
The Design and Engineering
of

Variable Character Morphology
Scott Michael Eaton

B.S. Mechanical Engineering
Princeton University, May 1995

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
Master of Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2001

Author

(t Michael Eaton
Program in e I Arts and Sciences

August 10, 2001

Certified by

Bruce M. Blumberg
Associate Professor of Media Arts and Sciences

Asahi Broadcasting Corporation Career Development
Professor of Media Arts and Sciences

Accepted

Dr. Andlew B. Lippman
Chair, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

ROTCH

MASSACHUSETTS NSTiTUTE
OF TECHINOLOGY

OCT 1 2 2001

LIBRARIES
copyright 2001 Massachusetts Institute of Technology, all rights reserved

The Design and Engineering
of

Variable Character Morphology
Scott Michael Eaton

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
Master of Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2001

Read by:

Rebecca Allen
Professor

Department of Design | Media Arts
University of California Los Angles

Hisham Bizri
Research Fellow

Center for Advanced Visual Studies
Massachusetts Institute of Technology

The Design and Engineering
of

Variable Character Morphology
Scott Michael Eaton

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
Master of Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2001

Abstract

This thesis explores the technical challenges and the creative possibilities afforded by

a computational system that allows behavioral control over the appearance of a character's

morphology. Working within the framework of the Synthetic Character's behavior archi-

tecture, a system has been implemented that allows a character's internal state to drive

changes in its morphology. The system allows for real-time, multi-target blending

between body geometries, skeletons, and animations. The results reflect qualitative

changes in the character's appearance and state. Through the thesis character sketches are

used to demonstrate the potential of this integrated approach to behavior and character

morphology.

Thesis Supervisor: Bruce Blumberg
Title: Asashi Broadcast Corporation

Career Developmental Professor
of Media Arts and Sciences

acknowledgements

I would like to thank Prof. Bruce Blumberg for giving me the
opportunity to study and work with the Synthetic Characters
Research Group for the past two years, the experience has
been challenging and rewarding.

Thanks to Robert Burke for the numerous collaborations over
the past two years. Whether constructing animatronic dog
heads, evolving ants, or making two-hundred foot mutants, it
was all fun.

Thanks to Marc Downie, my one-time officemate and techni-
cal advisor, for endless advice and patience.

And thanks to the rest of the group with whom I have had the
pleasure of working: Damian Isla, Ben Resner, Michael P.
Johnson, Bill Tomlinson, Jed Wahl, Dan Stiehl, Geoff Beatty,
Matt Berlin, Jesse Gray, Yuri Ivanov, and Adolf Wong.

Special thanks to my parents and AnnMarie Doherty for their
love and support.

The Design and Engineering
of

Variable Character Morphology

Contents

List of Figures 13

Chapter 1. Introduction 15
1.1 A General Morphology System 15
1.2 The Synthetic Characters Research Group 16
1.3 Related Work 18

Chapter 2. C4 Architecture 23
2.1 Introduction 23
2.2 C4 - a layered brain architecture 24
2.3 Motor Systems 27
2.4 Summary 31

Chapter 3. The Morphology System 33
3.1 Introduction 33
3.2 Anatomy of a Virtual Character 34
3.3 The Engineering 37
3.4 Summary 52

Chapter 4. Designing for Morphology 53
4.1 Modeling 53
4.2 Skeletons and Animation 58
4.3 Optimizing Characters 58

Chapter 5. Evaluation and Future Work 61
5.1 Evaluation 61
5.2 Future Work 66
5.3 Conclusion 66

Appendix A. Character Sketches 69

References 79

List of Figures

Fig 1-1 Duncan the Highland Terrier in Trial by Eire 17
Fig 1-2 Wolf develpment. models 18
Fig 1-3 Topological equivalence across disparate shapes 19
Fig 1-4 Sims's evolved creatures 20
Fig 1-5 A morphable creature from LionHead Studios' Black and White 21
Fig 2-1 C4 system diagram 24
Fig 2-2 A simple Percept Tree 25
Fig 2-3 A simple VerbGraph 29
Fig 2-4 Adverb conversion of three animations to produce a directional walk 31
Fig 3-1 A"skinned" character 34
Fig 3-2 A "segmented" character 35
Fig 3-3 Detail of segmented meshes 35
Fig 3-4 Skeletal hierarchy of the Zulu Warrior before and after aging 36
Fig 3-5 Two inputs into a output mesh 38
Fig 3-6 Hierarchy of a MorphNode 39
Fig 3-7 Creation of a LayerMorphNode 39
Fig 3-8 Effect of extrapolation 40
Fig 3-9 A two-dimensional MorphSpace construction 42
Fig 3-10 A multi-node MorphAnimation 45
Fig 3-11 Using piecewise cosine basis functions to create morph transitions 45
Fig 3-12 The effect of layering on a young face 48
Fig 3-13 The same layers applied to an old face 49
Fig 3-14 The application of MorphLayers to minimize elbow collapse 50
Fig 4-1 NURBS fundamentals 54
Fig 4-2 Detail of a complex NURBS model 55
Fig 4-3 The use of subdivision surfaces in designing the Zulu Warrior 56
Fig 4-4 Over refined portion of the head 58
Fig 4-5 A more appropriate subdivision scheme 59
Fig 5-1 Blending boneweights vs. not blending boneweights 64

Chapter 1

Introduction

Morphology n. I. The science of form. II. Biol. That branch of
biology concerned with the form of animals and plants, and of the
structures, homologies, and metamorphoses which govern or influ-
ence that form. [1]

As defined above, morphology is concerned with the study of form.
Within a biological context, morphology and functional morphol-
ogy investigate the structure, development, and purpose of form
within living organisms. These concepts have immediate and perti-
nent analogs to artificial creatures. As computational behavior sys-
tems become more complex and develop persistence models that
develop over long periods, artificial creatures will need to possess
developed, morphologically complete bodies that allow them to
grow, age, and change over time. This thesis investigates the engi-
neering required to endow virtual creatures with bodies capable of
developing in this way.

1.1 A General Morphology System

The core contribution of this thesis is a virtual morphology system

that gives a character the ability to exhibit the sort of morphological
changes that occur in natural, biological creatures. The engineering

issues that are associated with these kinds of development are
numerous. First, it requires being able to mimic the stages of mor-

Introduction

phological development that creatures undergo as it ages from infancy to
adulthood. This is accomplished by multi-target blending between body
types. The transitions between "bodies" is analogous to the aging process
a creature would undergo during its life cycle. Of course it should be pos-
sible to modulate additional body changes on top of this aging process.
For example, a creature's weight will generally fluctuate in response to
environmental factors during its lifetime. The engineering of a virtual
morphology system should supports these changes.

The "virtual development" described above should not only manifest
itself in the creature's appearance, but also in the quality of its motion. An
extremely heavy creature should move differently than a thin creature of
the same age; likewise, an aged creature should move differently than a
young creature. A virtual morphology system should be able to handle
this manner of motion blending.

Beyond these biologically inspired functions, additional morphological
functionality is often valuable to character designers. The more expres-
sive a character is, the better it is able to convey its intentions to an
observer [11]. This expressiveness is sometimes not accessible through
joint animations, the standard mechanism for character animation, but
requires mesh deformation. The bulging of eyeballs when surprised or
other exaggerated deformations inspired by traditional animation should
be accessible through a general morphology system [37].

Finally, a functioning morphology system needs to be integrated into a
higher level behavior architecture. The work done in this thesis integrates
with the behavioral research of the Synthetic Characters Research Group
at the MIT Media Lab to form a unified architecture for behavior and
morphology.

1.2 The Synthetic Characters Research Group

The core research of the Synthetic Characters Group is in designing intel-
ligent systems that draw their inspiration from the field of animal behav-
ior. Referencing the large body of scholarly work in this area, the group
endeavors to build computational models of learning and behavior that
mimic the everyday commonsense behavior found in small, intelligent
animals such as dogs. The group takes this inspiration and uses it to create
intelligent, autonomous creatures that are situated in virtual environ-
ments. In the end, the goal is to create animated characters that, through
appropriate behavior, appear "alive" to users who interact with them.

Introduction

Fig 1-1 Duncan the
Highland Terrier in
Trial by Eire

1.2.1 Duncan

Over the past year, the Synthetic Characters Group has engineered a new
behavior architecture drawing on the lessons learned from the previous
five years of research [6]. This incarnation of the behavior system, named
C4, will be describe in Section 2.2. This behavior system is used to drive
the creatures in the Synthetic Characters' most recent installation
Sheep|Dog: Trial By Eire. In this installation the user plays the role of a
highland shepherd working his trusty terrier through a virtual sheep herd-
ing trial. The installation's lead character, Duncan the Highland Terrier,
showcases many of the systems reactive capabilities from responding to
voice commands to sheep avoidance. A companion installation features
Duncan in a training scenario where the shepherd is training him to per-
form actions using a reinforcement learning technique called clicker
training, a proven method for training real dogs [31]. This second instal-
lation showcases the ability of the C4 system to learn and adapt to envi-
ronmental stimuli. Neither of the installations, however, maintains a
model of long-term learning and persistence that would facilitate the
effective employment of a morphology system, though this is an active
area of research within the group.

1.2.2 Wolves

A portion of the group's current research is focused on issues of develop-
ment and learning within a social hierarchy, like those found in a wolf
pack. It is within this developmental context that the idea of character
morphology has immediate applications. The wolf pack installation that is
currently under development for SIGGRAPH 2001 features six wolves,
three adults and three pups, whose behavior is influence by vocalizations
(howl, whine, etc.) from the user [38]. How the user directs the pups to
interact with the other wolves determines how the pup develops within
the pack's hierarchy. Over the course of a ten to twelve minute interac-
tion, the pups develop into adult wolves and take their place in the social

...........................

Introduction

U

Fig 1-2 Wolf develp-
ment. models courtesy of
Adolph Wong

hierarchy. This behavior-driven development is facilitated by the Mor-
phology System. For this installation it has been fully integrated into C4

and manages the blending of the wolves meshes, skeletons, and anima-

tions as they grow into adulthood.

The Morphology System gives virtual characters the ability to develop as

described above. This is only one feature of its functionality. Through
other mechanisms the system also gives a character the ability to squash
and stretch, layer animated facial expressions and body deformations,
blend material properties and more.

Before covering the engineering of the Morphology System, a little back-
ground is necessary to understand the nature of the work done in this the-
sis. First, I will cover the general problems associated with polyhedral
morphing and relevant work done in this field. This will be followed by a
brief summary of related works that deal with aspects of character mor-
phology.

1.3 Related Work

1.3.1 Morphing in general

There is a considerable amount of literature that addresses the complex
problem of three-dimensional, polyhedral morphing. The two problems
that are associated with morphing between three-dimensional meshes are

first finding the correspondence between the two meshes and then inter-
polating between the two. Of the two problems the first is the more diffi-
cult and has been the focus of much of the literature in this area
[9][20][40]. This problem is made difficult when the two meshes are not

topologically equivalent (not homeomorphic), meaning that either the

vertex-counts of the meshes are different or that the geometries are of dif-

ferent genus (i.e. how many holes it has through it). The correspondence
problem is generally addressed by putting the two meshes through an pre-
processing stage which modifies the meshes to create correspondence
[9][20]. This process is involved and often requires considerable user

control to achieve the desired results.

The work in this thesis does not attempt to solve the correspondence prob-

lem, still an active area of research within the computer graphics commu-

nity, but circumvents the problem through intelligent character design.

The techniques for designing homeomorphic character meshes are
described in Chapter 4. Using these techniques it is quite easy to create

homeomorphic meshes for blending, even when the shapes are vastly dif-

Introduction

ferent (Fig 1-3). The only limitation of this approach is the problem of
changing genus. While it is be possible to design around the problem by
making a hole have zero volume in one of the morph targets, this process
is difficult and the results are certainly not satisfactory because the mesh
normals generally reveal the discontinuity in the mesh. However, it is
safely assumed in this thesis that the morphological changes a character
will go through in its life-cycle will not require it to suddenly develop a
hole in its body.

Once a correspondence has been established between geometries, the
morphing problem is reduced to an interpolation of vertex characteristics.
There have been many different schemes proposed for shape interpolation
[4][9][23][36], but here simple linear interpolation produces satisfactory
results. The vertex attributes that are generally available for interpolation
include position, color, UV mapping coordinate, and in the case of
"skinned" meshes, bone influence weights (see section 3.2 for details on
skinned geometry). Which attributes to interpolate depends on the appli-
cation and the desired performance, generally the fewer the attributes to
interpolate, the faster the blending.

1.3.2 Animation retargeting

The average virtual creature is made up of an external body and an inter-
nal skeleton that drives the motion of the creature and the deformation of
its skin. When characters morph, not only does the mesh blend, but most
often the skeleton is required to blend as well. If the skeleton changes pro-
portions through morphing, animations that were tailored to the first skel-
eton will not produce plausible motion on the blended skeleton. For
example, naively applying an adult's walk animation to a child will pro-
duce an awkward, broken animation with an unnatural gait and sliding
feet. Retargeting an animation from one skeleton to another takes into
account these changes in skeletal structure and attempts to preserve the
qualities of the original motion across these changes.

Methods for retargeting animations have been an active area of research
in recent years. The work of Gleicher [15], retargets motion by specifying
specific characteristics of the motion as constraints (e.g. foot plants dur-
ing a walk cycle or the hand position of a character reaching for an
object), and attempting to maintain them across different skeletons. These
constraints are used as inputs into a spacetime constraint solver that con-
siders the changes in limb proportion and the frequency of the original
motion and then calculates the modifications needed to make to the origi-
nal animation data to fit it to the new skeleton [15]. In practice this is an

Ii
N

Fig 1-3 Topological
equivalence across
disparate shapes.

Introduction

Fig 1-4 Sims's evolved crea-
tures [35]

effective way to efficiently reuse animations, thereby limiting the work-
load on an animator or motion capture specialists. This approach how-
ever, by definition, does not produce qualitatively different animations
from one skeleton to the next; a baby's walk cycle retargeted for use on an
adult, for example, will produce an animation that looks like an adult try-
ing to walk like a baby.

A different approach is taken by Hodgins and Pollard in [16]. The system
they describe produces motion, not with keyframed animations or motion
capture, but by using a physically based control system that takes into
account limb mass and moments of inertia and then uses these inputs to
calculate the forces and torques required to produce motion. The system
is able to adapt a tuned control system to work on a character of different
proportions, effectively retargeting the motion to the new character.
Because the retargeting is a function of the physical properties of the new
body, the animations do have a qualitatively different appearance. The
drawback of this approach, however, is that it replaces the expressive and
emotive qualities of keyframed animation with purely functional motion.

While both of these techniques produce compelling results, neither is
immediately appropriate for use in this work. The first does not produce
animations with independently unique qualities (e.g. a baby-like walk and

an adult-like walk), and the second takes the animation out of the hand-
animated, sample-based realm that the Synthetic Characters Group con-
siders so important for character expression.

1.3.3 Artificial Life and Other Morphing Creatures

1.3.3.1 Karl Sims - Evolving Virtual Creature

This seminal work published by Sims in 1995 examines the idea of evolv-
ing creature morphology and behavior using genetic algorithms and a
simulated physics environment [35]. The "genetics" of each creature dic-
tate its morphology, specifying the size of limbs, how they interconnect,
and the degrees of freedom available at each joint. The genes also dictate
the creature's motor and sensory controls. To evolve the creatures, each
generation is subjected to afitness test, for example, how far they can
locomote in 10 seconds. The top performing creatures are allowed to
reproduce and pass on their genes to following generations. This mixing

of the gene pool along with random mutations, creates new generation of
morphologically unique creatures. Over many, many generations, these

creatures evolve bodies that are ideally suited to their environment (as
measured by the fitness test).

Introduction

While eminently compelling as an example of functional morphology in
virtual creatures, the problems addressed by Sims ultimately lie outside of
the scope of this thesis. More immediately relevant is the work LionHead
Studios has done in the recently released Black and White.

1.3.3.2 Black and White

Black and White, a computer game by LionHead Studios, a U.K. based
computer entertainment company, develops the idea of creature morphol-
ogy along similar lines as this thesis [22]. In the game, creatures' behavior
systems drive morphological changes in their appearance. The premise of
the game is that the user is a disembodied deity with dominion over a
small population of villagers. The users intentions are conveyed primarily
through direct intervention in worldly affairs, but his will is indirectly
manifested through the behavior of his "pet creature." This creature
observes and learns from the behavior of his deity. If the user is evil and
unjust, the creature will learn cruelty; likewise if the user is just, the crea-
ture will learn to be equitable. These changes in the creature's disposition
manifest themselves not only in its behavior, but also through a slow mor-
phing of the creature's body and material properties..

Fig 1-5 A morphable
creature from Lion-
Head Studios' Black and
White [22] all rights reserved

..

Introduction

Chapter 2

C4 Architecture

2.1 Introduction

The Morphology System was developed from the start to be inte-
grated into the Synthetic Character's behavior architecture, the cur-
rent revision called C4. C4 is latest in a series of brain architectures
developed by the Synthetic Characters research group. This archi-
tecture informed many of the design decisions that were made
regarding the functionality of the Morphology System and provided
the scaffolding for its development. In order to understand these
design decisions and how the Morphology System integrates into
C4, it is first necessary to understand a bit about C4. This section
provides an overview of the core functionality of the C4 architec-
ture and how it relates to the Morphology System. It does not, how-
ever, cover the details or the extended functionality of this powerful
system. For these details I refer the reader to the recent work of Isla
et al [17].

C4 Architecture

The World

Working Memory
Sensory System

Perception System Percept
Memory

Action System
Action Groups

Attention Selection

Action Selection
Blackboard

Postings
Navigation System Object of Attention

Motor Desired
Motor System
Layers Morph Desired

Primary Motor Group MorphSpace Blend MorphSyte
4 MorphSpace

Look-At Layer Layer Blend1 MorphAnimation

Emotion layer Layer Blend2... MorphLayers

The World

Fig 2-1 C4 system diagram

2.2 C4 - a layered brain architecture

The Morphology System is a modular system that is integrated into the
C4 architecture as shown in Fig 2-1. Given the interconnections of the
architecture, every system, either directly or indirectly, interfaces with the
Morphology System.

2.2.1 Sensing and Perception

The first two layers in the C4 architecture, the Sensory and Perception
Systems, indirectly support the Morphology System by situating the crea-
ture in the world and giving it the ability to perceive stimuli that might
trigger changes in morphology.

The Sensory System is the top layer of the creature's brain and is respon-
sible for collecting and filtering the events that occur in the world. After
the Sensory System has filtered the data, it is handed off to the Perception
System for processing.

C4 Architecture

Whatever

Retinal World Body SoundShap Location Location Location

SheepShape Bounding UtteranceBox

sit" "down" away"

Fig 2-2 A simple Percept Tree

The Perception System exists in a form called the Percept Tree, which is a
hierarchical arrangement of perceptions, or "percepts," in order of
increasing specificity (Fig 2-2). A percept represents "an atomic classifi-
cation and data extraction unit that models some aspect of the sensory
information," and is passed into the Perception System by the Sensory
System [17]. For example, if a creature's Sensory System sees a sheep in
the environment, it will pass a SheepShaped percept into the Percept Tree.
This percept will be evaluated at each level of the Percept Tree for a
match. If it does match, it will be passed down the branch and evaluated
by each of that percept's children for a match, and so on. This Sheep-

Shape percept will work its way down the tree and eventually activate the
SheepShape percept seen in Fig 2-2

2.2.2 Action System

The Perception System interfaces with the Action System through a "per-
cept repository" call Working Memory. The Action System takes the out-

put of the Perception System and is able to orchestrates direct changes in
the Morphology System. The Action System is the core of the C4 archi-
tecture and is responsible for processing the percepts, selecting the appro-
priate actions based on these inputs, and then passing messages along to
the Motor and Morphology Systems to execute these actions.

The building block of the Action System is structure called the ActionTu-
ple. The ActionTuple is a small computational structure that, when active,
determines the current action of the creature. Every ActionTuple contains

information that specifies what its action is, when the action should
become active, how long it should be active for, what the target of the

action should be (if any), and how valuable this action is to do. This func-

tionality is provided by these five subcomponents:

C4 Architecture

1. Action: This is the component that determines what action will take
place if the ActionTuple becomes active. The action will generally
modify the contents of the internal blackboard (section 2.2.3), the
MOTORDESIRED or MORPHDESIRED entries for example, to
get a lower-level system like the Motor System or the Morphology
System to begin executing the action.

2. TriggerContext: the TriggerContext is the component that determines
what conditions are necessary for the action to become available for
activation. This component most often uses percept information to
trigger the ActionTuple. In an "eat" ActionTuple for example, the
TriggerContext could be the presence of a FoodShape percept. Thus
when food is present, the trigger returns positive and the "eat"
ActionTuple becomes active. More complex combinations of triggers
are also possible. Using the same "eat" example, a trigger could be
built where the creature would eat only if there was food present and
he was told to eat. This trigger would require a FoodShape percept as
well as an EatCommand percept to become active.

3. DoUntilContext: This context determines how long the action should
be active, essentially determining the continuing relevance of the
action. It can be specified as a constant length of time, a condition
that waits until the original trigger context is no longer true, or other
customized ending-conditions.

4. ObjectContext: This context represents the object that the action will
act upon, the "direct object" of the verb. In the "eat food" example,
the food would be the ObjectContext. This context is posted to the
internal blackboard as the OBJECTOFATTENTION and becomes
available to other systems. The Motor System, for example, might be
trying to look at whatever the object of attention is and will query the
blackboard for this information. Since not all action are "done to"
something, this component is not always used.

5. Intrinsic Value: This value represents how inherently "good" an
action is to do. This value is important in selecting between multiple
actions whose triggers are active. The action that has a higher intrin-
sic value is reliably selected over the other, lesser value actions. This
value may be modified by learning and reinforcement.

An example will help clarify how the Action System and the ActionTuple
interface with the functionality of the Morphology System. We will con-
tinue with the "eat food" example introduced above. The ActionTuple
that was being constructed has a TriggerContext that activates in the pres-
ence of a FoodShape percept (i.e. when there is food present, I can eat it).
When this tuple gets activated it begins to perform the Actions that are

C4 Architecture

associated with it. The first obvious Action to include is an "eat food"
motor action. This executes the actual animation of the creature eating the
food. But because an ActionTuple can have more than one action, we can
also include morph actions. We will include two. First, when the creature
starts to eat, we will synchronize a MorphAnimation with the "eat" ani-
mation. This MorphAnimation will bulge the creature's cheeks out to the
sides while it is chewing, increasing the expressiveness of the action.
When the creature finishes chewing, the MorphAnimation will transition
the face back to normal. The second morph action will slightly increment
the creature's weight as a result of eating the food. This change in weight
will be passed to the Morphology System via the internal BlackBoard and
the creature's body will be morphed to reflect this change in weight.

The ActionTuple structure is extremely flexible and can accommodate a
wide range of custom actions and trigger. By appropriately designing
these actions and triggers, the Action System is able to access the full
functionality of the Morphology System.

2.2.3 The Internal BlackBoard

Within a single creature there is important information that needs to be
passed between systems at every clock cycle. This information inter-
change in facilitated by a shared blackboard. To enforce modularity, sys-
tems do not communicate directly with other systems within the creature.
Instead, systems post pertinent information to the internal blackboard
along with the time that it was posted and a token identifying what kind of

information it is. Once a system writes to the internal blackboard, any
other system within the creature can poll it for the latest information. As

an example, when the Action System is finished updating it will post an

entry to the internal blackboard under the token MORPHDESIRED,
which represents the morphAnimation that the Action System has deter-
mined should be active. When it is time for the Morphology System to
update, it will query the blackboard for the MORPHDESIRED token
and base its update on this posting. It doesn't care who posted it, only that
it is the most recent morph request in the blackboard. This pathway is uti-

lized extensively by the Morphology System for receiving blending infor-
mation and the desired MorphAnimations.

2.3 Motor Systems

The Motor System is the layer of the C4 architecture that is responsible

for animating the virtual creatures. The inner workings of the Morphol-

C4 Architecture

ogy System are intimately connected with the functionality of the Motor
System. When the Morphology System modifies a creature's structure,
the Motor System needs to adapt its animations to reflect these changes.
Because the functionality of the Motor System is so important to charac-
ter morphology, it will be covered in considerable detail.

2.3.1 Background

The Motor System is the layer of the C4 architecture that is responsible
for animating the virtual creature. A creature's motor actions manifest
themselves as animations played out on the virtual skeleton of the crea-
ture. These animations can be created in numerous ways that include
motion capture, hand animation, or physical simulation. In the Synthetic
Characters Group we believe that creature that maintain complex internal
state must be able to convey this information to the observer through its
appearance and quality of motion. To meet this end we take inspiration
from the expressiveness and dynamic range of classical animation. We
believe that a talented animator can produce far more expressive motion
than could ever be achieved with procedural or even motion captured ani-
mation. For this reason, our Motor Systems are based around sample ani-
mations that are always handcrafted by animators.

Considerable research has recently been done on the use of sample anima-
tions as input into real-time graphic systems. The work of Rose et al [34]
serves as the foundation for much of the motor system development in the
Synthetic Characters Group. This work introduced the idea of Verbs and
Adverbs (later expanded on by Rose in [32]). This technique uses radial
basis functions (RBF) to blend between similar animations (the verb)
each with a unique emotional characteristics (the adverb). Thus, given
multiple input animations each with different characteristics, an RBF
blend gives a single output animation that contains a mix of the character-
istics from the input animations. This functionality is extremely important
to character morphology because it allows the characteristic motions from
different stages of development to be blended as a character develops. For
example, an animator may create two sample animations, a skinny-walk
and a heavy-walk. In this example the verb "walk" could be said to live in
the "skinny-heavy" adverb space. Using the techniques proposed by
Rose, these animations are blended in real-time giving the creature access
to an entire range of animations between skinny and heavy. The benefit of
this approach is that for relatively few sample animations a vast set of ani-
mations become available to the Morphology System.

Rose also introduces the idea of the VerbGraph in [34]. The VerbGraph is

C4 Architecture

Fig 2-3 A simple VerbGraph

a system for properly sequencing short animation segments for output to
the creature. It consists of a directed graph of "verb" nodes, each repre-
senting an animation, in which the edges of the graph represent all the
allowable transitions into and out of that particular node. This graph, in
essence, governs the transitions between the different animations that are
available to the creature. Take a creature that is lying down, for example.
This creature cannot go from a lying down animation straight into a run-
ning animation without an embarrassing discontinuity. A properly con-
structed VerbGraph demands certain transitions to take place before the
creature could run. The graph would require the creature to transition
from the lie down animation to stand, then stand to walk, and finally walk
to run. These transitions could be hand animated and inserted as nodes
into the graph or they could be produced automatically [33]. Fig 2-3
shows an example of a simple VerbGraph. While not directly interfaced
with the Morphology System, the functionality of the VerbGraph is
important for believable, real-time character animation.

Another feature that is indispensable for creating compelling characters is
animation layering. As described by Perlin in [28], a motor system should
have the ability to override certain degrees of freedom (DOFs) in a char-
acter's skeleton to play higher priority animations while the initial anima-
tion continues to play on the rest of the skeleton. Take for example a
character who is walking and wants to wave his arm. Initially the walk
animation controls the DOFs in the arms, but when the higher priority
"wave" animation is requested, it takes control of the arm DOFs, executes
the wave animation and then returns control of the arm to the walk anima-
tion. The Morphology System can synchronize morph animation with
these animation layers to enhance the expressiveness of a character's ani-
mation.

There are currently two motor systems available in the C4 architecture.
The first, called simply the C4 Motor System, implements the blending of
Rose and the layering of Perlin; the second, called Posegraph is an area of

C4 Architecture

continuing research within the group that extends the standard set of
motor functionality into the realm of motor learning. Both motor systems
can be used interchangeably with the Morphology System.

2.3.2 C4 Motor System

The C4 Motor System is a basic implementation of the ideas presented
above. It allows for multidimensional verb-adverb blending and has a
simple implementation of the VerbGraph. It also supports the type of lay-
ering proposed by Perlin. It does not however support the real-time gener-
ation of transitions.

The system integrates with the Morphology System and the rest of the
Character's architecture through the internal blackboard. At every update
the Action System passes the desired motor skill into the creature's inter-
nal blackboard. During the motor system's update, it queries the
MOTOR DESIRED and MOTORADVERB slots in the blackboard to
determine what animation should become active and what blend (adverb
setting) that animation should have. The Motor System takes the desired
motor skill and compares it to what is currently running. If the two match,
the animation continues to run. If they are different, the Motor System
begins a traversal of the VerbGraph finding the shortest path to the
desired node, and then begins to execute the sequence of animations
required to complete this traversal.

2.3.3 Posegraph

The Posegraph motor system represents the vanguard of motor research
within the group. The system developed by Downie [12], extends the
functionality of the C4 motor system by introducing a new representation
for animation data. Instead of loading animations in as atomic animations
"clips", animations are loaded into the Posegraph system and then disas-
sembled frame by frame into discreet BodyPoses. These BodyPoses are
then connected into a complex directed, weighted graph that could be
though of as a hyper-detailed VerbGraph. Each BodyPose contains infor-
mation on the rotation of each joint in the pose, the velocities at each
joint, as well as information about what animation it originated from and
when. This unique representation of the animation data coupled with a
robust underlying architecture enable the Posegraph motor system to do
many useful things. Among them, it is able to generate informed auto-
matic transitions that can be saved out, edited, and reused; it is able to
generate new animations by spatially aligning relevant BodyPoses; and it
is able to constrain end-effector positions, such as foot falls, at runtime.
The latter proves especially valuable to the Morphology System as a

C4 Architecture

means of ensuring a character's feet remain on and attached to the ground
throughout its skeleton blending. For details on the inner workings of the
Posegraph see the recent work of Downie [12].

Beyond these representational differences, the Posegraph motor system
integrates with the Morphology System and the overall C4 architecture
through the same MOTORDESIRED and MOTORADVERB mecha-
nisms described above.

2.3.4 AdverbConverters

Both the C4 Motor System and the Posegraph Motor System rely on a
computational device called the AdverbConverter to supply valid adverb
information to the Motor System. The utility of the AdverbConverter lies
is in its ability to take simple, intuitive adverb representations and convert
them into the actual blend weight values that the Motor System requires.
For example, adverbs are quite often used for navigation. A navigation
specific AdverbConverter, called a BearingAdverbConverter, takes a sin-
gle value between -1 (turn hard left) and 1(turn hard right), and converts it
into three blendweights which the Motor System uses to determine how
much of each animation, walkleft, walk straight, walk_right, to blend
into the output animation. The Morphology System makes extensive use
of custom AdverbConverters to interface with the Motor System. It is
through this mechanism that a character's morphological changes are
reflected in its animations (see Section 3.3.3).

2.4 Summary

At each clock cycle, every creature in the virtual world refreshes its view
of the environment and decide how to respond to changes. The incoming
sensory information is first received by the Sensory System. This infor-
mation is filtered into the Perception System where it is sorted and classi-
fied into different percepts. Based on these percepts, the character's
Action System updates and decides what is the most appropriate action
for the creature take given his current view of the world. The Morphology
System is the next to update. During this update, the Morphology System
updates all the installed components adjusting the creature's morphology
as necessary. When complete, the Motor System gets updated. The Motor
System then starts, stops, or updates animations as per the Action Sys-
tem's request, taking into account any changes in the character's mor-
phology. At the end of all these behavior and motor computations, the
graphics layer gets updated and renders the characters on the screen.

0.25

Fig 2-4 Adverb conversion
of three animations to
produce a directional
walk

C4 Architecture

Chapter 3

The Morphology System

3.1 Introduction

The Morphology System is a complete, modular system that has
been developed to be easily integrated into the Synthetic Charac-
ter's behavior architecture. This behavior architecture gives crea-
tures the ability to maintain internal state about their drives,
emotional state, beliefs about the world, and even their age. The
Morphology System was designed to allow cross wiring between
any combination of these parameters and the character's morphol-

ogy.

When a character is created, a designer authors character specific
extensions to the major systems within C4: the Action System,
Motor System, Perception System, and the Morphology System.
These character specific systems extend the functionality of the
general systems by adding the details that are specific to each char-
acter, thereby giving it its uniqueness. For example, the Action Sys-
tem of Duncan extends the functionality of ActionSystem.java by
adding "Duncan specific" actions.

Similarly, a Morphology System is added to a creature to give it
specific control over how and when its body will change. To con-
trol these changes, the Morphology System has three main compo-
nents. They are MorphSpaces, MorphAnimations, and

The Morphology System

Fig 3-1 A"skinned"
character

MorphLayers. These components can be added to the creature's Morphol-
ogy System independently or in combination, each providing specific
functionality.

The MorphSpace is the principal component of the Morphology System

and performs the morphing associated with long-term, gradual morpho-

logical changes like aging or gaining weight. The second main compo-

nent, the MorphAnimation, is essentially a sequence of "body" keyframes

with user specified transition times that can be played out on demand. The

useful characteristic of the MorphAnimation is that it can be integrated
into an actionTuple and thus be directly controlled by a creature's action

selection. This component is a powerful tool for creating exaggerations
that lie outside the range of what is possible within the confines of a Mor-
phSpace. MorphLayers are the final component of the Morphology Sys-

tem. Layers give the character designer the ability to layer additional
blends on top of the blending that is already done in the MorphSpace and

the MorphAnimations without destroying the previous blending. Layering

is useful for local deformations like facial expressions. Before I present

the engineering details of these components, an primer in the anatomy of

a virtual character is necessary.

3.2 Anatomy of a Virtual Character

Graphically, a character is made up of:

1. Polygonal meshes, which may be only a single continuous mesh or

many segmented meshes

2. A skeleton of TranformControllers (TCs) which are the virtual "joints"

of the character and contain a default set of positions and rotations that

give the skeleton its shape

3. Material properties that contain information on the character's color,
specularity, and a texture maps

The exterior of a virtual character is described by its polygonal meshes.

There can be few or many meshes that make up a character's body. In a

simple character like the BlueMan shown in Fig 3-1, three meshes

describe the body, one large mesh that forms the skin and then two

meshes for the eyeballs. The amount of detail that can be contained in

each mesh is proportional to the number of vertices in the mesh, and of

course the more vertices in each mesh the more expensive it is to morph.

The BlueMan is quite low resolution, and consequently, is computation-

ally inexpensive to morph. By contrast, the character shown in Fig 3-2 is

The Morphology System

highly detailed and requires considerably more resources to morph.

Generally, a character's meshes can be joined to its skeleton in two ways.
The simplest and least computationally expensive method is to directly
link discreet meshes to each bone. This type of character is described as
"segmented" (Fig 3-2). Of course, few creatures in nature, excepting
insects, are segmented. To create a more natural appearance a creature
must be "skinned." Skinning lets one mesh be influenced and deformed
by the motion of multiple bones, much like the skin of natural creatures.

The BlueMan is an example of a skinned character. He has a single pri-
mary mesh whose deformation is influenced by the bones in his skeleton.
Skinning produces a generally smooth deformation of the mesh in con-
junction with the motion of the skeleton. Which bones influence the
deformation of each vertex is determined during the construction of the
character, and these values are loaded into a SkinController at runtime. It
is sufficient to say here that for each vertex, the SkinController has a list
of all the bones in the skeleton and how much they influence that vertex.
These influence are referred to as bone weights. For a single vertex in the
BlueMan this list of bone weights would look something like:

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.215626, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.784374, 0.0, 0.0;

which in optimized form is simply:

BoneO7 0.215626
Bonel4 0.784374

In natural language this says that this vertex, somewhere in the Blue-
Man's shoulder, is influence by the motion of the bone in the upper arm
(78%) and the uppermost spine segment (21%) and not by any of the
other bones. For a further details on skinning I refer the reader to
[13][25][2][3].

Beneath a character's meshes lives its skeleton. The skeleton is made up
of a hierarchy of TransformControllers. A TransformController can be
thought of as a joint in the skeleton that contains a rotation and a position.
Because the TransformControllers are arranged hierarchically, modifica-
tions at one level propagate down to the children of that controller. For
example, if the TC representing the shoulder rotates, this rotation trans-
forms all the shoulder's children in the skeletal hierarchy - the elbow, the
wrist, and all the finger joints, effectively rotating the entire arm. Each
joint in the hierarchy has its own TransformController that specifies how
far away it is from its parent joint (here the shoulder) and any rotations
imparted at that particular joint.

Fig 3-2 A "segmented"
character

Fig 3-3 Detail
of segmented meshes

The Morphology System

A creature's TC list contains not only these "joint" TCs, but also a Trans-
form Controller for each mesh that is linked to the skeleton (as in a seg-
mented character). These additional TCs tells the graphics system where
and in what orientation the meshes should be attach to the skeleton. This
hierarchy, starting with the "root" TransformController (generally around
the hip area) and extending out to the tips of the fingers and toes,
describes the entire skeleton and, together with the linked and skinned
meshes, makeups the creature's body.

Fig 3-4 Skeletal hierarchy of the Zulu Warrior before and after aging

I LJ
L7J -

The Morphology System

3.3 The Engineering

3.3.1 MorphTools
The MorphTools are the work-horse of the Morphology System. This
class handles all the low-level computation required to morph the meshes
and skeletons on the screen. While system components such as the Mor-
phSpace decide how the creature should be morphed, the MorphTools
make this happen.

When the Morphology System needs to morph a creature, the skeleton is
the first thing to get blended. A call is made to the blendSkeletono
method in the MorphTools. This method performs multi-target blending
on the skeleton and takes as arguments: n input skeletons, n blend weights
(one for each input skeleton), and an output skeleton to receive the results
of the blending. The positions and rotations of every TransformController
in the skeleton are interpolated according to the specified blend values
and the result is placed in the output skeleton.

Mathematically, each TransformController in the skeleton encapsulates a
three dimensional position vector and a unit quaternion rotation. The
position vector is blended using standard linear interpolation. The quater-
nion rotations are first logged and then interpolated in Euclidean tangent
space and then transferred back again using the approach outlined in [19].
In general the blending of TC and vertex characteristics is governed by:

n

Vinterp iv (1)

where vinterp represents the output value of an multi-dimensional blend

given n input values and n blendweights (i).

Once the skeleton is blended, the meshes are blended using the same set
of blend weights. The mechanism for the mesh blending is provided by
two methods in the graphic system, they are MultiplyAndSet (MAS) and
MultiplyAndAdd (MAD). Both methods operate on a single output mesh
and take as arguments a blendweight and an input mesh. The first method,
MAS, multiplies each vertex value by the specified blendweight and
overwrites the corresponding vertex value in the output mesh, in essence
resetting the blend on the output mesh. The second method, MAD, multi-
plies each vertex by the blendweight and then adds the result to the corre-
sponding value in the output mesh. Here is a simple example to illustrate
the use of these methods.

The Morphology System

MagicGeometry outputMesh getMeTheMeshToDisplay-
OnTheScreeno;

MagicGeometry inputMeshl = getMeTheFirstMorphTargeto;U MagicGeometry inputMesh2 =getMeTheFirstSecondMorphTar-
geto;

input I input2
someBlendValuel = getBlendValueo;

MAS(O.4) MAD(O.6) someBlendValue2 = 1 - someBlendValue1;

/now blend the meshes

outputMesh.MAS (someBlendValuel, inputMeshl);

outputMesh.MAD (someBlendValue2, inputMesh2);
outputMesh

// show me the blended mesh
Fig 3-5 Two inputs into a showOnTheScreen(outputMesh)
output mesh

Given a mesh called outputMesh, the first command, outputMesh.MAS

(someBlendValuel, inputMesh1), takes the floating point value,
someBlendValuel, and multiplies this by every vertex attribute (position,
UV, etc.) in inputMeshI, and sets these new vertex values into output-
Mesh. The blending action occurs when output-
Mesh.MAD(someBlendValue2, inputMesh2) is called, adding the product

of someBlendValue2 and the vertex attributes of inputMesh2 to output-
Mesh. In essence, the outputMesh serves a "vertex container" that will

hold whatever is put into it by the MAS and MAD commands, and keep

those values until it is modified again.

When specifying the blend values, predictable results are only achieved

when the values sum to one, otherwise the blend extends outside of the

convex hull of the examples and the character's appearance begins to

breakdown. Section 3.3.2 looks briefly at the extrapolation effects that

can be achieved by intelligently blending outside this hull.

Blending skinned meshes follows the same procedure except that the

SkinController must first be disabled, effectively "turning off' the skin,
before the blending can take place. Once the skin is "turned off', the mesh

is blended in a neutral reference frame, called the bindpose. When this

blending is completed, the SkinController rebinds the blended skin to the

skeleton.

6 W-

The Morphology System

3.3.2 Nodes

3.3.2.1 MorphNodes

The building blocks of the Morphology System are data
structures called MorphNodes. Each node contains all Morp
the morphable data within a character's body Fig 3-6. m
These nodes are used as the inputs into every component
of the Morphology System; they define the extents of a
MorphSpace, the keyframes in a MorphAnimation and,
along with LayerMorphNodes, form the basis for Mor-
phLayers.

During the initialization of the Morphology System, all
the MorphNodes that will be used by the character are
loaded into system memory and maintained there for
used as needed. For large, complex models this approach
is very memory intensive, especially when more that a
few nodes are needed by the Morph System. For exam-
ple, the character in Fig 3-2 has a total of 24000 poly-
gons, and 190 TransformControllers (including one for
each dreadlock) that define his body. Each variation of rc
this body that is loaded in as a MorphNode requires
approximately 47 MB of system memory. The node
loading mechanisms provides a mechanism for cutting
this cost by loading in only the meshes that are going to Fig 3-6 H
change, which quite often is not every mesh in the body
(the eyes for example may not change size or shape as a character ages,
only location). Morphing only the required meshes can results in consid-
erable savings in both memory and computation. In this character, the
meshes in both the hands and the feet (8500 polygons total), do not
change from young to old. Using only the necessary meshes results in a
30% decrease in memory consumption and a -3% increase in framerate.

3.3.2.2 LayerMorphNodes

LayerMorphNodes (also called LayerNodes) contain data structures simi-
lar to a standard MorphNode except that these nodes contain the results of
a subtraction between two MorphNodes. The result is a node that contains
information about the relative changes from one body to the next. Layer-
MorphNodes can be used as inputs for both MorphAnimations and Mor-
phLayers.

A LayerNode is constructed by specifying a reference body and a target

hNode

eshes
MagicGeometryMesh
A mesh
A material

MagicGeometryMesh - skinned
a mesh
A material
A SkinController

B per venet bone weights

TransformController
A position

rotation

ierarchy of a MorphNode

('gi

Fig 3-7 Creation of a
LayerMorphNode

so

- gL, =

The Morphology System

body which become the two operands in the subtraction. The reference
body is subtracted from the target body, leaving only the changes that

exist between the two. Because this information is relative and not abso-
lute, it allows LayerNode to be added on top of existing blends with out

destroying the underlying properties. For example, when a character is

aging from young to old, the MorphSpace controls the absolute changes
in its appearance. But LayerNodes can be used to add facial expressions.

young These facial expressions maintain their effect no matter how the underly-
ing MorphSpace changes. These facial expression would be created by
using a young, neutral face as the reference node, and then subtracting
that from a young, happy face. The result of the subtraction would be how
much the vertices around the eyes, mouth and cheeks need to move to
make a happy face. Assuming the old face is constructed with correspon-
dence between features (see section 4.1 for detail), these changes in ver-

tex position can be "layered" on top of the arbitrarily aged face with fairly

.5 old predictable result (see Fig 3-12,13).

Of course this method breaks down in cases where the MorphSpace tran-

sitions between vastly different shapes where feature correspondence is

not preserved. For example, if the group of vertices that make up the

mouth in one mesh are located on the lower chin in the target mesh, the

layering of a smile on top of this blend would fail. In most applications
where the characters are intelligently designed the method yields effective

results.

Another interesting feature of using difference information for layering is
that it can be extrapolated beyond the limits defined by the initial sam-

old ples. The effect of extrapolation is similar to caricature in that it is able to

exaggerate the features of a blend beyond what was intended by the

designer. Fig 3-8 shows the effect of extrapolating age far beyond the
intended blend.

3.3.3 MorphSpaces

The MorphSpace is the primary component of the Morphology System.
The MorphSpace allows the user to set up an N-dimensional space that

controls a character's morphological development, where each dimension

represents an axis of development in the body space. A one-dimensional

MorphSpace, for example, would be controlled by a single parameter
2x old such as age, and defined by two age samples, one young and one old. The

extrapolated behavior system would modulate the age value and pass it into the black-
Fig 3-8 Effect of board. The Morphology System would query this value at every clock
extrapolation cycle and passes it off to the MorphSpace which would then handle all the

The Morphology System

body morphing. Similarly, a two dimensional MorphSpace would be

defined by four examples (see Fig 3-9), and would require two values

from the behavior system to fully specify the blend. In theory, a Mor-

phSpace could be generalized into N-dimensions. In practice though, this

space would require blending 2" meshes, 2" skeletons and 2" animations

(3*2" animations for directional locomotion) at every clock cycle. Not

only would this be computationally limiting, but the authoring time

required to produce all the sample meshes and animations would be quite

expensive.

3.3.3.1 Setup

The first step in setting up a MorphSpace is to instantiate an instance of a

general MorphSpace. The constructor requires references to the Morphol-

ogy System that it lives in, the character's internal blackboard (so it

knows where to look for updated information from the rest of the behav-

ior system) and the World that the character lives in (for rendering pur-

poses). Once the generic MorphSpace is constructed it is customized by

specify a MorphSpaceConverter. The system currently has two Mor-

phSpaceConverters implemented, a MorphSpaceConvertorlD and a

MorphSpaceConvertor2D. It is the MorphSpaceConverter's job to take

the values the MorphSpace grabs from the blackboard and convert them

into the blend values that are readable by the MorphTools. Below is

pseudocode from a two-dimensional MorphSpaceConverter that converts

two parameter values, valueA and valueB, into a vector of blendweights

that gets passed off to the MorphTools.

A = 1-valueA;
B = valueA;
C = 1-valueB;
D = valueB;

blend.set(O, A*C);
blend.set(l, B*C);
blend.set(2, A*D);
blend.set(3, B*D);

The formulation is simple but useful in that it allows intuitive values, such

as age and weight, to be used for A and B. Additional MorphSpaceCon-

verters can be written that define conversions for arbitrary spaces, they

need only define a method convertO, an return a vector of blend weights

that is equal to the number of nodes that define the MorphSpace (i.e. one

The Morphology System

blend weight for every sample).

Finally, the MorphNodes that define the extents of the space must be

added to the space. For a two dimensional MorphSpace, they are specified

in the order (0,0) (0,1) (1,0) (1,1) with the node at (0,0) corresponding

with the initial body of the character. This ordering is entirely arbitrary

and may be customized, but whatever the ordering, it must coincide with

the order of the blend weights provided by the MorphSpaceConverter.

An example of a MorphSpace construction:

MorphSpace ms = new MorphSpace("Morphspace Name",
myMorphSystem, CreaturesWorkingmemory, theWorld);

ms.setWhenToUpdate (UPDATEALWAYS)
ms.addMorphSpaceConverter(new MorphSpaceConverter2DO);

ms.addNode(baby);
ms.addNode(baby);
ms.addNode(skinny);
ms.addNode(fat);
myMorphSystem.addMorphSpace(ms);

Fig 3-9 A two-dimensional
MorphSpace construction

The Morphology System

3.3.3.2 Runtime

During the life cycle of a character, the Morphology System is updated at
every tick of the world clock. What happens to the MorphSpace during

these updates? First the MorphSpace polls the internal blackboard for
updates to a vector of blendweights identified by the token
"MORPHBLEND". Once this value is extracted, if the MorphSpace is
setup to blend only on changes, it looks for differences in the current val-
ues and those from the previous update. If something changed, the crea-
ture got a little heavier for example, the values are passed to the
MorphSpaceConverter and are modified into a form that is meaningful to
the morphing tools. The MorphSpace then makes a call to Mor-
phTools.blendBodieso, and gives this function the current body that is
displayed on the screen as the container for the blend, the nodes in the
MorphSpace as the inputs to the blend, and the vector or blendweights
returned by the MorphSpaceConverter.

Because the MorphSpace produces structural changes in the character's
body, it is important to have the quality of the character's animations
change to reflect is current disposition in the MorphSpace. A heavy char-
acter should not walk like a thin character, likewise a young character
should not move like an old character. To effect these changes, a series of
AdverbConverters have been developed to synchronize a blended set of
animations with the character's current location in MorphSpace. The con-
cept of the AdverbConverter was introduced in section 2.3. In this con-

struction we have the AdverbConverters poll the internal blackboard for
the value, MORPHBLEND, that the MorphSpaceConverter uses. The
adverb conversion process is similar to the MorphSpace conversion pro-

cess described above. The results of the adverb conversion are fed into the
Motor System which does the final motion blending. Four AdverbCon-
verters were implemented to work in conjunction with the MorphSpaces.

For a one-dimensional MorphSpace:

1. Adverbconverterl DMS - blends two animations, one for each sample
in the MorphSpace

2. BearingAdverbconverterlDMS - blends six animations, three direc-
tional animations for each node in the MorphSpace.

For a two-dimensional MorphSpace:

1. AdverbConverter2DMS - blends four sample animations, one for
each node in the MorphSpace.

The Morphology System

2. BearingAdverbConverter2DMS - blends twelve sample animations,
three directional animations for each node in the MorphSpace

In practice the combination of blending meshes and skeletons in conjunc-
tion with animation blending produces very compelling results. The inte-
gration of the two elements presents a believability to the developmental
changes that the character undergoes. I will now describe the functional-
ity of the MorphAnimation.

3.3.4 MorphAnimations

As introduced briefly at the beginning of this chapter, MorphAnimations
give the character designer the ability to playout sequences of morph
blends with precise control over the length of the transitions. A key fea-
ture of the MorphAnimation is its that it can be integrated into the action-
Tuple in the Action System. This puts command of MorphAnimations
under direct control of a creature's action selection. Because Morph and
MotorAnimations can be included as actions in the same actionTuple, the
designer has the ability to perfectly synchronize morph animations with a
motor animations. This coupling can be used for any number of expres-
sive effects, limited only by the designer's imagination.

3.3.4.1 Setup

A MorphAnimation is set up by first creating a new instance of the class
MorphAnimation and then specifying the nodes (either MorphNodes or
LayerMorphNodes) and the transition times between nodes. An example
of this setup is shown below:

MorphAnimation testMorph = new MorphAnimation(;

testMorph.addNode(80, firstNode, theWorld);

testMorph.addNode(50, secondNode, theWorld);

testMorph.addNode(80, backToStart, theWorld);

//Create my main morph action group

mag = new MorphActionGroup("MyMag", internalBlackboard);

mag.addSkill(makeMeAMorphSkill("MORPH", testMorph));

morphSystem.addMorphAction(mag);

In lines 2-4 above, the MorphNodes are added to the animation with inte-

The Morphology System

0 10 25 framesv

Fig 3-10 A multi-node MorphAnimation

ger transition lengths, specified in frames. The overall animation will be

210 frames long, transitioning over the first 80 frames into thefirstNode,
then to the secondNode, and finally back to the point of departure.

The second half of the code above requires explanation. First, a Mor-

phActionGroup is a class that holds all the morph "skills" (structures that

encapsulate the MorphAnimations) and makes them available to the

Action System. The MorphActionGroup gets updated at every tick and

looks at the internal blackboard to see what, if any, morph skills are

desired by the Action System. If there is a morph skill in the MorphAc-

tionGroup that matches what is being requested by the Action System, the

MorphActionGroup activates the skill and the MorphAnimation begins to

execute.

Once the MorphAnimation is activated, the MorphActionGroup hands

control over the playback of the MorphAnimation to a class called Mor-

phActionAnimation. This class is responsible for tracking the frame count

of the animation, transitioning between nodes in the animation, setting the

appropriate blend weights for a given point within the animation, and

finally calling MorphTools.blendBodieso.

.00 10 25 framespr

Fig 3-11 Using piecewise cosine basis functions to create morph
transitions

The Morphology System

For MorphAnimations, the on-screen body node is always used as the
container (the output) for the blend of two inputs. When the animation
starts, the blend takes the on-screen body from its current representation
to that of the first node in the node list. Once this first "morph segment" is
completed the MorphActionAnimation looks for another node in the ani-
mation. If there is another node, it puts the current node in as the first

input to a new blend and sets this next node as the second input to the
blend. This cycle continues until there are no more nodes, at which point
MorphActionAnimation deactivates.

One important issue that MorphActionAnimation must address is how to
smoothly transition between multi-node animations. A suitable blending
scheme needs to minimize discontinuities at node transition points. The
system currently blends with simple cosine basis functions as shown in

3.3.5. This scheme is effective in that it provides C 1 continuity between
nodes, and requires only ever blending two nodes at a time. However,
given the representation, the first derivative always goes to zero at the
sample points, which is often not the desired behavior. A full radial basis

function solution could be implement that would smooth the transitions
across samples, but would require blending more than two nodes at a time
significatly increasing computation [30].

3.3.5 MorphLayers

MorphLayers are the final component that can be installed into a charac-
ter's Morphology System. MorphLayers are defined by a single Layer-
MorphNode and are controlled by a MorphLayerManager which receives
updated layer values from the internal blackboard and blends based on

these values. MorphLayers are able to preserve the characteristics of the
underlying MorphSpace blends while adding their own unique character-
istics.

As one would expect, there is additional computational cost associated
with adding MorphLayers to a character. The MorphLayerManager is
required to re-blend an individual layer when it changes, but must also
recompute all layers whenever the underlying MorphSpace (or MorphAn-
imation) updates its blend, effectively overwriting all the layering infor-
mation. So, for a MorphSpace that is set to update at every clock cycle,
each MorphLayer must also recompute its blend every clock cycle.

Luckily, morphing layers can be a fairly efficient process. First, only

meshes that have layering information on them need be blended. For the

Zulu Warrior in Fig 3-12, only the actual face mesh has layering informa-

The Morphology System

tion. Considerable saving are had when layering calculations are done
only on this mesh. Similarly, if a layer does not involve any skeletal mod-
ifications, it is not necessary to blend the skeleton when updating the
layer. These two optimizations produce a 10% savings in computation
when running two layers on this character.

Additionally, MorphLayers require only a single MAD command for
each mesh (by contrast, each mesh in a MorphSpace blend requires a
MAS call, and at least one MAD call, depending on the dimension of the
MorphSpace).

One final optimization is achieved by looking at the individual vertex
information before it is blended. Ideally, only the vertices that change
position (or UVs, color, etc.) would need to be blended, saving computa-
tion by ignoring all the zero values that resulted from the initial subtrac-
tion that created the layerNode (the information that doesn't change from
the reference node to the target node results in zero values). However,
there is no guarantee that the vertices that changed live in one contiguous
block of memory, and chances are they are scattered throughout memory.
This prevents us from isolating and iterating through a single block of
non-zero vertices. Short of being able to do this, optimization is had by
checking each vertex for non-zero values, and if it is non-zero, then do the

multiply operation on it. This optimization trades off the computational
expense of a compare operation with that of a multiply operation across
thousands of vertices, producing a minimal but still relevant 1% increase
in framerate when tested on the expression layers in Fig 3-12,14.

3.3.5.1 MorphLayer Applications

The power of MorphLayers lies in their ability to update independently of
the underlying MorphSpace blends. This has a few interesting applica-
tions. The most common application of layering is for facial expression
[24]. This effect is shown in Fig 3-12,13. Here the layers were created by
differencing a young, neutral face with a young, expressive face. The sub-
traction produces a single set of layers that provide a good approximation
of the original expression across any age in the Morph Space. The figures
show the layers being applied to both the young head, which they would

of course work on, and on the old head. Because the old head was

designed with feature correspondence (Section 4.1), the layers provide an

excellent approximation of the original emotion. It is also interesting to

note that the full application of two layers, happy and angry, produces an
emergent third emotion, mischievous.

The Morphology System

normal angry

happy happy+angry = mischievous

Fig 3-12 The effect of layering on a young face

.

The Morphology System

angry

happy+angry = mischievous

Fig 3-13 The same layers applied to an old face

normal

happy

The Morphology System

Another interesting application of layering is to correct the shortcomings

of the general skinning algorithm [13][21][25]. Because of the way skin
deformation is calculated in response to joint rotations, it fails to preserve

volume in the mesh around the joint, resulting in the "collapsing elbow"

problem. This effect becomes increasingly noticeable at large joint angles

and is illustrated in Fig 3-14. A second shortcoming of the skinning for-
mulation is that, short of inserting special "muscle" bones into the skele-

ton, it doesn't allow for the muscle bulge you would expect when a joint

is articulated. MorphLayers can be used to compensate for both of these

shortcomings.

With MorphLayers it is possible to locally correct the breakdown of the

skinning algorithm. By modulating the blend of the MorphLayers based

on the joint angle, appropriate corrections can be made to the base mesh

where it collapses. This application is inspired by the recent work of

Lewis, et al [21]. To correct for the skinning breakdown in the original
mesh (B in Fig 3-14), a "proper" deformation is sculpted in the mesh at

the extreme of the articulation (C), the joint is then straightened, and the

resulting mesh (D) is used as a MorphLayer that blends based on the joint

angle.

Fig 3-14 The application of MorphLayers to minimize elbow collapse and mimic muscle expansion

A. The default arm mesh un-bent.

B. The same mesh showing the "collapsing elbow" problem associated
with skinning.

C. The same default mesh with a correction layer applied. The correction
layer's influence is mapped to the joint angle, blending with zero
influence when the arm is straight and full influence when the arm is
bent.

D. The correction layer that is blended with A to give the results in C.

The Morphology System

It would be possible to extend this idea into a multidimensional Mor-
phSpace to correct for problems that arise in multi-axis articulation of a
joint. The deformation at the elbow, for example, needs to deal with both
the blending of the elbow and the pronation/supination of the forearm.
These two angles can be mapped to a two dimensional "layered morph
space" to correct for the skinning breakdown during these articulations.
This would require the artist to design three correction meshes, one for a
fully bent elbow, one for a fully supinated forearm, and one for a fully
bent/supinated arm.

3.3.6 Updating the Morphology System

The Morphology System is an updateable system within the creature.
This means that at every tick the system get an update call from the crea-
ture telling it to update its internal systems. When the Morphology Sys-
tem gets this call, it updates the installed component systems in this order:
MorphSpace, MorphAnimations, and then the MorphLayers. The order-
ing of the update is important because of the hierarchical nature of the
Morphology System. At the top level, the MorphSpace determines the
base characteristics of the body. At the next level, a MorphAnimation
may be activated telling the body to transition to a certain node tempo-
rarily, possibly for expressive effect. Then on top of these changes to the
body, one or more layers can be added that reflect emotion or other state.
Once all these blends have been made the body is ready to be output to the
screen by the graphics system.

The important question to ask about updating in the Morphology System
is "when should it be done?" The question is important because, with a
graphically complex character, the morphing calculations quickly become
the limiting factor in the entire creature update. The updating scheme
determines the trade-off between consistency of framerate, and the
smoothness of the morphing.

As a rule of thumb, the frequency of the blending (every tick versus every
fifth tick, for example) should depend on the speed of the morphological
change the character is undergoing. The slower and more gradual the
changes the less frequently the MorphSpace needs to re-blended in order
to maintain a smooth development. For slow morphological changes like
aging, it does not make sense to update the MorphSpace at every clock
cycle. A better scheme that would be to update every fifth, tenth, or nth
frame. The MorphSpace allows the user to specify this update frequency.
Table 1 shows the results of different updating schemes on overall frame
rate.

The Morphology System

The gradual nature of MorphSpace transitions allow significant latitude
when updating. MorphAnimations, however, have more pressing mor-
phing needs. If an animation is specified to complete in 60 frames and
must be synchronize with a motor animation, it is hardly acceptable for

the MorphAnimation to blend every 20 th frame. This would show a total
of three in-between frames during the transition, hardly a smooth blend.
Specifying the blend frequency in a MorphAnimation is really specifying
how many frames of the transition are allowed to be dropped. Testing has
show the maximum tolerance for dropped frames is about 10% of the
number of frames in the animation (subjectively measured by observing
the relative "smoothness" of the morphing animation). This updating
scheme, in practice, produces minimal computational savings but more
economical schemes can be used as needed.

3.4 Summary

This chapter details the inner working of the Morphology System and its
essential tie ins with the Synthetic Characters C4 architecture. The combi-
nation of MorphSpaces, MorphAnimations, and MorphLayers gives the
character designer the ability to design a wide range of morphologically
pliable creatures. This design process, however, is not without consider-
ations. The next chapter investigates these considerations and develops a
workflow for designing morphable characters.

Chapter 4

Designing for Morphology

Designing for character morphology is not an haphazard undertak-
ing. The nature of the application places strict requirements on the
designer or artist. Two characters cannot be modeled independently
and expected to morph with each other. Each character must be
developed with morphology in mind from the outset. This chapter
summarizes the advantages and disadvantages of common model-
ing techniques and outlines a workflow for successfully designing
morphable characters.

4.1 Modeling

The most important consideration when designing characters for
morphing applications is maintaining homogeneous topology
across morph targets. Designing with this consideration in mind
eliminates the onerous problem of vertex correspondence described
in Section 1.3. Even high-end 3D modeling packages that imple-
ment multi-target morphing impose this requirement of consistent
topology on users [2][3].

With the ever-growing selection of modeling tools available to the
designer, the question becomes what is the best way to produce
models for variable morphology? We will look briefly at the fea-
tures and limitations of these three primary modeling techniques:
non-uniform rational B-spline surfaces (NURBS), polygon model-

Designing for Morphology

ing, and subdivision surfaces. After looking at the advantages and limita-
tions of these techniques, we will establish a workflow for easily
developing complex models that work around the vertex correspondence
problem. It is important to be clear that no matter what method is used to
model, the ultimate output needs to be a polygon mesh of consistent ver-
tex count. This means that parametric surfaces like those produced with
NURBS need to be tessellated into polygon meshes before exporting for
use in real-time.

a simple NURB curve 4.1.1 NURBS

NURBS are characterized by their ability to model complex organic sur-
faces. This organic look is provided by the mathematical representation
that underlies the surface, the B-spline. A non-uniform (knots can be
irregularly spaced), rational B-spline is a curve, most often of degree
three, which is controlled by the positioning of its control vertices (CVs)
[27]. By adjusting the CVs, the curvature of the spline is modulated, but
will always remains smooth. Extending the concept of the B-spline into
three dimensions gives a NURB surface. These surfaces are controlled by

a NURB surface the underlying curvature of intersecting B-splines, which are called iso-
params [2][3]. Details are added to a NURB surface by increasing the
number of isoparams that characterize the surface and by adjusting the
CVs that shape these isoparams (Fig 4-1). By incrementally refining a
surface with more isoparams a extremely detailed model can be con-
structed.

This method is extremely powerful and has been a standard technique in
production modeling for years [2], but it has a number of limitations that
make is less than suitable for designing morphable characters. When

creasing detail by adding designing for variable morphology, the base model is generally the first
oparams model that is constructed. Subsequent morph targets are made by modify-

ing this base model. When modifying the detailed base model, it is desir-
able to have high level controls points that allow for coarse adjustment to
the overall shape of the model, while at the same time retaining the ability
to go back in and modify details down to the finest level. A detailed
NURB surface, like the one shown in Fig 4-2, offers only control over the
details, there are no "coarse" control vertices that would allow the
designer to modify gross shape attributes and then work his way into the

'Vs of a complex NURB details. Thus, once the finished base model is created, the designer is
urface trapped in the details and cannot easily make high level changes to the

Fig 4-1 NURBS structure of the model.

fundamentals What is the work around? There is no straightforward technique with

in
is

C
s

Designing for Morphology

NURBS. An attempt could be made to start with two identical course base
meshes and then refine both of these to the desired level of detail by
inserting isoparams as needed. But, to maintain topological correspon-
dence, these isoparams would have to be inserted in exactly the same
order on both models, taking care to always insert them between the same
neighbors. Even if care is taken doing this, the chance of user error is so
high that when the surfaces are tessellated into polygon meshes, there is a
high probability that the meshes won't morph correctly.

This lack of hierarchical control over the model is the primary limitation
of NURBS for modeling morphable characters. The other limitation of
NURBS is that complex irregular shapes can only be created by attaching
separate NURB surfaces, resulting in undesirable seams in the model
[10]. Thus, instead of having one continuous polygon mesh when the
model is tessellated, there are many pieces that appear to be attached but
actually have seams located all over. While these seams are usually
smooth and hidden, if they are not "welded" together after the surface has
been converted to polygons then tears can occur during animation. In
complex models, this welding can be extremely time-consuming. Addi-
tionally, there is no guarantee that the modeling software will order the
welded vertices in the same order from one model to the next. Modeling
in polygons from the beginning eliminates these problems.

4.1.2 Polygonal modeling

Polygonal modeling is a simpler method than modeling with NURBS.
There is no tessellation stage to wrestle with and seams are no longer a
concern; but in exchange, polygon modeling doesn't produce the smooth-
ness or resolution found in NURBS models. In polygonal modeling, the
designer starts with a polygon primitive such as a square and then uses
operations such as extruding and splitting faces in conjunction with push-
ing and pulling the vertices to increase the detail. What results is a contin-
uous polygon mesh with no seams and deliberately placed details. This
method produces models that are ideal for low-resolution characters, but
is tedious and time consuming when working in higher resolutions. Mod-
ifying a low resolution model into morph targets is relatively straightfor-
ward and just involves pushing and pulling vertices into their new shape.
This becomes more complicated as the model increases in detail. Increas-
ingly complex models again feel the need for high level control over the
model. Polygon modeling is well suited to making seamless, low-resolu-
tion models but, by itself, is inadequate for making smooth detailed sur-
faces. Subdivision surfaces solve this problem.

.4.

Fig 4-2 Detail of a
complex NURBS
model

Designing for Morphology

4.1.3 Subdivision surfaces

Subdivision surfaces, specifically hierarchical subdivision surfaces based

around the Catmull-Clark subdivision scheme [2][8][41], have proven to

be the ideal technique for developing characters with variable morphol-
ogy. A subdivision surface is a surface that results from applying a subdi-

vision algorithm to a polygonal model, thereby increasing surface

tesselation and smoothing polygonal edges [8][10]. In essence, it creates a

surface that represents the maximum limit of this smoothing and use the

original polygonal vertices as control points for the surface, very similar

to the CVs in NURBS [8]. This smoothness gives them all the advantages
of NURBS and, having a polygonal representation at their base, gives

them the seamless qualities gained from simple polygon modeling. The

most useful feature for variable morphology however, is the ability to

hierarchically edit the surface at different levels of refinement. This gives

the designer the ability to edit the surface at the coarsest level, that of the

base polygon mesh, and then through increasing levels of refinement.

Fig 4-3 The use of subdivi-
sion surfaces in designing
the Zulu Warrior

Designing for Morphology

4.1.3.1 A general workflow with subdivision surfaces:

1. Starting with a base polygonal mesh establish a general shape using
as few vertices as possible. This mesh will serve as the control mesh
for the subdivision surface.

2. For characters with symmetry, divide the mesh in half and make an
instance of it. Scale this instance by -1 about the axis of symmetry
(effectively mirroring the object).

3. Subdivide and add detail as necessary, try to finalize the details on
this level before moving to next level of refinement.

4. Finalize the base character. This model will serve as the point of
departure for subsequent morph targets.

5. Identify features that should maintain vertex correspond from one
model to the next. For example, the eyes, nose, and mouth should be
defined by the same vertices across all models. Models that do not
maintain feature correspondence will not morph correctly.

6. Use vertex painting to mark these features.

7. Rework the model starting with the coarsest level of detail and pro-
gressively refining the mesh

8. Ensure the painted vertices are reconstructed into the appropriate
features.

9. Finalize morph targets. &

Designing for Morphology

This technique ensures a consistent vertex count as long as
the topology of the base mesh is not modified when model-
ling the morph targets. The only limitation associated with
this modeling technique is a sometimes less than optimal
polygon count that results from subdividing the entire
mesh. This can be seen when looking at the back of the
Zulu Warrior' head in Fig 4-4. The back of the head is
devoid of detail yet is as densely refined as the front of the
face because the entire mesh was subdivided. This can be
eliminated by carefully choosing the location of details and
selectively refining the mesh only in those areas, in this
case only the front of the face.

4.2 Skeletons and Animation

Constructing skeletons for morphable characters is difficult
only because the joints of the target skeletons need to
match the joints in the base skeleton exactly in both hierar-
chy and in naming. Any additions or changes to the hierar-
chy are not handled by the Morphology System. The
position and rotation of each joint may be modified as
needed to achieve the desired structure. In general, the best
way to maintain consistent hierarchy and naming is to
import and directly modify the base skeleton.

4.3 Optimizing Characters

The computational expense of morphing characters can
quickly become the limiting factor in system updates.
Because of this, characters must be carefully designed to
maximize appearance and functionality while minimizing
the expenses incurred in morphing. Below are techniques
for optimizing characters for morphology.

1. Optimizing polygon count
In general, the number of polygons that make up a charac-
ter is directly proportional to the amount of time that it
takes to display the character on the screen. The more poly-
gons, the more resource that are required to move it on the
screen, and the more resources that are required to morph

Fig 4-4 Over refined the character. When designing characters, the amount of
portion of the head detail that the character should have needs to be propor-

Designing for Morphology

tional to the its importance in the scene. If the character is never going to

fill more than ten pixels on the screen, there is no point in modeling a

complex 20,000 polygon body.

At the same time, even complex characters should be designed to opti-

mize their polygon count. Fig 4-4 shows wasteful use of polygons. Far too

many polygons are used to achieve the desired amount of detail. This, of

course, is the product of globally subdividing a mesh and can be worked

around using local subdivision. Small saving such as these, applied across

the entire body, can reduce polygon counts by up to 40% without notice-
ably degrading the appearance of the character.

2. Minimizing Transform Controllers

Section 3.2 describes the anatomy of a virtual character and how Trans-

form Controllers are used to represent skeletal joints and the position/ori-

ent of meshes. When many meshes are used in a character's body, the list

of TransformControllers gets increasingly larger (one for each additional

mesh). The longer the list, the longer the morphing times because every

TransformController in the list is iterated through and blended. The list

can easily become quite large when creating a detailed segmented charac-
ter like the Zulu Warrior. Optimizing the TC list is possible if there are

meshes in the body that are don't animate independently of a joint and are

all linked to the same "bone". In the Zulu warrior, for example, there are

28 separate meshes for the dreadlocks which are all linked to the skull.

None of the dreadlocks move independently and so there is no good rea-

son to have 28 meshes when the exact same geometry could be repre-
sented with a single mesh. Simply collapsing all these meshes into a

single mesh reduces the TC count by 27 (as well as the mesh count).

3. Optimizing morphLayers for skinned characters

Skinned polygons are expensive to display on the screen and doubly
expensive to morph. Because the associated expense it so high, skinned

characters need to be carefully designed. If MorphLayers are going to be

used for something like facial expressions, it does not make sense to have

the entire skin being passed in to each morphLayer. A better approach

would to passing in a smaller "face" mesh. This can be accomplished by
splitting the skin in two, the first the body and the second the face. One
problem with this method is that a seam is created at the split. However, if

the vertices in the seam have the exact same bone weights, they will

always remain coincident and never tear apart. With a construction like

this, the head mesh can be used as the only input to the MorphLayer, spar-

ing the expense of needlessly iterating through and blending body vertices

for every layer

Fig 4-5 A more appro-
priate subdivision
scheme

Designing for Morphology

Carefully designing characters for morphology is an involved process
with many restrictions. Using the procedures outlined in this chapter, it is
quite easy to create character that morph reliably and are computationally
efficient.

Chapter 5

Evaluation and Future Work

5.1 Evaluation

The work in this thesis is best evaluated by its ability to meet the

requirements of a general character morphology system as outlined

in Section 1.1. To restate these goals, a morphology system should

first give the creature control over developmental changes associ-

ated with its body. These developmental changes are generally

long-term, gradual changes that will exhibit themselves through

prolonged interaction with the environment. These changes should

also manifest themselves in a qualitative change in the creature's

motion. Secondly, a morphology system should give the character
designer additional expressive control over the appearance of a

character. In this capacity a morphology system serves to augment
the standard character animation tool set. This functionality might

manifest itself in the ability to control localized deformations of a

character's body for use in facial expressions or more imaginative

applications. Thirdly, the system should be tightly integrated into a

higher level behavior system. Finally, I would add that performance

of the system is an important point worth evaluating. Starting with

the first of these we will look to assess (albeit subjectively) the suc-

cess of this Morphology System in accomplishing these goals.

Evaluation and Future Work

5.1.1 Development

The MorphSpaces as described in section 3.3.3, handle all issues of devel-
opment. The integration of the MorphSpaces with adverbed motor anima-
tions produces remarkably compelling results. The blending of sample
animations does an excellent job at approximating the changes in a char-
acter's motion throughout development.

The primarily drawback associated with this MorphSpace implementation
is the additional workload that it places on the animator and modeler. For

every dimension in the MorphSpace, 2" animations are required, or for
locomotion (because bearing is produced by blending three animations),

3 *2 " animation are needed. For the simple BlueMan demonstration (see

Appendix A), 12 walk-cycle animations were needed, plus 12 stand-to-
walk transitions, plus 12 walk-to-stand transitions, etc. It can easily be
seen that this implementation does not scale well beyond two dimensional
MorphSpaces. Of course, if skeletons do not change proportion across
nodes, then one set of animations could be used for both nodes used as
long as uniqueness of motion is not important. Alternatively, if functional
animations are all that are required, the work of Gleicher [15] would
effectively retarget a base set of animations across many different skele-
tons.

5.1.2 Expression

MorphLayers and MorphAnimations are the primary vehicles for addi-
tional expressive control of a character. The success of the Morph Sys-
tem's architecture is that it allows these two component to change
independently of the MorphSpaces. In well designed characters with fea-
ture correspondence, the designer has tremendous control over the crea-
ture's expression. When using LayerMorphNodes, the expressive ability
of the system is enhanced by its ability to extrapolate changes beyond the
original intent of the designer, often resulting in interesting, caricature-
like effects.

The main limitations of the MorphAnimations and the MorphLayers are
the additional computational cost and the associated effect on the consis-
tency of the overall framerate. It is difficult to maintain a consistent fram-
erate when updating these components only when they change, but it is
often too expensive to update them all the time. The resulting slowdown
is often not noticeable in MorphLayers where the changes can be more
gradual and spread across many frames. MorphAnimations, however,
demand a frame by frame update. Running performance tests on a crea-

Evaluation and Future Work

ture that has both a Morphspace and a MorphAnimation installed shows a
10% decrease in framerate when the [layer]MorphAnimation is playing.
While not drastic (30 Hz v. 34 Hz), this can result in an noticeable framer-
ate hiccup. To stabilize the framerate, one possible solution would be to

run a "noop" MorphAnimation in the background that blends values but
doesn't output to the screen. This of course wastes computation but if the
framerate slowdown is too noticeable may prove an adequate alternative.

5.1.3 Integration

The Morphology System has been fully integrated into the C4 behavior
system maintaining the appropriate abstraction layers in the process.
Because the Morphology System was designed to communicate with the
rest of the behavior system only through the internal blackboard, func-
tional changes to the C4 architecture are largely unseen by the Morphol-
ogy System. This abstraction allows the behavior architecture to be
continually refined without having to modify the internal workings of the
Morphology System at every change. The value of this modularity was
seen recently when the behavior system received a substantial upgrade to
C4. 1. In this upgrade many changes were made to the inner workings of
the Action System. Despite these sweeping changes, the Morphology
System required only small modifications to ensure compatibility.

5.1.4 Performance

The following tables summarize the performance of the Morphology Sys-
tem under various test conditions.

Table 1: MorphSpace updating schemes

update frequency framerate (Hz) % change

always 28 ()

every 2 nd cycle 33 +15

every 3 rd cycle 35 +20

every 5th cycle 37 +24

every 1 0 th cycle 39 +28

every 2 0 th cycle 40 +30

never 40 +30

Evaluation and Future Work

discussion: This test was conducted on the Zulu Warrior, the most com-
plex character in this thesis, to test the worst case performance of the

MorphSpaces. The results show a significant savings when using any

update scheme other than "every cycle". When choosing an update fre-

quency for a MorphSpace, the frequency and magnitude of blending

changes from the behavior system need to be considered. Ultimately, the

updating scheme should be decided on a case by case basis.

Table 2: MorphSpace Performance with Different Blending Specifications

information to blend framerate (Hz) % change

baseline: meshes, materials, skele- 82 ()
ton, boneweights

meshes, materials, skeleton 89 +7.8

meshes, skeleton 90 +8.8

only meshes 96 +14.5

only materials 101 +18.8

nothing 103 +20.3

discussion: This table summarizes the performance cost associated with

blending different aspects of a character's morphology. The tests were

run on the BlueMan of Fig 3-1. His body consists of one 800 polygon

skinned mesh, two linked eyes, and 17 bones. The difference between the

first and second entries in the table shows the cost associated with blend-

ing the bone weights, which is quite significant. Test have shown how-

ever that when blending between morphologically similar character, one

Fig 5-1 Blending boneweights vs. not blending boneweights

Evaluation and Future Work

set of bone weights often provides a good approximation across all bod-
ies.

Table 3: Performance with Multiple MorphLayers

configuration framerate (Hz) % change from
baseline

baseline - no layers 33.8 ()

1 layer 31.7 -6.2

2 layers 29.3 -12.1

3 layers 27.7 -18.0

discussion: This table shows the system performance with a MorphSpace
installed and increasing numbers of MorphLayers. The tests were con-
ducted on the Zulu Warrior's head using the expression layers from Fig 3-
12. For testing purposes both the MorphLayers are the MorphSpaces are
updating every cycle. These results show a nearly constant computational
cost associated with adding additional layers.

Table 4: Layer Optimization

framerate (Hz) % change

multiplying all vertices 34.26 ()

multiplying only nonzero values 34.56 +0.87

discussion: This small optimization proves to be just that, small. The cre-
ation of LayerNodes produces many vertex entries that are zero. This test
was run on a LayerNode that contained approximately 25% zeros. This
optimization would prove slightly more significant with a more sparsely
populated LayerNode (~1%).

Evaluation and Future Work

5.2 Future Work

There are additional feature that could be developed to extend the func-
tionality of the Morphology System. In it current incarnation, the Mor-
phology System addresses texturing issues at only a superficial level.
Essentially, the textures a character starts with at runtime are the textures
it keeps for the duration of its life cycle. Currently, the system allows the
user to modify the material properties that underlie the textures, such as
diffuse color, specularity, and opacity, but does not address the issue of
blending texture maps or UV coordinates. The latter is a trivial implemen-
tation, but the former requires an investigation into both the low-level
engineering issues associate with morphing textures and the texture
design workflow. This addition would help to reenforce the believability
of a character's development cycle.

Beyond texturing, an intelligent scheme for optimizing the blending of
LayerNodes could be developed. In the current implementation, each
mesh in a LayerNode contains many vertices with zero values that have
no effect on the overall blend, but we are forced to query each vertex to
see if it has non-zero information. This query becomes needlessly expen-
sive in meshes with high vertex counts. An intelligent solution should
localize only the vertices that change and blend these values, spending no
computation on parts of the mesh that don't change.

Finally, a system for sharing MorphNodes across creatures needs to be
developed. It certain instances creatures will share the same base geome-
try and use similar nodes in their Morphology Systems. Currently, each
creature loads and maintains its own individual copy of these nodes. This
is necessary for unique, creature-specific nodes, but can become quite
memory intensive when multiple creatures begin loading redundant cop-
ies of the same geometry file. In the AlphaWolf project currently under
development, five creatures will be running Morphology Systems using
similar base geometry and target nodes. A pathway for referencing com-
mon nodes would significantly reduce the Morphology System's memory
consumption.

5.3 Conclusion

This thesis presents the details of the Morphology System that I devel-
oped for inclusion into the Synthetic Character's C4 behavior architec-
ture. The Morphology System seamlessly interfaces body changes with a
character's behavior and motor systems. This integration gives a character

Evaluation and Future Work

the ability to respond appropriately to it environment in every way. The
intelligence and learning in the behavior system allows the character to
make rational decision based on its knowledge of the world. Over pro-
longed interactions, these decisions change the internal state of the char-
acter, which, in turn, manifests changes in the character's morphological
appearance. These changes in the Morphology System affects how the
character moves and appears. Through these small steps we have moved
closer to intelligent creatures that can live and grow in a computational
environment.

Evaluation and Future Work

Appendix A

Character Sketches

lady I flower

The lady was the first crea-
ture that I employed during
the development of this the-
sis. I made her acquaintance
in Dublin, Ireland, at the
National College of Art and
Design in November 2000.
In exchange for passage
across the Atlantic, she
agreed to five years of
indentured servitude. While
in my employment she
posed for many drawings
and computer models. I also
used her for early behavior
system tests. Her usefulness
to me expired midway
through the development of
the Morphology System, so
I lobotomized her. She now
lives in a old peanut butter
jar in my kitchen.

Character Sketches

47
*1r

~
(4

rt

Character Sketches

These images show the lady and her flower in an environment that is morphing randomly as she
moves through it. The last image shows a screenshot of her flower morphing as it undulates.

.....

Character Sketches

CarcaroclesChubitensis

After the lobotomy, the lady
would just sit in her peanut
butter jar all day so I needed
new creatures to test the
Morphology System. One
day I was jogging along the
Minuteman trail and saw
two small creatures scurry
across the path. After root-
ing around in the underbrush
I was able to ferret both of
them out. Fortune smiled on
me, I now had in my posses-
sion two strange blue crea-
tures for my tests. I showed
them around at the lab and
nobody had ever seen any-
thing like them (all the girls
thought they were cute
though). I did a Google
search on the internet and
found out they were Carca-
rocles Chubitensis, the pre-
historic ancestor of the
Great White Shark. I stored
them in a shoe box at home
and brought them into the
lab for testing.

They were used primarily to test the skeleton blending, making sure than animations would still

playout smoothly as the skeleton morphed. Because their skeletons are made of cartilage, they were

quite resilient and could tolerate far more testing than most mammals. They also helped me with the

development of the MorphAnimations and the MorphSpaces. One morning as I was getting ready to

feed them breakfast (many trips to the harbor to get chum off the fishing boats), I opened the shoe

box and found 20, maybe, 30 mini-chubs running around. I sold a few to friends and gave the rest to

the Humane Society.

...............

Character Sketches

Tiles

This small sketch was inspired by the motion the flower uses to follow the lady. I removed the flower
and the lady and put 30 simple placeholders in their stead. The motion of these 30 tiles following each
other was quite compelling. I refined the sketch by adding a morphology system to each tile and
blending a number of shape transitions between the first tile and the last tile.

73

Character Sketches

Tiles II

This second incarnation of the tiles sketch adds motion blur and a custom vertex shader to give a more
ethereal feel. The tiles are created in the same way and have similar motion, but are able to play out a
series of MorphAnimations with each tile morphing in succession. The result is a cascading propaga-
tion down the chain of tiles.

...

Character Sketches

Zulu Warrior

The Zulu Warrior is the final character created for this thesis. He was inspired by African tribal
masks and carvings. A few of the early concept sketches on shown on the following pages....

Character Sketches

................. ----------

Character Sketches

77

Character Sketches

FIN

References

[1] American Heritage Dictionary, Dell Publishing, New York, NY. 1994.

[2] AliasiWavefront, Maya V3.0, 2000. For information: www.aliaswavefront.com.

[3] Autodesk Inc., 3DS Max V.4, 2000. For information: www2.discreet.com.

[4] Boa, H. and Q. Peng, Interactive 3D Morphing. Computer Graphics Forum Vol. 17 no. 3.
Boston, MA. Blackwell Publishers. 1998.

[5] Blanz,V. and T. Vetter, A Morphable Model for the Synthesis of 3D Faces. In Proceedings
ofSIGGRAPH 99. New York, NY. ACM SIGGRAPH. 1999.

[6] Blumberg, B. Old Tricks, New Dogs: Ethology and Interactive Creatures. Ph.D. Disserta-
tion, MIT. 1996.

[7] Blumberg, B. and T. Galyeon,. Multi-Level Direction of Autonomous Creatures for Real
Time Virtual Environments. In proceedings of SIGGRAPH 95. New York, NY. ACM
SIGGRAPH. 1995

[8] Catmull, E., and J. Clark, Recursively generated B-spline surfaces on arbitrary topological
meshes. Computer Aided Design, 10(6):350-355, 1978.

References

[9] DeCarlo D. and J. Gallier, Topological Evolution of Surfaces. In Proceedings of Graphics Inter-
face '96. Morgan Kaufmann Publishers, New York, NY, 1996.

[10] DeRose, T., M. Kass, T. Truong, Subdivision Surfaces in Character Animation, In Proceedings
ofSIGGRAPH 98. New York, NY. ACM SIGGRAPH. 1998.

[11] Dennet, D. The Intentional Stance. MIT Press, Cambridge, MA, 1987.

[12] Downie, M. Behavior, Animation and Music: The Music and Movement of Synthetic Characters.
Master's Thesis, MIT. 2000.

[13] Eberly, D., 3D Game Engine Design, Morgan Kaufmann Publishers, New York, NY, 2001.

[14] Funge, J., X. Tu, and D. Terzopolous, Cognitive Modeling: Knowledge, Reasoning and Planning
for Intelligent Characters. In Proceedings of SIGGRAPH 99. New York, NY. ACM
SIGGRAPH. 1999.

[15] Gleicher, M. Retargeting Motion to New Characters. In Proceedings of the 2 5th Annual Confer-
ence on Computer Graphics. New York, NY. ACM Press. 1998.

[16] Hodgins, J and N. Pollard, Adapting Simulated Behaviors for New Characters, In Proceedings of
the 24th Annual ACM Conference on Computer Graphics 1997.

[17] Isla, D., R. Burke, M. Downie, and B. Blumberg, A Layered Brain Architecture for Synthetic
Characters, IJCAI. Seattle, WA, 2001. To appear.

[18] Itten, J. The Elements of Color. New York, NY. John Wiley & Sons, Inc. 1970.

[19] Johnson, M.P., Multi-Dimensional Quaternion Interpolation, In A CMSIGGRAPH99 Conference
Abstracts and Applications, New York, NY, ACM SIGGRAPH. 1999.

[20] Kent, J., W. Carlson, and R. Parent, Shape Transformation for Polyhedral Objects. In Proceed-
ings ofSIGGRAPH 92. New York, NY. ACM SIGGRAPH. 1992.

[21] Lewis, J.P., Cordner, M. and Fong, N. Pose Space Deformation: A Unified Approach to Shape
Interpolation and Skeleton-Driven Deformation. In Proceeding ofSIGGRAPH 00, New York,
NY. ACM SIGGRAPH. 2000.

[22] LionHead Studios. Black and White. www.lionhead.co.uk. 2000.

[23] Lui, L. and Wang, G. Three-Dimensional Shape Blending: Intrinsic Solutions to Spatial Interpo-
lation Problems. Computers and Graphics 23. New York, NY. Pergamon Press. 1999.

References

[24] Maestri, G. Digital Character Animation 2. Vol. 1. Indianapolis, IN. New Rider. 1999.

[25] Magnenat-Thalmann, N., R. Laperriere, and D. Thalmann, Joint-Dependent Local Deformations
for Hand Animation and Object Grasping, In Proceeding of Graphics Interface '88, Morgan
Kaufmann Publishers, New York, NY,1988.

[26] Mendelowitz, E. The Emergence Engine: A Behavior Based Agent Development Environmentfor
Artists. In Proceedings ofIAAI-2000. Publisher not available. 2000.

[27] Mortenson, M. Mathematicsfor Computer Graphics Applications. New York, NY, Industrial
Press, 1999.

[28] Perlin, K. and A. Goldberg, Improv: A System for Scripting Interactive Actors in Virtual Worlds.
Computer Graphics Vol. 29 No. 3. 1996.

[29] Pina, A., E. Cerezo, and F. Seron, Computer Animation: From Avatars to Unrestricted Autono-
mous Actors. Computers and Graphics 24. New York, NY. Pergamon Press. 2000.

[30] Powell, M.J.D., Radial Basis Functions for Multivariable Interpolation: A Review. In Algorithms
for Approximation. Oxford, UK, Oxford University Press, 1987.

[31] Pryor, K., Don't Shoot The Dog: The New Art of Teaching and Training, New York, NY, Bantam
Doubled, 1999.

[32] Rose, C., Verbs and Adverbs, Multidimensional Motion Interpolation Using Radial Basis Func-
tions, Ph.D. Dissertation, Princeton University, 1999.

[33] Rose, C., B. Guenter, B. Bodenheimer, and M. Cohen, Efficient Generation of Motion Transi-
tions Using Spacetime Constraints, In: Proceedings of the 23rd Annual Conference on Com-
puter Graphics 1996.

[34] Rose, C., M. Cohen, and B. Bodenheimer, Verbs and Adverbs: Multidimensional Motion Inter-
polation. IEEE Computer Graphics and Applications, 18(5), New York, NY. 1998.

[35] Sims, K. Evolving Virtual Creatures. In Proceeding of the 2 2 nd Annual ACM Conference on
Computer Graphics. New York, NY. ACM Press 1995.

[36] Sun, Y.M., W. Wang, and F. Chin, Interpolating Polyhedral Models Using Intrinsic Shape
Parameters. The Journal of Visualization and Computer Animation, Vol. 8. New York, NY.

John Wiley & Sons, Ltd. 1997.

References

[37] Thomas, F. and 0. Johnson, The Illusion ofLife: Disney Animation. New York, NY. Hyperion.
1981.

[38] Tomlinson, B., M. Downie, B. Blumberg, and others. AlphaWolf. In Abstracts and Applications,
SIGGRAPH '01. To appear.

[39] Tu, X. and D. Terzopolous, Artificial Fishes: Physics, Locomotion, Perception, Behavior. In Pro-

ceedings of the 21t Annual ACM Conference on Computer Graphics, New York, NY. ACM
Press 1994.

[40] Turk, G. and J. O'Brien, Shape Transformation Using Implicit Functions. In Proceedings of
SIGGRAPH 99. New York, NY. ACM SIGGRAPH. 1999.

[41] Zorin, D., Subdivision and multiresolution surface representation. Ph.D. Dissertation, CalTech,
1997.

