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Abstract

Perishability presents a challenging problem in inventory management for the fresh produce
industry since it can lead to higher inventory costs and lower service levels. If a supply chain
has multiple echelons, that further complicates the issue since companies have an added risk of
not having the right amount of product at the right location at the right time. We conduct our
research on Chiquita’s Fresh Express supply chain. We analyze the impact of perishability on
total relevant costs. Our research focuses on determining the optimal inventory policy for the
system considering inventory holding costs, shrinkage costs, lost sales costs, forecast accuracy
and service levels. We test the sensitivity of the system with respect to forecast errors and the
transportation lead time. We developed a discrete-event simulation model using Arena software
to conduct the research.

Our research demonstrates that by lowering the current target on-hand inventory levels at the
distribution center and retail stores, inventory holding costs and shrinkage costs are reduced
significantly. Under the optimal inventory policy, the system can save 31% in costs, improve the
item fill rate at the distribution center, reduce the total shrinkage volume, and maintain high
service levels of more than 95% at the retail stores. Our sensitivity analysis shows that the
system is very sensitive to the forecast errors. Additionally, we recommend keeping the
transportation lead time as low as possible to maximize the products’ lifetime at the retail stores.
Reducing the forecast errors or the transportation lead time would reduce the total relevant cost
of the system while improving the item fill rates across the supply chain.

Thesis Supervisor: Dr. Amanda Schmitt
Title: Postdoctoral Associate, Center for Transportation and Logistics
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1 Introduction

Chiquita Brands International, Inc. is a leading international marketer and distributor of fresh
food products including bananas, various other fruits, and blends of packaged green salads. The
company markets its products under the Chiquita ® and Fresh Express ® brands and other
related trademarks. The perishable nature of Chiquita’s products presents a challenge in
managing the inventory as keeping track of the age of inventory is challenging. The multiple
layers of inventory locations throughout the supply chain further complicate the issue of
inventory management. Additionally, the volatile demand of the Fresh Express line and the
inexperienced produce buyers at the retail level make the issue even more challenging.
Developing better order and inventory policies requires an understanding of the impacts of the
product’s limited lifetime, the interactions of multiple inventory locations, and the trade-off
between the relevant costs and the customer service levels.

The objective of our research is to quantify these impacts and trade-offs to help
Chiquita’s management to develop a better inventory policy that minimizes the costs and at the
same time achieves the desired customer service levels. The management at Chiquita is
considering changing the existing inventory and order policies in order to minimize out-of-stock
and spoilage for its Fresh Express line of packaged green salads. Due to confidentiality
concerns, all the numbers used throughout the thesis are for illustrative purposes only and are not

necessarily indicative of actual performance at Chiquita.

1.1 Problem Description
While most inventory models assume that items can be stored indefinitely to meet future
demand, in reality not all items have an infinite lifetime. Perishable inventory is defined as items

that decay in storage; as time elapses, the items gradually become partially or entirely unsuitable
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for consumption. Typical examples of perishable inventories include fresh produce,
photographic films, drugs, and blood. Perishability is typically classified into two categories:
fixed lifetime and random lifetime. A product with a fixed lifetime has a pre-determined
lifetime, meaning after a specific number of periods, the product becomes unusable and must be
discarded. In reality, many products have random lifetimes because the exact lifetime cannot be
pre-determined. For example, a product with a random lifetime could decay exponentially,
implying that a fraction of the inventory is lost each period. Products could also have a random
lifetime, a variable with a specific probability distribution (Nahmias, 82).
Perishability presents a challenging problem for inventory management. Perishability
can lead to increases in four costs:
¢ Inventory shrinkage costs: costs due to inventory that must be discarded because of
spoilage
e Shortage costs: lost sales costs due to inventory stock out caused by perishability
e Ordering costs: higher ordering costs due to more frequent purchases to counter the
perishable nature of the products
¢ Inventory carrying costs: higher inventory holding costs due to the lack of understanding
for the proper inventory level
In order to effectively manage inventory costs, supply chain managers must keep track of each
age level of the inventories. However, keeping track of the age of each unit at each period may
be difficult and impractical for most companies due to extensive computations that are involved.
Given this complexity, optimizing the system is incredibly difficult.
Most supply chain networks have a series of inventory locations; rarely is there only one

inventory location that ships to the final destination. Supply chain networks with multiple layers
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of inventory locations are referred to as multi-echelon supply chains. Having inventory in
multiple layers may have benefits, such as shorter lead time for the final destinations, better
service for the final destinations, and lower transportation cost through shipment consolidation.
However, since available inventory is divided and stored at more than one location, a multi-
echelon system may have a higher risk of not having the right amount of product at the right
location at the right time (Taylor, 2004). In order to have an effective inventory policy, one must
determine the dependencies between echelons and the proper inventory level required at each

echelon.

1.2 The Case of Chiquita’s Fresh Express
Chiquita’s Fresh Express network represents a complex multi-echelon perishable supply chain.
The raw materials of Fresh Express products are harvested from either California or Arizona,
depending on the season, and then shipped across the United States to Chiquita’s plants to be
processed and packaged. The cycle time for raw materials to be turned into packaged salads is
typically two or three days. Once the salads are packaged, they are usually shipped to Chiquita’s
customers’ distribution centers (DC) within two days. Typically, the products stay in customers’
DCs no longer than two days before they are shipped again to the retail locations. The total lead
time is merely four to six days for Chiquita to harvest the vegetables from the field, ship the
vegetables across the nation to be processed into packaged salads, ship the packaged salads to
customers’ distribution, and deliver them to the retail locations.

Additionally, the high demand volatility of packaged salads further complicates the issue
of managing Fresh Express inventories. The sales volume of packaged salads is heavily
influenced by retail promotions; a high percentage of Fresh Express’ volume is sold under

promotions. The retailers frequently lower the prices for two purposes: to increase sales volume
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and store traffic as a part of the marketing efforts, and to clear out aging inventory to minimize

the risk of potential loss of unusable inventories.

These three issues (perishability, the multi-echelon system, and the high demand
volatility) combine together make inventory management for Fresh Express extremely difficult.
Inventory is often managed based on buyers’ experience and intuition, which is by nature subject
to human error. As a result, Chiquita and the retailers often carry excessive inventories to try to
achieve a high service level. A large percentage of the inventory at the retailers’ warehouses and
the retail stores is considered no longer fresh for consumers to purchase and needs to be
discarded. Hence, Chiquita would like to know whether or not a better multi-echelon inventory
management system can be developed for its Fresh Express products. Specifically, Chiquita is
interested in answering the following questions:

1) What are the parameters for optimal inventory management depending upon forecast
accuracy, inventory carrying cost, product perishability, lost sales and inventory shrinkage
costs?

2) What is the trade-off between service level and inventory costs?

3) What is the impact of increased forecast accuracy on inventory-related costs?

1.3 Research Motivation

The analysis of multi-echelon perishable systems is not as well developed as that of single-
echelon perishable systems. Most research for multi-echelon perishable systems has assumed
that the product has a fixed lifetime at each echelon, the system uses a continuous review
inventory policy (inventory is reviewed continuously, and an order is placed whenever the
inventory reaches below a particulaf level), and the system allows backorders (unfilled orders

can be fulfilled in the future). However, Chiquita’s Fresh Express supply chain is a multi-
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echelon system with products that have random lifetimes. Also, the system uses a periodic
review inventory policy (inventory is reviewed periodically, and an order may be placed based
on the inventory level after each review) and unfilled orders are considered lost sales. Therefore,
the assumptions used in most research are not applicable to Chiquita’s Fresh Express supply
chain.

In this thesis we develop an inventory management system that simulates Chiquita’s Fresh
Express supply chain. Our research focuses on identifying ways to minimize out-of-stock and
inventory shrinkage while maintaining high service levels, which are common goals that most
companies share. The objective of this research is to address the three key questions posed in the
previous section by Chiquita and provide recommendation on multi-echelon inventory systems

for fresh produce supply chains.

1.4 Research Scope
This research uses Chiquita’s Fresh Express supply chain as a case to develop a better
understanding of the challenges that fresh produce companies may face in managing their
inventories. In order to simulate Chiquita’s supply chain, the research assumes that all products
have random lifetimes that decay according to a shrinkage probability and have maximum
lifetimes of 14 periods (days). The system uses a periodic review and all backorders in the
system are considered lost sales. These assumptions are based on system descriptions provided
by Chiquita personnel.

Our analysis focuses on one supply chain of Chiquita’s Fresh Express line, which starts at
Chiquita’s plant in Georgia. This plant is located across the nation from the sources of raw
materials. We chose this location because it serves one of Chiquita’s biggest customers, which

we refer to as ABC, Inc. (ABC). For the next echelon, we chose ABC’s DC located in Florida,
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because this DC is served by Chiquita’s Georgia plant and has one of the highest sales volumes.
Figure 1.1 illustrates the physical locations of the sources of raw materials, Chiquita’s plant in

Georgia, and the customer’s DC in Florida.

Plant, GA

Legend A7 -
—s Raw product transport during Summer u‘__ Customer DC, FL

‘ Retail Stores, FL
==p Finished product transport

Figure 1.1: Chiquita’s Fresh Express Supply Chain

=== Raw product transport during Spring and Fall

=== Raw product transport during Winter

Additionally, we chose two retail stores that have typical characteristics shared by most
retail locations served by the customer’s DC. We chose this supply chain because it represents a
large portion of Fresh Express’ volume and possesses common characteristics shared by Fresh
Express’ other supply chains with other customers. The physical structure of this supply chain
(one plant, followed by one DC, followed by multiple retailers) is common for Chiquita.
Therefore we expect the results of our research to be applicable to Fresh Express’ other supply

chains and to provide insights to other companies that have similar supply chain structures.
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1.5 Thesis Structure

The thesis continues as follows. In Chapter 2, we provide a review of the relevant
literature and methodology used in other research. In Chapter 3, we provide the methodology,
various assumptions and the conceptual flow of our research and model. In Chapter 4, we
document the model, the results of each simulation run, and a detailed analysis for each scenario
in the testing plan. Finally in Chapter 5, we conclude by providing overall observations and

implications of our research, key insights, and recommendations for future research.
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2 Literature Review

In order to determine the best approach for modeling Chiquita’s supply chain, we surveyed the
academic literature to understand analytical approaches on how to develop an inventory policy
for perishable products in multi-echelon systems. The literature available on inventory systems
for perishable items varies by a combination of four assumptions or considerations: deterministic
or stochastic demand, fixed or random lifetime, single period or multiple period of product
lifetime, and single or multiple echelons. In Section 2.1, we review the analytical approaches for
single echelon inventory management, and in Section 2.2, we review the analytical approaches
for multi-echelon inventory management systems. Although the amount of literature on
perishable inventory available is abundant, none of the models have assumptions that match well
with the reality in Chiquita’s business model.

Due to the complexity and limitations involved in implementing an analytical model for
Chiquita’s Fresh Express supply chain, we also surveyed literature on simulation methodologies
to better understand whether a simulation model would be suitable for the scope of our research.
This survey confirmed that simulation is a practical approach to model a complex system, and

we present relevant literature on simulation methodology in Section 2.3.

2.1 Perishable Inventory Management for Single-Echelon Systems

The origin of all perishable inventory system analysis can be traced back to the simple Newsboy
model, in which the product lifetime is exactly one period and the order quantity decision is
independent in each period. Both Van Zyl (1964) and Nahmias and Pierskalla (1973) derived
optimal policies for products with fixed lifetimes of two periods and stochastic demand. Van Zyl
derived dynamic programming functional equations that consider ordering costs and shortage

costs. Nahmias and Pierskalla approach the issue by considering the outdating and shortages
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costs. Fries (1975) and Nahmias (1975) extended the literature to consider products with
lifetime beyond two periods with stochastic demand.

As Nahmias (1982) explains, the main challenge in managing perishable inventory lies in
tracking inventories of different age-groups at each position in the supply chain. Thus, when a
product lifetime becomes greater than three periods, models become multi-dimensional and
computationally extensive. Because computation of optimal policies for such systems becomes
impractical for everyday business decisions, approximations are potentially good alternative
choices. Cohen (1976) developed an optimal critical number policy by using the stationary
distribution of stock levels and then finding the critical number of periods’ worth of demand to
order that minimizes the expected cost. However, when the product lifetime is greater than three
periods, obtaining the stationary distribution of the starting stock becomes very challenging.
Nahmias (1976) eased the computation by developing a heuristic critical number approximation
approach for products with fixed lifetime and stochastic demand. This approximation model was
proven to result in costs that are generally less than one percent higher than the global optimal
cost. Nahmias (1977) and Nahmias (1978) extended the approximation technique for products

with random lifetimes and for systems with a set-up cost.

2.2 Perishable Inventory Management for Multi-Echelon Systems

Clark and Scarf (1960) were the first to model the optimal policy for a multi-period, multi-
echelon inventory system subjected to stochastic demand. Since then extensive research has
been done on multi-echelon inventory systems, yet research on multi-echelon inventory systems
for perishable products is still limited due to its complexity. Yen (1965) was the first to consider
a perishable inventory policy in a multi-echelon system using a stationary critical number order

policy. Yen assumed that each regional location always receives the same proportional age of
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inventory according to its order quantity. Cohen, Pierskalla and Yen (1981) discussed periodic
review policies which focus on inventory allocation for a multi-echelon system that differentiates
products by age. Their model did not remove the over-age stock from the inventory, but the
penalty cost associated with over-age stock was set sufficiently high to ensure small volumes of
over-age stock in the system. Matta and Sinha (1995) investigated the periodic review of a two-
echelon system for non-perishable products. Kanchanasuntorn and Techanitisawad (2006)
extended Matta and Sinha’s model to include perishable items with fixed lifetimes using an
approximate periodic review policy.

There is limited research on multi-echelon inventory management systems for perishable
products with a maximum fixed lifetime beyond three periods and a random lifetime with decay
according to a probability distribution. To our knowledge, when the scope is further narrowed
down to a multi-echelon system that uses periodic review and considers lost sales, shrinkage,
stochastic demand, non-zero lead-times and forecast accuracy, no relevant models have been
published. Because of this and the fact that analytical approaches are generally complex and
difficult to implement for day-to-day operations, we felt that simulation would be a better
approach to capture Chiquita’s supply chain. In Section 2.3, we discuss the simulation modeling

briefly.

2.3 Simulation

Although an analytical approach is generally the preferred method in developing inventory
policies, it becomes intractable when the states of the inventory are too complex to be expressed
in equations. While analytical approaches may be impractical for a complex inventory system,
computer simulation modeling can help to keep track of the states of the inventory and monitor

the interaction between the changes in each echelon of the supply chain.
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White and Ingalls (2009) define a model as an entity that is used to represent some other
entity for some defined purpose. Models are used when direct investigation of the actual system
is impractical or expensive. They describe simulation as an experimental approach to studying
models. A simulation modeler first creates a model that imitates the behaviors of the actual
system, then experiments with the models with different inputs to observe the behavior, and at
last tries to understand, summarize, and generalize that behavior. Because simulation modeling
helps researchers understand the behavior of complex models in a cost-effective way, simulation
has gained popularity and been widely used for academic research as well as for solving real-
world problems. For example, Snyder and Shen (2006) used simulation models to gain insights
on the differences between supply uncertainty and demand uncertainty in multi-echelon supply
chains. Schmitt and Singh (2009) constructed a model that helps a large consumer products
company to understand its vulnerability to disruption risk and the potential impact to customer
service.

Using a simulation model also helps to test the impact of increases in variability, widely
known as the bullwhip effect phenomenon, on the forecast-driven multi-echelon system. Simchi-
Levi (2000) defines the bullwhip effect as the increase in demand variability as the demand
travels up in a supply chain. The bullwhip effect is caused by multiple factors, including order
batching and miscommunication of customers’ true demand throughout the supply chain.

Law (2003) provided a concise yet comprehensive guide on conducting a successful
simulation study. He discusses several key steps to developing a successful simulation study.

These key steps are:
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Formulate the problem. Simulation modeling typically starts with formulating the
problem, defining the overall objective of the study and listing the specific questions that
the study needs to address.

Construct a conceptual simulation model. Once the objective is clearly defined, modelers
can begin constructing the conceptual model. Modelers first need to collect information
to understand the system structure, and collect data to specify model parameters and
probability distributions. With a good understanding of the system structure and model
parameters, modelers can compile all the information to create a conceptual model.
Validate the conceptual model. Once a conceptual model is built, all parties involved
should validate the model by walking through the conceptual model to ensure it is an
accurate representation of the system.

Program the model. With the granted validity of the model, modelers can begin to
program the conceptual model in programming language or in a commercial simulation-
software product.

Validate the programmed model. While programming the model, modelers should
validate the model with the existing system and perform sensitivity analyses to gain
insights on the model factors

Conduct and analyze simulation experiments. This step is to determine the details on
how to run the simulations, such as simulation run length, length of the warm-up period,
and the number of independent runs. With all the steps completed, modelers can start

conducting simulation runs and analyze the results of each run.
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7. Document and present the simulation results. After an adequate number of simulation
runs has been conducted, modelers should document the model and the simulation results

in details and in a fashion that is easy to understand for the targeted audience.

2.4 Summary

Given the complex challenges that Chiquita’s Fresh Express supply chain faces, we determined
that a simulation approach is more suitable than an analytical approach for the purpose of this
research. We used Law’s approach as the reference guidelines for developing our simulation
model and describe that process in Chapter 3, and we document and present the simulation
results in Chapter 4. The details of the conceptual flow and user manual can be found in

Appendix A and B respectively.
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3 Methodology

In this chapter, we outline how we developed a simulation model using Arena Simulation
Software developed by Rockwell Automation to capture Chiquita’s Fresh Express multi-echelon
supply chain. We explain how we used the simulation model to better understand the impact of
perishability on costs and service levels. We include additional details on the conceptual flow of
simulation model in Appendix A and the user guide in Appendix B.

In order to develop a simulation model that replicates the Fresh Express supply chain, we
first investigated the standard practices, performance metrics, and challenges that exist in the
supply chain. We determined the assumptions that we must make in order to develop the model
and the data that we would use to run the simulation. After we gained a good understanding of
the key elements and data available in the Fresh Express supply chain, we began to build a
conceptual model to capture all the processes involved in this multi-echelon supply chain. Once
the conceptual model was built and validated, we transformed the conceptual model into a
simulation model in Arena. After we programmed the simulation model in Arena and created a
testing plan, we were ready to conduct simulation runs to investigate the optimal inventory
policy and the sensitivity of the costs.

We use several abbreviations throughout this chapter and subsequent chapters. The
complete list of abbreviations and their definitions can be found in Table C.1 of Appendix C.
Recall that due to confidentiality concerns, all the numbers used throughout the thesis are for

illustrative purposes only and are not necessarily indicative of actual performance at Chiquita.

3.1 Problem Formulation
Using Law’s approach as our reference guideline (Law, 2003), discussed in Section 2.3, we

started our research by interviewing the supply chain managers at Chiquita to understand the
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business processes, the material and information flows, and the challenges facing the Fresh
Express product line. As mentioned in the Introduction, we focused our analysis on Chiquita’s
plant in Georgia, ABC’s DC in Florida, and ABC’s retail stores served by the Florida DC. We
gathered information on the existing inventory replenishment process and the performance
metrics, namely the inventory shrinkage and the service levels, to understand the standard
practices of this supply chain. We then determined the necessary assumptions that we needed to
make to build our simulation model. We also mapped out what data is available and how the
data should be used in the model. The details of these steps are discussed in the following

sections.

3.1.1 Inventory Replenishment

At the end of each day, each retail store reviews its inventory position (IP) and places an order to
maintain an inventory level of two or three days of on-hand inventory. If inventory is available,
the DC typically will fulfill each order within 24 hours. The replenishment of the DC’s
inventory is managed directly by Chiquita through ABC’s Vendor Management Inventory (VMI)
system. Supply chain managers at Chiquita review the IP at ABC’s DC five times a week and
place appropriate orders to Chiquita’s plant. Presently, Chiquita reviews the DC’s IP every day
except on Wednesdays and Fridays. For the purpose of further discussions, we will refer the

activities that Chiquita performs (as a part of VMI) on behalf of the DC as the DC’s activities.

3.1.2 Inventory Shrinkage

All the Fresh Express products carry a production date stamp. After 14 days from the production
date, the product is considered no longer fresh for a consumer to purchase. At the end of each
day, each ABC store removes and disposes any products produced 14 days ago from the shelf or

the inventory and considers the loss as inventory shrinkage costs.

24



Additionally, each store also removes and disposes any products that age more quickly
than the expected 14-day of shelf life based on their appearance. The probability of a product
needing to be disposed prior to reaching the full 14 days increases as it ages. Based on the inputs
received from Chiquita supply chain managers and the results from our initial simulation runs,
we determined that an exponential growth probability best matches the shrinkage that Chiquita
experiences in reality. More information on this distribution is provided in Section 4.1.

The inventory shrinkage costs at the retail stores are absorbed by ABC itself, but high
inventory shrinkage costs could potentially damage the business relationship between ABC and
Chiquita. Currently, the total shrinkage at the retail stores is between 10 to 13% of the total
shipment volume from the DC to the retail stores, the goal is to reduce the shrinkage volume to
8.5%.

At the DC, ABC has mandated an aging inventory shrinkage policy, in which ABC does
not ship any products that have less than six days of shelf life remaining from the DC to the
stores. ABC removes and discards any products produced eight days ago from inventory, and it
charges the loss back to Chiquita. Thus both ABC and Chiquita share a common interest in
controlling the inventory levels in a way that the potential inventory shrinkages are minimized at

both the retail stores and the DC.

3.1.3 Service Levels

Although both Chiquita and ABC would like to minimize inventory shrinkage, they also need to
maintain sufficient inventory levels as both of them strive for high customer service levels. The
target average item fill rate (IFR) at the DC is 95%, which is calculated as the total demand

fulfilled by the DC over the total quantity requested by each retail store on a daily basis. Any
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unfulfilled demand at the DC is recorded against Chiquita’s performance, and any unfulfilled
demand at the retail store is considered lost sales.

Presently ABC uses an “In Stock or Out of Stock” binary metric to measure the service
levels at the retail stores. ABC considers an item at the store to be “In Stock™ when the store has
enough inventory to fulfill the daily average demand; otherwise, it is considered “Out of Stock”™.
For example, if 85 stores out of 100 stores have enough inventory to cover their daily demand for
an item, the service level for that item is 85%. However, for a store that does not have enough
inventory to cover its daily demand, the current “In Stock or Out of Stock” binary metric does
not capture the partial demand fulfillment by the store. After careful consideration and discussion
with Chiquita supply chain managers, we believe that an IFR would be a more appropriate metric
for measuring true service levels at the retail stores. Therefore we use an IFR metric in the
model and assume that Chiquita would still require a 95% IFR at the retail level.

Given the high demand volatility for packaged salads, the current forecasts generated by
each store and the DC each have a mean absolute percentage error of 25%. As a result, the DC
and the retail stores often have to carry excessive inventory in order to ensure a high customer
service level. The main challenge for the Fresh Express supply chain is how to balance the
tradeoff between potential inventory shrinkage costs, potential lost sales costs, and inventory
holding costs. In order to minimize these costs, Chiquita must understand how perishability

impacts the inventory levels and the dynamics between all the factors in the system.

3.1.4 Assumptions
In our model, we include two retail stores served by ABC’s DC in Florida. These two retail
stores could represent actual stores, or they could represent two separate demand streams

aggregated from multiple stores. We assume that the Chiquita plant does not have any raw
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material shortage or capacity constraints at the plant; in other words, Chiquita is always able to
produce and supply the quantity required by ABC’s DC. Hence, Chiquita’s production plant is
not part of our research.

Our model replicates ABC’s and Chiquita’s standard ordering practices, in which the DC
and the retail stores use a base-stock policy for replenishments. A base-stock policy implies a
periodic review policy, in which the DC and the retail stores each have an Order-Up-To-Level
(OUL) for each product. The DC places orders five times a week and the retail stores place
orders every period, where a period is one day.

Our model assumes the product demand to be stochastic and normally distributed with a
known mean and variance. We feel justified this assumption because the normal distribution is
commonly used in many models in the literature. Additionally, the demand used in the model
can represent an aggregation of multiple individual products and/or stores, and the central limit
theorem states that the mean sum of a large number of random variables will have a normal
distribution. Additionally, we assume that the demand at each retail store is independent from
each other.

We assume that a First-In-First-Out (FIFO) policy is followed for the inventory at the
retail stores and the DC. A FIFO policy implies that older products are sold first to reduce
possible shrinkage. Although at the retail stores certain consumers may pick younger products
available from the back of the shelf over older products displayed in front, such consumer
behavior is difficult to predict and too complicated to incorporate in the scope of this thesis. We
also assume that the DC treats all the retail stores equally and does not prioritize a particular

store over another.
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The transportation lead time from the DC to the retail stores is assumed to be constant at
one day (overnight), which means when the store places the order at the end of the day, if the
stock is available, the order will arrive at the store the next morning, in time to be available for
sale that day. The transportation lead time from the plant to the DC is assumed to be
deterministic and constant for each simulation. However, it is formulated as an input parameter
so that the model can test the sensitivity of the transportation lead time from the plant to the DC.

Recall that the production lead time at the plant is 4 days.

3.1.5 Information Flow and Input Calculations
Figure 3.1 below illustrates the information flow and the calculations conducted using the input

data specified by the user. We explain the logic below.

Retail Store 1 Chiquita/DC Retail Store 2

Daily Point of Sale Daily Point of Sale

At Retail Store At Retail Store

Find Mean & Find Mean &
tandard Deviation Standard Deviation

Daily Product Demand Aggregate Daily Product Daily Product Demand
by Consumers at Demand at Retail Stores by Consumers at
Retail Store Retail Store

Apply Forecast
Error (MAPE)

Apply Forecast Apply Forecast
Error (MAPE) Error (MAPE)

Daily Product Forecast Daily Product Forecast Daily Product Forecast
at Retail Stare atDC at Retail Store

|129%3 Ul uonena(ed

Add 2.5 day | TargetDays Add 6 day Order UpTo Add 2.5day | TargetDays
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Future Days Policy Future Days Policy Future Days Policy
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o Plant
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Figure 3.1: Information Flow and Input Calculations
We programmed Microsoft Excel to generate the random daily demands for each retail

store using the mean and standard deviation obtained from the Point-Of-Sale (POS) data. The
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random daily demand is used as the actual daily demand realized at each store. We then apply
the forecast error (mean absolute percentage error, MAPE) to this demand and errantly obtain the
daily demand forecast.

We create the daily demand forecast using a uniformly-distributed random multiplier.
We generate the multiplier using a minimum and maximum value range. Since the forecast
errors can be either positive or negative, the maximum value is two times the given MAPE, and
the minimum value is negative two times the given MAPE. Using Excel, uniformly-distributed
random numbers are generated between the minimum and maximum values. This means the
average of the multiplier is equal to zero but the average of the absolute value of the multiplier is
equal to the MAPE. This random number is multiplied by the daily demand, thus providing the
daily demand forecast. By measuring the forecast accuracy weighted across the total volume, we
verify if the given forecast error was correctly translated. Even though in our calculation we use
the daily demand to produce the demand forecast, this daily demand forecast is used in the model
as the forecasts generated by each store prior to the arrival of the actual daily demand.

The OUL for each retail store is determined by the target days of on-hand inventory. The
user inputs the target number of days of inventory, and then the actual daily OUL is calculated
by adding the demand forecast for that number of days forward. For example, if the inventory
policy at the retail store is 2.5 days of on-hand inventory, the OUL would be the sum of the
demand forecast for the next 2.5 days. Depending on the IP at the time of the review, each retail
store would place an individual order equal to the OUL minus the IP, or equal to zero if that
subtraction yields a negative value. The IP is the on-hand inventory level after satisfying

demand minus the shrinkage. Since the order placed at the end of the day would arrive the next
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morning, there is no shipment in transit needed to be included in calculating the IP for the retail
stores.

To calculate the daily demand forecast at the DC, we apply the forecast error to the
aggregated daily demand from the retail stores. The actual daily demand realized at the DC is
the aggregated total of individual orders from each retail store.

The OUL for the DC is determined using the same technique used to calculate the OUL
for the retail stores. The OUL for the DC is determined by the target days on-hand inventory at
the DC and the total lead time from placing the order to Chiquita’s plant to the delivery of the
shipment. For example, if the target on-hand inventory at the DC is one day and the lead time
for Chiquita to fulfill an order is five days, the OUL at the DC would be the sum of the demand
forecast for the next six days. Depending on the IP, the DC would place an order equal to the
OUL minus the IP, or again equal to zero if that subtraction yields a negative value. The IP for
the DC is the on-hand inventory level after satisfying demand, minus the shrinkage, plus the
shipments in transit to the DC.

In Figure 3.1, the numbers marked in red are input parameters that can be changed for
each simulation run. The input data is generated by a user in an Excel file and the simulation
model reads the data from this Excel file. The use of Excel file allows Chiquita to use the model
to simulate other multi-echelon Fresh Express supply chains by simply changing the input

parameters there.

3.2 Conceptual Model
The information captured during the Problem Formulation step was critical for us to understand
Chiquita’s supply chain system and decide the appropriate parameters, performance metrics, and

level of detail for the model. Next we developed a generic conceptual model that details the
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logic of the system and would be applicable to most other multi-echelon systems within

Chiquita.

3.2.1 Model Logic-Flow

We compiled the information captured during the interviews with Chiquita’s Fresh Express
supply chain managers and divided the processes into eight steps. Figure 3.2 provides a
summary of the eight steps in the conceptual flow of our simulation model and we detail the
logic for each step below. We explain more details of each step in Appendix A using additional

flow charts.

Step1 Step 2 Step3 Step4

Consumers
Purchase
Products at
Retail Stores

Retail Stores DCShips Retail Stores
Places Order Products to Receive
atDC Retail Stores Products

DCPlaces : i :

Orderto DCReceives Costand KPI Inventory
Production Products Assessment Aging
Plant

Step5 Step6 Step7 Step 8
Figure 3.2: Overview of Conceptual Flow
Step 1
Consumers purchase products at the retail stores on any given day, depleting the inventory using

a FIFO product policy. At the end of each day, the retail stores remove the perished products
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from their inventory. Since backorders are not allowed in the system, any unfulfilled consumer

demand at the retail stores is considered lost sales.

Step 2
The retail stores operate on a daily periodic-review policy with an OUL. At the end of the day,

each retail store checks its IP against the OUL and, if necessary, places an order to the DC.

Step 3

After aggregating the individual orders received from the two retail stores, the DC fulfills the
orders using a FIFO product policy for the inventory depletion on any given day. The order
fulfillment and inventory allocation for each retail store follows an order-splitting algorithm in
order to allocate material logically. The detail of this algorithm used in the model can be found in

Section A.1 of Appendix A.

Step 4
The products shipped from the DC are received by the retail stores the morning after the order is
placed. Since the maximum shelf life of a Fresh Express product is 14 days, in the simulation
model we created 14 virtual bins at the retail stores. Each bin contains Fresh Express products
with distinct age-groups. For example, Bin 1 contains products that are one day old at the retail
store, Bin 2 contains products that are two day old at the retail store, etc. Using the different
inventory age bins, we ensure the accurate measure of shelf life, appropriate inventory transfers,
and accurate calculation of shrinkage costs.

The bin age at the retail store does not include the transportation lead times; in other
words, the actual shelf life of the product is its bin age at the retail store plus the transportation

lead time from the plant to the DC and from the DC to the retail store. For example, if the DC
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has products that are 10 days old and it ships these products to the retail stores, we add that stock
to the appropriate bin 11 at the retail stores as the actual shelf life must consider the one day
transportation lead time from the DC to the retail store. This allows for flexibility of lead time
input parameters; the model structure does not have to change in order to test different shipment
lead times to the DC.

Each bin at the retail stores is assigned a shrinkage probability according to the true
product age, so that every day a percentage of products in each bin may be discarded. These

discarded products are unusable due to perishability.

Step 5
The DC periodically reviews its IP and creates an order to Chiquita’s plant if the IP at the DC is

less than its OUL, as mentioned in Section 3.1.1.

Step 6
The DC receives a shipment from the plant according to production and transportation lead
times. For example, if the total production and transportation lead time is five days, the DC will
receive the shipment from the plant in the morning of the fifth day after the day when the order
was placed. Using the same approach described for the retail stores, we created 14 virtual bins at
the DC in the simulation model. The model conducts the inventory transfer in the same manner
as was described for the retail stores in Step 4.

The model also provides flexibility for users to change the review schedule if needed. In
other words, instead of reviewing the IP at the DC every day except Wednesday and Friday, the

users may change the model to review the IP based on a different review schedule.
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Step 7

At the end of each day, relevant costs and Key Performance Indexes (KPIs), as listed below, are
captured and measured for each retail store and the DC. Lost Sales Cost is not considered at the
DC because ABC operates its DC as a cost center, not a profit center. The DC charges a fee for
products shipped to the retail stores, but the margin is only used to cover the warehousing and
shipping expenses and not considered a sales profit. Hence, any unfulfilled demand at the DC is
not charged a lost sales cost. However, as explained in Section 3.1.3, the DC does require that it
maintains an average IFR of 95%.

Relevant Costs:
e Holding Costs

e Shrinkage Costs
e Lost Sales Costs

e [tem Fill Rate
e Shrinkage Units
e Lost Sales Units
¢ Inventory Positions
¢ Inventory Levels
Different test scenarios are needed to compare these costs and KPIs, and to evaluate the

trade-offs between them. The objective is to find the parameters that result in the lowest total

relevant cost while satisfying the minimum IFR.

Step 8

At the end of each day, any inventory left at the retail stores and the DC ages by one day. In
other words, the product shelf life remaining is reduced by one day. In the model, we shuffle
inventory bins or transfer the inventory to the next bin to ensure accurate measure of product age

and associated shrinkage costs. For example, at the end of the day, products that are 3 days old
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will now become 4 days old; products that are 4 days old will now become 5 days old, etc.
Products that are 14 days old will no longer be considered fresh for consumers to purchase and
will be discarded as shrinkage.

Additionally, as mentioned in Section 3.1.2, some products may age more quickly than
the expected 14-day of shelf life. Thus a fraction of the products would be removed from the

inventory according to the shrinkage profile.

3.2.2 Validation

After we mapped out the eight steps in the process, we presented the conceptual model to
Chiquita’s supply chain managers who validated that the model accurately represents the Fresh
Express supply chain. We also validated the model flow with supply chain and simulation

experts that include faculty and students at MIT.

3.3 Model Programming
We programmed the conceptual model using Arena, a discrete-event systems simulation
software. We choose Arena because we have previous experience with the software and
Chiquita already has licenses to Arena. In addition, Arena integrates well with Microsoft Office;
the users can have Arena read and write from or to Excel spreadsheets, making Arena more user-
friendly for day-to-day business operations.

Figure 3.3 below shows the screen shots of our simulation model programmed in Arena.
The top section of the figure highlighted in red represents the logic for the retail stores. The
middle portion of the figure represents the logic for the DC, The section of the figure highlighted
in yellow represents the logic for the order creation process at the plant by the DC. Finally, the

bottom section of the figure represents the process in Arena to read the input parameters from
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and write the outputs into the Excel file. Please refer to Appendix A for the more details of

simulation model in Arena.

——
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Figure 3.3: Arena Model Screen Shot

3.4 Arena Model Verification and Validation
We verified and validated the Arena model to ensure that the model sufficiently matches reality

and performs according to the intended design. We verified the model by monitoring whether
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the model behaves as expected under different circumstances to ensure the conceptual model was
correctly translated into the Arena model. For example, we raised the inventory level at the
retails stores and subsequently saw higher shrinkage volumes and holding costs at the retail
stores.

We validated the programmed model with supply chain managers from Chiquita and
supply chain experts at the MIT. The experts were convinced that our programmed model
sufficiently matches with the reality of Chiquita’s Fresh Express supply chain system.
Additionally, we validated the model by comparing outputs from the simulation model with

historical performance metrics provided by Chiquita. We discuss the results in Chapter 4.

3.5 Simulation Testing

For our research, twenty independent simulation replications was deemed to be a sufficient
number for producing results with tight enough 95% confidence intervals for performance
metrics. The duration of each simulation run was 365 days, or one year. The system produced
stable results after the simulation ran for thirty days, thus we determined the warm-up period for
our model should be thirty days. For more details on the simulation run parameters, please refer
to Appendix B.

We developed a testing plan containing different scenarios specifically to answer the
three key questions described in Section 1.2. Our testing plan focused on finding the optimal
inventory policies for the retail stores and the DC. Once we determined the inventory policies
that resulted in the lowest total relevant costs while meeting the minimum IFR, we tested the
sensitivity of the system to different percentage of forecasting errors and different transportation

lead times from the plant to the DC.
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We used the aggregated demands from one of Fresh Express’ main product families to
conduct all our simulation runs based on a suggestion by Chiquita’s supply chain managers. The
results generated from using this product family should provide a good overall representation of

the whole Fresh Express product lines.
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4 Results

In this chapter we discuss the results of our simulation runs and the interpretation of these
results. Our objective was to find an optimal inventory policy that results in the lowest total
relevant cost while satisfying the minimum IFR required at the retail stores and the DC. We also
tested the sensitivity of the system to better understand the potential impact of some of the input
parameters may have on the system under the optimal policy.

In Section 4.1 we describe the input parameters and the base scenario details. In Section
4.2 we discuss the simulation results under different inventory levels at the retail stores and at the
DC and determine the optimal inventory solution. In Section 4.3 we test the sensitivity of the
system under the optimal policy to the forecast errors, and in Section 4.4 we test the sensitivity
of the system under the optimal policy to the transportation lead time from the plant to the DC.
In Appendix D, we present additional results of the sensitivity analysis such as cost break-down

at each echelon.

4.1 Input Parameters and Base Scenario
Table 4.1 lists the retail stores’ input parameters and their definitions. Each of these input

parameters is entered into the Excel spreadsheet by the user.
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Table 4.1: Retail Stores Input Parameter Definitions

Input Parameter

Description

Demand Mean

Demand mean for product family

Demand Standard Dewviation

Demand standard deviation for product family

Target days on-hand (in days)

Inventory policy/target days on-hand inventory at the retail store

Forecast Error (MAPE)

Mean absolute percentage error

Purchase Cost (per unit)

Average per unit cost for product family

Lost Sales Cost (per unit)

Average retail price per unit for product family

Inventory Holding Charge (per year)

Inventory holding cost per unit per year at the retail store

Shrinkage Cost (per unit)

Average per unit cost for product family

Order Cost (per order)

Cost to place an order to the DC

Shrinkage Probability on Day 14

% of inventory needing to be discarded at the end of day 14

Shrinkage Probability on Day 13

% of inventory needing to be discarded at the end of day 13

Shrinkage Probability on Day 12

% of inventory needing to be discarded at the end of day 12

Shrinkage Probability on Day 11

% of inventory needing to be discarded at the end of day 11

Shrinkage Probability on Day 10

% of inventory needing to be discarded at the end of day 10

Shrinkage Probability on Day 9

% of inventory needing to be discarded at the end of day 9

Shrinkage Probability on Day 8

% of inventory needing to be discarded at the end of day 8

Shrinkage Probability on Day 7

% of inventory needing to be discarded at the end of day 7

Shrinkage Probability on Day 6

% of inventory needing to be discarded at the end of day 6

Shrinkage Probability on Day 5

% of inventory needing to be discarded at the end of day 5

Shrinkage Probability on Day 4

% of inventory needing to be discarded at the end of day 4

Shrinkage Probability on Day 3

% of inventory needing to be discarded at the end of day 3

Shrinkage Probability on Day 2

% of inventory needing to be discarded at the end of day 2

Shrinkage Probability on Day 1

% of inventory needing to be discarded at the end of day 1

Table 4.2 lists the retail stores’ input parameter values for the base scenario. The base
scenario indicates the actual values presently observed or used in Chiquita’s Fresh Express
supply chain. As explained in Section 3.5, for our scenarios we use data from one of Chiquita’s
main product family, so the parameters are defined in Table 4.2 in terms of that product family.
We conducted the simulation using these actual values, however, in Table 4.2, the pricing and
cost information has been manipulated in the interest of confidentiality concerns. The existing
inventory policy at the retail stores is to maintain 2.5 days of on-hand inventory. We choose one
store with high demand volume and another store with low demand volume to capture the

dynamics of different types of demands in the multi-echelon system. Retail Store 1 represents
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the store with the high demand volume and Retail Store 2 represents the store with the low

demand volume as Retail Store 1 has an average demand approximately two times that of Retail

Store 2.

’ Base Scenario Parameter Values

Table 4.2: Retail Sto

St [
Demand Mean 84 43
Demand Standard Deviation 29.2 16.4
Target days on-hand (in days) 2.5 2.5
Forecast Error (MAPE) 25% 25%
Purchase Cost (per unit) 4.88 4.88
Lost Sales Cost (per unit) 8.70 8.70
Inventory Holding Charge (per year) 12% 12%
Shrinkage Cost (per unit) 4.88 4.88
Order Cost (per order) 77.56 77.56
Shrinkage Probability on Day 14 100.0% 100.0%
Shrinkage Probability on Day 13 77.6% 77.6%
Shrinkage Probability on Day 12 60.2% 60.2%
Shrinkage Probability on Day 11 46.7% 46.7%
Shrinkage Probability on Day 10 36.3% 36.3%
Shrinkage Probability on Day 9 28.1% 28.1%
Shrinkage Probability on Day 8 21.8% 21.8%
Shrinkage Probability on Day 7 17.0% 17.0%
Shrinkage Probability on Day 6 13.2% 13.2%
Shrinkage Probability on Day 5 10.2% 10.2%
Shrinkage Probability on Day 4 7.9% 7.9%
Shrinkage Probability on Day 3 6.1% 6.1%
Shrinkage Probability on Day 2 4.8% 4.8%
Shrinkage Probability on Day 1 3.7% 3.7%

As discussed in Section 3.1.2, the shrinkage probabilities at the retail stores are best fit by
an exponential growth model. This means that even for products that are less than 14 days old,
an exponentially increasing fraction of inventory is discarded at the end of each day due to
perishability. The exponentially growing shrinkage probabilities were obtained using Excel

Solver to find the parameter that should result in 10-13% shrinkage, which is in the range of the
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shrinkage percentage experienced at the retail stores in reality. Equation 4.1 presents the formula
for X, which is the shrinkage probability for a given age. The parameter a is determined in terms
of k and the maximum value for ¢, the product shelf life, according to Equation 4.3. Thus Excel
Solver finds only one unknown parameter, £. In our case, the maximum product shelf life is 14

days, resulting in 14 shrinkage probabilities.

X=aeorinX=kt+Ina (Equation 4.1)
In (Maximum Shrinkage Probabili —In(Minimum Shrinkage Probabili .

k= ( : maximurtny )t—mi(nimumut : - (Equatlon 4'2)

__ Maximum Shrinkage Probability (Equation 4 3)

e”(k* maximum t)
where
t is the current age/time interval for the product (in our model, the minimum ¢ =1 and
maximum 7= 14)
k is the growth constant determined according to Equation 4.2
a is determined according to Equation 4.3 and is the initial value of X
The maximum shrinkage probability is 100%. Seeking a 12% total shrinkage volume,
using Excel Solver, we obtained 4=0.2535 and 4=0.0287, which produce the appropriate
exponentially growing shrinkage probabilities from day 1 to day 14. Additionally, ABC’s
mandated inventory shrinkage policy at the retail stores is to discard 100% of any product that
are 14 days old regardless the appearance of the product. Therefore, the value of parameter &
obtained by Excel Solver is such that we have an exponentially growing shrinkage profile from
day 1 to day 14 and we have 100% fixed shrinkage probability at day 14. The actual shrinkage
probabilities obtained and used in the model are listed in Table 4.2.
We ran the simulation for the base scenario with these shrinkage probabilities and
validated that these probabilities indeed produce aggregated total shrinkage volume at the retail

stores within the valid range of 10% to 13%. Table 4.3 below indicates the observed and

validated shrinkage volume for each store and their aggregate total.
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Table 4.3: Retail Stores Base Scenario Shrinkage Volumes

Description Retail Store 1| Retail Store 2 Total
Awerage Shipment to Store 111.34 58.92 170.26
Awerage Shrinkage Volume 13.09 7.77 20.86

Shrinkage % 11.76% 13.19% 12.25%

Table 4.4 list the DC’s input parameters and definitions. Like the retailer inputs, these

input parameters are also entered into the Excel sheet by the user.

Table 4.4: DC Input Parameter Definitions

Input Parameter

Description

Transportation lead time

Transportation lead time from the plant to the DC

Production lead time

Order processing and production lead time at the plant

Total Customer Lead Time (in days)

Transportation + Production lead time

Target days on-hand (in days)

Inventory policy/target days on-hand inventory at the retail store

Forecast Error (MAPE)

Mean absolute percentage error

Inventory Holding Charge (per year)

Inventory holding cost per unit per year at the DC

Purchase Cost (per unit)

DC's average per unit cost for product family

Lost Sales Cost (per unit)

Unfulfilled orders are not considered as lost sales at the DC

Shrinkage Cost (per unit)

Chiquita's average per unit cost to Chiquita for product family

Order Cost (per order)

Cost to place an order to the plant

Shrinkage Probability on Day 14

% of inventory needing to be discarded at the end of day 14

Shrinkage Probability on Day 13

% of inventory needing to be discarded at the end of day 13

Shrinkage Probability on Day 12

% of inventory needing to be discarded at the end of day 12

Shrinkage Probability on Day 11

% of inventory needing to be discarded at the end of day 11

Shrinkage Probability on Day 10

% of inventory needing to be discarded at the end of day 10

Shrinkage Probability on Day 9

% of inventory needing to be discarded at the end of day 9

Shrinkage Probability on Day 8

% of inventory needing to be discarded at the end of day 8

Shrinkage Probability on Day 7

% of inventory needing to be discarded at the end of day 7

Shrinkage Probability on Day 6

% of inventory needing to be discarded at the end of day 6

Shrinkage Probability on Day 5

% of inventory needing to be discarded at the end of day 5

Shrinkage Probability on Day 4

% of inventory needing to be discarded at the end of day 4

Shrinkage Probability on Day 3

% of inventory needing to be discarded at the end of day 3

Shrinkage Probability on Day 2

% of inventory needing to be discarded at the end of day 2

Shrinkage Probability on Day 1

% of inventory needing to be discarded at the end of day 1

Table 4.5 lists the DC’s input parameter values for the base scenario. In Table 4.5, the
pricing and cost information has been manipulated in the interest of confidentiality concerns as
in case of the retail stores. However, we conducted the simulation using actual numbers for base

scenario. The existing inventory policy at the DC is to maintain 1 day of on-hand inventory.
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However, since the lead time from when the order is placed to Chiquita’s plant until the order is
delivered to the DC is five days, Chiquita must maintain a total six day worth of inventory in the
pipeline. The DC does not check the appearance of the products, thus the shrinkage probability
at the DC does not follow the exponentially growing shrinkage probability. The mandated
inventory shrinkage policy at the DC is to discard 100% of any product that have less than six
days of shelf life remaining regardless the appearance of the product. Therefore, any product
that has less than six days of shelf life remaining has a shrinkage probability of 100%. The lost
sales cost per unit is automatically zero at the DC, so it is not listed in table below.

Table 4.5: DC Base Scenario Parameter Values

Input
Transportation lead time (in days) 1
Production lead time (in days) 4
Total Customer Lead Time (in days, calculated by Excel) 5
Target days on-hand (in days) 1
Forecast Error (MAPE) 25%
Inventory Holding Charge (per year) 12%
Purchase Cost (per unit) 4.74
Shrinkage Cost (per unit) 4.74
Order Cost (per order) 77.56
Shrinkage Probability on Day 14 100%
Shrinkage Probability on Day 13 100%
Shrinkage Probability on Day 12 100%
Shrinkage Probability on Day 11 100%
Shrinkage Probability on Day 10 100%
Shrinkage Probability on Day 9 100%
Shrinkage Probability on Day 8 100%
Shrinkage Probability on Day 7 0%
Shrinkage Probability on Day 6 0%
Shrinkage Probability on Day 5 0%
Shrinkage Probability on Day 4 0%
Shrinkage Probability on Day 3 0%
Shrinkage Probability on Day 2 0%
Shrinkage Probability on Day 1 0%
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4.2 Optimal Inventory Levels

We first determined the reasonable ranges of inventory levels at the retail stores and the DC
separately. We then performed simulation tests by varying both target inventory levels
simultaneously to determine overall optimal multi-echelon inventory levels. An optimal solution
means the inventory levels resulted in the lowest total relevant costs for the system, which is the
sum of the inventory holding costs, the lost sales costs, and the shrinkage costs, while satisfying

the minimum IFR (95%) at the DC.

4.2.1 Inventory at the Retail Stores
We first ran the simulation with the base scenario inputs from Tables 4.2 and 4.5, then we held
the DC inventory level constant and changed the days of on-hand inventory levels at the retail
stores to understand at which values the inventory policy would result in reasonable costs yet
still satisfy the minimum requirement of 95% IFR. We tested the target days on hand inventory
levels at the retail stores in the increments of 2 integer values between Y2 to 5 days. We tested
the increments of 2 integer values because those are the smallest possible increments that ABC
operates with, and we set the minimum at 'z of a day because the store would not accept
complete stock-outs and always need some inventory on hand to satisfy demand.

Table 4.6 presents the total relevant costs at different values of target days on-hand
inventory and Figure 4.1 and 4.2 graphs the results. We can see that if we only consider the
retail stores, 1.5 days of on-hand inventory results the lowest cost and still satisfies the

requirement of 95% IFR.
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Table 4.6: Inventory Targets at the Retail Stores

Target OnHand Days at Retail Store| 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

DCIFR| 991 996/ 984 95.3| 917 85.9 80.5| 73.3| 66.1 58.2

DCIL| 460.8| 371.6] 285.0] 252.4| 227.6] 2059 185.7| 171.3] 159.8] 155.3

DCTotalRelevantCost| $144.76| $84.64| $60.06| $52.85| $47.28| $42.58| $38.25| $35.21| $32.80| $31.89

Retail1TotalRelevantCost| $130.44| $60.47| $26.99| $37.37| $50.64| $62.12| $72.27| $80.55| $87.57| $91.17

Retail2TotalRelevantCost| $67.17| $32.42| $15.05| $20.85| $28.36] $35.73| $42.56| $49.08| $55.13| $60.95

RetailllFR 56.6 85.2 98.1 99.4 99.5 99.5 99.7 99.6 99.7 99.7

Retail 1IL 3.2 27.8 53.5 89.3] 123.9] 153.5| 181.7] 204.0] 223.4| 234.1

Retail2IFR 57.6 85.5 98.3 99.7 99.9 99.9 99.9] 100.0f 100.0f 100.0

Retail2IL 2.0 15.2 29.4 49.1 68.5 87.6] 105.7] 123.0f 139.2[ 154.3

SystemTotalRelevantCost| $342.37 $126.28| $140.43| $153.08| $164.84| $175.51( $184.02
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Figure 4.1: Effects of Inventory Targets at the Retail Stores on [FR
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Figure 4.2: Effects of Inventory Targets at the Retail Stores on Cost
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Figure 4.1 shows the effect of target on-hand inventory level at the retail stores on the
IFR at each echelon. As the target on-hand inventory at the retail stores increases, the IFRs at
the retail stores increases and the IFR at the DC decreases. Our analysis indicates that the IFR at
the DC decreases with increasing target on-hand inventory levels at the retail stores because the
stores order farther into the future with less accuracy which means the DC’s ability to fill orders
accurately is reduced. The shape of curve suggests that the [FRs at the retail stores remain above
95% for target on-hand days that are greater than 1.5 when the base on-hand inventory target of 1
day is used at the DC.

Considering Figure 4.2, we observe a clearly convex curve with the optimal solution
achieved when the target on-hand inventory is equal to 1.5 days. For the target on-hand days
less than 1.5 days, the total relevant cost for the system is higher due to higher lost sales costs at
the retail stores and higher inventory holding costs at the DC. For the target on-hand days
greater than 1.5, the total relevant cost for the system increases as a result of the increases of the
inventory holding costs and the shrinkage costs.

Based on the costs and IFRs observed, we determined that the reasonable range for target
on-hand inventory at the retail stores is between %2 to 4.5 days. This is because for target on-
hand days greater than 4.5, the IFRs at the retail store remain relatively constant but the total

relevant cost for retail stores and the system increases.

4.2.2 Inventory at the DC

Using the same approach described for the retails stores, we changed only the days of on-hand
inventory at the DC and held the retailer levels constant at their base value (2.5 days). We tested
the target inventory levels at the DC in the increments of %2 integer values between 0 to 5 days.

Table 4.7 presents the total relevant costs at different values of target days on-hand inventory at
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the DC. Figures 4.3 and 4.4 graph the effects of inventory targets at the DC on the IFRs and the

costs.
Table 4.7: Inventory Targets at the DC
Target OnHand Days at DC 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
DCIFR 72.2| 835 91.7 95.9 97.9 98.9 99.5 99.6 99.7 99.8 99.9
DCIL| 1382 1723 227.6 280.9 340.6 397.2 456.0 511.3 568.5 622.0| 675.8|
DCTotalRelevantCost| $28.39] $35.49| $47.28| $58.54| $71.46| $83.96] $97.32| $110.32| $124.92| $138.24| $153.00
RetailiTotalRelevantCost| $48.60| $46.33| $50.64| $54.20| $57.87| $60.63| $63.28| $65.50| $67.65| $69.80| $71.81
Retail2TotalRelevantCost| $24.01| $25.72| $28.36| $30.26] $31.93| $33.38| $34.77| $35.95( $37.08]| $38.24| $39.30
Retail1IFR 943 983 99.5 99.9 99.9 99.9 100.0 100.0 100.0 100.0|  100.0|
Retail1IL 87.8| 109.7 123.9 129.4 131.0 131.0 130.2 129.0 127.5 126.2| 124.9
Retail2IFR 98.5| 996 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0|  100.0
Retail2IL 589 652 68.5 69.5 69.4 68.9 68.0 67.2 66.4 65.6 64.8|
SystemTotalRelevantCost $107.54| $126.28| $143.00| $161.26| $177.97| $195.37| $211.77| $229.65 $246.28| $264.11|
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Figure 4.4: Effects of Inventory Targets at the DC on Cost
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The IFRs at the DC and the retail stores both increase as the target on-hand inventory at
the DC increases. The shape of curve suggests that the IFR at the DC remains above 95% for
targets of on-hand days that are greater than 1.5 days.

The cost curves for both the DC and the system are increasing with the lowest-cost
solution achieved when the target on-hand inventory at the DC is equal to 0 days. However, this
lowest-cost solution is not feasible because it does not satisfy the constraint of a minimum 95%
IFR at the DC. For the target on-hand days greater than 0, the total relevant cost for the system
increases as a result of the increases of the inventory holding costs and the shrinkage costs at
both the DC and the retail stores. As the target days on-hand inventory increases, the DC holds
more inventory of an older age, which is then sent to the retail stores resulting in higher
shrinkage costs at the retail stores.

Based on the costs and IFRs observed, we determined that the reasonable range for target
on-hand inventory at the DC is between 0 to 4.5 days. This is because for target on-hand days
greater than 4.5, the IFR at the DC remains relatively constant but the total relevant cost for the
DC and the system shows an increasing trend. The major cost contribution comes from the

increasing inventory holding cost at the DC.

4.2.3 Optimal Inventory at the Retail Stores and the DC

Although our simulation runs described in Sections 4.2.1 and 4.2.2 provide the optimal inventory
policies at the retail stores and at the DC separately, these policies fail to consider the potential
impact that the inventory levels have on each other. In order to find the global optimal inventory
policy for the multi-echelon system, we must consider different combination of retail stores’ and
DC’s inventory policies. As explained in Sections 4.2.1 and 4.2.2, we used the individual

echelon optimization results to narrow down the number of possible combinations. We
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conducted simulation testing to seek the combination of inventory policies at the retail store and
the DC that would result in the lowest total relevant cost for the system while still meeting the
minimum 95% IFR required at the DC. Table 4.8 presents the total relevant costs at different
values of target days on-hand inventory at the retail stores and the DC, with feasible solutions
(those with IFRs greater than 95% at all echelons) highlighted in green. Table 4.9 presents the
associated IFR at the DC. The base policy currently used by Chiquita is highlighted in red for
these tables and all that follow. The results suggest that the optimal solution is for the retail
stores and the DC to have target on-hand inventory levels of 1.5 days and 0.5 days, respectively.
This yields the lowest total relevant costs while still having an IFR at the DC greater than 95%.

Table 4.8: Total Relevant Cost for the System
Retail Stores
Target OnHand Days| 0.5 1 1.5 2 2.5 3 35 4 4.5
o| $305.15| $144.83] $87.47| $92.11| $101.09] $110.93| $118.47| $125.32] $131.96
05| $321.63] $158.82] $87.51| $95.19] $107.54| $119.73| $129.84] $138.12] $145.11
1.0| $342.37] $177.53] $102.10] $111.07| $126.28] $140.43] $153.08| $164.84| $175.51
1.5| $359.43| $194.27| $116.96] $126.57| $143.09] $159.22| $174.40| $188.10[ $201.55
2.0| $380.02] $213.69] $134.29| $144.29| $161.26] $178.83[ $195.41| $210.52| $225.36

DE 2.5 $397.53] $231.07| $149.78] $160.05| $177.97| $196.38| $214.01[ $230.66| $246.95
3.0] $418.13| $251.11| $167.81| $177.44| $195.37| $215.17 $232.95| $251.07| $267.95
35| $435.50] $268.99] $184.18] $193.92] $211.77| $231.65| $250.54| $269.66| $287.15
40| $455.81] $289.64| $203.10] $211.88| $229.65| $249.48| $268.22| $288.36| $305.88
45| $474.11] $307.66| $220.06] $228.70| $246.28| $265.93| $284.97| $305.50( $323.17

Table 4.9: Item Fill Rate at the DC
Retail Stores
Target OnHand Days| 0.5 1 15 2 2.5 3 3.5 4 45
0| 98.9 98.4 89.0 80.4 72.2 63.2 53.9 446 36.8
0.5] 99.2 99.5 95.2 89.4 83.5 75.6 68.3 59.2 50.6
1.0 99.1 99.6 08.4 95.3 91.7 85.9 80.5 73.3 66.1
1.5| 99.4 99.6 99.3 97.7 95.9 92.4 88.5 82.9 71.5

DC 2.0 99.5 99.7 99.5 98.8 97.9 95.9 93.3 89.2 84.9
2.5 99.7 99.8 99.7 99.3 98.9 97.8 96.3 93.6 90.8
3.0] 99.7 99.8 99.8 99.5 99.5 98.9 98.0 96.4 94.5
3.5 99.9 99.9 99.9 99.6 99.6 99.3 98.9 98.0 97.0
40| 999 99.9 99.9 99.7 99.7 99.5 99.4 98.9 98.2
45 999 100.0 99.9 99.8 99.8 99.7 99.6 99.4 98.9

We observe that the total relevant cost for the system increases in general with respect to

combination of higher target on-hand days at both the retail stores and the DC. This is because

50



the inventory holding costs and shrinkage costs for the system increase while the lost sales costs
decrease. The results for the optimal solution are highlighted in blue for all tables.

Table 4.9 also indicates other feasible solutions (cells marked in green) with more than
95% IFR at the DC, but these solutions do not yield the lowest total relevant cost for the system.
Additionally, Table 4.9 indicates that at the current base policy, only a 91.7% IFR is achieved by
the DC. This is consistent with current observations by Chiquita that their IFR values at the DC
are not satisfactory.

Tables 4.10 and 4.11 indicate the IFRs at each retail store for different target on-hand
levels. We observe that except for the combinations with cells marked in green (which indicate
the feasible solution), the IFR at the retail stores deteriorates below 95%. Retail Store 2 has a
higher IFR for lower values for target days on-hand inventory at the DC. This may be due to the
fact that its demand is half that of Retail Store 1 and thus a larger proportion of its orders may be
satisfied in full by the DC. Clearly, the target on-hand inventory policy of less than 1.5 days at

the retail stores results in the higher lost sales cost for the system increasing the total relevant

cost.
Table 4.10: Item Fill Rate at Retail Store 1
Retail Stores
[ Target OnHand Days| 0.5 1 15 2 2.5 3 3.5 4 4.5

o| 56.4 84.6 93.2 94.0 94.3 94.2 94.3 93.4 92.3

0.5 566 | 85.3 97.1 98.1 98.3 98.2 98.5 98.5 98.3

1.0] 56.6 85.2 98.1 99.4 99.5 99.5 99.7 99.6 99.7

15 56.8 85.1 98.3 99.7 99.9 99.9 99.9 99.9 99.9

- 2.0 56.8 84.9 98.4 99.8 99.9 99.9 100.0 100.0 100.0
25| 56.9 85.0 98.4 99.9 99.9 100.0 100.0 100.0 100.0

3.0 56.9 84.9 98.4 99.9 100.0 100.0 100.0 100.0 100.0

35| 57.0 84.9 98.4 99.9 100.0 100.0 100.0 100.0 100.0

4.0[ 56.9 84.8 98.4 100.0 100.0 100.0 100.0 100.0 100.0

45| 56.9 84.8 98.4 99.9 100.0 100.0 100.0 100.0 100.0
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Table 4.11: Item Fill Rate at Retail Store 2

Retail Stores
Target OnHand Days| 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0] 576 85.6 96.1 98.0 98.5 98.9 99.0 99.3 99.6

0.5| 57.7 85.7 98.0 99.4 99.6 99.7 99.8 99.8 99.9

1.0 576 85.5 98.3 99.7 99.9 99.9 99.9 100.0 100.0

1.5| 57.8 85.3 98.4 99.9 99.9 100.0 100.0 100.0 100.0

2.0 57.8 85.2 98.3 99.9 100.0 100.0 100.0 100.0 100.0

L 25| 57.9 85.2 98.4 99.9 100.0 100.0 100.0 100.0 100.0

3.0 57.9 85.1 98.4 100.0 100.0 100.0 100.0 100.0 100.0

3.5 57.9 85.0 98.4 100.0 100.0 100.0 100.0 100.0 100.0

4.0 579 84.9 98.3 100.0 100.0 100.0 100.0 100.0 100.0

45| 57.8 84.9 98.3 100.0 100.0 100.0 100.0 100.0 100.0

Table 4.12 indicates the retail stores’ contribution to the total relevant cost of the system.
We can see that for the cells marked in yellow, the retail stores have a bigger impact than the
impact that DC has on the total relevant costs for the system. For these combinations, the major
cost contribution comes from the higher inventory holding and shrinkage costs at the retail stores
when each retail store’s target on-hand inventory is high, or from lost sales costs when each
retail store’s target on-hand inventory is too low. The shrinkage costs at the retail stores become
comparable to or even greater than the inventory holding costs for the combination of higher
target on-hand days at both the retail stores and the DC. This holds true especially for

combinations with target on-hand inventory greater than 3 days at the retail stores and 2 days at

the DC.
Table 4.12: Retail Stores’ Contribution to Total Relevant Cost for the System
Retail Stores
Target OnHand Days| 0.5 1 1.5 2 2.5 3 35 4 4.5
0| 65% 63% 59% 66% 72% 76% 78% 79% 80%
0.5 61% 57% 48% 58% 67% 73% 77% 79% 81%
1.0] 58% 52% 41% 52% 63% 70% 75% 79% 81%
1.5| 55% 49% 37% 48% 59% 67% 73% 77% 81%
DC 2.0l 52% 45% 34% 45% 56% 64% 70% 75% 79%

2.5| 50% 42% 31% 42% 53% 61% 68% 73% 7%

3.0 47% 39% 29% 40% 50% 59% 65% 70% 75%

3.5 45% 37% 27% 37% 48% 56% 63% 68% 73%

4.0] 43% 34% 25% 35% 46% 54% 61% 66% 71%

4.5| 42% 33% 24% 34% 44% 52% 59% 64% 69%
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Table 4.13 indicates how the percentage of the shrinkage volume at the retail stores
increases with respect to each combination of target on-hand days at the retail stores and the DC.
The shrinkage volume for the optimal policy is 4.81% and for the base policy is 12.25%. The
4.81% of shrinkage volume under the optimal policy meets the goal of having shrinkage volume
less than 8.5%. As the target days on-hand inventory at the retail stores and/or the DC increases,
we observe an increasing trend in the shrinkage volume. For the combinations with target on-
hand inventory greater than 3 days at the retail stores and 2 days at the DC, shrinkage volume
ranges between 20 and 36%.

Table 4.13: Percentage of the Shrinkage Volume at the Retail Stores

Retail Stores

Target OnHand Days| 0.5 1 15 2 2.5 3 3.5 4 45

0| 1.38% | 3.24% [ 3.91% 5.79% 7.44% 8.29% 8.93% 8.77% 8.84%

0.5| 1.46% | 3.76% | 4.81% 7.44% 9.81% | 11.03% | 12.40% | 12.51% | 12.61%

1.0 1.48% | 4.22% | 571% 9.07% | 12.25% | 14.05% | 16.04% | 16.66% | 17.47%

1.5 1.55% | 4.65% 6.42% | 10.37% | 14.11% | 16.42% | 19.02% | 20.18% | 21.79%

20| 1.59% | 5.00% | 7.13% | 11.50% | 15.70% | 18.39% | 21.45% | 23.03% | 25.03%

25 1.66% | 534% | 7.76% | 12.46% | 16.98% | 19.94% | 23.51% | 25.34% | 27.81%

3.0 1.68% | 5.62% | 837% | 13.43% | 18.24% | 21.43% | 25.21% | 27.45% | 30.21%

35 1.73% | 593% | 891% | 14.26% | 19.31% | 22.64% | 26.69% | 29.14% | 32.11%

40| 1.76% | 6.14% | 9.45% | 15.07% | 20.35% | 23.85% | 28.04% | 30.64% | 33.72%

45| 1.87% | 6.45% | 9.96% | 15.83% | 21.31% | 24.93% | 29.20% | 31.91% | 35.12%

Tables 4.14 through 4.16 indicate the break-down of total relevant costs for the system
across the inventory holding costs, the shrinkage costs and the lost sales costs separately. This
analysis helps us to understand how the three costs are influencing the total relevant costs of the

system for each combination of target on-hand days of inventory.
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Table 4.14: Holding Cost for the System

Retail Stores
| Target OnHand Days| 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0 $77.1 $60.1 $50.3 $54.4 $59.3 $64.5 $68.8 $71.7 $74.0
0.5 $86.2 $72.5 $61.5 $66.6 $72.3 $78.0 $83.3 $87.7 $91.2
1.0 $95.6 $85.3 $76.0 $81.0 $87.3 $93.2 $98.8 $104.2 $109.4
1.5] $104.2 $96.2 $88.3 $93.4 $99.6 $105.7 $111.7 $117.5 $123.3
DC 2.0] $113.1 $107.0 $101.0 $106.0 $112.2 $118.3 $124.4 $130.3 $136.2
25| $121.8 $117.2 $112.3 $117.4 $123.7 $129.7 $136.0 $141.7 $147.9
3.0 $130.7 $127.4 $123.9 $129.0 $135.4 $141.7 $147.7 $153.6 $159.5
3.5 $139.3 $136.9 $134.5 $140.0 $146.4 $152.3 $158.6 $164.7 $170.5
40| $148.4 $146.6 $145.3 $151.1 $157.6 $163.5 $169.7 $175.7 $181.3
45| $157.2 $156.2 $155.5 $161.5 $168.1 $174.0 $180.2 $186.2 $191.7
Table 4.15: Shrinkage Cost for the System
Retail Stores
Target OnHand Days| 0.5 1 15 2 2.5 3 3.5 4 4.5
0 $32.8 $10.8 $11.1 $16.9 $22.6 $27.2 $30.8 $32.5 $33.8
0.5 $40.9 $14.5 $14.2 $22.0 $29.6 $35.7 $41.7 $45.3 $48.2)
1.0 $52.2 $19.9 $18.2 $27.9 $37.3 $45.5 $53.1 $59.4 $64.9
1.5 $61.1 $25.1 $21.7 $32.4 $43.1 $53.2 $62.5 $70.4 $78.1
DC 2.0 $72.9 $33.2 $26.2 $37.5 $48.8 $60.4 $70.9 $80.1 $89.2
2.5 $82.1 $40.5 $30.6 $42.2 $54.0 $66.6 $78.0 $88.9 $99.0
3.0 $93.8 $50.1 $37.0 $48.1 $59.8 $73.4 $85.2 $97.5 $108.4
3.5| $102.7 $58.1 $43.0 $53.7 $65.3 $79.2 $91.9 $105.0 $116.7
4.0] $113.9 $68.8 $50.9 $60.6 $72.1 $86.0 $98.5 $112.6 $124.5
4.5 $123.2 $76.9 $57.7 $67.1 $78.1 $91.9 $104.8 $119.3 $131.5
Table 4.16: Lost Sales Cost for the System
Retail Stores
Target OnHand Days| 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0| $195.3 $73.9 $26.1 $20.8 $19.1 $19.2 $18.9 $21.2 $24.2
0.5 $194.5 $71.8 $11.8 $6.6 $5.6 $6.0 $4.9 $5.1 $5.8
1.0/ $194.5 $72.3 $7.9 $2.1 $1.7 $1.8 $1.1 $1.2 $1.2
1.5 $194.1 $72.9 $7.0 $0.8 $0.4 $0.4 $0.2 $0.2 $0.2
pe 2.0 $194.0 $73.5 $7.0 $0.7 $0.3 $0.2 $0.1 $0.1 $0.0
2.5| $193.6 $73.4 $6.9 $0.4 $0.2 $0.1 $0.0 $0.1 $0.0
3.0 $193.6 $73.7 $6.8 $0.3 $0.2 $0.1 $0.1 $0.0 $0.0
3.5| $193.5 $73.9 $6.8 $0.2 $0.1 $0.1 $0.1 $0.0 $0.0
4.0 $193.6 $74.3 $6.9 $0.2 $0.0 $0.0 $0.0 $0.0 $0.0
45| $193.7 $74.6 $6.9 $0.2 $0.0 $0.0 $0.0 $0.0 $0.0

4.2.4 Comparison of Base and Optimal Solutions

In Tables 4.17 and 4.18 we compare the statistics for the KPI's for the base policy and the

optimal policy. We ran the simulation for twenty independent replications or iterations to obtain

reliable results. An explanation for the content of the columns is as follows:
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1il.

iv.

vi.

Average: This value indicates the average for the output variable over all twenty
iterations.

Half-Width: This value helps to determine the reliability of the results for the output
variable from all twenty iterations. This number is half of the 95% confidence interval
for the true mean of the given KPI. Thus the output indicates that the true mean is within
the range of the observed sample mean + the reported half width.

Minimum Average: This value indicates the minimum average value for the output
variable from any of the twenty iterations.

Maximum Average: This value indicates the maximum average value for the output
variable from any of the twenty iterations.

Minimum: This value indicates the absolute lowest value observed for the output
variable across all twenty iterations.

Maximum: This value indicates the absolute highest value observed for the output

variable across all twenty iterations.
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Table 4.17: Results for Base Policy

Base Policy Results
(1 day at DC, 2.5 day at Retail Stores)
VariableName| Average |Half Width [Minimum [Maximum [Minimum |Maximum
Avegge Average Value Value
DCTotalRelevantCost|  $47.28 $1.20| $41.35| $51.00 $0.00| $546.95
Retail1TotalRelevantCost|  $50.64 $1.12| $46.04 $54.22 $0.03| $369.59
Retail2TotalRelevantCost|  $28.36 $0.56| $26.00|  $30.09 $0.41| $151.76
SystemTotalRelevantCost| $126.28 $2.77| $113.39| $134.68 $3.00| $595.31
DCHoldingCost|  $46.71 $1.14| $41.29| $49.96 $0.00| $193.33
DCLostSalesCost $0.00 $0.00 $0.00 $0.00 $0.00 $0.00|
DCOutdateCost| 0,57 $0.29|  $0.00]  $2.05] $0.00] $472.10]
Retail1HoldingCost|  $26.16 $0.53| $24.19| $28.17|  $0.00|  $81.40|
Retail1LostSalesCost $1.45 $0.39 $0.05 $3.24 $0.00| $369.59
Retail1OutdateCost|  $23.04 $0.59| $20.55| $25.04 $0.00| $83.24
Retail2HoldingCost|  $14.47 $0.24| $13.63] $15.38 $0.00|  $43.81
Retail2LostSalesCost $0.22 $0.09 $0.00 $0.62 $0.00| $151.76
Retail20utdateCost|  $13.67 $0.31| $12.28| $14.68 $0.00|  $56.92
DCIFR 91.74 0.59 89.45 93.94 0.00 100.00|
Retail1IFR 99.53 0.12 99.07 99.98 0.00 100.00)
Retail2IFR 99.85 0.06 99.52 100.00 0.00 100.00]
Table 4.18: Results for Optimal Policy
Optimal Policy Results
(0.5 day at DC, 1.5 day at Retail Stores)
VariableName|Average |Half Width [Minimum [Maximum |[Minimum |Maximum
Avnﬁge Averagg Value Value

DCTotalRelevantCost| $45 57 $1.08] $42.01 $49.07 $0.00| $453.78
Retail1TotalRelevantCost|  $27 46 $0.66| $24.69 $29.95 $0.00| $377.34
Retail2TotalRelevantCost| $14.48 $0.40| $13.01 $16.13 $0.00| $174.20
SystemTotalRelevantCost| $87.51 $1.79] $80.80 $94.13 $1.75| $585.66
DCHoldingCost|  $45.05 $1.02| $41.82 $48.29 $0.00] $166.83
DClLostSalesCost|  $0.00 $0.00 $0.00 $0.00 $0.00 $0.00
DCOutdateCost|  $0.52 $0.24 $0.00 $1.66 $0.00| $453.78
Retail1HoldingCost| $10.48 $0.28 $9.31 $11.37 $0.00 $49.38|
Retail1LostSalesCost|  $8.62 $0.77 $5.43 $11.87 $0.00| $377.34
Retail1OutdateCost|  $8.37 $0.26 $7.48 $9.19 $0.00 $49.00|
Retail2HoldingCost|  $6.02 $0.13 $5.52 $6.36 $0.00 $26.43
Retail2LostSalesCost|  $3.14 $0.34 $2.03 $4.94 $0.00| $174.20
Retail20utdateCost $5.32 $0.15 $4.80 $5.78 $0.00 $32.70
DCIFR| 9524 0.45 93.38 96.75 0.00 100.00

RetailllFR|  97.05 0.26 96.22 98.14 0.00 100.00

Retail2IFR| 97,97 0.22 96.95 98.73 0.00 100.00
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By comparing the results in Table 4.17 and 4.18, we observe that the total relevant cost at
each retailer and for the system is statistically significantly lower and the half-widths are smaller
for the optimal policy as compared to the base policy. The DC total relevant costs are not
statistically significantly different, yet the DC IFR is statistically significantly higher. The
95.24% IFR at the DC for the optimal policy with half-width of 0.45 is significantly is better
than the 91.74% IFR with half-width of 0.59 for the base policy. Further, the smaller confidence
intervals for the IFR at the DC and the total relevant cost for the system indicate that optimal
policy would improve the reliability of the performance of the system and yield the lowest cost
solution as compared to the base policy.

There is a small decrease in IFRs at the retail store under the optimal policy as compared
to the base policy, although these IFRs under the optimal policy are still greater than 95%. This
is because the optimal solution trades off the lost sales cost with the shrinkage costs and
inventory holding costs at the retail stores in order to find the lowest cost solution for the whole
system. For example, in the case of Retail Store 1, we see that the shrinkage cost is reduced
from $23.04 to $8.37 and the inventory holding costs are reduced from $26.16 to $10.48 when
comparing the base policy with optimal policy respectively. The lost sales cost increases from
$1.45 for the base policy to $8.62 for the optimal policy. Overall, the total relevant cost at Retail
Store 1 is now $27.46 for the optimal policy as compared to $50.64 for the base policy, which
translates into cost reduction of $23.18. Additionally, the [FR under the optimal policy at the
Retail Store 1 is 97.05% which is still greater than 95%. This means under the base policy, the
major portion of the cost comes from the shrinkage costs and inventory holding costs.

Considering the cost reductions across the whole system, the optimal policy yields a

30.7% reduction in costs while maintaining the IFR greater than 95% at each echelon. The
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model optimizes the whole system by capturing the dynamic effects of perishability and
inventory levels at each echelon, resulting in significant savings without sacrificing the service

levels.

4.3 Sensitivity to the Forecast Errors

Using the optimal inventory policies obtained during the simulation runs described in Section
4.2.3, 0.5 days inventory target at the DC and 1.5 days inventory target at the retail stores, we
tested the sensitivity of the system to the forecast errors. Testing the sensitivity of the optimal
inventory policy with respect to the forecast errors demonstrates the potential benefits of

increased forecast accuracy on reducing the inventory-related costs.

4.3.1 Forecast Error for DC’s Demand Forecast

We conducted the sensitivity analysis by conducting simulation runs with the following inputs
for forecast error for the DC’s demand: 0, 5, 15, 25, 35, 50, 65, and 80%. Table 4.19 presents
the results for the effects of DC’s forecast error on the costs and IFRs at each echelon. Recall

that the base value for forecast error is 25%.
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Table 4.19: Forecast Error at the DC

DC Forecast Error| 0% 5% 15% 25% 35% 50% 65% 80%
DCTotalRelevantCost| $30.68| $33.16| $38.77| $45.57| $53.53| $67.34| $83.29| $101.87
Retail1TotalRelevantCost| $28.68| $26.91| $26.56| $27.46| $29.03| $32.14| $34.97| $37.31
Retail2TotalRelevantCost| $13.61| $13.52| $13.94| $14.48| $15.17| $16.70| $18.01| $19.21
SystemTotalRelevantCost| $72.97 $73.59| $79.27| $87.51| $97.73| $116.18| $136.27| $158.39
DCHoldingCost| $30.65| $33.13| $38.69| $45.05| $52.05| $62.56| $73.25| $84.64
DClLostSalesCost $0.00f $0.00{ $0.00 $0.00] $0.00] $0.00] $0.00{ $0.00
DCOutdateCost|  $0.03| $0.03| $0.08| $0.52| $1.49| $4.78| $10.05| $17.23
Retail1HoldingCost $8.60| $9.26/ $10.08| $10.48| $10.64| $10.61| $10.50| $10.43
RetaillLostSalesCost| $14.38| $11.29| $9.05| $8.62| $9.16] $11.17| $13.22| $14.70
Retail1OutdateCost $5.70| $6.36| $7.44| $8.37| $9.23| $10.35| $11.25| $12.18
Retail2HoldingCost $560| $5.77| $5.96| $6.02] $6.01 $5.94| $5.85| $5.76
Retail2LostSalesCost|  $3.98| $3.45| $3.14| $3.14| $3.38] $4.39] $5.31 $6.12
Retail20utdateCost $4.03] $4.31 $4.83] $5.32| $5.78/ $6.38] $6.85| $7.33
DCIFR| 88.77| 91.15] 93.86| 95.24| 9566 95.29| 9459 9422
RetailllFR| 9517 96.23| 96.98| 97.05| 96.79] 96.01 9522 94.62
Retail2FR| 9746 97.79| 97.99| 97.97| 97.76] 97.01 96.31 95.71

Figure 4.5 shows that the total relevant cost for the DC and the system increases

significantly as the forecast accuracy decreases. This is because the inventory holding cost at the

DC increases significantly with respect to the decreasing forecast accuracy. Increasing the

forecast accuracy by 10% or 20% would reduce the total relevant cost in the system by 9% or

16% respectively. Increasing the forecast error by 10% would increase the total relevant cost in

the system by 12%.
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Figure 4.5: Effect of DC’s Forecast Error on Total Relevant Cost

Figure 4.6 shows that the IFR at the DC is very sensitive to the DC’s forecast errorras
compared to the IFR at the retail stores, and the IFRs at both the DC and the retail stores
decrease as the forecast accuracy deteriorates beyond 25%. This occurs because the OUL for the
DC, which is dependent upon DC’s forecast, becomes less accurate and the shrinkage volume at
the DC increases as forecast accuracy deteriorates. This affects the availability of the inventory
at the DC and hence its ability to fulfill orders received from the retail stores. Thus IFRs at both
the DC and the retail stores deteriorate for DC’s forecast error beyond 25%.

For the DC’s forecast error less than 25%, the inventory level at the DC is reduced but
retail stores still have their own forecast error, so retail stores still tend to order more form the
DC. Thus the IFR at the DC deteriorates because the retail stores order more than they need to,

suggesting the presence of the bullwhip phenomenon.
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Figure 4.7 shows that the inventory level at the DC also increases as the forecast accuracy
decreases. This occurs because when the demand forecast is higher than the actual demand, the

DC would have excessive inventory. When the demand forecast is lower than actual demand,

Figure 4.6: Effect of DC’s Forecast Error on IFR

the inventory would be depleted but never go below zero (since sales are lost and not

backordered). Thus, the increasing forecast error would ultimately increase the average

inventory level.
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Figure 4.7: Effect of DC’s Forecast Error on Inventory Level
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We observe from Figure 4.8 that as the forecast accuracy deteriorates, the inventory at the
DC begins to age more. Figure 4.8 (a) and (b) indicate the change in inventory and shrinkage
volume by age distribution at the DC with respect to the DC’s forecast error. Figure 4.8 (b) only
shows shrinkage for the 8-days old inventory because of ABC’s mandated policy for discarding
any product once it reaches 8 days old. The aging inventory at the DC would eventually result in
more inventory of older age distribution sent to the retail stores, thus higher shrinkage volume.
Figure 4.8 (c) and (d) indicate the change in inventory and shrinkage volume by age distribution
at the Retail Store 1 with respect to the DC’s forecast error. Figure 4.8 (e) and (f) indicate the
same for Retail Store 2. Please refer to Table C.2 in Appendix C for the legends of the terms

used in Figure 4.8.
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Figure 4.8: Impact of Forecast Error at the DC on Inventory
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Figure 4.9 shows that the total shrinkage at the DC and the retail stores increase as the
forecast accuracy deteriorates. This increases the shrinkage volume at each echelon in
proportion with the inventory level. As the inventory levels increase at the DC, so does the
amount of older inventory on hand there, and hence the age of the inventory shipped to the
retailers also increases. It can be clearly seen that shrinkage volume at the DC is very sensitive
to DC’s forecast error as compared to the shrinkage volume at the retail stores. This increasing
trend in DC’s shrinkage volume is obvious for the forecast error greater than 40%. Thus the DC

should invest its efforts in keeping the forecast error as low as possible.
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Figure 4.9: Effect of DC’s Forecast Error on Shrinkage Volume
4.3.2 Forecast Error for Retail Stores’ Demand Forecast
Using the same approach and the same set of forecast error values as those used for the DC
forecast error in Section 4.3.1, we tested the sensitivity of the system to the retail stores’ forecast

errors. Table 4.20 presents the results for the effects of forecast error on system performance.
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Table 4.20: Forecast Error at the Retail Stores
Retail Forecast Error| 0% 5% 15% 25% 35% 50% 65% 80%

DCTotalRelevantCost| $46.83| $46.40| $45.91| $45.57| $45.54| $46.05| $45.94| $4589
Retail1TotalRelevantCost| $22.35| $23.02| $24.79| $27.46| $30.49| $36.47| $41.67| $45.69|
Retail2TotalRelevantCost| $11.73| $12.02| $13.07| $14.48| $16.08] $19.34| $22.63| $25.28
SystemTotalRelevantCost| $80.91| $81.44| $83.77| $87.51| $92.11| $101.87| $110.24| $116.85
DCHoldingCost| $46.71| $46.21| $45.60| $45.05| $44.74| $44.82| $44.44| $44.11
DCLostSalesCost| $0.00] $0.00/ $0.00/ $0.00| $0.00| $0.00| $0.00| $0.00
DCOutdateCost| $0.12| $0.19| $0.31| $0.52| $0.79| $1.23] $1.51] $1.78
RetaillHoldingCost| $7.94| $8.51 $9.45| $10.48| $11.50| $12.98| $14.34| $15.55
RetaillLostSalesCost| $7.80| $7.52| $7.73| $8.62| $9.93| $13.33| $16.14| $17.99
RetaillOutdateCost| $6.60| $6.99| $7.61| $8.37| $9.06| $10.17| $11.19] $12.15
Retail2HoldingCost| $4.31| $4.72| $5.33| $6.02| $6.76| $7.97| $9.21| $10.44
Retail2LostSalesCost| $3.50| $3.03| $3.00] $3.14| $3.38| $4.43| $543| $5.80
Retail20OutdateCost| $3.92| $4.26| $4.74| $5.32| $5.94| $6.94| $7.99| $9.04
DCIFR| 9598 9661| 9596 9524 9432 9261 90.72| 88.67
RetailllFR| 97.64| 9768 97.53| 97.05| 96.38| 9480 93.36] 92.39|
Retail2FR| 9807 9829] 9820] 97.97] ore0] 9654] 9552| 95.00|

Figure 4.10 shows that the total relevant costs for the retail stores and the system increase

increased lost sales costs, shrinkage costs and inventory holding costs at the retail stores.

significantly as the forecast accuracy deteriorates. The major cost increase comes from the
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Figure 4.10: Effect of Retail Stores’ Forecast Error on Total Relevant Cost
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Considering the Figure 4.11, the IFRs at both the retail stores and the DC deteriorates as
the forecast accuracy deteriorates. Again, the IFR at the DC is more sensitive to the forecast
error as compared to the IFR at the retail stores due to the bullwhip effect, as explained in
Section 4.3.1. This occurs because the inventory level at the DC becomes insufficient to fulfill
orders from retail stores as the retail stores increasingly order more than they need with the

increasing forecast error.

Forecast Error Vs Item Fill Rate
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Figure 4.11: Effect of Retail Stores’ Forecast Error on IFR
Figure 4.12 indicates that the inventory level at the retail stores increases as the forecast
accuracy deteriorates. This occurs at the retailers because when the demand forecast is higher
than the actual demand, the retail stores would have excessive inventory. When the demand
forecast is lower than actual demand, the inventory would be depleted but never go below zero.

Thus, the increasing forecast error would ultimately increase the inventory level.
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Forecast Error Vs Inventory Level
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Figure 4.12: Effect of Retail Stores’ Forecast Error on Inventory Level
We observe from Figure 4.13 (a) that as the forecast error increases, orders from retail
stores deplete DC’s inventory at a faster rate. Thus DC will not be holding inventory for long
" time periods. This results in less older age inventory at the DC and more older age inventory at
the retail stores, as shown in Figure 4.13 (c) and (e). The distribution of older age inventory at
the retail stores increases. This translates into higher shrinkage costs and lost sales costs at the
retailers as compared to the impact of the DC’s forecast error, given in Table 4.19 of Section

4.3.1. Please refer to Table C.2 in Appendix C for the legends of the terms used in Figure 4.13.
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Inventory by Age Distribution (Units)
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Figure 4.13: Impact of Forecast Error at the Retail Stores on Inventory
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Figure 4.14 shows that the shrinkage volume at the retail stores increases as the forecast
accuracy deteriorates. Due to the unpredictable order quantities from the retail stores, the DC’s

performance is affected. This causes slight increase in the shrinkage volume at the DC.

Forecast Error Vs Shrinkage
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Figure 4.14: Effect of retail stores’ Forecast Error on Shrinkage Volume

By comparing the results in this section and Section 4.3.1, we observe that improving
forecast accuracy at the DC and the retail stores can reduce the costs significantly and improve
the respective IFRs drastically. The forecast accuracy at the DC has greater impact than the
forecast accuracy at the retail stores on the total relevant cost of the system. Because of the
production and transportation lead time at the plant, the system is more sensitive to the DC’s
forecast error. The longer production and transportation lead time at the plant means more
forecast error will be taken into account while calculating the DC’s OUL as opposed to
calculations with shorter lead times. This translates into the increased inventory holding cost at
the DC.

However, the forecast accuracy at the retail stores has a greater impact than the forecast
accuracy at the DC on DC’s IFR. Even if the forecast accuracy at the DC is improved, if the

retail stores have poor forecast accuracy then the DC’s IFR will still suffer and the total relevant
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costs will increase. The cost benefits will be maximized if the forecast accuracies at both the

retail stores and the DC are improved.

4.4 Sensitivity to Transportation Lead Time

Testing the sensitivity of the total relevant cost to the transportation lead time from the plant to
the DC helps demonstrate the benefits of using expedited shipping services. We conducted this
experiment with transportation lead times from the plant to the DC of 1 through 7 days. The
production lead time is constant at 4 days which results in a cumulative lead time from the plant
to the DC of 5 to 11 days. Recall that the cumulative lead time for base scenario is 5 days (4
days of production and 1 day of transportation lead time). Table 4.21 presents the numerical
results of how this lead time impacts the KPlIs.

Table 4.21: Impact of Transportation Lead Time
Plant To DC LeadTime| 1 2 3 4 5 6 7

DCTotalRelevantCost| $45.57| $49.29| $47.31| $54.10| $55.89| $82.28| $164.57
Retail1TotalRelevantCost| $27.46| $30.97| $36.31| $41.44| $54.05| $81.62| $164.89
Retail2TotalRelevantCost| $14.48| $16.41| $18.47| $20.92| $25.97| $37.10| $73.85
SystemTotalRelevantCost| $87.51| $96.67| $102.10| $116.46| $135.91| $201.00| $403.31

DCHoldingCost| $45.05| $47.20| $41.52| $39.72| $30.01| $21.90| $6.47
DCLostSalesCost| $0.00| $0.00] $0.00{ $0.00f $0.00] $0.00{ $0.00
DCOutdateCost| $052| $2.09| $5.79] $14.37] $25.88] $60.38] $158.10|
Retail1HoldingCost| $10.48| $10.34| $9.39| $8.76| $7.56| $5.62| $2.00
RetailiLostSalesCost| $8.62| $9.66| $14.42| $17.65| $30.60| $60.77| $156.17
Retail1OutdateCost| $8.37| $10.97| $12.51| $15.04| $15.89| $15.23| $6.73
Retail2HoldingCost| $6.02| $5.87| $5.44| $5.13| $4.61| $369| $1.70
Retail2LostSalesCost| $3.14| $3.63| $5.13| $6.26] $11.14| $23.18 $66.39
Retail20utdateCost| $5.32| $6.91| $7.90| $9.53| $10.22| $10.23| $5.76
DCIFR| 95.24| 95.38| 92.67| 90.83| 84.62| 7068 31.03

RetailllFR| 97.05| 96.77| 95.09| 93.77| 89.26| 77.40| 41.56
Retail2IFR| 97.97| 97.66| 96.64| 9572| 9245 83.26| 51.56

Figure 4.15 demonstrates that the total relevant cost for each individual echelon and the

system overall increases as the transportation lead-time increases. This increase is mainly due to
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the increased lost sales cost at the retail stores and shrinkage costs at both the retail stores and the
DC. As the transportation lead time increases, products’ remaining life-time at the DC and retail
stores decreases, in turn increasing the shrinkage volume. Additionally, the system is less

responsive to demand due to the longer lead times, increasing the lost sales costs for the system.

Transportation Lead Time Vs Total Relevant Cost
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Figure 4.15: Effect of Transportation Lead Time on Total Relevant Cost
Figure 4.16 indicates the effect of transportation lead-time on the IFRs. As the inventory
levels decrease with respected to increasing transportation lead-time, the IFRs at the DC and the
retail stores decrease. The responsiveness of the system to the customer demand decreases with

increasing lead-times, resulting in the poor IFR across the system.
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Transportation Lead Time Vs Item Fill Rate
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Figure 4.16: Effect of Transportation Lead Time on IFR

Figure 4.17 indicates that due to increasing transportation lead-time, the inventory level

at the DC decreases. This primarily occurs because of increased shrinkage volume at the DC.
This naturally affects the inventory level at the retail stores as DC will not be able to fulfill the

orders from retail stores. This also means that the inventory holding costs at the DC and the

retail stores decrease due to reduced inventory levels, as shown in Table 4.21.
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Figure 4.17: Effect of Transportation Lead Time on Inventory Level

Figure 4.18 (a) and (b) show that as the transportation lead time increases, the DC holds

more inventory of an older age distribution, resulting in higher shrinkage costs at the DC. This

means the retail stores also hold more inventory of older age distribution, which also translates
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into higher shrinkage costs at the retail stores. This can be seen in Figure 4.18 (c), (d), (¢) and (f).

Please refer to Appendix C.2 for definitions of the terms used in Figure 4.18.
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Inventory by Age Distribution (Units)

Transportation Lead Time Vs Inventory by Age Distribution at DC
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Figure 4.18: Impact of Transportation Lead Time on Inventory
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We clearly observe in the Figure 4.19 that the shrinkage volume at the DC increases
significantly for transportation lead times greater than 4 days. Increasing transportation lead
times reduce the available lifetime of the products at the DC as products lose their useful lifetime
during transit. Additionally, ABC’s mandated shrinkage policy of discarding the products at the
DC that have less than 6 days of lifetime remaining considerably reduces this useful lifetime of

the product. This plays an important role in increased shrinkage volume.
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Figure 4.19: Effect of Transportation Lead Time on Shrinkage Volume

75



5 Conclusions

The objective of this thesis is to quantify the impact of perishability on total inventory costs and
to establish the optimal inventory policy for the multi-echelon Fresh Express supply chain. In
this chapter we present the challenges for perishable inventory system in a multi-echelon supply
chain, the insights drawn from the use of our simulation model, and an outline for the future

extensions.

5.1 Challenges for Perishable Inventory Systems in a Multi-Echelon Supply Chain

The major challenges in perishable inventory management systems reside in tracking the
inventory distribution of different age-groups. The multi-echelon system further complicates the
issue as the interaction between each echelon of the supply chain makes the issue dynamic and
difficult to monitor and understand. Addressing these issues analytically requires extensive
computations, thus analytical approaches are usually impractical for day-to-day operations in a
complex inventory system.

Utilizing a simulation model is extremely useful in dealing with perishable inventory in
multi-echelon supply chains because tracking the inventory distribution and the inventory
transfer becomes relatively simple using computer software. A computer simulation model also
helps the user to monitor the interactions and influence between each echelon of the supply
chain. Additional benefits of a simulation approach are that we can test the sensitivity of the
system to varying conditions, and that we can obtain 95% confidence intervals for the output

variables, which indicate the reliability of the estimate.
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5.2 Key Insights

We have discussed many of our key results in Chapter 4, and we highlight key insights in this

section.

5.2.1 Service Level at the DC vs. Inventory at the Retail Stores

The simulations reveal that the IFR at the DC is sensitive to the target days on-hand inventory at
the retails stores. As the target days on-hand inventory at the retail stores increases, the IFR at
the DC decreases significantly. The dynamics of the demand variability, the forecast errors, and
the shrinkage in the multi-echelon system amplify as the target days on-hand inventory at the
retail stores increases. As a result of the dynamics of these three factors, the IFR at the DC
deteriorates when the target days on-hand inventory at the retail stores increases past two days.
The model suggests the retail store to keep its inventory less than two days to minimize the
upstream impact of the demand variability, the forecast errors, the production schedule and the

shrinkage.

5.2.2 Base Scenario Policy vs. Optimal Inventory Policy

One of the three key questions posed by Chiquita is what the optimal inventory levels are
considering forecast accuracy, transportation lead-time, inventory carrying cost, lost sales costs
and inventory shrinkage costs due to product perishability. Our simulation model considers all
these factors and determines that the optimal inventory policy would be to set the target days on-
hand inventory to be 0.5 days at the DC and 1.5 days at the retail stores. Comparing this optimal
solution to the current inventory policy, the inventory policy determined by our simulation model
reduces the total relevant cost by 30.7%, reduces the shrinkage below 8.5%, and maintains the

IFR above the required 95% at all echelons.
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Chiquita has been considering moving to a cross-dock policy at the DC, which means the
DC will not carry any inventory. Our model indicates that by removing inventory from the DC,
a cross-dock policy would reduce the total relevant costs by approximately 0.05%. Comparing
with the 30.7% cost saving from the optimal policy, an additional 0.05% saving is relatively
insignificant. In addition, our model shows that the cross-dock policy would reduce the IFR at
both the retail stores. In particular, the IFR at the Retail Store 1 would be reduced from 97.1% to
93.2%, below the target IFR of 95%. Therefore, based on the results, we would not recommend
Chiquita and ABC to introduce a cross-dock policy at the DC unless it makes other changes to its

ordering and logistics to maintain sufficient IFRs.

5.2.3 Service Levels vs. Inventory Cost

Another question posed by Chiquita is the trade-off between service levels and inventory cost.
As we expected, the service levels and inventory costs have a positive correlation. We determine
our model’s optimal inventory policy by selecting the policy that results in the lowest total
relevant cost and still meets the minimum service level of 95% IFR. The optimal inventory
policy improves the IFR at the DC from 91.74% to 95.24%, while the IFR at the retail stores
decreases from 99% to 97%.

Although the IFR at the retail stores decreases by approximately 2%, 97% is still
considered high customer service level. However, the impact of a reduction of 2% in IFR on
consumer satisfaction and good-will are not captured in our model. Chiquita and ABC should
gain a better understanding of the potential impact on consumer behavior and future sales before
implementing the optimal inventory policy suggested by our simulation model.

Overall, the 30.7% cost savings are significant enough for Chiquita and ABC to consider

replacing the current inventory policy with the optimal inventory policy found in our model. The
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majority of the cost reduction comes from the reductions in inventory holding costs and
inventory shrinkage costs across the system, especially at the retail stores.

Additionally, the confidence intervals (95%) determined by our model for the IFR and
the total relevant cost for the system are tighter in the case of the optimal inventory policy as
compared to the confidence intervals in the base scenario policy. The tighter confidence

intervals indicate less variability in the system performance.

5.2.4 Effect of Forecast Error on the Relevant Costs and the Service Level

The third question posed by Chiquita is the effect of forecast error on inventory-related costs.
We found that the system is very sensitive to forecast errors, especially the forecast errors from
the DC. In general, as the forecast accuracy deteriorates, the IFR at the DC and the retail stores
decreases and the relevant cost of the system increases. Therefore, Chiquita and ABC should
consider investing significant efforts to improve the forecast accuracies at the DC and the retail
stores. Additionally, improving the forecast accuracy at the DC alone may not address the issue
sufficiently because the DC’s inventory is ultimately impacted by the orders and forecasts
created by the retail stores. The IFR at the DC is more sensitive to the forecast error at the retail
stores than to the DC’s forecast error. To maximize the cost savings and improve the
performance of the whole system, we recommend that Chiquita work with ABC to

simultaneously improve the forecast accuracy at both the DC and the retail stores.

5.2.5 Effect of Transportation Lead Time on the Relevant Costs and Service Level
The system is sensitive to the transportation lead time since the transportation lead time directly
impacts the products’ lifetime at the DC and at the retail stores. Our model demonstrates that as
the transportation lead time increases, the shrinkage in the systeni increases significantly. This

further results in the increased lost sales at the retail stores and reduced IFR at the retail stores
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and the DC. Overall, the total relevant cost for the system increases and the IFR at each echelon
deteriorates. Since the system is sensitive to the transportation lead time, Chiquita should not
relax the current lead time and should continue to keep the transportation lead time as short as

possible to maximize the products’ available lifetime at the DC and the retail stores.

5.3 Extension of the Model and Future Research

Further research on perishable product supply chains can be conducted by relaxing the
assumptions of our model. We have demonstrated the benefits of quantitative approach to
improving the service levels at each echelon and reducing the total relevant cost of the system.
Further extension of our research by exploring the following possibilities can extend the benefits

to the perishable product supply chains.

5.3.1 Mandated Shrinkage Policy at the DC

Currently, ABC has mandated an inventory shrinkage policy at the DC, in which any product
that has less than six days of shelf life remaining should be removed from the DC’s inventory.
Testing the sensitivity of the system with respect to this mandated inventory shrinkage policy at
the DC could help Chiquita to understand the impact of this policy on the IFR at each individual

echelon and the total relevant cost for the system.

5.3.2 Other Product Families

Our simulation is based on one of Fresh Express’ main product families. The results generated
from using this product family should provide a good overall representation of the whole Fresh
Express product lines. However, Chiquita can use the simulation model to test other product

families or each individual product to gain a deeper understanding of its supply chain.
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5.3.3 Other Fresh Express Supply Chains

Our simulation is also based on one of Fresh Express’ main customers, which we refer to as
ABC Inc. This supply chain is similar to Chiquita’s other supply chains for other customers.
However, some of the inventory policies, such as ABC’s mandated shrinkage policy at the DC,
might be different for other customer’s supply chains. Chiquita can conceivably change the
input parameters in the model to determine the optimal inventory policy for its other supply

chains.

5.3.4 Demand Correlation among Complementary Products
In our model, we assumed independent demand that is normally distributed for each product, but
different demand distributions can be considered for further research. For example, it is possible

to analyze and incorporate correlated demand for complementary products.

5.3.5 First In First Out Policy

Our model assumes a FIFO product policy; however, in reality if there are products with
different lifetime displayed on the shelf, some consumers would look for and purchase the
younger products. Such consumer behavior is not captured in our current model. Chiquita and
its customers can either develop rules to expand our model to capture such behaviors or develop

store shelf stocking policies to better control consumers’ purchasing behaviors if needed.

5.3.6 Production Capacity of the Plant
In our model, we assumed that the plant has unlimited production capacity to fulfill DC’s orders,
but this assumption can be relaxed if an additional echelon is built into the model. This may be

valuable since the plant serves other DC’s if it has limited production capacity
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5.4 Summary

We conclude that for multi-echelon perishable inventory management problems, simulation can
be extremely helpful. Our research demonstrates that simulation modeling can quantify various
trade-offs involved in making inventory management decisions for perishable products. It is
extremely valuable to simulate reality and test the sensitivity of the system before decisions are
made by managers. Simulation modeling can lead to optimal solutions that would reduce the

system costs significantly while improving the system performance significantly.
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Appendix A: Conceptual Flow of Fresh Express Arena Simulation Model
We discussed the conceptual model in Section 3.2. In this appendix, we provide more details
regarding the eight steps in conceptual flow of our simulation model. Figure A.1 indicates the

logic details of step 1 and 2. Step 2 shows the logic used by retail stores before placing an order

at the DC.

Step 1 Step 2

Inventory Positicn <
Order Up To Leve! [RGB
e Determine Order

Retoil Stores Review
Consumers inventory Position
Purchase Products r 3 agoinat required
At Retall Stores Order Up To Lavel
ot Retall Stores

Quantity and Place
Order at DC

Inventory Position >=
1 Order Up To Level

Retoil Stores Wikl
Not Place Order aof

D

Figure A.1: Conceptual Flow—Step 1 and Step 2

Figure A.2 shows the logic details of steps 3 and 4. In step 3, we use an algorithm that
we developed to allocate the available inventory at the DC to each of the retail stores. As
mentioned earlier in Section 3.1.4, we assume that the DC treats all the retail stores equally and
does not prioritize a particular store over another. The algorithm steps are:

1. If the DC’s inventory level is more than the aggregated retail store orders, the DC fulfills
each order 100% accordingly.

2. Ifthe DC’s inventory level is less than the aggregated retail store orders, the DC checks
whether both orders each are more than 50% of the inventory level.

2.1 If Yes: the DC will split the inventory 50/50 (evenly) and ship out the inventory

accordingly to each retail store.
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2.2 If No: the DC will fulfill the smaller order 100%, then ship the remaining

inventory to fulfill the bigger order.

Level at

Step 3 Step 4
[ o o S S S S S e RS A i
| . Invenlo;v(l).e;el a; bc >T: Fulfill Both Retail Store W Retail
! geregated OrfersfromPorg——— : ——— !
! Retail Stores Orders Accordingly } b :tore.s
i eceive
: RN Splitinventory [ ) ) . | Products
2 Inventory CRE 50/50 (evenly) ;

| DC Both Retail
1 Store Orders
I e e——— A_.'ﬁ >=
| Inventory Level at DC < 50% Inventory
Aggregated Orders from Two Level ?
! Retail Stores
: Fulfill the Smaller Order 100%, Ship Remaining
|
|

Inventory to Fulfill the Bigger Order

Figure A.2: Conceptual Flow—Step 3 and Step 4
The algorithm can be explained numerically using following scenarios. For example, if available
inventory at the DC is 100 units:
Scenario 1: Store A orders 60 units, Store B orders 90 units; the DC will split the inventory
equally and ship out 50 units to Store A, 50 units to Store B.
Scenario 2: Store A orders 30 units, Store B orders 90 units; the DC will ship 30 units to Store A
and ship the remaining inventory of 70 units to Store B.
Scenario 3: Store A orders 90 units, Store B orders 30 units; the DC will ship 30 units to Store B
and ship the remaining inventory of 70 units to Store A.
Scenario 4: Store A orders 40 units, Store B orders 35 units; the DC will ship 40 units to Store A
and ship 35 units to Store B.
Figure A.3 shows the logic details involved in step 5. In this step, Chiquita periodically
reviews the IP at the DC via the VMI program described in Section 3.1.1 and creates an order to

its plant if necessary.
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Figure A.3: Conceptual Flow—Step 5 and Step 6

Figure A.4 shows steps 7 and 8; we have discussed their details in the Section 3.2.

- Costand KPI

~ Assessment

Step7 Step 8

Figure A.4: Conceptual Flow—Step 7 and Step 8

Figures A.5 through A.10 show the Arena simulation model developed using above eight steps.
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Appendix B: User Guide for Fresh Express Arena Simulation Model

In this appendix, we explain how to use the simulation model that we discussed in our thesis.
The simulation model was implementéd using Arena software and Microsoft Excel © 2007. We
divide the appendix into the following sections.
B.1 Introduction to the Fresh Express Arena Simulation Model
B.2 Setting Up the Model
B.2.1 Excel Input Parameters for the Supply Chain
B.2.2 Replication Parameters for Arena Simulation
B.3 Running the Model
B.3.1 Running the Model in Arena
B.3.2 Built-in Reports in Arena
B.3.3 User Customized Results in Excel

B.4 Sensitivity Testing Setup

For additional information on Arena software and the features offered beyond the scope
of this appendix, we recommend the user to refer to the manual provided by Rockwell

Automation, the manufacturer of Arena software.

B.1 Introduction to the Fresh Express Arena Simulation Model

Arena is a discrete-event systems simulation tool and it was used to program and simulate
Chiquita’s Fresh Express Supply Chain for the purposes of this thesis. A Microsoft Excel file
was used feed the input parameters into this Arena model. In this Excel file, the model user can
specify the input parameters specific to each individual echelon of supply chain that we

discussed in Chapter 4. The Arena simulation model reads these input parameters before
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running the simulation. To that end, we have integrated the Excel file with the Arena simulation
model.

Additionally, the user needs to setup replication parameters for the Arena simulation
model. At the end of simulation runs, Arena provides results for the output variables using
Arena’s built-in reports. Users can also obtain results for the specific output variables at the
required level of granularity, provided a specific output file and the output format are specified to
the model by the intended user. The sections below provide more details regarding the process

involved.

B.2 Setting Up the Model

This section provides details regarding the input parameters to be specified by the model user.

B.2.1 Excel Input Parameters for the Supply Chain
As mentioned in Section B.1, the user needs to specify the input parameters specific to the
supply chain in file the InputDataFile.xls. Figure B.1 (a) shows the screenshot of this file and
the input parameters to be specified by the user. The user needs to specify a valid data value for
each of the cells marked in yellow. We have defined a valid range for each of these input data
cells. If the user enters any incorrect value (for example, negative values) into these cells, an
input error messages twill appear to the user. The user needs to resolve any errors that are
prompted before proceeding to the actual Arena simulation.

The user is allowed to enter data only in the InputData tab. The TestMe tab as shown in
Figure B.1 (b) is protected and used for the calculations explained in Section 3.1.5 (Figure 3.1).
The Arena simulation model reads the data from this tab. Figure B.1 (c) shows how to select and

setup the file InputDataFile.xls in Arena.
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Figure B.1: Preparing the Excel File with Input Parameters




B.2.2 Replication Parameters for Arena Simulation

After preparing the Excel file with input parameters as mentioned Section B.2.1, the user also
needs to setup the replication parameters for the simulation model. Figure B.2 shows the
screenshot from Arena where the user needs to specify these parameters.

e R
_B File Edit View Tools Amange Object Window Help

Ded 8 &R ¥ b# Setup..

rR‘.mSeh.q:J
Run Speed | Run Cortrol | Reports |J
Project Parameters Replcation Parameters ] Amay Sizes |!
" o R intialize Between Repications
,ﬁ W Satistics W System
|
| Stat Date and Time
: [P Jaruary 0210 120000 AM ~]
Wam-up Period Time Units
20 |Days =
| Replication Length Time Units
| 395 Days ]
‘ Hours Per Day: Base Time Unas
! [2# lﬂcus _']
| Teminating Condion:
]
| |
ok | cawe | | __we |

-;igure B.2: Setting the Replication Parameters
We explain the key parameters shown in Figure B.2 as below.
L. Number of Replications: This indicates the number of independent iterations or
replications the simulation model is required to perform before producing final set of
results. We recommend 20 replications to capture the variability in the system and

produce reliable results. This means that the simulation model will run twenty times with
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a different set of random data every time and at the end of 20™ replication it will produce
the results for user-specified output variables.

11. Start Date and Time: This indicates the beginning date and time for the simulation run.
For example, if we want to conduct the simulation for 365 days in future, the Start Date
and Time indicates the very first day on which the simulation begins.

III. Warm-up Period: In general, for simulating the situations that do not start without
inventory or material in process, the user needs specify warm-up period. For the
simulation model discussed in this thesis, we recommend 30 days of warm-up, which we
determined through tests. This means that the statistics collected over first 30 days will
not be counted towards final performance measures reported at the end of simulation
runs. In other words, the simulation model requires 30 days to stabilize the system and
start performing close to the average conditions of the system that match with reality.

IV. Replication Length: This indicates the duration for which user would like to conduct the
simulation. For example, we wanted to collect data from the simulation for 1 year.
Given that we had 30 days of warm-up, the replication length was set to 395 days. The

user needs to account for the warm-up period while setting the replication length.

B.3 Running the Model
After successfully completing the process in Sections B.1 and B.2, the user can proceed to

running the model.

B.3.1 Running the Model in Arena
The user should first check the model for any errors as a routine procedure. If no changes are
being made to the model and procedure mentioned above is correctly followed by the user, there

should be no errors. Figure B.3 shows how to check the model for errors in Arena. The user
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should get the message No errors or warnings in model as shown below. If there are any errors,

the user should review those errors and resolve them before running the simulation model.

a File Edt View Tools Amange Object Window Help
Ded &€ &R ® Setup... |
NI OSSO A LD Go £ ) |
Jm [ T S F10 Arena -
<  Basic Process Fast-Forward
<> Advanced Process
D D - Start Over ShiftF3 ' No errors or warnings in model

Detay Dropoft o |

Check Model O —

h

{

D C] Review Errors | oK ‘
Run Control » | :] ;

Hold Match 4 SIMAN ’ oot

Figure B.3: Checking the Arena Model for Errors

Next, the simulation run can be started by the user just by selecting option GO in from
the drop-down Run menu as shown in Figure B.3. Alternatively, the user can select the arrows
as shown in Figure B.4 below to start the simulation run in normal mode or fast-forward mode.
Running the model in fast-forward modes saves significant amount of time. If the user wants to
view the animation, then simulation speed can be controlled (slowed down) using the bar shown
in Figure B.4. Using animation increases the time required to finish the simulation runs.

Run Smulation
Fast-Forward Mode

Run Smulation (GO)
Normal Mode

B Arena - 2
rens - [MhbiEchelon
B Fie Edt View Tools Amange Object Run Window Help

DR & & B - o3 e = 3% FIFAO s 0 ks T }
N7 02CA L2 A B S-m-BE-B-B 0o W Wb aatr ®tn N

\

Control the simulaton speed if

Figure B.4: Running the Arena Model
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B.3.2 Built-in Results Reports in Arena

At the end of the simulation run, Arena will generate the results for the output variables
specified by the user. The Arena software prompts the message shown in Figure B.5, indicating
that results are ready for the user to review. The option to enable or disable the display of results

at the end of simulation run can be set by the user under Reports as shown in Figure B.2.

Arena lﬁ

| The simulation has run to completion.
' Would you like to see the results?

Yes MNo

Figure B.5: Result Message Prompt by Arena

In general, the user can specify some statistics to be collected under Project Parameters
as shown in Figure B.2. Figure B.6 and B.7 indicate how to collect statistics for already-existing
variables in the model and the custom variables defined by the user for the purpose of this model.
For most of the variables in this model, the statistics collection is turned on by selecting the
Report Statistics check-box for Variable under the Basic Processes panel as shown in the Figure
B.6. The user can see the complete list of variables in the model and select the statistics for
variables that are of interest. Additionally, the user can specify new or custom variables that are
of interest under the Statistics option which is listed under the Advanced Process panel as shown
in Figure B.7. We have created four custom variables, which are the total relevant cost for the

DC, Retail Store 1, Retail Store 2 and the system.
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Figure B.7: Statistics Collection for the Custom Variables Created by User

For each of the variables selected for statistics collection, Arena provides six statistics (columns)

as described in Section 4.2.4. Figure B.8 shows the screenshot of the available Arena reports to

the user. The Category Overview provides summary of results over all iterations together where

as Category by Replication provides the results for each individual iteration. The Category
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Overview results are more relevant for the purpose of this analysis. There are other reports that

may or may not be relevant depending upon the user’s specifications.
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Figure B.9: Exporting the Arena Reports

The user can export these reports into another format by simply right-clicking on the report

under Preview and then selecting Export option as shown in the Figure B.9

B.3.3 User-Customized Results in Excel
The user can develop an additional program in the Arena model for exporting any specific output
variables at a different level of detail (daily, monthly, etc.) than the level reported in Arena’s

built-in reports if needed. We developed a program to export daily results for few output
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variables as shown in Figure B.10. The default export starts after warm-up period of 30 days,
but the user can change it that if needed. For example, if the user is interested in reviewing the
IFR at the DC for each individual day simulated in Arena and for all twenty iterations, then the
Excel file QutputDataFile.xls will contain those results as shown in Figure B.11. The user needs
to specify this filename in Arena as shown in Figure B.1 (c). This makes the simulation
extremely slow; on our laptop computer, a simulation run takes 1 minute without this additional
export versus 120 minutes with export. We do not recommend exporting these types of
additional results unless it is extremely necessary for the purpose of analysis. Results reported in

Arena’s built-in reports are generally sufficient for the purpose of analysis.
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Figure B.11: Additional Export File - OutputDataFile.xls
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B.4 Sensitivity Testing Setup

We discussed the details of the sensitivity analysis in Chapter 4. If the user wants to conduct
sensitivity analyses, appropriate values should be entered in the file JnputDataFile.xls as shown
in Figure B.1 (a). We mentioned the constraints on values for each input parameter in the file
InputDataFile.xls; the user should keep those constraints in mind while conducting the
sensitivity analysis. Then all the steps as mentioned in Appendix B should be followed to obtain
and review the results. In Chapter 4, we also discussed interpretation of various statistics

provided by Arena.
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Appendix C: List of Terms and Abbreviations

Table C.1: Key Abbreviations

Abbreviation Definition

ABC ABC Inc., Chiquita’s biggest retail customer
DC Distribution Center

DCHoldingCost Inventory Holding Cost at the DC

DCIFR Item Fill Rate at the DC

DCIL Inventory Level at the DC
DCLostSalesCost Lost Sales Cost at the DC

DCOutdateCost Shrinkage Cost at the DC
DCTotalRelevantCost Total Relevant Cost at the DC

FIFO First-In-First-Out policy

IFR Item Fill Rate

IL Inventory Level

1P Inventory Position

KPI Key Performance Indexes

MAPE Mean Absolute Percentage Error

OUL Order-Up-to Level

POS Point of Sale

Retail 1HoldingCost Inventory Holding Cost at the Retail Store 1
Retail 1 IFR Item Fill Rate at the Retail Store 1
Retail11L Inventory Level at the Retail Store 1
RetaillLostSalesCost Lost Sales Cost at the Retail Store 1
Retail1OutdateCost Shrinkage Cost at the Retail Store 1

Retaill TotalRelevantCost | Total Relevant Cost at the Retail Store 1
Retail2HoldingCost Inventory Holding Cost at the Retail Store 2
Retail2IFR Item Fill Rate at the Retail Store 2
Retail2IL Inventory Level at the Retail Store 2
Retail2LostSalesCost Lost Sales Cost at the Retail Store 2
Retail2OutdateCost Shrinkage Cost at the Retail Store 2

Retail2TotalRelevantCost

Total Relevant Cost at the Retail Store 2

SystemTotalRelevantCost

Total Relevant Cost for the System

TargetOnHandDays

Target Days On-Hand Inventory Level

VMI

Vendor Managed Inventory
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Table C.2: Terms for Figure 4.8, 4.13, and 4.18

Term Definition

DCILO1 Inventory that is 1 day old in Bin 1 at the DC

DCILO02 Inventory that is 2 days old in Bin 2 at the DC

DCILO03 Inventory that is 3 days old in Bin 3 at the DC

DCIL04 Inventory that is 4 days old in Bin 4 at the DC

DCILO0S Inventory that is 5 days old in Bin 5 at the DC

DCIL06 Inventory that is 6 days old in Bin 6 at the DC

DCILO07 Inventory that is 7 days old in Bin 7 at the DC

DCILOS Inventory that is 8 days old in Bin 8 at the DC

DCIL09 Inventory that is 9 days old in Bin 9 at the DC

DCIL10 Inventory that is 10 days old in Bin 10 at the DC

DCIL11 Inventory that is 11 days old in Bin 11 at the DC

DCIL12 Inventory that is 12 days old in Bin 12 at the DC

DCIL13 Inventory that is 13 days old in Bin 13 at the DC

DCIL14 Inventory that is 14 days old in Bin 14 at the DC
Retail11L01 Inventory that is 1 day old in Bin 1 at the Retail Store 1
Retail11L02 Inventory that is 2 days old in Bin 2 at the Retail Store 1
Retail 11103 Inventory that is 3 days old in Bin 3 at the Retail Store 1
Retail 11104 Inventory that is 4 days old in Bin 4 at the Retail Store 1
Retail 11L0OS Inventory that is 5 days old in Bin 5 at the Retail Store 1
Retail 11L06 Inventory that is 6 days old in Bin 6 at the Retail Store 1
Retail 11L.07 Inventory that is 7 days old in Bin 7 at the Retail Store 1
Retail 11L0O8 Inventory that is 8 days old in Bin 8 at the Retail Store 1
Retail 11L09 Inventory that is 9 days old in Bin 9 at the Retail Store 1
Retail 11L10 Inventory that is 10 days old in Bin 10 at the Retail Store 1
Retail11L11 Inventory that is 11 days old in Bin 11 at the Retail Store 1
Retail 11112 Inventory that is 12 days old in Bin 12 at the Retail Store 1
Retail11L13 Inventory that is 13 days old in Bin 13 at the Retail Store 1
Retail 11114 Inventory that is 14 days old in Bin 14 at the Retail Store 1
Retail2]1.01 Inventory that is 1 day old in Bin 1 at the Retail Store 2
Retail2]L02 Inventory that is 2 days old in Bin 2 at the Retail Store 2
Retail211.03 Inventory that is 3 days old in Bin 3 at the Retail Store 2
Retail2IL04 Inventory that is 4 days old in Bin 4 at the Retail Store 2
Retail2IL05 Inventory that is 5 days old in Bin 5 at the Retail Store 2
Retail2IL06 Inventory that is 6 days old in Bin 6 at the Retail Store 2
Retail2IL07 Inventory that is 7 days old in Bin 7 at the Retail Store 2
Retail2lL.08 Inventory that is 8 days old in Bin 8 at the Retail Store 2
Retail2IL09 Inventory that is 9 days old in Bin 9 at the Retail Store 2
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Table C.2 continued

Term Definition

Retail2IL.10 Inventory that is 10 days old in Bin 10 at the Retail Store 2
Retail2IL11 Inventory that is 11 days old in Bin 11 at the Retail Store 2
Retail2IL12 Inventory that is 12 days old in Bin 12 at the Retail Store 2
Retail2IL13 Inventory that is 13 days old in Bin 13 at the Retail Store 2
Retail21L.14 Inventory that is 14 days old in Bin 14 at the Retail Store 2
DCOutdated01 Shrinkage from Bin 1 at the DC

DCOutdated02 Shrinkage from Bin 2 at the DC

DCOutdated03 Shrinkage from Bin 3 at the DC

DCOutdated04 Shrinkage from Bin 4 at the DC

DCOutdated05 Shrinkage from Bin 5 at the DC

DCOutdated06 Shrinkage from Bin 6 at the DC

DCOutdated(07 Shrinkage from Bin 7 at the DC

DCOutdated(08 Shrinkage from Bin 8 at the DC

DCOutdated09 Shrinkage from Bin 9 at the DC

DCOutdated10 Shrinkage from Bin 10 at the DC

DCOutdated11 Shrinkage from Bin 11 at the DC

DCOutdated12 Shrinkage from Bin 12 at the DC

DCOutdated13 Shrinkage from Bin 13 at the DC

DCOutdated14 Shrinkage from Bin 14 at the DC

Retail1Outdated01 | Shrinkage from Bin 1 at the Retail Store 1
Retail1Outdated02 | Shrinkage from Bin 2 at the Retail Store 1
Retail1Outdated03 | Shrinkage from Bin 3 at the Retail Store 1
Retail1Outdated04 | Shrinkage from Bin 4 at the Retail Store 1
Retail1Outdated05 | Shrinkage from Bin 5 at the Retail Store 1
Retail1Outdated06 | Shrinkage from Bin 6 at the Retail Store 1
RetaillOutdated07 | Shrinkage from Bin 7 at the Retail Store 1
RetaillOutdated08 | Shrinkage from Bin 8 at the Retail Store 1
Retail1Outdated09 | Shrinkage from Bin 9 at the Retail Store 1

Retaill Outdated10 | Shrinkage from Bin 10 at the Retail Store 1
RetaillOutdated11 | Shrinkage from Bin 11 at the Retail Store 1
RetaillOutdated12 | Shrinkage from Bin 12 at the Retail Store 1
RetaillOutdated13 | Shrinkage from Bin 13 at the Retail Store 1
RetaillOutdated14 | Shrinkage from Bin 14 at the Retail Store 1
Retail2Outdated01 | Shrinkage from Bin 1 at the Retail Store 2
Retail2Outdated02 | Shrinkage from Bin 2 at the Retail Store 2
Retail2Outdated03 | Shrinkage from Bin 3 at the Retail Store 2
Retail2Outdated04 | Shrinkage from Bin 4 at the Retail Store 2
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Table C.2 continued

Term Definition

Retail2Outdated06 | Shrinkage from Bin 6 at the Retail Store 2
Retail2Outdated07 | Shrinkage from Bin 7 at the Retail Store 2
Retail2Outdated08 | Shrinkage from Bin 8 at the Retail Store 2
Retail2Outdated09 | Shrinkage from Bin 9 at the Retail Store 2
Retail2Outdated10 | Shrinkage from Bin 10 at the Retail Store 2
Retail2Outdated11 | Shrinkage from Bin 11 at the Retail Store 2
Retail2Outdated12 | Shrinkage from Bin 12 at the Retail Store 2
Retail2Outdated13 | Shrinkage from Bin 13 at the Retail Store 2
Retail2Outdated14 | Shrinkage from Bin 14 at the Retail Store 2
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Appendix D: Additional Results of the Sensitivity Analysis

In Chapter 4, we discussed the results obtained through our simulation model for the base
scenario and the optimal policy. We also discussed the results obtained by conducting the
sensitivity analysis with respect to the forecast error and the transportation lead time. In this
appendix, we provide the results obtained through sensitivity analysis in the form of graphs
indicating the impact of forecast error and transportation lead time on the costs at each individual

echelon and the system.
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Figure D.1: Impact of DC’s Forecast Error on the Cost
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