
A Widget Library for Creating Policy-Aware

Semantic Web Applications

by

James Dylan Hollenbach

S.B., Massachusetts Institute of Technology (2009)

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 2 4 2010

LI BRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the ARCHIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

A uthor
Department of Electrical Engineering and Computer Science

May 21, 2010

C ertified by

Tim Berners-Lee
3COM Founders Professor of Engineering

Thesis Supervisor

Accepted by.................... .

Dr. Christopher J. Teran

Chairman, Department Committee on Graduate Theses

A Widget Library for Creating Policy-Aware Semantic Web

Applications

by

James Dylan Hollenbach

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

In order to truly reap the benefits of the Semantic Web, there must be adequate tools
for writing Web applications that aggregate, view, and edit the widely varying data
the Semantic Web makes available. As a step toward this goal, I introduce a Javascript
widget library for creating Web applications that can both read from and write to
the Semantic Web. In addition to providing widgets that perform editing operations,
access control rules for user-generated content are supported using FOAF+SSL, a
decentralized authentication technique, allowing for users to independently manage
the restrictions placed on their data.

I demonstrate this functionality with two examples: an aggregator application
for exploring information about musicians from multiple data stores, and a universal
annotation widget that allows users to make public and private comments about any
resource on the Semantic Web.

Thesis Supervisor: Tim Berners-Lee
Title: 3COM Founders Professor of Engineering

4

Acknowledgments

I would like to thank my advisor, Tim Berners-Lee, for the five years of guidance he

has provided me as an undergraduate and then as a graduate student. He has always

encouraged me to think big about my work, and remained unwaveringly supportive

throughout the course of my time as his student.

It was a great experience to work with the students, faculty, and staff of MIT's

Decentralized Information Group. I would like to thank Matt Cherian, Ian Jacobi,

Joe Presbrey, Oshani Seneviratne, Fuming Shih, Jose Soltren, Ralph Swick, Amy

van der Hiel, Sam Wang, and K. Krasnow Waterman for the many discussions and

moral support. I also will single out Lalana Kagal, who provided a steady stream of

constructive criticism and useful commentary throughout the course of my research.

Special thanks go to my friends from outside of lab, who supported me throughout

the stress of finishing my final year at MIT. Particular thanks go to Tyler Hutchison,

who was very good at pretending to understand when I came downstairs at 2 AM

to announce that I had figured out a bug, and my girlfriend, Alison, who had the

foresight to live in California this year in case those moments came at 4 AM. Thanks

also go to Violetta Wolf, who bought me a pizza one time.

Finally, I'd like to thank my parents, who, in addition to their unconditional love

and support, let me use the computer enough that I made my first Website at age 9

in 1996, and my sister, who gave me no choice but to make that first Website when

she beat me to the punch days earlier. The rest is history.

This work was supported by a National Science Foundation Cybertrust Grant and

an Air Force Office of Scientific Research Grant.

fi

Contents

1 Introduction

1.1 O verview . - -

2 Related Work

2.1 Browsing the Semantic Web

2.1.1 Faceted Browsing

2.1.2 Graph Browsing

2.2 Editing .

2.2.1 SPARUL and Live Updates

2.2.2 Integration with Non-Semantic Web

3 Tools

3.1 Javascript RDF Library

3.2 Javascript Development Toolkit

3.3 RDF Access Control

3.4 Working with Remote Data

4 Architecture and Implementation

4.1 Introductory Example

4.1.1 Loading Data

4.1.2 Selecting a Widget

4.1.3 Displaying the Data

4.2 Common Widget Features

Applications

25

25

26

27

28

31

31

33

33

34

34

4.2.1 Loading Data

4.2.2 Processing Data

4.2.3 Modifying Data

4.2.4 Access Control Data

4.2.5 Events and Callbacks

4.2.6 Appearance

4.3 Built-In W idgets .

4.3.1 Labels and Simple Editing

4.3.2 Tables for Viewing and Editing Related Triples

4.3.3 Widgets Based on Form Elements

4.4 Extending the Widget Library

4.4.1 The rdfwidget Base Class

4.4.2 Matching, Templating, and Query-generation

4.4.3 Library Functions Based on Options

4.5 RDF Access Control for Named Graphs

4.5.1 Access Control Ontology

4.5.2 Flow of Authorization

5 Examples

5.1 RDF Annotator

5.1.1 Concept

5.1.2 The Annotator Application . . .

5.1.3 Benefits of the Annotator

5.2 Peel Sessions Browser

5.2.1 Concept

5.2.2 The Peel Application

5.2.3 Benefits of the Peel Application .

6 Discussion

6.1 Complexity and Expressivity .

6.2 Cross-Browser Security and CORS

. 35

. 38

. 39

. 41

. 43

. 43

. 43

. 46

. 47

. 49

. 50

. 50

. 52

. 54

. 54

. 5 7

. 5 7

. 5 8

. 6 0

. 6 1

. 6 1

. 6 2

. 6 4

6.3

6.4

6.5

7 Contributions

A Links to Source Code, Documentation, and Examples

Level of Inference .

Form Complexity .

Future W ork .

6.5.1 Linking in with Other Libraries

6.5.2 Custom Form Generation Using the Matcher .

6.5.3 Optimization of Update Processing

6.5.4 SPARQL Diffs

6.5.5 ACL Integration in Widget Interfaces

. 68

. 70

. 71

. 71

. 71

. 72

. 73

. 73

10

List of Figures

2-1 Examples created with Exhibit.

2-2 A property table in Tabulator.

2-3 Editing data in the Tabulator Firefox extension. . .

3-1 Flow of information in a FOAF+SSL Request. . . .

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

A simple program written using the widget library.

A function for filtering triples chosen for display.....

Defining endpoints for different sources.

A pair of rules written with the ACL Ontology.....

An annotator widget instantiated with ACL.

Node selection in the widget library

A label and image element for Elvis Presley.

Editing a property displayed in an edit widget.....

The resource widget.

The selecttable widget.

The radio widget. .

The createinstance widget.

A custom widget created using the matcher object. . .

An example SPARQL query generated by the matcher.

5-1 A running instance of the annotator application.....

5-2 The John Peel application.

6-1 A form generated by the matcher.

. 32

. 37

. 38

. 40

. 41

. 42

. 45

. 46

. 47

. 48

. 48

. 49

. 51

. 53

72

12

List of Tables

4.1 The set of predefined ACL rules provided with the widget library. . . 40

4.2 Descriptions of the widgets provided with the widget library. 44

14

Chapter 1

Introduction

The primary purpose of the Semantic Web is to model and link data using similar

mechanisms to those that are currently used for documents on the Web. The Semantic

Web uses these mechanisms to provide a machine-readable network of concepts that

can easily be shared between applications. By design, any kind of structured data

can be published on the Semantic Web: social networks, protein structures, and

constitutional law could all potentially be mentioned within a few short hops of one

another. The broad vision of the Semantic Web is that one day all of the data on the

Web, whether it be medical records, social networks, or encyclopedia articles, will be

as well-structured as the vast amount of hyperlinks between documents on the Web

today.

If we are to truly benefit from the data available on the Semantic Web, we must

first overcome two major obstacles:

1. Semantic Web data is hard to visualize. While there exist certain interface

techniques such as property tables and faceted browsing for generically display-

ing data, neither of these options necessarily provides an optimal solution to a

given interface problem. A scientist, for example, may wish to provide methods

for searching and displaying brief descriptions of proteins based on certain fixed

properties, or a Web hacker may wish to write a mashup for exploring and listen-

ing to new musicians. To develop truly powerful applications on the Semantic

Web, developers need tools that abstract out many if not all of the gritty details

of working with raw, machine-readable data, while still allowing developers to

freely create interfaces that are best suited to their working domain.

2. Not all Semantic Web data is open data. The fact that the structure of

the Semantic Web allows for data to be shared between applications does not

imply that all data must be shared between applications. More often than not,

developers need to ensure that the data entrusted to them by their end-users is

protected in a way that respects the end-users' demands-for example ensuring

that a user's bank statements are kept private, or that their family photos

are only viewable to family and friends. However, since the Semantic Web

fundamentally aims to support the sharing of information between applications,

it seems only logical that any policy system for sharing data on the Semantic

Web should work within the Semantic Web as well.

The widget library developed over the course of this thesis takes steps toward

resolving both of these issues. The library provides an easily deployed set of Javascript

widgets that read and write Semantic Web data, allowing developers to pull in and

manipulate data from multiple remote sources on the fly, exactly as the Semantic Web

was designed to function. Additionally, the library supports the use of access control

rules for user-generated data, providing information security when dealing with data

in such an open environment.

Wherever possible, the widget library has been developed with the goal of being

accessible to Web developers with little to no Semantic Web experience. Layout and

templating rely entirely on the features provided by HTML, CSS, and Javascript. The

library is meant to be used by any Web developer to add Semantic Web capabilities

to their pages without providing any indication to their end-users as to what is going

on under the hood.

These capabilities are demonstrated by way of two examples. The first, a universal

annotation system for describing any resource on the Semantic Web, allows developers

to specify the set of access control rules under which users may post shared comments,

allowing for annotations to be shared between individuals, groups, or the entire world.

The second, an application for viewing information about musicians and their record-

ing sessions with John Peel, aggregates data from multiple sources into a unified,

highly-customized user interface.

1.1 Overview

Chapter 2 provides an overview of related work in viewing and editing structured data.

The remainder of this thesis focuses on describing and discussing the main body of

work. Chapter 3 describes the pre-existing tools that play a role in the library's

functionality. In Chapter 4, a detailed description of the widget library's architecture

and implementation is provided. Chapter 5 follows with a set of working examples

using the library. Chapter 6 discusses the tradeoffs made in the development of the

system and investigates possible future paths for expanding the library. Chapter 7

provides a summary of the contributions made with this work.

As the main body of work for this thesis is the source code of the widget library,

there is demonstrative code throughout the remaining chapters. Links to the widget

library's source code, the examples used in Chapter 5, many other examples for each

widget, and documentation are located in Appendix A.

18

Chapter 2

Related Work

This chapter provides an overview of related projects in the field of viewing and

editing Semantic Web data, as well as more recent efforts focusing on integrating the

Semantic Web with traditional Web applications. While this review is by no means

exhaustive, it will provide an understanding of the strengths and weaknesses of some

popular methods for working with structured data on the Web.

2.1 Browsing the Semantic Web

Several different approaches have been taken to displaying Semantic Web data, but

the two most predominant approaches have been faceted browsing and graph brows-

ing. Both approaches work well because of their complementary generality: whereas

faceted browsing lends itself well to efficiently exploring a predetermined set of struc-

tured data, graph browsing allows users to openly explore the Semantic Web on the

fly.

2.1.1 Faceted Browsing

Faceted browsing is a popular technique for browsing a set of objects that have a high

number of properties in common. For example, a data set containing information

about the past presidents of the United States might contain information on each

tn run*,ng from T5M Ofc Tippit casMQ G
6 tw wsnu df, 4 o,* 5 Hosptaif icd Ccals Q TK pronce~nc

___________ _o TSDtdered cut off Pohce c"r out

a w QPoe radt a9 d5ce

PC S Sw05pect's 6 crmnCf p at :e radlo

ffbe and boards tax

shot
, t d.

No #(1) non t &

Figure 2-1: Examples created with Exhibit. Left, an example of a set of facets for
choosing which data to display. Center, a timeline of the day of JFK's assassination.
Right, a map of the flags of the world.

president's political party, religion, age when elected, and year of birth.1 Faceted

browsing relies on these common features to quickly generate interfaces for filtering

the data. Each of these filters is called a facet. A facet for a president's political party

could, for example, feature the properties "Democrat", "Republican", and "Whig",

among others.

Exhibit [12] is perhaps the most popular library for creating faceted browsing

interfaces for structured data. Exhibit allows developers to create interfaces out of

small structured datasets, including maps for spatial data and timelines for temporal

data, as in Figure 2-1. By design, Exhibit is meant to give people with little to

no programming experience the opportunity to create highly attractive and usable

interfaces. Exhibit marks an important deviation from previous attempts at creating

Semantic Web interfaces in that it focuses heavily on user interaction rather than

emphasizing the structure of the data; indeed, much of Exhibit's success can be

attributed to the usefulness of a good faceted browsing interface, rather than any

particularly useful aspect of globally linked data (Exhibit can, for example, provide

visualizations using data from a CSV file).

Without a doubt, the faceted browsing paradigm is a powerful one. However,

many Web applications, Semantic Web or not, do not require such an interface,

and cannot make use of Exhibit-particularly those that require complex interaction

'An example of this functionality implemented in Exhibit can be found at http://www.
simile-widgets.org/exhibit/examples/presidents/presidents.html

between components, as would normally be accomplished through Javascript. Addi-

tionally, faceted browsing is primarily geared toward drilling down a set of results in

a pre-determined data set, and often does not make sense in applications where users

wish to perform tasks such as exploring a live social graph.

While libraries such as Exhibit give much greater power for creating interfaces

to those with little or no programming skill, they are not particularly geared toward

developers who are trying to create a unique user experience in their problem domain.

Though Exhibit and others focus on providing an excellent interface that works right

out of the box, there is still a necessity for more broadly customizable and extensible

interface libraries that can function with the Semantic Web.

2.1.2 Graph Browsing

Another common method for looking at Semantic Web data is graph browsing, as

exemplified by Tabulator [6]. Other examples not discussed here include sig.ma [27]

and the Disco Hyperdata Browser [7], which generally draw inspiration from Tabula-

tor. In graph browsing interfaces, resources are displayed in the form of a property

table as shown in Figure 2-2. Users can navigate between resources by clicking on

the properties listed in the property table. New resources are requested as the user

requests to view them, and the data loaded is aggregated into a single local store. As

the user browses through more and more data, they may cause documents containing

additional information about previously viewed resources to be loaded. This new

information is aggregated and included in the respective resources' property tables.

Additionally, Tabulator allows users to edit data if the server sends a special response

indicating that a given document is editable. In this way, graph browsing interfaces

allow users to actively browse the Semantic Web, discovering and creating new data

on the fly.

Graph browsing is advantageous in that it allows users to actively browse the

Semantic Web, but the property table interface that accompanies such browsers be-

comes overloaded. Certain resources, such as a description of The Beatles, can quickly

grow to the point where the property table spans several screens of text. Tabulator

Figure 2-2: A property table in Tabulator. The subject of the table is the Tabulator
project itself. Each predicate is displayed on the left side of the table (Bug-database,
Description, Developer). Each node with a circle and triangle on the left represents
another resource which can be expanded in place for further investigation.

attempts to mitigate this problem by introducing "panes", small interface widgets

that are displayed when certain pieces of data are available for a resource: a "so-

cial" pane is displayed when viewing a person, and a "justification" pane is displayed

when viewing the output of a reasoner, for instance. Additionally, Tabulator provides

"views" which allow the user to jump from a query generated during graph browsing

to maps, data tables, and timelines, allowing for the data to be explored in more in-

tuitive ways. While many of these panes and views are highly indicative of the sorts

of applications that developers should be able to create with the Semantic Web, they

are somewhat out of place as parts within a larger application, and the computational

overhead for choosing which panes to use can weigh down the application. Even so,

Tabulator's back-end library provides many useful functions for manipulating RDF

in Javascript. Section 3.1 discusses why the Tabulator Library's established ability

for creating panes made it the clear choice for back-end data handling for the widget

library developed in this thesis.

2.2 Editing

2.2.1 SPARUL and Live Updates

Though it is still going through the standardization process, SPARQL Update (SPARUL) [24]

has risen to be the de facto standard in Semantic Web data authoring. SPARUL pro-

v Tabulator
x
Bug-database *4Dhttp://dig.csail. mit. edu/issues/tabulator/
Description The Tabulator is a generic data browser. It provides a way tc

views is a snap. The Tabulator also has features for the pow
be easily combined with custom web pages to add data bro
Tabulator is open source under the W3C software license.

Developer PO Joe Presbrey
C Kenny Lu
C@Adam Lerer

VfDavid Li
x
Type RPerson

Figure 2-3: Editing data in the Tabulator Firefox extension.

vides an extension to the SPARQL query language that allows for data to be dynam-

ically inserted into and deleted from the triple store exposed by a SPARQL endpoint.

Despite its utility, the support provided for SPARUL in client-side Web development

libraries remains relatively lean. The Tabulator Extension [5] actively supports au-

thoring via SPARUL when viewing data in an outline, as shown in Figure 2-3, but the

fact that SPARUL is not yet normalized across all of the major server-side libraries

has limited the utility of such editing. Nevertheless, the prevalence of some level of

SPARUL in server-side SPARQL implementations and its ongoing standardization

process makes it the clear choice for Semantic Web authoring.

Extending existing structured data libraries to support RDF and SPARUL is

a relatively straightforward task. For example, despite Exhibit's lack of focus on

globally linked data, it is not fair to suggest that making the move from a structured

JSON data file, as Exhibit uses, to some more expressive RDF data is necessarily

a difficult operation for a skilled developer. Indeed, more recently Exhibit has been

extended to implement a locally-editable data store [14], and the move from there to

a version that can write out to SPARQL stores on the Web does not seem far-fetched.

It seems more fair to say, then, that the real challenge lies in developing the portions

of a library that allow users to edit data at the level of complexity permitted on the

Semantic Web.

2.2.2 Integration with Non-Semantic Web Applications

Recently, efforts have been made to transfer application data generated on the Se-

mantic Web back to traditional Web applications, as accomplished by the Pushback

vJames Hollenbach
x
AIM chat ID notjimhollenbach
Current project *tTabulator: Exploring
Family-name Hollenbach
Knows o JOe r~t

Name
Nickname)iomr - =

inmhn

project [10]. The primary function of Pushback's RDForms language is to generate

the correct set of inputs for a legacy service (such as a Twitter update) from RDF

data. While the RDForms language is highly effective at describing the intricacies

of the operations to be performed on legacy services, the syntax overhead for get-

ting these conversions right is probably too high to include in a library geared solely

toward the Semantic Web. Nevertheless, as the Semantic Web grows in popularity,

services like Pushback will probably become helpful in interfacing with those services

that continue to hold out on publishing data via RDF and SPARQL.

Chapter 3

Tools

This chapter describes the technologies used in the implementation of the widget

library in preparation for Chapter 4, which describes the architecture of the widget

library itself.

3.1 Javascript RDF Library

The Tabulator RDF Library serves as the back-end data store in the widget library.

Originally written in 2005, the Tabulator Library has over time grown to house a

stable core of RDF processing functionality. It features RDF/XML and N3 Parsers

(an RDF+JSON parser was written for the purposes of this thesis), and a host of

convenience functions for querying over the RDF store. Most notably, the Tabulator

library implements "smushing", which allows for resources to be equated according to

OWL [15] sameAs properties, functional properties, and inverse functional properties.

This feature proves indispensable when dealing with resources coming from across

the Semantic Web, as it allows for data from different sources such as the musician

data seen later in Section 5.2 to be merged and reasoned about as a single entity.

Additionally, many of the panes developed with the Tabulator Library in the

Tabulator Extension are highly representative of the sort of interface that might

be created by a developer using a quality Semantic Web widget library: the panes

available are geared toward social networking, blogging, and picture sharing, among

many others. This shows that Tabulator's functionality is already able to support

the types of interfaces to be supported by the widget library.

But while the back-end functionality of the Tabulator Library is time-tested and

relatively stable, Tabulator's panes share very little interface code-instead, they each

implement their own user interface features that are too highly tailored to be easily

abstracted into a library. This has led to a large amount of bloat and duplicated code

in the Tabulator pane library. For this reason, Tabulator made an obvious choice for

the back-end functionality of the widget library, but at the same time particularly

exemplifies the need for a unifying widget library for interface development.

Finally, it is worth noting why the Tabulator library was chosen over rdfQuery [29],

essentially the only other feature-rich Javascript RDF library. While rdfQuery pro-

vides a large number of highly useful shortcuts for querying RDF data (In fact, some

of rdfQuery's functionality was mimicked on top of the Tabulator library, as will

be shown in Section 4.4.2), rdfQuery is primarily geared toward handling RDFa [1]

data embedded in a single page. It does not natively provide provenance tracking

or smushing, which are key components of developing a library geared towards data

aggregation. While the syntactic features of rdfQuery are useful out of the box, it still

lacks some of the key features that Tabulator provides for working with the Semantic

Web in real time.

3.2 Javascript Development Toolkit

The jQuery [21] Web development toolkit provides an excellent lightweight framework

for Javascript development. In particular, the jQuery UI library's syntax for creating

new widgets is particularly useful in the context of the Semantic Web widget library.

The jQuery UI library provides a base Widget class that can quickly and easily be

extended to work directly within the jQuery syntax, providing garbage collection and

library functions as built-in features of widgets. In Section 4.4.1, I will show how the

jQuery UI widget class was extended to provide a base class for quickly developing

Semantic Web widgets.

3.3 RDF Access Control

In order to provide a library that works with real-world applications, it is necessary to

support some form of access control. To be secure, access control must be handled by

the server sending and receiving data, but it is still helpful to users if the interface they

are using has some knowledge of how the authentication process works. Therefore,

while this section tends to focus more on server-side issues of RDF access control,

these issues had broader implications in the development of the widget library.

A user's identity plays an important role in any decentralized Web application

that wishes to make use of user profiles or access control. In order to decide what

information should be displayed to a given user requesting data, the server must first

know who the user is. Once the user is identified, their identity can be used to per-

form any of a large number of customizations that are based entirely on Semantic Web

data. A user's FOAF profile, for example, may be used to provide context around

resources, such as "The WWW Conference, which you attended last week" or, "Joe,

your friend from high school". In decentralized systems, there is no central authority

that can determine a user's identity and thereby provide personalized features. In-

stead, protocols must be defined that allow different providers to authenticate users,

regardless of where their identity may originate from.

FOAF+SSL [28] uses client certificates to authenticate users . This functionality

relies on the placement of a user's public encryption key in both a certificate and

a remote RDF file stored on a Web server. Additionally, the certificate is created

with the URI for the location of the remote RDF file (called the user's "WebID")

stored in an auxiliary field. When a user sends a FOAF+SSL certificate to a server,

the server identifies the remote URI, pulls down the public key from that URI, and

compares it with the public key in the user's certificate (See Figure 3-1). If the keys

match, the user is authenticated as the person associated with the public key-WebID

pair described in the certificate. The server can then query itself about the user's

access permissions (here, with SPARQL) before finally returning a response to the

requesting user.

SSL+GET
HTTP GET

HTTP 200

Figure 3-1: Flow of information in a FOAF+SSL Request. The three components

are a user (left), the server the user is trying to access (center) and a server holding
the user's FOAF file (right)r

The advent of FOAF+SSL has proven very useful in the development of RDF-

based access control systems. Recent work within the Decentralized Information

Group at MIT has led to the development of a full access control implementation on

top of Apache [11]. This access control system performs document-level access control

using rules written in RDF. The same rules are used in the widget library, but, as

will be described in Section 4.5, it was necessary to extend the access control system

to work at the named graph level in order to operate more readily with SPARQL

endpoints. Interested readers will find a more complete description of the RDF ACL

system as well as FOAF+SSL in [11].

3.4 Working with Remote Data

Since the widget library needs to load remote resources from the Semantic Web in a

browser's sandboxed Javascript environment, a method for loading remote resources

within the browser is required. There are two possible options for this, both of which

are used in the widget library: the relatively new Cross-Origin Resource Sharing

(CORS) specification [30] and JSON with padding (JSONP) [13].

The CORS specification, though not yet standardized, is largely supported in

the latest versions of all of the major Web browsers [20]. It operates by sending

additional HTTP headers to the target server, which indicate to the browser and the

server that a cross-origin request is being made. The receiving server then has the

option of either honoring the request, or rejecting it on the basis of its origin. As

it becomes more broadly adopted, the CORS specification will be extremely useful

for servers implementing public SPARQL endpoints who wish to allow Semantic Web

developers to freely query their data; by receiving direct requests from the user,

servers implementing CORS can use any authentication scheme while still sharing

data with remote resources.

But for servers that do not yet implement (or do not wish to implement) the CORS

specification, there is always the option of using a proxy server to provide a JSONP

translation of any data available. JSONP uses a callback function to load data from

an external Javascript object: when the script is loaded, the callback function is called

with the remote data as an argument. The Talis Metamorph [2] project provides a

Web service for converting between different RDF syntaxes, including RDF+JSON.

Since JSONP data can be loaded from cross-origin resources in any browser, the use

of a single remote Metamorph server allows developers on any domain to request

data from any public RDF resource on the Web. However, working with Metamorph

has one obvious drawback: since the data is funneled through a proxy server, it is

impossible to perform authentication with any third-party data stores that contain

secure information.

The combination of CORS and Metamorph allows for most RDF resources on the

Web to be loaded remotely. Ideally, future browsers will allow users to better manage

their own identity when sending information to remote resources, making CORS a

more secure and efficient option than remote JSONP. As the CORS specification

moves toward completion, browser developers have already begun considering how

such a system and the corresponding shift in demand for identity management would

factor into their user interfaces [9].

It is important to note that these techniques are only required due to the se-

curity measures put into place by browsers. If an application developed with the

widget library is used in a privileged environment, such as a Firefox extension or a

mobile phone application, the CORS and Metamorph mechanisms will simply never

be activated, since these environments will allow the widget library to freely generate

cross-origin requests.

Chapter 4

Architecture and Implementation

This chapter describes the architecture and implementation of the widget library.

It begins with a simple example and a summary of the common features shared

by the provided widgets. Then, a description of several key pre-defined widgets

is provided, followed by a description of the inner workings of the library and the

functions provided for extending the library.

4.1 Introductory Example

As an introduction to the general functionality of the library, this section dissects a

simple program for displaying all of the acquaintances found in a given data set. The

example requests data from two different documents describing people and displays

all of the "X knows Y" acquaintance relationships found.

The widget library's functionality can be accessed both from HTML and from

Javascript. The HTML in Figure 4-1(a) and the Javascript in Figure 4-1(b) can

each separately produce the same output, shown in Figure 4-1(c). The remainder

of this section steps through each line in these example programs and explains their

contributions in producing the output.

01 <html xnr.s=" hr tn ://www_ ,l. T3.cra/99xtl xnn v="hrttl://he ea- i-.te du12OO9/ C js#4>

02 <head>
03 <!--Data sources-->

04 <link href=" p:/v e ited u/j3ambo/%T /fredgrd f re I=s-rdat'a"></link>

05 <link dr="http//e.i d b / r re= a:data"></link>
06 <--Scripts-->
07 <script type='Itet /jv, :avsript" i rc= e r "z"></script>
08 <script type="tex/jvascript" sr=rdEwiets. 3></script>
09 </head>
10 <body>
11 <p>A list of people where the left knows the right.</p>

12 <div inips" r:idge=triplelist"

13 />precat=fofkvs- />

14 </body>
15 </html>

(a)

01 $(document).ready(function()

02

03 $. rdf widgets. load ("http://ueb. uit edu/j3avdho/ww/red. r df f red");
04 $. rdf widgets. load ("http:/ nmit. edu/ jambIo/w /aborfK aio ;
05 $(#riendships").triplelist((predicate: "foafknoTs"));

06

07));

(b)

A list of people where the left knows the right.

Fred Flintstone [Barney Rubble
Fred Flintstone Wilma Flintstone
James Hollenbach Adam Lerer

James Hollenbach [David Sheets
James Hollenbach Fred Flintstone

(c)

Figure 4-1: A simple program written using the widget library. Both program (a),
written in HTML, and program (b), written in Javascript using jQuery, can produce
the same output, shown in (c). The example in (b) simply requires the same Javascript
script tags as (a).

4.1.1 Loading Data

First, data must be loaded into the library. This can be accomplished by including

data in a link element, as on lines 4 and 5 of the HTML example. In this case, two

documents are included-a pair of user profiles that use the FOAF ontology. Data

sources have the rel attribute set to sw:data, which indicates that those elements

are specifically intended to be used as data sources. Alternatively, the Javascript code

allows data to be accessed dynamically using the static library functions defined under

the jQuery namespace $. rdfwidgets. The load function used in lines 3 and 4 of the

Javascript example will load any URL containing RDF data.1 In both the HTML

and Javascript cases, the library will attempt AJAX and CORS requests before finally

resorting to the Metamorph proxy in order to load the data sources listed. The net

result is that the widget library's local data store will combine the data from both

sources into a single, unified store.

4.1.2 Selecting a Widget

Now that the data has been loaded, it may be processed and displayed to the user.

In this example, the program simply finds the set of triples that match the form "a

knows b" and displays the matches in a table. To accomplish this, a widget called the

triplelist is used. The triplelist widget simply finds the a of matching triples

in the data store, given a set of constraints. To do this from HTML, the sw: widget

attribute is used, as shown in line 12 of the HTML example. This attribute's value

indicates which widget will be used. Any options to be passed into the widget can be

passed using the prefix sw followed by the option name. In this case, the predicate

option is set in order to indicate that the widget should display the set of triples with

the predicate f oaf :knows. The Javascript code to invoke the same widget, shown in

line 5 of the Javascript example, uses a jQuery selector to choose the set of DOM

elements to draw the widget into. Otherwise, it uses the same options as the HTML

example, which are provided in an anonymous object.

'Currently, parsing and direct loading is supported for RDF+XML, RDF+JSON, and N3. The
Metamorph proxy supports RDF+XML, RDF+JSON, N3, and RDFa.

4.1.3 Displaying the Data

Once a widget has been invoked, the library handles the display process internally.

All of the native widgets provided, including triplelist, will automatically update

themselves as new data is loaded. This means that if one of the two documents

requested for some reason takes a long time to be served, the widget library will

simply display the acquaintances found in the data loaded thus far; optionally, the

developer may have a status icon display whether or not all data sources have finished

loading by listening for a custom rdf loaded event or by using an optional callback

argument to the load function. Finally, the set of CSS classes provided for each widget

is well-defined, allowing for the data table to be styled to taste. In the end, the code

provided in Figure 4-1 displays the five pairs of people related by the f oaf knows

property.

This admittedly simple example serves only as an introduction to the widget li-

brary's basic functionality. The following sections describe the default widgets avail-

able as well as the potential for extending the widget library in detail.

4.2 Common Widget Features

This section outlines the key features shared between the widgets provided in the

widget library. As was explained in Section 4.1 and demonstrated in Figure 4-1,

most of the functionality of the widget library can be achieved through equivalent

expressions in both HTML and Javascript.

4.2.1 Loading Data

In order to provide any useful output, the widget library must first be supplied with

a set of data sources. These data sources are loaded into a unified local store which is

then used for displaying information in widgets. The primary methods for importing

data are the load Javascript function and the rel="sw: data" HTML attribute. Using

either of these methods will activate the widget library's chain of strategies for loading

resources. By default, the library will obey the MIME type sent in the server's

response when processing data. If no MIME type is found, the library checks to see

if the type attribute is set for the source as a backup. This property takes on values

describing the MIME type of the data to be loaded, such as application/rdf+xml

or text/n3. If the MIME type cannot be determined, or if the request fails, it

is assumed that the resource cannot be loaded without the aid of the Metamorph

proxy. Regardless of the outcome, a callback is fired after the request completes,

indicating its success or failure.

The loading of data is treated as a live process. Widgets are expected to be able

to handle the fact that new data may be loaded asynchronously after the widget is

instantiated. Whenever a new data source loads, every widget's refresh function

is called, allowing for the widget to react to the new data, if necessary. Optionally,

however, the static option can be used to indicate that a given widget should never

be updated when new data is loaded.

4.2.2 Processing Data

Unification and Smushing

Sometimes, Semantic Web documents can use different URIs to describe exactly the

same entity-for example, The Beatles are identified with the URI http://dbtune.

org/musicbrainz/resource/artist/b1Obbbf c-cf 9e-42e0-be17-e2c3eid2600d in

the MusicBrainz RDF database [16], and the URI http://dbpedia.org/resource/

TheBeatles on DBPedia [4]. These identical entities can be linked together using

a set of properties defined in the OWL ontology using a process called "smushing".

The Tabulator Library implements smushing automatically for all data loaded into

the widget library's internal store. If two resources are related by the owl: sameAs

property, then they will be treated as equivalent when data is requested about either

resource. For example, if a resource widget is created using the MusicBrainz URI

above, and the store has equated the MusicBrainz and DBPedia URIs due to the

discovery of an owl: sameAs relation, then all of the triples known to describe the

DBPedia URI will be displayed in addition to the data describing the MusicBrainz

URI. Currently, a developer must explicitly request that sameAs relations are followed

and loaded into the store. This prevents situations where sameAs relationships cause

huge amounts of remote data to be requested automatically.

A similar process is followed if two URIs share an owl: functionalProperty or

owl: inverseFunctionalProperty. These properties are specially defined properties

that uniquely identify an entity-for example, a user's f oaf : mbox is meant to be a

private E-mail inbox used only by that user. Therefore, if two entities share the same

f oaf : mbox property, then they can be assumed to be the same.

Data Filters

Because the data loaded into the widget library can potentially come from multiple

different documents spread across the Semantic Web, not all of which are necessarily

trusted, it is important to provide some control over which information is displayed

in certain widgets. For example, when showing a user what is supposed to be a

summary of their own FOAF profile, it would be in poor judgment to show data

originating from a random source that contains arbitrary statements about the user.

To help combat this issue, the widget library provides both source-based filtering and

triple-based filtering options on each widget, shown in Figure 4-2. When a widget

is created, the set of data sources it uses can be specified using either the sources'

absolute URIs or an optional plain-text name attribute that can be used to quickly

refer to datasources. This will cause the widget's processing code to only be provided

with triples originating from those sources. Alternatively, a f ilter function can be

specified. The f ilter function is called once for each triple that is to be displayed in

the widget. If the filter function returns false for a given triple, then that triple is

not displayed in the widget's final output. These two filtering options provide coarse

and fine-grained filtering for widgets.

function myFilter(triple) {

if(triple.predicate.uri === "http://xmlns.com/foaf/0.1/knows" &&

triple.object.uri.indexOf("http://web.mit.edu") ! 0) {
return false; //reject this triple.

}

return true; //accept this triple

}

$. rdfwidgets. load("http://web.mit . edu/jambo/www/foaf . rdf#jambo",
{name: "jambo"});

$.rdfwidgets.load("http://example.com/someresource.rdf#jambo",
{name: "example"});

$("#someelement").resource({
subject: "http://web.mit.edu/jambo/www/foaf.rdf#jambo",
filter: myFilter,

sources: ["jambo"1});

Figure 4-2: A demonstration of the various filtering options available in the widget
library. A function for filtering triples, myFilter is used. This example rejects any

triple that describes an acquantaince who does not have a URI from within the

MIT Web space, which might be useful in an application geared towards the MIT

community. A named source, j ambo, is used as the only data source, so data coming

from example. com will not be used in display.

<link rel="sw: endpoint"
href="http: //jambo.xvm.mit .edu/sparql"></link>

<link rel="sw:data"
href="http: //www. example. com/f oo"></link>

<link rel="sw:data"
href="http: //www. example .org/bar"
sw: endpoint="http ://www. example. org/sparql"></link>

Figure 4-3: Defining endpoints for different sources. Here,
j ambo. xvm. mit. edu/sparql is defined as the default endpoint. The data source
on example. com has no endpoint defined, so data edited from that source will be
written to jambo.xvm.mit. edu/sparql. However, the data source on example. org
has its own endpoint defined, so any data edited that originates from example .org
will instead be written to the example. org/sparql endpoint.

4.2.3 Modifying Data

Endpoints

When a widget creates new data, it must identify a SPARQL endpoint to send that

data to. Different data sources may need to write back updates to different loca-

tions. For this reason, the widget library supports the definition of both a global

default SPARQL endpoint and per-source SPARQL endpoints for the creation of new

data. The default endpoint is defined either with a link element with the attribute

rel="sw:endpoint", or by calling the widget library's setDefaultEndpoint func-

tion (See the example in Figure 4-3. Per-source endpoints are set by either placing a

sw: endpoint="someuri" attribute inside of a data source link element, or by speci-

flying the endpoint when calling the load function from Javascript. Alternatively,

some services can define the endpoint to be used by responding with the HTTP

header MS-Author-Via: SPARQL. This response header indicates that the resource

can be written to directly using SPARUL, and the widget library will use this response

as its default behavior unless the developer specifically overrides it.

Some SPARQL servers, such as ARC2, require the use of a named graph when

inserting new data into the endpoint. For this reason, widgets that create new re-

sources support a graph parameter for indicating the name of the graph that newly

created data should be inserted into. If named graphs are required, but the data

created should be inserted into a new named graph, the usenamedgraphs option for

a widget can be set to true.

User Identity

While no mechanism for authentication is provided directly within the widget library,

it can at times be helpful to have a global URI defined as the active user for the

application. This can be set either using the rel="sw:user" attribute in a link

header or by calling the setUser library function. While this system does not on

its own provide any form of security, setting a user attribute can be helpful when

defining widgets that are meant to display user-specific information.

4.2.4 Access Control Data

Currently, the two widgets that are capable of creating entirely new instances-

createinstance and annotator-accept an optional acl parameter that points to an

access control rule to be enforced on the named graph storing the data to be created.

The access control rules used are defined using the ontology and rule system defined

in [11]. A pair of access control rules using this ontology are shown in Figure 4-4.

The rule rulel grants read, write and control access to a file for a specific user

(control is an access mode that allows the user to modify the access control rules

for a given graph). The rule rule2 grants read access to a class of users-in this case,

a special class that encompasses all authenticated users. A server wishing to enforce

these rules can use FOAF+SSL to identify a user's URI and then match that user's

URI with the access rules for a given file or graph to determine the level of access to

grant the user.

The named graph RDF Access Control implementation optionally accepts an aci

parameter as a query parameter in an HTTP POST, which contains the URI of a

valid RDF ACL to be used with a SPARQL INSERT query. If the query generates a

new named graph on the server, the access control system will use the rules found at

the ACL URI provided in the aci parameter to control access to the new resources.

@prefix acl: <http://www.w3.org/ns/auth/acl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

<#rulel> a acl:Authorization;
acl: agent <http://web.mit.edu/jambo/www/foaf.rdf#jambo>;
acl: accessTo <http: //example .com/somegraph>;
acl:mode acl:Read;
acl:mode acl:Write;
acl:mode acl:Control

<#rule2> a acl:Authorization;

acl: agentClass <http: //xmlns. com/foaf/0. 1/Agent>;
acl: accessTo <http: //example. com/somegraph>;
acl:mode acl:Read .

Figure 4-4: A pair of rules written with the ACL Ontology.

Rule Name Permissions Granted
permanent Readable by any user, cannot be edited.
private-editable Readable and writeable by an owner and a group or

other user of the owner's choosing.
private-readonly Readable and writeable by an owner. Readable for a

group or other user of the owner's choosing.
public-editable Readable and writeable by all.
public-readonly Readable and writeable by an owner. Readable for all

others.

Table 4.1: The set of predefined ACL rules provided with the widget library.

The acl parameter in the widget library is used to define the value of the aci

parameter to be sent to a SPARQL endpoint when new data is created. In addition

to supporting a static URI, the acl parameter can contain an object selecting one of

the library's predefined access control rules. The full list of these access control rules

is provided in Table 4.1. These predefined access control rules provide common rules

for sharing data, such as publicly editable wiki permissions and private user-to-user

read-only sharing. Certain policies require additional information in order to be fully

specified-for example, a rule that only allows two users to read a file must provide

the URIs of the two users to be granted access. An example of how such a policy can

be used is shown in Figure 4-5 Providing a simple method for defining access avoids

$.rdfwidgets.load("http://www.example.com/commentlist.rdf");

$("#comments").annotator({
acl:{ type: "public-readonly",

user:"http://web.mit.edu/jambo/www/foaf.rdf#jambo" }
});

Figure 4-5: An annotator widget instantiated with ACL. Here, the public-readonly
access mode is used, which requires the definition of a user who owns the new data.
If a default user has been defined, as in Section 4.2.3, then this parameter is not
necessary.

the need for developers to muck around with actual access files-instead, they simply

select a policy and provide the arguments to fill in the blanks.

While the widget libary supports the submission of data with ACL metadata for

use with FOAF+SSL, the enforcement of access control rules is left entirely to the

server receiving the request. There is no need for special configuration in order to

provide users with the data they are allowed to see-the browser will simply request

that the user provide a certificate for each FOAF+SSL-secured data source requested

by a given application. In practice, this operation is only supported in Firefox and

Safari for cross-origin requests. A full description of the tradeoffs of this system and

its requirements for future cross-browser compatibility are provided in Section 6.2.

Current implementations of the RDF Access Control system essentially control

access on the document level. While it is theoretically possible to provide an RDF

Access Control system that allows for different access rules to be defined for every

resource or every triple in an RDF store, such levels of granularity tend to be too

specific in most practical use cases. A full discussion of the tradeoffs in the RDF

Access Control system's granularity can be found in [11].

4.2.5 Events and Callbacks

A simple set of events and callbacks are defined for common events that occur within

the library. Application developers can bind listeners for these events to widgets in

order to perform different tasks according to user input.

The rdf select event is fired whenever an element is selected by a mouse click.

Figure 4-6: Node selection in the widget library. Here, the node http: //web. mit.
edu/jambo/www/ has been selected.

The library keeps track of a unique selected element for the entire window. This

element carries the CSS class rdf selected, and is therefore styled in a way that

indicates its status; the default style provides a light blue background for the selected

element, as shown in Figure 4-6. When the rdf select event is fired, in addition to

carrying a reference to the target element, the event contains the RDF term currently

displayed by the newly selected node. This allows for event-driven behaviors such as

displaying a set of comments regarding whichever node the user selects.

On a per-widget level, the beforesubmit and aftersubmit callbacks provide a

method for modifying a SPARQL update before it is sent to a server and a method for

checking the response sent back by the server, respectively. Using the bef oresubmit

callback, auxiliary data can be added to an INSERT or DELETE request, or an extra

parameter, such as a session key, can be appended to the outgoing XMLHttpRequest.

The aftersubmit callback can be used to provide more advanced visual feedback,

using coloring or jQuery animations, to indicate the success or failure of a request. The

two callbacks can even be used together to provide custom feedback while a submission

is pending in addition to the default behaviors, which disable input elements until

the the request is completed.

More globally, when new data is loaded into or removed from the local data store,

an rdf changed event is triggered on the document element. This allows for widgets

and application code to implement features such as logging of updates, providing a

display of the history of a user's actions, and even potentially the ability to undo or

redo operations such as deleting a triple from a given SPARQL endpoint.

James Hollenbach
type Person
name James Hollenbach
title Mr
nickname Jim
personal mailbox mailto:jambo@mit edu
homepage http://web.mit edu/jambo/www/
phone tel:+1-703-946-5536
workplace hnmenane httn'/idia csail mit edu

4.2.6 Appearance

Each widget has a comprehensive set of CSS classes attached to its nodes that allow

for widgets to be styled to match a Web site's layout. A widget's CSS class name

consists of the the string rdf concatenated with the widget's name-for example, the

outermost node of the edit widget consists of a span element with the style class

rdf edit. Additionally, the style class rdf selected defines the style for the currently

selected term in the window. Finally, while no style class is provided, callbacks and

custom events allow developers to listen globally to determine whether or not all of

their requested data sources have loaded.

4.3 Built-In Widgets

The widget library comes packaged with 17 predefined widgets, over half of which

provide editing capabilities for the data they display. A full list of these widgets

along with brief descriptions of their capabilities is provided in Table 4.2. Rather

than describing all of these widgets in detail, this section provides a summary of a

few widgets that embody much of the functionality provided by the library.

4.3.1 Labels and Simple Editing

The most basic functionality the library provides is viewing and editing a single

term (subject, predicate, or object) in a triple. To view a term's value, the library

provides the label class. The label widget can function in two different ways: it

can either be provided a single term value, such as a person's WebID, and try to

find a human-readable label for that resource in the local data store (as shown for

Elvis in Figure 4-7), or it can take two of the subject, predicate, and object of a

triple and display the value of the missing term. This second construct can be used,

for example, to display a person's homepage given their WebID. It is also possible

to optionally override the human-readable label and instead display the actual URI

associated with a given resource.

Widget Name Description
annotator Display a popup for writing and viewing annotations

about resources described on the page in RDFa.
checkbox A set of checkboxes, each corresponding to a possible

value for a triple.
combobox A combo box, where the currently selected value corre-

sponds to the current value of a term in a triple.
createinstance Given a set of properties, display a form for creating a

named graph about a new object.
edit A single editable input box for modifying the value of a

term in a triple.

image Display any image property found to depict the provided
subject.

instancedropdown An autocomplete menu for finding any instances of a
given class in the local store.

instancelist A simple list of all instances of a given class.
label Display a text label for a given subject.
radio A set of radio buttons, each corresponding to a possible

value for a triple.
resource Display all of the properties of a given subject in an

editable property table.
selecttable Display all of the resources in the store that have a set

of properties.
toolbar Show a set of image representations of a given class in

a toolbar, where each item is selectable.
tripleedit A simple widget for editing each of the subject, predi-

cate, and object of a single triple. Largely used as the
basis for more complex widgets.

triplelist Display all of the triples that match the provided sub-
ject, predicate, and/or object.

Diagnostic Widgets
sourcelist Show all of the currently loaded data sources.
sourceview Dump the entire dataset in the local store in a given

format.

Table 4.2: Descriptions of the widgets provided with the widget library.

Some elements are more logically displayed as images, or are put into better

context when accompanied by images. The image widget uses RDFS relationships to

find a valid visual representation of a given subject. This means that a developer does

not need to track down a specific property that holds an image of a given resource,

Figure 4-7: A label element and a image element for Elvis Presley, and the source
code to produce it. The data for this display came from Elvis' data on DBPedia.

or fumble around with deciding which properties are valid for display-instead, such

facts can be found in the RDF that has been loaded.

In addition to simply providing a means for displaying the current value of a triple

in the local data store, the edit widget allows for data to be modified and sent back

to a specified SPARQL endpoint. On its face, the edit widget looks like a normal

label, but when an edit widget is selected, the user may click again in order to

transform the label into an input box, much as files can be renamed when browsing a

file system. Where possible, the widget will use an autocomplete menu to suggest user

input for editing triples-for example, if a user is editing a f oaf : knows relationship,

as shown in Figure 4-8, metadata from the FOAF ontology can be used to suggest

only people as possible input options (A discussion about which techniques are used

for performing these inferences is provided in Section 6.3).

The label and edit widgets provide the basis for a large number of functions

that can be accomplished by the library. Since they provide the most basic way of

viewing and editing RDF data, they are wrapped by many other widgets, such as the

resource and selecttable widgets described in the next section, to provide editing

features for more complex collections of data.

Figure 4-8: Editing a property displayed in an edit widget. Note that since the
foaf : knows property is being edited, only instances of f oaf : Person are displayed.

4.3.2 Tables for Viewing and Editing Related Triples

From the basic label and edit widgets, it is possible to construct a wide variety of

table-based widgets where the table cells are label and edit elements for specific

triples. One such widget is the resource widget, shown in Figure 4-9, which very

closely mimics the outline view from Tabulator. Given a resource's URI, the resource

widget draws a table containing the predicate and object of each statement about that

resource contained in the local store. Each predicate and object field can be edited,

if a SPARQL endpoint is provided, and a button at the bottom of the widget allows

for arbitrary new data to be inserted. For the amount of processing done, the code

required to invoke a resource widget is very simple: the developer is only required

to provide the subject URI that is to be described in the widget.

While exploring a single resource's properties is a convenient operation, there are

a huge number of other potential methods for displaying RDF as tabular data. A

separate widget, selecttable, demonstrates the flexibility provided by simply wrap-

ping the edit class into a table. The selecttable widget performs what amounts to

a SPARQL SELECT query over the local data store, and displays all of the matches

discovered in a data table, where the rows represent the unique bindings found for

the query. The example in Figure 4-10 shows how the selecttable widget supports

fill-in-the-blank style updates. With the requireall option set to f alse, it is possi-

ble to find bindings where at least one of the variables selected by the query is bound.

James Hollenbach
type Person
name James Hollenbach
personal mailbox mailto:jamnbomit.edu
knows yuhsin
knows dsheets
knows 1De

Add.. |Dave Beckett

Yolunda Gill

Dan Connolh

Daniel J Weitner

Figure 4-9: The resource widget. By default, the widget is editable. Clicking the

"Add.." button produces a dialog for creating a new triple, and existing triples can

be edited in place.

While the example in Figure 4-10 requests information about both names and e-mail

addresses, it will display results where one of the two is unknown. If a SPARQL

endpoint is provided, the user can then freely fill in missing data about e-mails or

correct the spelling of a person's name on the fly.

Since tables are often an easy way of analyzing large amounts of data, the widget

library offers several other widgets for different methods of displaying RDF in data

tables, including the triplelist widget used in the introductory example for this

chapter. A complete list of these widgets can be found in Table 4.2.

4.3.3 Widgets Based on Form Elements

While data tables and input boxes are useful for viewing and editing a wide variety

of information, there are times when the set of inputs end-users may provide needs

to be constrained to a small set of options. This includes situations where the set

of acceptable options available to the user may not be immediately obvious, such as

the question regarding a user's personal preferences in Figure 4-11. In these cases,

special form elements such as the radio widget can be used to constrain the options

presented to users as well as their options for how to modify that data (for example, a

user cannot indicate that they have two different favorite bizarre FOAF properties).

James Hollenbach
type Person
name James Hollenbach
title Mr
Given name James
familyname Hollenbach
nickname Jim
personal mailbox mailto:jambo@mit.edu
homepage http://web.mit.edujambo/www/
depiction main.jpg
phone tel:+1-703-946-5536
workplace homepage http://dig.csail.mit.edu
schoolHomepage http://web.mit.edu

Add...

<div ':widget=" u

</div>

Figure 4-10: The selecttable widget. The output is shown in (a). Since the
requireall option is set to false, incomplete matches are permitted. Each en-
try displaying None does not have a value, but if a SPARQL endpoint has been
specified, then the missing values may be added in by the user. The source code for
displaying this widget is shown in (b).

Figure 4-11: The radio widget. In (a), The selected element represents the single
value from the list that is currently present in the local data store. The source for
this display is shown in (b).

Similar widgets provide this type of functionality with check boxes and combo boxes.

Sometimes, rather than simply editing data about an extant resource, the editing

process involves the creation of data about a previously undocumented resource. In

this case, it makes more sense to provide a form displaying all of the required fields

for creating a new instance. In the widget library, this functionality is provided

out of the box with the createinstance widget. The example shown in Figure 4-

12 demonstrates how, given a list of input properties such as name, nickname, and

e-mail, the createinstance widget automatically generates a form for creating a

new description of a person. When the user submits the form, a SPARQL query is

naimie personal milbox
James Hollenbach James Hollenbach mailto:jambo@mit.edu
Coralie Mercier Coralie Mercier mailto:coralie@w3.org

Dean Jackson Dean Jackson mailto:deanv3.org
mailto:dino~grorg. arg
mailto:ed d~usefulinc.com

Edd Dumbill Edd Dumbill mailto:eddlxml.com
mailto,.ed d@xmlhackcom

Henry Story Henry Story
James Martin James Martin
John Gage John Gage
John Klensin John Klensin

(a)
$ ("#ytale").selecttable ({

propert ies : ["oaf : nox
requireall:false

(b)

Which is your favorite frivolous FOAF property?
, DNA checksum
C Online E-commerce Account
C geekcode

l CQ chat ID

(a)
$ ("#pres"') .radio({

subject:h :/ m / / ab

predicate:"foaf*topic .in-rest,
choices: ["f a:d' naChecu", " foaf:nl incoeceAcco nur,

"fafgekcde", "ea. : ie~harUh)

(b)

Figure 4-12: The createinstance widget. In (a), the form generated for collecting
user input is shown. In (b), the source for the displayed form, each of the anonymous
objects passed in the items array can contain additional information about how to
process the user's input, in addition to the standard predicate field.

automatically generated to POST the form's contents to a SPARQL endpoint. The

createinstance widget provides relatively limited options in terms of form layout by

design, as it is intended only as a way to create extremely simple forms; for instance,

the widget only allows for statements to be created regarding a single subject. The

form generator described later provides a huge amount of freedom if a developer

wishes to create a more involved form, at the cost of slightly more involved code. A

discussion of the tradeoffs involved in providing more complex form descriptions is

provided in Section 6.4.

4.4 Extending the Widget Library

While individual widgets are often helpful in creating a new Web site, there are

many instances where the widgets provided by a library are not an exact match for

the desired behaviors, layouts, and data filters demanded by an application. For this

reason, the widget library is written to be easily extended with new widgets. Wherever

possible, the opportunity is provided to access internal convenience functions for

processing user input and displaying useful, human-readable output.

Tell me about someone new!
name

nickname

personal mailbox

Submit I
(a)

c (am") .createinstance i items: [
{predicate:"ra~ae}
{ predicate: "f naf : - k"
{predicate: "foafn:>x}

(b)

ANN q PP-00 4 WEIREN 0 0 _P_

4.4.1 The rdfwidget Base Class

The jQuery UI interface widget library provides a base class for creating jQuery UI

widgets. This class handles set-up and cleanup for widgets, as well as providing basic

features such as namespaced events and CSS class names for the DOM nodes that

are displaying a certain widget. This base class was wrapped and extended with

the function $. rdf widget, which provides additional convenience functions that are

specific to operations involving RDF.

By creating a widget using the rdf widget base class, a widget developer is guar-

anteed that all instances of the new widget will be notified when new data has been

loaded into the local store2 . The widget author simply needs to filter this data to

decide whether or not it is relevant. Additionally, support is automatically provided

for invoking the widget through HTML using the sw: widget attribute, exactly as

other widgets in the library can be invoked. The next few sections briefly describe

some of the core functions provided for handling data within widget code.

4.4.2 Matching, Templating, and Query-generation

The most powerful programming mechanism for widget authors is the matching mech-

anism provided with every widget instance, which closely mimics the matching system

provided in rdfQuery. But whereas the rdfQuery matching system is geared primarily

towards processing data in the local store, the same system has been extended in the

widget library to collect user input and generate SPARQL queries to remote servers,

in addition to providing the same data-filtering mechanisms on the local store.

Figure 4-13 shows the source code for a simple example widget, called f oaf knows.

This widget, given a person in the subject field, will find all of the names of that

person's friends and display them in a pretty-printed list. The output shown in

Figure 4-13 demonstrates the output generated by the foafknows widget using the

same data set as the introductory example in Section 4.1. Using nothing but the

2 Discovering which data is relevant to a given widget can sometimes be a costly operation;
the current implementation of the widget library does not attempt to distinguish relevant data
automatically. See Section 6.5.3

Figure 4-13: A custom widget created using the matcher object. The source code in
(a) both creates the new widget f oafknows and immediately loads data and creates
an instance of the widget. Since the matcher instance will automatically refresh its
output when new data is loaded, the output in (b) is produced when the two data
sources have finished loading.

matching mechanism, this widget is able to provide clean, human-readable output

based on the RDF data in the backend using about 4 lines of meaningful code.

The widget-internal _matcher function used in the example greatly facilitates

the creation of new widgets while simultaneously ensuring the consistent behavior of

widgets written by different authors. For example, by using a matcher generated with

the _matcher function, the source filters provided when the widget was instantiated

will be honored automatically. Additionally, this function will ensure that the widget

automatically refreshes itself whenever new data is loaded into the internal store.

These features allow widget authors working with the library to assume that their

code will behave as other widgets in the library do.

The match function is used to identify triple patterns in the store similar to a

SPARQL WHERE clause. Variables are defined as strings beginning with a question

mark, such as the ?friend and ?name variables in the example. Sequences of calls

to match are chained together, so the second match call in the example will build on

$(document).ready(function()(

$.rdfwidget(:

_create: function()
var e .options.subject;

th* matcher ()
.roatch(subject, "http://xirhc iotD1knw" fred

$.rdf widgets. load(Nt wti~d/ab/w/a:sa")

$.rdfwidgets. load("http ebitduab/w/rdd ");

$ (f -).oafknovs((

);

(a)
You have a friend named Adam Lerer

You have a friend named David Sheetsl

You have a friend named Fred Flintstone!

(b)

top of the previous match to find the names of all of the subject's friends. The two

match calls in the example are equivalent to the SPARQL query "SELECT * WHERE

{ <subject> foaf:knows ?friend. ?friend foaf:name ?name.}".

After a set of variables has been bound, the matcher's result set can be drawn

using the draw function. This function takes in an HTML template string, and uses

that string to draw individual representations of each set of bindings into the widget's

DOM node. This HTML string can even contain widget definitions written in the

widget library's HTML syntax. Bindings are inserted into the template with a regular

expression; anywhere that a ?varname string is found in the template, the binding for

the variable varname is plugged in. This allows for the creation of a list of all bindings,

as is shown for the ?f riend binding in the output of Figure 4-13. A similar function

to draw, called paginate, allows for extremely long result sets to be automatically be

divided into navigatable pages. This allows developers to cope with the potentially

large number of bindings that can be generated by the matching process.

While matching and displaying matches alone is a powerful function, the fill-in-

the-blank style of requesting data can be extended to provide other highly useful

functions for widget authors. For example, as was noted in the previous section,

the style used by the match function essentially amounts to creating a SPARQL

WHERE clause. By turning the input generated by a developer into a WHERE

clause, a CONSTRUCT query can be generated and sent to a remote SPARQL server.

Figure 4-14 shows a SPARQL query generated by the library using the set of matches

from the foafknows widget. By using this SPARQL query functionality, a widget

author can generate a SPARQL query using the matching mechanism and the widget

library will handle the request, parsing, and processing of the response graph sent by

the server automatically.

4.4.3 Library Functions Based on Options

As was briefly alluded to in the previous section, one of the most helpful features of

the widget library base class is that it provides functions that automatically follow

the norms established by the pre-supplied widgets listed in Table 4.2. Without diving

$.rdfwidgets.matcher()
.match("<http://web.mit.edu/jambo/www/foaf.rdf#jambo",

"f oaf : knows",
"?friend")

.match("?friend",
"?pred",
"?obj")

.query("http://www.example. com/sparql");

(a)

CONSTRUCT {
<http://web.mit.edu/jambo/www/foaf.rdf#jambo> foaf :knows ?friend.

?friend ?pred ?obj.

} WHERE {
<http://web.mit.edu/jambo/www/foaf.rdf#jambo> foaf:knows ?friend.

?friend ?pred ?obj.

}

(b)

Figure 4-14: An example SPARQL query generated by the matcher. The call to
query in (a) causes the response graph for the corresponding CONSTRUCT query
in (b) to be loaded asynchronously.

into a list of all of the API functions available (such a list can be found in Appendix A,

these functions enable widget authors to process user input with namespaces, create

helpful autocomplete boxes, perform data filtering as the rest of the library does,

and automatically generate SPARUL queries. A link to the full API documentation

for the library, which lists and briefly describes all of these functions, is provided in

Appendix A.

4.5 RDF Access Control for Named Graphs

As described earlier, the widget library provides mechanisms for interacting with a

SPARQL endpoint that supports RDF Access Control on named graphs. As the

concept of RDF Access Control based on FOAF+SSL is relatively new, no stable

implementation of such a service for named graphs has come into existence yet-current

versions only grant access to flat files. However, for this thesis, a proof-of-concept

server implementing the RDF Access Control ontology for named graphs was built

on top of ARC2 [25] to demonstrate a working instance of a SPARQL server with

distributed access control.

4.5.1 Access Control Ontology

The access control library defines rules using the W3C ACL ontology [26]. A pair of

example policies are provided in Figure 4-4. The three types of access that can be

granted are Read, Write, and Control. The Read and Write modes control access

to the named graphs stored on the server. Control is essentially a special form of

Write access: having Control access to a graph allows a user to read and edit the

ACL metadata for that graph. In addition to granting accesss to users, the access

control library supports granting access more broadly to groups and classes of users.

A special-case user class, f oaf : Agent, is used to indicate that any authenticated

agent may access a graph.

4.5.2 Flow of Authorization

When a user attempts to read or write a data on the SPARQL server, a series of

SPARQL queries are executed in order to determine whether or not the currently

defined set of access rules grants that user permission to perform the requested action.

First, a master control graph is used to identify where access control data for the graph

to be read or modified is located. The current implementation stores the access control

for each graph in a separate meta-graph. If an access control graph is found, then the

authentication process proceeds as expected: the server checks if the user is granted

access by the user's identity or membership in a group or class.

If no access control graph is found, then there are two possible courses of action.

First, the server checks to see if the user is granted Control access under the default

set of rules, which are defined in a separate default access control graph-Control

access must be provided by the defaults for a user to be able to create a new set of

access rules for a new named graph. If the user is found to have Control access, then

the server performs one of two operations: if the user has provided an ACL URI using

the aci query parameter, then the rules found at that URI are loaded into the store

as the new access control graph. Otherwise, the server simply copies the def ault

graph into the new access control graph. Regardless of the action taken, if the user is

granted permission to modify a graph based on the def ault rules, then a new access

control graph will be created and the def ault graph will not be accessed for future

operations on the target graph.

56

Chapter 5

Examples

This section provides two example applications that can edit and view Semantic Web

data in the wild. In addition to live examples, the widget library's documentation

includes a growing set of specific examples involving individual widgets and library

functions. Further information about these examples, including links to the live

versions, is provided in Appendix A.

5.1 RDF Annotator

5.1.1 Concept

Annotations are a commonly cited use case for the structure provided by the Semantic

Web. Since the Semantic Web allows anything to have its own URI, an annotation

program can provide a method for sharing information about any concept.

Of course, not all annotation information is necessarily meant to be public. Some

annotations might be meant only for members of a certain group, such as comments

about a closed meeting. Other annotations may even be strictly private, such as an

annotation on a product noting that it would make a good Mother's Day present.

A good annotation tool should allow for different levels of privacy to be set when

annotations are written.

One of the greatest strengths of the Semantic Web is that it enables the description

of arbitrary concepts in the body of any document on the Web. Particularly with

RDFa, it is possible to embed RDF in an HTML document and create correspondences

between certain DOM nodes and resources on the Semantic Web. Two different

HTML documents that use the same data sources for annotations can display the

same set of annotations describing any resource on the Semantic Web, and features

like smushing can allow for an application to realize that two sets of annotations are

actually about the same thing.

There have been several attempts at creating universal annotation services similar

to the one described here. Annotea [3], an INRIA and W3C project, uses RDF to

accomplish this task by interacting with distributed annotation servers. By design,

Annotea is intended to operate on top of a user's browser, rather than operating

within any single Website. This creates a high activation energy for using Annotea,

since it specifically requires that the user install software in order to use it. At the

same time, Annotea's privileged status as a client-side application makes it easy to

ensure consistency as to which annotation servers are used across different Web sites.

Social bookmarking sites like del. icio .us provide less structured ways of sharing and

annotating links, but at the same time are limited in that they are centralized services

that do not immediately link into the Semantic Web. The application described here

tries to land somewhere in between these two extremes by providing a distributed

service like Annotea that only allows for very simple textual annotations.

5.1.2 The Annotator Application

The widget library's annotator widget provides a compact, simplified method for

putting Semantic Web annotations on any Web site. As is shown in Figure 5-1, the

annotator widget in its simplest form simply pops up over any valid resource when

the user clicks on the page while holding the shift key. This causes the annotator to

search for a valid URI to create an annotation about-either the href element of an

anchor tag, or a subject defined somewhere in the page's RDFa. Once this URI is

found, the annotator looks in the set of annotations that have been pulled down for

any available comments about the selected resource and displays those comments to

The SW Widget Library Example Blog

Trying out the annotator

By James Iollerbach

When you select an entry with shift+cick, i should popua comen window at the right
1

Additionagy, when you shift+cick on a Ink lke this ink to the CORS speci ytm ou can
wrte comments about the resources that are being linkedto1

Currently, when a new comment is created, i uses an access control ru
future edits to the comment. So try not to say anything you wouldn't wart
reading. In the near future, I wi be adding in a feature that gives users a
over who can see their comments (this kind of control is actualy already
backend library),

Finly, you can use a SPAROL query to obtain al! of the comm ea. Tt
endpoint itelf supports CORS, so you could even actualy use the exact
page does to embed the very same comment date on your own Webste.
or Safari, you could even post new comments to the store! (E8 is almost t
unfortunately doesn't support certificates with CORS, preventing the use
cross-origin requests).

Bogus filler text

By James Hollenbach

Lorem ipsum dolor si amet, consectetur adipiscing elit. Quisque eget sapi
condientwiumturpis. Vestibium vehicula tortor quis neque acts si amet
vuipuAte. integer vitae turpis vite felis accunsan molestie a sed nist Nur
lectus sagittis malesuada. Etiam porta, nula ut bibendum tincidurt, odio o

jambo wrote...

While this stuff isn't universaly supported in al browsers, yc
to create appications like this one that write to a SPARQL en
FOAF+SSL-enabled Web server.

jambo wrote...

Additiooay, even though CORS doesn't work cross-browse
stil use non-secure CORS to post to public SPARQL endpoil

Add a comment about tt ;Amew org/TRcors!

contert

Submit

suscipit nist justo sed arcu. Aenean sed lacus metus, ac congue magna. Ut eu risus non
leud da dimn varan meftig lh da vsnnti vstihk an .umin n i mam m

$(document .body) .annotator({endpoint: "http://www.example.com/sparql"});

Figure 5-1: A running instance of the annotator application, and the Javascript code
used to instantiate it. Here, the user has selected a link to the CORS specification,
triggering the known annotations regarding the specification to be displayed.

the user, as well as providing an input box for submitting a new annotation about

the resource.

Since the widget library is capable of relying on external data sources via CORS,

the annotator can be pointed at an arbitrary number of annotation sources1 . All of

these sources will be aggregated automatically in the library's unified store and dis-

played in a single, coherent interface. Barring certain restrictions due to the continued

development of the CORS specification 2, it is also possible to request resources that

are potentially secured by the RDF Access Control system. Since the widget library

relies on the browser's internal systems for performing FOAF+SSL authentication,

the comments displayed to the user will be automatically filtered depending on their

identity.

To create a new annotation, a user simply types their annotation into the input

box and presses submit. If the submission requires the use of FOAF+SSL and the

user has not yet authenticated with the server, their certificate will be requested.

Finally, at the server's discretion, the user may or may not be allowed to submit

the new comment; accordingly, the widget library provides the appropriate feedback

to the user about the result of their submission. The annotator widget also allows

developers to specify the access control policy to be used with new comments.

The number of annotations to be displayed can potentially be huge. To circumvent

issues with never-ending lists of comments, the annotator widget makes use of the

built-in paginate function described earlier to paginate the comments it finds when

the library's internal store is queried for annotations.

5.1.3 Benefits of the Annotator

The widget library's annotator widget provides all of the benefits one would ex-

pect from an annotator on the Semantic Web. Perhaps most importantly, it allows

developers on different Web sites to use exactly the same data set when displaying

'One open challenge not solved by the annotator application is helping developers choose which
annotation sources would be appropriate for inclusion on their pages.2A full description of the current state of CORS in major browsers is provided in Section 6.2

annotations. If a user creates an annotation about a resource on one page, that same

annotation will appear when the user attempts to view annotations about that re-

source on a completely different page. This ease of data-sharing between sites is the

hallmark of the Semantic Web.

The code for creating an annotator is simple-the developer simply has to point

the annotator at an annotation source and a SPARQL endpoint. The entire process

involves a few script tags and the single line of Javascript code shown in Figure 5-1.

The annotator can layer on top of virtually any existing Web site to enrich it with

data written all over the Web.

Finally, the RDF Access Control library, if used, provides the privacy and security

that one would expect from any Web application, and therefore the privacy and

security that the Semantic Web must also provide-for example, allowing for a blog

post or comment to be shared only between friends. It may be the case that many

users never write a single private annotation. Nevertheless, having the option to do

so gives the user confidence that the system they are using has been created with

privacy in mind-it is simply necessary to make sure that users are aware that they

have such an option. Section 6.5.5 discusses methods for integrating this ACL data

into widget displays.

The Annotator application shows how a simple application can take advantage of

Semantic Web technologies to enrich the content describing any resource on the Web.

A universal annotator that can be simply tacked onto an already-existing Website

provides an easy and useful way to bring the Semantic Web to Websites that do not

have any Semantic Web infrastructure of their own.

5.2 Peel Sessions Browser

5.2.1 Concept

In addition to simple tools like the annotator, it is equally important to support the

creation of large-scale applications that take advantage of data from multiple sources

on the Semantic Web to create a single, unified interface for exploring information.

This example demonstrates the widget library's capability of supporting such appli-

cations with an example based in music.

An application was created for exploring the links between musicians who have

recorded sessions with the late BBC DJ John Peel. Peel recorded sessions in the

BBC's studios with thousands of musicians, each featuring a small number of tracks-

usually 3 to 5. In 2007, the BBC released all of its data about these sessions as

RDF [19], which was eventually augmented with owl: sameAs links to artists, songs,

and musicians on DBPedia.

The Peel data demonstrates a fine opportunity to link between multiple data sets

in order to discover more about musicians. While the Peel data is decidedly sparse-it

rarely features more than the track listings, artist names, and musician names-the

information made available by following the sameAs links into DBPedia and outward

from there is enormous. This application provides a way to link in the Peel data

with the wealth of data freely available on the Semantic Web in an intuitive user

interface. Furthermore, it promises the opportunity to develop an interesting Web

application that could not easily exist without the Semantic Web, but nevertheless

provides no indication from its interface that it relies on URIs, OWL, or SPARQL.

Finally, much like the annotation example, it provides a way to write interesting

applications without owning any Semantic Web infrastructure.

5.2.2 The Peel Application

The main focus of the Peel application is a description of the artist, shown at the left

of Figure 5-2. The artist view takes full advantage of the widget library's features for

creating custom layouts with the match function, as well as making use of the label

widget for displaying the artist's name, the image widget for displaying the artist's

picture, and the triplelist widget for displaying the list of Peel sessions recorded

by the artist.

Even though the interface uses a custom layout, it still benefits from the auto-

matic update mechanisms provided by the widget library through the widgets it uses

Peel Sessions
Enter the ime of an artit(rMy gCrir.son''Daft Punk, 'Led Zeppen'...)

Pedrmoiiance 2316 in Langhan I by New Ohidei

New Order were an English musical group formed in 1980 by Bernard Sumner, Peter Hook
and Stephen Morris. New Order were formed in the wake of the demise of their previous
group Joy Division, following the suicide of vocalist fan Curtis. They were soon)oined by
additional keyboardist Gitlian Gilbert. New Order combined post-punk and electronic dance,
and, according to critic Jason Ankeny, became one of the most criticaly accaimed bands of
the 1980s. Though New Order's early years were shadowed by the legacy of Joy Division,
their immersion in the New York City club scene of the early 1980s introduced themto dance
music. The band's 1983 hit "Blue Monday" saw them fully embrace dance music and
synthesized instruments, and is the best-selling 12-inch single of all time. New Order were
the flagship band for Factory Records, and their minimalist atium sleeves and non-image
reflected the label's aesthetic of doing whatever the relevant parties wanted to do, including
New Order not wanting to put singles orto the albums. The band have often been acclaimed
by fans, critics and other musicians as a highly influential force in the alternative rock and
dance music scenes over the past 25 years. New Order were on hiatus between 1993 and
1998, during which time the members participated in various side-projects. The band Peel sessions recorded by New Or der
reconvened in 1998, and in 2001 released Get Ready, their first abum in eight years, in
2005, Phil Cunningham (guIars, synthesizers) replaced Gilbert, who had left the group due Perf omance 2316 in Langhamn I
to family commitments, In 2007, Peter Hook left the band and stated that he and Sumner had F rtri in FoadinF 4
no further plans to work together. Sumner revealed in 2009 that he no longer wishes to
make music as New Order Sumner, Morris and Cunningham now work together under a Pformance 2318 bn Mida VaLe 4
new band name, Bad Lieutenant. Per formance 2319 in Prmte s4udio

Performed by
Guitar, Vocals - Bernrd Dscken.
Drums - Sthen Mord i
Guitar, Synthesiser - GMan Oatert.

Track Listing-

Dreams Never End
Truth

Bass, Guitar, Vocals - Peter Hook. Senses
Bass, Vocals - Peter Hook.

Peel Sessions by Related Artists:
1716 byJoy DitiI
i 717 by Joy CMsion

Figure 5-2: The John Peel application. Left, a summary of the currently chosen
artist is displayed. Right, a description of the currently chosen Peel Session for that
artist is displayed. Related artists are determined by combining Peel session data
with information about related artists on DBPedia. These connections are readily
attained by smushing.

and through the match function. When the user selects an artist from the autocom-

plete menu at the top of the page-which is itself a instancedropdown widget-the

application requests data from the Peel database about the artist. If this data con-

tains any owl: sameAs relationships, those resources are pulled down as well. As each

data source loads, the artist display is updated with new information. This causes

a trickling effect where the artist's biography appears, followed by its Peel sessions,

and finally a photograph pulled down from DBPedia.

When the user selects a Peel session from a given artist's list of sessions, the

rdf select event fires. This is caught by the application, which then requests the

data for that session from the Peel database and displays it in another custom widget,

shown at the right of Figure 5-2.

The data from DBPedia provides even more information about artists that share

some relationship with the selected artist. This allows for the application to display

a list of related artists, shown in the lower right corner of Figure 5-2. In this way,

links are connected both from the Peel data to an external source, and then form a

loop where even more information is learned about the resources within the Peel data

as a result of the external source. These artists can then be selected in order to view

information about their respective Peel sessions, allowing for a browsing experience

that flows back and forth between artists and sessions.

5.2.3 Benefits of the Peel Application

First and foremost, the Peel example demonstrates the ease with which data can

be aggregated and equated using the widget library. While the data from DBPedia

does not provide any explicit links back to the Peel data, it can nevertheless be

used to discover information about relationships between artists described in the Peel

database. Applications like the Peel application allow for information to be discovered

that is not immediately attained from any single data source.

Additionally, the Peel example shows that it is possible to create a larger-scale

application that makes use of many of the functions the widget library provides. The

Peel example uses five different core widgets, defines a custom layout with the draw

function, and makes use of the rdf select event to drive interaction between the

artist and session views. Finally, it shows an instance where the trickle-in loading

effect gives the user instant feedback that data is being loaded, despite the fact that

some larger, slower data sources (namely, DBPedia), take a while to respond.

For the user's sake, the Peel application provides no indication that the application

being used is driven by the Semantic Web. There are no outward-facing URIs and

no clunky labels like "family-name". The layout is not a simple table layout-instead,

the data is arranged in a way that makes sense for this specific dataset. The amount

of effort required for the developer to achieve this consistently is relatively small-in

fact, the entire Peel Session application can even be wrapped into its own widget and

redistributed for use on other sites. As the number of applications created using the

same library grows, the wealth of custom widgets geared toward specific applications-

such as business cards, schedules, photojournals, and album summaries-will continue

to make this process even easier.

Chapter 6

Discussion

Throughout the initial authoring of the widget library, there were many tradeoffs

made and limitations reached. This chapter provides a discussion of the major trade-

offs made in the creation of the widget library, the difficulties met in dealing with

the limitations of developing a Javascript-only library, and several potential paths for

future development related to the widget library.

6.1 Complexity and Expressivity

One of the biggest tradeoffs in the creation of an interface library involves its com-

plexity. The Semantic Web is inherently complex, and developing with it can be

confusing for developers who are not used to everything having a URI or unfamiliar

with common ontologies. Many developers are impatient to learn an entirely new

system to develop an application that may not provide much improvement over a

mashup developed with XML data. It is therefore at times prudent to develop a

widget library that obscures as much of the Semantic Web as possible-even from

developers.

Exhibit is a prime example of a tool that does this. While Exhibit is fully capable

of handling RDF data, it is absolutely not a requirement; Exhibit users can import

data from CSV files and quickly build a rich application with maps, timelines, and

faceted browsing in literally minutes. However, applications like Exhibit trade away

the ability to write truly varied applications in exchange for a simple programming

model. While RDF can be imported into Exhibit, the semantics associated with that

data will generally not be used to group together relevant data. Additionally, the

Exhibit framework tends to force the faceted browsing paradigm on developers who

use it. This can often be a blessing-Exhibit makes it possible for otherwise novice

developers (or even those who have no programming skill) to develop slick, fast-

operating Web sites based around structured data. However, there are often cases

where more skilled developers want many of the great features provided by Exhibit,

but nevertheless wish to break free of some of the design paradigms it imposes.

At the same time, the ability to lay out documents for development with RDF can

be taken to the opposite extreme, where entirely too much expressivity is provided.

This seemingly is the issue that has caused Fresnel [18] to never take off. Fresnel

was originally intended to be a complete layout engine for describing how to display

pieces of RDF in Fresnel "lenses". While the level of expressivity granted by Fresnel

is unparalleled-it allows all kinds of filtering based on query paths, the definition of

unique shapes for enclosing data, and much more-seemingly nobody took interest in

learning how to describe the display of RDF data in RDF, as Fresnel requires. The

learning curve for developing with Fresnel was simply too steep.

The widget library situates itself somewhere in between these two paths. Pro-

gramming with the widget library is certainly nowhere near as simplified as Exhibit,

but this trade in simplicity allows for relatively complete freedom in terms of layout

and information processing. The widget library hides many aspects of live Semantic

Web browsing, such as smushing, in places that novice developers need not look, but

still leaves the option open for those who are willing to get their hands dirty. This

decision allows for very simple applications, such as the annotator, which essentially

requires a single line of Javascript, to come out of the same library as the Peel exam-

ple, a full-fledged application that takes advantage of OWL, SPARQL, and Javascript

event interactions. A good library should provide easy ways for new developers to

get started, but simultaneously provide methods for heavy customization.

6.2 Cross-Browser Security and CORS

The CORS specification promises to greatly enhance the sharing of data between Web

applications directly within the browser, in addition to bringing an end to the use of

formats like JSONP to circumvent browser security. However, the CORS specification

has yet to be finalized, and even when it is finalized, it will presumably face a long

road to cross-browser reliability. This will most likely continue to pose a challenge to

Semantic Web applications that aim to work securely in the browser for some time.

Current implementations of the CORS specification, while all functional for non-

secured connections, are relatively inconsistent when dealing with certificates-particularly

with the self-signed certificates that are the norm with FOAF+SSL. Ideally, all

browsers will eventually support the use of certificates with CORS and allow users

to see which remote resources are being accessed using the user's identity to retrieve

data.

Currently, the latest version of Firefox and Safari support FOAF+SSL under

CORS, but both require the user to wrangle with ominous warning screens about

the security of certificates. In Safari in particular, the user must repeat the process

of permitting secure communications with a particular server every time the browser

is restarted. Internet Explorer simply does not support secured connections with

CORS, due to security concerns. Future versions of these browsers should accept

the use of self-signed certificates as identification, and provide users at least with the

option to eliminate cumbersome warning screens.

If Javascript-based applications built around the Semantic Web become more

popular, and FOAF+SSL or other single-identity systems gain a bigger foothold on

the Web, then there may yet be a stronger push for better identity management in

cross-domain interactions in all of the major browsers, enabling FOAF+SSL in this

environment.

6.3 Level of Inference

As was mentioned in previous sections, the widget library provides functionality for

performing autocompletion on edit widgets and others when they are being edited.

This can be used, for example, to provide a list of only people when a person is

editing a f oaf knows attribute. While autocompletion is highly useful to users, and

the structure of the Semantic Web should seemingly make it easy to decide which

options to show, there are actually several different methods for performing inference

and filtering user options that all have varying benefits depending on the amount of

data available.

One of the fundamental issues underlying the selection of options to display is

the "open world" principle underlying the Semantic Web. This principle implies

that, unless explicitly specified with a property such as owl:disjointWith, it is

impossible to know whether or not a given instance is an instance of a specific class.

For example, the description of a class ex:Man may or may not contain information

such as an rdf s: subClassOf property relating that class to f oaf : Person. However,

the mere absence of this information does not imply that an instance of ex: Man

is not a f oaf :Person. Therefore, failing to present a list of Men as options for

autocompletion of the f oaf : knows property, which has rdf s: range f oaf : Person,

might confuse developers and their users who know that all ex: Man instances are in

fact people.

In an ideal world, even very simple owl:disjointWith and rdfs:subClassOf

properties, and an rdf :type property for instances, would greatly facilitate the dis-

tinction between people, places, and documents. Thus, users who are asked to name

an employee, rather than seeing a list of only Employee instances, could see a list

of all known people, with places and documents removed since people, places, and

documents are known to be disjoint. This is the only truly correct way to eliminate

instance options from appearing in autocomplete menus.

In the absence of such globally-accepted and used basic properties, it is still im-

portant from a user interface standpoint to provide useful, uncluttered autocomplete

options to the user. To this end, the widget library makes use of RDFS properties as

hints as to which instances would make good menu choices. Note, however, that this

behavior is not ideal, as it will explicitly miss instances of ex:Man from the earlier

example if an rdfs: subClassOf property is not provided. Nevertheless, in the ab-

sence of widespread OWL ontology information, these RDFS hints can provide useful

filtering for options to eliminate strange behaviors such as displaying locations when

editing a f oaf :knows property. If desired, this processing can always be switched off,

causing all resources in the local store to be displayed during autocompletion.

However, the simple truth is that for many ontologies, little to no data useful for

inference is provided; there is no definition of domain and range, and there may not

even be an ontology defined at the specified URI at all. This presents a different

problem for autocomplete functionality: how can useful options be provided to the

user in the absence of any metadata? One potential answer, and the one used by the

widget library, is to simply provide options that are used in existing data-for example,

if there is a property called author from an unknown ontology that the user is trying

to edit, the library displays all of the object matches for the pattern ?subject

author ?object in the local store. In this way, the user still gets a reasonable set

of options despite the lack of an ontology. As already mentioned, another possible

option always supported by the widget library is to display all known resources as

options.

Within the widget library, facilitating user input is a primary goal; it is therefore

important to always provide some sort of hint as to what input the user can provide for

a given field. When available, the widget library takes advantage of RDFS metadata

to pick out options that can obey range and domain restrictions. It also uses OWL

for performing "smushing", using the Tabulator Library. However, in the absence of

either of these, useful options can still be produced by inspecting the data available

and reproducing options that are already present in the data.

6.4 Form Complexity

Providing a simple language for defining the input users can provide in forms can be

a somewhat messy task; it is easy to get caught up in the seemingly endless number

of possible data structures that a developer may want users to input. A large amount

of work has been done both within and outside of the Semantic Web community to

develop robust form languages for obtaining user input through forms. For the widget

library, it was seen as advantageous to avoid complexity in favor of a simple method

for creating new instance data.

It is possible to use OWL and other languages to constrain a user's options when

creating new data about a resource-for example, allowing a person to only enter a

single spouse, mother, or father. While such an implementation may be advantageous

when OWL ontologies and the like are well-defined, these ontologies often do not exist

or do not always provide adequate information required to create a specific form-

for example, a developer may wish to combine data from two domains, but does

not necessarily have the expertise to write their own OWL to reconcile the different

required by the two ontologies. Such form models can often be too cumbersome for

novice users.

Languages like XForms [8] go even further to promise effectively infinite expressiv-

ity in the creation of new form data; however, languages like XForms are very clearly

too complex for practical use by unexperienced developers. For this reason, they were

completely discarded as the basis for form creation in the widget library.

Instead of going with more complex systems, the widget library provides a simple

method for defining forms: the createinstance widget. The main goal of the widget

is to provide a very simple method for creating new linked data. The createinstance

widget is a very simple interface for creating statements about a single resource-it

allows the developer to provide mandatory and optional fields for the form, and all

of the fields describe properties of a single object. By heavily limiting the options for

what type of input can be provided, the createinstance interface stays simple. An

extension to the matcher library, proposed in the next section, would allow for more

complex forms to be created. By maintaining consistency across multiple aspects of

the library with the matcher, teaching users to create complex forms in the widget

library would not add too much of an additional learning curve.

6.5 Future Work

6.5.1 Linking in with Other Libraries

The widgets provided in the widget library are geared towards the viewing and editing

of textual data. This decision was made largely on purpose; several libraries, including

Exhibit and RPI's many GoogleViz visualizations [22] already provide highly sophis-

ticated methods for browsing data in maps, charts, graphs, and timelines. While it

would be a waste of time to try and reimplement these features, it would be extremely

useful to link these visualization libraries up with the widget library by some sort of

wrapper widget. This widget could, for example, funnel location data about a set of

resources into Exhibit for display on a map, or funnel statistical data into the RPI

visualization code to produce a pie chart. By using the widget library as the primary

layer for processing the RDF coming from the Web, all of the benefits of live updat-

ing and editing provided by the widget library are maintained while also gaining the

power of these excellent graphical libraries.

6.5.2 Custom Form Generation Using the Matcher

In Section 4.4.2, a mechanism was described for generating remote SPARQL queries

using the widget library's matcher functionality. Similarly, the matcher functionality

could be used to create a form requesting that the user fill in all of the variables defined

the WHERE pattern of the query. Figure 6-1 depicts an example where a matching

function for books is used to generate a form for entering the titles of new books

into a system. This mechanism would allow for the construction of much more com-

plex triple patterns than the single-subject forms generated by the createinstance

widget. When the user submits the form, the widget library automatically would

$.rdfwidgets. matcher()
,match("<http://web.mit.edu/jambo/vww/foaf rdf#jambo",

foaf :knows".
"?friend"

.match("?friend",
"foaf :nick",
"?nickname"

.form("http://vvw.example.com/sparql");

(a)

friend JFred Flintstone

nickname JFreddy

Submit
(b)

INSERT {
<http://vebmit.e-du/jaxbo/wvvw/foaf.rdfjajkbo> foaf knows <http://vebmitedu.jabo/wv/fred.rdf~fred>.
<http://web.ait.edu/jambo/www/fred.rdf~fred> foaf.nick *Freddy"

}

(c)

Figure 6-1: A form generated with the proposed matcher extension. Each variable
used in the matcher pattern is requested in the user input. Depending on their
context, certain variables, such as friend, will have autocomplete functionality based
on RDFS information.

automatically generate the appropriate SPARUL INSERT query and send the en-

tire pattern generated by the matcher, with the user-provided bindings, to a target

SPARQL endpoint.

6.5.3 Optimization of Update Processing

Currently, individual widgets do little to no processing to determine whether or not

an update to the local data store requires the widget to redraw. This means that

whenever new data is loaded, the vast majority of widgets refresh on the spot, even

if the change was the result of a single triple being updated by a user-driven edit.

There are a number of different ways to combat this problem, which vary inversely

in their granularity and the amount of time spent determining if an update is relevant.

Since DOM operations largely dominate the work involved in redrawing widgets, re-

freshing is most expensive for widgets like the resource widget, which can potentially

display several hundred triples related to a single subject. Simply reading through

each triple in the new data and picking out those relevant to the resource widget,

in this case, will turn out to be much faster if the number of triples to be inserted

is small. However, if the number of triples to be inserted is large, this operation will

actually be slower than simply redrawing, since the resource widget code is highly

optimized for the initial draw. Thus, there are non-linear tradeoffs in determining the

redraw strategy of each widget that makes defining a single "best" redraw strategy

difficult. While there may not be a single best redraw strategy, it is still fair to say

that some widgets can be better optimized for high-frequency updates.

6.5.4 SPARQL Diffs

Currently, there is no standardized or even widely used method for sending out a

Comet-like [23] SPARQL query that can receive updates to the remote triple store

in the form of live diffs. This seems to be a major missing piece in the creation of

Semantic Web applications that can fully compete with traditional Web applications-

for example, extending the annotator example to stream live comments about a given

resource on the Web would allow for the creation of a highly interactive service that

operates on many different Websites, yet displays the same data set on all of them.

This would allow for users to share information about how different Web sites are

portraying the same resources, since annotations could contain links back to the

location that a given resource was edited from.

Open Anzo [17] aims to provide a Javascript API for receiving diffs from a triple

store, but presently it uses a custom library and does not seem to work with SPARQL

queries. Even so, it may be possible to create a wrapper for OpenAnzo or other

streaming servers that streams data into the widget library's internal store.

6.5.5 ACL Integration in Widget Interfaces

As was seen in the annotator example, it is possible for data to be created along with

an associated access control policy for future use. However, when data is displayed

back to the user, there is no information provided as to why they are allowed to see

a given piece of data. This can cause user confusion when two different users do

not see the same dataset on the same Website, and can even cause users to disclose

information that they may not otherwise make public. For example, a user might

write a public reply to a private annotation simply because they did not realize it was

private, thereby disclosing information that they may otherwise not have mentioned.

There are several approaches that can help mitigate this risk. One method makes

use of the link rel=meta HTTP header to identify the location of the access control

graph, pull it down, and display the access control data that grants a user access. This

behavior would be similar to the policy processing and display used in the Tabulator

Justification UI. Alternatively, the server could generate some sort of metadata as a

part of the response to the SPARQL query that provides a plain-text string or proof

tree describing why the user was granted access. This information could then be

displayed along with the annotation to help the user understand why they are seeing

a certain piece of data.

Chapter 7

Contributions

To ensure the sustained growth of the Semantic Web, powerful, exciting applications

must be developed that could not exist without the Semantic Web. The creation and

improvement of tools for working with Semantic Web data will greatly speed up the

rate at which such applications are developed. To that end, this thesis has:

9 Defined a set of widgets for viewing, creating, and editing Seman-

tic Web data. The widgets defined allow for the creation of interfaces with

common user interface paradigms that can automatically push user-generated

content onto the Web. These widgets not only save developers time when cre-

ating applications that use Semantic Web data; they also ensure that end-users

are not unnecessarily exposed to the inner workings of the Semantic Web, which

fundamentally are not of interest to them.

e Shown that the Widget Library can be extended to fit new needs.

Providing custom template, form, and query generation and a solid base of fun-

damental editing widgets ensures that developers will be able to create interfaces

that are specifically tailored to their domain. Some services may require widgets

that looks like business cards, while others need full descriptions of prescription

drugs and their side effects. The huge variation in the data available on the Se-

mantic Web precludes the possibility of a one-size-fits-all solution; instead, the

Widget Library provides developers with the flexibility needed to build custom

interfaces.

" Created a server-side application for managing access to Semantic

Web data stored in named graphs. Providing meaningful services to users

often implies the need for identification; certainly, at some point, many Semantic

Web applications will generate user-specific data. A good widget library will

therefore need to be able to understand the notion of access control policies used

in conjunction with user-generated data. The access control policies currently

provided are intentionally simple, but the system can be extended arbitrarily

while still supporting the policies described here.

" Demonstrated the functionality of the Widget Library with a pair

of examples. The annotation example shows how different developers can

make use of the same publicly available information to create dynamic content

on their own Web site. In a world where users, blog posts, and grocery store

items all have URIs, the possibility for community review is endless. The Peel

session example demonstrates how developers can pull together a large number

of data sets simply by allowing the widget library to crawl between data sources,

fulfilling the Semantic Web's promise of essentially free interoperability.

As the amount of data available on the Semantic Web continues to grow, the

opportunity for gathering meaningful data simply by exploring links will continue to

grow. The Semantic Web Widget Library is a powerful tool that allows developers

to work together to create increasingly useful and unique distributed applications on

the Semantic Web.

Appendix A

Links to Source Code,

Documentation, and Examples

The main page for the project, which includes a brief introduction to coding with the

widget library, download links to the project source, and links to all other resources,

can be found at:

http: //dig. csail .mit . edu/2010/rdf -widgets/

Code documentation, including examples for each widget, tutorials for writing

new widgets and using the main library functions, and maintenance information for

future project contributors can be found at:

http://dig. csail.mit. edu/2010/rdf-widgets/docs/

Finally, the examples from Chapter 5 are both available online:

Annotator:

http: //dig. csail .mit . edu/2010/rdf -widgets/examples/annotator . html

John Peel:

http: //dig. csail .mit . edu/2010/rdf-widgets/examples/johnpeel .html

78

Bibliography

[1] B. Adida, M. Birbeck, S. McCarron, and S. Pemberton. Rdfa in xhtml: Syntax
and processing. http: //www. w3. org/TR/rdf a-syntax/, 2008.

[2] K. Alexander. Morph: Talis semantic web formats converter. http: //convert.
test .talis. com/, 2009.

[3] Annotea project. http: //www.w3. org/2001/Annotea/, 2001.

[4] Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, and Zachary Ives.
Dbpedia: A nucleus for a web of open data. In In 6th International Semantic
Web Conference, Busan, Korea, pages 11-15. Springer, 2007.

[5] T. Berners-Lee, J. Hollenbach, Kanghao Lu, J. Presbrey, and mc schraefel. Tab-
ulator redux: Browsing and writing linked data. http: //citeseerx. ist.psu.
edu/viewdoc/suimmary?doi=10 . 1.112.1782, 2007.

[6] Tim Berners-lee, Yushin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,
James Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and
analyzing linked data on the semantic web. In In Proceedings of the 3rd Inter-
national Semantic Web User Interaction Workshop, 2006.

[7] C. Bizer. Disco hyperdata browser. http://www4.wiwiss.fu-berlin.de/
bizer/ng4j/disco/, 2007.

[8] J. Boyer. Xforms 1.1. http://www.w3.org/TR/xforms11/, 2009.

[9] M. Hanson, D. Mills, A. Raskin, and A. Faaborg. Mozillawiki: Account manager.
https: //wiki.mozilla. org/Labs/Weave/Identity/Account-Manager, 2009.

[10] M. Hausenblas. pushback: Write data back from rdf to non-rdf sources. http:
//code.google.com/p/pushback/, 2009.

[11] J. Hollenbach, J. Presbrey, and T. Berners-Lee. Using rdf metadata to enable
access control on the social semantic web. In Proceedings of the Workshop on
Collaborative Construction, Management and Linking of Structured Knowledge
(CK2009), 2009.

[12] David F. Huynh, David R. Karger, and Robert C. Miller. Exhibit: lightweight
structured data publishing. In WWW '07: Proceedings of the 16th international
conference on World Wide Web, pages 737-746, New York, NY, USA, 2007.
ACM.

[13] B. Ippolito. Remote json: Jsonp. http: //bob. pythonmac. org/archives/2005/
12/05/remote-json-jsonp/, 2005.

[14] David R. Karger, Scott Ostler, and Ryan Lee. The web page as a wysiwyg
end-user customizable database-backed information management application. In
UIST '09: Proceedings of the 22nd annual ACM symposium on User interface
software and technology, pages 257-260, New York, NY, USA, 2009. ACM.

[15] D. McGuinness and F. van Harmelen. Owl web ontology language. http: //www.
w3.org/TR/owl-features/, 2004.

[16] Musicbrainz d2r server. http: //dbtune. org/musicbrainz/, 2009.

[17] Open anzo. http: //www. openanzo. org/.

[18] Emmanuel Pietriga, Christian Bizer, David Karger, and Ryan Lee. Fresnel - a
browser-independent presentation vocabulary for rdf. In In: Proceedings of the
Second International Workshop on Interaction Design and the Semantic Web,
pages 158-171. Springer, 2006.

[19] Y. Raimond. Dbtune: Bbc john peel sessions. http: //dbtune. org/bbc/peel/,
2007.

[20] Rdfa 1.1 cors test results. http://rdfa.digitalbazaar.com/tests/cors/
results, 2010.

[21] J. Resig. jquery: The write less, do more javascript library. http://jquery.
com/, 2010.

[22] Demos: Data-gov wiki. http: //data-gov. tw. rpi. edu/wiki/Demos, 2007.

[23] A. Russell. Comet: Low latency data for the browser. http://alex.
dojotoolkit. org/2006/03/comet-low-latency-data-f or-the-browser/,
2007.

[24] Andy Seaborne, Gheeta Manjunath, Chris Bizer, John Breslin, Soupriya Das,
Ian Davis, Steve Harris, Kingsley Idehen, Olivier Corby, Kjetil Kjernsmo,
and Benjamin Nowack. Sparql update. http://www.w3.org/Submission/
SPARQL-Updat e/.

[25] Arc rdf classes for php. http: //arc . semsol. org/, 2007.

[26] Basic access control ontology. http: //www. w3. org/ns/auth/acl, 2009.

[27] Sig.ma. http://sig.ma, 2009.

[28] Henry Story, Bruno Harbulot, Ian Jacobi, and Mike Jones. FOAF+SSL: RESTful
Authentication for the Social Web. In Proceedings of the First Workshop on Trust
and Privacy on the Social and Semantic Web (SPOT2009), 2009.

[29] J. Tennison. rdfquery: Rdf processing in your browser. http: //code. google.
com/p/rdfquery/, 2009.

[30] A. van Kestern. Cross-origin resource sharing. http://www.w3.org/TR/cors/,
2009.

