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Abstract

The identification and quantification of high-dimensional relationships is a major
challenge in the analysis of both biological and chemical systems. To address this
challenge, a variety of experimental and computational tools have been developed
to generate multivariate samples from these systems. Information theory provides
a general framework for the analysis of such data, but for many applications, the
large sample sizes needed to reliably compute high-dimensional information theoretic
statistics are not available. In this thesis we develop, validate, and apply a novel
framework for approximating high-dimensional information theoretic statistics using
associated terms of arbitrarily low order. For a variety of synthetic, biological, and
chemical systems, we find that these low-order approximations provide good estimates
of higher-order multivariate relationships, while dramatically reducing the number of
samples needed to reach convergence. We apply the framework to the analysis of
multiple biological systems, including a phospho-proteomic data set in which we iden-
tify a subset of phospho-peptides that is maximally informative of cellular response
(migration and proliferation) across multiple conditions (varying EGF or heregulin
stimulation, and HER2 expression). This subset is shown to produce statistical mod-
els with superior performance to those built with subsets of similar size. We also
employ the framework to extract configurational entropies from molecular dynam-
ics simulations of a series of small molecules, demonstrating improved convergence
relative to existing methods. As these disparate applications highlight, our frame-
work enables the use of general information theoretic phrasings even in systems where
data quantities preclude direct estimation of the high-order statistics. Furthermore,
because the framework provides a hierarchy of approximations of increasing order,
as data collection and analysis techniques improve, the method extends to generate
more accurate results, while maintaining the same underlying theory.

Thesis Supervisor: Bruce Tidor
Title: Professor of Biological Engineering and Computer Science
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Chapter 1

Introduction

For much of scientific history, the examination of biological systems was largely fo-

cused on the isolation and direct characterization of individual molecular species or

interactions between small sets of species. This mode of investigation proved quite

successful, and over time, complex networks of interactions were seen to develop by

integrating the results of many, many experiments of relatively small scope. Over

the past few decades, remarkable technological advances have provided the ability

to interrogate these same biological systems on a near global scale for many classes

of molecular species, including mRNA, proteins, and metabolites [34, 85]. The data

collected from these studies have also highlighted the multivariate nature of biological

systems [43, 38].

Given this increasingly popular systems-level view of biology, a growing number

of data sets have been, and continue to be, collected to identify and characterize

the networks dictated by the molecular interactions. These data sets track species of

interest in the context of multiple stimulation conditions, and/or cellular states. Data

representing various cellular responses, such as the level of migration, proliferation,

differentiation, or apoptosis may also be measured under the same set of experimental

conditions. In general, these data sets represent the response of large numbers of

signals across a relatively modest number of experimental conditions. From these

data, the goal is to identify and quantify the multivariate relationships between the

measured species, and to understand how these potentially complex relationships



lead to cellular responses. While mechanistic understanding of such interactions is

the ultimate goal, much of the analysis to date has focused on statistical modeling,

as it is well suited for the types of data that can be collected on a system-wide scale

[38, 46, 79]. Despite a variety of important advances, the development of techniques

for the analysis of such data remains an active area of research.

The characterization of the statistical relationships between large numbers of vari-

ables is also of interest in the analysis of chemical systems. In particular, a variety

of important thermodynamic properties, including the molecular configurational en-

tropy, can be phrased in terms of the multivariate couplings between the degrees of

freedom of the system [44]. A variety of different approaches have been pursued to

quantify these relationships in computational models. Methods based upon enumer-

ating and characterizing minima in the energy landscape have proved particularly

successful in calculating ensemble properties such as free energy and configurational

entropy [9]. For larger systems, however, these detailed methods are generally infea-

sible, and alternative approaches have been pursued which analyze snapshots of the

system as generated from simulation methods such as molecular dynamics (MD) or

Monte Carlo search [44, 40, 36]. Within these latter phrasings, the parallels between

the biological systems described above and these chemical systems become more clear.

In both cases, one is presented with a finite set of multivariate samples from which

one tries to extract and characterize the relevant multivariate couplings represented

within the system.

Information theory as a general framework for quan-

tifying multivariate relationships

A variety of techniques exist for addressing the type of questions posed above. Of

particular interest to this thesis are methods within the field of information theory,

which provides a general framework for quantifying statistical couplings. As originally

formulated by Shannon, information theory draws a parallel between the variance of



a random variable - as measured by the information entropy - and the information

contained by the variable [74]. The rationale for relating variance to information can

be seen in the context of a hypothetical experiment performed to identify the value of

a variable. For a variable that is able to adopt any of a number of values (e.g. a pro-

tein whose concentration varies over a wide range, or a molecular degree of freedom

that permits occupancy of a number of torsional configurations), an experiment to de-

termine the exact value of the variable generates a large amount of information (e.g.,

the concentration of the protein is exactly 100 nM, or a molecular torsion is restricted

to 180'). In contrast, performing the same experiment to determine the value of a

variable with limited variance does not provide much new information. By computing

and combining these information entropies across multiple dimensions, information

theory also provides a general framework for quantifying statistical relationships be-

tween variables. Of particular note is the mutual information which represents the

loss of information entropy of one variable when the value of an associated variable

is known [74, 16].

For biological and chemical systems, information theory is attractive due to its

ability to identify any arbitrary statistical dependency between variables, unlike

variance-based methods which are limited to linear representations of such depen-

dencies. Additionally, as can be derived from the conservation of information, many

information theoretic statistics, including mutual information, are invariant to re-

versible transformations. Information theory can also handle categorical or continu-

ous data, as well as mixed systems, and naturally extends to relationships between

an arbitrary number of variables [16, 57].

Despite these advantages, the application of information theory can be challenging

given the relatively large number of sample points needed to generate converged

estimates of the statistics, particularly those involving high-dimensional relationships.

As a result, most applications of information theory to the type of data generated

from biological systems have focused on first- or second-order information theoretic

statistics [79, 22, 60]. Even in the context of chemical systems, where sample sizes tend

to be dramatically larger, direct application of high-dimensional information theory



may still be infeasible due to the exponential growth in sample size requirements as a

function of system size [44, 35]. As such, the limited application of high-dimensional

information theory in biological and chemical applications appears to be a practical

one (i.e., the statistics are poorly converged given the available data sizes), as opposed

to a theoretical one.

As mentioned above, a variety of analyses employing information theory in the

examination of biological and chemical systems have been performed. For the most

part, these applications have focused on the information content of single variables, or

the shared information between pairs. For example, pairwise mutual information has

been used in the context of gene selection [22], clustering [79], network inference [60],

sensitivity analysis [55], identification of residue couplings from multiple sequence

alignments [26, 31, 49], and a host of other applications. Furthermore, some higher-

dimensional phrasings have been proposed for feature selection [22, 68], chemical

library design [48], and the calculation of configurational entropies [44, 35], but for

most cases, the small quantities of available data have limited the application of

information theory to a its full extent.

In this thesis we present a systematic framework to enable the use of high-

dimensional information theoretic problem phrasings, even when a limited number

of data samples are available. We accomplish this by developing a principled ap-

proximation to high-dimensional information theoretic statistics that are constructed

using associated statistics of arbitrarily low dimension. The idea that low-order statis-

tics could be used to represent the multivariate behavior of biological and chemical

systems is rooted in the observation that these systems often consist of modest num-

bers of species interacting with each other directly, resulting in a relatively sparse

number of direct high-order relationships. Biological and chemical systems seem to

build up complex relationships, not through simultaneous coupling of large sets of

variables, but by stringing together small sets of interconnected ones.

Through our approximation framework, we enable a variety of high-dimensional

information-theoretic phrasings that can elegantly represent key questions in the anal-

ysis of multivariate data. For example, a commonly addressed task in the context of



biological data is that of feature selection, in which one aims to identify subsets of

variables that maximally explain some output of interest. In early applications, such

sets were identified by individually ranking each variable by its relationship with the

output [34]. Later work found that sets chosen in such a way tend to include largely

redundant information, and that superior feature sets could be identified by simulta-

neously weighing the "relevance" and "redundancy" of the selected features [22]. In

the context of information theory, feature selection can be simply phrased as identi-

fying the subset of species that together have maximal mutual information with the

output. This phrasing appropriately weighs the relevance and redundancy of the con-

stituent species against each other in a principled manner. Similar high-dimensional

phrasings exist for such tasks as representative subset selection, clustering, experi-

mental design, and network inference. In all of these cases, pairwise phrasings have

primarily been pursued, due to the poor convergence of the high-dimensional statis-

tics. In this thesis and in ongoing work, we demonstrate that the general high di-

mensional phrasings, when addressed through our approximations, show comparable

performance to state of the art pairwise methods developed for specific applications,

while providing a framework for incorporating increasingly high-order information as

data collection methods improve.

The structure of this thesis

In the work presented here, we start, in Chapter 2, by developing and characteriz-

ing our approximation framework. The approximation is developed in the context of

an expansion of the full information entropy as a function of increasingly high-order

terms, enabling direct inspection of the assumptions made when utilizing the approx-

imations. We also demonstrate that the approximation provides a guaranteed upper

bound to the full entropy when the lower order terms are known exactly, and that

the approximation error decreases monotonically as the approximation order is in-

creased. We then validate and examine the approximation framework in the context

of synthetic systems where the exact statistics are known analytically, as well as in



application to mRNA expression data extracted from multiple tumor tissues.

In Chapter 3, we extend the information theoretic framework to the analysis of a

phospho-proteomic signaling data set. This system represents a common structure of

biological data in which the number of signals (68 phospho-peptides, each measured

at four separate time points) dramatically exceeds the number of experimental con-

ditions (6 total conditions). Using our framework, we identify a subset of 9 phospho-

peptides that are shown to provide significantly improved modeling performance in

comparison to other selection methods. We also employ a variety of high-dimensional

phrasings to examine the relationships between relevant groups of signals, such as the

four time points representing each phospho-peptide. In many cases, the relationships

identified by our high-dimensional analyses are consistent with known biology, and

with previous analysis in the same data set.

Finally, in Chapter 4, we extend our approximation framework to the calculation

of molecular configurational entropies from molecular dynamics simulation data. We

compare the performance of our framework against an existing approximation method

that represents a similar but distinct expansion and truncation of the full entropy.

In the context of simulations of linear alkanes, we observe that while our approxima-

tion shows slightly worse agreement with well established methods, it demonstrates

considerably faster convergence. As such, we identify sampling regimes in which our

approximation provides superior agreement with established methods. We also in-

vestigate a series of idealized rotameric systems in which the low-order information

terms can be determined exactly. In these systems, we consistently observe low errors

with our framework, whereas the comparison method demonstrates erratic behavior.

Additionally, we highlight bounding and monotonicity guarantees maintained by our

framework that may prove important in future applications.

As discussed above, biological networks and molecular systems share a similar

structure that provides both challenges and opportunities for their analysis. For both

types of systems, many relevant properties involve the multivariate interaction of

large numbers of molecular species (in biological networks) or degrees of freedom (in

molecular systems). Extracting these key properties directly from data drawn from



the multivariate distributions representing the systems can be unreliable, given the so

called "Curse of Dimensionality" which suggests that the number of samples needed

to describe multivariate relationships scales exponentially with the size of the system.

In potential mitigation of these challenges is the observation that while large mul-

tivariate interactions exist, they may often be decomposable into core relationships

involving relatively few species. For biological networks, the vast majority of be-

havior is mediated through successive pairwise interactions (binding, catalysis, etc),

due at least in part to the vanishingly small likelihood of simultaneous three-body

interactions. In chemical systems, many inter-atomic forces can be well approximated

as being pairwise-additive, and these forces tend to drop off rapidly with distance,

resulting in a similarly decomposable structure.

In this thesis, we have taken advantage of this structure of biological and chemical

systems to enable the application of general information theoretic phrasings, even

when direct estimation of the high-order statistics is infeasible due to sample sizes.

In so doing, we provide a principled, general framework for approximating high-

dimensional statistics across a wide range of sampling regimes. Additionally, this

framework carries guaranteed bounding properties, as well as monotonic decrease

in approximation error with increasingly level of theory. As such, in addition to

providing useful approximations for the type of data that is currently being collected,

the framework naturally extends to provide increasing accuracy as data collection

and analysis methods improve while maintaining a consistent underlying theory.
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Chapter 2

MIST: Maximum information

spanning trees for dimension

reduction of biological data setsi

2.1 Introduction

As the size and dimension of biological data sets have grown, a variety of data-mining

and machine-learning techniques has been employed as analytical tools. Among these

are techniques aimed at a class of problems generally known as dimension reduc-

tion problems [34, 79, 38]. Dimension reduction techniques can improve the inter-

pretability of data, either by representing high-dimensional data in a reduced space

for direct inspection, or by highlighting important features of data sets that warrant

more detailed investigation. For many biological applications, notably the analysis

of high-dimensional signaling data, principal component analysis (PCA) and par-

tial least squares (PLS) decomposition are increasingly popular dimension reduction

techniques [38, 46]. Whereas these techniques reduce the number of variables in a

system by including only statistically important linear combinations of the full set of

variables, the related techniques of representative subset selection (RSS) and feature

'This chapter has been previously published as: King BM and Tidor B. Bioinformatics

25(9):1165-1172, 2009.



selection (FS) instead aim to identify subsets of variables that are statistically im-

portant. These techniques can be used as preprocessing steps prior to application of

machine learning methods such as classification [22], and have also been applied in

chemical library design [48] and biomarker discovery [54].

While many tools reduce dimensionality to maintain variance (variance-based

techniques), recent directions have led to information theoretic phrasings [22, 79].

Compared to variance-based methods, information theory has notable advantages.

Information theoretic statistics can capture all relationships among a set of variables,

whereas variance-based methods may miss nonlinear relationships. Additionally many

information theoretic values are invariant to reversible transformations, limiting the

need for such common (and somewhat ad hoc) methods as mean-centering, variance-

scaling, and log-transforming. Finally, information theory provides a framework for

treating both continuous and categorical data, in contrast to variance-based methods,

which are unsuitable for categorical data [57, 16]. This common framework can be

especially important when incorporating categorical data, such as the classification of

a type of cancer, into the analysis of a continuous data set, such as mRNA expression

microarrays.

A variety of dimension reduction problems has already been phrased using high-

dimensional information theoretic statistics [48, 79, 69]. Notably, the maximum-

dependency criterion (maximizing the MI between the feature set and the output)

has been proposed for feature selection [69]. While the high-dimensional phrasing is

theoretically more correct, difficulties in estimating high-dimensional statistics with

finite sample sizes have resulted in poor performance when compared to techniques

using only lower-order statistics [69]. That is, methods that are better in principle

perform worse in practice due to their need for larger sample sizes. While some

low-order methods have been shown to be related to the high-dimensional phrasing

[69], they have generally been developed for a specific application, and their utility

in other problems is unclear. To our knowledge, there is no available method for

systematically replacing high-order metrics with associated low-order ones. Such a

method would enable utilization of the general high-dimensional phrasing but avoid



the sampling issues that plague direct applications.

In this chapter we present a general framework for approximating high-dimensional

information theoretic statistics using associated statistics of arbitrarily low order. Due

to a relationship to the minimum spanning tree over a graph representation of the

system, we refer to these approximations as Maximum Information Spanning Trees

(MIST). The framework is demonstrated on synthetic data and a series of microarray

data sets relevant to cancer classification, and the performance is compared to other

approaches.

2.2 Theory

Information theory is a framework for describing relationships of random variables

[74]. The two most heavily used concepts from information theory with regard to

dimension reduction are the concepts of information entropy and mutual information.

The entropy of a random variable, H(x), quantifies the uncertainty or randomness

of that variable and is a function of its probability distribution, p(x), also called the

Probability Mass Function (PMF)

b

H(x) - p(xi) log [p (xi)], (2.1)
i=1

where the summation is over all b bins representing the states of x. To describe

the relationship between two random variables x and y, one can consider the condi-

tional entropy of x given that y is known, H(xly). If x and y are related in some

way, knowledge of y may reduce the uncertainty in x, thus reducing the entropy.

Conditioning can never increase the entropy of a variable, so H(x) > H(xly). The

difference between the entropy and the conditional entropy of a variable is a measure

of the amount of information shared between the two variables. This difference is

defined as the mutual information (MI), I(x; y), and is symmetric

I(x; y) = H(x) - H(xly) = H(y) - H(ylx) = I(y; X). (2.2)



All of these concepts are similarly defined for vectors x and y, where they are functions

of the associated higher-order probability distributions [57, 16].

MIST Entropy Approximation Framework

The goal is to find an approximation Hk, to the joint entropy of n variables using

entropies of order no greater than some k < n,

H (H 1 . . .Hk) ~ Hn (xi... ), (2.3)

where Hi denotes a true entropy of order i and Hi' denotes a jth -order approximation

to an entropy of order i. To arrive at such an approximation, we begin with an exact

expansion of the joint entropy of n variables [16]

n

Hn (XI. . . Xz) = Hi (xilzi . . xi_ 1). (2.4)
i=1

Note that Equation 2.4 produces the same LHS information entropy Hn for all

permutations of the indices of the x and that the RHS is a series of terms of increas-

ingly higher order. We collect the first k terms on the RHS and identify this as the

kth-order information entropy of the first k variables, giving

n

Hn (Xi ... Xn) = Hk (XI... Xk) + Y Hi (xilx 1 ... xi_1). (2.5)
i=k+1

We replace each term in the summation by its kth -order approximation. Because

conditioning cannot increase the entropy, each approximation term is an upper bound

on the term it replaced,

n

Hn (XI ... on) < Hk (X1 ... zk) + 1:Hi (ziliX ... zk_1) = H k. (2.6)
i=k+1

All the terms in this sum are kth-order, providing an approximation, H , which is

formally an upper bound. Note that for k = n this expression returns to the exact

expansion from Equation 2.4.



Because the indexing of the variables is arbitrary, there are a combinatorial number

of approximations consistent with Equation 2.6, all of which are upper bounds to the

true joint entropy. There are actually two levels of arbitrary indexing, one being which

variables make up the first k and the second being the selection of k - 1 variables

used to bound each term beyond the first on the RHS of Equation 2.6. The best of

these approximations is therefore the one that generates the minimum H , as this

will provide the tightest bound consistent with this framework. To complete the

approximation, we therefore desire a method for choosing the indexing that produces

the best of these bounds.

For low dimensional problems one can enumerate the space of consistent approx-

imations and use the smallest one. To provide a general solution, we first separate

out elements that are independent of the indexing. Each conditional entropy term

can be divided into an entropy and a MI component, as shown in Equation 2.2.

n

Hn= Hk (x 1 ... xk)+ [H1(xi) - Ik(xi; x 1 ... x_1]. (2.7)
i=k+1

Because all individual self entropy terms will ultimately be included in the summa-

tion, they are not affected by the indexing, whereas the MI terms do depend on the

indexing. For k = 2, we arrive at a compact expression of the best second-order

approximation within this framework that depends only upon the indexing of the

pairwise MI terms,

n n

H= ZH(xi) - maxZI2(xi;xjg[,13). (2.8)
i=1 j i=2

The goal is to select the ordering of the indices, i, and the conditioning terms, j, to

minimize the expression. The selection of i and j has no effect on the left-hand sum,

so it can be ignored during the optimization. We are then left with n - 1 second-order

terms to consider. To phrase the optimization of indices over these terms, consider

a graph where the nodes are the variables and the edges are all possible pairwise MI

terms. The result is a fully connected graph of n nodes from which we choose n - 1

edges to maximize the sum of the edge weights. The choice of edges is constrained



such that every node must have at least one edge. Because only n - 1 edges are

chosen, this also constrains the graph to be acyclic.

By negating the edge weights and adding a sufficiently large constant to ensure

positivity, the problem is equivalent to the Minimum Spanning Tree (MST) from

graph theory. A variety of algorithms has been developed to find the optimal solu-

tion, including Prim's algorithm [14], a greedy scheme in which the smallest allowed

edge is chosen during each iteration. Using this algorithm, we define a method for

efficiently finding the best second-order approximation consistent with Equation 2.8.

The computational complexity of Prim's algorithm for a fully connected graph, and

thus of our method, is O(N 2). For the higher-order approximations, we apply the

greedy algorithm to select the best kth-order approximation consistent with Equation

2.6. Although it is not guaranteed to be optimal, in small test systems where enumer-

ation is possible, the greedy scheme resulted in bounds nearly as tight. Note that the

MST phrasing, as used here, is merely an optimization method for finding the best

approximation consistent with the mathematical framework, and is not necessarily

an inherently meaningful representation.

Bias-Estimation and Propagation

The bias associated with computing the MIST approximation can be estimated by

propagating the bias associated with estimating each of the low-order terms. For

clarity we focus on the second-order approximation (MIST 2) although the method can

be easily extended for arbitrarily high approximation order. The error model we use

takes advantage of two properties of entropy estimation: (1) higher entropy variables

are more difficult to estimate (have higher errors), and (2) entropy estimates are

negatively biased (direct estimates are generally underestimates) [67]. While neither

of these properties is guaranteed for any single estimate, they are true on average.

We also assume that the estimation errors associated with the first-order entropies

are negligible with respect to the errors in the higher-order terms.

We first consider the bias associated with estimating a single second-order entropy.

For any pair of variables with fixed self entropies, nonzero MI between them will



reduce the joint entropy of the pair. Because higher entropy variables have higher

estimation bias, the highest possible bias comes when the variables are independent.

By forcibly decoupling any pair of variables (by shuffling their order with respect to

each other), we compute an estimate that is greater than or equal to the true bias,

H(x, y) - (H(x, y)) < Hind(x, y) - KHind (XY) (2.9)

< H(x) + H(y) - KHind(x, y

where the angled brackets indicate averages over repeated samples and the overbars

indicate entropy estimates. All quantities on the RHS are directly computable, and

by repeating the shuffling procedure, the average estimation bias can be estimated or

confidence limits can be established quantifying the likelihood of the true estimation

error being greater than the computed value.

With a reasonable estimate of the bias associated with computing each second-

order entropy, we need to propagate the bias through the MIST approximation. We

start by rewriting Equation 2.8 assuming that the indexing i, j has been determined

using the MST approach as described above, and by expanding the MI term into the

corresponding difference of entropies

n n

Hn = E H1 (xi) - E [H1 (xi) + H1 (xj) - H2 (xi, xj)] (2.10)
i=1 i=2

n
= H1(x1) - 1 [H1(xj) - H 2 (xi, xj)].

i=2

Because we assume the bias in estimating first-order entropies to be small with

respect to the bias in higher-order terms, the propagated bias in this expression is

dominated by the errors in approximating the n - 1 second-order entropies. Because

all of these terms are negatively biased, we expect that overall propagated error to be

negatively biased as well; i.e., the computed H is expected to be an underestimate



of the approximation assuming no estimation errors in the low-order terms. Conse-

quently, by summing the second-order bias approximated by Equation 2.9, we arrive

at an expected bias for the full approximation:

H - KH .. H(xi) + H(xj) - KHind(Xi, Xj)) . (2.11)
i=2

As with Equation 2.9, repeated shuffling allows one to estimate the expected bias and

to compute confidence limits on the calculation.

2.3 Methods

Direct Entropy Estimation

While the framework developed here is equally applicable to continuous phrasings of

information theory, all variables in this work were treated as discrete. For continuous

data, variables were discretized into three equiprobable bins unless otherwise stated.

Similar results were achieved using different binning protocols and numbers of bins.

For discrete data no pre-processing was performed. Entropies of arbitrary order were

computed from data by approximating the PMF by the frequencies and using the

resulting PMF estimate in Equation 2.1. The MI's were then computed from the

estimated entropies according to Equation 2.2.

Bias Estimation

Bias estimates were computed as described in Section 2.2. The bias of all pairs of

variables was first estimated using Equation 2.9 by shuffling the ordering of samples

for each pair and recomputing the entropy directly. This procedure was repeated until

the bias estimate computed from two halves of the shuffling samples agreed within 0.01

nats. The pairs' biases were then used to approximate the bias of each high-order

approximation according to Equation 2.11. The terms included in the summation

were chosen according to the MIST method prior to any error analysis. Two cases

were examined for computing the term in angled brackets. Either the converged



mean value was used to compute the expected bias, or 100 samples were drawn and

the maximum error from this set was used for each term in the sum, resulting in a

p = 0.01 confidence limit that the true value of the entropy approximation lies below

this max-error value.

Validation Framework

To evaluate the approximation, we developed a framework for generating relational

models with analytically determinable entropies from which we could draw sample

data. These networks consisted of 5-11 discrete nodes connected by randomly placed

unidirectional influence edges. All nodes initially had an unnormalized uniform prob-

ability of 1 for each state. If node A influenced node B with weight w, then B was

favored to adopt the same state as A by adding w to the unnormalized probability

of that state in B. For higher-dimensional influences, the states of all parents where

summed and remapped to the support of the child, and the corresponding state in the

child was favored by adding the influence weight to that state. Influences including

1-4 parents were included, with 4-19 influences of each order, depending on the num-

ber of nodes in the system. Influence weights ranged from 1-10 and all variables had

3 bins. For each system, the joint entropy of all combinations of nodes was computed

analytically and 10,000 samples were drawn from each network.

Feature Selection and Classification Error

For the feature selection task, an incremental method was used in which features were

added one at a time to the set of already chosen features either at random or in order

to maximize the score of the new feature set according to: (1) maximum dependency

using direct estimation, (2) maximum dependency using MIST of order two (MIST 2),

or (3) a second-order approximation proposed elsewhere specifically for feature selec-

tion know as minimum-redundancy-maximum-relevance (mRMR) [22]. All feature

selection methods were evaluated by training on 75% of the samples and testing on

the remaining 25%. This procedure was repeated 200 times and the mean behavior is

reported. The data were discretized and the features chosen using only the training



data. The frequency of each gene across the 200 trials was also recorded, and the

Bonferroni-adjusted p-value for each gene occurring this many times was computed

compared to a null model in which features are chosen at random. The subset of

features was then used to train support vector machine (SVM) using a linear kernel,

linear discriminant analysis (LDA), 3-nearest-neighbor (3NN), or 5-nearest-neighbor

(5NN) classifiers [33, and references therein]. Additional SVM kernels (polynomials

of order 2 and 3, Gaussian Radial Basis Function, and Multilayer Perceptron) where

also examined; while these kernels generally resulted in better fits to the training

sets, they performed worse than the linear kernel in cross-validation. To compute

the correlation between the metric scores and classification error, 100 subsets each of

1-15 features were chosen at random and the cross-validation classification error was

computed. Additionally, the MI of each feature set was computed using all samples

according to MIST 2 , mRMR, and direct estimation.

Data Sets

Gene expression data sets relating to the classification of four cancer types were used

for the feature selection task. Samples from prostate [78], breast [83], leukemia [34],
and colon [2] were analzyed. Additional information on the data sets is available in

Table A.1.

2.4 Results

2.4.1 Direct Validation

To validate the method, we examined the performance of the MIST approximation

in systems with analytically computable entropies. For real-world applications the

entropies of the true distribution are estimated from limited data sets, and the cor-

responding numerical experiments were performed here. To serve this function, we

developed a framework to generate networks with a variable number of nodes, inter-

actions, orders of interaction, discrete states, and weights of influence between nodes.
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For each of these networks, all of the joint entropies were analytically determined for

comparison to the approximations (see Methods).

Using this framework we randomly generated 100 networks containing between five

and eleven variables each with widely varied topologies, and we sampled 10,000 points

from the joint distribution. For each network, we then computed the joint entropy of

all variables in the network either (1) analytically, (2) directly from the data, (3) using

the the second- through fifth-order MIST approximations with analytical low-order

entropies up to and including k, or (4) using MIST after estimating the low-order

entropies from the sampled data. Additionally, half of the nodes in each network

were randomly chosen and the MI between the chosen set and the unchosen set was

computed according to all the metrics. The results for entropy and MI approximation

are shown in Figures 2-1 and A-1, respectively.

The scatter-plots show the relationship between each of the MIST approximations

and the analytical value. As guaranteed by the theory, when the exact low-order en-

tropies are known (panels A), all joint entropy approximations are greater than or

equal to the true joint entropy, and the higher-order approximations are increasingly

accurate. While there are no guarantees for the behavior of the MI approximation,

all approximations tend to underestimate the true MI and the higher-order approxi-

mations generally perform better. In some cases the lower-order approximations are

able to fully represent the network, resulting in perfect accuracy and in all cases the

MIST approximations tend to be fairly accurate.

For biological applications, the exact low-order terms are not available and must

instead be estimated from a finite sample of the underlying distribution (panels C-

D). Because estimating high-order joint entropies requires larger sample sizes than

estimating low-order entropies, the relative performance of the approximations is cru-

cially tied to the number of samples available. In the least sampled case shown here

(100 points, panels C), the second-order approximation (MIST 2) yielded more accu-

rate results than any of the other methods for computing entropy, while the second-

and third-order approximations performed about equally well for MI. As more samples

were used to estimate the low-order terms, the higher-order approximations began
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We also examined the behavior of our bias approximation framework in the same

systems for MIST 2. For each pair of variables, we computed the converged bias

and the maximum observed error over 100 shuffling iterations. For each MIST-

approximated joint entropy we propagated both error sets through to determine a

bias-adjusted entropy (BA-MIST 2) and p = 0.01 confidence limit. We then compared

these values to the analytically determined ones in different sampling regimes (Figure

2-2).

In these systems, the bias-adjusted entropy proved to be a significantly better

estimator of the MIST approximation than the unadjusted estimator. This result is

not necessarily expected, as the bias was computed using the different, but related,

system in which all variables were forcibly decoupled. That the bias-adjusted values

are not strictly greater than the approximation using analytically determined values

is likely a result of the approximations made in the analysis: namely, neglecting the

errors in first-order terms and adjusting from a single observed value, rather than

a mean from repeated samplings. As expected, the bias decreases as more samples

are used, resulting in the bias-adjusted and unadjusted approximations converging

for higher sampling regimes. Because the BA-MIST is always greater than MIST

without bias-adjusting, and the MIST approximation itself is an upper bound to the

true entropy, for higher sampling regimes, bias-adjusting actually results in poorer

performance with respect to the analytical answer. While the bias is likely to be

small in these cases, this result suggests that while BA-MIST is likely more accurate

for low-sampling regimes, when more data is available, MIST without bias-adjusting

may have lower error with respect to the true joint entropy.

The confidence limit also shows the expected behavior. While it is not as good an

estimator as the bias-adjusted metric, it does provide an upper bound to the approx-

imation computed with analytical entropies within the resolution of the estimation

techniques. As such, this metric can provide a guide towards the convergence of the

MIST approximation techniques and may lend some insight into the selection of the

appropriate order of approximation.



2.4.2 Biological Application

To further characterize the MIST approximation and to evaluate performance in tasks

relevant to the interpretation of biological data, we employed MIST in the task of

feature selection, which has been previously phrased using information theory [691.

Feature selection is the task of choosing a subset of available features for use in

some learning task, such as classification; the information theoretic phrasing seeks

the feature subset with maximal MI with the classification. A well studied example is

that of selecting a subset of gene expression levels to use when building classifiers to

discriminate among cancer types [22, 32, 25].To explore the performance of the MIST

approximation in this task, we analyzed four gene expression data sets (which varied

both in the number of samples and the number of genes) that had previously been

used to classify cancer type in prostate [781, breast [83], leukemia [34], and colon [2].

The rationale behind using MI to choose gene subsets comes from the relation-

ship between MI and classification error [65]. To evaluate the relationship between

MIST 2 and the true relationships in these biological data sets, we therefore computed

the cross-validated classification error using 100 randomly chosen subsets including

1-15 genes and a range of classifiers. We also computed the MI of the same feature

sets with the class variable according to MIST 2 and direct estimation, as well as an

existing incremental feature selection metric that has been shown to be an approxi-

mation of high-dimensional MI known as minimum-redundancy-maximum-relevance

(mRMR) [69]. The Pearson correlation coefficient between the SVM cross-validation

classification error and the MI metrics for each set size is shown in Figure 2-3. Re-

sults using 3NN, 5NN, or LDA classification error showed similar trends, as did those

using the fit error rather than the cross-validation error (data not shown). The SVM

classifier was chosen due to its superior performance across the four data sets.

For all four systems, all three metrics have a strong negative correlation coef-

ficient for the feature sets of size one, indicating that high MI corresponds to low

classification error, as expected. For larger numbers of features, however, while the

MIST 2 approximation maintains reasonable negative correlation for all sizes and data
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sets, the direct estimation has virtually no correlation with classification error for sets

larger than five. For breast (A) and leukemia (B), MIST 2 and mRMR are relatively

close though MIST 2 generally exhibits slightly better correlation. For colon (C) and

prostate (D), however, MIST 2 exhibits significantly better correlation for larger fea-

ture sets. The correlation across sets of different size was also computed and is shown

in Figure A-4. While correlation between different sizes is not necessary for standard

FS phrasings, the strong negative correlation of MIST 2, even across sets of varied size

is further evidence that the approximation reflects the underlying relationships of the

system.

In practice, for feature selection the MI metric would be used to select a single

subset of features that is expected to have low classification error. In this task,

correlation across all sets is not necessary as long as the top ranked set is a good one.

To evaluate the utility of MIST in this application, we included it, as well as direct

estimation and mRMR, in an incremental feature selection task to choose subsets of

genes with which to build a classifier for each of the four tissue types. For each data

set, 75% of the samples were used to select the best set of size 1-15 (or 1-10 for direct

estimation) according to each metric in an incremental fashion. SVM classifiers were

then trained on the same 75% and used to predict the class of the remaining 25% of

the samples. This procedure was repeated 200 times to determine the average cross-

validation error of the feature selection/classification methods. The performance of

randomly chosen feature sets was also computed and in all cases was significantly

worse than all tested methods (Figure A-2). Parallel studies were performed using

3NN, 5NN, and LDA classifiers (Figure A-3), as well as ones in which features were

preselected using the full data set rather than only 75% (data not shown). Leave one

out cross-validation schemes were also examined (data not shown). While the results

in all cases showed similar trends, the SVM classifier consistently outperformed the

other classifiers and the 75% cross-validation scheme seemed to be the most stringent

test. The mean SVM classification errors are shown in Figure 2-4.

For all cases, the MIST 2 feature sets showed lower classification errors relative to

direct estimation and mRMR when choosing a small number of features (2-5). This



is consistent with the better correlation with the classification error for MIST 2 shown

in Figure 2-3. For the breast data, this improvement was maintained for feature sets

of all sizes. For the other three systems, however, both direct estimation and mRMR

generated sets with lower classification errors for sets including more than 5-7 genes.

This result is particularly surprising given that this is the regime in which MIST

showed improved correlation with classification error relative to the other metrics.

Regardless, while MIST appears to select superior subsets of size 2-5, this behavior

does not generally appear to extend to large set sizes and deserves further study.

In the above validation scheme, many different feature sets were chosen using

different subsets of sample data so as to characterize the expected performance of the

metric for predictive tasks. In application however, the features would be selected

using all the samples available for training. We therefore incrementally selected the

set of 10 most informative genes according to MIST 2 for each of the data sets. An

ordered list of these genes along with references demonstrating the relevance to cancer

biology or cancer diagnosis for a subset of the genes can be found in Table A.2.

All of the selected feature sets contained genes that have been either statistically

or functionally related to cancer. Many of the genes have also been identified in

other computational studies. The most informative gene for all four datasets had

previously been identified in multiple studies. For the highly studied leukemia and

colon datasets, nearly all of the genes have been identified in some study, though not,

always in the top 10 ranked genes. Notably, three of the genes identified in the breast

dataset (NM_003981, AI918032, and AF055033) consistently appeared in the globally

optimal feature sets of size 2-7 in [11].

We also evaluated the robustness of the chosen genes by observing how often they

were chosen in the 200 CV trials. The p-value for having at least this frequency

for each of the chosen genes is shown in Table A.2. While some of the globally

chosen genes are not robustly re-selected, the majority (32/40) of the genes appear

in the 200 trials more often than expected at random (Bonferroni-corrected p-value

< 0.01), particularly for the breast (8/10) and prostate (10/10) datasets which have

larger sample sizes.
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2.5 Discussion

Here, a novel framework for approximating high-order information theoretic statistics

with associated statistics of arbitrarily low order has been developed and validated.

Due to the generality of information theory, the MIST approximation should allow

the use of high-dimensional information theoretic phrasings for a variety of problems,

even in cases when data quantities are limited. Information theoretic phrasings exist

for such tasks as feature selection (shown here), representative subset selection [48],

clustering [79], network inference [52], and other applications where relationships of

multiple variables are important. Though high-dimensional phrasings are theoreti-

cally correct, difficulties in estimating these terms has led to low-order approximations

having better performance. While these approximations have been applied to many

problems, task-specific metrics were usually developed that are not generally usable

across multiple applications. By instead developing a principled approximation to

joint entropy and MI, we propose a general method for application to many prob-

lems.

In regards to the feature selection task shown here, while MIST 2 correlates well

with the classification error and generates low-error sets when picking a small number

of genes, the overall behavior for choosing larger sets could still likely be improved.

For incremental feature selection, MIST and mRMR are similar with the primary

difference being that MIST selects a subset of MI terms to consider, whereas mRMR

averages all gene-gene terms to compute the redundancy. While both have been

shown to relate to the maximum dependency criterion, MIST represents a more gen-

eral framework for extension to different problems phrasings. In contrast, mRMR has

been well calibrated for feature selection, and some features of mRMR may be useful

in improving the performance of MIST in feature selection. In particular, preliminary

work on incorporating weighting factors to influence the relative importance of the

relevance and redundancy suggests that such a scheme may result in a better feature

selection method. Additionally, while the current work has focussed on incremental

feature selection, the generality of MIST and the good correlation with classification



error suggest that global search methods using MIST could be feasible. In it's current

form, MIST provides a well principled framework without any ad hoc parameteriza-

tion that performs comparably to current feature selection methods. Furthermore,

MIST can be generalized and ported to other problem phrasings and take advantage

of larger data-quantities when they become available.

One natural extension of the MIST approximation is feature selection with mul-

tiple outputs. Typical FS phrasings focus on a single output variable, resulting in

most FS methods not being directly applicable to multiple-output scenarios. In-

stead, separate subsets may be chosen for each output and combined subsequently,

or multiple outputs can be combined into a single variable. With high-dimensional

statistics, rephrasing the maximum dependency criterion for multiple outputs is triv-

ial, by replacing the single output variable with the set of all outputs of interest (i.e.

find the set that maximizes MI between the gene set and the output set). In cases

where different feature sets can be used for each output, such as preprocessing be-

fore machine learning, multiple output feature selection may not be appropriate as a

single consensus set will not represent each output as well as the individually chosen

sets. In other cases, however, a fixed number of features may be needed to describe

multiple outputs and a single optimization for this task could be valuable. Consider-

ing the relationships between multiple outputs could be particularly important if the

outputs are closely related. For example, in the case of FS for cancer classification,

one might consider tumor progression measurements at multiple time points. Alter-

natively, defining a compact set of features that can classify multiple disease states

could be valuable in more efficient diagnostic tools. Designing experiments that are

richly informative of a particular set of output variables might also benefit from such

methods. In general, having metrics that support multiple outputs allows phrasing

FS problems that better reflect questions of interest.

The ability to maintain the general information theoretic phrasing also allows the

results between different tasks and experiments to be compared. Information theory

is able to treat data from different experimental modalities within the same frame-

work, enabling one to quantitatively compare the information content of different data



types without significant preprocessing. Information theory also allows the treatment

of categorical and continuous data, and can consider nonlinear relationships, unlike

variance-based techniques. While these benefits of information theory have long been

understood, the inability to estimate information theoretic terms has often precluded

their use in biological systems. By reducing the data requirements for computing

high-order entropies, MIST enables the use of information theoretic statistics even

when few samples are available, as is often true in biological systems.

Although we have used only the second-order MIST approximation here, the

framework provides a range of approximations of higher order, allowing increased

accuracy when sufficient quantities of data are available. As high-throughput data

collection continues to improve, the framework extends to incorporate third- and

fourth-order relationships. Even as larger quantities of data become available, MIST

is likely to be useful, as in our synthetic system, even with 104 samples, all orders of

approximation tested outperformed direct estimation. In Figure 2-1 we have shown

how one might select an approximation order based on the sample size. For appli-

cations where the analytical solutions are unknown, however, it is unclear how to

choose the best approximation order. Additional work is required to fully enable

such a method. Despite this, it is encouraging that the second-order approxima-

tion performs well both on synthetic and microarray data, even though high-order

relationships are known to exist.

While the MIST framework arises from a mathematical approximation, it can

alternatively be thought of as a method to infer a relational model of low-order in-

teractions. This model is then used to estimate the high-order statistics of interest.

Currently this model is used only for the approximation, however, the good agreement

between the approximation and the analytical entropies suggests that the inferred

model captures many of the relevant relationships. The generation of relational mod-

els for biomarker discover has been previously proposed [841, and network inference

tools have been proposed that use pairwise MI as the primary metric [52, 63]. There

is reason to believe, therefore, that the relational models inferred may be meaningful,

as they reasonably represent the system's statistical relationships.



2.6 Conclusion

Here we have presented a novel method for approximating high-dimensional informa-

tion theoretic statistics with significantly improved performance when data quanti-

ties are limited, as is often true when dealing with biological data. While we have

demonstrated the utility of this approximation in feature selection, the generality of

information theory should enable application in a number of different learning tasks,

including representative subset selection, clustering, and network inference. While

previous low-dimensional information theoretic phrasings exist for these problems,

they have generally been developed on a problem-by-problem basis, and are thus not

directly portable between tasks. By instead focusing on ways to approximate the in-

formation theoretic statistics directly, we can take advantage of general information

theoretic phrasings in a variety of problems. In addition, our MIST approximation

naturally allows for incorporating arbitrarily high-order information as sample sizes

increase, providing a consistent framework as the collection of biological data contin-

ues to increase in scale.
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Chapter 3

Analysis of a high-dimensional

phospho-proteomic data set using

information theory

3.1 Introduction

A fundamental goal of systems biology is to understand and quantify the multivari-

ate relationships between various molecular species in the cell. Towards this end,

increasingly high-throughput experimental techniques have enabled the tracking of

concentrations of mRNA, proteins, protein modification states, and other molecular

species on a near-global scale [34, 85]. Furthermore, the identification of multivariate

relationships requires multiple samples across varied conditions to highlight the cor-

related changes in these species. Despite increasing work towards performing mea-

surements across multiple samples, these data sets tend to have significantly more

species than samples.

As data collection methods have continued to improve, analytical methods have

also been developed to deal with the challenges presented by such data. In particu-

lar, the large number of species relative to the number of samples generally leads to

vastly under-determined systems for many traditional methods. Various dimension-



reduction methods have been used to address this issue by reducing the effective

number of species under consideration [34, 38, 79]. Principal Component Analysis

(PCA) and Partial Least Squares Regression (PLSR) methods have been particu-

larly successful at finding small sets of basis vectors that can explain the variance in

the data set itself, or covariance between the data and output variable of interest,

respectively [38, 46, 43].

In addition to the variance-based methods such as PCA and PLSR, informa-

tion theoretic methods have been increasingly used to analyze multivariate biological

data [15, 45, 22, 79]. While these methods generally require larger sample sizes than

the corresponding variance-based methods, information-based metrics have attractive

properties including the handling of both categorical and continuous data, invariance

to reversible transformations (such as variance scaling and log-transforming), and the

capturing of any statistical dependency, not just the linear relationships captured by

variance-based methods [16]. While information theory can in principle be used to

directly query high-dimensional relationships, most applications have focused on pair-

wise relationships between variables due to the limited number of samples available.

As discussed in Chapter 2, we have recently pursed directions focused on enabling

more general phrasings of information theory by approximating the high-dimensional

statistics using only low-order information [45]. These methods allow one to directly

phrase high-dimensional questions even when data sizes are limited.

One area where high-dimensional information theoretic phrasings have been ap-

plied to the analysis of biological data relates to the machine learning task of feature

selection [15, 45, 22]. The goal of feature selection is to identify a compact set of

variables that represents the information contained in the full data set, often as a

filtering step prior to building a model. Such sets are useful both to improve the

interpretability of these models, and to avoid problems related to high dimensionality

and overfitting. Typically, feature selection problems are phrased as supervised learn-

ing tasks, where features are chosen to be maximally informative of an output variable

or response. The maximum depenceny criterion (maximizing the mutual information

between the feature set and the outputs), is a common information theoretic phrasing



for finding such a set, and has been shown to provide good feature sets both using

our approximation framework [45], and using other methods [22]. In this chapter,

we again use the maximum dependency phrasing to identify informative subsets. We

have also, in previous work, explored unsupervised feature selection phrasings (also

known as representative subset selection), in which subsets that maximally represent

the full data set are chosen by maximizing the joint entropy of the chosen set [15].

Among the data that have been successfully modeled using PLSR are quantitative

mass spectrometry studies monitoring the phosphorylation state of tyrosines in re-

sponse to various stimulating conditions [85, 46]. Due to the many tyrosines involved

in signaling downstream of the epidermal growth factor receptor (EGFR) family of

receptor tyrosine kinases, these data have been largely collected in the presence of

activating ligands such as epidermal growth factor (EGF) and heregulin (HRG). One

such study investigated the tyrosine-phosphorylation pattern at multiple time points

in response to stimulation with EGF or HRG, in the background of human mammary

epithelial cells with typical (~20,000 copies per cell) or elevated (-600,000 copies

per cell) levels of human epidermal growth factor receptor 2 (HER2) [46, 85]. The

levels of proliferation and migration were separately examined under the same condi-

tions as well as in unstimulated cells, enabling the mapping of relationships between

phospho-tyrosine mediated signaling and the cellular responses, under the various

stimulation and HER2 overexpression conditions. A PLSR model built using data

from the 62 phospho-peptides in the data set was shown to exhibit excellent fit and

cross-validation in describing the proliferation and migration response data across

the 6 conditions (no stimulation, EGF, HRG; with typical or elevated HER2). These

PLSR models have been analyzed in detail to identify the relevant signals and linear

combinations of signals that mediate the responses. Furthermore, a "network gauge"

including 9 of the original 62 phospho-sites, across 6 different proteins, was identified

by examining weights in the PLSR models, and was shown to exhibit similar fit and

cross-validation properties to the models built using the full data set, the suggestion

being that these 9 signals alone were predictive of cellular behavior [46].

The data described above represents a common scenario in systems biology in



which the number of signals (62 sites at 4 time-points each) dramatically exceeds

the number of experimental conditions (6 total conditions). While it is clear that

many if not all of the measured signals are involved in mediating the migratory and

proliferatory response to the ligands, it is a challenge to understand these potentially

complex multivariate relationships given the relatively small number of conditions.

PLSR addresses this challenge by finding a compact set of basis vectors that can

describe the relationships between the large number of signals and the outputs. The

weights of the various species in the PLSR model can then be examined to gain insight

about the multivariate relationships present in the data [38, 46].

In this chapter, we evaluate and employ an alternative method of investigating

the multivariate relationships present in such data centered around information the-

ory and feature selection. The study relies on our previously established method for

approximating high-dimensional information theoretic statistics by combining uni-

variate and pairwise information terms, as described in Chapter 2 and [45]. In con-

trast to principal component based methods, this analysis enables one to directly

query the information content of arbitrary sets of species, as well as the information

shared between species and outputs. We therefore believe that information theory,

in conjunction with existing methods such as PLSR, can serve as a valuable tool in

interpreting a variety of systems biology data sets.

Because information theory does not provide an integrated predictive modeling

framework, as PLSR does, we first validate the information theoretic approximations

in the context of PLSR models. In particular, we show that subsets of the signals in

the data set that are chosen to have maximal information about the migration and

proliferation responses generate PLSR models with improved fit and cross-validation

performance with respect to other sets of the same size, including the previously

determined network gauge. We also show how one can group signals (e.g., multiple

time points of the same species) to generate a more intuitive set of signal-signal or

signal-response relationships. While we only show a few examples applications here,

the generality of information theory allows a variety of simple phrasings to query

multivariate data sets. In combination with the MIST approximation framework, such



analysis is possible even when a relatively small number of experimental conditions

are available.

3.2 Methods

Data preparation

The phospho MS data was preprocessed as described previously, with the exception

of using all 68 phospho-peptides captured in the data, as opposed to the subset of 62

used for the original work [46, 85]. All species trajectories were normalized to the 5

minute time point of the parental cell line in response to stimulation with 100 ng/ml

EGF. The zero minute time point (pre-stimulation) was used as the constant value

for all time points in the serum-free conditions, and the integral over the remaining

three time-points was appended to all signals to serve as a metric of total activation.

As a result, each of the 68 phospho-peptides was represented as a series of 4 variables

(5 min, 15 min, 30 min, and integrated) across 6 different conditions (serum free,

+EGF, +HRG, in parental or 24H cells). Each output (migration or proliferation)

was represented as a single vector of length 6, corresponding to the conditions.

Calculation of pairwise mutual information

The mutual information between all pairs of signals was first computed according to

I(v; y) H(x) + H(y) - H(x, y) (3.1)

where H is defined as

H(x) -p(x) log p(x)dx (3.2)

and p is the estimated probability density over all dimensions of x. Probability

densities were estimated using Parzen windowing [47] with a Gaussian kernel with

the covariance matrix set to be equal to the sample covariance matrix scaled by

1/log(N), and truncated at 2 standard deviations in each dimension. For each MI



calculation, a fixed window size was used for the one- and two-dimensional entropies.

The integrals in the entropy were computed using the QUAD command in MATLAB

release 2008b (The Mathworks Inc., Natick, MA) with a tolerance of 10-6.

Approximation of high-order terms using MIST

All calculations of information terms containing more than two variables were com-

puted using the Maximum Information Spanning Trees (MIST) method with an ap-

proximation order of two, as described in Chapter 2 and [45]. Briefly, to approximate

the joint entropy of N variables, the entropy of all variables and the MI between all

(N) pairs of variables is first computed as described above. The 2nd-order approxi-

mation to the Nth-order entropy is then computed as:

N N

H2 = ZH1(xi) - max I2(i; XE[1,i_ 1]). (3.3)
i=1 i=2

The maximization was performed using Prim's algorithm [14] to generate the min-

imum spanning tree over the fully connected graph represented by the negated MI

matrix. For the 2"d-order approximation, this algorithm guarantees the optimal so-

lution compatible with the MIST framework.

Complex high-dimensional statistics

In addition to the high-dimensional entropy terms described above, a variety of com-

posite high-dimensional statistics was used for much of the analysis. In all cases,

these statistics were first converted into forms containing only joint entropy terms,

and then computed using the joint entropies approximated with MIST as described

above. The decompositions used are shown in Table 3.1.

Table 3.1: Decomposition of complex terms into joint entropy formulations
Name Symbol Decomposition

Conditional entropy H(xly) H(x, y) - H(y)
Mutual information I(x; y) H(x) + H(y) - H(x, y)
Conditional MI I(x; y~z) H(x, z) + H(y, z) - H(x, y, z) - H(z)



Partial Least Squares Regression (PLSR) modeling

All PLSR models were built using the PLSREGRESS function in MATLAB release

2008b (The Mathworks Inc., Natick, MA), which implements the SIMPLS algorithm.

For each model mapping N of the signals onto a single output (migration or prolif-

eration), the signals were represented as a 6 x N matrix indicating the value of the

signal at each of the conditions, and the output was represented as a 6 x 1 vector

indicating the value of the output for each condition. Up to two principal components

were included in the model. For cross-validation statistics, each of the 6 conditions

was omitted and a new model was regenerated using the 5 remaining conditions. The

trained model was then used to assign a prediction of the output for the omitted

condition. All variables were variance-scaled with respect to the training set prior to

learning the model. Models were evaluated according to two metrics: (1) the fit of the

model, i.e., the Pearson correlation between the model output and the true output

(R2); and (2) the predictive power of the cross-validation models, i.e. the Pearson

correlation between the predictions of output in the omitted conditions and the true

output (Q2)_

Feature selection methods

We examined a variety of schemes for choosing subsets of signals to be maximally

informative of the output. In all cases, selecting a signal meant including all 4 mea-

surements associated with the phospho-peptide (3 time points, and the integrated

signal). In addition to the previously determined network gauge [46], we examined

two classes of selection schemes: ranking and incremental. Ranking schemes involved

sorting the 68 signals according to some metric and taking the top members of the

list. Incremental methods were able to explicitly consider signals that had already

been selected, enabling them to provide complementary signals, as opposed to just

individually informative signals. The ranking metrics that we evaluated were:

* Rank 1 - MI of time-point set with both outputs: The MI of each of the

68 signals with both outputs together was computed (I(s; {m, p}), where s is



a vector representing the 4 measurements associated with the signal, m is the

migration response, and p is the proliferation response). This MI was assigned

as the score for each signal.

" Rank 2 - Max MI of individual with both outputs: The MI of each

of the 4 measurements for each of the 68 signals with both outputs together

was computed and the maximum over the 4 measurements was assigned as the

score of each signal (max I(si; {m, p}), where si is one of the four measurements

associated with a signal).

" Rank 3 - Max MI of individual with either output: The MI of each

of the 4 measurements for each of the 68 signals with each output individually

was computed and the maximum over the 8 values was assigned as the score for

each signal (max I(si; oj), where si is one of the four measurements associated
i;j

with a signal, and oj is one of the two outputs).

" Rank 4 - Max R 2 of individual with either output: The Pearson cor-

relation between each of the 4 measurements for each of the 68 signals with

each output individually was computed and the maximum over the 8 values

was assigned as the score for each signal (max R 2 (Si; oj)).

Incremental schemes involved adding one of the 68 signals at a time to maximize

a scoring function. The incremental schemes are thus able to consider relationships

between the already chosen members in order to choose a more effective set as opposed

to assigning a single score to each signal. We evaluated two incremental schemes:

" MIST opt - Time-point sets: For each step, each candidate signal was

evaluated for inclusion by scoring the MI of the new full set (including all time

points of the candidate signal) with both outputs. The signal maximizing this

value at each step was chosen.

* FSi ind - Individual measurements: Each of the 68 . 4 = 272 individual

measurements were considered in each selection step, generating an incremental

selection of all measurements. Signals were assigned a score corresponding to



the best rank for any of the 4 associated measurements, and the top ranking

signals were chosen.

In addition to the schemes shown above, we also estimated the background perfor-

mance of feature sets of nine signals by randomly choosing 1000 sets of nine signals.

All subsequent performance metrics were computed for these 1000 sets in addition to

the 7 rationally chosen sets and the network gauge.

3.3 Results

3.3.1 Quantifying relationships among phospho-peptides and

with responses

Although the focus of the analysis in this chapter is on high-dimensional informa-

tion relationships (e.g., the total mutual information between a set of signals and

all outputs), the method that we use only requires direct calculation of first- and

second-order terms (i.e., the entropy of each measurement and the mutual informa-

tion between each pair of measurements). We then employ the MIST framework to

approximate all higher-dimensional terms of interest. As such, all of the analysis

relies upon the pairwise mutual information (MI) matrix shown in Figure 3-1. The

MI matrix shows the relationships between all pairs of measurements, where high

MI values indicate a strong statistical dependency between the pair. For example,

each of the four variables associated with the 3 phospho-peptides in SHC have high

information with each other, as one might expect given that these sites are known to

be activated in concert downstream of EGFR [72].

While the MI matrix can be informative on its own, it can also be difficult to

interpret for the data set of focus because each phospho-peptide is represented by

four separate variables (the 3 time points and the integrated signal). To quantify

the statistical dependencies between phospho-peptides across all four variables, we

can use a high-order information term. In this case, we compute the 8-dimensional

mutual information between the four variables corresponding to signal si and the four
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variables corresponding to signal s3 using the 2"d-order MIST approximation to the

corresponding 4th- and 8thorder entropy terms as

Is (si; sg) = H 4(si) + H 4(sj) - H8(si, sj) H'(si) + Hj(sg) - Hj(si, sg) (3.4)

where the subscripts indicate the dimensionality of the term and the superscripts,

where present, represent the order of approximation. In this way, we now have a

single value that represents the relationships between all of the measurements asso-

ciated with one signal and all of the measurements associated with a second signal.

The grouped MI matrix for all phospho-peptides is shown in Figure 3-2. Notably,

generating this same matrix directly, without the MIST approximation framework,

is difficult due to convergence issues as well as computational limitations. For the

data shown here, in which only 6 samples are available, traditional histogramming

methods are unsuitable for estimating an 8-dimensional entropy, as the vast major-

ity of bins contain no samples, and no single bin contains more than one sample.

We employed Parzen Windowing in order to combat these issues for the low-order

entropy calculations, but such methods proved computationally intractable for the

8-dimensional terms.

In contrast to the full MI matrix in Figure 3-1, the grouped MI matrix enables

easy inspection of the statistical relationships between pairs of phospho-peptides in

the data set. A list of the strongest MIs is shown in Table 3.2. Two of the top five

interactions, including the strongest overall, are between different phosphorylation

sites on the same protein (EGFR Y1148-Y1068 and IGF1R Y1165-Y1161), and a

third is shared between sites on isoforms 1 and 2 of STAT3. SHC and CrkL are

known to transiently interact [11] and the Ack-EGFR relationship is consistent with

the identification of Ack as an early transducer of EGF stimulation [30]. As such,

all of the top interactions from the grouped MI matrix are consistent with known

biology.

The results of performing the same analysis to identify the strongest relationships

between individual peptide-time points using the full MI matrix from Figure 3-1 can
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Table 3.2: Top scoring pairs of phospho-peptides by grouped MI
MI phospho-peptide 1 phospho-peptide 2

5.42 EGFR Y1148 EGFR Y1068
4.61 SHC Y239 CrkL Y132
4.58 STAT3-2 Y704 STAT3-1 Y705
4.46 IGF1R Y1165 IGF1R Y1161
4.43 EGFR Y1068 Ack Y857

be seen in Table 3.3. While inspection of these relationships is somewhat more com-

plicated due to the time component, time points from many of the same relationships

seen in the grouped MI matrix rank highly in the full matrix. Four of the five strongest

pairs, including the three strongest overall, are between different time points of the

same phospho-peptide. As with the grouped MI matrix, two sites on EGFR (Y1148

and Y1068) show high information with each other at the 30 minute time point.

The five minute timepoint of CrkL Y132 showed high information with the integral

of the SHC Y239/Y240 signal, similar to the relationship shown in the grouped MI

matrix, though with doubly phosphorylated SHC rather than singly phoshphorylated

on Y239. Two of the remaining top relationships in the full MI matrix are between

SHC Y317 and Annexin A2 Y23. Annexin A2 has been identified as a mediator of

migration [76], and although its association with SHC is not well established, SHC is

also known to be associated with migration through EGFR signaling [74]. The fact

that the SHC-Annexin A2 relationship is not among the strongest relationships in

the grouped MI matrix, despite showing two individual time point pairs with high

MI, highlights the difficulties of interpretting the full MI matrix directly without a

rigorous framework for appropriately weighting all 16 pairwise relationships between

the timepoints associated with each phospho-peptide.

In addition to quantifying relationships between pairs of phospho-peptides, we

computed the mutual information between each phospho-peptide profile and the two

measured outputs of the system. For each phospho-peptide, we computed the MI

between its four variables and: (a) the migratory response, (b), the proliferatory

response, or (c) both responses together. As before, because these terms require 5th_

and 6th-order terms, we employ our MIST approximation framework. The result is a
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Table 3.3: Top scoring pairs of phospho-peptide time points by full MI
MI phospho-peptide 1 - time phospho-peptide 2 - time

2.89 C18 orf 11 Y297 - 30 min C1 orf 11 Y297 - mt
2.45 An A2 Y23 - 10 min An A2 Y23 - 30 m
2.34 SCF38 m2 Y20 - 30 min SCF38 m2 Y20 - t
2.26 SHC Y317 - 10 min An A2 Y23 - 30 m
2.25 C18 orf 11 Y297 - 5 min C18 orf 11 Y297 - 30 m
2.23 SHC Y317 - 5 min An A2 Y23 - 10 m
2.23 EGFR Y1148 - 30 min EGFR Y1068 - 30 m
2.22 CrkL Y132 - 5 min SHC Y239/Y240 - t
2.22 SHB Y355 - 30 min ITGB4 Y1207 - 5 min
2.22 EphA2 Y588 - 10 m ITGB4 Y1207 - 10 min

measure of the information that each peptide has about the outputs. The results can

be seen in Figure 3-3(B) in which the phospho-sites have been sorted by the MI with

both outputs together, and the MI with each of the outputs individually is plotted.

For the most part, the signals seem to be particularly informative of either migration

(blue bars) or proliferation (red bars), but not both. A few highly informative sites,

however, show equivalent information with both outputs.

The signals exhibiting the most information with the migratory response have

largely been previously implicated as relevant to migration. The protein Ack is known

to regulate cell spreading in HeLa cells [14]. Annexin A2, glucocorticoid receptor DNA

binding factor (GRF 1), and SHC are also known mediators of the migratory response.

While not as intuitive of a signal, TfR has been proposed as an indicator of EGFR

activation in this data set through association with endocytosis [47]. The highest

ranking signals for proliferation are somewhat surprising. Other than SHC Y239,

which has been found to be an early responder to EGFR signaling, the most informa-

tive sites for proliferation (paxillin S84/Y88, Catenin dl Y228, and CrkL Y132) are

more strongly associated with the canonical migratory network. One possibility is

that these migratory signals may still be reflective of the proliferatory response, even

if they are not direct mediators of it. Interestingly, SHC Y239, the third most infor-

mative phospho-peptide overall, was computed to have similar MI with both outputs.

This is consistent with SHC's role in multiple pathways downstream of EGFR [74].



3.3.2 Choosing maximally informative subsets

We next asked whether our high-dimensional approximation framework could suc-

cessfully identify informative subsets of signals in the data set. Analyses in multiple

biological systems have demonstrated that small subsets of species are often sufficient

to describe phenotypic variation [35, 39, 47], and in many cases, limiting the number

of species has improved the performance of statistical models [23, 12]. In the context

of the current work, previous analysis of the phospho-proteomic data examined in this

chapter identified a "network gauge" consisting of 9 of the 68 phospho-sites. PLSR

models constructed using only these nine sites had similar fit and cross-validation

performance compared to models built using of all the signals.

Our reasons for selecting informative subsets according to our metrics were two-

fold. First, identifying compact subsets of the signal data that can still capture the

response data can be valuable in interpreting the important dimensions of the data

set, as well as in developing future studies in which interrogation of the full spectrum

of phospho-peptides may not be feasible. Sets of measurements that are highly in-

formative of particular outputs present hypotheses for the signaling mechanisms gov-

erning cellular response, and the statistical properties of the sets may be instructive

as to desirable properties for applications such as biomarker identification. Secondly,

by demonstrating that subsets chosen according to MIST perform well according to

previously established metrics (e.g., that the subsets yield models with similar char-

acteristics to models built with all the data), we can validate our information theory

framework in the context of phospho-proteomic data. While we have previously val-

idated the performance of MIST in the context of mRNA expression data extracted

from tumor samples [46] and in hepatotoxicity response data in multiple cell systems

[16], it is important to validate the approximation in applications to new systems.

In order to allow comparison to the previously proposed network gauge, we sought

to identify a set of nine phospho-sites with maximum information about the two

outputs. As with the previous work, all 4 measures of each site (3 time points and

integrated signal) were included if the site was chosen. While the network gauge sites



were spread over only six proteins, we did not constrain the number of proteins chosen,

as this restriction was not explicitly imposed in the original selection of the network

gauge. In the information theory phrasing, we sought to identify the 9 peptides

whose 36 total measures had maximal mutual information with the two outputs, as

computed by the 2nd-order MIST approximation:

argmax [IN(s,; {m, p})] ; ISI = 9 (3.5)
Si

such that si can take as a value any set of 9 of the 68 potential sites. Due to the

size of the search space, enumeration to find the globally optimal set was not feasible.

Instead, we employed a greedy selection strategy in which signals were added one

at a time to maximize the MI of the newly formed set at each step (i.e., the most

informative signal is added first, then the signal that results in the maximum MI when

combined with the first signal is, and so forth until 9 signals were chosen). In Chapter

2, we employed a similar scheme to select mRNA expression levels with maximal

information for cancer classification [46]. While this scheme does not guarantee the

global maximum, it does represent a local maximum of the objective function stated

in Equation 3.5. Because this set represents an optimum according to the MIST

approximation, we refer to it as MIST opt in the figures and text.

Table 3.4: Feature selection schemes
FS Scheme type metric

Rank 1 rank I(signal; outs)
Rank 2 rank max I(timepoint; outs)

Rank 3 rank max I(timepointi; out3 )
ij,

Rank 4 rank max R2 (timepointi; outs)

FSi ind incr I(timepoints; outs)
MIST opt incr I(signals; outs)
Network gauge, see [47] for details

As a point of comparison, we also examined a variety of related selection schemes,

in addition to the network gauge and MIST opt sets. While these schemes do not use

the exact information theoretic phrasing described in Equation 3.5, they all attempt to

identify informative sets in some way. Four of the selection schemes involved ranking



all of the signals according to some metric and choosing the top nine signals by rank.

The ranking metrics are summarized in Table 3.4 and are described in more detail in

Section 3.2. We also employed an additional incremental selection scheme in which

each of time points was able to be selected individually. Each signal was then scored

by the best rank achieved by any of its four associated measures. All together, we

examined the two incremental schemes (in which complementary sets of features were

chosen) and four ranking schemes (in which each feature was individually scored and

the top scoring individual features were chosen) as well as the previously proposed

network gauge.

The results of applying the selection schemes can be seen in Figure 3-3(A), where

the black dots indicate the nine selected signals for each scheme. Despite the fact

that only one of the ranking metrics used the combined MI with both outputs as its

ranking metric, all four ranking schemes tend to select signals near the top of the

global MI list; none of the ranking metrics chose a signal outside of the top 25%

most informative. Additionally, although the network gauge was chosen based on

the weightings in a series of PLSR models, and not using any information theoretic

metrics, the consitutent signals also tend to occupy the top of the most informative

list. Eight of the nine signals rank in the top 20% by MI, including three of the

top four (Ack Y857, SHC Y239, TfR Y20). Only SHIP-2 Y986 appeared lower in

the list (ranked 22/68). In contrast, the optimal MIST set (MIST opt) chose signals

spread throughout the spectrum of total MI. While this set did include the two most

informative signals (Ack Y857 and paxillin S84/Y88), all other signals fell outside the

top 35% of the most individually informative list. The other incremental scheme (FSi

Ind) showed intermediate behavior, selecting many individually informative signals

(6 of the top 10), but also including some lower information signals, such as AnA2

Y237, ranked 30/68.

3.3.3 Evaluating the feature sets by PLSR modeling

In order to evaluate the subsets chosen by our various selection schemes, we built

statistical models of the output data using each subset as an input. This method of



validation was previously used to show that the 9-signal network gauge had similar

fit and predictive power to a model built with all the signals [47]. In that work, PLSR

was used to generate the models, which was a natural choice given that the network

gauge was originally chosen based on the analysis of PLSR models. For our case,

information theory does not provide an integrated predictive modeling framework

with which to validate the sets. As such, we choose to build PLSR models with each

of the sets, in order to evaluate the set choices, and to enable comparison with previous

work. To this end, we built one- and two-component PLSR models separately for each

set of nine signals and each of the two outputs. These models were then scored by

their fit to the data (R2 ) and by a cross-validation metric (Q2). Additional details

are available in Section 3.2.

The performance of models generated using each of the feature sets can be seen

in Figure 3-4. Panels A and B show the model fits for the one- and two-component

models respectively, and panels C and D show the cross-validation scores. For all

plots, the x- and y-axes show performance for separately modeling the migration

and proliferation response, respectively. If one views ability to model the two out-

puts as equally important, the dashed lines represent contours of equivalent overall

performance, with better-performing models lying higher and further to the right.

In addition to the 7 selection schemes described above (colored x's), a histogram

of the performance of 1000 models built with randomly selected sets of nine signals

are shown (gray heatmap). For the most part, the selection schemes tend to fall on

similar contours to each other, trading off poor performance in one dimension for

success in the other. Surprisingly, all of the ranking schemes fall within the randomly

selected distribution, indicating that although they were selected to be informative,

the signals were not enriched in their ability to model the outputs. In contrast, the

optimal MIST set (black x's) generates consistently better models than random. The

other incremental method also shows good performance in most cases, particularly

in the cross-validation metric of the two-component model. While the network gauge

(blue x's) generates good PLSR models of migration, it generally does so at the

expense of accuracy in proliferation. In summary, the set chosen to maximize the
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Figure 3-4: PLSR models built with subsets: We built PLSR models mapping the
36 measures in each selected feature set shown in Figure 3-3 against the proliferation
or migration response data. Models containing one (panels A and C) or two principal
components were then scored by their fit (panels A and B) and cross-validation (panels
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Figure 3-5: MI of feature sets without output: The MIs for migration (panels A

and B) or proliferation (panels C and D) from each of the four measures for each of

the nine phospho-peptides in the network gauge (panels A and C) or MIST-selected

(panels B and D) features sets are shown. For each signal, the four bars represent, in

order, the 5-, 10-, and 30-minute time points, and the integrated signal. The dashed

red lines show the total mutual information between all 36 variables shown in each

panel and the output of focus.

information content about the two outputs according to MIST generates significantly

improved models in all tested scenarios. The fact that none of the ranking metrics

performed significantly better than random and that the FSi ind and network gauge

showed poorer performance for proliferation demonstrates the difficulty of choosing

sets of signals that will reliably generate improved models. Alternatively, the good

performance of randomly selected sets speaks to the rich information content of many

of the signals in the data.
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3.3.4 Properties of the optimal MIST set

Having validated that the maximally informative set generates improved models, in

addition to being computed to have high mutual information by MIST, we examined

the properties of the chosen signals in the context of the rest of the data set. In

particular, as noted in Section 3.3.2, only two of the nine signals were computed to

be particularly informative on their own. Furthermore, these two most informative

signals were included in all of the other selection schemes except for the network gauge,

which included one of the two. Despite this, the MIST opt set generated enhanced

models compared to all other selection schemes, suggesting that these low-information

signals were in fact important to the performance. A detailed view showing the

information that each of the 36 measures in each feature set have about each output

can be seen in Figures 3-5 and B-1. In this view, it is clear that the MIST set (green

bars in Figure 3-5) are on average less individually informative than those in the

network gauge (blue bars). In contrast, the total computed information between the

full set of 36 measures with each output (dashed red lines), shows the MIST set to be

significantly more informative overall. For the network gauge, the most informative

individual measure for each output (integrated signal of TfR Y20 for migration, and

10 minute time point of SHC Y239 for proliferation), is as informative as the full set.

In other words, the other 35 measures seem to provide redundant information about

the outputs once the first measure is included. In contrast, the total information of the

MIST set is significantly higher than any individual signal. In this case, the multiple

signals, though lower in information on their own, provide unique information so as

to improve the overall information content of the full set.

Given that the signals in the network gauge seemed to be providing redundant

information, we next looked at the relationships shared between the constituent sig-

nals. The mutual information of all pairs in each set is shown in Figures 3-6 and

B-2. Focusing on the comparison between the network gauge and the MIST cho-

sen set (Figure 3-6) it is clear that the signals in the network gauge (panel A) are

highly coupled with each other whereas the signals from the optimal MIST set (panel
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in the network gauge are highly informative of each other compared to the relatively
independent signals in the MIST set.

B) are relatively independent. These matrices are consistent with the explanation

that a good set of signals needs not only to be informative of the outputs, but also

sufficiently distinct from each other so as to provide unique information. The high-

dimensional phrasing enabled by MIST was able to appropriately weight these two

aspects against each other to generate a highly informative set comprised of some

individually informative signals as well as some less informative species with unique

information.

The trends seen in these MI matrices are also reflected in previous work. Among

the analyses carried out in the original publication of this data was the application

of self-organizing maps to identify clusters of phospho-sites exhibiting similar trends

across the treatment and cell-line conditions. Of the nine sites selected by MIST,

no more than two were seen in any of the four major clusters: paxillin S84/Y88 co-

clustered with Ack Y875, and FAK Y397 with P13K Y464. In contrast, all nine of

the sites from the network gauge appeared in the same cluster as each other. These

results, coupled with the validation of the MIST set by PLSR, further demonstrate
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that independence of the signals may be an important property of good feature sets.

3.3.5 Biological relevance of optimal MIST set

In contrast to the statistical independence of the phospho-peptides identified by

MIST, the biological functions of these signals present a fairly coherent picture. Of

the nine signals selected, seven are known to be associated with cell migration. FAK-

Y397 is known to act as a docking site for both Src and P13K and is required for the

phosphorylation of p130cas and paxillin in mediating migration [8]. The phosphory-

lation of four of these five molecules (excluding P13K) were previously identified as

key responses to HRG stimulation of HER2-overexpressing cells in this same data set

[88]. Tyrosine 1248 on HER2 has been shown to be necessary for migration in the

context of breast cancer cell lines [24], and was also identified as a key upstream acti-

vator of migration in the PLSR modeling work performed on this data [88]. Ack has

been shown to regulate cell spreading in HeLa cells through p130cas and CrkII [14]

and has also been identified as an early transducer of multiple stimuli, including EGF

[30]. The remaining two signals, KIAA1914-Y413 and DYRK1A-Y321 have yet to

be well characterized in the context of EGFR signaling, although DYRK1A has been

shown to be involved in MAPK signaling through Ras-Raf-MEK [43]. The notable

absence of proliferation-specific signals is somewhat surprising, but may be explained

by the fact that EGF stimulation (which is the dominant driver of proliferation in

these data) was observed to activate a multitude of different pathways in this data

set [88]. As such, the monitoring of any of a number of signals downstream of EGFR

may provide sufficient information to accurately represent the proliferation response.

3.4 Discussion

The collection and analysis of large multivariate data sets is at the core of systems

biology research. The monitoring of sets of molecular species on a near global scale,

however, has not been accompanied by the ability to examine enough different con-

ditions to directly query the multivariate relationships in these systems. The so-



called Curse of Dimensionality suggests that the number of experimental conditions

needed to directly model such relationships scales exponentially with the number

of species. We have previously demonstrated that many of the multivariate rela-

tionships in biological data can be reasonably well approximated by appropriately

combining relationships of lower order, such as the mutual information between each

pair of species [46]. Here, we have applied this approximation framework to analyze

an existing phospho-proteomic data set with significantly more signals (272) than

experimental conditions (6). Within the context of our approximation framework,

we have identified a set of 36 signals, representing the state of 9 phospho-peptides,

that can accurately model the migration and proliferation response across multiple

conditions. The success of this set of signals seems to be crucially tied not only to a

pair of individually informative signals, but also to a set of lower-information signals

that might otherwise be overlooked. Furthermore, these lower-information signals

include four sites that were previously identified as being key responders to heregulin

in the context of HER2 overexpression in this data [88]. This work highlights the

importance of using phrasings that can capture multivariate statistical relationships

when the questions being addressed are fundamentally multivariate in nature (e.g.,

identifying a maximally informative set of signals).

The results of these feature selection schemes may also have implications to the re-

lated field of biomarker identification. In particular, in cases where a single biomarker

with sufficient statistical power cannot be identified, the relationships between mul-

tiple candidate biomarkers may become important. In the current work, the features

that separated the optimal MIST set from the other sets were not the most individ-

ually informative species, but instead were lower information species that provided

complementary information. In larger scale studies where multiple hypothesis correc-

tions are required, these intermediate species may be overlooked. The results of this

work suggest that such species may merit re-examination in the context of previously

chosen biomarkers. While we have not examined it here, additional high-dimensional

phrasings might also be relevant to biomarker selection. For example, information

theory provides phrasings to account for confounding variables that can introduce



spurious statistical relationships. When such confounders are known to exist, they

could be explicitly accounted for by conditioning all information terms on the con-

founders during the selection scheme. In so doing, biomarkers could be selected that

provide information about the outputs that is independent of variation explained by

the confounders. While we have not examined such phrasings directly, the generality

of our approximation framework can enable them, even when data sizes are limited.

In addition to analytical insights gained by selecting an informative subset, the

modeling performance of this set helps to validate the approximation framework in

the context of this data set. We have therefore used the approximation to combine

various dimensions of the data set to enable simpler interpretation. Figure 3-2 shows

an example of such analysis in which we have combined the four measures associated

with each signal to generate a single metric representing the relationships between

phospho-peptide pairs, as opposed to the previously available 16 relationships between

all of the individual time points as shown in Figure 3-1. As discussed in Section 3.3.1,

the strongest peptide-peptide relationships in the grouped MI matrix reflect known

biology, including trivial results (such as multiple sites on EGFR) as well as phospho-

sites on proteins that are known to interact (SHC and CrkL), or known to participate

in a coherent signaling cascade (EGFR and Ack).

We have also used high-order mutual information calculations enabled by MIST

to quantify the statistical relationships between the phospho-peptide profiles and

migratory or proliferatory responses across the experimental conditions, as shown in

Figure 3-3. This analysis identifies signals that are particularly informative of the

cellular response in the context of the data set. While many of the highly informative

signals are predominantly informative of only one of the two responses, a few show

strong information with both migration and proliferation. In particular, the third-

most informative signal overall, SHC Y239, is computed to be equally informative

of both outputs. This result is consistent with the established role of SHC as a key

signal downstream of EGFR in mediating a variety of responses [74]. The highly

informative signals according to the MIST calculations also agree surprisingly well

with the previously identified network gauge. Given that the network gauge was



selected based upon the behavior of the signals in a regression model, and not on

any information theoretic statistics, this consistency serves as a validation of both

modeling approaches.

In addition, the distribution of the selected feature sets across the spectrum of

information values further demonstrates the non-obvious results that multivariate

phrasings can provide. Whereas all other examined selection schemes heavily favored

individually informative signals, the optimal set chosen by MIST included many sig-

nals that are not computed to be particularly informative individually. Given that

many of the other feature sets also included the most informative metrics in the MIST

opt set, the significantly better performance of models built using the MIST opt set

(Figure 3-4) seems to be a result of these lower-information signals. The relevance of

the MIST set is also supported by the good concordance with previous observations

that paxillin, Src Y418, FAK Y397, and p130cas Y327 constitute a set of sites that

exhibit a unique response to heregulin stimulation in the context of HER2 overex-

pression [88]. Furthermore, two other members of the MIST set, HER2 Y1248 and

P13K Y464 are also implicated in cellular migration through this same pathway.

While we have not examined them here, a variety of related analyses are enabled

by our information theoretic phrasing. For example, the phospho-peptides present in

a single protein or known to be substrates of a particular kinase could be grouped

together, providing an overall view of the information content of these sets of related

signals. Alternatively, one could group multiple species at a specific time point to

track information flow through time in the network. These types of analyses may

also prove useful for experimental design applications, where a subset of time points,

measurements, or experimental conditions must be selected prior to collection of a full

data set. We have previously examined such applications in the context of idiosyn-

cratic drug toxicity studies across multiple cell systems, finding that well selected

subsets of experimental conditions provided similar information content to the full

data set [16]. All of these phrasings would traditionally require the calculation of

high-dimensional statistics which cannot be reliably computed directly given the rel-

atively small number of experimental conditions. The MIST approximation, however,



enables such groupings even when sample sizes are small. Furthermore, as more data

become available, MIST provides a series of approximations (described in Chapter 2)

that provide more accurate calculations, without altering the fundamental problem

phrasing.



Chapter 4

Efficient calculation of molecular

configurational entropies using an

information theoretic

approximation

4.1 Introduction

A fundamental goal of computational chemistry is the calculation of thermodynamic

properties of molecules, such as the chemical potential, enthalpy, and entropy. Ac-

curate calculation of such properties can enable computational design and screening

at a scale infeasible in experimental systems, and provides tools for detailed com-

putational analysis of molecules of interest. While early work focused largely on

characterizing single configurations, often representing the global minimum energy

conformation, advances in computing technology have increasingly enabled the in-

vestigation of configurational ensemble properties [10, 45, 41]. This work, as well as

recent experimental studies using NMR, highlight the importance of configurational

solute entropy in a variety of systems [10, 52]. As such, improving the accuracy and

speed of molecular ensemble based calculations, particularly in larger systems, is an



area of active research.

One class of approaches for computing configurational averages centers around

the use of sampling based simulations such as molecular dynamics (MD) and Monte

Carlo. Such methods may be particularly well suited for larger systems, such as

proteins, where explicit enumeration and characterization of all relevant minima is

infeasible [45]. One of the better known methods in this field is the quasiharmonic

approximation, which approximates the system as a multidimensional Gaussian using

the covariance matrix computed across aligned simulation frames [41]. While success-

ful in many cases, the quasiharmonic approximation has been shown to significantly

overestimate entropies in systems containing multiple unconnected minima, which are

poorly modeled by a single Gaussian [9, 36]. Recent phrasings have instead focused

on estimating probability densities over the configuration space of a molecule using

the frames from MD simulations [37, 45]. As system size grows, however, direct esti-

mation of the density over all molecular degrees of freedom (DOF) becomes infeasible.

To address this issue, a mutual information expansion (MIE) of the configurational

entropy has recently been developed that enables approximation of configurational

entropies as a function of lower-dimensional marginal entropies [45]. The MIE frame-

work has proved accurate in the analysis of a variety of small molecule systems [45],

and has been combined with nearest-neighbor methods to improve convergence [38].

It has also been used in the analysis of side-chain configurational entropies to identify

residue-residue coupling in allosteric protein systems [63].

As discussed in Chapters 2 and 3, in parallel work developed in the context of gene

expression and cell signaling data, we have generated a similar framework, MIST, that

provides an upper bound to Shannon's information entropy as a function of lower-

order marginal entropy terms [46]. For multiple synthetic and biological data sets,

we found that, in addition to acting as a bound, the MIST approximations generated

useful estimates of the joint entropy. Due to the mathematical relationships between

information theory and statistical mechanics, application of MIST to the calcula-

tion of molecular entropies proved feasible with relatively little adaptation. While

similar in spirit to MIE, MIST represents a distinct framework for approximating



high-dimensional entropies by combining associated low-order marginal entropies. In

this chapter, we examine the behavior of MIST when used to calculate molecular

configurational entropies from MD simulation data, and in the context of idealized

rotameric systems.

We start by evaluating MIST in the analysis of MD simulations of a series of

small linear alkane systems where MIE has previously been shown to agree well with

established methods. We observe that MIST demonstrates larger deviations than MIE

when compared against the Mining Minima (M2) method that is currently among

the most accurate tools for computing ensemble properties of small molecules [10].

We also observe, however, that MIST converges considerably faster than MIE as a

function of simulation time, particularly for higher approximation orders. As such, for

the systems tested, while the converged MIE approximation shows better concordance

with M2 than does MIST, sampling regimes exist for which MIST provides closer

agreement.

Although M2 provides a reasonable "gold standard" to compare against, approx-

imations inherent in the M2 method result in inconsistencies with the underlying

molecular ensembles sampled by MD simulations [45]. We therefore also examine

MIST and MIE in the context of a series of idealized rotameric molecular systems in

which the marginal entropies can be computed exactly. These systems enable eval-

uation of the approximation frameworks separate from the errors introduced from

sampling. In contrast to the MD results, whereas MIST exhibits small errors for all

discrete systems, MIE demonstrates erratic convergence with increasing approxima-

tion order, even when the marginal terms are determined exactly. These differences

are particularly pronounced in constrained systems in which molecules are bound to

rigid proteins. Finally, we examine the convergence properties of MIST and MIE by

sampling from the discretized systems. Unlike the MD systems, evaluation of the

convergence to the analytically exact value for each approximation is possible. Sim-

ilar to the MD results, MIST exhibits improved convergence relative to MIE for all

systems.

Having multiple distinct methods for computing configurational ensemble prop-



erties may prove useful when standards such as M2 and the enumerated rotameric

systems are unavailable, as is likely to be the case for larger systems such as pro-

teins. Even in the cases where the MIE accuracy proves to be superior, the MIST

framework contains guarantees that may be useful for future applications. In partic-

ular, MIST demonstrates monotonically decreasing approximation error with order

of approximation, and bounding of the entropy, when the system is well converged.

Additionally, a variety of enhancements and applications of MIE have been explored

recently [38, 63]. While we have not pursued them here, the existing literature is

likely to be extensible to MIST, and may yield interesting results in that context.

4.2 Theory

In this section, we review the MIST approximation in the context of configurational

entropies. Additional details of MIST have been published previously in the context

of analyzing mRNA expression data for cancer classification [46], and are presented

in Chapter 2. Here we primarily highlight the theoretical differences between MIST

and MIE.

The information theoretic phrasing of the calculation of configurational entropies

has been well described previously [45]. The key step of the phrasing comes from

representing the partial molar configurational entropy of a molecule as

87r 2
-TS' = -RTln C + RT p(r) In p(r)dr, (4.1)

where R is the gas constant, T is the temperature, C' is the standard state concentra-

tion, and p is the probability density over the configurational degrees of freedom, r.

For the purposes of this paper, r is represented in a bond-angle-torsion (BAT) coor-

dinate system, as opposed to Cartesian coordinates. BAT coordinates tend to be less

coupled than Cartesian coordinates for molecular systems, and are thus well suited

for low-order approximations [73]. The first term of the RHS represents the entropic

contribution of the six rigid translational and rotational degrees of freedom, and is

found via analytical integration, assuming no external field. The second term, when



negated, is identical to RT times the information entropy, S, as originally developed

by Shannon [77], providing the equation

87r2
-TSO = -RT In - RTS, (4.2)

Co

S = -Jp(r) In p(r)dr. (4.3)

This relationship allows techniques developed in the context of information theory to

be used for the calculation of configurational entropies.

The MIST framework provides an upper bound to the Shannon information en-

tropy using marginal entropies of arbitrarily low order. The approximation arises from

an exact expansion of the entropy as a series of conditional entropies, or alternatively,

as a series of mutual information terms,

n n

Sn (r) = Si (ri r1 ...;_1 ) = [Si (ri) - I, (ri; ri...i1)], (4.4)

(x; y) J Px,y(X, Y) Pxy(XY) dxdy, (4.5)J) jpx * py (y)

where I, (ri; r 1 ... ._1) is the mutual information (MI) between DOF ri and all DOF

that have already been included in the sum. Throughout this section, subscripts on

S or I indicate the order of the term, i.e., the number of dimensions in the PDF

needed to compute the term. The MI phrasing can be thought of as adding in the

entropy of each DOF one at a time (Si terms in Equation 4.4), then removing a

term corresponding to the coupling between that DOF and all previously considered

DOF (Ij terms). The MIST approximation consists of limiting the number of DOF

in the information term. For example, for the first-order approximation, all coupling

is ignored, and the I term is completely omitted from the formulation. For the

second-order approximation, when each DOF is added, its coupling with a single

previously chosen DOF is accounted for, as opposed to considering the coupling with



all previously included terms

n n

S. (r) < SMI ST2 (r) = Si (ri) - max 12 (ri; rj) (4.6)
i=1 i=1

Because removing terms cannot increase the information, the RHS is an upper bound

on the entropy. Furthermore, all ordering of indices i and choices of conditioning

terms j provide valid upper bounds. As such, we can optimize for the order and

conditioning terms that minimize the RHS to generate the tightest bound consistent

with the framework. To generate approximations of arbitrarily high order, k, we

include an increasing number of DOF in the mutual information,

Sn (r) < SYMISTk (r) = E 1 (ri) - max Ik (ri; r) j I < k - 1 (4.7)

where rj is a vector of length k - 1 representing any subset of DOFE C {r1. ri_1.

In the context of approximations to thermodynamic ensemble properties, MIST

bears a strong resemblance to the Bethe free energy (also know as the Bethe approxi-

mation) [5]. In fact, the second-order MIST approximation is equivalent to the Bethe

approximation, and the full MIST framework may thus be thought of as a high-order

generalization to the Bethe free energy. While a full comparison of MIST and Bethe

approximation is outside the scope of the current work, a number of modifications and

applications of the Bethe approximation have been explored that may be extensible

to MIST [66, 90]

In contrast to MIST, MIE [45] expands the entropy as a series of increasingly

high-order information terms, as previously formulated by Matsuda [62]:

n n n n n n

Sn (r)= Si(r) - 12 (ri; rj) + I(ri; rj; rk)-..., (4.8)
i=1 =1 ji+1i=1 j=i+1 k=j+1

where I is defined as

n

In (ri; ... ; rn) = 1(-1)k+1 Sk (rjs, . . . , rij ) (4.9)
k=1 i1< ... <ik



and the second summation runs over all possible combinations of k DOF from the full

set of {r1... r.}. MIE generates an approximation to the full entropy by truncating

all terms of order larger than k in Equation 4.8. The approximation will converge to

the true entropy when no relationships directly involving more than k DOF exist in

the system. Notably, MIE does not carry any bounding guarantees, but it does not

require the optimization utilized in MIST.

Despite relying on differing expansions, MIST and MIE share many similarities.

The first-order approximation is identical in both cases (summing all first-order en-

tropies). For the second-order approximation, MIE adds in all first-order entropies

and subtracts off all possible pairwise mutual information terms,

n n n

S (r) ~S)IE2) Z2 (rirj)-
i=1 i=1 j=i+1

In contrast, MIST adds in all first-order entropies, and then subtracts off n - 1 of

the information terms (where n is the number of DOF in the system), as is seen

in Equation 4.6. These terms are chosen to account for as much information as

possible, while still guaranteeing an upper bound. The second-order approximations

highlight the theoretical differences between MIST and MIE. Whereas MIE removes

all pairwise couplings, effectively assuming that no higher-order relationships exist,

MIST removes a subset of couplings, effectively assuming some structure about the

system. In particular, MIST will provide a good approximation if the majority of

the degrees of freedom in the system are directly coupled only to a small number

of other DOE. Such a system can be well covered by the n - 1 terms included in

MIST. In contrast, MIE may not provide a good approximation in such a system due

to indirect couplings that are likely to exist between DOF, and must be removed by

higher-order terms. Alternatively, in systems containing a larger number of direct

pairwise interactions and relatively few higher-order couplings, MIST may provide

a poor approximation relative to MIE. Given these differences in representation, we

have performed a series of computational experiments to evaluate the performance

of the MIST and MIE in a variety of molecular systems, which have helped to reveal



how coupled coordinates contribute to configurational entropy.

4.3 Methods

4.3.1 Molecular dynamics simulations

All molecular dynamics simulations were run using the program CHARMM [7] with

the CHARMm22 all atom parameter set [59, 60]. Partial atomic charges were fit

using the program GAUSSIAN03 [29]. All simulations were run at a temperature

of 1000 K using a distance-dependent dielectric of four with a one fs time-step with

Langevin dynamics and the leapfrog integrator. A 1 ns equilibration was performed

prior to a 50 ns production run from which frames were extracted at a frequency of

1 frame per 10 fs, yielding 5 million frames per simulation.

For each system, an internal coordinate representation consisting of the selection

of three seed atoms, as well as a single bond, angle, and dihedral term for each

subsequent atom was chosen so as to use improper dihedrals whenever possible, and to

place heavy atoms prior to hydrogens. Only bonds, angle, and dihedral terms between

chemically bonded atoms were allowed as coordinates. Other than these restrictions,

the specific coordinates were chosen arbitrarily. The values of each bond, angle,

and dihedral were extracted from the simulations and binned. Marginal probability

density functions (PDFs) of all single, pairs, and triplets of coordinates were computed

using the frequencies from the simulation. These PDFs were then used to compute

the first-, second-, and third-order entropies and information terms. All first- and

second-order terms were computed using 120 bins per dimension, and all third-order

terms were computed using 60 bins per dimension. For MIE, third-order information

terms containing any bond or angle DOF were set to zero, as was done previously

[45]. For MIST, all third-order terms were included, as doing so did not dramatically

impact numerical stability. All calculations included a Jacobian term of ]H b? sin O

where bi and O are the bond length and angle used to place atom i, and the product

runs over all DOF included in the marginal term.



As a point of comparison, we used previously reported values of -TS' computed

using the Mining Minima (M2) method [10, 45]. Although small differences between

our energy function and that used to generate the M2 results exist, the good agree-

ment between our recomputed MIE results and the reported MIE values (see Figure

C-1), as well as with M2 (see Figure 4-1) suggests that the M2 results remain a valid

comparison. To enable comparison to M2, a factor of ln 3 for each methyl group, and

ln 2 for cyclohexane, was subtracted from S to account for the symmetry of methyl

rotations and cyclic flip states, respectively.

4.3.2 Discrete rotameric systems

Discrete rotameric systems representing four candidate drug molecules, either un-

bound or in the binding pocket of a rigid HIV-1 protease were generated. Each

system consists of the 5 x 104 lowest energy rotameric configurations, accounting for

> 99% of the contributions to the free energy at 300 K in all cases. For the current

work, these 5 x 104 configurations were treated as the only accessible states of the

system, enabling exact calculation of all ensemble properties.

The low energy configurations were determined via a two step, grid based, enumer-

ative configurational search. All ligands are comprised of a common chemical scaffold

with variable functional groups at 5 possible positions (see Figure 4-5). We first col-

lected an ensemble of low energy scaffold conformations using an enumerative Monte

Carlo (MC) search. Ten independent simulations of 5 x 10' steps were performed

for each ligand in both the bound and unbound states, and the external and scaffold

degrees of freedom of all collected configurations were idealized to a uniform grid with

a resolution of 0.1 A and 100/200 (bound/unbound). All simulations were performed

using CHARMM [7] with the CHARMm22 force field [65] and a distance-dependent

dielectric constant of four. The result of the first step was a set of energetically

accessible rotameric scaffold configurations.

The second step exhaustively searched the configurational space of the remaining

functional group degrees of freedom for each collected scaffold using a combination

of the dead-end-elimination (DEE) [21, 19, 20] and A* algorithms [51] as described



previously [3]. For high throughput energy evaluations, a pair-wise decomposable

energy function was used that included all pairwise Van der Waals and Coulombic,

intra- and inter-molecular interactions, computed with the CHARMm22 force field

and a distance-dependent dielectric. Uniformly sampled rotamer libraries for each

functional group with resolutions of 150 or 600 for the bound or unbound states,

respectively, were used. The 5 x 104 lowest-energy configurations across all scaffolds

were enumerated, and their energies computed.

The top 5 x 104 low-energy configurations from each ensemble were re-evaluated

using a higher resolution energy function to account for solvation effects and obtain a

more accurate measure of the energy. The enhanced energy function included all pair-

wise Van der Waals interactions, continuum electrostatic solvation energies collected

from a converged linearized Poisson-Boltzmann calculation calculated using the Del-

phi computer program [31, 68], as well as solvent accessible surface area energies to

model the hydrophobic effect [18]. Solvation energies were calculated using an inter-

nal dielectric of 4 and a solvent dielectric of 80. A grid resolution of 129 x 129 x 129

with focusing boundry conditions [57] was used, along with a Stern layer of 2.0 A and

an ionic strength of 0.145 M.

Given the energies of all configurations in the idealized rotameric systems, en-

tropies of arbitrary order were computed analytically by integrating through the

Boltzmann distribution. To evaluate the convergence properties of the metrics in

the context of the discrete rotameric systems, we randomly drew from the 5 x 104

structures representing each system with replacement according to the Boltzmann

weighted distribution. The resulting samples were then used to estimate the single,

pair, and triple PDFs as for the MD systems. Because the exact marginal entropies are

analytically computable, convergence for these systems was examined with respect to

the same approximation computed using the analytically-determined marginal terms.

No symmetry adjustments were applied for the discrete systems.



4.4 Results

4.4.1 Molecular dynamics simulations of small alkanes

To investigate the behavior of the MIST framework in the context of configurational

entropies, we first examined a series of linear alkanes (butane - octane), as well as

cyclohexane. Configurational entropies for all of these systems have been previously

computed using MIE and were shown to agree well with M2 calculations [45]. As was

done in these studies, we collected 5 x 106 frames from a 50 ns molecular dynamics

trajectory for each molecule and computed the single, pair, and triplet entropies of

all BAT degrees of freedom. We then combined these marginal entropies according

to the MIST (Equation 4.7) or MIE (Equation 4.8) framework, using approximation

orders of one, two, or three. The resulting values for the entropic contribution to the

free energies, -TS' (computed using Equation 4.2), are shown in Figure 4-1.

As seen in the previous studies of MIE (red bars), the second-order approximation

(MIE 2) shows good agreement with M2 (dashed line) for all linear alkanes, with a

maximum difference of 1.2 kcal/mol. MIEi and MIE 3 generally show worse agree-

ment with M2 (> 10 kcal/mol in some cases) as previously reported. As with previous

studies, none of the approximation orders agree well with M2 for cyclohexane. The

MIST approximations (blue bars), show somewhat different behavior than MIE. As

guaranteed by the theory, the first order MIST and MIE approximations are iden-

tical. MIST 2, however, shows considerably larger deviations from M2 for the linear

alkanes (3-7 kcal/mol) than does MIE 2. Also, whereas MIE 3 generally showed worse

agreement with M2 than MIE 2, MIST 3 improves upon MIST 2 for all systems, show-

ing deviations from M2 between 2 and 4 kcal/mol for linear alkanes. While MIST 3

is guaranteed to yield at least as accurate of a result as MIST 2 when both are fully

converged, it is important to see it in the context of finite sample sizes. As with MIE,

none of the MIST approximations compare favorably with M2 for cyclohexane.
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Figure 4-1: MIST and MIE results for small alkanes: Five linear alkanes
(butane-octane) as well as cyclohexane were simulated using MD, and the result-
ing 5 x 106 frames were used to estimate the marginal entropies. These entropies
were then combined according to MIST (blue bars) or MIE (red bars) to generate
the first-, second-, or third-order approximation to the configurational entropy of
each molecule. Results are compared to published calculations [45] using the Mining
Minima method (dashed black line).

... ..... .......



10 20 30 40 50
(A) butane

10 20 30 40 50
(D) heptane

10 20 30 40 50
(B) pentane

10 20 30 40 50
(E) octane

simulation time (ns)

10 20 30 40 50
(C) hexane

MIST
MIE

10 20 30 40 50
(F) cyclohexane

Figure 4-2: Convergence of MIST and MIE for small alkanes: MD simulations
of various linear alkanes or cyclohexane were subsampled to include frames corre-
sponding to shorter simulation times, and the resulting sets of frames were used to
compute the MIST (blue lines), and MIE (red lines) approximations. The convergence
of first- (dotted line), second- (solid lines), and third-order (dashed lines) approxima-
tions is shown. Each line shows the deviation from the same value computed using
the full 50 ns trajectory.

4.4.2 Convergence for small alkanes

In addition to looking at the MIE and MIST values computed using the full 50 ns

simulation, we also examined the behavior of the approximations when using only

frames corresponding to shorter simulation times. Because each approximation order

is converging to a different value, and the fully converged values are not known,

we track the approach to the value computed with the full 50 ns. The results are

shown in Figure 4-2 and Table 4.1. For all systems, MIST (blue lines) exhibits faster

convergence than MIE (red lines). While the third-order approximations (dashed

lines) converge more slowly than the corresponding second-order (solid lines), MIST 3

still demonstrates faster convergence than MIE 2, particularly for larger systems.

The MIE 2 convergence results are somewhat surprising given the good agreement

............ ................ .......... ...... ........ w -.- I _- _



with M2 for these systems. For example, despite the fact that MIE 2 and M2 agree

within 0.02 kcal/mol for octane, the computed value for MIE 2 changed by nearly

1 kcal/mol in the last 10 ns of the simulation. Similar, though less pronounced,

behavior is seen for the smaller alkanes. Given the consistent downward trend of the

convergence plots, this suggests that the converged MIE 2 values are unlikely to agree

as closely with M2 as the values computed at 50 ns do. While the same is technically

true for the MIST approximations, the effect is likely to be much smaller given that

MIST 2 and MIST 3 changed by only 0.03 and 0.34 kcal/mol, respectively in the last

10 ns of the octane simulation.

Table 4.1: Change in estimation of -TS' from 40 ns-50 ns (kcal/mol)
molecule MIST 1 /MIE 1  MIST 2 MIST 3  MIE 2  MIE 3

butane 0.00 -0.01 -0.15 -0.21 -0.37
pentane -0.01 -0.03 -0.20 -0.34 -0.64
hexane 0.00 -0.02 -0.23 -0.48 -1.15

heptane -0.01 -0.03 -0.29 -0.68 -2.01
octane 0.00 -0.03 -0.34 -0.93 -3.67

cyclohexane 0.00 -0.01 -0.11 -0.33 -0.48

Previous work showed that MIE 3 was poorly converged for many of the alkanes,

particularly the larger ones, as is observed here [45]. Over the last 10 ns of the hexane,

heptane, and octane simulations, the MIE3 estimate changes by 1.0-3.5 kcal/mol.

Notably, the third-order MIE approximation already omits a number of terms to

improve numerical stability (all three-way information terms containing a bond or an

angle are set to zero). In contrast, the third-order MIST implementation shown here

includes all of these terms, and still demonstrates significantly faster convergence.

Though we have not explored higher-order MIST approximations for these systems,

the good convergence of MIST 3 suggests that fourth- or fifth-order approximations

may be feasible.

Taken together with the previous section demonstrating the agreement between

MIST, MIE, and M2, we can see that sampling regimes may exist in which any of

the MIE or MIST approximations give the smallest error. To get a sense of how the

approximations may behave in this regard, we can treat M2 as a comparison point.
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Figure 4-3: Agreement with M2 across sampling regimes: MIST (blue lines)

and MIE (red lines) approximations were computed as a function of simulation times

as described in Figure 4-2, and the absolute deviation from published M2 results were

plotted, demonstrating that different approximations provide the best agreement with

M2 in different sampling regimes.
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Although the M2 result may not be equivalent to the full entropy to which MIE and

MIST would ultimately converge, treating it as a standard may be instructive about

the combined behavior of the methods when weighing accuracy and convergence. To

this end, Figure 4-3 shows the error of the approximations as a function of simulation

time when treating M2 as a gold standard. For all linear alkane systems, regimes exist

for which MIST 2, MIST 3 , or MIE 2 provide the smallest error. In particular, the rapid

convergence of MIST 2 produces the best agreement with M2 for simulation times < 9

ns. Around this point, MIST 3 tends to reach good enough convergence to provide

the best estimate until ~ 25 ns at which point MIE 2 converges to the point that it

provides the closest agreement. Across the linear alkanes, as system size increases,

the transition points tend to extend to later times, suggesting that the regimes in

which the MIST approximations provide improved accuracy relative to MIE may be

particularly relevant for larger systems.

4.4.3 Source of differences between MIE2 and MIST 2 for

small alkanes

To understand the differences in accuracy and convergence between MIE and MIST,

we next examined the terms of the expansions that differ between the two approxima-

tion frameworks. In particular, for the second-order approximations, MIST 2 includes

a subset of the mutual information terms considered by MIE 2, as can be seen in

Equations 4.10 and 4.6. As such, these omitted terms are entirely responsible for the

differences between the two approximations. The values of the terms used for both

approximations when applied to butane are shown in Figure 4-4.

For each plot, the lower triangle of the matrix shows the pairwise mutual in-

formation between each pair of degrees of freedom, all of which are included in the

calculation of MIE 2. The upper triangle shows the subset of these terms that are used

by MIST 2, chosen to minimize Equation 4.6 while maintaining an upper bound on

the entropy. Focusing on panel D, showing the results using the full 50 ns simulation,

one can see that most of the omitted terms are relatively low in value, whereas the
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associated with its placement (bond, angle, torsion from bottom to top and left to
right in each box). All values are reported in kcal/mol.
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high MI terms are included. Panels A-C show the same information when using the

first 4, 10, or 25 ns of the simulation, respectively. In contrast to the 50 ns results,

the shorter simulations show dramatic differences between MIST 2 and MIE 2. While

roughly the same set of terms are omitted by MIST 2 in these cases as in the 50 ns case,

the omitted terms are much larger, due to their relatively slow convergence. These

plots indicate that slow convergence of MIE 2 relative to MIST 2 is likely a result of

the many terms in the MI matrix that are slowly converging to very small values.

Table 4.2: Percent of (MIE 2 - MIST 2) accounted for by terms of various magnitudes
molecule x > .05 .05 > x > .01 x < .01

butane 29.7 30.4 39.9
pentane 28.4 30.1 41.5
hexane 24.4 26.7 49.0
heptane 19.5 26.3 54.2
octane 17.5 23.8 58.7

To further examine the source of differences between MIST 2 and MIE 2, we looked

at how much of the difference between the approximations was accounted for by terms

of various sizes for the linear alkanes. The results of this analysis using the full 50

ns simulations are shown in Table 4.2. As suggested by Figure 4.6, much of the

difference between MIST 2 and MIE 2 comes from the large number of omitted small

terms. For example, for butane, 39.9% of the 2.22 kcal/mol difference comes from

MI terms with magnitudes less than 0.01 kcal/mol. Furthermore, the importance of

these small terms grows as the system size increase, accounting for nearly 60% of

the disparity for octane. Taken in conjunction with the slow convergence of these

small terms, these results suggest that, while some real representational differences

do exist between MIE and MIST, much of the difference may in fact be explained by

differences in convergence even at 50 ns.

4.4.4 Discretized drug molecules as an analytical test case

While the good agreement that both MIST and MIE show with the M2 results is an

important validation step in evaluating the overall accuracy of the approximations,



some fundamental differences in the methodology can make the results somewhat

difficult to evaluate. There are two primary issues that can confound the interpreta-

tion. Firstly, M2 calculations and MD simulations represent similar but ultimately

different energy landscapes. Whereas the MD landscape represents the exact energy

function used in the simulation, M2 approximates the landscape by linearizing the

system about a set of relevant minima. Although mode-scanning is employed to ac-

count for some anharmonicities in the systems, M2 still operates on an approximation

of the energy landscape sampled during MD. As such, even given infinite samples,

and without making any truncation approximations (i.e., directly generating p(r) for

use in Equation 4.1), the entropy estimate would not necessarily converge to the M2

result. Secondly, because application of MIST and MIE relies upon estimating the

low-order marginal entropies from a finite number of MD frames, it is difficult to sep-

arate the error introduced by the approximation framework from the error introduced

by estimating the marginal terms.

To address these issues, we examined MIST and MIE in the context of a series of

discrete rotameric systems in which the energy of all relevant states was calculated

directly. Given this distribution of rotameric states, the full configurational entropy

and all marginal entropies can then be computed exactly. As such, in these systems,

we can separately evaluate the approximation errors due to the MIST or MIE frame-

works, as well as sampling errors due to estimating the marginal terms. These discrete

ensembles were originally generated to analyze a series of candidate HIV-1 protease

inhibitors [3], but their primary importance for the current work is as a test case in

which entropies of arbitrary order can be computed exactly. The chemical structures

of the four drugs can be seen in Figure 4-5. Additional details on the generation of

these systems can be found in Section 4.3.2.

We employed eight different discrete ensembles, representing bound and unbound

states of the four molecules. All bonds, angles, and non-torsional dihedrals were

idealized and fixed, leaving 13-15 torsional degrees of freedom in the systems. We

also included an additional single external degree of freedom in the bound cases to

model the position of the molecule with respect to the rigid binding pocket. For each
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Figure 4-5: Chemical structures of idealized discrete molecules: The four
molecules shown were previously designed as candidate HIV-1 protease inhibitors [3].
For the current work, idealized rotameric systems in which the exact energies of 50,000
rotameric states were generated in both bound and unbound states, as described and
in Section 4.3.2. All torsional degrees of freedom for each drug were rotamerized, and
all other DOF (bonds, angles, impropers) were fixed to idealized values.
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system, we computed exactly all entropy terms containing 1, 2, 3, 4, or 5 degrees

of freedom by marginalizing the full Boltzmann distribution. We then computed

approximations to the total entropy of each system using either MIST or MIE. As

such, we were able to examine the approximation error associated with both methods

when the low-order terms are known exactly. The results are shown in Figure 4-

6. For all eight systems, the MIST approximations (blue lines, x's) monotonically

approach the full entropy (dashed black line) as the approximation order increases.

All MIST approximations also provide a lower bound to the entropic free energy (or

an upper bound to the associated Shannon entropy) when the low order terms are

known exactly. Both of these properties are guaranteed for MIST when the marginal

terms are known exactly, so seeing them hold in our test system is important, if not

surprising. For all cases, the second-order MIST approximation provides an estimate

within 1.2 kcal/mol of the full analytic entropic free energy, with particularly good

performance in the bound systems (top row of Figure).

For the four unbound systems (bottom row of Figure 4-6), MIE (red lines, o's)

shows similar accuracy to MIST, generating a lower-error estimate once (KB98, panel

E), a worse estimate once (AD93, panel F), and comparable error for two cases (AD94

and KB92, panels G and H). Unlike MIST, MIE is not guaranteed to monotonically

reduce the approximation error as the order increases, and in some cases, such as

unbound KB98 and AD94, the third-order approximation performs worse than the

second-order. In general, however, for the unbound cases the MIE approximations

converge towards the true entropy as the approximation order is increased, with exact

low-order terms.

In contrast to its performance in the unbound systems, MIE demonstrates erratic

behavior in the bound systems. For all four systems and all approximation orders,

MIST results in considerably lower error than the corresponding MIE approximations.

Furthermore, increasing the approximation order does not dramatically improve the

performance of MIE in the bound systems, and actually results in divergent behavior

for orders 1-5 in AD94 (panel C). Notably, the bound systems represent identical

molecules to those in the unbound systems; the only differences lie in the level of



discretization, and the external field imposed by the rigid protein in the bound state.

4.4.5 Convergence properties in discrete systems

Having investigated the error due to the MIST and MIE approximation frameworks in

our analytically exact discrete systems, we next looked to explore the errors associated

with computing the approximations from a finite number of samples. To do this, we

performed a series of computational experiments in which we randomly drew with

replacement from the 50,000 structures representing each system according to the

Boltzmann distribution determined by their energies and a temperature of 300 K.

For each system, we drew 106 samples, and estimated the PDF over the 50,000 states

using subsets of the full 106. These PDFs were then used to compute the marginal

entropies used in MIST and MIE. For each system, this procedure was repeated 50

times to evaluate the distribution of sampling errors for the two methods.

In order to quantify the sampling error separately from the approximation error

(which we previously examined in Section 4.4.4), we compared the approach of each

approximation to the value computed when using the exact low-order terms (i.e., we

examined the convergence of each approximation to its fully converged answer, as

opposed to the true joint entropy). The results for the bound and unbound KB98

systems are shown in Figure 4-7. Results for the other molecules were similar and are

shown in Figures C-2, C-3, and C-4. As expected, the lower-order approximations

converge more quickly, as the low-order PDFs require fewer samples to estimate accu-

rately. For the unbound case (bottom row), both MIE (red) and MIST (blue) exhibit

consistent steady convergence for all 50 runs. For the bound case (top row), while

MIST exhibits similar convergence behavior as in the unbound system, MIE shows

much larger variations across the 50 runs. As with the MD analysis in Section 4.4.2,

MIST demonstrates considerably faster convergence than MIE for all approximation

orders examined and all systems.
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Figure 4-7: Convergence in KB98 rotameric systems: For each of the eight ide-
alized rotameric systems, we sampled with replacement from the 5 x 104 configurations
representing each system, according to the Boltzmann distribution determined by the
relative energies of each configuration. These samples were then used to estimate the
marginal entropies of all combinations of 1-4 torsions, prior to application of MIST
(blue lines) or MIE (red lines). This procedure was repeated 50 times for each system,
and the results of each run are shown (pale lines), as well as the mean and standard
deviation across the 50 runs (thick lines). Results for bound (top row) and unbound
(bottom row) KB98 are shown here. Results for other molecules were similar and can
be seen in Figures C-2, C-3, and C-4
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show in the lower triangles. The upper triangles indicate the terms that were chosen

to be included in the second order MIST approximation, according to Equation 4.6.

All values are reported in kcal/mol.

4.4.6 Source of differences between MIE2 and MIST 2 for dis-

crete systems

We next examined the MI terms accounting for differences between the two approxi-

mation frameworks. As with the analysis of the alkanes (Section 4.4.3), the similarities

between the second-order approximations enables a direct comparison of the MI terms

that are included by MIE but omitted in MIST. Unlike the alkane studies, however,

because the low-order terms can be determined directly for these discrete cases, the

convergence errors, which played a important role in differences for the alkanes, can

be eliminated in the current analysis. Doing so allows direct examination of the dif-

ferences for the two approximation frameworks, independent of errors introduced due

to sampling. The MIs between all pairs of degrees of freedom for bound and unbound

KB98, as well as the terms chosen by MIST 2 are shown in Figure 4-8.

The results for the unbound case (panel B), for which MIE 2 provides lower error,

are qualitatively similar to those seen for the alkanes. Most of the differences between

.... ..... ........... ...... . ...... ..



MIE 2 and MIST 2 in the unbound molecule arise from the omission of a number of

relatively small terms, less than 0.2 kcal/mol. The larger MI terms are all included

in both approximations. In contrast, the differences between the two methods for

the bound case come from a different source: MIST 2 omits three of the seven largest

MI terms in the bound system, together accounting for nearly 2 kcal/mol of the 2.91

kcal/mol difference between MIE 2 and MIST 2. In particular, whereas all six pairwise

relationships among the external, #2, #3, and #5 degrees of freedom show strong

(and nearly equivalent) couplings, MIST 2 only includes three of these terms (as it is

restricted to avoid cycles in order to maintain bounding guarantees).

The qualitative differences in the terms accounting for the disparity between

MIST 2 and MIE 2 in bound KB98 compared the unbound KB98 and the alkanes

may be particularly relevant given the relatively poor accuracy of MIE for the bound

systems. The strong couplings between the four degrees of freedom of focus (exter-

nal, #2 , #3, and #5), suggest a high-dimensional transition in which all four DOF are

tightly coupled to each other and must change in concert to adopt different energeti-

cally relevant states. In particular, the values of the couplings, all of which are near

ln 2, are consistent with these four degrees of freedom together occupying two domi-

nant states. Such high-order couplings could be responsible for the poor performance

of MIE in the bound systems.

4.5 Discussion

Here we have examined the behavior of our Maximum Information Spanning Trees

(MIST) approximation framework in the context of computing molecular configu-

rational entropies. Though we originally developed MIST in order to pursue high-

dimensional information theoretic phrasings in the analysis of experimental biological

data, the generality of the method, coupled with the mathematical relationships be-

tween information theory and statistical mechanics, enabled application to this sys-

tem with relatively little modification. The adaptation of the method was largely

inspired by the similar approach taken previously with the Mutual Information Ex-



pansion (MIE) method [45]. As such we have compared against both MIE and the

well established Mining Minima (M2) method in the context of MD simulations of

linear alkanes. Although the MIST approximations did not demonstrate as close

agreement with M2 as that seen with the second-order MIE method, we did observe

agreement within 2-4 kcal/mol, as well as significantly improved convergence, even

for higher-order MIST approximations, which may prove valuable when investigating

larger systems. Even in the context of the relatively small linear alkanes investigated

here, we identified sampling regimes in which the MIST approximations generated

better agreement with M2 compared to MIE. The size of these regimes (roughly the

first 25 ns of simulation time) suggests that MIST may be particularly useful for

larger systems in which simulation time may be limiting.

While the agreement with M2 is an important validation for the overall accuracy

of the methods, it does not provide an ideal testing framework, as M2 and the MD

simulations represent different energy landscapes. As such, separate examination of

the errors due to approximation and sampling was not possible. To address this, we

also examined MIST and MIE in the context of a series of idealized rotameric systems

in which the exact entropies could be computed directly. In these systems, we ob-

served that while MIE and MIST both showed good behavior in systems representing

unbound molecules, MIE demonstrated poor accuracy in the more restricted bound

systems, even for the fifth-order approximation with exactly determined marginal

terms. In contrast, MIST exhibited small approximation errors in the bound sys-

tems, even for the second-order approximation. Furthermore, when sampling from

the known analytical distribution, the fast convergence of MIST relative to MIE seen

in the MD systems was also observed for these discretized molecular systems.

In addition to improved convergence, MIST carries useful properties that are not

shared by MIE. For fully converged systems, the approximation error of MIST is

guaranteed to monotonically decrease with increasing approximation order. This

behavior can be easily seen for the discrete systems in Figure 4-6, and stands in

contrast to the behavior of MIE in the same systems. In application to novel systems

where the behavior of the approximations is untested, this property means that the



highest approximation order to have reached convergence provides the best estimate

of the full entropy. In the absence of such a guarantee, it is unclear how to select the

appropriate approximation order.

Furthermore, all converged MIST approximations provide a lower bound on the

entropic contribution to the free energy, -TS (or an upper bound on the Shannon

information entropy, S). The bounding behavior may prove particularly useful in

identifying optimal coordinate representations. In the previous MIE work, the choice

of coordinate system has been demonstrated to significantly impact the quality of

the approximation [45]. In particular, removing high-order couplings between coordi-

nates, such as those present in Cartesian coordinates, can dramatically improve the

accuracy of low-order approximations like MIST and MIE. Because MIST applied to

any valid coordinate set will still provide a lower bound on -TS, a variety of co-

ordinate sets may be tested, and the one that yields the largest converged answer is

guaranteed to be the most accurate. While additional work is needed to fully enable

such a method, even brute-force enumeration is likely to improve performance.

The results of MIE and MIST in the context of the discrete systems also highlights

the ability of MIST to provide a good approximation at low orders, even when direct

high-order couplings are known to exist. As has been described previously [45, 62],

low-order MIE approximations truncate terms in Equation 4.8 representing only direct

high-order relationships. The poor accuracy of low-order MIE metrics for the bound

idealized systems therefore implies that these systems contain significant high-order

terms. Despite the presence of such complex couplings, MIST still provides a good

approximation in these same systems. For systems such as proteins that are known

to exhibit high-dimensional couplings, the ability to capture high-order relationships

in the context of a low-order approximation may prove crucial.

Since the original development of the MIE framework, additional work has been

done to extend and apply the method. Nearest-neighbor (NN) entropy estimation has

been used to compute the low-order marginal terms utilized by the MIE framework,

resulting in significantly improved convergence [38]. Given that MIST relies upon the

same low-order marginal terms as MIE, it is likely that NN methods would also be



useful in the context of MIST. MIE has also been used to analyze residue side-chain

configurational freedom from protein simulations [63]. These studies were able to

identify biologically relevant couplings between distal residues in allosteric proteins.

Given the relative computational costs of simulating large proteins, and the strong

high-dimensional couplings that surely exist in the context of proteins, application of

MIST in similar studies may be particularly useful. Preliminary results from ongoing

studies have proved promising in the calculation of residue side-chain configurational

entropies in the active site of HIV-1 protease.

In summary, we have adapted our existing information theoretic-based approxi-

mation framework to enable calculation of configurational entropies from molecular

simulation data. Having characterized its behavior in a variety of molecular systems,

we believe MIST can serve as a complement to existing methods, particularly in

poorly sampled regimes. A variety of existing extensions and applications for MIE

are also likely to be useful in the context of MIST, though further exploration is

needed. Finally, in addition to improved convergence, MIST carries monotonicity

and bounding guarantees that may prove valuable for future applications.
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Appendix A

Supporting materials for Chapter 2

Table A.1: Microarray
Tissue # Samples

breast 295
leukemia 72

colon 62
prostate 102

datasets for cancer classification

# Genes Class Type Ref

70 good/bad prog [86]
7070 AML/ALL [35]
2000 normal/tumor [2]

12600 normal/tumor [81]
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Genes selected by MIST 2

Tissue # Gene ID Repro % Cancer Rel Other Studies

breast 1 NM_003981 91.0* [78] [54, 12, 83]
2 A1918032 91.0* [12]
3 NM_003239 85.5* [25] [12]
4 AW024884 52.0*
5 AA404325 68.5*
6 AF055033 77.0* [12, 83]
7 AW014921 77.0*
8 AL080059 49.5* [91]
9 A1738508 1.5
10 AK000745 17.0

leukemia 1 M27891 33.0* [28, 4, 13, 91, 6, 23]
2 U29175 3.5* [4, 23]
3 U72621 19.0* [1] [4]
4 U88047 7.5* [23]
5 M92287 24.0* [80] [4, 6, 23]
6 M19507 2.0 [4, 13, 6, 23]
7 D84294 0.5
8 HG3549-HT3751 6.5*
9 M32304 6.5* [4]

10 AF005043 1.0
colon 1 M63391 22.0* [22] [4, 6, 23]

2 U30825 3.5 [4, 23]
3 T57468 4.5* [23]
4 T47377 21.5* [4, 6, 23]
5 M26383 19.0* [4, 6, 23]
6 R39209 24.5* [23]
7 M76378 5.5* [4, 6, 23]
8 M80815 3.0 [4, 23]
9 Y00097 4.5* [79]
10 X90858 1.0 [40] [4]

prostate 1 X07732 90.0* [42] [13, 89, 84]
2 U24577 33.0*
3 M62895 6.0* [75]
4 U12472 14.0*
5 D80010 17.5*
6 AB014545 15.0*
7 AB023204 27.0*
8 U67615 23.5*
9 M21536 12.5* [72]
10 AF038451 4.0* [85]

*Bonferroni adjusted pval<;0.01 for gene occuring this often in 200 random runs.
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Exact low-order
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Figure A-1: Direct validation of MIST MI approximation. To evaluate the
MIST framework, we simulated 100 randomly generated networks with analytically
computable joint entropies and applied the metrics using a range of sample sizes.
Half of each network was randomly chosen and the MI between one half and the
other was computed analytically or using the MIST approximation of various orders.
When the analytical entropies are known exactly (A), the higher-order approximations
performing increasingly well. When the entropies are estimated from a finite sample,
however (C-E), the approximations provide the best estimates, with the higher-order
approximations performing better as more data become available. This behavior is
quantified by computing the sum-of-squared error of each metric as a function of the
sampling regime (B). The best approximation to use depends upon the amount of
data available, but for all cases examined with finite sample size, the approximations
outperform direct estimation and the second-order approximation provides a good
estimate.
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Figure A-2: Gene subset selection for cancer classification. Subsets of gene
expression levels were chosen incrementally to maximize the information content with
the cancer class variable according to MIST 2, direct estimation of MI, mRMR, or at
random and the chosen sets were scored by the cross-validation error of an SVM
classifier trained to discriminate the cancer type. For all data sets, 75% of the data
was separated and used to select features and train the model; the classifier was then
used to classify the remaining 25% of the samples. The mean classification error and
standard error of the mean for 200 such training/testing partitioning are reported.
Genes were selected for data sets relating to (A) breast, (B) leukemia, (C) colon, and
(D) prostate cancer.
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Figure A-3: Gene subset selection for cancer classification. Subsets of gene
expression levels were chosen incrementally to maximize the information content with
the cancer class variable according to MIST 2 or mRMR and the chosen sets were
scored by the cross-validation error of an LDA (A,D,G,J), 3NN (B,E,H,K), or 5NN
(C,F,I,L) classifier trained to discriminate the cancer type. For all datasets, 75% of
the data was separated and used to select features and train the model; the classifier
was then used to classify the remaining 25% of the samples. The mean classification
error and standard error of the mean for 200 such training/testing partitioning are
reported. Genes were selected for four datasets relating to (A,B,C) breast, (D,E,F)
leukemia, (G,H,I) colon, and (J,K,L) prostate cancer. Results using an SVM classifier
and including direct estimation-based feature selection are shown in Figure 4.
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Figure A-4: Correlation of classification error and MI metrics. The classifi-
cation error of randomly chosen subsets of 1-15 genes was computed through cross-
validation with an SVM based classifier. The same sets were then scored by MIST 2
(A,D,G,J), MI computed with direct estimation (B,E,HK), and mRMR (C,F,I,L)
and these metrics are shown plotted against the CV classification error. The color of
the points relates to the size of the feature set, cycling through blue, green, red, cyan,
magenta, yellow, black for increasing set size. The correlation coefficients between
metrics as a function of set size is shown in Figure 3. Notably, MIST 2 has strong
negative correlation across all feature set sizes.
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Appendix B

Supporting materials for Chapter 3
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Figure B-1: MI of feature sets with outputs: The MIs for migration (left column)

or proliferation (right column) from each of the four measures for each of the nine

phospho-peptides in each feature set is shown. Additional details, as well as results

for network gauge and MIST opt can be seen in Figure 3-5.

108

.... ...... .



Catenin dl Y228 Catenin dl Y228

paxillin S84N88 paxillin S84N88

An A2 Y29 asRN1 Y36

SHC Y239 GRF1 Y1105 eNaaspm
GRF1 Y1 105 Ack Y857

CrkL Y1 32 ma SHC Y317
m 

81

Ack Y857 SCF38 m2 Y20

SHC Y317 STAT3-1 Y7

TfR Y20 TfR Y20

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

rank 3 rank 4

Catenin dl Y228 Catenin dl Y228

paxillin S84N88 paxillin S84N88

An A2 Y29 An A2 Y29- E
GRF1 Y1105 e ama as 8a GRF1 Y1105 e

Ack Y857 m aAck Y857

SHC Y317 SHC Y317

SCF38 m2 Y20ma SCF38 m2 Y20 e '

STAT3-1 Y70 An A2 Y23

TfR Y20 TfR Y20 v-

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

FSi ind
2.5

Catenin dl Y228

paxillin S84/Y88 2

GRF1 Y1105

Erbin Y11041.5

Ack Y857

SCF38 m2 Y20 I

An A2 Y237

An A2 Y231

Figure B-2: MI matrices of feature sets: The MI between each pair of signals in
the indicated feature sets are shown. Results for the network gauge and MIST opt
sets can be found in Figure 3-6.
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Appendix C

Supporting materials for Chapter 4
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Figure C-1: Regeneration of published MIE results: MD simulations of the
indicated alkanes were run and analyzed as described in Methods section 4.3.1 and
summarized in the caption of Figure 4-1. Our recomputed MIE results are compared
against those published previously CITE. Both the first- and second-order recalcu-
lated values agree well with published results. Deviations in the third-order are likely
a result of the poor convergence for both our numbers and those reported.
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Figure C-2: Convergence in AD93 rotameric systems: The convergence of MIST
and MIE in idealized rotameric systems was computed as described in Methods section
4.3.2 and summarized in the caption of Figure 4-7. Results for bound and unbound
AD93 are shown.
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Figure C-3: Convergence in AD94 rotameric systems: The convergence of MIST
and MIE in idealized rotameric systems was computed as described in Methods section
4.3.2 and summarized in the caption of Figure 4-7. Results for bound and unbound
AD94 are shown.
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Figure C-4: Convergence in KB92 rotameric systems: The convergence of MIST
and MIE in idealized rotameric systems was computed as described in Methods section
4.3.2 and summarized in the caption of Figure 4-7. Results for bound and unbound
KB92 are shown.
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