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Abstract

Introduction
The robustness of record linkage evaluation measures is of high importance since linkage techniques
are assessed based on these. However, minimal research has been conducted to evaluate the suit-
ability of existing evaluation measures in the context of linking groups of records. Linkage quality is
generally evaluated based on traditional measures such as precision and recall. As we show, these
traditional evaluation measures are not suitable for evaluating groups of linked records because they
evaluate the quality of individual record pairs rather than the quality of records grouped into clusters.

Objectives
We set out to highlight the shortcomings of traditional evaluation measures and then propose a
novel method to evaluate clustering quality in the context of group-based record linkage.

Methods
The proposed linkage evaluation method assesses how well individual records have been allocated into
predicted groups/clusters with respect to ground-truth data. We first identify the best representative
predicted cluster for each ground-truth cluster and, based on the resulting mapping, each record in
a ground-truth cluster is assigned to one of seven categories. These categories reflect how well the
linkage technique assigned records into groups.

Results
We empirically evaluated our proposed method using real-world data and showed that it better
reflects the quality of clusters generated by three group-based record linkage techniques. We also
showed that traditional measures such as precision and recall can produce ambiguous results whereas
our method does not.

Conclusions
The proposed evaluation method provides unambiguous results regarding the assessed group-based
record linkage approaches. The method comprises of seven categories which reflect how each record
was predicted, providing more detailed information about the quality of the linkage result. This
will help to make better-informed decisions about which linkage technique is best suited for a given
linkage application.

Introduction

Record linkage is the process of identifying pairs or sets of
records which refer to the same entity (individual) [1-4]. Tra-
ditionally, pairs of records are compared using the values in the
attributes (also known as fields) common to the datasets to
be linked. When these datasets contain records about individ-
uals, then the attributes compared generally contain personal
details such as names, addresses, and dates of birth. Based
on the aggregated (pairwise) similarities when such attribute

values are compared between records [1], the compared record
pairs are considered to refer to the same individual, known as
a match (if for example the resulting similarities are above a
given threshold), or to two different individuals (non-match).

Unlike traditional record linkage (as commonly applied in
statistics, health informatics, or computer science), the aim of
group-based record linkage is to identify sets of records which
either refer to the same individual or to the same group of
individuals. In recent times, group-based record linkage tech-
niques have become more popular and used in applications
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such as family and household identification [5,6].
For example, for the task of population reconstruction [7],

one of the preliminary tasks conducted by historians, geneal-
ogists, or demographers is the identification of sibling groups,
known as bundles, through the identification of birth records
of children born to the same parents. Linked bundles of sib-
lings allow a variety of studies, for example, about fertility and
mortality and how these change over time [8]. Population re-
construction is an intensive, time consuming exercise due to
the difficulties posed by name variations (caused by changes
in spellings or the use of nicknames), temporal changes of at-
tribute values (like change of residence over time), spelling
and transcription errors, and the skewed frequency distribu-
tions of attribute values which is common in many (historical)
datasets.

Traditionally, historians and genealogists have worked with
birth, marriage, and death records from no more than a few
parishes [9]. They are very likely to begin with a marriage
which occurs within a parish and work forward in time through
the birth records of that parish looking for births to that set of
parents. If they see a continuing set of births, or the death of
one or the other spouse they know that the family group is still
within their parish. They will continue to observe the group
until they determine that the woman has reached her 50th
birthday, or the marriage has been brought to an end by the
death of one or the other spouse. These rules followed by de-
mographers when linking births to marriages are as described
by Wrigley and colleagues [10].

Since historians are generally interested in the most certain
links, they will want to know whether the links they made give
a measure of the number of possible alternative links within a
total population (or within a population sample), in order to
get an understanding of the quality of their linked datasets. An
example for possible alternative links would be the likelihood
that there is more than one couple with the same name combi-
nation and the same marriage date and place, having children
in the same geographical area during a similar time span (thus
resulting in possible misclassification of records). Note that
historians make use of transitive closure to infer links. That
is, if they know that records a and b represent siblings as well
as records a and c, they infer that records b and c must also
be siblings. As increasingly large datasets are being linked in
various domains, such manual linkage by domain experts is
not feasible anymore and automated computer-based linkage
methods are required.

Simple pairwise linkage methods are inadequate for group-
based record linkage tasks [5] since pairs with low pairwise sim-
ilarity in a group might never be captured (linkage quality can
suffer from poor data quality as well [1]). Therefore, in com-
puter science, graph-based clustering [11,12] approaches are
commonly applied to tackle the problem of group-based record
linkage, where a similarity graph is initially created represent-
ing records as nodes and the pairwise similarities as the weights
of the edges (a connection between two nodes representing the
two records being compared). A graph-based clustering tech-
nique applied on such a similarity graph aims to cluster the
densely connected areas of the graph (where there are many
nodes connected by edges indicating that these records belong
to the same group of individuals), whereas sparsely connected
or unconnected nodes represent individuals who do not belong
to that particular group [12].

As automated computer-based linkage techniques are now
increasingly being used across many domains [7], one crucial
question is how well do such techniques perform - i.e. how ac-
curate are the links identified by these techniques? In order to
calculate a numerical linkage accuracy measure, ground-truth
data in the form of true matches (pairs of records believed,
with a predetermined level of certainty, to refer to the same
individual) and non-matches (pairs of records believed, with a
predetermined level of certainty, to refer to different individu-
als) need to be available.

However, the evaluation of the quality of clustering ap-
proaches for group-based record linkage is not a straightfor-
ward undertaking. The reason for this is that some predicted
clusters (clusters created by a computer-based linkage) might
only be partially correct (a cluster might contain some correct
links and some wrong links). This can make the identification
of which ground-truth cluster is represented by which predicted
cluster, difficult.

As an example, when bundling birth records by the same
parents, each cluster is supposed to represent the children of
one mother and father. However, a clustering algorithm might
generate some predicted clusters that are only partially correct.
For instance, the true sibling group {a, b, c} might be split into
two clusters {a, b} and {c, d}, where birth record d by other
parents was wrongly linked to record c.

So far, most researchers working on group-based record
linkage problems have adopted the traditional classification
evaluation measures of precision and recall [1], which we de-
fine formally in the following section. Precision is calculated as
the ratio of how many of the computer-generated (predicted)
links between records are in fact true matches (i.e. seen in the
ground-truth matches), while recall is calculated as the ratio
of how many of the true matches were correctly predicted as
matches by the computer algorithm. Both these measures,
however, are based on the evaluation of links between individ-
ual records (record pairs) rather than clusters of records.

Despite the widespread use of these two measures to eval-
uate the quality of group-based record linkage results, obtain-
ing the same precision and recall values for different clustering
results does not necessarily reflect linkage outcomes of compa-
rable quality. For traditional pairwise record linkage, precision
and recall are suitable measures, assuming one is interested in
the quality of the computer-generated links between individ-
ual records [1,13]. However, for group-based record linkage
these measures do not provide detailed enough information
about the predicted clusters. Let us explain this limitation of
precision and recall with an example.

In Figure 1, we show a simple ground-truth clustering of
five entity groups (clusters) in the left-most plot, and three
different predicted clusterings in the other three plots. In this
example, we assume the five ground-truth clusters (two made
of three records and three made of two records) were cre-
ated manually by an experienced genealogist whose linkage
outcome can be seen to be correct with high confidence. The
three clusterings 1, 2 and 3, on the other hand, are the linkage
outcomes generated by three different clustering algorithms.
Each ground-truth cluster in Figure 1 is represented using a
different node colour. In each of the three predicted cluster-
ings, we can see that:
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Figure 1: Examples of different cluster predictions. Node colours represent the five true clusters, solid edges true matches (i.e.
correctly predicted links), and dotted edges show wrong matches (incorrectly predicted links).

• the number of true matches (correct links) is 6,

• the number of false matches (false links) is 4, and

• the number of missed true matches (missed links) is 3.

Therefore, all three of these very contrasting clustering re-
sults obtain the same precision, P , and recall, R, values of
P = 6/10 = 0.6 and R = 6/9 = 0.667, respectively. How-
ever, the three clusterings generated by the algorithms are
all very different from one another. Depending upon the use
of these linked data, for example in a public health or social
science research study, one or the other of these three cluster-
ings might be more useful. For example, a health researcher
who is interested in studying siblings of larger families would
likely prefer clustering 2, where two of the three clusters of
size 3 are correct (whereas for clustering 1 only one of the
three clusters of size 3 is correct, and for clustering 3 there
is a large wrong cluster of size 4). This example shows how
misleading, in the domain of group-based record linkage, the
use of link-based evaluation measures such as precision and
recall can sometimes be, and that the comparison of different
linkage methods based on precision and recall might not be
suitable.

Contribution

To address the problem of the lack of suitable linkage evalu-
ation measures for group-based record linkage, we propose a
novel method for evaluating the quality of the clusters gener-
ated in a record linkage process, which classifies records (rather
than links) according to how correctly they have been gener-
ated when compared to the ground-truth clusters. We aim
to answer the question “which linkage method has generated
clusters that are closest to those generated manually by an
expert” (or closest to the truth in the real-world if this were
available, which often is not). Since our proposed evaluation
method relies on the linkage outcome alone, it is applicable
for assessing any group-based record linkage method regard-
less of the sources being multiple datasets or a single dataset.
Furthermore, this method is also suitable for assessing record
linkage methods where the aim is to group records which be-
long to the same entity.

We acknowledge that ideally for most applications one is
only interested in obtaining true links (i.e. linkage outcomes
where both precision and recall are 1.0). However, as increas-
ingly large datasets are being linked, it is necessary to employ
automated computer-based linkage methods [1] since it is im-
possible for experts to manually link and assess millions of
record pairs. Therefore, it is crucial to identify which of a se-
lection of computer-based linkage methods produces the best
linkage outcome for a given expected use of the linked data.
The use of numerical evaluation measures is often the only
suitable method, sometimes in combination with manual as-
sessment of sampled record pairs or clusters, given time and
resource constraints to assess the validity of linkage outcomes.

To make our work accessible to researchers and practition-
ers from a variety of domains, in Table 1 we show a glossary
of the terms we use in this paper as well as the terms used
across different domains.

Methods

Assuming an automated computer-based linkage of large
datasets, our proposed clustering quality evaluation method
considers how individual records have been allocated into pre-
dicted groups/clusters (the result of a clustering algorithm),
with respect to how they appear in the ground-truth clusters.
Each ground-truth cluster contains true matching records that
were manually identified by a domain expert.

We follow a standard record linkage process [1,2], where
we assume all records are stored in one dataset and the aim
is to identify which of these records refer to the same indi-
vidual or the same group of individuals. Initially, we conduct
blocking on the dataset, such that records that are likely to
match are grouped into the same block. Blocking helps to
avoid comparing every record pair in the entire dataset, which
is computationally very expensive for larger datasets [1]. All
possible pairs within a block are then compared, where simi-
larities are calculated based on the attribute (or field) values
of these records. These attribute similarities are then aggre-
gated for each record pair and normalised into 0 to 1, where
a similarity of 1 reflects a perfect matching record pair (all
compared attribute values are the same) while a similarity of
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Table 1: Glossary of commonly used terms across disciplines. Each row shows terms describing the same concept as used by
different fields. We highlight the terms we use in this paper in bold.

Relevant terms as used by different fields

Record linkage, data linkage, data matching, entity resolution, duplicate detection, nominal record linkage
Group-based record linkage, group linkage, group record linkage, record linkage of groups, similar patient matching, linkage of
cohorts, family reconstitution1, family reconstruction2

Individual, entity
Attribute, field, variable, characteristic field, identifier
False negative, missed match, type 1 error
False positive, wrong match, false match, type 2 error, erroneous match
Prediction (of matches and non-matches), classification, processing of links

1 Using birth/baptism, death/burial, and marriage records only.
2 Using birth/baptism, death/burial, and marriages records in conjunction with other forms of nominal records.

0 reflects a complete non-match (all compared attribute val-
ues are different). We then generate a similarity graph [14]
based on these similarities, where a node represents a record
in the dataset and an edge between two nodes represents the
normalised aggregated similarity between the two records. An
edge is created only if the aggregated similarity is greater than
a user-defined minimum threshold.

We then apply a clustering technique [11,12,14] on this
similarity graph. We assume the clustering technique to be
a ‘black box’ in that we are not concerned with how the
clustering actually works. We however assume the used clus-
tering technique results in non-overlapping predicted clusters,
where each cluster is assumed to represent one single individ-
ual or group of individuals. Some of these clusters are single-
tons (contain a single record) whereas others contain several
records. The union of all predicted clusters contains all records
in the dataset.

Traditional link-based evaluation

To evaluate the quality of the predicted clusters, traditionally
precision and recall are used where these assess the correctness
of the compared record pairs [1,13]. Each record pair appear-
ing in the same predicted cluster is considered as a positive
link prediction, whereas a record pair belonging to two different
predicted clusters is considered as a negative link prediction.
The counts of true positive, false positive, true negative and
false negative are obtained with respect to how record pairs
appear in the true clusters, as shown in the error or confusion
matrix [1,13] in Table 2.

The evaluation measures of precision, P , and recall, R,
can be formally defined as follows [1], based on the link clas-
sification shown in Table 2:

• P = TP/(TP + FP ) The ratio of correctly predicted
links from all positive link predictions.

• R = TP/(TP + FN) The ratio of correctly predicted
links from all true matches.

As shown in Figure 1, precision and recall are not suitable
for evaluating group-based record linkage methods that gen-
erate clusters of records because they can produce ambiguous

results. They are based on the classification of links, but not
of records. A user who employs several automated computer-
based clustering methods and wishes to find the best such
method (or the best setting of parameters when using only
one linkage method) therefore cannot make a clear decision
based on precision and recall only.

Record-based cluster evaluation

To resolve this issue, our proposed method is based on clas-
sifying records instead of links for evaluation. Prior to record
classification, we find the predicted cluster which best rep-
resents each ground-truth cluster. Then each record from a
ground-truth cluster which appears in the corresponding best
representative predicted cluster is considered a correct classi-
fication whereas the other records are considered to be mis-
classified. Such an evaluation is complementary to precision
and recall and does not necessarily replace them. It, however,
avoids the ambiguities of precision and recall.

We now describe our proposed clustering quality evaluation
method in detail. Let us denote a dataset as D and the similar-
ity graph as G=(V, E), where V denotes the nodes (vertices)
in the graph (all records in D) and E denotes the set of edges
(the similarities calculated between records in D). Note that
the similarity graph G is created based on the pairwise links
resulting from the traditional pairwise record linkage approach.
After applying a clustering technique on G, the predicted clus-
ters contain all the records from D, where each cluster may
be a singleton (one record) or a group of two or more records.
The ground-truth clusters too may be singletons or contain
several records.

We now classify each record in the ground-truth into one
of seven categories, based on how they have been clustered by
an algorithm. The seven categories are described in Table 3.

This classification of records into seven categories based
on their clustering can also be represented in an error or con-
fusion matrix as shown in Table 4. The vertical columns show
the true status of records (if they are a singleton or part of
a cluster/group of two or more records), while the rows show
the way records are predicted (again as singletons or parts of
a group of records).
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Table 2: Confusion matrix for link classification according to ground-truth and predicted clusters.

Ground-truth

Matches Non-matches

Prediction Positive Link True Positives (TP) - Record pairs that ap-
pear in the same cluster both in the ground-
truth and in the prediction. Known as true
matches.

False Positives (FP) - Record pairs that
appear in the same cluster in the prediction
but in different clusters in the ground-truth.
Known as false matches.

Negative Link False Negatives (FN) - Record pairs that
appear in the same cluster in the ground-
truth but in different clusters in the predic-
tion. Known as false non-matches or missed
matches.

True Negatives (TN) - Record pairs that
appear in different clusters both in the
ground-truth and prediction. Known as true
non-matches.

Identifying records which belong to categories SS, SG, GS
and GG_E is straightforward. It can be accomplished by a
single scan over the set of ground-truth clusters and the set
of predicted clusters to identify all singletons in either, as well
as all exactly matching groups.

However, to identify records which belong to categories
GG_M, GG_m, and GG_W, we first require to do a map-
ping between ground-truth and predicted clusters such that
the best representative prediction for a ground-truth cluster
is identified. Subsequent to this mapping, we can identify
whether each record in the ground-truth cluster appears in
the correct predicted cluster or not. The reason for this re-
quirement is that each predicted cluster can only represent one
ground-truth cluster but not several. In the birth record clus-
tering example described in Section 1, each predicted cluster
can only represent the births by one mother and father; it is
not possible that two predicted clusters represent the same
parents.

The cluster mapping is conducted as follows. For each
ground-truth cluster gt (which is a group) with no exact
match in the prediction, we identify all predicted clusters
(p1, . . . ,pi, . . . ,pn) in which at least two of the records from
the ground-truth cluster appear. We use the threshold value
two because a predicted cluster containing just one record
from the ground-truth does not contain a single true link,
and is therefore inadequate to become the best representa-
tive cluster. For example, if gt cluster {a, b, c} was split as
{a}, {b}, {c} in the prediction, it would be incorrect to iden-
tify any one of the predicted clusters to be a representation
of {a, b, c}, because none of the true links, a-b, b-c or a-c,
is included in the prediction. Then we calculate the similarity
of gt with each predicted cluster (p1, . . . ,pi, . . . ,pn). We use
the Jaccard similarity [1] and the true link similarity for this
purpose, defined as:

• Jaccard similarity: simJacc =
|gt∩pi|
|gt∪pi|

The ratio between the records common to both the
ground-truth and predicted cluster, and the total num-
ber of records in the union of the two clusters. The
Jaccard similarity always returns a similarity between 0
and 1.

• True link similarity: simtl = |gt ∩ pi|

The number of records common to both the ground-
truth and predicted cluster. This gives a positive integer
similarity.

We use Jaccard similarity because of its capability of re-
warding the number of records in the prediction which are from
the ground-truth cluster, and penalising the records which are
missed or added to the wrong predicted cluster. In an instance
where the Jaccard similarities are equal for two cluster pairs,
we prefer to map the cluster pair with the larger number of
records first by selecting the pair with the higher true link
similarity, simtl.

Once the similarity is calculated between each ground-
truth cluster, gt, and the corresponding predicted cluster(s),
the cluster pairs are sorted in descending order of their similar-
ities. Cluster mapping is done in a greedy manner, where the
most similar clusters are mapped first. In case a ground-truth
cluster is split equally into several clusters, only one is mapped
to the ground-truth cluster. For example, if the ground-truth
cluster {a, b, c, d} is split into {a, b} and {c, d}, only one of
the two would be mapped to {a, b, c, d}. Once a ground-truth
or predicted cluster is mapped, it is removed from the simi-
larity list to ensure we obtain a one-to-one mapping where a
predicted cluster represents at most one ground-truth cluster.

This process results in finding the best representative clus-
ter pbest for each ground-truth cluster gt. However, some
of the ground-truth clusters may not have a corresponding
best match due to complete cluster splitting (each record
in the ground-truth cluster appears in a separate cluster in
the prediction) or due to an eligible predicted cluster being
mapped to a different ground-truth cluster. The greedy algo-
rithm always ensures that a ground-truth cluster is mapped
to the largest predicted cluster (cluster with most matches),
for as long as the corresponding predicted cluster is not al-
ready matched to another ground-truth cluster. For example,
a ground-truth cluster {a, b, c, d, e} with predictions {a, b, c}
and {d, e} is guaranteed to be mapped to the larger predicted
cluster {a, b, c}. However, if we have two ground-truth clus-
ters {a, b, c, d, e} and {f, g, h} with a common largest pre-
dicted cluster {a, b, c, f, g}, this predicted cluster would only
be mapped with {a, b, c, d, e} because it has higher cluster
similarity.

The best representative cluster is labelled as a majority or
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Table 3: Classification of records for evaluation measures.

Category Description

Correct singleton (SS) These are the records which appear as singletons in both the ground-truth data and the
predicted clusters.

Wrongly grouped singleton (SG) These are the records which appear as singletons in the ground-truth but were assigned
to a group of records in the prediction.

Missed group member (GS) These are the records which appear in a group in the ground-truth, but were assigned as
a singleton in the prediction.

Exact group match (GG_E) These are the records contained in a predicted cluster that exactly matches a ground-truth
cluster (i.e. each record in the predicted cluster appears in a ground-truth cluster, and
vice versa), where the size of the cluster is larger than one.

Majority group match (GG_M) A majority group match occurs when at least 50% of the records in a predicted clus-
ter (containing at least two records) come from a single ground-truth cluster. For this
classification, the best representative predicted cluster of a ground-truth cluster (which
contains at least two records from the ground-truth cluster) must be identified. For a
majority group match, all the records which appear in both the ground-truth cluster and
predicted cluster are assigned to category GG_M, while all other records are classified
either as GS or GG_W.

Minority group match (GG_m) A minority group match is similar to a majority group match, however, less than 50% of
the records in a predicted cluster come from the corresponding ground-truth cluster.

Wrongly assigned member (GG_W) These are all the records from a ground-truth cluster (containing at least two records)
which appear in a predicted cluster (a group) different to the majority or minority group
match. That is, once we find the best representative cluster for a given ground-truth
cluster, all the records which appear in a predicted cluster other than the representative
cluster are assigned to this class.

minority group match, GG_M or GG_m, based on its record
composition, as described in Table 3. Once the records belong-
ing to categories GG_M and GG_m are identified, all the
records from gt which belong to neither of these categories,
nor the GS category, are classified as GG_W (as described in
Table 3).

Example cluster evaluation

Let us illustrate our new evaluation method with an exam-
ple. We will describe our proposed method with respect to
the bundling (clustering) of sibling groups, where a cluster is
a group of children born to the same parents. A singleton
represents the only child born to parents. Each child record
in the clusters predicted by an automated linkage method is
classified into one of the seven categories as specified above.
Even though we have used sibling clusters as an example, our
proposed cluster evaluation method is applicable to any link-
age technique which identifies clusters of records representing
the same individual or group of individuals.

In the given example, there are five ground-truth clusters
and seven predicted clusters. We will describe the classification
of records with respect to each ground-truth cluster and the
corresponding predicted clusters containing the records from
the ground-truth cluster. In the following figures, correct links
are marked with a solid line, whereas wrong links are shown
with a dotted line. Furthermore, the records from the ground-

truth cluster are shown in green while records that are not
appearing in the ground-truth cluster are shown in red.

Let us consider the cluster (sibling group) containing
records {Alice,Bob,Chris,Diane,Eric} in Figure 2. Among
the predicted clusters, we initially find all the clusters where
records Alice, Bob, Chris, Diane, and Eric appear. Among
these, the ground-truth cluster X has the highest similar-
ity (simJacc = 0.4 and simtl = 2) with the predicted
cluster {Diane,Eric}. Therefore, we select {Diane,Eric}
as the best representative cluster of the sibling group X,
and classify records Diane and Eric to be majority group
matches (GG_M) since all records in the predicted cluster
{Diane,Eric} come from the ground-truth clusterX. Record
Bob is classified as a missed group member (GS) and records
Alice and Chris are classified as wrongly assigned members
(GG_W).

Let us now consider the ground-truth cluster
{Felix,Hugo, Ines} shown in Figure 3, which represents
the sibling group Y. It has the highest cluster similarity
with the predicted cluster {Hugo, Ines,Ray, Simon, T im}
(simJacc = 0.33 and simtl = 2), whereas the
similarity with cluster {Alice, Chris, Felix} is lower
(simJacc = 0.2 and simtl = 1). Therefore, the cluster
{Hugo, Ines,Ray, Simon, T im} represents the sibling group
Y in the prediction, and records Hugo and Ines are classified
to be minority group matches (GG_m) because less than
50% of records in {Hugo, Ines,Ray, Simon, T im} come
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Table 4: Confusion matrix for the seven categories described in Table 3

True Singleton True Group / Cluster

Predicted Singleton SS GS

Predicted Group/Cluster SG

GG_E
GG_M
GG_m
GG_W

Figure 2: Ground-truth cluster X.

from the ground-truth cluster Y . Record Felix is classified as
a wrongly assigned members (GG_W).

As shown in Figure 4, record John appears as a singleton
both in the ground-truth and the prediction. Therefore, this
record is classified as a correct singleton (SS).

As can be seen in Figure 5, record Karl appears as a single-
ton in the ground-truth, but it has been assigned to a group
K = {Karl,Max} in the prediction. Therefore, record Karl
is classified as a wrongly grouped singleton (SG).

Finally, as illustrated in Figure 6, the ground-truth cluster
{Paul,Ozgur} which represents the sibling group W, appears
as it is in the prediction as well. Therefore, both records Paul
and Ozgur are classified as exact group matches (GG_E).

Area under the curve

Most clustering algorithms have a variety of parameters that
can be set by users, and based on certain settings different
clusterings will be generated. One parameter common to most
clustering algorithms is the minimum similarity to consider be-
tween records such that the edge between the records is in-
cluded in the graph to be clustered [11,12,14,15]. As a result,
for different such similarities (or different other parameter set-
tings), different clustering outcomes for the seven categories
described in Table 3 will be obtained. These different out-
comes can be visualised in plots as we show in the experimental
evaluation below.

To assess the overall performance of different clustering
algorithms it is often beneficial to use a quality evaluation
measure such as the Area Under the Curve (AUC) [16] to
summarise linkage quality results over a range of parameter
settings. We used the following approach to calculate the AUC
for each of the seven categories. We plotted the normalised
proportion of records which belonged to the corresponding cat-
egory against the similarity threshold (as shown in Figure 8)
and calculated the area under the line for each plot. Since we
considered similarity thresholds ranging from 0.7 to 1.0, the
sum of AUC values across the seven categories was equal to
0.3. We therefore normalised these AUC values such that the

sum of AUC values resulted in 1.0.
For a better clustering approach, the AUC value of correct

singleton (SS), exact group match (GG_E), majority group
match (GG_M), and minority group match (GG_m) should
be higher whereas the values of the other categories should be
lower. The differences in such AUC values allow us to describe
how much better one clustering technique is over another. We
illustrate the suitability of such an AUC approach using differ-
ent group-based clustering techniques in the following section.

Results

Dataset

We conducted an experimental evaluation on a Scottish
dataset that covers the population of the Isle of Skye over the
period from 1861 to 1901 [8]. This dataset consists of 17,613
birth certificates, each containing personal details about a
baby and its parents such as their names, addresses, occu-
pations, and the birth date of the baby. This dataset has been
linked semi-manually by demographers using Microsoft Excel
and Access programmes to assist with sorting, searching, and
querying records [8], and therefore ground-truth is available for
conducting linkage quality evaluation. The ground-truth clus-
ters were validated by the demographers using census, mar-
riage, and death certificates.

Table 5 shows the number of unique and missing values
in the dataset. The frequency distribution of name attribute
values was highly skewed, meaning that few names occurred
many times in the dataset. However, the combination of
mother’s and father’s names was relatively more distinctive
compared to the other attribute combinations. Furthermore,
according to demographers, the parent’s marriage dates ap-
pearing on birth certificates are not reliable. These charac-
teristics make this dataset challenging for group-based record
linkage. Note that this dataset is only used as an example
for linkage, whereas any other dataset (where ground-truth
data are available) is applicable for our proposed evaluation
method.
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Figure 3: Ground-truth cluster Y.

Figure 4: Ground-truth singleton J .

Clustering techniques

To demonstrate our record-based cluster evaluation measure,
we applied three clustering algorithms1 (described below) on
the same pairwise similarity graph G calculated by compar-
ing birth records using three different subsets of attributes:
(1) parents’ names, their address, occupations, and marriage
dates (referred to as All in the result figures); (2) parents’
names and addresses (referred to as Names and addresses);
and (3) parents’ names only (referred to as Names only). We
used weighted (referred to as W ) and unweighted (referred to
as UW ) attribute similarities, where weights were calculated
based on the Fellegi and Sunter record linkage approach [17].
Overall we generated six different similarity graphs G. We set
the minimum similarity threshold from 0.7 to 1.0 in 0.05 steps
such that only the pairwise links with at least this normalised
similarity were included in the similarity graph G.

We incorporated temporal constraints (constraints on
record linkage as implied by time differences such as a woman
cannot give birth to two babies five months apart2) in all three
clustering approaches because previous work [14,15] has shown
such constraints can improve the overall linkage quality. The
three clustering techniques we have used are:

1. Connected component clustering considers all the pair-
wise links in graph G with a similarity greater than a
user-defined similarity threshold, and then finds the con-
nected components in the resulting graph. A connected
component is a set of nodes in G that are directly or
indirectly connected via edges. This technique has pre-
viously been used as a baseline technique to compare
more sophisticated clustering approaches [11,12].

2. Star clustering [15] first aims to find the nodes that
best represent a cluster, where these are the nodes that
have the highest average similarity to their neighbouring
nodes and also the highest number of neighbours in a
similarity graph G. Cluster centers are identified itera-
tively, such that an unassigned node becomes a cluster
center, and all its neighbours are assigned to the corre-
sponding cluster. This process can result in overlapping
clusters which are resolved by assigning a node to the

cluster where it has the highest average similarity to
other nodes in the cluster.

3. Robust graph-based clustering [14] is based on the cat-
egorisation of pairwise links according to their strength;
strong, normal and weak-high (as proposed by Saeedi et
al. [18]). Initially, connected components are created
using a subset of link strengths, which are referred to
as base clusters. Subsequently, these base clusters are
iteratively merged, where the pairwise cluster similarity
needs to be greater than a user-defined threshold.

Results for the traditional precision-recall
technique

Figure 7 shows the precision-recall (PR) curves for the three
clustering approaches, obtained with the best parameter set-
tings for the six different similarity graphs. As can be seen,
with all three approaches the best results were obtained when
only the name attribute values (unweighted) were used to gen-
erate the similarity graph G. This could be attributed to miss-
ing occupation codes, incomplete marriage dates and skew-
ness of address values as shown in Table 5. The worst linkage
quality was obtained for the connected component method,
whereas star clustering and robust graph clustering achieved
significantly better results. Between star and robust graph
clustering, the latter performed better.

Results for our proposed evaluation method

In the following, we limit our presentation of results for our
novel cluster evaluation method to only the overall best-
performing Names only (unweighted) configuration.

Figure 8 shows the plots for our novel cluster evaluation
method for the three clustering techniques. The normalised
proportions of the seven categories from Table 3 are shown
against the similarity threshold used for generating the simi-
larity graph G. As described in Section 2, for better clustering
results the values of SS, GG_E, GG_M, and GG_m should
be higher whereas the values of SG, GS, and GG_W should
be lower.

1Programs and data sets are available at: https://dmm.anu.edu.au/HISTRL/
2There are however always exceptions, see: https://www.bbc.co.uk/news/world-asia-47729118
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Figure 5: Ground-truth singleton K

Figure 6: Ground-truth cluster W .

According to Figure 8, the count of GG_M is consistently
larger than the GG_W count for both star and robust graph
clustering approaches. The connected component technique
has a much higher GG_W count for the majority of similar-
ity threshold values. Furthermore, the GG_E count is much
higher for star and robust graph clustering compared to the
connected component technique. Note that the highest value
of GG_E is obtained at the similarity threshold 0.95 for both
star and robust graph clustering, which is complementary to
the results shown in Figure 7. These results show that star and
robust graph clustering outperform the connected component
method.

Table 6 shows the area under the curve (AUC) results
for the three clustering techniques using the best-performing
Name only (unweighted) settings. The first column shows the
AUC values for the PR curves (based on the results in Figure
7) whereas the next seven columns reflect the AUC values for
our new cluster evaluation plots across the seven categories as
shown in Figure 8. The last column shows a simple averaging
of the AUC values across the seven categories where:

AUCavg =
(SS+GG_E+GG_M+GG_m)

4 − (SG+GS+GG_W )

3

This average function rewards higher AUC values for cat-
egories SS, GG_E, GG_M, and GG_m and penalises high
scores for the other three categories. The best values (highest
for PR, SS, GG_E, GG_M, GG_m, and AUCavg and low-
est for SG, GS, and GG_W) are highlighted in each of the
columns in Table 6.

As can be seen from Table 6, the best PR and AUCavg are
obtained for the robust graph clustering technique. Likewise,
the highest AUC values for GG_E and GG_m are also ob-
tained with robust graph clustering whereas the SG, GS, and
GG_W counts are minimal with that technique. The GG_M
and SS counts are highest for star clustering, whereas robust
graph clustering has a slightly lower AUC for GG_M due to
its higher count of GG_E. Therefore, the results shown in
Table 6 further confirm our previous findings that our novel
evaluation method is complementary to the PR values. Our
method also provides information which is not conveyed by
the PR-curve, while also being unambiguous. For example,
it shows that star clustering is better than robust graph clus-
tering for identifying singletons, due to the former having a
higher SS count.

Based on the linkage requirement we can use weighted av-
eraging of the seven AUC values and give a higher weight to
the category or categories we want to reward more. For in-
stance, if we are more interested in the correct identification
of singletons, we can assign a higher positive weight to SS,
higher negative weight to SG and relatively lower weights to
the other categories. Calculating AUC values for each cate-
gory is advantageous since it enables the preferential selection
of linkage algorithms by weighting.

Discussion

Interpretation of main results

Our experimental results show that while our proposed linkage
evaluation method is complementary to PR values, it also pro-
vides information that helps to select a linkage technique as
required for a certain application of linked data (such as to re-
ward identification of singletons versus groups). Furthermore,
unlike with PR values, the proposed method does not pro-
vide ambiguous results. That is, the proposed method ensures
that identical results are obtained for two different linkage ap-
proaches, if and only if they both have generated identical
cluster predictions.

Implications

Our analysis has shown that traditional record linkage eval-
uation measures such as precision and recall are inadequate
for evaluating group-based record linkage due to the ambigu-
ous results they produce. Furthermore, these traditional mea-
sures focus on evaluating the links generated in the prediction
rather than assessing the assignment of records into clusters.
Our novel group-based record linkage evaluation method re-
solves both these issues. While this is a first step towards
constructing more robust linkage evaluation methods, more
research is yet to be conducted in this area. Our work shows
the importance of assessing linkage techniques based on sev-
eral evaluation methods rather than relying on one measure.
This helps to verify decisions made regarding linkage methods
and understand for what purposes the linkage approaches are
best suited.
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Table 5: Number of unique values and records with missing attribute values for different attributes in the Isle of Skye dataset.

Attribute name Number of unique values Number and percentage of records with a missing value

Mother’s first name 97 10 (0.06%)
Mother’s last name 286 11 (0.06%)
Father’s first name 86 955 (5.42%)
Father’s last name 301 951 (5.40%)
Mother’s occupation 73 16,446 (93.37%)
Father’s occupation 790 963 (5.47%)
Address 1,286 210 (1.19%)
Parent’s marriage date 5,105 2,346 (13.32%)

Figure 7: Precision-recall curves for three clustering techniques based on six different similarity graphs as described in Section 3
with weighted (W) and unweighted (UW) attribute similarity aggregations.

Generalisability

Even though we have presented our results using an example
of sibling clustering on a single dataset, our solution is general-
isable to any group-based record linkage method. That is, this
method can be used to evaluate results produced by linkage
techniques which group records of a single or multiple entities
on single or multiple datasets. The only requirement is that
the applied linkage approach produces non-overlapping groups
of records. The reason for such generalisability is because our
proposed method is dependent only on the ground-truth clus-
ters and the predicted clusters.

Strengths and limitations

As shown in the experimental evaluation, our proposed linkage
evaluation method provides unambiguous results while provid-
ing insight into how the records themselves were classified;
not the links between records. Furthermore, we showed that
while being complementary to PR values, our novel evalua-
tion method provides flexibility in rewarding different cluster-
ing techniques as suited for the context. As with other existing
linkage evaluation methods, ours also suffers from the limita-
tion of the requirement of ground-truth data. However, our
proposed method is applicable even if the ground-truth data
is incomplete. Where partial ground-truth data is available, it
is possible to assess how accurately the records in the ground-

truth clusters were assigned in the prediction. However, care
should be taken to not tailor any ground-truth data as suited
for a specific method since that could result in overfitting [1].
Rather, any ground-truth data must reflect the true state of
the linkage (as best as possible) such that it allows unbiased
evaluation.

Conclusion

We have presented a novel cluster evaluation method for
group-based record linkage, which, unlike the traditional mea-
sures precision and recall, does provide identical results if and
only if two record linkage methods perform the same. Obtain-
ing the same precision and recall values does not guarantee
that record linkage outputs are of equal quality. In the pro-
posed evaluation method, we classify each record in a dataset
into one of seven categories to reflect how they are assigned
into the predicted clusters compared to the ground-truth clus-
ters. For comparison purposes, we propose to summarise the
values obtained for the seven categories, across different pa-
rameter settings (such as varying similarity thresholds), into
one area under the curve value per category.

We have illustrated our proposed cluster evaluation
method on three different clustering results on a real historical
dataset. This evaluation showed that the proposed method
complements precision and recall and provides more detailed
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Figure 8: Plots for new evaluation results for the three clustering techniques (Names only attribute combination).

Table 6: Table 6: Area under the curve (AUC) values for the three clustering techniques (Names only, unweighted attribute
combination) with the best value(s) highlighted in each column.

Clustering technique AUC Average AUC
for 7 categoriesPR SS GG_E GG_M GG_m SG GS GG_W

Connected components 0.744 0.036 0.206 0.077 0.01 0.087 0.017 0.567 -0.141
Star clustering 0.775 0.046 0.367 0.333 0.02 0.077 0.02 0.137 0.114
Robust graph clustering 0.885 0.044 0.413 0.298 0.027 0.077 0.017 0.124 0.123

information regarding which aspects of a clustering algorithm
is better or worse (such as whether they are more suited for
correctly predicting singletons or groups). As future work, we
aim to conduct the cluster mapping between ground-truth and
predicted clusters using an optimal matching algorithm rather
than using a greedy approach, and apply our novel evaluation
method on other datasets and clustering techniques.
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