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Abstract

This thesis presents a new dynamic traffic simulator called DUST, used to investigate new

foundational theory for autonomously reconfigurable cyber-physical systems in the presence

of unexpected disruptions. We focus on transportation networks to develop our methodolo-

gies since it is a prime example of a cyber-physical system that is characterized by distributed

decision-making and is prone to unexpected disruptions. This new simulator investigates the

route choice behavior of cars in an urban environment. It allows subjects to participate as

drivers in virtual city environments directly as well as artificial intelligence algorithms. It pro-

vides a platform for experimentation with various incentive mechanisms and information dis-

semination protocols that are critical for emergency planning during disruptions.
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1 Introduction

1.1 Problem

This thesis is part of a larger investigation for new foundational theory for autonomously re-

configurable cyberphysical systems in the presence of unexpected disruptions. In particular, for

transportation networks agents can be characterized by distributed decision making, and is a great

example of a system that is prone to disruptions. Current methods for examining the effectiveness

of current theories and is usually characterized by generating predictive models of car agent be-

havior by examining collected data and fitting parameters to the distribution modeled. However

this is often inadequate - the data is often incomplete in terms of the metrics captured, such as time

elapsed on a particular road, or traffic conditions on each road at a particular time of day. Other

data lacks particular accuracy to make route-choice tracking easy such as cellphone based infor-

mation, or simply does not cover a large enough area. Also, with natural disasters and terrorist

attacks there simply is insufficient data and it is unrealistic to plan observance of such events.

Thus to help develop the theory we envision the creation of a virtual city testbed, where traffic

flows can be simulated and various route choice behaviors can be implemented in artificial intel-

ligence. Furthermore, we would like to allow direct human interaction with the simulation, to be

able to record and compare real human behavior to that predicted by a theoretical model.

One of the most important applications of this project is that simulating real-time disruptions

allows us to study traffic flow under adverse conditions. For example, a natural disaster or a

terrorist attack that affects city streets can be simulated. The results of such a simulation can

be used to test how different road systems behave in response to unexpected disruptions and

improve emergency management protocols. This thesis focuses on the concrete implementation

of the server component and of the learning artificial intelligence system in the simulator.

1.2 Previous research

This project is at the center of a multidisciplinary approach that includes city planning, modeling

and software development. We use data analysis of map and traffic data combined with theoreti-

cal models of route choice and traffic as a basis for the test bed's programmatic behavior.

In addition to gathering our own GPS data from taxis we have gathered data from cell phones



from the CarTel project[1]. For theoretical models about the natue of traffic equilibria that we wish

to look further into we have [2] and [3]. These theeorize and abstract route choices and traffic flow.

The software we developed here uses this information to generate a real time simulation and view

state.

For our map data, we use OpenStreetMap[4]. This provides a freely available liberally licensed

map with an easy to parse XML format that makes it ideal for our needs. It identifies road seg-

ments, intersections as well as giving very accurate coordinates. Thus the road network topology

can be inferred from this data and imported directly into the simulator.

Two currently available traffic simulators are TRANSIMS[5] and TransCAD[6]. However nei-

ther of these support real time simulation. That is we allow for clients to remotely interact with

the vehicles in the simulation and be able to influence the outcome directly. Furthermore, we al-

low an experimenter to change the simulation dynamically by introducing disruptions into the

road system which allows for interesting situations such as simulating natural disasters, that are

difficult to observe in real life. We would also like a good interface for directly modifying and

subclassing Al agents' behavior programmatically, for investigating different route choice behav-

iors. We would also eventually like to experiment with microtrolling which is also not supported

directly by these simulators.

1.3 Objectives

The goal of the Virtual City Testbed project overall is to provide a simulator to study traffic behav-

ior in response to adverse conditions. We would like the traffic test bed to utilize road path data

and develop route choice models that can control automated vehicles. We also aim to observe the

way real people make driving decisions and how these change with unexpected disruptions, and

to be able to present hints to users about optimal path decision changes if the same conditions

rearise. In particular, we aim to create and improve a new testbed that supports real time disrup-

tions. We allow real human agents get to interact with autonomous agents to study their route

choice behavior. This thesis describes the implementation of the simulation engine and program-

matic infrastructure to support different Al agent models and experiments, as well as the base

model itself.



2 Methodology

2.1 System Overview

Server

Agent Agent (human Client 1
(autonomous) controlled)

Agent Agent (human
(autonomous). controlled)

Figure 1: Client/server model

The simulation system is designed as a client/server model. The state and progress of the simula-

tion are held on a centralized server, where multiple clients can connect and view the simulation

as it unfolds. We will not discuss the client side, and instead will focus on the game server and

learning components.

2.2 Server

The implementation of the server is based on a previous C++ implementation[7]. It is broken

down into several packages. The dust . server . engine package holds the game engine fun-

damentals. The dust . server. lib package holds basic simulated objects such as Cars, Roads

and Intersections. The dust . server. learning package holds all of the implementation of the

learning strategy for autonomously controlled agents and their interfaces. The dust . server. signal

package holds the definition and implementation of the signal/signal handler pattern used by the

simulation to generate and handle various events. Finally, dust . se rve r .main holds the exper-

iments that are run.

2.2.1 Game engine



dust.server.engine

Engine

GameWorld

RoadSystem

Road

dust.server.signal

SignalHandler

SimulatedEntityCar

.........I ........

CarController CarEventListener
LocalLeamingController, WeightUpdateListener

HunanPlayerController

Intersection

dust.server. ib

Figure 2: Server system class diagram with dependencies

The Engine class is the encapsulating class of the simulator. It holds an instance of the current

GameWorld, which is the main data structure that stores the road system model as described

below in section 2.2.2. It keeps track of the current round of the simulation and is responsible for

handling the server timestep forward. It does this by presenting a method to be called sequentially

called runRound () which steps the simulation forward by At the current simulation timestep

specified by the configuration. Thus an experiment is flexible and can either continuously step the

simulation forward, specify a round limit, or run batches of rounds. It also holds an instance of

the networking server used to communicate with clients.

GameWorld is the container class that contains all of the data structures that pertain to the

current road system and world. The GameWorld represents a layer of abstraction between the

Engine and the Cars themselves by presenting an update method that will iteratively update all

the Cars and step them forward in the simulation. Finally, the GameWorld is a SignalHandler,

which will be discussed in 2.2.4. It is a singleton class, and contains an instance of the current road



system as well as a list of all the present cars in the simulation. It also has the random number

generator and stores the current listener for weight update events. A GameWorld is constructed

using a factory pattern, where it initializes the road system to that specified by an OSM file using

an external OSM file loader. It constructs the traffic flow by adding cars to the network. It does

this by constructing a new Car instance and placing it on a particular road and then assigning it a

destination.

Since initially all cars are autonomous agents controlled by Al, it is responsible for instantiating

the correct CarController (in this case a LocalLearningController) and setting the controller as well

as the listener on the car. The GameWorld is also responsible for assigning and revoking cars to

human players, specified by the RemotePlayerEventListener interface. It does this by selectively

maintaining a mapping of which cars are under Al control. It also passes player input received

from human clients to the cars that they control.

2.2.2 Road system model

The road system model is based on Roads and Intersections. Roads are edges of the traffic graph

that maintain a one-to-one correspondence with road segments in the OSM file. Intersections are

the corresponding vertices of the traffic graph. Roads have a start and end intersection, a name, a

speed limit and whether the road is bidirectional or one-way. Roads also know their own length

as well as the cars that are currently on it, which is important for simulating traffic slowdown

and spacing. The Intersections have their ID as well as a GeographicLocation, and a list of roads

that touch this Intersection vertex. Both the Road and Intersection class support functionality for

finding the nearest Car, which locates the nearest Car instance distancewise from this Intersection

or from a particular point along a Road. This helps indicate whether a Car is being blocked by

another one while traversing a Road and has to initiate spacing. It is important to note that since

Roads are bidirectional, entities that traverse them have a boolean direction that is true if they

travel from start to end, and false for the other direction.

The actual RoadSystem itself is constructed as a list of intersections and roads using a factory

pattern. When a RoadSystem is constructed, an OSM file loader is used to first parse the OSM

file. Next, the constructor iterates over the structure the OSM loader presents and constructs new



Intersections according to the IDs. It then constructs roads from the list of Roads and assigns end

points by doing a reverse lookup on the OSM ID of each of the start and end points.

2.2.3 Simulated entities

A SimulatedEntity is one that must be updated at every timestep of the simulation. It presents an

update method that must be invoked once per simulation step and updates the entity state by

simulating forward a change in time of At.

A Car is a SimulatedEntity that is controlled by an agent in the traffic system. A Car has a

controller which directs it which turn to take at each Intersection, an event listener that is used to

record weight updates as well as a reference to the road it is on. The most important part of the

Car class is the update method. A car firstly must keep track of the time it has spent on the current

road segment. It does this by keeping a running total E At of all the timesteps it has experienced

on the current Road. Next, the Car determines whether there is a Car in front of it on the current

Road going in the same direction. If there is then it computes the distance to the leader in front,

otherwise it computes the distance to the next intersection. Now if the distance to the leader is

less than a particular constant corresponding to a two second gap then the car slows down. If the

distance is within 5 units (virtually next to each other) the Car behind stops.

When a Car arrives at an Intersection by traversing sufficient distance it must decide which

of the next Roads to take. To do this it first initially picks any unblocked road that is not the

same as the current one as its default choice, to allow for cars with no controller. Next it asks

its CarController which of the next Roads to take, with according parameters as the Car itself,

the road it is currently on, its current direction, and the current time spent. The CarController

interface specifies that it must return a Road and a boolean direction that the Car can travel next

to. The Car then sets this as the next Road, overriding the default choice as appropriate. Next if

there is a listener installed on the Car, it is called back with the parameters of the Car the old road,

the new road, the direction of travel and the time spent. This allows a listener to be able to record

the time elapsed and use it for later updates to the simulation such as increasing edge weights of

roads that have consistently slow time of traversal.



2.2.4 Signals

There is an implementation of a Signal/SignalHandler pattern in the simulation server. This

is used for triggering edge weight updates in the traffic system asynchronously. The Update-

PushSignal is generated by an experiment for example to indicate that it would like the currently

stored edge weight updates to be pushed into the traffic graph. The GameWorld instance is the

SignalHandler that dispatches incoming signals to the appropriate method. When an Update-

PushSignal is handled in the GameWorld it triggers the GlobalPathInfo to receive all the updates

that the CarEventListener has recorded previously. It then clears all the updates in the listener

queue. This approach allows for easy extensibility as new signals can be easily added and trig-

gered anywhere. For example a signal could be created and triggered when a particular car enters

an intersection or we could trigger a signal to indicate the start of an earthquake that disrupts

particular roads in sequence.

Signals are also used to control traffic flow. When modeling a flux of cars through the network

we generate a Sourcesignal which indicates to add a car to the road network. It takes as pa-

rameters a road, a direction and a destination and it places a Car at that location and initializes

its controller with the target destination. The corresponding signal to remove a Car from the net-

work is called a sinkSignal. It takes as parameters the Car to be removed from the network.

A SourceSignal is usually generated by the experiment framework perioudically to control when

and where Cars enter the road network. This is usually specified by a rate of arrival constant which

counts the number of rounds of simulation between injection of cars. However, SinkSignals are

usually generated automatically, for example when a Car reaches its destination in a CarController

a SinkSignal is generated and immediately processed (using Java's built in exception mechanism)

to sink the Car at its destination.

2.2.5 Human control

The human control on the server-side is implemented via interfaces. The Me s s age Serve r han-

dles all the actual network communication. The simulation server implements the RemotePlay-

erEventListener interface, since we require functional notification of players joining and leaving

the server. This is used to assign cars to human players and revoke these assignments later when



they disconnect. Thus human players take control over an Al car and the control returns to the Al

when they are done. The GameWorld class implements the RemovePlayerEventListener since it

contains the data structure holding the current Car instances.

When a human player takes control of a car a HumanPlayerController instance is created.

This is a CarController that determines the next road a human-controlled car will take depending

on the input received by the server from the corresponding client. When a player decides an

action for the Car he is controlling, a message is sent from the client containing an instance of the

P laye r Input class, whichspecifies the angle as well as desired direction vector of the player. The

GameWorld instance dispatches this to the correct HumanPlayerController, which then decides

the next candidate road to take by the following algorithm which is run when the car reaches an

intersection and has a CarController callback initiated.

Previous road Intersection
p-vector

u-
r i

V

r n

Figure 3: Diagram showing vector path selection under human control.

1. Let pbe player input direction. Compute the unit vector P in the same direction.

2. For each road R, that fans out from the intersection i, compute the vector in that road's

direction. Let the end points of the road be say (u, v). This is necessarily reversed if the

road under consideration may be traversed in the reverse direction, in which case the travel

would start at the road's end. Assuming without loss of generality that the road is not

reversed, compute the directional road vector r- = (v, - us, vy - Uy). Note that these are

positional vectors with their x and y components coming from their GeographicLocations.

3. Compute the unit vector fi for each of the road direction vectors.



4. Compute

r := j : maxp

That is the road vector that maximizes the unit dot product between its direction and the

player input direction. Also record whether the road is reversed or not.

This works since the angle between two vectors u and v is given by cos 0 = v = ft - and so

maximizing this product minimizes the angle between the two directions, thus choosing the best

target road. A custom Vector2 class was implemented for this which provided the unit vector,

length and dot product functions.

2.3 Learning

Glob

RoadSystem

Road

LocalLearningController

alPathinfo LocalPathinfo

VariableGraph ODPair

- -k

Intersection
BaseVertex

Figure 4: Learning subsystem interclass dependencies.

The learning subsystem is characterized by a division of information between global and local

information. Agents when initialized are given a particular origin and destination pair (OD pair)

ODPair



that indicates their start and end locations. Agents start at a particular node and navigate the

road system until they reach their target destinations. Upon reaching their destination they will

attempt to renavigate the road mesh to their start, and thus repeat indefinitely. This simulates a

flow of traffic between one particular OD pair in the network.

When a learning agent is initialized he is given the latest global snapshot of the pathing infor-

mation available to him. This is copied into his local pathing information and will be used for all

pathing decisions afterwards. Whenever an agent traverses a particular road in the traffic system

it records an update of that particular edge weight. These updates and the protocol that is used

to push them are described in section 2.3.3 in more detail. Thus the simulation evolves over time

as agents traverse different roads, record and push different edge weights for these roads thus

affecting the route choice of this agent as well as others.

2.3.1 Implementation

GlobalP at h In f o is a data structure that holds the sum total of all the globally available pathing

information available at any particular point in time during the simulation. It is initialized with a

filename that indicates the OSM file to load. This loading procedure first constructs the associated

RoadSystem and a traffic Graph is created on the RoadSystem by corresponding edges in the

graph with Roads in the network, and vertices in the graph by Intersections. The edge weights

are initialized according to the formula:

w(road i) length(i)
speed-limit(i)

This corresponds to the intial estimated conditions that cars will travel as fast as possible and

there is no other traffic on the roads they traverse. The GlobalPathlnfo contains a path information

mapping - a map of OD pairs to localized information for each OD pair known as ODPathInf o.

This ODPathInfo has a list of pairs of the form (path, probability). Thus GlobalPathInfo contains a

map of origin-destination pair to a path distribution, which is a generic representation of a model

for route choice selection. The distribution is initialized according to the number of paths required

per ODPair - if we have k paths then the probability vector is initialized as [1/k, 1/k,... , 1/k] ie.

uniform.



LocalPathInf o is the corresponding data structure that holds local information. This is a

necessary extra layer due to the restriction of visibility of local traffic information and updates

between agents. There is one instance of LocalPathInfo for every agent there is in the system,

as opposed to GlobalPathlnfo which has a singleton instance. LocalPathInfo holds a copy of the

traffic graph where locally visible changes to the edge weights are applied. It also holds localized

traffic information as well in the form of a localized cost function at the edges. This is a breadth-

first search through the vertices starting at the current location with a fixed depth for the most

up-to-date edge weight. This is used to model how much "look-ahead" a vehicle can have on

local traffic conditions and make appropriate judgements as opposed to pathing chosen at the

very beginning of the journey.

The LocalLearningController implements the CarController interface. It defines the be-

havior of an Al controlled simulated vehicle and must be able to decide upon road changes when

a car arrives at a particular intersections ie. pathing decisions are reduced to turns at viable inter-

sections.Pathing is based on sorting through a collection of possible moves. A move is a potential

next road at an intersection and the associated remaining path. Since the LocalPathlnfo contains

locally visible traffic conditions this can also be utilized to provide a better ranking mechanism.

We can apply a heuristic cost function in order to rank moves. Let Mi denote the ith move and let

r1 , r2 ... , rn denote the road segments along the path, w be the edge weight function and I be the

local weight function. The current heuristic function is given by:

n

h(Mi) = I(ri) + 1 w(rj)
j=2

To preserve the probabilistic nature of the route selection, individual Move instances can inherit

the probabilities associated with the Paths they came from. Now we can describe the road choice

selection algorithm as follows:

1. If at start, sample a list of k appropriate paths and corresponding distribution.

2. Compute the paths that contain the current car's location by searching along the path. The

beginning part of the path is set as the prefix.

3. Look ahead to determine the next possible moves by taking the path and removing the prefix



generated in step 2.

4. Compute the heuristic function on each move as described above.

5. Select the move with the lowest cost heuristic.

A CarCont ro ller must implement a method called roadChanged. This method is called when-

ever a Car reaches an Intersection and must make a decision which is the next Road it will take. It

takes as parameters the Car under consideration, the old Road the Car just came from, the default

next Road in case no selection is made, the boolean direction the car is traveling, and finally the

time spent on the old Road. It must return a Road and a boolean direction as a pair to indicate

which direction the Car should go next.

2.3.2 K shortest paths

We still need a mechanism for choosing some subset of paths between an origin and a destination

from the set of all possible paths. Our currente strategy is to select the k shortest paths through

the road network from origin an destination and use these. This is convenient since this gives us

a well-defined set of paths and the parameter k can be externalized for further experimentation.

The algorithm of choice for computing the k shortest paths is known as Yen's algorithm[8].

An important property of this algorithm is that it finds loopless paths which is crucial for sensible

path generation as it is unrealistic for a real agent to drive in a needless loop through the road

system. It works by first computing the shortest path between the origin and destination (via

Dijkstra's or another suitable algorithm) and then expanding candidate paths as deviations of the

current path that have the same prefix up to the ith node. The next shortest path is found on the

basis of shortest paths that are longer. For a more detailed discussion on the updated algorithm

used see [9].

The library implementation used for our simulator is one described in [11]. This was chosen for its

simplicity in use and that it has an easy-to-use Java interface. However some intricacies arise. For

example, the library causes vertices to be reduplicated whenever a new Graph is created, which

prevents updates from being applied directly to the Graph. This has been worked around by



Figure 5: One example of a shortest path generated shown in Google Earth[10].

modifying the library directly. Another problem is that there is no external way to adjust weights

on edges in a Graph object on the fly, and this was done by adding a method setedge-weight

to the Graph to modify the underlying data structure containing the edge weights directly.

One problem that arose during implementation was that the vertices used by the Graph have

their own internal ID and these IDs must exist in a purely sequential order starting from 1 to N.

This creates difficulties since the original OSM file has unique but nonsequential IDs for the inter-

sections. Thus during the construction phase of the Graph we must create a bidirectional mapping

from the actual OSM IDs to a sequential numbering and use the latter for edge construction. For

an intersection i let ai denote the OSM ID and let bi denote the sequential vertex ID. The solution

is to actually construct an importable textfile of the Graph listing the edges (i, J) as (bi, by), con-

structing the Graph and taking advantage of the fact that Intersections subclass Vertex to restore

the mapping from the bi's to the ai's.



Notice that the k shortest path algorithm, and indeed most graph algorithms, describe paths

as an ordered collection of vertices. However for our application, pathing decisions are made at

the vertices (in our case Intersections) themselves. Hence we must have a vertex to edge decision

conversion to make decisional sense: intersections must know the roads that they are connected

to as well as roads knowing their endpoints so we can do a reverse lookup when necessary. If a

car reaches an intersection t, it can examine the neighboring intersections. Let us call this set the

neighborhood of t, N(t). Since pathing and moves are generated on a vertex basis, tha actual output

of the road selection algorithm is a vertex j c N(t) such that

j := {i : min h(Mi)}
iEN(t)

That is the j that minimizes the movement heuristic cost. We can look up a road that corresponds

to an edge between t and j but there is a slight ambiguity in the case of when there is more than

one road between them, so for now we simply choose the road edge with minimal weight.

2.3.3 Edge weight updates

The distributed nature of many agents pathing through a road system causes traffic conditions

to vary widely over time on various roads. Thus we need a mechanism for keeping track of the

latest edge weights and sending this information as updates to agents. Each agent records the

functional weight of the edge it just traversed in the network. In our case this is the time elapsed

on the previous road when arriving at an intersection.

WeightUpdateListener is a CarEventListener that is notified whenever a car arrives at

an intersection and records the agent's reported edge weight. These weights are immediately

applied directly to the agents local traffic graph. However these updates are not immediately

applied to a shared graph, and so other agents' pathing that takes place will still use the old edge

weights. A push event is used by the simulation to indicate that updates should be applied to

the corresponding graph. When a push event is triggered by a signal being emitted, the updates

are immediately applied to the shared graph. If there is more than one update for a particular

road then the latest update is used and overrides any previous update by any other agent, for

simplicity. This is useful for testing out different information dissemination protocols. In the



multi-staged design, updates are first pushed between one particular OD pair, and then pushed

globally later on, whereas in the prototype the OD pair layer is omitted and just the global push

is used. Similarly, the latest updated weights are pulled whenever an agent embarks on a new or

return journey from its source or destination to take advantage of newer information.

2.4 Infrastructure

The base implementation of the simulator is in the Java programming language[12]. Java was

chosen for the second version of the simulator due to its ease of development over C++ whereas

still retaining most of the performance benefits of a compiled language. Certain infrastructure was

added to make the simulator much easier to modify and run on different platforms. In particular

a logging system based on Log4j[131 was added to make debugging much easier and allow simu-

lation output to be redirected to files for later perusual. The logger allows for different log levels

to be set, for example show all debug output or show only errors, in addition to sectioning output

by class and file. Simulation configuration files were externalized so that parameters to the sim-

ulation can be changed and tweaked without having to recompile. For example, which OSM file

to load and where to output data are controlled through external configuration files. The Config

class allows one to retrieve externally specified booleans, doubles and integers, whether specified

in the command-line, in the Ant built script or in a file.

The build system is built using Ant[14]. This is useful since it allows us to have runtime detec-

tion of the current platform and load the appropriate native libraries dynamically. This allows the

simulation to run seamlessly on all supported platforms (Mac, Windows and Linux), which was

a problem with the C++ version of the simulator. It also makes setting up the project for develop-

ment much more easily as all the necessary libraries are already included and no paths need to be

set, and new ant targets can be defined to run experiments repeatably.



3 Results

3.1 Experiment 1

In our experiment we have a simulated flow of one Al controlled agent that moves continuously

between an origin and destination pre-specified in the simulation. They are chosen randomly but

with a fixed random seed of 121 to give the experiment repeatability. These locations corresponds

to Beacon Hill in downtown Boston. The value of k, the number of shortest paths to generate is

fixed at 5. The Al controlled agent moves initially according to the shortest path. This is since the

route choice selection algorithm should choose that with the minimum move cost heuristic and

the initial conditions assume there is no traffic flow on the graph. However the time elapsed on

each road edge is deliberately skewed to make it appear as if the car is traveling very slowly ie.

experiencing a lot of traffic on these segments. The simulation is run for 100000 rounds with the

default step rate. No update is sent until the 50000th round ie. halfway through the simulation,

when an UpdatePushSignal is created and sent to the GameWorld. we observe the route change

behavior in the Al controlled agent.

The first picture shows the path taken during the first 8 traversals, and the second picture

the path with the next 7 traversals. During traversals 0 through 7 before the updated weights are

pushed we see that the agent attempts to navigate what is ostensibly the shortest path between the

origin and the destination. However during traversals 8 through 14 the path is drastically altered

as the agent uses the newly updated weights and must take a potentially longer path around very

slow (and thus high weight) edges.

3.2 Experiment 2

In this experiment our goal is to investigate the dynamical properties of the simulated system. We

set up a net traffic flow between a source and a sink and observe the traffic density on a specified

road network. Consider the following road network set up:

We construct a flow of traffic by initializing some rate of arrival of cars entering a particular ver-

tex. They are queued on the road containing this vertex. They then attempt to traverse the road



(a) Initial autonomous agent shortest path

(b) Updated path reflecting new edge weights

Figure 6: The change in pathing of an autonomous agent in response to adverse simulated traffic
conditions.
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Figure 7: Network used in this experiment. The roads are labeled 0 through 4 and intersection coordinates
are indicated.

network until they reach their destination after which they are sunk immediately. We can examine

the congestion levels of this flow by looking at the number of cars on a few links along the net-

work. In this experiment's case we can simply look at all the road links to get a full picture of the

congestion. We examine the dynamical behavior for both heuristically choosing the best possible

move at every step versus choosing randomly among the best k moves, and examine the differ-

ences. The simulation was run for 1000 seconds to see the asymptotic state. Edge weight updates

were pushed every 10 seconds and each measurement corresponds to 1 second of simulated time

elapsed. The first link is constructed deliberately long so as to be able to hold a significantly long

queue of cars waiting to enter the diamond test portion of the graph. Every tick on the t axis

repsents one second of simulated time. The y axis for each of the graphs is simply the number

of cars on a particular link. Each graph generated has 6 subgraphs. The first 5 correspond to the

number of cars on each of the links 0 through 4, and the last subgraph is the total number of cars

in the road network. This increases every time a car is sourced and decreased whenever it is sunk.

The top left figure represents the random choice selection algorithm with an arrival rate of 1 car

every 5 seconds. The top right represents the heuristic best choice with the arrival rate 1 car every

5 seconds. The bottom left is the random choice with arrival rate 1 per 10 seconds and the bottom

right is best heuristic choice with arrival rate 1 per 10 seconds. These different arrival rates are

referred to as 1/5 and 1/10 respectively.

One aliasing effect noticed was that once a segment gets a bad reputation by being particularly

slwo for the last car to traverse it before the update push event, then it may never be utilized again.

This effect does not occur with the random choice method. Notice how the utilization of links in

the random choice method has slight oscillations due to natural variation in the number of cars
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Figure 8: Road link density in the network for random and best first heuristics with rate of arrival
a = 1/5
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on each of the two legs, and eventually the simulator gets saturated as indicated by the bottom

graph. The oscillations are a little more prominent on the 1/10 random graph. However for the

best path heuristic it simply chooses the shorter of the two paths and due to successful navigation

it sticks with utilizing only 2 of the segments and not using the other two at all. Notice that both

heuristic methods, random and shortest, get the road network saturated at the same level, 70 cars

for 1/5 and 35 cars for 1 / 10 respectively.

4 Conclusion

In this thesis we have presented the foundations for an extensible traffic simulator with an im-

plementation of a learning strategy for autonomously controlled agents. We have demonstrated

effective route choice modeling and path generation and demonstrated a workable experimental

framework for subsequent testing and expansion. Future work would be to implement new prob-

abilistic learning algorithms within the framework and to generate larger scale tests that involve

multiple human agents interacting at the same time within the simulation. We would also like to

have a system to script disruptions in a controlled manner and this could perhaps use the signal

system introduced in 2.2.4.



5 Appendix

5.1 Configuration options

Property Default value Description

dust.server.onewaystreets true If false, treat all streets as bidirectional

dust.server.random.seed 1337 Random seed to use for simulation

dust.server.osmfile data /boston-subset.osm OSM file to load road system from

dust.server.timestep 1 Change in time to simulate in each sim-

ulated step

dust.server.num-cars 64 Number of cars to initialize in the sim-

ulation

dust.server.kspexport.osm data/boston-subset.osm OSM file to load road system from

dust.server.kspexport.csv input-odpairs.csv Comma delineated file of OD pairs to

find paths between

dust.server.kspexport.kval 5 Number of shortest paths to compute

dust.server.kspexport.output output-paths.csv KSP exporter destination filename

5.2 Experimentation framework

The experimentation framework is designed to make it easy to add experiments. To do so cre-

ate a new main class under the dust . server .main package. Construct a new instance of the

Config class from the command line arguments and set it as the global config. Next, create a new

Engine based on the server osm file and specify the number of cars. Do any other setup required

and then to run rounds of the simulation simply call the method Engine. runRound (). This

can be constructed in a while loop to make it easy to run many rounds at once. Signals such as

UpdatePushSignals can also be generated and sent to the simulation here.

5.3 K Shortest Paths Exporter

An exporter for the k shortest paths algorithm was written to help another part of the project with

MATLAB analysis. It takes as input a comma separated value or CSV file that contains on each

line a new origin destination pair. So inputting 500 OD pairs would create a CSV file with 500

lines each containing two long ID values. This input file is specified as a configuration option as



described in section 5.1. The value of k is also specified in the configuration file. The output file is

another CSV file, where each line is a path. The line takes the form of origin, destination, vertex

1 (which is the origin), vertex 2, and so on until we get to the destination. Each of these values is

the intersection ID specified by the OSM file. Thus if we let n be the number of od pairs and k the

number of paths we desire we expect to have nk lines of output, each an individual path. It is also

possible to output paths in KML (Google Earth) format using the KMl export function provided.
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