crucial to the success of estimating sell-up in less restricted and unrestricted fare

environments.

6.5 Rational Choice Forecasting

Contrary to the previous sections focusing on sell-up estimation in conjunction with Q and Hybrid

Forecasting, the section focuses on Rational Choice (RC) Forecasting, which incorporates the sell-up

estimates within each forecast. As discussed in Chapter 4, RC Forecasting is a regression-based
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forecasting method that creates partitioned passenger type forecasts based on the historical bookings and

the lowest open class at the time of the bookings. Unlike Q and Hybrid Forecasting, RC Forecasting

allows a booking in the lowest open fare class to not automatically be classified as a price-oriented

booking-rather customer types based on passenger willingness-to-pay create other possibilities.

Applying RC Forecasting in PODS, though based on a completely different methodology than QF and

HF, still creates competitive results for an entirely data-based forecasting method.

6.5.1. RC Regular and Expanded

Hybrid Forecasting (with both input and data-based FRAT5s) serves as the benchmark for testing the

performance of RC Forecasting in PODS. Not only are the revenue, load factor, and yield results

important for comparison, but also the class forecasts themselves. In the following simulations, ALI uses

EMSRb while all other airlines use their baseline optimization and forecasting methods. To begin,

Network D6 Semi-restricted serves as a basic environment for forecast comparison.

Network D6 Semi-restricted

In Network D6 Semi-restricted, RC Forecasting performs reasonably well, but not quite to the level of

Hybrid Forecasting, as shown in Figure 77.

i

1065000

106000010550001050000
1045000
1040000103500010300001025000102000010150001010000
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RC RC Expand HF w. FRAT5c HF w. FP 3cStd. Leg
Figure 77: RC Revenue in Network D6 Semi-restricted
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Figure 78: RC Load Factors and Yields in Network D6 Semi-restricted

Rational Choice Forecasting creates an increase in revenue over standard leg forecasting that is about half

as much as Hybrid Forecasting with FP logistic-fit clustered sell-up estimation. Also, there is a minimal

difference between the RC Expanded method and the regular RC method. It is evident that RC

Forecasting creates much higher load factors and lower yields than Hybrid Forecasting, which is most

likely due to high forecasts for the lower classes. To examine if this is the case, the actual RC forecasts

and bookings provide some insight.

Figure 79: Forecast + Bookings per Path: EMSRb with RC in Network D6 Semi-restricted
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Figure 80: Forecast + Bookings per Path: EMSRb with HF (FRAT5c) in Network D6 Semi-restricted

Comparing the initial forecasts between RC and HF, it is clear that RC Forecasting has much higher

forecasts for the lower classes, especially for FC 5 and FC 6. In addition, the forecasts for higher classes,

especially FC 1 and FC 3 are much lower throughout the booking period for RC than for HF. Having this

higher proportion of FC 5 and FC 6 passengers shows that RC is susceptible to spiral down, and it is the

reason for the higher load factors, lower yields, and thus overall lower revenue when compared to Hybrid

Forecasting.

Network Ti

Network TI provides the next test environment to determine how well RC Forecasting performs with

more competition, but similar fare restrictions. In this scenario, RC again performs better than standard

forecasting, but still not as well as Hybrid Forecasting.
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Figure 81: RC Revenue in Network T1

Figure 82: RC Load Factors and Yields in Network T1

Similar to the results in Network D6 Unrestricted, RC Forecasting produces about half of the revenue

increase over standard forecasting as Hybrid Forecasting. Again, RC Forecasting produced very high

load factors and lower yields compared to Hybrid Forecasting.

Looking at the fare class mix, it is clear that RC Forecasting allows more bookings mainly in FC 6, and

creates fewer bookings in the higher FC 1 and FC 2 classes. This contributes largely to the higher overall

load factors and lower yields for RC Forecasting compared to Hybrid Forecasting.
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Figure 83: RC Fare Class Mix in Network T1

However, one interesting item to note is that while Hybrid Forecasting performs better in terms of

revenue, it is not because of its accuracy in forecasting, but rather its inaccuracy.

Figure 84: RC Total Absolute Forecasting Error in Network T1

According to Figure 84, Hybrid Forecasting has the most total absolute error between forecasting and

actual bookings throughout the entire booking period. Upon further examination, most of this error is due

to the over-forecasting of the higher classes, especially FC 1, and the under-forecasting of FC 6. This is

extremely important to note because accuracy in forecasting does not always imply better revenue.

Because Hybrid Forecasting's sell-up estimates increase the forecasts for the higher classes, it is able to

keep them open longer, closing lower classes earlier.
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Figure 85: Rational Choice Forecasting Forecast vs. Actual Bookings in Network T1
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Figure 86: Hybrid Forecasting (FRAT5c) Forecast vs. Actual Bookings in Network T1

Looking at Figure 85 and Figure 86, it is clear that most of RC Forecasting's initial forecast is allocated to

FC 6, whereas Hybrid Forecasting's forecast is more level across all fare classes, with a large percentage

devoted to FC 1. While this does not actually occur with actual bookings, the forecast is enough to force

more bookings into higher classes, reducing the load factor and increasing yield.

Network T4

To determine how Rational Choice Forecasting performs in a network with less restricted fares and more

opportunity for sell-up, Network T4 serves as a viable test environment. Keep in mind that for RC
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Forecasting, sell-up is already incorporated in the forecast by the structure of the linear regression,

whereas for Hybrid Forecasting, sell-up probabilities are external to the process and must be applied to

the Q-class equivalent bookings in order to repartition into a fare class forecast. Looking at the results, it

appears that Hybrid Forecasting, despite its complexity, still outperforms RC Forecasting in a high sell-up

environment.
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Figure 87: RC Revenue in Network T4
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Figure 88: RC Load Factors and Yields in Network T4

RC Forecasting performs slightly worse than Hybrid Forecasting, with RC Expanded about one percent

lower than the best clustering method for Hybrid Forecasting with FP sell-up estimation. Similar to

previous results, RC Forecasting creates slightly higher load factors and lower yields when compared to
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Hybrid Forecasting. To

good insight.

better understand why this occurs, the fare class closure percentages provide
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Figure 89: Difference in Fare Class Closures over Time: HF with FP (5c) minus RC Expanded in Network T4

According to Figure 89, the best Hybrid Forecasting option (FP sell-up estimation with 5 clusters) closes

much more of the lower classes (FC 5 and FC 6) than RC Expanded. In addition, Hybrid Forecasting has

FC 1 and FC 2 open longer at the end of the booking period, which is essential to gaining last minute

business passengers, thus increasing the yield. The fare class closure explains why RC generally has

higher load factors and lower yields compared to Hybrid Forecasting.
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Figure 90: RC vs. HF Revenue Breakdown in Network T4
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Spill-in 7.8 11.7 12.5 14.0 14.3
Recapture 2.4 2.8 2.8 3.1 3.2
Sell-up 1.2 2.6 2.7 3.2 3.3
1st Choice 88.5 83.0 82.0 79.7 79.3

Table 22: RC vs. HF Revenue Breakdown Percent in Network T4

The fare class closure over time has many effects on the type of revenue gained by AL1 in each scenario.

First, it is important to see the effects that both RC and HF have on sell-up revenue compared to EMSRb

with standard pick-up forecasting, creating two to three times of standard forecasting's amount through

the use of sell-up estimation. Compared to Hybrid Forecasting, more of RC Forecasting's revenue comes

from "first choice" revenue, where a passenger initially planned and actually did purchase a particular

fare class. This is due to Hybrid Forecasting's more aggressive fare class closures and high estimates of

sell-up. In addition, this not only causes Hybrid Forecasting to gain more sell-up revenue than RC

Forecasting, but also more spill-in and recapture revenue. Hybrid Forecasting has more seats available in

the higher fare classes later in the booking period that not only permit sell-up, but allow space for

recapture and spill-in passengers from other airlines.

Increasing the Forecast Multiplier

After comparing RC Forecasting to Hybrid Forecasting, it is apparent that Hybrid Forecasting is more

aggressive in its forecasts. As a result, lower fare classes are closed down earlier and higher fare classes

are kept open longer, lowering load factors and increasing yield through sell-up, spill-in, and recapture

passengers. In an effort to increase the aggressiveness of RC Forecasting, this experiment uses a forecast

multiplier (FM) to arbitrarily increase the forecast in hopes of matching Hybrid Forecasting. (Increasing

the FM is only possible in PODS and would not be done in the real world.) In Network D6 Semi-

restricted, AL1 uses EMSRb with standard RC forecasting with a forecast multiplier of 1.1, 1.2 and 1.3,

and produces interesting results.
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Figure 91: RC with Forecast Multiplier Revenue in Network D6 Semi-restricted

Figure 92: RC with Forecast Multiplier Load Factors and Yields in Network D6 Semi-Restricted

The forecast multiplier creates a bell-shaped curve for revenue, eventually reaching a point of being too

aggressive at FM = 1.3. Increasing the FM caused load factors to drop and yields to increase, beyond that

of the Hybrid Forecasting baseline. Comparing the revenue breakdown provides further understanding of

why RC Forecasting with a FM still does not surpass the revenue performance of Hybrid Forecasting.
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Figure 93: RC with Forecast Multiplier First Choice Revenue in Network D6 Semi-restricted

The biggest impact of the FM was on first choice revenue, where it peaked at FM 1.1, but never

surpassed Hybrid Forecasting.
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Figure 94: Spill-in, Recapture, and Sell-up Revenue for RC with FM in Network D6 Semi-restricted

Comparing the rest of the revenue types, it is evident that while the FM caused spill-in and sell-up

revenue to increase well beyond the level of Hybrid Forecasting, the recapture revenue, in addition to the

first-choice revenue, eventually decrease. All of these factors combined produce a best revenue at FM =

1.2 for Rational Choice Forecasting, still 0.25 percent below that of Hybrid Forecasting.
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6.5.2. RC with Fare Adjustment

Using the sell-up probabilities derived from the price-oriented passenger types in RC Forecasting (Section

4.4), implementing fare adjustment (FA) is a simple process. Recall that the two options for FA in

regards to RC Forecasting are to either keep the sell-up estimates on the path level, or to aggregate them

on the market level (denoted by "p" or "m" in the analysis). Also, because the sell-up probabilities are

available (and thus an elasticity constant), a FRAT5 may be obtained in order to compare sell-up

estimates against the Hybrid Forecasting FRAT5s.

Network Ti

In Network T1, fare adjustment performs quite well for ALl using EMSRb with standard RC Forecasting,

improving on the previous RC methods without FA, and nearly reaching the revenue level of Hybrid

Forecasting.
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Figure 95: RC with FA Revenue in Network T1
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Figure 96: RC with FA Load Factors and Yields in Network TI

For Rational Choice Forecasting, using FA decreases load factors and increases yields, almost to the

levels of Hybrid Forecasting. In addition, the market level of sell-up estimate aggregation for FA, as

opposed to the path level, creates a lower yield but higher load factor, resulting in an overall gain in

revenue. While RC with FA (market) performs slightly worse than HF with FP (5 clusters), it is largely

due to the aggressiveness of the forecast.

Figure 97: RC with FA (m) FRAT5 Curves in Network TI

The sell-up estimates for RC with FA are clearly not as aggressive as the HF method that uses FP sell-up

estimation with a logistic-fit. Because of this, the fare class closures are more aggressive for HF when

compared to RC Forecasting, especially in early time frames.
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Network T4

Network T4 provides better insights into how RC Forecasting with Fare Adjustment performs in

comparison to Hybrid Forecasting in a network with more price-oriented demand, thus making sell-up

estimates even more important.

Figure 98: RC with FA Revenue in Network T4

Like Network T1, fare adjustment increases revenue for RC Forecasting, with market aggregation

performing better than path. However, RC Forecasting with FA still falls short of the best Hybrid

Forecasting method (FP 5 cluster), due to the aggressiveness of Hybrid Forecasting.

Figure 99: RC with FA (m) FRAT5 Curves in Network T4
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The five cluster logistic-fit for Hybrid Forecasting has much more aggressive estimates of sell-up as

compared to RC Forecasting with FA. Like Network T1, this has a direct effect on fare class closures and

the overall aggressiveness of the forecast.

Figure 100: Difference in Fare Class Closures over Time: HF with FP (5c) minus RC w. FA (m) in Network T4

Comparing Hybrid Forecasting (FP with 5 clusters) to RC Forecasting with FA (market), the HF method

closes FC 5 and FC 6 much earlier than RC with FA, as shown in Figure 100. In the last six time frames,

however, it is evident that RC with FA is more closed in all fare classes, likely due to the abundance of

lower class passengers. In contrast, this is where HF benefits from having more open seats in higher

classes at later time frames, resulting in higher yields, lower load factors, and overall higher revenues.

The benefit of fare adjustment for RC Forecasting is still sizeable compared to not using it. It still

increases the aggressiveness of fare class closures, as shown in Figure 101.
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Figure 101: Difference in Fare Class Closures over Time: RC with FA (m) minus RC in Network T4

Throughout the entire booking process, fare adjustment causes FC 5 and FC 6 to be more closed than

standard RC without FA. In addition, fare adjustment allows more of FC 1 and FC 2 to be open in the

last four time frames, resulting in greater overall revenue. While not as aggressive as Hybrid Forecasting,

fare adjustment for RC Forecasting does provide an increase in revenue.

6.6 Chapter Summary

Throughout Chapter 6, the Passenger Origin-Destination Simulator provided a tool for measuring the

benefit of new forecasting, sell-up estimation, and clustering methods. PODS is capable of creating

environments that simulate real-world scenarios in regards to networks, fare structures, competition, and

passenger generation. In relation to this thesis, PODS enabled a focus on networks that use less-restricted

fare environments, as seen in Network D6 Unrestricted and more complex Network T4.

Sell-up estimation is crucial to preventing the spiral down of forecasts and revenues in a less-restricted

fare environment. Estimating the FRAT5 curve proves to be an important, but difficult task. While input

FRAT5s perform well in the simulations, they lack real-world usability because they are arbitrarily

developed and not based on historical booking data. (The best performing input FRAT5 is the piecewise

step function FRAT5.) When developing a data-based method to estimate sell-up, several factors are

important to consider.

First, what should be done with missing FRAT5 estimates for time frames? Using a logistic or

regression-based fitter appears to solve the problem, with logistic-fit generally outperforming all
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regression-based methods. However, this comes with some drawbacks. As shown by the performance

comparison between piecewise input FRAT5s and the logistic-fit method, the logistic-fit FRAT5s may

over-estimate sell-up in middle time frames. Also, when using the logistic-fitter or regression-based

fitter, sell-up may either be estimated by the Forecast Prediction (FP) or Direct Observation (DO)

methods. Comparing the results between the two methods, it appears that FP consistently, but only

slightly, outperforms DO.

Next, to combat the sell-up aggregation question about how general or how specific sell-up estimates

should be for a given market, clustering provides a viable answer. Clustering creates a middle ground

between over-specific sell-up estimation, where each market receives its own FRAT5 curve, and too

broad of sell-up estimation, where every market in the entire system receives the same FRAT5 curve.

Using clustering increases the number of sell-up observations used to develop a single curve, classifying

each of the markets into one of k clusters. While the proper number of clusters to use is not entirely clear,

some guidance exists from the use of the gap statistic, the actual market distribution over a given k

number of clusters, and the total within sum-of-squares. Using these methods, the proper number of

clusters appears to be within two and seven clusters, depending on the size of the network. Using the 2-

parameter logistic-fit, with FP sell-up estimation generally provides the largest increase in revenue over

the previous market or system-based aggregation level. Compared to the input FRAT5c, clustering

creates revenue gains of 0.75% and 0.44% for ALl in Network D6 Unrestricted and Network T4,

respectively. While the clustering method appears to work well, some may argue that the number of

markets actually generating sell-up estimates and being clustered is too low, leaving numerous markets

with the input FRAT5c. This is primarily due to the requirements of the logistic-fit, and increasing the

demand multiplier to create more clusterable markets actually slightly decreases revenue and causes over-

aggressive FRAT5 curves.

Combining clustering with the success of the piecewise input FRAT5 does not result in a high-performing

method. Much of the failure is due to the inability to deal with outliers and lower FRAT5 values. Unlike

the logistic-fitter, using a mean value over a given time period does not allow a FRAT5 curve to reach its

maximum value, thus creating low estimates of sell-up, especially in later time frames when they matter

most.

Finally, the introduction of Rational Choice Forecasting does provide a workable, simple, data-based

forecasting method. While its revenue levels are not as high as those of Hybrid Forecasting, it does not

need an external estimate of sell-up, as sell-up is accounted for by the inclusion of numerous passenger

type categories. This method also removes the assumptions that passengers arrive in an inverse
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willingness-to-pay order and that all bookings in the lowest open class are price-oriented. While RC

Forecasting is very sensible, it creates less aggressive forecasts than Hybrid Forecasting that result in

more spiral down and thus slightly lower revenue. Even when using a forecast multiplier, RC Forecasting

does not exceed the total revenue of Hybrid Forecasting. Using RC Forecasting with Fare Adjustment,

however, increases revenue in all networks tested by creating more aggressive forecasts. Much of the

success of Hybrid Forecasting stems from its ability to close lower classes early in the booking process.

Because of this, more capacity exists in later time frames, allowing for not only more sell-up, but more

recapture and spill-in passengers from other airlines.
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INSIGHTS INTO CLUSTERING AND ITS
APPLICATION

7.1 Regression Analysis

While the previous chapters introduce the sell-up clustering method and describe its performance in

various scenarios, this chapter aims to delve further into what market characteristics drive a market into

belonging to a particular cluster. Being able to understand why a market has a certain estimate of sell-up,

beyond that ofjust using its historical booking observations, is crucial and may provide more insight into

market sell-up predictability. Because the x1 and x2 logistic-fit parameters are the primary indicators of

the FRAT5 curve in clustering, this chapter seeks to predict, or explain, a market's x1 and x2 parameters

through the use of independent market variables with various forms of regression models.

7.1.1. Setup

The markets used for this experiment all come from Network T4, where non-LCC markets have a "more

restricted" fare structure and LCC markets are all completely unrestricted, making sell-up observations

more abundant for all markets. However, recall that when run at a demand multiplier of 1.0, which

produces normal load factors of about 79 percent, only 247 of the 572 markets received logistic-fit

parameters (in the FP case), leaving the majority of markets to use the input FRAT5c. For this

experiment, it is essential to have as many markets as possible with logistic-fit parameters, and as shown

in Section 6.4.2, increasing the demand multiplier fixes this problem at the expense of slightly

overestimating sell-up. A demand multiplier of 1.50 is used to obtain the most markets with non-zero

sell-up parameters (only 43 still do not have an estimate of sell-up) via FP sell-up estimation, creating a

data set of 529 usable markets.
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Of these 529 markets in the complete data set, a randomly selected 75 percent of them (397 markets) are

set aside to be the training set, while the remaining 25 percent (132 markets) serve as the test set. The

regression model's performance, while developed from the training set, is measured by the average

absolute residuals of the model's application to the test data set (test error), and serves as the most

important indicator of how well the model performs on other data. In addition, R-squared values give an

insight on how well the model explains the variance in the training data, with the p-values serving as

primary indicators of the significance of a particular independent variable.

This experiment is divided into two sub-experiments, one trying to predict the value of xl, and the other

to explain the value of x2. For each experiment, the following independent variables exist for every

market (observation).

Whether or not the Market is an LCC (binary)

Average Yield

Percentage of Business Passengers

Fare Ratio

Constraining Load Factor

Whether or not the Airline has a Route Advantage (binary)

For a market to be classified as an LCC, it must be served by AL3 in Network T4. The average yield and

percent of business passengers are determined over all flights per day that serve the market. While the

percent business demand is known exactly in PODS by looking at the passenger attributes, it is not

unreasonable that an airline in real life would be able to estimate what portion of passengers are classified

as business for a particular market.

The fare ratio is defined as the highest fare divided by the lowest fare for the market, and simply shows

the maximum range of sell-up that one may observe in a market. Keep in mind that all willingness-to-pay

attributes are distributed randomly throughout the passenger population in PODS. Therefore, a market

with a low fare ratio does not allow those with a higher maximum willingness-to-pay from actually

paying up to that level, thus constraining what may be observed in the market. Additionally, if a market

has a high fare ratio, more observations of higher sell-up should exist, thus theoretically resulting in a

more aggressive FRAT5 curve.

The constraining load factor is another interesting market attribute that may be able influence an estimate

of sell-up. For a higher average load factor, the sell-up estimate should be higher due to more closures of

low fare classes, meaning there is more sell-up. Therefore, those markets that have higher average load
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factors should hypothetically have more aggressive FRAT5 curves. To determine the constraining load

factor in Network T, keep in mind that for every market, there are up to three paths of two connecting legs

throughout the day (west spoke to hub, hub to east spoke). The constraining load factor is defined as the

maximum of the two sets of averages (west spoke to hub average, hub to east spoke average).

Last, a route advantage for ALl in a particular market is given to all markets that begin or end with AL l's

hub (Minneapolis-St. Paul). If a competitor airline wishes to carry passengers to, or out of ALl's hub, it

must first fly through its own hub. Therefore, because ALl offers non-stop service for the particular

market involving MSP, and the competition may only offer connecting service, the market is classified as

a route advantage.

7.1.2. Data Relationships

To gain a better insight into each of the regression experiments, it is essential to understand the meaning

of the xl and x2 parameters, as well as their relationship with the independent variables. The logistic-fit

parameters define different aspects of the shape of the FRAT5 curve.

Figure 102: FRAT5 Example Curves (FP 5 Clusters)

x1 value 0.4 0.4 0.4 0.3 0.5
x2 value 7.0 9.0 5.0 7.0 7.0

Table 23: Logistic-fit Parameters for FRAT5 Example Curves

First, holding xl constant and changing the value of x2, it is evident that x2 is responsible for the curve's

height and aggressiveness. Also, there exists an inverse relationship-as x2 decreases, the height of the
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curve increases. Next, holding the x2 value constant, it is easy to see that the x1 value is responsible for

the steepness of the curve. A higher value of x1 implies a steeper FRAT5 curve, all else equal. Because

x2 is more responsible for the overall aggressiveness and maximum point of a FRAT5 curve, it is the first

and main area of focus for the regression analysis, and likely provides stronger relationships with the

independent variables associated with each market.

The easiest method to determine if a relationship exists between a dependent and independent variable in

a regression is to simply look at the scatter plots. These relationships also give an initial insight about the

signs of the variable coefficients in the regression.
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Figure 103: x2 vs. Independent Variable Scatter Plots

Using the scatter plots, it appears that the only variable with a positive correlation with x2 is the LCC

variable. This reasonably suggests that LCCs have a tendency to have lower FRAT5 curves. All other

relationships appear to either have a negative correlation with x2 (meaning an increase in curve height) or

a lack of a significant correlation (such constraining load factor).

In addition to plotting the dependent response variables versus the independent variables, it is also

important to plot the independent variables versus themselves in search for potential regression problems

that violate some assumptions of OLS.
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Figure 104: Independent Variable Relationships

While it appears that several of these independent variables may be strongly related to each other

(especially fare ratio and average yield), bringing to light the potential of multicollinearity problems,

these are addressed with various regression models in Section 7.1.3.

7.1.3. Regression Models and Results

The following analysis includes several regression models, starting with a basic linear regression. Before

beginning, we note the six assumptions of the classical regression model. First, the shape of the

relationship between the response variable, x2, and the independent variables must be linear, which is

shown by the simple regression equation. Next, there must be no multicollinearity, meaning that the

columns of the matrix including all independent variables must be independent. This already poses a

problem as shown by the scatter plots indicating some relationships between independent variables.

Third, the expected value of the error term must equal zero. Fourth, the variance of the error term must

be constant. In other words, when plotting the residuals versus the fitted values of the dependent variable,

there must be a constant variance about the x-axis. Next, the error terms must be independent. If these

first five assumptions are met, then this indicates that this is the best linear unbiased estimator. Finally,

requiring the error term to be normally distributed ensures that hypothesis testing is possible, allowing the

use of the t-statistic and p-values to determine the significance of a particular coefficient. Any violation

of these assumptions creates potential problems and inaccurate models. To counter these issues as they

arise, several different regression models are used in the following analysis.
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Full OLS Model

The first regression method used in this study is the simple OLS regression of x2 on all independent

variables. This method provides a good starting point and will give insight into what OLS assumptions

are violated, creating the need to correct them and/or use other regression models.

x2 = fo + f1 - LCC + P2 -Avg Yield + f3 -Percent Business + 4 -Fare Ratio + fts
Constraining LF + 6 -AL1 Advantage + E

Coefficient Std. Error t value Pr(>It)

(Intercept) 10.7678 1.9607 5.4919 0.0000
LCC 1.9692 0.3773 5.2190 0.0000
Avg. Yield -3.9736 1.8244 -2.1780 0.0300
Percent Bus. -0.0331 0.0070 -4.7211 0.0000
Fare Ratio 0.1886 0.1738 1.0851 0.2786
Constr. LF -2.6390 2.0312 -1.2992 0.1946

AL1 Adv. -2.4712 0.3313 -7.4583 0.0000

R-squared 0.4165

Table 24: Linear Regression (Full Model) Output

Looking at the results, it is evident that not all of the coefficients make sense. In addition, not all p-values

show that the coefficients are significant. For example, a positive sign on the fare ratio coefficient does

not necessarily make sense (this means a higher fare ratio implies a lower FRAT5 curve), which is

accounted for by a large standard error, small t-value and its p-value being insignificant at the 0.05 level

of confidence. Besides the fare ratio variable, as well as the constraining load factor variable lacking in

significance, the rest of the signs of coefficients coincide with the initial thoughts about their relationship

with the x2 parameter.

Also, note that the R-squared value is only 0.4165, even with every variable in the model (adding

variables only cause the R-squared value to increase, regardless of how "good" they are). This means that

the regression only explains about 42 percent of the variation in the model, whereas a perfect fit achieves

an R-squared of 1.00.

Stepwise Regression

To account for the insignificant variables in the full OLS model, stepwise regression is often used to pick

the "best subset" of variables to include in the model, while keeping all p-values significant. The

stepwise algorithm works in two directions-moving forwards, it begins with zero variables in the model
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and adds the best variable one at a time while maintaining significance, or, by moving backwards, begins

with a model including all variables and removes the least significant variable until all included variables'

coefficients are significant. The algorithm used in this analysis produced the same results for both

directions.

(Intercept) 9.4655 0.4319 21.9156 0.0000
LCC 1.5327 0.2757 5.5586 0.0000
Avg. Yield -4.4626 1.6144 -2.7642 0.0060
Percent Bus. -0.0326 0.0069 -4.7536 0.0000

Value1t value-2.5174) .35 -7.752r

ALI Adv. -2.5174 0.3254 -7.7352 0.0000

R-squared 0.4118

Table 25: Stepwise Regression Output

Despite removing two variables from the model, the R-squared value only decreased from 0.4165 to

0.4118, meaning that the two variables (fare ratio and constraining load factor) provide little insight on

the prediction of x2. The stepwise regression model appears to make sense, implying that LCCs will have

lower FRAT5 curves, and markets with higher yield, more business passengers, and where AL1 has an

advantage, will all have higher FRAT5 curves, all else equal. While it is clear that multicollinearity exists

to a certain extent in this model due to the inclusion of both "average yield" and "percent business"

variables, it is also necessary to see if heteroscedasticity is a problem.
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Figure 105: OLS (Best Subset) Residuals vs. Fitted Values
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If the residuals were homoscedastic, they would show constant variance over the range of the fitted

values. However, there is clear evidence in Figure 105 that this is not the case, indicating an increase in

variance as the fitted value of x2 increases. In order to account for this, weighted least squares (WLS)

and robust regression are two methods that are tested later in this section. First, ridge regression and

partial least squares (PLS) provide two methods to account for the potential problems of multicollinearity.

Ridge Regression

If multicollinearity exists and independent variable terms are correlated, the least squares coefficient

estimates become highly sensitive to random errors in the observed values of x2, the dependent variable,

which will produce a large variance. For example, a very large positive coefficient on one variable may

be cancelled by a very negative coefficient on a related variable. Therefore, the goal of ridge regression is

to impose a size constraint on the coefficients, as indicated by the ridge parameter k, which will reduce

the variance of estimates and often result in a smaller MSE.

N P 2

ridge = argmin yi - 0 - xij pj

P

subject to ? < 1/k

j=1

Ridge

OLS k=0.05 k=5.0 k=50
(Intercept) 10.7678 10.7686 10.8397 11.1059

LCC 1.9692 1.9682 1.8736 1.3909
Avg. Yield -3.9736 -3.9742 4.0297 4.0819

Percent Bus. -0.0331 -0.0331 -0.0330 -0.0315
Fare Ratio 0.1886 0.1882 0.1511 -0.0376
Constr. LF -2.6390 -2.6374 -2.4888 -1.7181
AL1 Adv. -2.4712 -2.4708 -2.4364 -2.1531

Table 26: Ridge Regression Output

Using ridge regression to shrink the coefficients appears to only have a noticeable effect for large values

of k. It is interesting to note that the "fare ratio" and "constraining load factor" variables shrink the most,

which were also the two that were cut in the stepwise regression.
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Partial Least Squares (PLS)

Like ridge regression, partial least squares is another coefficient shrinking technique. PLS creates

components, which are linear combinations of the original independent variables that have a large

covariance with x2, and then regresses x2 on the newly created components. This is an effective

technique because it uses information about the variances of the dependent and independent variables, as

well as the correlations between them.

Component

LCC -3.875 -8.115 -1.490 -3.970 -0.599

Avg. Yield 0.967 1.131 -0.180 0.567 -0.889

Percent Bus. 303.069 -1.314 0.024 -0.018 -0.001

Fare Ratio 5.570 17.413 -2.162 -1.971 -0.241

Constr. LF -0.135 -0.251 -0.006 -0.090 -0.749

AL1 Adv. -0.163 -0.472 4.841 -2.991 -0.326

Table 27: PLS Component Relationship to Independent Variables
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Figure 106: Variance Explained by Components in PLS Regression

Table 27 shows the linear combination of components that approximate the original independent variables

for PLS in the five component case. However, the addition of components does reach a saturation point

in regards to the amount of variance explained in the model. Figure 106 shows the majority of the

variance is explained by three components, with minimal benefit gained beyond that. In the last step of
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PLS, based on the regression of x2 on the components, coefficients may be estimated for each of the

original independent variables, as reported in Table 28 for both the three and five component cases.

Coefficients

(Intercept) 9.2199 10.8799
LCC 1.8660 1.9828
Avg. Yield -0.2367 -3.8707
Percent Bus. -0.0406 -0.0333
Fare Ratio -0.0665 0.1864
Constr. LF -0.1124 -2.7743
ALI Adv. -2.4749 -2.4643

R-squared 0.4002 0.4165

Table 28: PLS Model Output

The PLS regression creates similar results to previous regression models, all indicating the comparable

relationships between x2 and the independent variables (except the fare ratio coefficient in the 5

component case).

Weighted Least Squares (WLS)

In order to correct for heteroscedasticity, WLS assigns weights to determine the contribution of each

observation to the final parameter estimates. The weights are inversely proportional to the variance at

each level of the explanatory variable. A higher variance implies less weight, resulting in a residual

versus fitted values plot with a more random distribution of residuals, showing an equal variance over all

fitted values.
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Figure 107: WLS Residuals vs. Fitted Values

WLS Full

Coefficients

(Intercept) 10.7678 17.95
LCC 1.9692 0.9963

Avg. Yield -3.9736 -8.4778

Percent Bus. -0.0331 -0.0369

Fare Ratio 0.1886 -0.0454

Constr. LF -2.6390 -7.8389

AL] Adv. -2.4712 -2.6847

WLS Stepwise Best Subset

(Intercept) 9.4655 17.7209

LCC 1.5327 1.0557

Avg. Yield -4.4626 -8.5916

Percent Bus. -0.0326 -0.0366

Fare Ratio

Constr. LF -7.8148

ALl Adv. -2.5174 -2.7343

Table 29: WLS Regression Output

The WLS regression also produces sensible coefficients for the variables included in the model. In the

full variable case, in comparison to the first OLS regression, the WLS coefficients all appear to be in line

with the original hypothesis, correcting the coefficient for fare ratio from a positive to a negative value.

Applying stepwise regression to WLS after the reweighting process creates a new subset of variables,

similar to the OLS best subset, but also including "constraining load factor" as another variable.

Robust Regression

Robust regression works by a process called iteratively reweighted least squares. In the first iteration, all

data receive equal weight, and in subsequent iterations, those data points that are farther from the previous

model, are given less weight. For example, if an outlier is skewing the results, that observation would

receive less weight in the next iteration. This process repeats until there is convergence within a specified
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limit. This is essentially just an iterative version of WLS, where the weights are not necessarily all

inversely proportional to the variance of the variable.

Robust Full Robust Stepwise Best Subset

Coefficients Coefficients
OLS I Robust OLS subset Robust subset

(Intercept) 10.7678 10.3085

LCC 1.9692 2.6526

Avg. Yield -3.9736 -2.4093

Percent Bus. -0.0331 -0.0372

Fare Ratio 0.1886 0.2328

Constr. LF -2.6390 -2.6092

AL] Adv. -2.4712 -2.4442

(Intercept) 9.4655 9.2068

LCC 1.5327 2.2497

Avg. Yield -4.4626 -2.6268

Percent Bus. -0.0326 -0.0368

Fare Ratio

Constr. LF

ALl Adv. -2.5174 -2.5675

Table 30: Robust Regression Output

The output of robust regression shows interesting results. For the full model, compared to the OLS

estimates, more weight is particularly given to whether or not the market is an LCC and the market fare

ratio, which is contrary to previous models that either shrunk the "fare ratio" variable or removed it all

together. In both the full variable model and the best subset model, less weight was allocated to the

average yield, which has been a primary component in every regression model shown in the analysis.

7.1.4. Regression Summary

x2 Regression

A summary of the coefficients for all regression models used to predict x2 are shown below in Table 31.

Each model tested serves a purpose-stepwise regression creates a best subset of variables, removing

some element of multicollinearity. Ridge regression and PLS also attempt to remove multicollinearity by

shrinking coefficients of those variables that would otherwise result in higher variance of the estimates.

Both WLS and Robust Regression attempt to reweight observations that are more beneficial to creating

homoscedastic residuals and normal error terms.

There are several common relationships among the independent variables throughout the different

methods tested that are worthy of note. It is apparent that by a market being an LCC market with an

unrestricted fare structure, it is predicted to have a lower FRAT5 curve. However, several factors

influence a market to have a higher FRAT5 curve-higher average yield, more business passengers, a

higher load factor, or a route advantage. When evaluating the significance of the variables, several

regression techniques remove "fare ratio" and "constraining load factor" from the model. Statistical
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insignificance for a given variable is often shown by its coefficients changing signs in various models.

This is definitely the case for "fare ratio," and as a result, the value of those models that include fare ratio

could be discounted.

(Intercept
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-2.627
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Table 31: x2 Regression Models Summary

The effectiveness of the regression models hinges on its comparison to a baseline model when applied to

the test data set. For these cases, the baseline is simply choosing the average value for x2 for every

predicted value in the test set. The measure of the test error is the average absolute residual, or the

absolute difference between the predicted value of x2 and the actual value of x2 in the test set.
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Figure 108: x2 Test Error per Regression Model
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The best performing regression model is robust regression, creating a 46.2 percent decrease in test error

compared to the baseline case for the full model (all variables). However, as discussed previously, this

model gives the variable "fare ratio" a positive coefficient, going against what was hypothesized. The

remaining models all lay within a 37 to 44 percent range of improvement over the baseline, with robust

regression (best subset) at 44.2 percent.

WLS (subset)

WLS (all)

Robust Reg (subset)

Robust Reg (all)

PLS (5 comp)

PLS (3 comp)

Ridge k=100

Ridge k=50

Ridge k=0.05

Lin Reg (subset)

Lin Reg (all)

Baseline

0 2 4 6 8 10 12 14

N Avg. Iresidi I 95% n max

Figure 109: x2 Test Error Average, 95% C.I., and Maximum Values per Regression Model

To better evaluate the effectiveness of each regression method, Figure 109 shows the range of x2 residual

values against the range of the entire x2 variable. The worst that the baseline method can do by choosing

the average x2 value is about half of x2's range. Comparing this, the 95 percent confidence interval of

residuals, and the average residual to the other methods, most of the regression models perform better

than the baseline. Weighted Least Squares, while creating a better average residual, actually performs

worse in regards to the maximum residual. It is apparent that robust regression again performs better than

other regression models, creating the smallest maximum residual. However, PLS and Ridge Regression

both have smaller 95 percent confidence intervals compared to robust regression, and are comparable in

average absolute residuals.

- 155 -

p I

II- ~oI
N

xl

- I

I ... ........................................ ..................... ...... ....... ..... ................................... ............ ............... .. ..... .........



CHAPTER 7

x] Regression

While some predictive power exists for x2 regression models, the xl parameter does not cooperate as

nicely. It is difficult to associate the steepness of a FRAT5 curve with different market variables. For

example, the overall height of the curve implies the overall maximum sell-up behavior of those

passengers in the market, but a low level curve and a high level curve may both be steep, making the

market characteristics unclear in their predictive power. However, using the same regression models as

x2, the regression output of coefficients is shown below in Table 32. All of the models showed an R-

squared value of only 0.11, meaning that xl is extremely variable on its own and difficult to predict.

'n
t4 0n

I. W

(Intercept) 0.6997 0.7174 0.6996 0.6934 0.6532 0.5700 0.6646 0.6701 0.7067 0.5499 0.5541

LCC 0.0137 0.0137 0.0138 0.0139 0.0026 0.0077 0.0038 0.0110

Avg. Yield 0.0009 0.0009 -0.0030 -0.0232 0.0008 -0.0517 -0.0527 -0.0087

Percent Bus -0.0004 -0.0005 -0.0004 -0.0004 -0.0004 -0.0004 -0.0003 -0.0005 -0.0006 -0.0005 -0.0004

Fare Ratio -0.0199 -0.0253 -0.0199 -0.0193 -0.0157 -0.0227 -0.0188 -0.0153 -0.0204 -0.0184 -0.0137

Constr. LF -0.1689 -0.1527 -0.1688 -0.1646 -0.1362 -0.0058 -0.1251 -0.1470 -0.1672 -0.0333

AL1 Adv. -0.0707 -0.0695 -0.0707 -0.0700 -0.0636 -0.0716 -0.0740 -0.0610 -0.0574 -0.0682 -0.0706

Table 32: x1 Regression Models Summary

Despite the lack of predictive power of the regression models, some common coefficient results indicate

that increases in the percent of business passengers, a market's fare ratio, its constraining load factor, and

if the market has an advantage, the market will have a flatter FRAT5 curve. In addition, these models

indicate that LCC markets should have steeper FRAT5 curves, but the LCC variable and average yield

variable are often cut from the model in best subset selections.
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Figure 110: x1 Test Error per Regression Model

Compared to the baseline of choosing the average xl value for every market in the test set, these

regression models only provide a slight improvement (recall that the improvement over the baseline for

the x2 variable is up to about 44 percent). However, robust regression again appears to be the best

performing method, achieving a 7.2 percent improvement over the baseline. Relative to the overall range

of x1, it is clear that the predictive power of these regression models is quite poor, showing very small

improvement over the baseline.
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Figure 111: x1 Test Error Average, 95% C.I., and Maximum Values per Regression Model

All of the regression models have maximum residuals all around the baseline maximum residual, with

some exceeding it. Similar to the x2 regression, PLS has a slightly smaller 95 percent confidence

interval. Weighted Least Squares actually performs better in the x1 regression, rivaling the average

residual of robust regression, and outperforming all others in the maximum residual.

Model Interpretation

These results all indicate that it is more possible and more effective to create a regression model that

predicts the x2 logistic-fit parameter, which controls the overall height of the FRAT5 curve. Using the

best performing and most logically sound model, robust regression (best subset), one may gain the

following insights. Using the average x1 value of 0.445, and holding all else equal, it is easy to visualize

the effect of each variable included in the model.
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Figure 112: Robust Regression Model Impact on FRAT5 Curves

A market's non-LCC versus LCC distinction creates a large gap in FRAT5 curves, with a non-LCC

market having a much more aggressive curve than LCC markets throughout the entire booking period.

However, average yield plays a small role in the height of a FRAT5 curve-market with a high yield of

$0.27/mile creates a FRAT5 curve just above that of a low yield market ($0.12/mile). In addition, if a

market has a high percentage of business passengers, it is likely to have a significantly more aggressive

FRAT5 curve. This is due to business passengers having a higher willingness-to-pay, making them more

likely to sell-up. Last, a market with a route advantage over the airlines will have a more aggressive

FRAT5 curve, indicating that those passengers will be more willing to sell-up due to the disutility of

connecting flights with other carriers.

7.2 Chapter Summary

Through the use of regression models, more insight is gained about why a particular market belongs to a

specific cluster. While clustering enables markets to be separated based on their values for logistic-fit

parameters of x1 and x2, it was not apparent why a particular market receives those parameters beyond

that of its data-based FRAT5 sell-up estimates in the booking history. Each market has several different
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characteristics that may influence its sell-up categorization. Regression enables the analysis of the

relationship between the logistic-fit parameters and those market characteristics. After extensive

investigation with various regression models correcting and accounting for heteroscedasticity and

multicollinearity issues within the data set, much information is gained about a FRAT5 curve's

connection to its market.

The relationship between x2 and the market's independent variables is much stronger than that of x1,

indicating that x2, accounting for the height and aggressiveness of the logistic-fit curve, is the primary

driver of the estimate of sell-up. Of the variables tested, the principal forces behind a market's estimate

of sell-up are whether or not the market is an LCC, its average yield, percentage of business passengers,

and whether or not the market is a route advantage for the airline in question. While being an LCC

market creates a lower FRAT5 curve, all else equal, an increase in yield, an increase in the number of

business passengers, and having a route advantage all tend to boost the aggressiveness of the FRAT5

curve.
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CONCLUSIONS

8.1 Summary of Findings

The purpose of this thesis was to explore and examine sell-up estimation and its application to airline

revenue management forecasting methods. The introduction of Hybrid Forecasting, as well as Fare

Adjustment, makes the estimate of passenger sell-up behavior crucial to these airline revenue

management models. Incorrect estimates of sell-up may either lead to the spiral down of fare class

forecasts and revenues, or to the gross overprotection of seats. To evaluate the performance of these

methods in a controllable competitive environment, the thesis used the Passenger Origin-Destination

Simulator (PODS), which allowed the use of various fare structures, optimizers, and airline networks.

There are several different methods that can estimate passenger willingness-to-pay, all of which are

related in this thesis by the FRAT5, or the fare ratio at which 50 percent of passengers will sell-up to a

higher class than their original preference for a given time frame (or point prior to departure). These

FRAT5 values, when plotted over the booking period for a single market, create a FRAT5 curve that

essentially defines the overall sell-up characteristic of the market in question. Both methods of estimating

sell-up in this thesis, Direct Observation and Forecast Prediction, are viable methods that use actual

historical booking data available in airline RM databases to estimate sell-up. These estimates are used in

the application of Q and Hybrid Forecasting, where forecasts are initially reduced to the lowest "Q" class,

and then redistributed to higher fare classes based on the estimates of the probability of selling up from Q
to a higher class. Because sell-up observations are often sparse for various markets over the booking

period, cross-time frame fitters are applied to the data. This thesis examined both a logistic function fitter

and a regression-based fitter, with the logistic fitter creating more reasonable and better performing

FRAT5 curves.
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The main question that this thesis addressed was the determination of the level of aggregation of these

sell-up estimates. Attempting to estimate a FRAT5 curve for a single market often results in wildly

inaccurate sell-up estimates because of the sparseness of data, that is, actual occurrences of sell-up in

historical departures. Additionally, estimating one FRAT5 curve for the entire airline system creates a

sell-up estimate that is too general for all markets, forcing some markets to have an overly aggressive

FRAT5 curve. One resolution to this problem, and the focus of this thesis, is to cluster the markets based

on each market's logistic cross-time frame fit parameters via the K-Means clustering algorithm. This

method finds the middle ground between estimating sell-up on a per-market basis and estimating sell-up

over the entire system, and increases the number of sell-up observations that determine each cluster's

FRAT5 curve. Compared to the best revenues created by the system-based or market-based levels of sell-

up aggregation, clustering created a revenue increase of 0.26 percent in the very basic Network D6

Unrestricted, and 0.19 percent in the more complex and competitive Network T4. Additionally, relative

to the baseline input FRAT5c, clustering increased revenue by 0.75 percent in Network D6 Unrestricted

and by 0.26 percent in Network T4.

In addition to clustering, various input FRAT5 methods were tested. Input FRAT5s have little credibility

because they are arbitrary and non-data-based, but they are important because they often indicate

shortcomings of some data-based methods. Initially testing completely flat input FRAT5s indicated the

importance of the FRAT5 curve in later time frames, where seat availability is vital to gain more late

booking, high willingness-to-pay business passengers. Using revenue values per time frame, based on

various flat FRAT5s, a piecewise step function FRAT5 was created. This input piecewise FRAT5, while

arbitrary, slightly outperformed even the best data-based clustering method in Network D6 Unrestricted

and Network T4. This was due the nature of the logistic-fit curve, overestimating sell-up in the middle

time frames compared to the piecewise input FRAT5 curve. In order to apply the benefit of clustering to

the performance of the input piecewise FRAT5 curve, it was first essential to transform the input

piecewise FRAT5 curve into a data-based FRAT5 curve. However, the sparseness of the data again

seemed to negatively affect the formulation of the data-based piecewise curve. Additionally, applying the

clustering algorithm to these curves did not create any revenue gains over the baseline FRAT5c.

The last chapter of this thesis concentrates on the use of regression analyses of the relationship between

the logistic-fit parameters that define the shape and level of the FRAT5 curves with specific market

attributes. It describes what characteristics drive particular markets into having certain sell-up estimates

beyond that of its actual booking data. These characteristics included whether or not it was an LCC

market with an unrestricted fare structure, its average yield, percentage of business passengers, fare ratio,

constraining load factor, and whether or not it has a route advantage over the competition airlines (direct
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versus connecting.) The focus of this chapter was primarily to predict the x2 logistic-fit parameter that

determines the height of the FRAT5 curve. After correcting for multicollinearity and heteroscedasticity,

robust regression (with the best subset of variables determined through stepwise regression) yielded the

best results with a test error 44 percent better than a random guess of the average. The regression results

suggest that increases in the percentage of business passengers, as well as an airline having a route

advantage in a market, generate significantly more aggressive FRAT5 curves. In addition, an increase in

average yield produces a slightly more aggressive FRAT5 curve, all else equal. In contrast, if a market is

classified as an LCC, it is predicted to have a lower FRAT5 curve.

While the sell-up estimation methods presented in this thesis are primarily for use in conjunction with Q
and Hybrid Forecasting, this thesis also introduced the Rational Choice Forecasting method. Rational

Choice Forecasting's sell-up estimates are embedded within the regression that creates its forecasts. The

independent variables include all of the passenger types possible based on the total number of fare classes

and the passengers' possible willingness-to-pay levels. This method, while simpler than the two part

Hybrid Forecasting plus separate sell-up estimation, does not create forecasts that.are nearly as

aggressive. Rational Choice Forecasting, however, does improve on standard pick-up forecasting, in all

fare environments. Much of the success of Hybrid Forecasting is due to its ability to keep lower fare

classes more closed throughout earlier time frames, saving capacity for later time frames when not only

sell-up revenue is crucial, but revenue gained from recapture and spill-in.

Figure 113: Summary Revenues in Network D6 Unrestricted

Even though the piecewise FRAT5 curve for Hybrid Forecasting created the largest revenue of any

method tested in Network D6 Unrestricted, it is important to realize that this is an arbitrary curve, difficult
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for an airline to use in the real world. The best performing data-based methods were created through the

use of clustering, ranging from two to seven clusters depending on the size of the simulation network.

Rational Choice Forecasting as a whole performs worse than all Hybrid Forecasting methods, but it is

much less complex and easier to implement.

Figure 114: Summary Revenues in Network T4

In Network T4, the forecasting and sell-up estimation methods performed similarly to Network D6

Unrestricted. The best data-based clustering method nearly matches the performance of the best input

piecewise FRAT5, creating a 0.43% revenue increase over the input FRAT5c. In addition, RC

Forecasting performs much better relative to Hybrid Forecasting in Network T4. Rational Choice with

fare adjustment nearly matches the revenue level of HF with an input FRAT5c. Overall, data-based sell-

up estimation, when performed correctly with sufficient thought about data sparseness and aggregation,

does provide significant benefit to forecasting in airline revenue management.

8.2 Future Research Directions

This thesis provided a comprehensive analysis of the estimation of passenger willingness-to-pay in

regards to both Hybrid Forecasting and Rational Choice Forecasting in various fare structure

environments. The foundation of these methods lies solely with the historical booking data for each

airline. While these methods appear to benefit forecasting, there are other research directions worth

pursuing to further improve them.

Many of the statistical problems with data-based sell-up estimation revolve around just dealing with the

historical booking data. Perhaps an accurate estimation of willingness-to-pay should not be dependent on
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the bookings themselves, for these observations are obviously controlled by what fare classes are

available. To better gather true unconstrained demand and eventually an estimate of sell-up, other

sources of information exist, such as the Internet. A lot of today's Internet bookings are purchased by

price-oriented passengers in search of the lowest fares. Using an Internet flight search engine to measure

demand for particular markets through the number of searches for a specific market is another method

worthy of consideration. Also, tracking a sample of the population through surveys or travel website

memberships over time as prices evolve may lead to a better understanding of a passenger's true

willingness-to-pay.

In addition to using alternate resources to gain more sell-up information, perhaps more extensive research

can be devoted to continuing the regression analysis. Using existing market characteristics may lead to

the actual prediction of a FRAT5 curve without the use of any booking data. Rather, the curve would be

based solely on various market factors, such as its fare ratio and percentage of business passengers.

Further pursuing data mining methods, in conjunction with regression analysis, would create numerous

possibilities and potential insights to be gained in this research area.

In conclusion, this thesis motivates the need to further investigate sell-up estimation and its importance to

airline revenue management. With an abundance of data available in airline revenue management

systems, the opportunity exists to explore more sophisticated statistical estimation techniques for

predicting passenger willingness-to-pay and choice behavior.
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