
Designing a Computational Construction Kit
for the Blind and Visually Impaired

by

Rahul Bhargava

B.S. Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA
2000

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences
at the

Massachusetts Institute of Technology

June, 2002

@Massachusetts Institute of Technology, 2002. All Rights Reserved

Aut -Rahul Bhargava
Program in Media Arts and Sciences

May 10, 2002

I -

Certified By - Mitchel Resnick
Associate Professor, Lifelong Kindergarten Group

Thesis Advisor

J xL1
Accepted By - Andre*4 ijman

Chairperson

Departmental Committee on Graduate Studies

SACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 2 7 2002 ROTCH
LIBRARIES

MAS

Designing a Computational Construction Kit
for the Blind and Visually Impaired

by

Rahul Bhargava

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on May 10, 2002
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences
at the

Massachusetts Institute of Technology

Abstract
This thesis documents the adaptation and extension of an existing compu-
tational construction kit, and its use by a community of learners previously
unaddressed - blind and visually impaired children. This community has
an intimate relationship with the digital and assistive technologies that
they rely on for carrying out their everyday tasks, but have no tools for
designing and creating their own devices. Using a computational con-
struction kit, created around the latest Programmable Brick (the Cricket),
children can write programs to interact with the world around them using
sensors, speech synthesis, and numerous other actuators. The Cricket
system was extended with a number of specific modules, and redesigned
to better suit touch and sound-based interaction patterns. This thesis docu-
ments an initial technology implementation and presents case studies of
activities carried out with a small group of visually impaired teenagers.
These case studies serve to highlight specific domains of knowledge that
were discovered to be especially relevant for this community. Much of
this work impacts approaches, technologies, and activities for sighted
users of the Programmable Brick.

Thesis Supervisor: Mitchel Resnick
Title: Associate Professor

This work was supported in part by:
- The LEGO Company
- Media Lab Asia
- National Sciene Foundation (grant #ESI-0087813)
- Learning Lab Denmark
- Things that Think Consortium, MIT Media Lab
- Digital Life Consortium, MIT Media Lab

Designing a Computational Construction Kit
for the Blind and Visually Impaired

by

Rahul Bhargava

Thesis Committee

Thesis Advisor - Mitchel Resnick
Associate Professor, Lifelong Kindergarten Group

MIT Media Laboratory

Thesis Reader -$khtiar Mikhak
Research Scientist, Learning Webs Group

MIT Media Laboratory

Thesis Reader - Sile O'Modhrain
Principal Research Scientist, Palpable Machines Group

Media Lab Europe

Designing a Computational Construction Kit
for the Blind and Visually Impaired

by

Rahul Bhargava

Thesis Committee

Thesis Advisor - Mitchel Resnick
Associate Professor; Lifelong Kindergarten Group

MIT Media Laboratory

Thesis Reader - Bakhtiar Mikhak
Research Scientist, Learning Webs Group

MIT Media Laboratory

Thesis Reader - Sile O'Modhrain
Principal Research Scientist, Palpable Machines Group

Media Lab Europe

Acknowledgements

First and foremost, I'd like to thank my family for helping me get here.

Special thanks to Mitchel and Bakhtiar, for guiding me through this sea of big

words and powerful ideas. And to Sile, who provided the inspiration for this

work and kept me grounded in my explorations.

A huge collective thanks to Daniel, Casey, Tim, and Nell for peppering my san-

ity with appropriate amounts of insanity just when I needed it. Good times, my
friends, good times.

An additonal thanks to all the members of the Lifelong Kindergarten and Learn-

ing Webs groups, for doing all this fantastic stuff that I could build on.

Table Of Contents
Chapter 1 - Introduction 8

1.1 Computers and Learning 8
1.2 New Tools for New Explorations 9
1.3 A Programmable Brick for the Visually Impaired 10
1.4 Reading This Thesis 11

Chapter 2 - Working With the Bricket 13
2.1 Saying "Arf" 13

Chapter 3 - Theoretical Foundations 15
3.1 Theories of Learning 15

3.1.1 Constructivism and Constructionism 15
3.1.2 Authentic Experience 16
3.1.3 Learning Relationships 17

3.2 The Content and Process of Learning 18
3.2.1 Ways to Learn 19
3.2.2 Things to Learn 20

3.3 Existing Practice 22
3.3.1 Educating the Visually Impaired 22
3.3.2 Assistive Technologies 24

Chapter 4 - Technology Design 29
4.1 Software 29

4.1.1 Organizing Text 30
4.1.2 Accessibility 32
4.1.3 Sound Interaction 33
4.1.4 Platform Considerations 33

4.2 Hardware 34
4.2.1 The MetaCricket Designers Kit 35
4.2.2 Basic Functionalities 36
4.2.3 Extended Functionalities 39
4.2.4 Industrial Design 41

Chapter 5 - Activity Design 45
5.1 Session 1: Saying Hello 46
5.2 Session 2: International Bricket Standard Time 46
5.3 Session 3: Reinventing the Wheel 47
5.4 Final Projects 48

Chapter 6 - Case Studies 49
6.1 Case 1 : The Digital Cane 50

6.2 Case 2: The Tricorder
6.3 Case 3 : BricketBot

Chapter 7 - Reflections
7.1 Problems that Arose

7.1.1 Logistics
7.1.2 Software
7.1.3 Hardware and Industrial Design

7.2 Open Questions
7.2.1 Concepts and Approaches
7.2.2 New Languages for Visually Impaired Programmers

7.3 Conclusion

References
A. 1 Motor Commands
A.2 Timing Commands

Appendix A - BricketLogo Reference
A.3 Sound Commands
A.4 Sensor Commands
A.5 Control Commands
A.6 Number Commands
A.7 Multitasking Commands
A.8 Infrared Communication Commands

Appendix B - Program Code
B.1 The Electronic Cane
B.2 The Tricorder
B.3 BricketBot

53
55
58
58
59
59
61
63
63
64
65
67
69
69
69
70
71
72
72
73
73
74
75
76
77

Chapter 1 - Introduction

1.1 Computers and Learning

* Throughout the rest of
this thesis, I will adopt
the common shorthand
of using the term "visually
impaired" to refer to those
who are blind and those
who are visually impaired
to some degree. I will
clarify when needed.

In recent years, computers have become established elements of many

types of learning settings, used in different ways for various learning

activities. Unfortunately, the power of the computer as a flexible me-

dium for designing and creating has often been ignored. Tools that are

designed to let users create their own constructions empower learners to

engage computation as a creative material. The process of creating these

artifacts opens the door to a myriad of learning opportunities, many in

fields that are otherwise difficult to approach. More specifically, in the

process of creating computational objects, many of the underlying ideas

of computation itself can be explored.

The blind and visually impaired often interact with more computational

devices in learning settings, but have even fewer opportunities to cre-

ate with computation itself. The visually impaired' use tools such as

adjustable magnifiers, text scanners, and speech-synthesis devices to

access curricular materials that are otherwise inaccessible. Visually

impaired people use computers to do word processing, send email, and

surf the web, among other things. However, none of these tools take

advantage of the opportunity to engage learners in explorations of how

these computational tools can be used to create their own artifacts. The

growing reliance on "black-box" devices in learning settings can be

8 - Introduction

inherently disempowering to the learner - denying them not only of an

understanding of their functionality, but also the chance to explore the

rationale behind their design.

1.2 New Tools for New Explorations

Playing with computational construction kits can allow people to create

in new ways and engage new fields of knowledge. A computational

construction kit can be described as a set of tools or objects that allow

one to create a computational artifact. They build on the tradition of

existing children's construction kits, such as LEGO bricks and Erector

sets, by giving children a set of digital building blocks. The Program-

mable Brick is a computational construction kit that allows users to

create behaviors for their constructions in the physical world (Resnick,

1993). It can be programmed to interact with the world around it using

a wide range of sensors and actuators. These extensions, in addition to

the "brain" that is the Brick itself, are the components of the kit. The

Programmable Brick has been developed and iterated upon for the past

15 years in the MIT Media Lab's Epistemology and Learning Group

(http://el.www.media.mit.edu/).

Creating a computational construction kit is "a type of meta-design: it

involves the design of new tools and activities to support students in

their own design activities" (Resnick, et al. 1996). Giving learners the

tools to create and build their own computational artifacts opens the

door to exploring new ideas.

In order to address some of the issues presented, I have created a Pro-

grammable Brick for the visually impaired, called the Bricket. This

thesis documents the hardware and software interfaces redesigned to

meet the learning needs of the visually impaired. I developed a series

of activities that use the Bricket to explore a set of approaches to learn-

ing and specific skills to learn.. These activities were conducted with a

group of three visually impaired children, all in their early teens.

A user interacts with a Programmable Brick by creating a software pro-

gram on a host unit, usually a desktop computer, and then downloading

it to the Brick's memory. The Brick can then run the program to inter-

Introduction - 9

Figure 1.1 : The LEGO
RCX brick.

Figure 1.2 -The MIT
Cricket.

Figure 1.3 - The Bricket.

* Sile O'Modhrain is cur-
rently a Principal Research
Scientist and head of the
Palpable Machines Group
at Media Lab Europe.

act with the world around it. An older Programmable Brick evolved

into the commercially available LEGO Mindstorms product (figure 1.1),

based around the RCX (also referred to as the "yellow brick"). The

latest Programmable Brick is known as the Cricket (figure 1.2). The

Bricket (figure 1.3), created for this thesis, is an adapted version of the

Cricket. Users create programs for the Bricket on a Windows PC run-

ning an application called BricketLogo. This application implements a

small scripting version of the LOGO programming language.

1.3 A Programmable Brick for the Visually Impaired

The Bricket was created to bring these technologies and activities to

the visually impaired community. The inspiration for this project came

from Sile O'Modhrain, while she was at the MIT Media Lab as a visit-

ing researcher'. Sile is visually impaired, and conversations with her

led to the idea that this could be an interesting community to work with.

There were a multitude of reasons that the visually impaired community

was an appropriate one to work with. Technologically, the basic sensors

of the Programmable Brick, used with various actuators, are well suited

to representing specific components of visual feedback. Simple resis-

tive light sensors and optical distance sensors can replace things such

as light and distance, which are usually sensed through vision. These

basic sensors are also well suited to the limited processing power of

the Programmable Bricks. From a theoretical point of view, working

with this community presents an opportunity to take the research of the

Epistemology and Learning group in a new direction. Addressing the

learning needs and learning styles of the visually impaired led to reflec-

tions about the foundational frameworks we use in our research.

Many methodologies have been created to guide designing for disabled

communities, but most share a core high-level of interaction with the

community. Believing that to be a key ingredient to successful designs,

I engaged two members of the visually impaired community to aid and

guide me. The first was Sile O'Modhrain. The second was Rich Calag-

gero, a visually impaired programmer who works in the MIT assistive

technologies office (ATIC). I held weekly consultations with both to get

10 - Introduction

immediate feedback on design decisions.

1.4 Reading This Thesis

This document is organized into seven chapter..

Chapter 1 - Introduction

This chapter presents a summary of this research project and a
rationale for this investigation.

Chapter 2 - Working with the Bricket

This chapter tells the story of one device a participant in the
study created, in order to provide a grounding for the discussion
that follows.

Chapter 3 - Theoretical Foundations

This chapter presents my own interpretations of the theoretical
foundations for this study, as well as related research.

Chapter 4 - Technology Design

This chapter discusses how the theories manifested themselves
in the objects created for this thesis. It presents extended
descriptions of the technology created and a rationale for the
design decisions that were made.

Chapter 5 - Activity Design

This chapter explains the activities I planned to do with the
participants of my study. It provides an in-depth description of
the study carried out.

Chapter 6 - Case Studies

This chapter presents three case studies of participants and the
objects they created. The projects are compared to the metrics
established earlier through quotes and descriptions of objects
created.

Chapter 7 - Reflections

This chapter wraps up with further discussion of lessons learned

from the study and interesting questions that arose.

I have laid out this document to facilitate an agreeable reading experi-

Introduction - 11

ence. While main text flows down the inside of either page, the margins

provide space for related notes. A variety of symbols (, *, or A) denote

that the reader should look to the margins for further information on

some topic. Some tables and figures appear in the margins, while others

appear in-line with the body text. Figure labels appear in the margins.

This document is meant to be printed two-sided, and to be read as a

book would.

12 - Introduction

Chapter 2 - Working With the Bricket

In order to give the reader a better idea of what one can create with the

Bricket, it is necessary to provide an example. What follows is a brief

summary of the process of creating a simple computational artifact

with the Bricket. This short story describes what I did with one of the

participants of my small study in our first session together.

Users create a program for the Bricket with an application called

BricketLogo, which runs on a Windows desktop PC (figure 2.1). Acces-

sibility is built in for the visually impaired via screen reading software,

which reads out text as users type, in addition to speaking out interface

items. To transfer the program to the Bricket, the code is downloaded

to an Interface that is attached to a serial port of the desktop PC. The

Interface transfers the program to the Bricket through infrared commu-

nication (much like a TV remote control). The Bricket can then run the

user's program.

2.1 Saying "Arf"

In order to introduce Jim to the Bricket, I began by showing him how

to use its speech synthesis capabilities. Speech is the Bricket's primary

mode of output and I assumed it would become critical for the rest of

our constructions.

Desktop PC

*I

Serial Port

Interface

Infrared

Bricket

Figure 2.1 - Creating and
downloading a program to
the Bricket.

Working With the Bricket - 13

Figure 2.2 - The Bricket's
infrared components lie
beneath the rounded
translucent shielding.

Figure 2.3 -A touch sensor.

Figure 2.4 - The Bricket's
headphone plug.

Using the BricketLogo application to write a program for the Bricket,
Jim and I began to make simple programs that would have the Bricket

respond to a touch switch. Since Jim liked dogs, I suggested having the
Bricket say "arf" when a touch switch was depressed (hoping it would

sound like a dog barking). This involved a simple program, created in a

variant of the LOGO programming language, such as:
when [switcha] [say "arf]

This established an interrupt when executed. This means that whenever

the touch sensor plugged into sensor port A is depressed, the Bricket

says the string "arf". Jim was able to create this program by using a
regular keyboard and a piece of screen reading software.

To transfer this program to the Bricket, we first lined up the Bricket's

infrared window with the interface, which was attached to the serial port
of the computer. Jim did this by finding the two rounded protrusions on

the Bricket's case (figure 2.2), and similar ones on the interface - these

indicated where the infrared signals were being emitted (and thus had to
be pointed at each other). By selecting "Download" from the "Bricket"

menu, we compiled and downloaded our simple program to the Bricket

over infrared. The Bricket saves it to memory, so that it remains even

if the battery is removed. This downloading process took only a few

seconds. The BricketLogo application spoke "download complete" to

indicate a successful download.

While the program was ready to use, we had yet to plug in the compo-
nents it expected. Jim located a touch switch (figure 2.3), and by tracing
its wires with his fingers, he was able to plug it into one of the sensor
ports. It locked with a simple snap mechanism, so Jim knew it would
not be pulled out by accident. By tactily following the bumps on the
Bricket case around to the headphone port (figure 2.4), Jim was able to
attach his headphone plug.

With the program loaded and the various components connected, we
were ready to test our simple program. Jim pressed the touch sensor and
it said "arf". This creation took only a few minutes to make.

14 - Working With the Bricket

Chapter 3 - Theoretical Foundations

3.1 Theories of Learning

In this thesis I draw on a wide variety of approaches to learning. These

theories have guided me in my study plan, technology development, and

evaluation. Thus it is necessary to give a snapshot of my own interpre-

tation of the core ideas proposed by the epistemologists, philosophers,

and educators I build upon.

3.1.1 Constructivism and Constructionism

Crafted by Jean Piaget, constructivism is a theory of a child's psy-

chological development proposing primarily that children are active

constructors of their own knowledge and understanding (Piaget, 1963).

Piaget revised previous opinions of children's understandings, which

labeled them as "incorrect", to instead demonstrate that children de-

velop their own theories and rationales, and that these are internally

consistent. In fact, he saw that process of creating and revising theories

of understanding as the learning process. His epistemology, his theory

of knowledge, therefore brought a legitimacy to the world of children

that forms a basis for much of what gets talked about in the field of

education today.

Seymour Papert, who worked with Piaget, built on Piaget's approach

to propose a philosophy towards learning called "constructionism."

Theoretical Foundations - 15

Constructionism values the act of creating and reflecting on artifacts as

a learning process (Papert, 1994). The artifacts people create are seen as

the embodiment of their understanding of concepts and ideas. Putting

these understandings in the physical world allows for an opportunity to

reflect and discuss them with peers. Papert also argues against Paiget's

emphasis on abstract scientific thought as the goal of learning. This, for

him, ignores the value of contextualized, concrete knowledge.

As with this thesis, other studies with the Programmable Bricks were

driven by the desire to enable learners to create their own computational

devices. The decision to empower learners with a tool to build with,

rather than simply providing them with some kind of finished product,
is at its base a constructionist approach.

3.1.2 Authentic Experience

The idea of "authentic experience" provides a rationale for the contexts

in which I worked with learners. The term has been used by many to

describe their work, but at its core lie three central ideas. One of these

is John Dewey's notion of "continuity of experience" - the idea that

what is learned should be valuable to the learner's current line of inter-

est or inquiry (Dewey, 1938). Another base is Donald Sch6n's criticism

of the laboratory environment as a dishonest setting for learners (Sch6n,
1987). Sch6n proposes that laboratories attempting to mimic real-world

situations introduce false notions of "right answers", rather than focus-

ing on methods of reasoning. Common threads can also be found in

descriptions of "situated learning" (Lave and Wenger, 1991). Situated

learning suggests that learners build understanding through concrete
experiences in situations. While specific metrics and classifications of
"authenticity" may vary, these basic guiding principles are common.

I have taken these foundations as the basis for many of my decisions
about the technologies and activities developed for this thesis. My own
interpretation of authenticity implies a number of things. For one, I
respect the world of the learner. I take "real-world" to imply the world
of the learner, and thus attempt to situate all their experiences. I also be-
lieve that the concrete experiences I design lead to growing understand-

16 - Theoretical Foundations

ings of their underlying ideas. These situated experiences make the

ideas authentic, rather than abstract notions introduced in some foreign

setting. I have designed my activities to be driven by the children's

interests, which I believe makes them inherently authentic. In addi-

tion, the themes of all my sessions were built around creating objects

that they could use to perform some fun or necessary task. Rather than

thinking about their visual impairment as a hindrance to doing these

activities, I saw it as an opportunity to make the activities more relevant

and motivating. I have also attempted to maintain an honest attitude

when working with the learners - being clear about what metrics I

designed for and what my goals were.

3.1.3 Learning Relationships

Many of our culture's most popular technologies have been so widely

adopted that they have become practically invisible. Automobiles, tele-

phones, and radios are just a few. They are the "black boxes" so often

mentioned - technologies that work, but provide no means to under-

stand or relate to how they work (Resnick, et.al. 2000). When used in

learning contexts, these black boxes can be inherently disempowering to

the learner, leading them to often assume that they could not understand

them even if they tried to.

Technologies that address this problem, ones which can be tinkered,

tweaked, and played with to discover how they work, allow for what

I call "learning relationships" to develop. Understanding how a tool

works, and being given the power to alter how its mechanisms perform

some task, can fundamentally change how one relates to it. Learning

environments can, in part, be defined by the quality of learning relation-

ships cultivated by the tools that populate them. Just as there are dif-

ferent levels of knowing and understanding, there are different levels of

learning relationships that can develop. Computational tools, in particu-

lar, can allow for powerful learning relationships to be developed if the

tools take advantage of computation's high level of "tinkerability".

In the visually impaired community, most assistive technologies do not

cultivate learning relationships with their users. This is not to invalidate

Theoretical Foundations - 17

the critical role assistive technologies serve, but rather to provoke an

exploration of how reliance on these tools is addressed in learning en-

vironments. A computer, when being used to access information that is

otherwise inaccessible, should act like an assistive technology. Using a

speech synthesizer to have a book read aloud to a visually impaired user

should not be a cumbersome task. However, in a learning environment,

there should be some way to explore their functionality further.

3.2 The Content and Process of Learning

My main goal is to push forward the development of learning approach-

es, activities, and technologies by bringing them to a new community.

Examining how this community engages the tools I introduce brings

useful reflections to the larger goal of the work around Programmable

Bricks. This work also allows for an opportunity to engage in a discus-

sion of the growing role technologies play in learning settings.

I am guided by the desire to give a community another tool to create

and express with. Tools like the hammer can be thought of in two ways.

The first is to consider the utilitarian functionality of being able to nail

two pieces of wood together to create a longer piece - a functional need.

The second might be nailing pieces of wood together simply to see what

shape appears - a creative exercise. I find this approach apt for the tool

I am introducing to this community. The Bricket can be used to build

something like a distance-sensing cane - a functional need. However,

the Bricket can also be used to make a musical clock - a creative ex-

ercise. Obviously these two areas overlap, in that a musical clock also

fulfills the functional need of telling the time, but the role of the tool is

multi-faceted.

More specifically, I have a set of ideas and skills I want to introduce to

the learners I work with. These can be roughly divided into two catego-

ries - approaches to learning, and things to learn. However, this distinc-

tion is not to say that I ascribe to the traditional "know how" vs. "know

what" paradigm of schooling. Building on the pedagogy best expressed

by those who write about "situated learning", I don't view learning what

something is and learning how something can be used as distinct enti-

18 - Theoretical Foundations

ties (Brown, 1989). In fact, they coexist and should thus be explored

together. One often best learns the "how" by doing the "what".

3.2.1 Ways to Learn

Beyond guiding my own approach to this work, the theories of learning

I introduced earlier are also concepts I would like the learners to ex-

plore. These meta-level approaches to learning are important reflections

about the process I went through with the participants of my study. By

creating their own computational devices, I wanted the study partici-

pants to become reflective about the designs of the devices around them.

By introducing the Bricket in the home environment, I sought to provide

an example of how to develop a learning relationship with a technology.

By empowering visually impaired children to create their own assistive

devices, I hoped to give them a chance to open the black boxes that

are the technologies they might use in a school-based learning setting

everyday.

Reflection and Critique

Drawing on the traditions of design education, I wanted to encour-

age participants to become reflective about the designs of the objects

around them. Because they are visually impaired, the learners I worked

with were more attuned to the tactile and auditory aspects of these

tools. This offered an opportunity to harness a reality of their daily life,

around which I designed contextualized learning experiences. Here I

draw from Sch6n's "reflection-in-action" approach to design education

(Schbn, 1987).

While constructing their own assistive devices, participants were not

only exploring technical skills, but were also building critical analysis

abilities. When recreating an object from basic building blocks, ques-

tions about their construction are raised. Why was one method chosen

over another? Why wasn't some other technology incorporated? Why

was one interaction pattern deemed more efficient or intuitive? These

questions provide opportunities to engage in reflective discussions that

build critiquing skills.

Theoretical Foundations - 19

Iterative Design

* Please refer to the discus-
sion of the BricketLogo
application in section 4.1

An iterative design process is inherent to building with the Program-

mable Brick (Martin, et.al 2000). One mode of programming the

Programmable Brick is specifically designed to be iterative in nature'.

This "try it out" attitude exemplifies one of the critical components of a

constructionist approach - the idea that one makes something, reflects

on it, and then remakes it, over and over.

The medium of computation provides magnificent opportunities for

iterative design because of its highly flexible nature. Novice users can

make quick iterations because software makes it easy to change the con-

trol of a computational device. Specifically with Programmable Bricks,

the entire functionality of the object can be changed quite simply. These

new technologies are allowing learners to explore iterative design in a

way that was never before possible.

3.2.2 Things to Learn

In addition to approaches to learning, I emphasized a number of specific

skills to learn. The skills I focus on here are the fundamentals of build-

ing these types of devices. The crucial part about the Programmable

Brick is that it can be used to create objects that were never before pos-

sible. Thus they can open up the doors to multitudes of potential new

learning experiences. I choose to structure around three main topics,

and design activities that let the learners explore them. As my study

progressed, these ideas focused onto programming, sensing and control,

and representation.

Programming

In mechanics, the physical shapes of the objects one puts together let

one create behaviors. With computation, programming is the method

of accomplishing the same task. By introducing the children to pro-

gramming I hope to introduce them to the world of creating with

computational artifacts. Programming, by its very nature, leads to

process-oriented ways of thinking. Manipulating variables explores

ideas of how numbers can be played with, in a mathematical sense. For

20 - Theoretical Foundations

this population, that is particularly powerful because of the permutations

that can be made on digital information to represent it in an accessible

and meaningful manner. In addition to introducing ways of thinking,

programming is also a skill that can become valuable later on. If learn-

ers wanted to move forward in pursuing programming as an interest,

communities exist to support them*.

Sensing and Control

Working with sensors gives learners an opportunity to engage in dis-

cussions of their own senses. Visually impaired people come to rely

on their tactile and auditory senses more, leading me to presume that

activities around sensing would generate interest in visually impaired

learners. Letting learners create objects with electronic sensors leads

to thinking about how their own bodies interact with the world around

them.

In addition to providing a means to discuss our own senses, working

with sensors requires knowledge of traditional mathematical operations.

Techniques for averaging and thresholding are necessary for dealing

with almost all sensors. Following the pedagogy I laid out earlier, these

skills were encountered while "doing" - in real situations, rather than

constructed or artificial settings. These methods drew on the relevant

areas of robotics, control theory, and digital signal processing*. This

was all contextualized within the goal of making devices that were

personally meaningful to the creator.

Representation

One of the primary issues of handling digital information, handling bits,

is how to represent them. For the visually impaired community, this

becomes an even more important issue because while there is a large

of amount of visual data to be gathered, there is one less channel avail-

able to represent that back to the user. Mapping senses between output

modalities brings up issues of what the actual information being rep-

resented is. These issues can lead to interesting discussions about the

nature of the information gathered, or how the sensor works, or why one

representation might be more intuitive than another.

* Please refer to the later
discussion of adult progam-
mers who are visually
impaired for more detail, in
section 3.3.2.

* Please refer to the case
studies in Chapter 6 for
concrete examples.

Theoretical Foundations - 21

Take, for instance, the idea of a device for the visually impaired that

is able to detect when an obstacle is in front of its user. One mapping

might output a beep that corresponded in pitch to the distance detected.

However, questions of whether the pitch moves up or down when an ob-

ject is closer seem to have no intuitive answer. A more suitable mapping

might be to output a verbal "watch out" message. This builds on the

experience of having a friend guide a visually impaired person around

by the arm, verbally warning them when something is in their path.

Alternate representations such as these can be explored and perfected

through an iterative design process.

Many studies have explored the idea of representation of scientific data.

In particular, some creations that were part of the Programmable Brick

based Beyond Black Boxes project explored alternate representations

for information (Resnick, et.al. 2000). Another activity, the Sensory

Design Workshop, explored the idea of making sensors and representa-

tions more closely'. Building on this work, I will demonstrate that these

questions are crucial to the visually impaired community.

3.3 Existing Practice

'The Sensory Design
Workshop was organized
and run by Bakhtiar
Mikhak, Research Scientist
and head of the MIT Media
Lab's Learning Webs
group.

Although I made the conscious decision to work outside of a school

setting, the practice and approaches towards schooling the visually im-

paired informed me and provide a background context in which to place

my activities. Having no experience working with the blind, I found it

necessary to explore the existing practice and discuss approaches with

current practitioners.

3.3.1 Educating the Visually Impaired

The current prevailing trend is to integrate visually impaired children

into public school systems. The reasons for segregation are primarily

historical. The visually impaired used to be limited to vocational train-

ing in areas such as furniture making, basket-weaving, or piano tuning

(as described by Fries, 1980). This has shifted for a number of reasons.

In the United States, governmental regulatory policies have required

schools to provide accessible versions of curricular materials. This

22 - Theoretical Foundations

has allowed the visually impaired to gain access to many of the same

resources as their peers (exemplified recently by the Individuals with

Disabilities Education Act). Additionally, many technologies have been

created that make it easier for the visually impaired to interact with cur-

ricular materials. With accessible resources in place, visually impaired

students are able to enter standard public schools and perform as their

sighted peers. While many special schools for the visually impaired

do exist, they usually focus on offering services for those with multiple

disabilities.

However, those who integrate into standard school settings encounter

many other difficulties. These students usually are engaged in after-

school activities to learn Braille reading and mobility skills. The visu-

ally impaired students must also learn how to find fellow students who

are willing to read them any texts that cannot be found in an accessible

format (a problem that gets more critical as they move to university

settings and specialized fields of interest). Efforts must be made to

make other students more aware of the visually impaired student's needs

(Krebs, 2000). These extra efforts consume considerable amounts of

time and effort from the students and their families, often causing hard-

ships. However, visually impaired students have been shown to be able

to move through school-sanctioned curricula at the same rate as their

sighted peers*.

Universal Design for Learning

The approach of Universal Design for Learning (UDL), proposed by the

Center for Applied Special Technology (CAST), in part seeks to address

the problems of handicapped students in schools. Speaking to curricu-

lum designers and their goals, UDL proposes the following main points

(from http://www.cast.org):

1) UDL proposes that children with disabilities do not constitute

a separate category but instead fall along a continuum of

learner differences.

2) UDL leads us to make adjustments for learner differences in

all students, not just those with disabilities.

3) UDL promotes the development and use of curriculum

* Further discussion of
these issues can be found
in (Holbrook and Koenig,
2000).

Theoretical Foundations - 23

materials that are varied and diverse, including digital and

online resources, rather than centering instruction on a single

textbook.

4) UDL transforms the old paradigm of "fixing" students, so that

they can manage a set curriculum, into a new paradigm that

"fixes" the curriculum by making it flexible and adjustable.

Much of the UDL philosophy resonates with the theoretical foundations

presented earlier. Like CAST, I find it is crucial to make a concrete

differentiation between tools that allow the visually impaired to access

information and tools that the visually impaired can learn with (Rose

and Meyer, 2000). I also agree that each learner is an individual, with

unique learning styles, needs, and interests (as indicated by the second

directive listed above). I have attempted to design the Bricket technol-

ogy to fit the learning needs of the visually impaired, and my activities

to allow learners to follow their interests with their own styles.

However, I am not presenting an argument aimed at curriculum design-

ers, as UDL does. I have laid out a set of ideas to explore in this initial

activity, and have guided a set of learners through that space. Their own

interests and excitement have determined which ideas they have focused

on, rather than any set of specific curricular goals I developed. My

goal is to provide a new community with interesting entry points to the

approaches to learning and skills to learn discussed earlier.

3.3.2 Assistive Technologies

There exist a wide variety of assistive technologies to make various

everyday tasks accessible to the visually impaired. I define an assistive

technology as any device that allows a disabled person to accomplish

some goal or perform some task that is otherwise unattainable. These

include things such as:

- an audible battery tester (manufactured by Ann Morris Enter-

prises - http://www.annmorris.com/)

e a talking thermometer (available from EnableLink - http://

easycarts.net/ecarts/Enablelink/)

While these technologies are necessary in learning environments to

24 - Theoretical Foundations

access materials such as textbooks or handouts, building a reliance

on them without any understanding of their inner functioning can be

inherently disempowering for learners.

Computers and the Visually Impaired

Historically, the visually impaired were able to access computers due

to the raw-text based nature of their displays. The command line was

highly accessible through the use of text-to-speech output, early at-

tempts making even the first personal computers accessible (Vincent,

1982). However, the advent and subsequent proliferation of the Graphi-

cal User Interface (GUI) pushed more and more information into visual

representations, shutting the visually impaired out. This focus on visual

representation has moved to the web, where much information is still

unavailable to the visually impaired (even with the Lynx text-only

browser).

However, a visually impaired person entering the world of computers

is presented with a wide variety of options. One path is to engage a

command-line based operating system, most likely Linux. This option

is appealing due to the simplicity of interacting with text-based display

systems. Another path is to use the popular Microsoft Windows operat-

ing system. The GUI can be made accessible through the use of third-

party software, and a vast majority of users are familiar with it'. Since

speech output alone is sometimes inappropriate, many users also pur-

chase a Braille printer, or a Braille display. Braille printers can emboss

standard rolls of paper with special Braille fonts. Braille displays have

one or two lines of actuated Braille dots, so any letter can be represented

along the line. These lines change as the user moves through a body of

text. However, more specialized products such as Braille note-takers

are custom built for this population and are thus often more suitable.

These note-takers fit somewhere between the worlds of computers and

personal digital assistants (PDAs). They usually include a small Braille

display. While some even run Windows CE, they are primarily meant

as note-takers and communications device, rather than a full-fledged PC.

However, for many users (visually impaired or not), these functionalities

suffice.

* Unfortunately, the options
for using an Apple Ma-
cintosh are quite sparse.
However, the next version
of the OS X operating
system will include both
a screen magnifier and a
screen reader.

Theoretical Foundations - 25

Accessing a GUI

Several assistive technologies exist that provide the visually impaired

access to GUI-based computers. For those with limited vision, often a

screen magnifier will suffice for them to interact with a computer. As

the name suggests, these tools magnify the screen to make all the ele-

ments appear bigger. The user can control the scale of magnification,

but otherwise the interaction is the same as a sighted user.

The primary mode of interaction for those who are severely visually

impaired is a screen reader. These use speech-synthesis technology

to speak the information on the screen. Common tasks such as mouse

movement are tied to various keys on the keyboard (usually the numeric

keypad). Intelligence is built into the screen reader that allows the key-

pad-mouse to move from button to button, so as not to force the visually

impaired user to navigate over the confusing "empty" space between

active GUI items they can interact with. These types of screen readers

begin running at boot-time, existing between the operating system and

any applications running.

The movement to build in accessibility to operating systems has been

gaining momentum recently, across many platforms. The two main

screen-readers for Microsoft Windows, JAWS and Window-Eyes, are

both tightly integrated into the Microsoft Foundation Classes (MFC).

The Java standard library of interface widgets, known as Swing, has
been similarly tied to JAWS for Windows. On the Linux side, GNOME

2.0 will have similar built-in hooks for screen readers such as Gnoperni-

cus and Speakup. SuSE (a distribution of Linux), in fact, already ships

with support for SuSE Blinux - a screen-reader that also works with

Braille output devices. For web content, the latest version of Macrome-

dia's Flash authoring environment includes accessibility features. We

are almost to the point where OS-level accessibility hooks become an

assumption. Companies that wish to enter the US government market

have driven much of this development, due to the fact that all US gov-

ernment software must adhere to strict accessibility standards. Unfor-

tunately, those outside the US often cannot utilize these technologies

because they are developed for the English language.

26 - Theoretical Foundations

Outgrowths from the field of Human-Computer Interaction (HCI)

have also engaged the issue of how visually impaired users interact

with computers. The two most relevant to my work are the "earcon"

and the "auditory icon", both of which strive to use non-speech audio

to represent interactions with a computer. An earcon is a non-verbal

audio message to the user about some kind of object on the computer

(Blattner, et al., 1989). An example might be a sequence of tones,

increasing in pitch, that play when a user selects the Open command in

an application. Earcons must be learned over time, as they are usually

abstract series of notes or tones. An auditory icon, on the other hand, at-

tempts to use a natural or everyday sound to allow the user to intuitively

discern its meanings (Gaver, 1986). In the same situation, that of a user

selecting the Open command, an auditory icon might be a recording of a

file drawer opening. Both of these ideas provide another aid to visually

impaired computer users and influenced my thoughts on how to make

my application accessible.

How the Visually Impaired Program

The access computers give to the visually impaired, and the powerful

manipulations that programming allows for, have led to the develop-

ment of an active online community of visually impaired programmers.

The largest group is simply known as the "Blind Programming Site"

(http://www.blindprogramming.com/). They provide speech-friendly

tutorials, documentation, and tools. They also run an online discussion

group called "blindprogramming" (http://groups.yahoo.com/group/

blindprogramming/). This group is quite active, with over 400 mem-

bers, and receives around 10 to 15 messages each day. The topics are

usually questions about accessibility features of certain development

environments, or general questions asking for programming assistance.

Their needs have led to the creation of various accessible development

environments. The most comprehensive of these is Emacspeak, a set

of extensions to the classic Emacs editing application for Unix (http://

www.cs.cornell.edu/Info/People/raman/emacspeak/emacspeak.html).

Emacspeak is open-source, and runs on various versions of the Linux

operating system. It has been designed to let a visually impaired user

Theoretical Foundations - 27

access everything from their desktop to the web. Beyond this, various

editors and applications have reputations as being more speech-friendly

than others.

The most targeted effort has come in the form of JavaSpeak, an

Integrated Development Environment (IDE) from Winona State

University's Computer Science Curriculum Accessibility Program

(http://cs.winona.edu/csmap/javaspeak.html). JavaSpeak is a program-

ming tool built to help undergraduate students learn how to program in

Java, and to aid in their understanding of the ideas of computer science.

Taking advantage of the fact that program code is highly structured,

even though it is voluminous and hard to navigate, JavaSpeak allows

users to browse multiple levels of representation (Smith, et al., 2000).

They are currently in user testing with three visually impaired students

in the Winona State University undergraduate computer science pro-

gram (Francioni and Smith, 2002). The JavaSpeak tool provides a good

number of ideas for making programming environments to support

visually impaired learners.

These trends bode well for the visually impaired programmer. More

and more research is pushing into the area of empowering the disabled

to engage the world of programming. Similarly, a vast amount of

corporate and volunteer effort is being made to tie in accessibility at the

lower level of an operating system's foundation and GUI widgets.

28 - Technology Design

Chapter 4 - Technology Design

The design of this computational construction kit was carried out with

the help of a small group of visually impaired adults. Many methodolo-

gies exist for participatory design scenarios (Reich, et al. 1996), but

all share the core of consulting with the community early and often*.

These formed the basis of the simple rules I followed in my design pro-

cess. Weekly meetings were used to solicit feedback on hardware and

software prototypes, and to ground my own biased assumptions about

the needs and preferences of the visually impaired community. This

chapter presents a discussion of the rationale and implementation of the

software and hardware created for this thesis.

The Bricket kit has two main technology components - the BricketLogo

programming application, and the Bricket hardware. When a user

downloads their code to the Bricket, it is first passed through a compiler,

where it is converted into a byte-code format. The BricketLogo appli-

cation then sends the bytes to the Bricket over infrared via an interface

plugged into the computer's serial port. The Bricket then writes this

program to its off-processor memory. When told to execute the pro-

gram, a small interpreter on the Bricket steps through the instructions

saved from the last download.

4.1 Software

0 A brief history can be
found at "Participatory
Design History" <http://
www.cpsr.org/conferences/
pdc98/history.html>.

Technology Design - 29

600 Creating a progranmming interface for the visually impaired requires

p minking the common practice of programing. As the reliance on

visual metaphors for computer interaction has grown, so has the visual

focus of programming tools and approaches. The tools are becoming

more and more complex to manipulate, for even the sighted. Unfortu-

nately, support structures for the visually impaired programmer have

been largely ignored.

Figure 4.1 - LogoBlocks The Cricket can be programmed from the host unit in a variety of
allows users to create
programs by dragging ways. As mentioned earlier, one can use a small text language based
visual blocks on a computer on LOGO, known as CricketLogo. CricketLogo is a small procedural
screen.

scripting language, supporting standard features such as variables,

procedure arguments and return values, control structures, in-code

comments, and other commands to control its input and output capa-

bilities. The Bricket uses an extended version of this language, called

BricketLogo*. Another programming environment, called LogoBlocks,

is provided for novice programmers. LogoBlocks is a visual language,

where commands are blocks on the screen that snap together to create a

program (figure 4.1). The decisions made to create these programming

environments informed my own implementation of the BricketLogo

application.

The BricketLogo application has three main interface areas (figure 4.2).

The first area introduced is the Command Center. A user can type of

single line of code here, press enter, and have it immediately run on the

Bricket. This area is meant for highly interative testing of ideas. The

larger text area is for editing Commands that get downloaded to the
Figure 4.2 - The Bricket-
Logo interface. Bricket. The third and smallest area, the Variables field, is a single line

for defining a space-separated list of global variables.

4.1.1 Organizing Text

* Please refer to the appen-
dix for a complete refer-
ence to the BricketLogo
language.

30 - Technology Design

The visually impaired find large bodies of text difficult to navigate.

However, while computer programs are often large blocks of text, they

are highly structured with a known grammar. Taking advantage of this

fact can make code more easily manageabl. If a visually impaired user

is presented with options to navigate through code by method names, for

instance, they can more quickly get to the one they wish to edit. This

effectively replaces indentation as an aid to visual scanning. Smith, et al

(2000) proposes a distinction between "syntactic structure" and "organi-

zational structure" for their JavaSpeak application. They view syntactic

structure as the inherent grammar of the programming language, while

organizational structure is the manner in which a programmer breaks up

the code to aid in their own comprehension and planning. My incli-

nation was that organizational structures could be suggested that are

friendlier to a visually impaired programmer.

However, many qualities differentiate BricketLogo from larger program-

ming languages. Most notably, BricketLogo is a scripting language

with a small command set. This allows for completeness in describing

the language to users, rather than limiting exposure to relevant parts.

Also, the size of programs created by users is limited to about 2kB of

memory, and even that is much more than the usual page or two of code

needed to build a complex project.

With these qualities in mind, I enforced certain types of organization

to aid a visually impaired user in learning the BricketLogo language

and editing their code. These build on some inherent features of the

language, such as its small size and limited syntax, that make it easier

to learn. The syntactic organizational rules are fairly small, leaving

out things such as end-of-line markers, that can be cumbersome for the

visually impaired. I decided to alter the notion of creating procedures

and see how this new community of programmers reacted to it. Instead

of editing one large text window, with multiple procedures making up

a program, I used a model of teaching the Bricket new procedures one

at a time. This builds on the tradition of teaching a LOGO turtle new

words, a metaphor used in the early days of LOGO with an on-screen,

or robotic, turtle. In BricketLogo, a user is only allowed to edit one

procedure at a time, but is able to switch procedures via a menu, or

utilize keyboard shortcuts (figure 4.3). My hypothesis was that this

would aid users in creating and editing programs. I also decided to refer

to procedures as "commands". The breakdown is natural to the Bricket,

since the Bricket already "knows" a number of commands (the built-in

primitives), and working with an expansion module simply adds a set of

Figure 4.3 - The Bricket
Command menu.

Technology Design - 31

* Usability experts would
argue that this level of
standardization also aids
those with sight.

32 - Technology Design

new commands. Thus the user is able to place themselves as the teacher

of new commands to the Bricket, a pedagogical choice that establishs

the roles of the learner and the tool (similar to the relationship between

a learner and the LOGO turtle).

4.1.2 Accessibility

From an accessibility point of view, finding an appropriate screen

reading solution presented my largest dilemma. After initially trying to

build my own speaking interface, using Microsoft's Speech Develop-

ment Kit (http://www.microsoft.com/speech/download/sdk51/), I turned

to the Java Accessibility Bridge (JAB) and the JAWS screen reading

software to handle screen reading for me. The integration of accessibil-

ity into the infrastructure of operating systems, as described previously,

suggests that any developer attempting to build their own speakable

interface is wasting their time. The decision to integrate accessibility at

a low level of the system allows developers to make their applications

accessible by simply hooking into the right places, and using the correct

interface widgets. While that does force the developer to "play by the

operating system's rules", it leads to a necessary level of standardization

that benefits the visually impaired population'.

Java's Swing classes, used in conjunction with the JAB utility, provide

a simple way to make accessible applications. While the underlying

interface package (java.awt) does implement accessibility, the Swing

classes standardize the implementation and are more comprehensive

(the javax.swing package). Each Swing interface widget implements

some interface of the javax.accessibility package, all based around the

javax.accessibility.AccessibleContext class. This class provides meth-

ods to obtain the name, state, and content of any object that contains an

instance of it. Thus by making a method call to any Swing component's

setAccessibleDescriptiono method during initialization, a programmer

can control how an interface widget is represented to a user via an assis-

tive device, such as a screen reader. These assistive technologies then

make successive calls to the object's getAccessibleContexto method to

obtain that information and represent it in some understandable way to

the user.

Although the Microsoft Foundation Classes (MFC) do provide reli-

able accessibility through JAWS, choosing that technology would have

restricted my options and slowed my progress. Primarily, I have no

familiarity with their development environment, and thus development

would have been delayed while I learned. Even though I knew that my

study participants would be using Microsoft Windows and JAWS, I still

thought it wise to consider the portability of Java as a good option to

have. One of the main issues with assistive technologies is their high

cost, so I thought it prudent to design for savings wherever I could.

Thus, with only minor changes, one would be able to run BricketLogo

with the free Linux operating system, providing that a suitably function-

ing screen reader or speech engine was present.

I found the most appropriate combination of technologies for this project

to be a Java-based application tied to the JAWS screen reader on Micro-

soft Windows. From the Programmable Brick side, Java made sense due

to the large body of code developed for the Cricket in Java. A compiler

existed, as did serial communications code - both of which needed only

minor modifications for the Bricket*. Thus the main task for me was to

create an accessible interface. A Java Swing-based interface could use

the Java Accessibility Bridge to work with JAWS. I also had the option

of interfacing to Microsoft's Speech Software Development Kit to speak

any other text I wished to. At a higher level, my familiarity with Java

and the speed of prototyping it offers were not to be ignored.

4.1.3 Sound Interaction

Building on observations from the JavaSpeak project, I added features

to indicate to the user the context of what they were editing. A user can

select a menu item that will speak out the name of the command they

are currently editing. Another feature lets the user find out what type of

control structure they are editing (an if, repeat, or loop). These features

serve not only as reminders, but also as a handy way to replace the act

of scanning text. While earcons and auditory icons are engaging ideas,

my research interests did not motivate me to use them.

* The main additon I made

4.1.4 Platform Considerations was to add support for
strings.

Technology Design - 33

Figure 4.4 -The BrailleNote
(http://www.braillenote.com).

While the pilot version of BricketLogo does rely on JAWS for speech,

I have left in the earlier features that allowed it to be speakable via a

free speech synthesis engine. These features take advantage of the Java

Speech API (JSAPI) to interface to a number of available engines. My

initial implementation relied on the free "JSAPI for SAPI" library by

Jesse Peterson (http://www.jpeterson.com/rnd), which allows the devel-

oper to use JSAPI to work with Microsoft's free Speech API (SAPI). I

initially attempted to rely completely on SAPI, hoping to avoid the cost

of JAWS (around US$1000), but the speech engine would often crash

while attempting to cancel events on the speech queue. Conversations

online led me to believe there was a critical race condition somewhere

in Java's implementation. I left the speaking features in place, with

hopes that this would be fixed in the future. Having an application that

does not rely on the expensive JAWS package would be preferable.

While such a solution would hurt usability, in that I could not emulate

the JAWS functionality fully, the cost savings makes it worth the steeper

learning curve. This would also free me from my reliance on the

Windows platform.

A powerful new computational device, the BrailleNote, presents another

appealing platform to develop an application for the visually impaired.

Introduced by PulseData International in 2000, the BrailleNote is essen-

tially a sub-notebook computer, running Microsoft Windows CE, with a

Braille display and standard Braille keyboard for input (figure 4.4). The

device can also output speech and audio cues. Unfortunately, the cost

of the BrailleNote was prohibitive for this study (around US$5000) and

the anticipated time to learn how to use it would have limited the focus

on the learning activity, for both my study participants and me. In the

future, I imagine this to be a viable platform for BricketLogo, perhaps

utilizing the Bricket's built in infrared communications port. It merits

noting that Sun distributes a version of Java support for Windows CE

through the Personal Java API (http://java.sun.comproducts/personalja-

va/), so the existing code-base could be leveraged for this new platform.

4.2 Hardware

The latest Programmable Brick, the Cricket, is a programmable mini-

34 - Technology Design

computer roughly the size of a 9V battery. It is built around a Microchip

PIC processor. The Cricket can control two DC motors, using onboard

motor-drivers, and take input from two resistive sensors, using onboard

analog to digital conversion. Crickets can also communicate amongst

themselves using two-way infrared communication. These basic func-

tionalities can be extended via an expansion port. As mentioned earlier,

peripherals (called bus-devices, or X-gadgets) can be created to speak

a simple serial protocol and allow the Cricket to perform new tasks.

Please refer to (Martin, et.al. 2000) for a through description of the

Cricket architecture. The Bricket is an extended version of the Cricket.

4.2.1 The MetaCricket Designers Kit

The Bricket is example of the MetaCricket specification laid out in

(Martin, et.al. 2000). The authors propose a model where "one can take

an application built from the Cricket and several bus devices, and create

a new design with this set of components laid out on a single board"

(pg. 810). Thus at its core the Bricket is a Cricket, modified to suit the

needs of a specific community.

Resistive Bus
Sensor Devices

The rce..... 11.......... The... Bricket....

Master Microcontroller Slave Microcontroller
PIC1 6 C71 5 PC F2

io ExternalP [tem
Bepr 24LC32A IMotor V8600a

9 Volt
I nf rar edComm.iI

GS1U20 & 151U20 BatrE

The Bricket adds a slave microprocessor to the Cricket design (figure

4.5). This chip manages the speech synthesis module and the pager

motor.

Figure 4.5 - A technical
block diagram of the
Bricket's main components.

Technology Design - 35

While previous designs have adapted the Cricket for a particular ac-

tivity or technology, the Bricket focuses on addressing the needs of a

specific community. The "Thinking Tag" Cricket was initially created

to facilitate face-to-face interaction in social settings (Borovoy, et.al.

1996). They were extended to perform participatory simulations, where

students could be individual nodes in a group dynamics simulation, such

as virus propogation (Colella, 1998). Both of these examples were tar-

geted at specific activities for users of the modified Cricket. The Living

LEGO City similarly created a Cricket car for use in a city-building ac-

tivity with inner city kids in Pittsburgh (Rosenblatt and Mikhak, 2002).

This activity encouraged reflection about the spaces the participants

inhtabited, in addition to technical construction issues.

In adapting the MetaCricket idea to an existing community, my guiding

principles were slightly different. In addition to designing for a set of

underlying ideas to explore, my goal was to meet the needs of the visu-

ally impaired community. In my approach, there is a heightened sense

of the required relevance, understanding, and ownership this community

would need to adopt this tool for learning. In addition to the episte-

mological foundations discussed earlier, these principles guided my

technology and activity development.

Redesigning the Cricket technological system to be accessible for the

visually impaired involved numerous difficult decisions regarding the its

functionalities and industrial design. Each feature was carefully evalu-

ated on the basis of its usability and how it would fit into the learning

goals explained previously. The following sections summarize the

rationale behind those decisions.

4.2.2 Basic Functionalities

The Bricket adds some features to the Cricket, but also removes some of

its basic functionalities. However, due to the modularity and flexibility

provided by the bus-device system, a functionality was never truly re-

moved. My decisions were primarily influenced by the desire to expand

input and output modalities, as my activities were centered on those.

Setting up the constraints of the hardware to focus on sensory input and

36 - Technology Design

output was a conscious decision to guide the study participants' ideas

towards this domain.

light sensor,
touch sensor, expansion

temperature sensor modules

The Bricket

master slave
microcontroller microcontroller

(beeperspeechsynth
motor module

A simple breakdown, organized by sensory channel and direction,

describes the facilities available quite well (figure 4.6):

Tactile - in - touch sensor, temperature sensor

Tactile - out - pager motor

Audio - out - speech synthesis, beeper, MIDI

Audio - in - voice recognition

Visual - in - light sensor

The existing Cricket system provides for all of the above except for the

speech-synthesis, pager motor, and voice-recognition capabilities.

My initial plans called for making two types of Brickets - the speak-

ing Bricket (Bricket II), and the silent Bricket (Bricket I). As the name

indicates, the speaking Bricket would include speech-synthesis abili-

ties, while the silent Bricket would not. I pursued this line due to the

relatively high cost of the speech-synthesis component. However, as I

discussed potential projects with my advisors, it became apparent that

the speech facility was a necessary attribute. Thus the silent Bricket

design was never completed. However, many of the lessons learned

during its design are applicable to a more user-friendly version of the

Cricket. The following section describes the audio and tactile output

facilities in detail, as they governed the majority of my design decisions.

Audio Output

Figure 4.6 - The Bricket's
input and output features.

Technology Design - 37

Speech synthesis is the primary output modality of the Bricket. Recent

developments have made it possible for embedded systems to include

speech synthesis capabilities. For this application, speech seemed to be

an obvious choice to provide an expressive output channel. Empow-

ering the user to programmatically generate any phrase to be spoken

dramatically expanded the ability to interact with the Bricket itself.

The Bricket generates speech via a RCSystems V8600A board

(figure 4.7), a high-level modular speech synthesis board (http://

www.rcsys.com/v860x.htm). The Bricket's slave processor controls

speech synthesis. Words are relayed to the V8600A serially, via ASCII

Figure 4.7 - The RCSys- text encoding. This high-level protocol specification made it quite easy
tems V8600A

to integrate, including the fact that it required the same 5V power supply

as the rest of the Bricket components. The V8600A outputs an un-am-

plified mono audio signal that I connected to both channels of a standard

stereo headphone port.

I chose to use the V8600a because of its low cost relative to the features

it brings. Costing roughly US$130, it is affordable for embedded proj-

ects, even though it was by far the Bricket's most expensive component.

For the quantities I was concerned with, I determined that it would have

been costlier to develop my own circuit board design around the basic

chips the V8600A utilizes (the RC8650 chipset). More importantly, it

would have been a large time sink to develop and debug them. If I were

to scale the quantities with the same technology, I would integrate the

chipset into the main Bricket PCB design, allowing for a smaller overall

industrial design.

Basic speech synthesis is controlled by a number of Logo commands.

These include simple terms such as say, say-number, and shh'.

Tactile Output

Deciding that I wanted to focus on computational devices, rather than

mobile robots, I removed the two motor drivers of the Cricket. Engag-

ing in motor-involved activities would have pushed me to focus more on

* Please refer to the building LEGO brick fluency. Motors require gearing, and the LEGO

reeendix forncketLogo. gearing system facilitates creating gear-based mechanisms like no other.

38 - Technology Design

While many visually impaired children do have experience with LEGO

bricks, due to their precise tactile design, I did not want to encounter

that as a potential stumbling block with my specific participants. It can

be argued that the capability should have been left in to support any

ideas that children may have, but I would have been able to build and

provide an external motor-driver bus-device quite quickly, if anyone had

desired it.

Not wanting to lose the crucial tactile output capability, I added a small

pager motor to the Bricket. Removing the motor drivers left the Bricket

without any ability to exert a physical force on the user, a need that I

found essential as a basic functionality. Motors vibrate, and controlling

that vibration can allow for a fairly high-resolution tactile output.

The small pager motor I integrated into the Bricket returned this tactile

output to the user. The Bricket's secondary processor drives the pager

motor. Using the PIC16F628's built in pulse-width modulation, I hoped

to be able to provide for at least a few levels of vibration. Unfortu-

nately, I was unable to find a pager motor that performed well outside of

the on-off realm. Left with no appealing options, I determined that this

binary functionality would suffice. The pager motor is controlled via

two simple Logo commands - motor-on and motor-off.

4.2.3 Extended Functionalities

The versatile bus-device system of the Cricket allowed me to extend the

Bricket's abilities through add-on modules, each with their own specific

functionalities. In addition to using existing devices, I developed a

Voice Recognition module in co-operation with Casey Smith (another

graduate student in the Lifelong Kindergarten Group). What follows is

a brief description of each of the bus-devices used.

Voice Recognition

The voice-recognition bus-device, created for this thesis, allows the user

to recognize up to 15 words. The board is first trained with the words

to recognize by pressing the appropriate on-board buttons and repeating

a word twice. The words are assigned numbers based on their order of

Technology Design - 39

entry. The Bricket can then query the bus-device to find out the number

of the last phrase recognized.

While voice-recognition does fail to recognize quite often, the failure

mode is fairly predictable. It is based around the Voice Direct 364

chipset (from Sensory, Inc.) (http://www.sensoryinc.com/html/products/

voicedirect364.html). Although the vendor claims it is speaker-depen-

dent, with 99% accuracy, we found it to be rather speaker-independent,

with a much lower rate of accuracy. However, the misses could be

avoided by choosing a better set of words (with less similarities between

them).

Optical Distance Sensor

The existing optical distance sensor allows the user to read the distance

to an object and operate on it like any other sensor value (figure 4.9).

It reports a number between 0 (far away) and 255 (close). Utilizing
the GP2D02, from Sharp Electronics, it can detect distances between

Figure 4.9 - The optical roughly 10 and 80 centimeters.
distance sensor bus device.

Voice Recorder

The existing voice recorder bus-device lets the user record a series of

messages (up to a minute, in total) and then play them back (figure

4.10). Recording is accomplished using buttons on the device. Each

message is given an index according to the series they are recorded

in. The Bricket can send the voice recorder an index of a recording to

be played back (through a speaker plugged in to the bus-device). The

recorder bus device. device is built around the ISD2560S, from Winbond Electronics.

Real-Time Clock

The real-time clock bus-device lets the user keep track of the actual date

and time (figure 4.11). The Bricket can query the device to determine

the hour, minute, second, day, week, month, year, or day-of-week. The

board has its own power supply, so after the date is set once from the

Bricket, it remembers the correct date and time even when not plugged

Figure 4.11 -The real-time in. Casey Smith developed the real time clock.
clock bus device.

40 - Technology Design

4.2.4 Industrial Design

The creation of any object for the visually impaired requires careful

consideration of industrial design issues. Due to my limited experi-

ence in the area, I decided to work with an industrial design student to

develop a case. Not only would the project provide a good experience

for an undergraduate design student, but I also felt that I had a great deal

to learn from someone with that background. I was lucky enough to

engage an energized student named Jeff Easter, from Carnegie Mellon

University's design school. We began by evaluating the current design

of the Cricket, then iterating through a number of physical designs to

establish a criteria for the redesign.

The Design of the Cricket

The Cricket, in its current form, was in no way suited for working

with the visually impaired. The two main issues were the size and the

various connection plugs. The Cricket was optimized for size, focusing

on the goal of empowering users to embed computation in everyday

objects. Because of a visually impaired user's reliance on solely tactile

means to connect modules, this small size did not make sense for the

Bricket. This is not to say I wanted a backpack sized object, but I felt

that it needed to be comfortable to manipulate with two hands.

Rethinking the Cricket's connections to the outside world was a much

more complex issue. I was able to identify two main problems - shape

and feedback. The shape of the sensor and motor plugs are almost iden-

tical (figure 4.12). Sighted users often plug sensors into motor plugs,

and motors into sensor plugs. In addition to this, the plugs for the two

sensors and the two motors are grouped quite close to one another. This

leads to many users plugging a sensor or motor slightly off-center from

where it should be - a problem that requires close visual inspection to

debug. This leads to the other main issue, which is the fact that there is

no non-visual feedback to let the user know when they have correctly

plugged something in. It should be noted that these points are not true

of the bus-device connector, which only be inserted in one orientation

(figure 4.13).

Figure 4.12 - The Cricket's
sensor and motor plugs.

Figure 4.13 -The Cricket
bus connector.

Technology Design - 41

Criteria and Methodology for a Redesign

The previously described evaluation of the Cricket's design led to a

basic criterion for an accessible redesign. We would consider a few

main issues to guide our attempts. First, the case would have to clearly

indicate where connections go in some tactile manner. Second, any

interactive elements had to be keyed and provide some feedback. Third,

the overall size would have to allow for two-handed operation with ease.

At this point I had decided which functional capabilities to include in

the Bricket, and had completed an initial PCB design (figure 4.14).

From this we were able to generate an exact list of the elements that

needed to integrated into the case:

e two sensor plugs

e two bus-device plugs

e a headphone jack

e a 2-position on/off switch

- a toggle "run" switch

e a window for infrared communications

Figure 4.14 - The Bricket
PCB.

The Bricket v1.0

The final design we decided to use with the initial trial group was built

on the criteria defined above. Jeff created the design using LEGO bricks

42 - Technology Design

(figure 4.15), which were then placed into a vacuum former to create a

plastic case. Extensive effort was then spent in cutting away the excess
plastic and carving out the appropriate holes for sockets and switches

(figure 4.16). The second layer of the design was molded in a similar

way, and then glued over top of the base mold. The colors of the two

molds were picked to be high in contrast. Jeff designed and created the

prototypes and manufactured the final design. the Bricket case, made of
LEGO bricks.

The interactive elements were distributed to facilitate usability. All
inputs to the Bricket are placed along the "top" side (figure 4.17). We

found that this made it easier to hold the Bricket with one hand and

plug in with the other. The headphone plug, being the only output plug

on the Bricket, was placed on the short end in order to separated from

the others. We found that this reduced the incidence of the headphone
cord coming in the way of inserting and removing plugs. The infrared

communications window was similarly segregated from the other ele-

ments and covered with a rounded window, to suggest its function. A Figure 4.16-The inside of

secondary molded layer was placed atop the primary mold to indicate a completed Bricket case.

the location of the various plugs. The user's hand naturally follows the

embossed bumps around the edge from the sensors to the headphone

plug.

The connectors for the sensors were redesigned to indicate when they

were placed correctly. We tried numerous keyed connectors, where the

male plug latches into the female only in one direction, and eventually

decided on a commercially available design, which also required a small Figure 4.17 - The top of the

latch to be pressed to remove it (figure 4.18). The bus connectors, while completed Bncket.

they are keyed, do not provide explicit tactile feedback upon proper in-

sertion. However, we found users were able to discern when they were
correctly inserted by attempting to pull it out - if it came out easily then
it was not correctly placed. This design seemed to suffice and saved us
from retrofitting the existing bus devices with new connections.

Increasing the overall size turned out to be a moot point, due to the fact

that the speech-synthesis module dictated it. We ended up with the
"sandwich" design (figure 4.19) due to this constraint. If I had decided Figure 4.18 - The Bricket's

sensor connector.
to use the RC8650 chipset instead of the V8600A development module,

Technology Design - 43

Figure 4.19 - The internals
of the Bricket. Top upper
PCB is the Bricket, the
bottom is the V8600A.

we would have had more freedom with the overall size. However, the

benefits of using the V8600A were far greater, as discussed earlier.

The battery was nestled inside of the case, in a notch carved out of the

main component PCB. The back of the case was covered with a LEGO

base plate, which slid into place from the short side of the Bricket. The

LEGO studs were exposed, leaving an easy way to attach sensors and

bus-devices, if desired.

Bus-Devices

Jeff's initial prototypes created a design language followed up on to cre-

ate cases for several bus-devices. The following is a sample of cases for

various bus-devices built from the criteria established previously:

Figure 4.20 -A case
for the real-time clock
bus-device.

Figure 4.21 - Half of a case for
the optical distance sensor.

Figure 4.22 -A case
for the voice recorder
bus-device.

44 - Technology Design

Chapter 5 - Activity Design

I designed and carried out a small study to test out my technology and

activity ideas. Based on my own interpretations of the theoretical foun-

dations explained earlier, I decided to do my study as a series of themed

sessions with individual children in their home. The participants would

keep the Bricket between sessions, hopefully continuing to build and ex-

plore. I planned to have them get together for one or two larger gather-

ings to compare creations and build a small interacting community. My

study was carried out over 5 sessions of 3-4 hours each. This totaled

to roughly 15 to 20 hours of time with each study participant. While I

designed the study for a group of 6 learners, logistics limited my study

to 3 participants'.

The introductory activities were designed to explore various technolo-

gies and approaches. The goal was not only to familiarize the user with

the Bricket system and its basic functionalities, but also to convey some

underlying ideas that would be returned to later. These focused sessions

then led to a more open discussion of a final project, which I hoped

would build on some of the ideas and technologies introduced. This ap-

proach allowed me to gauge the individual's interests in various aspects

of the system, and then facilitate the creation of some construct along

one of those axes of interest. The following is a description of the plans

I had for these introductory sessions. They were, of course, carried out

with some significant amount of variation, but the underlying theme

* Please refer to the discus-
sion of logistics in section
7.1.1 for further information.

Activity Design - 45

remained constant.

5.1 Session 1: Saying Hello

The initial Bricket activity was designed to immediately suggest assis-

tive uses for the technology, but at the same time honestly expose some

of its limitations. We began with the interactive Command Center area

of the interface, where any command typed can be immediately execut-

ed on the Bricket. Thus if we typed say "hello, the Bricket would speak

the word "hello" with its speech synthesis module. The syntax for this

command is simple and the effect both immediate and obvious. We

would then plug in the distance sensor module and use a command such

as say-number distance to have the Bricket speak the distance it read. At

this point we had a distance-sensing device that was useful and relevant

to the visually impaired community, and simple to create.

From there my plan involved exploring procedures, touch-sensor input,

and thresholding. I would introduce the notion of teaching the Bricket

new commands to repeat the distance over and over. We then would use

a touch switch and the if construct to have the Bricket speak the distance

only when the switch was pressed. Inevitably, we would arrive at the

point of wanting to have the Bricket say something when an object was

close in front of it, leading to the idea of thresholding. Through these

initial creations, the unreliability of the distance sensor would become

obvious, an issue I planned to explore more fully at another time. I

would end the session by leaving the user with the goal of getting more

comfortable with the BricketLogo language syntax by creating other

simple programs around the say command.

5.2 Session 2: International Bricket Standard Time

The second activity was designed to introduce the idea of having the

Bricket on and around for prolonged periods of time, and to use basic

constructs not discussed in the first session. These included the loop and

repeat commands, and the idea of recursion. This focused around using

the real-time clock module. One of my goals was to suggest the idea

that the Bricket was something that could be interacted with over a long

46 - Activity Design

period of time. It is something that exists as part of the child's world,

rather than a construct that only exists at certain times when I was there

to play with them. This activity was also driven by the desire to create

a constraint that pushed them to work with the Bricket outside of the

times I was there. While this is a bit of subterfuge, the logistics de-

manded it. The overall goal was to try and cultivate an attitude towards

the Bricket like that towards a toy (or more appropriately, like the tools

I described previously).

Using the clock involved the introduction of a number of new com-

mands to control the retrieval of the date, time, year, etc. While I was

worried that this would confuse the issue by presenting even more

"magic" words to remember, my hypothesis was that the functionality

of the clock would be meaningful and thus was willing to handle any

confusion raised by the new commands.

5.3 Session 3: Reinventing the Wheel

After two sessions I hoped that a sufficient level of familiarity with the

programming language and environment would be established, and I

could then engage issues of sensing the world. Valuing what the learner

brings to the experience, I looked to the existing tools of the community

to ground this activity. Thus I wrapped this exploration in the theme of

recreating assistive devices that the participants already used. I had a

number of ideas to suggest, some based on available commercial assis-

tive technologies'. My examples included:

* a device that alerts the user when a glass is full

- a distance sensing cane

- a device to leave voice message for others

e a speaking weather station

The final two are based on prototypes I created as example projects

when first developing the Bricket. I would present these to the learner

and solicit other ideas.

The underlying goal of this session was to begin to engage the partici-

pants in a discussion about how they felt about the design of the tools

they use every day. I wanted this discussion to lead to reflections on

* This list was generated
in the spirit of the "Twenty
Things to Do with a Pro-
grammable Brick" (Resnick,
1993), which was itself
inspired by "Ten Things to
Do with a Better Computer"
(Hillis, 1975), which was
inspired by the original
"Twenty Interesting Things
to Do with a Computer"
(Papert and Soloman,
1971).

Activity Design - 47

their own designs in comparison to existing products.

5.4 Final Projects

Building on these three sessions, I then planned to have each participant

build a more involved project, following up on a personal interest or

idea. I planned to be an active partner in this decision process to guide

them to a project that I thought would be compelling from a learning

point of view, but would also be fun. I would take the opportunity

to introduce new technological capabilities (through more expansion

modules) to the Bricket system in order to test out their accessibility and

relevance. I also hoped to have the development of new devices driven

by the children's interests.

48 - Activity Design

Chapter 6 - Case Studies

This chapter presents three stories of objects created by participants in

my study*. These case studies document the creation of objects that

reflect the participants' exploration of ideas. Psuedonyms are used to

protect the participants' identities.

My metric for success is how much I can demonstrate that the partici-

pants have explored the topics of interest I laid out earlier. Thus these

stories focus on the ideas of handling and interpreting unreliable sensor

data, manipulating sensory input data to make intuitive and meaningful

representations, and creating and managing large programming struc-

tures to develop a highly interactive device. I demonstrate the learners'

understanding of these concepts by using direct quotes and by discuss-

ing the objects they made. By describing the artifacts they have built,

and the process of building, I showcase the physical embodiment of the

ideas they explored. This can be seen as a "constructionist" approach to

evaluating the learning activities, due to its focus on their creations and

how they are talked about as being inherently reflective of the partici-

pants' thinking. I also focus on how their thinking changed during

the course of the study to demonstrate their own interpretations of the

concepts.

Each case begins with a bit of background on the participant and how

some of their early creations established their styles of learning and

* This study was fully
approved by the MIT
Committee on the Use of
Humans as Experimental
Subjects (application No.
2812).

Case Studies - 49

areas of interest. The major portion is a discussion of their final project.

This focuses on how the process of building led them to interact with

the ideas underlying their creations. The first object is a digital cane,

able to sense and warn its user when an obstacle is in their path. The

second object is a "tricorder", capable of sensing a myriad of things

about the real world and representing them to the user. The third object

is an interactive toy, programmed with a personality that interacts with

its user.

6.1 Case 1: The Digital Cane

Jim is a 14 year-old boy. Jim was born completely blind.

From the beginning of this study, Jim said he wanted to "invent some-

thing new". He was excited to be able to create things that he couldn't

have before. I attribute this in part to his father, who is an engineer by

trade. It appeared to me that Jim's enjoyment of building things had

been rubbed off from his father. It turned out that they would often

work on Bricket projects together, establishing a pattern of play that will

likely last beyond this study's completion.

Jim decided that he liked the idea of redesigning the cane, his most

important assistive device. A cane is a device that assists the visually

impaired by extending their reach to help avoid objects in their path.

The cane is introduced to some visually impaired children as soon as

they begin to walk, and rapidly becomes their most necessary assistive

device. Educators for the visually impaired who focus on mobility

training speak to the importance of the cane by noting how its early use

establishes an attitude of independence, rather than one of reliance. The

tapping and sweeping from side to side becomes almost a subconscious

part of walking. It can replace a small part of the scanning aspect of

vision, providing an extended tactile modality to discover objects at a

close distance. Using a cane also frees the sense of hearing to focus on

landmark location, instead of local events.

Jim's first idea for his digital cane was to simply duplicate a project we

did in the initial session, where we programmed the Bricket to speak out

when the distance sensor found a close object. After I created a longer

50 - Case Studies

bus-device connection cable, we were able to mount the distance sensor

three-quarters of the way down one of his canes. We ran the wire up

the cane (attaching it simply with tape) and plugged it into the Bricket,

which he was wearing on his belt with attachable belt-clip.

We soon found that the simple program for thresholding we had used

earlier proved unreliable for actual navigation. The distance sensor

returned both false positives and false negatives quite often. This

dilemma set up the major focus of Jim's digital cane - strategies to deal

with inaccurate sensor data. This, in fact, led us to a major area of study

in robotics, known as sensor fusion.

I introduced Jim to the idea of sensor fusion by comparing it to how he

uses his own senses together. For instance, he sometimes uses both his

cane and his hands to help guide him down a corridor he is unfamiliar

with. At its most basic level, sensor fusion suggested a number of

techniques for dealing with erratic sensor data. The most immediately

relevant seemed to be the use of complementary sensors, redundant

sensors, and computation algorithms. Jim and I drew on these in our

attempts to discover a good way to get more reliable data out of the

sensors.

The use of complementary sensors allows one to check a sensor read-

ing against another reading of the same quantity with a different type of

sensor. For Jim's project, this called for the use of another sensor that

would tell us the distance to an object. Unfortunately, a sonar module

wasn't available, and a laser range finder proved to be too expensive (for

the resolution we required). We decided that for the digital cane, the

complementary sensor could be the cane itself. If the distance sensor

reported an object just outside of Jim's reach, he could lean forward and

discover if anything was actually there by using his cane. Thus he had a

complimentary check to verify the reporting of close objects.

Another idea, redundancy, suggests duplicating the uncooperative sen-

sor, in hopes that two are better than one. At first, this seemed silly to

Jim, who presented the reasonable argument that "if one doesn't work

good, why would two?" His theory was that "if you have one sensor

giving me bad distances, and add another, I'll just have two sensors

Case Studies - 51

giving me bad distances". To find out if his inclination was correct,

we designed a test. We created a construction that, when actuated by a

touch switch, speaks out the distance returned by two distance sensors

mounted just above one-another. We would point at objects that we

knew the distance to, and count how many times each sensor reported a

bad number. As it turned out, it was almost never the case that both sen-

sors were wrong. This was enough to convince Jim that he should try

using two, because often the two values were close to each other and an

average could thus be relied on to eliminate most bad readings.

This kind of mini-experimentation was a marked departure from the

earlier way Jim had been building. He often decided on one way of

doing things, and then simply did that way until it worked, or until it

didn't. Jim liked attempting to implement his whole idea at once, rather

than creating a small part, trying it out, and trying it again. The iterative

approach we were taking to make the digital cane was influencing the

way he approached problems.

Programming simple algorithms was the main method we used to

process the sensor data. One of the behaviors that Jim noticed in our

little test was that "bad stuff comes out of nowhere" - that bad readings

are often unpredictable and unrepeatable. He wondered why it "can't

just remember what it saw before". That being the spark, we created a

simple averaging algorithm to remember the last ten sensor readings,

and use an average of them to monitor for objects in his path. This

didn't seem to work, because it would take a noticeable amount of time

for the average to purge itself of clear readings when something new

entered in front of it. After changing it to average only three samples,

it worked quite a bit better. Used in conjunction with an average of

two distance sensors mounted in the same direction, this proved quite

effective at reporting accurate distance readings.

Comparing his digital cane to other ones that are commercially avail-

able, Jim was quite excited by his own design. He was able to tailor its

design and customize its features. In fact, he changed the behavior to

speak the distance every few seconds, rather than only speaking when

an object was near. He found this was "more useful", and felt more

52 - Case Studies

"like using a regular cane". Regarding existing commercial enhanced

canes, Jim said
They're too heavy - I tried one once and it felt so much
heavier than my regular cane. With this I can have the
whole thing on my belt. That way I don't feel the weight
in my hand.

Despite the cord connecting the cane to the Bricket on his belt, Jim still

liked his own design better, for an established criterion. This critique

of commercial devices shows an understanding of the design decisions

that went into their construction. In creating his own digital cane, Jim

established metrics for the design that he was able to apply to similar

constructions.

6.2 Case 2: The Tricorder

Carl is a 12 year old boy. Carl has severe visual impairment, and can

only make out the difference between light and dark areas.

Throughout the introductory sessions, Carl was fascinated by trying out

the various basic sensors, and walked around listening to their read-

ings many times. He expressed disappointment that he could only plug

in two at a time (even though I had provided three types of sensors)*.

Rather than wanting to record data, he wanted to represent an instanta-

neous reading back to himself through one of the Bricket's outputs. He

liked plugging things together and just seeing what happened, a style

that played well with the Programmable Brick's focus on interactive,

iterative design. Carl used the Command Center part of the interface

(which allows a user to type a command and run it immediately) quite

a bit. He would have the Bricket speak whatever it read on the sensor,

then plug in a different sensor and try again.

This provoked me to ask him if he had even heard of the "tricorder"

from the Star Trek television show. The name is a bit of a misnomer, in

that it records more than three types of data. A tricorder is best de-

scribed as an all-around sensing unit*. Characters on Star Trek carry it

with them, using it to measure almost anything imaginable (and many

things unimaginable). The wearable nature of the Bricket, and Carl's

* Characters on Star Trek
use the tricorder to gather
data about the environment
around them.

* A sensor expansion
bus-device does exist, but
retrofitting it to work with
the Bricket's connectors
would have required a new
circuit board design. More-
over, from a pedagogical
standpoint, it is often fruitful
to leave constraints as
they are, in order to breed
creative solutions.

Case Studies - 53

desire to sense everything in the world, led me to suggest he make a

tricorder. Here my own biases came into play, as I have wanted to build

one since I was roughly 12 years old. However, Carl's enthusiasm for

the idea ensured that it would be a project that both he and I would be

excited about.

Creating the tricorder brought up many issues of how to accurately rep-

resent data in intuitive ways. While there are numerous inputs (touch,

distance, light, temperature) and outputs (pager motor, speech synthesis,

beeping), there are no obvious mappings to be made between them.

This becomes even more complex when one realizes that two of the

outputs use the same sensory modality - sound. Managing to represent

the myriad of sensors into two modes of sensory output (auditory and

tactile) required reflection and manipulation of the data.

Carl's initial explorations of representing the sensors focused on literal

mappings, but that strategy did not work as he progressed to more

sensors. Comments like "I want the buzzer to be the light" led to one-

to-one mappings. His first attempts made use of statements like note

sensora 5, which would play a note of varying pitch corresponding to the

amount of light sensed. This directly mapped input to output, without

any adjustments in-between. These strategies had to be modified when

he moved to using the motor command, which is binary. Carl expected

the motor to work the same way, but was disappointed to discover that

there are two motor commands, motor-on and motor-off, rather than the

opportunity to set the power of the motor. I explained to him that the

motor is "binary" - that it can only turn on or off (much like the switcha

and switchb commands). Thus he would have to try another method

to use it. This led him back to our first exercise, in which we used a

threshold to have the distance sensor tell him when an object was close.

These technological limitations led Carl to begin performing permuta-

tions on sensor data to format them for the specific output modality he

wanted. The thresholding case, just discussed, is the most basic exam-

ple. He initially mapped the light sensor to the pager-motor, but decided

that the distance sensor made more sense as an input for a tactile output

channel. He said he made the change because he wanted "it to be like

54 - Case Studies

when I run into a wall", so he could feel the distance just like he would

by reaching out his hand. This was the first intuitive mapping he made,

and appeared to change his mindset towards the others.

After a few attempts, Carl ended up being most happy with the light

sensor being mapped to the beeper. However, instead of the one-to-one

mapping he had initially programmed, he created a series of five ranges

that played different notes. If the sensor reported a value between 0

and 50, it would play a fairly low tone; between 50 and 100, it would

play a slightly higher pitched tone; and so on. This represented a shift

in his thinking about what the sensors were - they became continuous

elements that he could discretize to pick out areas that were important

to him. Carl's final mapping played out this new approach. He had two

thresholds on the temperature sensor to have it say when something was

hot or cold. His manipulations of the sensor data left him with the idea

that the "numbers can be played with."

Here it can be seen that the Bricket led Carl to some of the same con-

cepts that are explored in the area of multimodal output synthesis,

and multimodal data visualization. The human-computer interaction

field has been investigating this area for years, attempting to come up

with frameworks for analysis and heuristics for implementations (as in

Andre, 1993). Carl's ideas about representation shared a common base

with many of these researchers' approaches. He found intuitive map-

pings between inputs and outputs in different modalities, and was able

to understand and act on multiple outputs that were received at the same

time.

6.3 Case 3: BricketBot

Lisa is a 14 year old girl. Like Carl, her visual impairment is quite

severe, in that she can only distinguish between large patches of light

and dark.

From the very beginning, Lisa was fascinated by the interactive nature

of the Bricket. She enjoyed making it talk, and having a conversa-

tion with it. Among other things, this led Lisa to usie speech almost

exclusively for all her output. She said that it was "nicer to talk" than

Case Studies - 55

the other options. Noticing this in the first session, I told her about

Jim's first project, in which he acted out a play with the Bricket. He

would say a line, and then hit a switch, triggering the Bricket to say an

appropriate line back.

When thinking about her final project, Lisa returned to her interest in

interactivity, and decided to make an interactive assistant. My own

existing interests in creating robotic characters were influential here, as

I became quite excited when she brought up the idea. We eventually

decided on naming it "BricketBot".' Lisa wanted BricketBot to:

e "wake me up in the morning"

e "tell me what the weather is outside"

e "sing a song with me"

" "tell me a story"

With these tasks in mind, we set about creating the individual skills that

BricketBot would need.

The various skills drew well on projects we had done earlier. The wake-

up call was something Lisa had already created, and liked. That was

integrated without many changes. Telling a story was quite simple, but

required a good deal of coding to speak just a short story. Singing a

song was difficult, in that it never sounded right to Lisa (mainly due to

the fact that we could not control the Bricket's pitch sufficiently*). Her

idea to have it tell her the weather borrowed an idea from my earlier

suggestion of making a "weather station". This was accomplished

simply by extending a sensor cable to tape a temperature sensor to her

window.

During the creation of BricketBot, we encountered many of the underly-

ing ideas behind creating interactive characters. The first time I added a

hello message to BricketBot, Lisa reacted that "she wouldn't say it that

way!" - Lisa had a clear picture in her mind of the type of person Brick-

etBot was (beyond the fact that it was female). Anything outside of that

image would ruin the interaction for her. This idea of consistency is one

of the cores of creating animated characters (virtual or not). Animated

characters must be consistent in their actions, or they risk destroying

the tenuous relationship with the audience. Similarly, Lisa insisted that

56 - Case Studies

BricketBot had to "act like BricketBot".

Integrating the features Lisa wanted into one construction proved to be

technically challenging. Her initial plan was to have a number of touch

sensors, each of which would trigger a different skill. This, of course,

was limited by the Bricket's limitation to two sensor plugs. However,

since we were using the clock bus-device already, for the wake-up

call, I suggested we use that again somehow. Lisa liked the idea and

proceeded to create an input handler that, when triggered, checked the

time and performed different tasks based on what part of the day it was.

This turned out to be an inter-related series of commands, all triggered

by a when statement. The when acts like an interrupt routine - when

some condition becomes true, it stops execution of the program to begin

running code to handle that condition. During morning hours, Bricket-

Bot would tell Lisa what the temperature was outside, or say a simple

hello message (depending on which touch sensor was triggered). In the

evening, BricketBot would either tell a short story (about itself), or sing

a song (from the band "Destiny's Child").

This level of control of execution flow demonstrated a high level of

programming proficiency. Lisa quickly grasped the importance of

modularity in her coding style, and was able to reuse some of her code

from previous projects to make BricketBot. Her final program had 15

commands*, more than the sum of the other two projects presented

here. She realized that this required her to have concise and accurate

command names, and limit the commands so no two did the same thing.

Managing this level of code modularity proved a bit difficult, and Lisa

complained that sometimes she would forget "who commanded who to

do what". This suggests that some kind of high-level flow-of-execution

representation would be useful for more extended projects.

Lisa was able to create something that was personally meaningful,

tailored just for her. As with Jim's cane, this level of customization is

not possible with existing assistive devices.

Case Studies - 57

Chapter 7 - Reflections

The projects presented in the previous chapter paint a fair picture of the

overall projects created during my small study. The foci of the various

projects ranged from more technical programming issues, to questions

of how to represent information, to theoretical issues of how to cre-

ate good interactions. My exploratory approach left ample space for

the participants to find their own path through the ideas I presented.

For instance, while programming fascinated Lisa, Carl often found it

exasperating.

The activities and technologies I developed in conjunction with these

learners demonstrate that the visually impaired community is able to

create their own assistive devices. These children I worked with were

familiar with computers and screen-reading software, but did not have

programming experience. They began with a tool that they used pri-

marily for communicating, and quickly made it a tool for creating and

building.

7.1 Problems that Arose

However, we did have many problems along the way. What follows is

a summary of issues that arose around the topics of logistics, software,

and hardware.

58 - Reflections

7.1.1 Logistics

Locating a suitable group of study participants proved quite difficult. I

was ready to begin my study in September of 2001, but was unable to

begin until January of 2002. I initially contacted the Perkins School,

just outside of Boston, but my desire to conduct a study in a more infor-

mal setting led me away from collaborating with them. Also, many of

the their students have multiple disabilities, which raised difficult issues

for conducting a study with the technology I had developed. Through

the help of the National Braille Press (headquartered in Boston), I was

able to contact some teachers that work with visually impaired students

in public schools. Unfortunately, the scheduling with the students they

suggested contacting did no work out. It turned out that someone I had

contacted earlier, whom I discovered online through a company that

makes assistive devices for the visually impaired, was able to put me in

touch with a few interested families that they knew personally.

The decision to work outside of any formal, pre-organized setting made

it logistically quite difficult to conduct my study. School's regular-

ity provides a structure within which I could have guaranteed that my

participants would have been available at specific hours every week.

Additionally, there are numerous weekend support and training activities

planned for visually impaired students, especially those that are in public

schools. These activities often made it difficult for me to schedule time

with the participants. Many times I would have plans for a weekend

up until the day before, when I would receive a call canceling because

some other event had been scheduled. This difficulty also prohibited me

from getting all the participants together for group discussions.

7.1.2 Software

For the participants of this study, learning the text-based BricketLogo

programming language was an arduous undertaking. I had initially

planned to provide a few sample programs, and a printed Braille refer-

ence. However, the sample programs proved inadequate and the Braille

reference material was difficult to use. I responded to this by a help-

center into a subsequent revision of the BricketLogo application. This

Reflections - 59

help-center allowed the user to get short descriptions of each command

by navigating through a hierarchy of drop-down menus. I also installed

a larger and more relevant set of example programs that the users could

open and inspect for ideas. While these strategies did resolve some of

the issues, they did not take away the fact that it takes a bit of time to

get used to programming in a text language.

Tangible Programming

A number of researchers have proposed tangible programming envi-

ronments, where attaching physical objects to each other in some way

creates a program. These physical objects represent commands in a

language that, when executed, controls some device or creates some

behavior (Suzuki and Kato, 1993). Building on this work, a collection

of tangible programming bricks was developed to control the Cricket

(McNerney, 2000). These were small LEGO bricks, each representing

a command, which could be stacked to create a program. This program

could then be downloaded to a Cricket. McNerney suggests one appli-

cation to be a programming interface for the visually impaired (pg 62),

but did not pursue this goal.

The idea of a tangible programming environment, while it is appealing

to the visually impaired audience for many activities, did not suit the

plan I developed for a number of reasons. Applications for tangible pro-

gramming usually require a very limited vocabulary and a small set of

control structures. As soon as either of those grows, creating programs

with the tangible bricks would become overly cumbersome. However, I

do see tangible bricks as an excellent entry point for beginning program-

mers. Unfortunately, I think that the ceiling of what one could create

would be reached rapidly. In fact, creating a high ceiling was not one of

McNerney's goals - he focused on reducing the age barrier to creating

with Programmable Bricks, increasing communication while program-

ming, and creating novel interfaces for household devices (McNerney,

2000). Since I would have had my study participants quickly move to

text-based programming, I decided that the development effort required

to work with the tangible bricks was not worth the gains they might

have provided.

60 - Reflections

Accessibility

The primary dilemma in making BricketLogo an accessible application

was guaranteeing 100% speakability. If any interface item was inacces-

sible to the screen reader, it was effectively non-existence. If my speech

generation engine at any time crashed, the entire application would be

useless. These factors pushed me to rly on JAWS and the Java Acces-

sibility Bridge for speaking my interface. These proven technologies

relieved me from having to develop a robust solution, which would have

required large amounts of time and testing.

At the same time, relying on costly technologies is still unacceptable

if other solutions exist. The release of FreeTTS, a Java-based open-

source speech synthesis solution, presented another option (http://

freetts.sourceforce.net/). The implementers were able to remedy the

previously mentioned low-level race-condition in the JSAPI, allowing

me to solve the bug that would cause the speech engine to crash. I cre-

ated an initial package of BricketLogo using the FreeTTS engine, and

experienced a high level of reliability. Further testing would be needed

to ensure full functionality, but FreeTTS seems to be a better solution

for the level of speech control that I required. In addition, packaging the

speech with the application would simplify install procedures (which

sometimes took up to an hour to debug).

7.1.3 Hardware and Industrial Design

The frequent consultations with my advisors during the development of

the Bricket hardware proved quite useful, in that there were no major

unanticipated hurdles to using the Bricket. That is not to say that it was

perfectly designed, by any means, but rather that the problems were

ones that could be managed.

On the whole, the industrial design decisions proved to be quite user-

friendly to the visually impaired. The sensor plugs were suited to the

children's smaller hands, and the Bricket case reached usability goals.

The earlier concern in regards to a size well suited to two-handed opera-

tion turned out to be misplaced, as most of the users plugged things in

while the Bricket was on a surface of some sort. In fact, users would

Reflections - 61

Figure 7.1 - The Bricket's
run button proved to be
hard to use.

Figure 7.2 - The Bricket
case began to crack over
time.

take advantage of a completely overlooked detail - the fact that all the

components connected with wires. The wires proved invaluable, in that

the users were able to trace them with their hands. This greatly assisted

the process of explaining and discussing the various components we

plugged in. If there had been some kind of wireless connection, for

example, it would have been quite difficult to explain the interactions

between the modules in the systems they designed. This problem was
encountered often when ensuring the Bricket had line-of-sight with the

interface while downloading.

The most significant problem was the :run" button, which starts a

program on the Bricket (figure 7.1). The run button on the Cricket is a

simple push-button, used to start of stop a program, depending on the

state of the Cricket. This is a troublesome point because there are two

ways that can happen - the programs can simple finish executing, or a

use can stop it mid-program. I anticipated this being problematic, as

there was only a visual indication to let the user know if the Crickets

was ruining a program or it had stopped. I decided to add audio feed-

back indicating when a program had started and when it had finished.

These changes, however, proved inefficient to surmount the interface

problem. The users more often just turned off the Bricket to ensure that

the program had stopped running. An ideal solution to this problem

would be an actuated switch, who's state could be toggled by either the
user or the Bricket's program upon termination. Unfortunately, I was

unable to locate one with an appropriate size and power requirement.

Another serious problem occurred with the battery. The design did not
provide an easy means to pull out and replace the batteries. First the

back cover had to be removed, then the speech synthesis board had to be

pulled apart from the main component board. Only after that could the
battery be replaced. This is difficult because of the brittle nature of the

ABS plastic that makes up the case. It bends a slight amount, but cracks

along edges where it has been stretched during the vacuum forming

process (figure 7.2). A better solution would be to have some sort of

door that would allow easy access to the battery from the side.

Another limiting factor is the speech synthesis module in the Bricket.

62 - Reflections

The current solution provides easy integration, but is costly and large.

A new option might be one of the myriad of chips being produced

for cell-phone like devices. Speech synthesis is rapidly becoming

a feature that companies wish to integrate into these products. One

example is the single-chip solution offered by WinBond electronics

(http://www.winbond.com/). As this technology matures and becomes

available, it might present an ideal solution for size, cost and power con-

sumption. I contacted the company for a sample, but they did not arrive

in time to investigate their functionality.

7.2 Open Questions

This small study brought up a number of further questions. These

revolve around how visually impaired children learn, and how to build

an appropriate programming system for them.

7.2.1 Concepts and Approaches

The objects created by my study participants raised the question of

whether there are sets of concepts and approaches that are more likely

to be familiar to a visually impaired learner. This community's daily in-

teractions already develop certain senses more than others (most sighted

people are impressed by the visually impaired's developed senses of

touch and hearing). My study has provoked me to ask whether there is

a certain class of ideas and concepts that are similarly more developed

in the visually impaired.

In particular, this study singled out the concept of negative feedback

as such an issue. Unlike open loop control systems, negative feedback

allows for self-correcting mechanisms. Fred Martin's PhD dissertation

presents thorough examples of students exploring the idea of feedback

with a Programmable Brick (Martin, 1994). His works demonstrates

that, even after being introduced the idea of negative feedback as an im-

portant control system for mobile robot navigation, students continued

to rely on inaccurate dead-reckoning position data.

In marked contrast to Martin's examples, the learners I worked with

immediately embraced negative feedback systems as a natural way to

Reflections - 63

implement control systems. This suggests to me that because of their

visual impairment, negative feedback systems became part of their

everyday lives. The routine of performing some act, expecting tactile

feedback, and performing it again is precisely this idea. A concrete

example of this can be found in their use of the cane. As a visually

impaired person sweeps a cane back and forth, their arc and position

changes based on what they find. If they encounter some object, their

gait and sweep changes to discover the range of the obstacle, and adjust-

ments are made to bypass it. This is a negative feedback control system,

but the key difference is that they are part of it - using some device to

sense, and then acting on that data to correct for some goal. This close

relationship to the concept leads me to propose that the idea of negative

feedback is more likely to be developed in visually impaired learners. It

also presents another model of introducing sighted students to the idea

of feedback - one that places them in the control loop by replacing one

of their senses with an electronic sensor.

Feedback is just one example of a concept that seemed to be developed

by the visually impaired learners I worked with. It strikes me that fur-

ther research into these issues would shed light on how to design better

learning tools for the visually impaired.

7.2.2 New Languages for Visually Impaired Programmers

I created this programming environment for visually impaired by mak-

ing evolutionary changes to an existing language. I made no major

changes to the syntax of the programming language itself. The com-

mands I added were to enable specific new technological capabilities.

The important change I did make, limiting the user to editing one proce-

dure at a time, was based on a desire to make the text more navigable.

The issue of creating a programming environment for visually impaired

learners from scratch suggests a more revolutionary approach. Perhaps

even the nature of the language should be questioned. A thorough

survey of adult visually impaired programmers' habits might lead to

guiding principles for a more intuitive programming language for the

visually impaired. As more and more visually impaired people turn to

64 - Reflections

computation to create and learn with, such a language could become

very important. Perhaps successful computer researchers who happen

to be blind are the best developers to build such a language, because of

their intimate knowledge of the domains in question.

However, there are problems with creating a new language for this com-

munity. Visually impaired developers would be immediately isolated

from their peers, and a community would have to develop around such a

language. These issues are key to the adoption of a tool. Such questions

were too much to tackle in this thesis, but are currently unaddressed in

the research community, which focuses on making evolutionary changes

to current programming languages.

7.3 Conclusion

This thesis presents an example of technologies that allow the visually

impaired to create computational artifacts and activities that allow them

to explore relevant domains of knowledge. I have documented the pro-

cess of developing for this community's needs, and the learning topics

that were discovered to be important to the participants of my study.

Bringing the constructionist approach towards learning activities to

this new community proved quite successful. In particular, focusing

on activities with physical constructions proved appropriate. It quickly

became apparent that because of their visual impairment, the learners I

worked with felt comfortable engaging with tools in a tactile way. This

interaction lends itself towards building physical objects. While con-

structionist activities do not all focus around tangible objects, this audi-

ence seems to find those most resonant with their interaction patterns.

The case studies present a closer look at exactly what ideas I explored

with my study participants. Their constructions show a willingness to

adopt the Bricket technology as a creative tool to build with. Building

their own computational devices introduced them to some basic ideas of

computation and engineering. They cam up with numerous ideas that

are similar to commercial offerings, such as

e an audio note-taker

e a remote control for the television

Reflections - 65

e a speaking watch

All of these are assistive devices designed for and sold to the visually

impaired community. The Bricket computational construction kit we

worked with gave these learners an inclination of how the various pieces

of electronics in these devices are put together and controlled. However,

they were able to do so in a way that explored some foundational ideas

of computation, changing their attitudes towards what computation is.

66 - Reflections

References
Andre, E., W. Finkler, W. Graf, T. Rist, A. Schauder and W. Wahister (1993).
WIP: The Automatic Synthesis of Multimodal Presentations In: M. Maybury
(ed.), Intelligent Multimedia Interfaces, pp. 75-93, AAAI Press, 1993, Also as
DFKI Research Report RR-92-46.

Blattner, M., D. Sumikawa, and R. Greenberg (1989). Earcons and icons: Their
structure and common design principles. Human Computer Interaction, 4(1), pp.
11-44

Borovoy, R., M. McDonald, F. Martin, and M. Resnick (1996). Things That
Blink: Computationally Augmented Name Tags. IBM Systems Journal 35, os.
3&4, 488-495.

Brown, J.S., A. Collins, and P. Duguid (1989). Situated Cognition and the
Culture of Learning. Educational Researcher, 1989, 18, pp. 32-42.

Colella, V.S. (1998). Participatory Simulations: Building Collaborative
Understanding Through Immersive Dynamic Modeling. Master's Thesis, MIT,
Cambridge, MA.

Dewey, J. (1938). Experience and Education. New York: Collier Books.

Francioni, J.M. and A.C. Smith (2002). Computer Science Accessibility for

Students with Visual Disabilities. Proceedings of 33rd SIGCSE Technical
Symposium on Computer Sceince Education, Northern Kentucky, February
2002, pp. 91-95.

Fries, Emil B (1980). But You can Feel It. Binford & Mort : Portland, Oregon.

Gaver, W. (1986). Auditory Icons: Using sound in computer interfaces. Human
Computer Interaction, 2(2), pp. 167-177.

Hillis, W.D. (1975). Ten Things to Do with a Better Computer. Unpublished
memo available from MIT Artificial Intelligence Laboratory, Cambridge, MA.

Holbrook, M.C and A.J. Koening, Ed. (2000). Foundations of Education,

Volume I : History and Theory of Teaching Children and Youths with Visual
Impairment. Second Edition. American Foundation for the Blind, New York,
New York.

Krebs, C.S. (2000). Beyond Blindfolds: Creating an Inclusive Classroom
through Collaboration. RE:view v31 n4 p18 0 -86 .

Lave, J. and E. Wenger (1991). Situated Learning and : Legitimate Peripheral

Participation. Cambridge, UK: Cambridge University Press.

Martin, F., B. Mikhak, and B. Silverman. MetaCricket: A designer's kitfor
making computational devices. IBM Systems Journal (Vol. 39, Nos. 3 & 4)

McNerney, T. (2000). Tangible Programming Bricks: An Approach to Making

Programming Accessible to Everyone. Master's Thesis, MIT. Cambridge, MA.

References - 67

Papert, S. and C. Solomon (197 1). Twenty Things to Do with a Computer. Artifi-
cial Intelligence Memo 248, MIT Artificial Intelligence Laboratory, Cambridge,
MA.

Papert, S. (1994). The Children's Machine. New York: Basic Books.

Piaget, J. (1963). The Origins of Intelligence in Children. New York: Norton.

Reich, Y., S.L. Konda, S.N. Levy, I.A. Monarch, and E. Subrahmanian (1996),
Varieties and Issues of Participation and Design. Design Studies, 17(2):165-
180.

Resnick, M. (1993). Behavior Construction Kits. Communications of the ACM,
vol. 36, no. 7 (July 1993)

Resnick, M., R. Berg, and M. Eisenberg (2000). Beyond Black Boxes: Bring-
ing Transparency and Aesthetics Back into Scientific Investigation. Journal of
Learning Sciences.

Resnick, M., A. Bruckman, F. Martin (1996). Pianos Not Stereos: Creating
Computational Construction Kits. Interactions, Vol 3. no. 6.

Rose, D. and A. Meyer (2000). Universal Design for Learning - Associate
Editor Column. Journal of Special Education Technology. Volume 15.1.

Rosenblatt, M. and Mikhak, B. (2002). The Living LEGO City: A Computation-
ally Enhnaced City Building Activity. In preparation for submission to the 2002
ICLS conference.

Smith, A.C., J.M. Francioni, and S.D. Matzek (2000). A Java Programming
Tool for Students with Visual Disabilities. Proceedings of ACM Assets 2000,
Washington, D.C., November 2000, pp. 142-148.

Sch~n , D.A. (1987). Educating the Reflective Practitioner. Jossey-Bass, San
Francisco.

Suzuki, H. and H. Kato (1993). AlgoBlock: a Tangible Programming Language,
a Tool for Collaborative Learning. Proceedings of 4th European Logo confer-
ence, pp. 297-303. Athens, 1993.

Vincent, A.T. (1981). Computer-Assisted Support for Blind Students: The Use of
a Microcomputer Linked Voice Synthesizer. Presented at CAL 81: Symposium
on Computer Assisted Learning (Apr. 8-10 ,198 1).

68 - References

Appendix A - BricketLogo Reference

A. 1 Motor Commands
motor-on
Activates the Bricket's internal pager motor.

motor-off
Deactivates the Bricket's internal pager motor.

A.2 Timing Commands
resett
Resets the elapsed time counter to zero.

timer
Reports value of free-running timer. Time is counted in milliseconds.

wait duration
Delays for a duration of time, where duration is given in tenths-of-sec-
onds.

get-day
Reports the current day of the month from the real-time clock bus-de-
vice.

get-month
Reports the current month of the year from the real-time clock bus-de-
vice.

get-year
Reports the current year from the real-time clock bus-device.

get-dow
Reports the index of the current day of the week from the real-time
clock bus-device.

This reference relies heavily
on a CrikcetLogo com-
mand reference created by
Bakhtiar Mikhak.

Appendix A - 69

get-hr
Reports the current hour of the day from the real-time clock bus-device.

get-min
Reports the current minute of the hour from the real-time clock bus-de-
vice.

get-sec
Reports the current seconds of the minute from the real-time clock
bus-device.

set-datetime day month year dow hour minute
Sets the time of the real-time clock bus-device to the specified day,
month, year, day of the week, hour, and minute.

set-time hour minute
Sets the time of the real-time clock bus-device to the specified hour and
minute.

set-date day month year dow
Sets the time of the real-time clock bus-device to the specified day,
month, year, and day-of-week.

A.3 Sound Commands
beep
Emits a short beep.

note pitch duration
Plays a note of a specified pitch and duration. Increasing values of the
pitch create lower tones. The duration value is specified in tenths-of-
seconds units.

say "a.phraseto-say
Says the specified words. An underscore is equivalent to a space.

say-number number
Says the number specified. These number have to be between 0 and
999.

skip
Makes the Bricket stop whatever it is saying and move on the next thing
to say.

shh
Makes the Bricket stop whatever it is saying and anything is was going
to say afterwards.

volume number
Sets the volume of the Bricket's voice to specified number, which has to
be between 0 and 7. 0 is quiet and 7 is loud.

speed number
Sets the speed of the Bricket's voice to the number specified, which has

70 - Appendix A

to be between 0 and 7. 0 is slow and 7 is fast.

dial number
Emits the appropriate dialing tones for the number specified (between 0
and 9).

voice number
Changes the Bricket's voice (between 0 and 2).

articulation number
Changes how the Bricket generates its speech.

expression number
Changes how the Bricket generates its speech.

frequency number
Changes how the Bricket generates its speech by altering the frequency.

pitch number
Changes how the Bricket generates its speech by altering its pitch.

tone number
Emits tones.

reverb number
Changes how the Bricket generates its speech by adding in a reverb
effect.

A.4 Sensor Commands
sensora
Reports the value of sensor A, as a number from 0 to 255.

sensorb
Reports the value of sensor B, as a number from 0 to 255.

switcha
Reports "true" if the switch plugged into sensor A is pressed, and "false"
if not.

switchb
Reports "true" if the switch plugged into sensor B is pressed, and "false"
if not.

resetdp
Reset the value of data pointer to 0.

record value
Records value in the data buffer and advances the data pointer.

recall value
Reports the value of the current data point and advances the data pointer.

erase number
Sets the value of the first number elements of the data array to zero and
then sets the data pointer to zero.

Appendix A - 71

A.5 Control Commands
loop [body]
Repetitively executes the body code indefinitely.

repeat times [body]
Executes the body code for times repetitions. times may be a constant or
a calculated value.

if condition [body]
If the condition is true, the cricket executes the body code. Note: a
condition expression that evaluates to zero is considered "false"; all
non-zero expressions are "true".

ifelse condition [bodyl] [body2]
If condition is true, executes body-1; otherwise, executes body-2.

waituntil [condition]
Loops repeatedly testing condition, continuing subsequent program
execution after it becomes true. Note that condition must be contained
in square brackets; this is unlike the conditions for if and ifelse, which
do not use brackets.

stop
Terminates execution of procedure, returning control to calling proce-
dure.

output value
Terminates execution of procedure, reporting value as result.

A.6 Number Commands

Addition operator.

Subtraction operator.
*

Multiplication operator.

Division operator.

Modulus operator (remainder after integer division).

and
Logical bitwise and operation

or
Logical bitwise or operation.

xor
Logical bitwise or exclusive or.

72 -Appendix A

not
Logical not operation. Use only with boolean values (1 or 0).

random
Reports a pseudo-random number between 0 to 32767.

A.7 Multitasking Commands
when [condition] [body]
Launches a parallel process that repeatedly checks condition and ex-
ecutes body whenever condition changes from false to true. The when
rule is "edge-triggered" and remains in effect until it is turned off with
the whenoff primitive. Only one when rule can be in effect at a time; if
a new when rule is executed by the program, this new rule replaces the
previous rule.

whenoff
Turns off any existing when rule.

A.8 Infrared Communication Commands
send value
Transmits a value via infrared.

ir
Reports the byte most recently received by the infrared detector. Note
that the Blue Dot crickets do not clear the infrared buffer. Thus the ir
primitive reports the most recent byte received.

newir?
Reports true if a new byte has been received by the infrared detector
since last time ir was used, and false if not. It does not effect the content
of the infrared buffer.

Appendix A - 73

Appendix B - Program Code

The following pages present the BricketLogo programs created by the

participants. These are the programs that ran the three constructions

described in the case studies.

These are written here in the BricketLogo file format. Thus they are

presented as Logo code, rather than the representation the children

worked with. I have added tabs for formatting to ease readability.

74 -Appendix B

B. 1 The Electronic Cone

global [my-d dl d2 d3]

to start
setmy-d 0
when [switcha]
[speak my-d]
loop [

set-them
fix-them
speak my-d
wait 11

end

to set-them
setdl (distance-red + distance-blue) /2
wait 1
setd2 (distance-red + distance-blue) / 2
wait 1
setd3 (distance-red + distance-blue) / 2

end

to fix-them
set my-d (dl + d2 + d3)/3

end

Appendix B - 75

B.2 The Tricorder

global [light temp]

to start
if switcha

[buzz-distance]
if switchb

[tell-me-light]
start

end

to buzz-distance
if (distance > 140)

[motor-on
wait 5
motor-off]

end

to tell-me-light
setlight sensora
if (light > 0 and light < 50

[note 10 100]
if (light > 50 and light < 100)

[note 10 90]
if (light > 100 and light < 150)

[note 10 80]
if (light > 150 and light < 200)

[note 10 70]
if (light > 200 and light < 255)

[note 10 60]
end

to tell-me-temp
settemp sensorb
ifelse (temp > 94)

[say "itshot]
[say "itscold

end

76 - Appendix B

B.3 BricketBot

global [which-one]

to start
alarm-clock
check-stuff

end

to alarm-clock
when [get-hour = 6 and get-minute = 30]
[say "wakeuplisa
note 20 10
note 10 70
note 5 55
note 10 70
say "wake uplisa
]

end

to check-stuff
if (switcha)

[set which-one 1]
if (switchb)

[set which-one 2]
pick-time

end

to pick-time
ifelse (get-hour < 12)

[morning]
[night]

end

to morning
if (which-one = 1)

[weather]
if (which-on = 2)

[hello]
end

to night
if (which-one = 1)

[story]
if (which-on = 2)

[song]
end

to weather
say "the temperatureis
say-number sensora

end

Appendix B - 77

to hello
say "hello
say "myname isbricket_bot
say "lisaand-i-arefriends

end

to story
say "myname isbricketbot
say "i_am_afriendlyrobot
say "lisa_mademe
say "and_i_like_tosing
say "but i wish i coulddance

end

to song
song1
song2
song3

end

to song1
note 10 60
note 5 55
note 10 61
note 5 48
note 10 44
note 7 30
note 6 100
note 7 96
note 5 80

end

to song2
note 6 70
note 8 85
note 4 97
note 4 100
note 8 100
note 10 110
note 10 140
note 2 10

end

to song3
repeat 5[

note 4 70
note 4 53

e
end

78 - Appendix B

