L

lvl/v

~—

[

\ Yvvvve

4

computational
expressionism

A STUDY OF DRAWING WITH COMPUTATION.

by Joanna Maria Berzowska
BA Pure Mathematics, McGill University, Canada, June 1995
BFA Design Art, Concordia University, Canada, June 1995

Submitted to the Program in Media Arts and Sciences, School of Architecture
and Planning, in partial fulfillment of the requirements for the degree of
Master of Science

at the Massachusetts Institute of Technology February 1999

© Massachusetts Institute of Technology, 1998. All Rights Reserved
Author Joanna Maria Berzowska

Program in Media Arts and Sciences
October 27, 1998

| Certified by Walter Bender

+Senior Research Scientist, Program in Media Arts and Sciences
Thesis Supervisor

| Accepted by Stephen A. Benton [ettt —
Chair, Departmental Committee on Graduate Students MAssggﬂggﬁgng“gJ ITUTE
yProgram in Media Arts and Sciences
MAR 1 9 1999
LIBRARIES

ROYCH

COMPUTATIONAL EXPRESSIONISM:
A STUDY OF DRAWING WITH COMPUTATION.

by Joanna Maria Berzowska

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,

on October 27, 1998

in partial fulfillment of the requirements for the degree of Master of Science

abstract

This thesis presents computational expressionism, an exploration of
drawing using a computer that redefines the concepts of line and
composition for the digital medium. It examines the artistic process
involved in computational drawing, addressing the issues of skill,
algorithmic style, authorship, re-appropriation, interactivity, dynamism,
and the creative/evaluative process.

The computational line augments the traditional concept of line making
as a direct deposit or a scratching on a surface. Digital representation is
based on computation; appearance is procedurally determined. The
computational line embodies not only an algorithmic construction, but
also dynamic and interactive behavior. A computer allows us to
construct drawing instruments that take advantage of the dynamism,
interactivity, behavioral elements and other features of a programming
environment.

Drawing becomes a two-fold process, at two distinct levels of
interaction with the computer. The artist has to program the appearance
and behavior of lines and subsequently draw with these lines by
dragging a mouse or gesturing with some other input device. The
compositions incorporate the beauty of computation with the creative
impetus of the hand, whose apparent mistakes, hesitations and
inspirations form a complex and critical component of visual
expression.

Thesis Supervisor Walter Bender
Senior Research Scientist, Program in Media Arts and Sciences
Work supported by the News in the Future Consortium and an IBM fellowship.

computational
expressionism

Joanna Maria Berzowska

. Thesis Reader John Maeda

. Assistant Professor of Design and Computation

WIT Media Laboratory

. Thesis Reader Scott Snibbe .
* Member Research Staff

" Interval Research Corporation

acknowledgments

Heartfelt thanks to Anna and Tomasz for holding my hand and pulling
and pushing me through the world these past 25 years. They have
taught me about language, culture, desire, despair, courage and
determination. They have taught me most of what I know and feel, and
I will be eternally grateful for their love. I also want to thank my little
sister Justyna for being a great roaming companion.

A tearful thank you to the late Gert-Jan Zwart, who taught me great
new things about life and, so very sadly, about death.

Special thanks to my advisor Walter Bender, whose insight, wit and
enthusiasm shape the Media Lab in good ways. Additional special
thanks to my thesis committee, John Maeda and Scott Snibbe, whose
art and thought have and will continue to inspire my work.

Particular thanks to my unofficial thesis readers: Mike Best, Jack
Driscoll, Nelson Minar, Arjan Schutte and Paul Yarin.

The Media Laboratory has provided the first social environment in my
life where I have felt at ease. The people I interact with on a daily basis
betray a lovely mixture of intellect and insanity. Among all these lovely
people, there are a few whose friendship was indispensable and
invaluable in the task at hand: Mike Best, Sawad Brooks, Daniel
Dreilinger, Nelson Minar, Arjan Schutte, Laura Teodosio, John
Underkoffler, Alex Westner and Paul Yarin. I thank them all from the
very bottom of my thumping heart.

Tremendous thanks to Jimmy Wondrasek for his sincere love and belief
in me. He is unquestionably one of the pivotal people in my life.
Equally tremendous thanks to Gaia Marsden for being such a close and
loving presence for almost ten years now. I also want to thank David
Roselli for the inspiration he brought into my life for many years, Raz
Schionning for showing me how to use a computer and for giving me
direction and Meg Wilson, one of the most supportive and generous
souls I have recently met.

contents

INTRODUCTION 7
Motivation 8

Focus 9
Product 10
Structure 10
BACKGROUND 12
Context 12
Expressionism 12

Line and Drawing 13

John Maeda and the ACG 14
Design by Computation 15
COMPUTATIONAL EXPRESSIONISM 17
DRAWING WITH COMPUTATION 19
Computational Line 19
Computational Drawing 20
Creative (Evaluative) Process 22
ALGORITHM 24
Definition 24

First Attribute: Appearance 25
Randomness and the Hand 26

What is Skill Now? 28
Algorithmic Artists 30
DYNAMISM 34
Background 34
Second Attribute: Dynamic Lines 35
Please Save my Work 39
ARTISTIC PROCESS 41
Interactivity 41
Authorship and Re-Appropriation 42

Role of the Artist 43

Artists as Programmers 44
Manipulating the Canvas 45
Artistic Experience 47
INTERFACE 48
Modular Tools 49
Physical Interface 50

Color through Composition 50
Interface Metaphors 52
EMERGENCE 54
Definition 54

Third Attribute: Behavior 56

DISCUSSION

FUTURE WORK

Programming Languages for Artists
Genetic Algorithms

Drawing Interfaces

CONCLUSION

Classifications

Evaluation

REFERENCE

APPENDIX A

Visual Arts Software

APPENDIX B

Computational Drawings

The Creative Process

The POPPY line

Code: First lteration

Code: Second lteration

Code: Third lteration

58

58
58

59
60
60
62

68

74
74
75

75
82
83

84
85

COMPUTATIONAL EXPRESSIONISM: Introduction 7

introduction

Computers have brought about many changes to facilitate and
encourage a breadth of personal expression. Text editing, image
editing, layout and publishing software allow the production of
documents and other artifacts more quickly, and with an increased
degree of control over the process. The ability to save multiple copies,
at various levels of completion, permits a more thorough and more
efficient execution. The increasingly universal access to information
and to the dissemination of information through personal printers and
the World Wide Web have greatly simplified the process of receiving,
as well as expressing and publicizing, opinions and feelings.

Computers and computer culture continue their
assiduous, penetrating and pervasive infiltration
of our homes and lives. They are quickly
becoming much more than tools for processing
data. They have already become, in fact, for
more and more of us, a primary mode of
engaging the world. [SMI96] They have
become a primary outlet for expression, for the
Sketch made in the margin of 2 byjlding of identity and for personal, emotive

notebook (not the margin of the Word | 7 .
document) by Joanna Berzowska ~ interaction with others.

Computer developers are working hard to spawn products that purport
to be conduits for creativity. New forms of computer art such as hyper-
linked fiction, digital image manipulation, interactive graphics and
interactive environments are interesting and significant artistic
developments. It is more difficult, however, to find a viable
computational outlet for drawing, painting, graffiti, for a true
individuality of gestural, expressive style.

The very qualities that define computers as great tools for publishing
and communication uses can be an impediment when we consider
various implementations of drawing and painting programs. When we
wish to sketch, doodle or gesture, we usually turn to different tools:
pens, crayons and brushes. This is not because computational
environments do not engage the user in expressive ways, do not convey
the richness of emotion and aesthetic awareness that some traditional
media offer. Simulating the traditional media with computational
analogues is not the answer. The answer lies in understanding and
developing the innate expressive potential of computation.

This thesis is a step in that direction. It investigates and develops some
aspects of the natural expressive language of computers, a language
that allows individual style, computational sketching and doodling, and
a feeling of having achieved a level of skill and intimate understanding
of the medium. The work presented moves away from pre-programmed
art tools (which allow a level of expression akin to collage) and allows
the artist to program a multitude of personalized solutions. In the
process, it reconsiders and reevaluates the skills of composition, line
making and dynamic, interactive forms, and approaches them at a
rudimentary level within this new medium.

COMPUTATIONAL EXPRESSIONISM: Introduction 8

MOTIVATION

The motivation for this thesis is a desire to increase and improve the
extent of possibilities for two-dimensional visual expression, in
particular for gestural expression such as drawing. It is a desire to
define new outlets, new forms and methods for creativity using a
computer. The thesis strives to better understand computation as a raw
art material and to develop a vocabulary that will allow artists to
cultivate a closer relationship between expressive appetite and artistic
product in the computational sphere.

The current state of visual digital art is greatly determined by the tools
available for its production. Digital drawing tools are still modeled, to a
great extent, on previous media and technologies. They are often
inadequate in fulfilling the need for expression that traditional media
can fulfill, and yet they hope to replace the use of paint, pastels and ink
as our medium and material of choice.

Most commercially available software for visual arts' is based on one
of two models: image manipulation techniques, and the replication of
the visual characteristics of preceding art forms and styles. The former
is an interesting beginning, but is limited by the fact that image filters
provided by software packages result in a trite look, easily achieved
and consistent between users. The latter revolves around direct
metaphors of Van Gogh and Monet, pencils and erasers, paint buckets
and spray brushes. This approach is limited by the fact that the
computer cannot hope to compete with the real thing, the metaphors are
restricted, and they restrict the kind of expression we can produce.

In addition, current computer interactions and interfaces are stereotyped
as impersonal and lacking a certain intuitive, physical or familiar
quality. The tradition or myth of engineers who design software while
disconnected from anthropological concerns has spawned the extensive
field of computer-human interaction design as separate from computer
or software engineering.

Artists and programmers both need to better understand computation as
an art medium so as to produce art pieces and tools that take full
advantage of some of the characteristics of computation. Interactivity,
dynamism and emergent behavior resulting from interaction among
computational objects are only some of the fascinating aspects of this
medium. A better understanding will give rise to a generation of digital
art pieces, tools and materials that bring the same levels of emotional
involvement and creative intensity in the computational realm that a
dripping paintbrush, a thick chunk of charcoal or a textured piece of
wood bring in the physical.

The focus should move away from duplicating the methods and
materials we know from traditional media, and develop a different
perspective on visual thinking. The concept of drawing with
computation essentially means to program what sorts of shapes the
linear motion of the hand will produce. For an artist to draw
computationally means that the artist defines the patterns and colors
that the brush produces, defines the behavior of the brush, provides its
computational attributes, using algorithms and design principles. John
Maeda® has said that the designer must be an engineer and the engineer

! See Appendix B for a list of currently available software for visual arts.
% See the sub-section about John Maeda and the ACG in the Background section

COMPUTATIONAL EXPRESSIONISM: introduction 9

must be a designer. As more people become comfortable with
programming, these distinctions will disappear, and artists will have
less need of an engineer at their side in order to bring their ideas to life.
Intimate knowledge and understanding of the materials and methods
are an inherent part of any category of art making. The degree of
understanding and command of the medium is directly proportional to
the degree of skill and expressive breadth.

To achieve an individual algorithmic style, the artist must customize
the software used to create visual work. The artist must write code and
eventually will create an aesthetic that is unique. As an artist’s
algorithmic art matures it will achieve aesthetic qualities that are proper
to the algorithmic style. This unique aesthetic or style does not mean
that the algorithm will mimic work traced by the artist’s hand in
traditional media. Although it is just as individual, it is a separate form
of thinking about visual representation.

FOCUS

The focus of this thesis is to introduce the concept of computational
drawing, a method by which visual artists can use computation as an
interactive and algorithmic tool to generate two-dimensional
compositions of line, shape and color. Computation is the art medium,
the iterative process of drawing is the artform, the still drawings,
printed on a piece of paper or displayed on a monitor are the end
product.

Visual artists historically embrace new media and technologies, and
strive to experiment and express themselves within the new criteria that
these impose. As a result, they have been compelled to examine and
adapt existing definitions of art. Computation has opened a large world
of expressive potential, which is only starting to be explored. Among
other things, computation has made us realize that the idea of drawing
can be expanded to signify much more than the traditional tracing of
static lines on a surface.

Algorithmic appearance, dynamic change and behavior are integrated
into the traditional definition of a line to define a computational line.
Algorithmic appearance implies a mapping of variable complexity
between the gesture that is made through the input device and the
visual representation on the display. Dynamic change alludes to marks
that undergo some transformation over time, whether a shift in color,
position, shape, or other physical attribute. Behavior means that the
lines respond to each other when present on the same canvas. They can
sense the presence, proximity, intersection (topology) of other lines,
which in turn affect their dynamic behavior.

The objective of the work is to draw static drawings with computational
lines. The act of drawing is a dynamic, interactive process of evaluating
and reassessing choices, however the focus is not on interaction but on
the creation of the drawing. The work centers on the concept of line
making. Drawing, doodling, graffiti, sketching, the shaping of linear
forms with movements of the hands are the central point of interest.
The interaction is fascinating in itself, but only insofar as it embodies
the process through which a drawing is generated. The process is really
one of drawing, not of interactive performance.

COMPUTATIONAL EXPRESSIONISM: Introduction 10

PRODUCT

In addition to a discussion of computational drawing, the thesis
includes a series of Java applets, artifacts that represent the concepts
discussed. Each applet is a drawing application that presents one or
more of the computational lines created by the author. Some illustrate
the progression of one algorithm; others offer an array of various
computational lines with widely ranging appearance and behavior.
Each one allows a viewer to examine some aspect of computational
drawing and computational lines, through a process of altering them
and drawing with them. The applets are visualized as still images
throughout the document, illustrating stages in the process of creating a
drawing. Some still images represent finished drawings by the author,
the end product of the computational drawing process. The
development of the work is described in the discussion section.

The Java classes used to create the work are available in an annotated
package. The code is freely distributed. Other artists are invited to
experiment with available lines and to create their own by changing the
present algorithms. There is no custom programming tool included with
the code. Maeda, in Design by Numbers, provides a structured
environment where code is compiled and results are shown alongside
each other. The editor is shown to the right of the display canvas. This
allows designers to see the results of their code immediately. [MAE98]
Since the present work is more concerned with drawing, it is beneficial
to keep an element of distance between the code and the drawing. It is
frustrating, clearly, for drawing to be such a bipartite process. One
advantage is that this requires the artist to better understand the
algorithms, instead of using a trial and error method of designing the
computational lines.

All the code is available from http://www.media.mit.edu/~joey/demo/
or by contacting the author.

STRUCTURE

The Background section provides a motivational framework for
Computational Expressionism. It describes the context of the work,
introduces the history and significance of the term expressionism, the
relevance of line and drawing, as well as the inspiration of John Maeda
and his ideas on computational design.

The main section presents the body of work called Computational
Expressionism, through an overview of projects created, and a
discussion of Drawing with Computation, Algorithm, Dynamism,
Artistic Process, Interface and Emergence as pivotal issues and
questions. It also situates the present work in the context of interactive
art, kinetic art, algorithmic art, and evolving (emergent/genetic) art.

The section entitled Drawing with Computation serves as an
introduction. It provides an outline of the author’s definitions for the
concept of computational lines and computational drawing. The third
subsection discusses the creative process involved in this work, and
introduces some examples produced by the author.

Three classification schemes permeate the organization of the text.

1. The qualities of computation that inform the present definition of
computational drawing are algorithm, dynamism, interactivity and

COMPUTATIONAL EXPRESSIONISM: Introduction 11

emergence. The first two make up two sections of this document, which
also introduce the first two attributes of a computational line,
appearance and dynamism. Interactivity is discussed in the Artistic
Process section. Emergence is introduced in its own section.

2. The work produced by the author for this thesis is grouped according
to the three defined attributes of the computational line: appearance,
dynamism (change over time) and behavior. The three attributes are
discussed and illustrated as best as possible with still images.
Appearance is discussed in the Algorithm section. Another discussion
of appearance is described in Manipulating the Canvas, where
mappings of hand movement to graphical representation are presented
in increasing levels of abstraction. Dynamic lines are discussed in the
Dynamism section, and behavior, which is given a more rudimentary
treatment than the other two, appears in the Emergence section.

3. Three groups of background work are used to illustrate the three
attributes. The subsections on algorithmic art, kinetic art, and evolving
(emergent/genetic) art can be found successively under What is Skill
Now? and Algorithmic Artists in the Algorithm section, Background in
the Dynamism section and Definition in the Emergence section.

The Discussion section presents some questions relating to the
evolution of the work, a description of evaluation, future developments
and a conclusion. The Future Work subsection explains future
extensions and interests in genetic algorithms, interfaces that use
drawing as a method for human-computer interaction, and developing
special programming languages for artists.

Appendix A presents a selection of work created and gives some of the
technical details and Java code. Appendix B is an overview of available
software for digital drawing.

COMPUTATIONAL EXPRESSIONISM: Background 12

background

CONTEXT

This work was produced within the Electronic Publishing Group, in the
News in the Future (NiF) consortium at the MIT Media Laboratory,
under the direction of Walter Bender, the principal investigator of NiF.

Bender’s varied interests include a desire to “build upon the interactive
styles associated with existing media and extend them into domains
where a computer is incorporated into the interaction.” [BEND97] He
professes a need for adaptive, dynamic, context-sensitive
representations of media objects, illustrated by applications such as
customizable news browsers that are aware of changing environments.

He helped spawn the present work by providing the inspiration of the
Incredible Machine'. This is a game that hinges on the construction of
virtual faux-physics environments out of computational elements that
have specific form and behavior and interact in the workspace to
produce working systems. The interactive parts provide an explicit
motion, shape and functionality and act/react with one another to
produce emergent worlds whose behavior is both complex and
interesting. The pieces are used to experiment and to solve puzzles.

The game causes players to think of physics in a non-physical context.
The physics model is stilted, simplified and embellished with elements
that only the magic of computation allows. The elements each have a
function associated with them and can be composed in ways that
produce an engaging result. Bender proposed that a similar model
would be interesting for drawing tools.

EXPRESSIONISM

The word expressionism has been applied to various art movements
throughout history, all sharing a common preoccupation with the
emotive, passionate qualities of material, subject and method, a desire
to emphasize expression over realistic representation. [LYN97]

| The original movement, exemplified
by artists such as Oskar Kokoschka,
Georges Rouault and Egon Schiele,
®~ flourished in Europe in the late 19"
~ and early 20" century. It is
) - characterized by a desire to depict
' more than objective reality, and focus
on subjective emotions and responses
that subjects evoke. [BRI98] This is
accomplished through distortion,
exaggeration, primitivism and fantasy,
as well as a vivid, violent, or dynamic

Drawing by Egon Schisls ~ application of formal elements.

! Marketed by Sierra

COMPUTATIONAL EXPRESSIONISM: Background 13

The German Expressionists developed a style notable for its harshness,
boldness, and visual intensity. They used rough, distorted lines; crude
brushwork and shrill colors to depict urban street scenes and other
contemporary subjects in crowded, agitated compositions notable for
their instability and their emotionally charged atmosphere. Many of
their works express frustration, anxiety, disgust, discontent, violence,
and generally a sort of frenetic intensity of feeling in response to the
ugliness, the crude banality, and the possibilities and contradictions that
they discerned in modern life. [BRI98] [LYN97]

Abstract Expressionism refers to a
body of American (centered on New
York) painting executed in the 1940s
and 50s. Work from this period,
exemplified by artists such as
Jackson Pollock, Willem de Kooning
and Mark Rothko, was non-
representational and emphasized
spontaneous, personal expression.
This period of art history was also
characterized by a great amount of
experimentation with materials and
technique. [HAR97] [BRI98] Painting by Mark Rothko

Artists were fascinated with the
intrinsic expressive qualities of the
materials, leaving behind traditional
elements of composition and using the
material naturally and intuitively to
evoke sensual, violent, dynamic,
mysterious, and lyrical element. The
paint and tools were manipulated to
express the force of the “creative
unconscious” in art, akin to surrealist
Painting by Willem de Kooning ~ automatism. [BRI98]

The preoccupation with and merging of material and subject is best
illustrated by the work of Pollock, who used paint drippings as both
style and content. Arthur Danto uses the term “the end-of-art condition”
to describe “the fact that style becomes subject matter, and hence is
something shown rather than used”. [DAN97] The objective of
Computational Expressionism sustains the spirit of these artists, by
seeking out the natural expressive language of computers, to spawn an
eloquent freedom, a vernacular of individual style and a level of
visceral understanding of the medium.

LINE AND DRAWING

The line is crucial in this work, because computational expressionism is
primarily concerned with the gestures that are made, that are reflected
in the on-screen representation. Traditionally, the process of drawing
involves hand gestures, dragging a soft or hard tool over a surface, to
leave a deposit or an abrasion, a tracing. A drawing is the end product
of a successive effort applied directly to the medium with a tool,
producing linear additive or subtractive forms and silhouettes that
follow and represent the hand’s motion. Drawing is the art or technique
of producing, with the hand, images on a surface, by making marks

COMPUTATIONAL EXPRESSIONISM: Background 14

with ink, graphite, chalk, charcoal, or crayon. It is a two-dimensional
composition, relying aesthetically on gesture and line, an abstraction,
lesser or greater, of spatial objects in the world to lines drawn on a
plane. Drawing is distinguished from painting by an emphasis on form
and shape, rather than mass and color. It is contrasted with other
graphic arts in that a direct relationship exists between production and
result, between the hand and the eye.

The line is an essential ingredient of drawing, although it can just as
well be used to represent areas of tone or color. The line is an
essentially abstract figure, absent in nature and appearing only as a
border setting of bodies, colors, or planes. In art, it has been the vehicle
of a representational, more or less illusionist, rendition of objects. Only
in very recent times has the line been conceived of as an autonomous
element of form, independent of an object to be represented. [BRI98]

Top left photo by Sawad Brooks.
The drawings are made with ink and chalk, by Joanna Berzowska

Lines, depending on the medium and tool that shapes them, can have a
large range of physical and dynamic qualities. They can be thick,
regular, immutable, erased. The makeup of the materials used and the
temperament of the gesture (speed, direction, and pressure) determine
the visual nature of the lines. A combination of line shapes, even
without reference to the medium used, provides the artist with a
profusion of subjective form for the expression both of general stylistic
traits and of personal temperament.

JOHN MAEDA AND THE ACG

John Maeda has been concerned with issues of computational aesthetics
for many years, most recently as director of the Aesthetics &
Computation Group (ACG) at the MIT Media Laboratory. With his
students, he is performing experiments in information navigation,
models of digital performance, tangible interfaces, concrete
programming, and digital expression. He leads the study of “expressive
aspects of computer-human interface from the viewpoint of traditional
visual communication design” . He is working towards developing a

! See hitp://acg. media. mit.edw/research/research. html

COMPUTATIONAL EXPRESSIONISM: Background 15

new understanding of the field of computational aesthetics by forming
a new breed of worker who simultaneously performs the roles of artist
and of digital engineer. [MAE97]

Maeda is striving to define and realize the distinctive potential of
computation as a powerful aesthetic instrument. He claims this
potential is often misused in popular work, due to the ubiquity of
simplistic and unimaginative digital design tools. Current tools
commodify the process of creating visual forms and attract underskilled
designers. The issues associated with questions of originality as well as
the pervasiveness of the medium compromise the quality of work.

DESIGN BY COMPUTATION

This thesis is inspired and informed by a course Maeda taught at the
Media Laboratory in the spring of 1997. The course encouraged the
exploration of computation as an expressive medium and emphasized
the unique expressive properties of the medium in order to develop a
set of extensions to the designer’s creative vocabulary. Problem sets for
the class resulted in a body of Java applets that illustrated elements of
traditional design in an interactive or reactive computational form.

Graphical elements, point, line, balance, rhythm, were programmed and
could respond to user input (clicking and dragging the mouse across the
canvas or drawing on a tablet) in ways that manipulated these elements

of design and exposed aspects of composition to the viewer.

Stills from the Thalesé applet by Joanna Berzowska

il

Stills from the Rumba applet by Joanna Berzowska
Thales6 was created to explore and illustrate the element of repetition
in composition. The Java program draws a series of concentric circles
on the canvas. The image is interactive: the center of the circles follows
the movement of the cursor. The constraints of the design are defined,
but also invite the viewer to alter parameters of the work in order to
give both visual depth and formal complexity to the composition. As
designer, the programmer can experiment with shape, distance and
behavior of the composition.

In Rumba, the illusion of dimensionality is heightened by decreasing
the distance between adjacent shapes, and by constraining the smallest
elements within the largest ones. Such an interactive study of an aspect

COMPUTATIONAL EXPRESSIONISM: Background 16

of design essentially alters the process of sketching. Instead of making
several drawings by hand to explore repetition, the process demands a
more thorough stage of planning. Sketching is paralleled in the
repetitive and iterative process of programming and allows more
thorough experimentation with form once the program is completed.

Another element of design is shape, and the following stills are taken
from an applet that explored space, in particular form and contour. The
problem asked students to investigate union and intersection of squares.
When two objects are placed on a canvas, how do they interact, how do
we view them, how do we represent them as a single shape? How do
their silhouettes merge, intuitively, mathematically, and visually?

]

cl =

Four stills from the Sqr2 applet by Joanna Berzowska

To think about shape, within the realm of computation, one must first
define intersection and union. The function for determining the area
that is the union of both squares, given that the squares can be moved
and scaled at will, is quite complicated, much more complicated, in
fact, than determining the same information by hand. Concepts of
mathematics can be used, but also can be twisted and reinterpreted.

The union of squares, in the example above, is shown in an
architectural aesthetic, and encompasses more that the sum of the areas
covered by each square. With computation, we can represent union as
an extension in space, remaining within the parameters of geometrical
union and intersection, but extending the concepts, and the lines, to
achieve a visual balance.

The sum of questions posed by Maeda during the course inspired the
present inquiry into the nature of computational drawing.

COMPUTATIONAL EXPRESSIONISM 17

computational

Sherry Turkle has pointed out that the computer differs from other
media in that it is both a constructive and a projective medium.
[TURS84] In the physical world, you cannot change the laws of nature to
fit, for example, naive theories of motion. Computation allows
abstractions, exaggerations and playful representations that illustrate
intuitive conceptions of physics. It also allows representations that
completely disregard the laws of physics, and allows the construction
of fantasy worlds. Computation invites us to represent, but also to
interpret the world around us, through experimentation and abstraction.

In this example, the line traces the movement of the cursor, which
follows the gesture of the hand, holding a mouse or a pen. The tracing
is displayed as a digital shadow on the monitor. The gesture is perfectly
reflected in the pixels, until, several seconds later, the traced line begins
to disappear from the monitor like a woven thread unraveling'.
Visually, the black bar acts as a magnet or a spring coil that pulls and
erases the drawing.

Stills from the Line1 applet by Joanna Berzowska

This illustrates the significance, but also the opportunities, provided by
the task of drawing with a computer. In this realm, a line can be
programmed to have behaviors that are unexpected, lyrical, metaphoric
and even (though this serves no obvious purpose) unrelated to the
motion made with the hand. The laws of physical motion, the laws of
immutability of matter and other physical laws that we have learned
from traditional drawing are similarly rendered invalid. We are free to
pursue any interpretation of our ideas about drawing, and our ideas of
the meaning of gestures.

Computational lines differ from those found in the physical world,
whether on a paper surface or stretched out in space, projected onto a
wall or implied, the boundary between two planes. They differ insofar
as their appearance and behavior does not need to follow any laws of
physics. They are not bound by the ballast of physicality, and thus can
change form more easily than their physical counterparts. The very
elements of composition and design become open to inquiry.

A straight line segment is drawn joining the point (x,,f(X,)), the oldest-drawn point, and
point (x.3,0), in the black bar at the top of the canvas, with latency. The pixel is
removed and a line segment is drawn from the next point (X1, f(Xe1))) 10 (X02),0).

COMPUTATIONAL EXPRESSIONISM 18

This set of images is one solution to a problem posed by Maeda, to
think of a representation of the transformation of three objects into two.
This sort of magic is possible with computers, and a simple click of a
mouse can launch a method that will transform a set of pixels into a
form completely unlike their original state. In this case, the magic is
simply that of thinking of space in terms of line and shape.

~

\/

| B

Three clicks of the mouse originally determine three points that
describe the placement of three lines. Each point is represented as the
vertex of a two-segment line. The y-coordinate determines the vertical
position, the x-coordinate determines the angle at which the two
segments meet. The subsequent click fills it the two areas delineated by
the lines, as positive space polygons. The illusion of three objects
becoming two is clear and simple.

Stills from the THREE applet by Joanna Berzowska

Computation allows a great fluidity of the formal elements of
composition that were formerly thought to be static. It forces us to
rethink very basic elements of composition and design, instead of
attempting to mimic traditionally accepted ones.

COMPUTATIONAL EXPRESSIONISM: Drawing with Computation 19

DRAWING WITH COMPUTATION

COMPUTATIONAL LINE

The constrained and stylized character of current two-dimensional
digital art is directly related to the fact that most artists work with
already existing tools. Programmed drawing tools are much more
powerful aesthetically than traditional drawing media. A single
algorithm can generate whole images or patterns whereas a piece of
chalk, no matter how dark, can only trace very elementary shapes. The
stylistic nature of computational tools can influence the visual nature of
the art to a greater extent. Algorithms are so controlling that we must
carefully choose, as well as author, the tools and the methods with
which we decide to create and manipulate digital media.

Calligraphy 1 is an early example of a computational line, created to
suggest the sort of difficult drawing that can be done with a fountain
pen on a napkin. The fibers in the napkin interfere with the smooth
motion of the pen. Blotches of ink can appear if the motion is paused.
The thickness of the drawn line is determined by the speed with which
it is drawn. The direction of the drawing also affects the texture of the
line. The line becomes thicker, and generates blotches when the speed
decreases considerably. To create shapes, or filled areas of ink, one
must slow down the motion of the hand.

Four stills from the Calligraphy | applet by Joanna Berzowska

This example shows how a single line tool (from now on referred to as
a “computational line”) allows one to draw lines of different thickness
and to create shapes of various sizes. The size of the shape is a function
of the time the line is paused (with the finger on the mouse button), and
the shape orientation is determined by the direction of drawing.

N

>
| S

The gestures above generated
the WHEAT line compositions
on the left

COMPUTATIONAL EXPRESSIONISM: Drawing with Computation 20

The Calligraphy I line is very basic, the representation of the hand
gesture is closely mirrored by the algorithm, with minimal
embellishments. It is something that will be referred to as a “direct
line”. It is also a static computational line: it follows the movement of
the input device and leaves static remains on the display. As will be
discussed in later sections, the computational line can also be portrayed
as a pattern of shapes that holds a more abstract relationship with the
gesture.

COMPUTATIONAL DRAWING

We “draw” on the computer monitor by dragging a mouse over the
table. A computational line produces a visual outcome augmented by
the representation of position, speed and direction of drawing. The
hand gesture itself is encoded as a vector of point object. Each point
object is a Cartesian coordinate pair and a time parameter, which
records the exact time of creation. The points the line traverses and
their temporal ordering are factors in determining the line’s appearance.

The following stills show some simple gestures drawn with the
WHEAT line, so named because of its appearance of wheat swaying in
the wind. The first drawings illustrate single gestures, so as to highlight
the versatility of this computational line. The left panel represents a
movement from the bottom right corner to the top left. The right panel
is a visualization of the inverse movement. The following two panels
illustrate slower, more detailed movements. The spacing between
consecutive strokes varies with the speed of drawing. The tilting
direction preserves the direction of the gesture, the curved endpoints
directly imply the direction of the hand’s motion. It is an intuitive,
albeit more abstract drawing tool. Complex shapes can be created by a
very simple gesture.

?&
9’

The shading gestures above
generated the WHEAT line
composition on the right.

The shaded gestures above
generated the WHEAT line
composition on the right

COMPUTATIONAL EXPRESSIONISM: Drawing with Computation 21

The next two panels illustrate a different use of the WHEAT line.
Instead of creating linear shapes, it is used to create texture and areas of
color. The gestures that generated these compositions are repeated
movements back and forth, akin to shading with a pencil. The character
of the line is evident from the shapes that are achieved.

Stills from the WHEAT applet by Joanna Berzowska

The gestures above generated
the compositions on the let.

COMPUTATIONAL EXPRESSIONISM: Drawing with Computation 22

CREATIVE (EVALUATIVE) PROCESS

The following study is an exploration of the WHEAT line. Starting
with the computational line illustrated above, which offers a wealth of
versatile expressive possibilities, variations in the algorithm are
explored to achieve a variety of line tools. Varying the length of the
stroke, the amount of latency, the smoothness of the curve, direction,
and other characteristics produce a wide range of computational lines.

The process of computational sketching, alluded to in the previous
section, consists of making changes in the code, compiling and running
the drawing program and making some sketches on the canvas. The
drawings executed with the computational line instruct the next
iteration of the algorithms. Changes can be saved to catalogue the
progression of the computational line. The code evolves, and the
algorithms are refined and varied. This iterative bipartite process of
programming and drawing produces an individualized algorithmic style
for this particular piece.

VRO
\\.\\\ VO

|

Stills from the WHEAT applet by Joanna Berzowksa

4

—

The gestures above generated
the compositions on the right.

COMPUTATIONAL EXPRESSIONISM: Drawing with Computation 23

The most successful algorithms are saved and incorporated into a
formal applet. A color palette is selected by the artist for this particular
computational line, and the resulting drawing tool is used to create
more complex compositions, as illustrated in the last two small panels
in this series. The final panel shows the simple interface for this
particular example, which will be explained in the Interface section.

@ OW N @ e W N = @

I TTTTTTITOTTI

Interface of the WHEAT applet by Joanna Berzowska
We will see in later sections that a computational line (representation of
a gesture drawn with computational tools) has three attributes.
¢ The computational line has physical appearance, which can be a set
of points joining two endpoints; it can be a shape, a pattern, a
representation of a mathematical algorithm, a color.
¢ The computational line has individual behavior: dynamic properties
such as a change of color over time, or movement across the canvas.
e Finally, the computational line has behavior in its interaction with the
other lines on the canvas. It can push them away with pseudo-magnetic
forces, change their color, or affect their shape.

COMPUTATIONAL EXPRESSIONISM: Algorithm 24

ALGORITHM

Mathematics is the majestic structure of man to grant him
comprehension of the universe. It holds both the absolute and
the infinite, the understandable and the forever elusive. It has
walls before which one may pace up and down without result;
sometimes there is a door: one opens it—enters—one is in
another realm, the realm of gods, the room which holds the
key to the great systems. These doors are the doors of the
miracles. Having gone through one, man is no longer the
operative force, but rather it is his contact with the universe. In
front of him unfolds and spreads out the fabulous fabric of
numbers without end. He is in the country of numbers. He
may be a modest man and yet have entered just the same. Let
him remain, entranced by so much dazzling, all-pervading
light. [LEC80]

DEFINITION

An algorithm is a “process, or set of rules, usually one expressed in
algebraic notation, now used esp. in computing, machine translation
and linguistics.” [OXF98] It is a systematic, finite set of steps,
processes or operations that produce some result, such as the answer to
a question or the solution of an equation.

Procedural models such as fractals allow the
artist to create a high degree of complexity with
relatively simple input information. Similarly,
using combinations of functions as fundamental
as sine and cosine can easily produce engaging
compositions of the plane. On the right are
pictured some early experiments. The x and y
coordinate values of each pixel in the plane are
used to generate the color values that are then
painted on that pixel. The values obtained from
the position of the cursor, either through
clicking, or tracing the input device over the
virtual canvas, add another parameter to the
methods that determine color. Through
experimentation, complex and interesting
compositions are created from simple primitives MATHART
of algebra and calculus. by Joanna Berzowska

Algorithms and computer programs are invariably procedural
constructs. A common reaction is that a mathematical formula and the
graphs of functions cannot be considered art, as they are the products of
a formal and directed process. It is true that a drawing program does
not simply make art, but artists do not simply make art either, they
follow a method. [VER94] What is often called talent or intuition is a
complex form of reasoning, so complex, in fact, that we do not know
how to describe it in words. Just as a traditional artist follows a learned
and well-defined procedure in the course of creating, the algorithmic
artist also uses a more rigid procedure of iterative reformulation of
algorithms. The one essential element to the process, a developed

COMPUTATIONAL EXPRESSIONISM: Algorithm 25

artistic procedure, is necessarily unique for each artist and for each
work of art. The final composition, particular to each work, embraces
more than computation, insofar as it is the product of creative
approaches, reference, metaphor, memory, representation and
improvisation. [VER94] It is the product of the artist’s experience and
level of comfort with the medium, and is inspired by a history of
sketching in computation and other media.

FIRST ATTRIBUTE: APPEARANCE

Every computational line has a component that is merely its physical
appearance. That is the visual mark it leaves on the canvas. If the line is
dynamic, its appearance can be thought of as its initial state as it is
drawn, or simply its visual representation at any given moment in time.
The rudimentary building block of a computational line is the vector of
coordinate points that describe the drawn gesture. The appearance that
we see represented on the drawing canvas is necessarily mathematically
determined and incorporates elements of computation that extend the
vector. We can think of the vector of points as a spine, and the
computational line representation as ribs, or tentacles that the spine
controls. It is important that what we see on the canvas can be directly
related to gestures that are made. No matter how complex and evolved
it is, the appearance must be governed, must be drawn by the hand.

These compositions are
drawn with a traditional
pencil, repeating the
same motion several
times to achieve a
pattern of lines. A
program can generate
all the ribs, given the
spine, and reflect the
speed and direction of
drawing.

Hand sketch by Joanna Berzowska
This particular sketch inspired the GRIDS applet. GRIDS started out as
a desire to abstract the line itself into a series of endpoints of secondary
ribs, lines emanating from a common point. In this case, the line drawn
in fact defines the border, the boundary of one or several shapes.

ure

The compositions on the right
were generated by the above
gestures

The point of convergence of the ribs is determined either during the
programming stage, or during drawing, where an initial click of the
mouse marks the point of convergence, and the subsequent gesture

COMPUTATIONAL EXPRESSIONISM: Algorithm 26

delineates the shape. Complexity can be added by defining more than
one point of convergence, and moving the points onto, or far off the
canvas. Examples are presented in the Development subsection.

RANDOMNESS AND THE HAND

These three panels were created with the same computational line
consisting of a parametric curve algorithm. The quality of the drawing
is immensely affected by the gestures that are made with the line.

The first panel illustrates a slow line drawn
from the top left corner to the bottom right.

The middle panel depicts a more irregular
\Q gesture that traces over the canvas several
_ times. The right panel shows an erratic line

that deviates greatly from the diagonal, and
The compositions below were generated by m_oves qunckly 10 Opposing Qurecuons. It

the above gestures Still retains some of the quality of the shape
but is expressive of the gesture.

Stills from the POPPY applet by Joanna Berzowska

The visual form exhibits a tension between pattern repetition and
variation. The expressive, agitated quality of the drawing is attributed
to two factors.

First of all, the speed of the machine introduces a level of randomness
into the drawing. Some aspects of the drawing are impossible to control
because of the inability of the processor to keep up with the hand.
Some algorithms are impossible to program because of speed issues,
and thus certain design decisions are based on the abilities of the
technology to do what we want it to do. If an algorithm is too slow, we
must change it, or eliminate it from our repertoire. This is not
necessarily different from other media, which also have their
limitations. The difference becomes evident, however, in six months’
time, when the things that were too slow suddenly become adequately
fast. Computation is a unique medium insofar as cutting age
technology, increasing speeds or storage capabilities often motivate art
pieces. It is not necessary to be cutting edge or take full advantage of
the technology to make meaningful computational art, although it does
allow the artist to make things that are considered innovative.

Secondly, computational drawing integrates algorithm and hand
gestures (drawn lines). We are able to create visual artifacts that display
mathematical uniformity together with a more “human” irregularity.
The unexpected variations, the playful imperfection of the human hand
are a quality of expression that simple computer programs cannot
presently replicate.

COMPUTATIONAL EXPRESSIONISM: Algorithm 27

In one panel in his class, Maeda addresses the question of
indeterminacy as computation. He asks his students to question the
nature of randomness and its aesthetic merits. He suggests that
randomness is crass and overused, but can be used constructively to
express surprise or the general unpredictability that is a common daily
experience for most of us. Because in computation there is no such
thing as true randomness, any number called random is still generated
by an algorithm. If we understand the nature of this algorithm, we can
use unpredictable behavior while still retaining knowledge and control
of its actions. It is very important, for Maeda, to have complete control
over the medium. [MAE98]

In the case of computational drawing, there are two levels of control.
The first occurs in devising the algorithms, and the second consists of
the hand-based gesture interaction that occurs while manipulating the
algorithms. The control we exercise with the hand can be regarded as
random, or certainly less deterministic than the control we exercise by
asking the computer to render an equation. The use of irregular strokes
can be compared to the introduction of randomness in image dithering.
Because we cannot predict precisely where the stroke will be drawn,
we are striving more for cloudy forms and textures.

AL i “ 3 >
Stills from the TUNNEL applet by Joanna Berzowska

1 ~——__, The TUNNEL line can produce all of the
/ above compositions of line and shape. As a
\ single stroke, it creates series of fragmented

- circles of increasing diameter. The diameter

—g— ——— increases as a function of position in the
, plane and direction of movement. Using the
; ! single computational line in different ways

~———~ creates distinct algorithmic compositions. A

The compositions above were generated single gesture is represented as a pattern,
by these gestures. determined by the movement of the gesture.

The rapid hand movement over a single area, shading areas of the
canvas, creates areas of tone and shapes that emerge from these areas of
tone. The shading is analogous to shading accomplished with a piece of
chalk or a pencil on a piece of paper, but an algorithmic line determines
a more complex pattern. The pattern is a function of position and
direction of movement.

COMPUTATIONAL EXPRESSIONISM: Algorithm 28

WHAT IS SKILL NOW?

The art of drawing has historically been the domain of skilled and
talented artists who devoted much time and effort to the creation of
images. Skills combined with creativity were prized. Artists spent
considerable time in the studio, working through interminable sketches,
to master these skills. Computers now provide a rapid and simpler
process for creating many graphic representations that earlier
demanded a high level of skill. Computers offer easy access to precise
detail and high resolution, to photo-realistic representations, stylized
illustrations and technical sketches.

Sutherland’s Sketchpad was the first program that demonstrated
interactive drawing with a lightpen, directly on the CRT. It could
create, manipulate, duplicate, and store engineering drawings on a
computer. [SUT63] Considerable work has also been done for creating
black-and-white illustrations, generally for engineering or graphical
design work. Many programs are available to create design, layout and
engineering drawings. The use of computation for line drawing
involves creating specific sketching tools and beautifiers, which either
make the drawing more geometrical, or more irregular, depending on
whether the aim is to be ordered and precise or to emulate a hand-
drawn aesthetic. High-resolution vector graphics also offer fun options
for manipulating curves.

The automatic beautifier for drawings cleans up
schematic drawings by removing hand-drawn
irregularities. The system allows quick polygon-

oriented sketches to be transformed into precise
D illustrations where lines are straight, precisely parallel
and commensurate, sides of polygons are collinear,

and vertices are aligned. [PAV85] [BOLZ93]

Another type of application, Squiggle, [DEN95] [PRE93] adds the
irregularity of the hand-drawn to static, geometric CAD output to make
the results appear as if they were drawn without a computer. It
introduces a looser, more energetic look to computer-generated
presentations by randomly tweaking the data file that specifies straight
lines and curves. Pen-and-ink is an extremely limited medium, allowing
only individual monochromatic strokes of the pen, yet skilled artists
can create beautiful pen-and-ink illustrations incorporating a wealth of
textures, tones, and styles. Salisbury’s [SAL97] interactive system for
creating pen-and-ink-style line drawings from grayscale images
features a method where strokes of the rendered illustration follow the
features of the original image.

A skeletal stroke [HSU93] [HSU94]
[CRE98] is a drawing tool and image
transformation instrument that changes the
shape of pictures as if by bending or twisting,
while conserving the aspect ratio of selected
features on the picture. It is a vector graphics
realization of a brush metaphor that uses
arbitrary pictures as ink. The strokes are
hierarchically structured so that they use a
single skeleton to control an entire stroke and
its features.

COMPUTATIONAL EXPRESSIONISM: Algorithm 29

These methods are very powerful for illustration and technical drawing.
Computer technology for producing more abstract and expressive work
is less advanced. One option is to use one of the many available paint
programs, which in their attempts to emulate traditional art tools often
produce a sterile pastiche, a simulacrum, whose easily categorized style
and generic aesthetic do not satisfy. Another option is to use image
manipulation techniques, filters and other de-constructive methods to
alter an existing image. Most of the published work on digital painting
is concerned with the problem of emulating the process of traditional
artists’ tools, and creating both filters and interactive tools that produce
the results that look similar to those produced by their predecessors.

One such method creates an image with a hand-
painted appearance with a series of spline brush
strokes chosen to match colors in the source
photograph. Visual emphasis in the painting
corresponds roughly to the spatial energy present in
the source image. [HER98] This approach is
noteworthy in terms of several innovations, long,
curved brush strokes, a varying brush size, and
changeable rendering styles.

Haeberli [HAE90] shows how scanned or rendered image information
can be used as a starting point for painting by numbers. Many
companies sell products that combine the stylistic expressiveness of
traditional artist tools with the speed, flexibility and resolution
independence of vector-based drawing. They are listed in Appendix B.

Traditionally, artists are trained in hand-to-eye skills, not the more
obviously rational skills necessary to conceptualize the mathematics of
drawing a line from the point (90,30) to the point (10,140). Therefore,
the current tools that invite digital image expression tend to shroud the
tools’ computational aspects, and provide a user interface that inserts a
layer of artifice between the user and the tools. This layer of artifice
introduces stylistic constraints, both by pre-defining aesthetic choices,
and limiting the set of possibilities. Artists carry over skills from their
previous work, and continue to use the new medium in the old way.
Needless to say, this is inadequate. The skills necessary to develop an
expressive proficiency in the medium are those of thinking
mathematically, of programming, of translating artistic vision into a
concise, mathematical algorithm, and approaching composition in an
explicitly procedural way.

Composition created with the JoeyGraphics Java class

The importance of skill, of the mastery of a medium is partially lost in
using commercial image software. The act of programming, however,
provides an environment that must be learned and conquered, the long
road that must be traveled and explored so as to develop a closer
relationship, a conspiracy, between the artist and the medium. This sort
of complex understanding is necessary to move beyond a preoccupation
with the medium, and allow a greater comfort that will cause the artist
to concentrate on content and meaning instead of tools.

COMPUTATIONAL EXPRESSIONISM: Algorithm 30

ALGORITHMIC ARTISTS

This sort of thinking is not new, and many artists have been working
with algorithms to create visual art. Algorithms are after all simply a set
of steps or processes necessary to execute a task. It can be argued that
the act of drawing in a more traditional medium is also an algorithmic
process, [VER98] but a far more complex one. Algorithms are not a
phenomenon unique to programming, but the advent of computers has
given visual artists have the technology for composing art works
algorithmically in ways than were unavailable before. [VER98] This
subsection is an algorithmic art gallery, with sample images and
quotations from a set of algorithmic artists.

Touching is a very broad concept. In these
images, lines are playing a game of
touching, of near-touching, of avoiding,
of seeking, of crossing and intermingling:
a manifestation of the purity of the line
and an invitation to meditate.
Algorithmically generated drawings,
drawn on a pen plotter, constitute a very
small segment within the area of
computer artwork. It is this small
segment, however, which I find most
fascinating. This has to do with the
archaic notion of a mechanical extension
to the drawing hand, unlocking a universe
of machine-generated drawings utterly
different from hand drawings. [DEH98]

b97.9.3 by Hans E. Dehlinger
My interest in computer imaging is
producing images that have never been
imagined. That means I am not
reproducing the images in my brain but
accepting or selecting the images
generated by math based processing by a
preset algorithm. Computer is my
collaborator and my role in the creation
process is setting parameters, changing
surface attributes and waiting for the
Yoshiyuki Abe results processed by the computer.
[ABE97]

The computer became a physical and

intellectual extension in the process of MW\I'M\/‘M
creating my art. [write computer Nanhl Vi WAV, Yoo
algorithms i.e. rules that calculate and

then generate the work which could N P T
not be realized in any other way. My Mm\@i
artistic goal is reached when a finished W
work can dissociate itself from its

logical content and stand convincingly f‘/\)‘k—m
as an independent abstract entity. """V\Mﬂ%ﬂ
[MOH98a] My art is not a JQ_W
mathematical art, but an expression of 7 ¥ B A<

my artistic experience. [MOH98b]

Manfred Mohr

COMPUTATIONAL EXPRESSIONISM: Algorithm 31

Roman Verostko

Most of my work for the past 40
years has been with pure visual
form ranging from controlled
constructions with highly studied
color behavior to spontaneous
brush strokes and inventive non-
representational drawing. Such art
has been labeled variously as
"concrete", "abstract", "non-
objective”, and "non-
representational”. In its purest
form such art holds no reference
to other reality. Rather one
contemplates the object for its
own inherent form similar to the
way one might contemplate a
flower or a seashell. Procedures
for creating such art have been
evolving from the work of its
pioneers in the first decade of this
century. [VER98]

Roman Verostko

The world of forms available for artists who create such art is vast, an
uncharted frontier of "unseen" worlds waiting to be "discovered" and
concretized. With the advent of computers, I began composing detailed
procedures for generating forms that are accessible only through
extensive computing. My on-going work concentrates on developing
this program of procedures for investigating and creating such forms.
By joining these procedures with fine arts practice, I create objects to
be contemplated much as we contemplate the forms of nature. [VER98]

I started this so long ago that many of the
wonderful tools which are available now to
artists did not exist. At that point I was
forced to make my own and I had to program
them. This is the origin of my work, which is
generally personal in its goal and forms.
Everything I do is based on mathematics and
geometry and line arts. I chose to use a
plotter because it was the most affordable
piece of hardware I could put my hands on at
the time. ... It was a very dynamic process for
me and this process is going to end because I
am using a technology which is becoming
obsolete. [HEB98]

Jean Pierre Hebert

COMPUTATIONAL EXPRESSIONISM: Algorithm 32

Interruptions, 1968 Vera Molnar Variations Sainte-Victoire, 1996 Vera Molnar

The image obtained by a painter using a computer stops being an accumulation
of unknown badly defined forms and colors. It becomes instead a pattern of
thousands of distinct, intermittent, and quantified points. The position in space,
the colorimetric values of these thousands of points, are perfectly defined and
numerically accountable. In this way, the painter controls each one of these
points. At any moment, the artist is able to modify the value of one or several
points, or even the total number of them. As a result, innumerable successive
approaches (many sketches, to use the accepted history-of-art term) can be
shown on the screen. Proceeding by small steps, the painter is in a position to
delicately pinpoint the image of dreams. Without the aid of a computer, it would
not possible to materialize quite so faithfully an image that previously existed
only in the artist’s mind. This may sound paradoxical, but the machine, which is
thought to be cold and inhuman, can help to realize what is most subjective,
unattainable, and profound in a human being. [MOL98]

With technology it is possible to manifest
mathematical ideas as images, sounds, sculpture
and even poetry. Artists in all media have found
mathematical processes of value in their creative
enterprise. These processes are often described
using algorithms. In describing mathematical
processes with algorithms, beauty and meaning
can be discovered. Numbers are mapped into light
and/or sound, and perceived through the senses as
objects. It is the mathematical source of these
works that has aesthetic worth. Algorithms,
implemented on computers, make it possible for us
to see and hear the beauty of mathematical
processes. [EVA98]

Brian Evans

I had clear ideas about abstract form in
painting and intuitively recognized the
potential for expanding this new
twentieth century visual language
through the computer. ... I seek to
expand a radical new language in art. [
do not feel impressed by ray tracing or
by scanning photographs. I can draw
well enough and render in traditional
academic ways. ... It is not the
computer's ability to imitate optics that I
find fascinating. The computer, as a
digital media, has allowed me to deepen
visual ideas of form and illusion not
Samia Halaby easily possible otherwise. [HAL98]

COMPUTATIONAL EXPRESSIONISM: Algorithm 33

In my early work, I created a sense of presence of
invisible forces in nature. For me, these forces in
nature are metaphors for the interpersonal
dynamics between people. I created algorithmic
images, using mathematical descriptions of
phenomena such as light reflecting off of
irregular surfaces, that embodied these dynamic
forces. In these drawings, environmental
phenomena that we sense, like the wind, were
visualized and given a physical presence.
Algorithmic patterns were also created on fabric
using heat-transfer xerography. This mapping of
environmental behaviors onto cloth propelled this
algorithmic representation back into the natural
world. [TRU98]

Construction E5, 1975 Joan Truckenbrod

My drawings and paintings are made in a
two part process. First, images are generated
on the screen of a microcomputer using a
variety computer programs. Some of these
programs employ simple random
procedures, others utilize permutations of
graphic elements such as cellular
autornations. Next, a rectangular section of
the image is plotted, pixel by pixel The
pixels can be drawn as circles, filled boxes,
crosses, and so forth. They can be large or
small, and can be mapped onto various
geometric surfaces, such as planes,
cylinders, and cones, Finally, these surfaces
Mark Wilson are projected into perspective space. I have
written all the software. [WIL98]

D),

18 G 90: Mark Wilson

These working procedures offer much greater versatility and freedom
from the traditionally small photographically-based computer graphic
formats. The overall picture-making process is reminiscent of collage.
Elements are selected and placed on the surface. Compositional
decisions are made step by step. Thus, the final appearance of the
image is not predetermined by the machinery, but by artistic judgment.

It would be impossible to realize my works using any other medium. I
have attempted to directly use the digital nature of this medium. Rather
than trying to disguise pixels, they have become the central element of
my artmaking. Technology underlies all of my working procedures, but
the ultimate goal is a simple one: to delight and intrigue the eye of the
viewer with images that can be seen only with the aid of a computer.
[WIL98]

COMPUTATIONAL EXPRESSIONISM: Dynamism 34

DYNAMISM

Consecutive stages in the drawing of a HAIRY drawing by Joanna Berzowska

BACKGROUND

“Dynamic form is everywhere ... As technology advances towards
greater possibilities for realizing dynamic forms ... it is inevitable that
most objects that we use will become increasingly dynamic.” [MAE93]
Interactive digital pieces are intrinsically dynamic and allow direct
manipulation with hands, breath, voice or movement through space.
The mappings of physical motion to screen events can be very intuitive
and give a certain satisfaction of being in close physical contact with
the medium. Dodge’s The Winds that wash the Seas provides sensors
for human breath and a full bathtub that can recognize the motion of
hands in the water. The participants breathe and splash their hands in
the water to interact with the piece. [DOD97] In Baird’s Sashay “a
participant uses a set of emotionally evocative gestures to interact with
a character - the Sleeper - by constructing an animated dream.”
[BAI97] Seaman’s The World Generator is an interactive system that
allows viewers to construct and generate dynamic poetic worlds in real
time based on an interactive template of potential choices. [SEA96]

Snibbe’s Motion Phone' is an “attempt to
open up the language of abstract animation to
a general audience by allowing spontaneous
human gestures to be captured in all their
subtlety.” [SNI96] It moves beyond traditional
animation tools, and becomes an instrument,
supplying the user/artist with rich expressive
mappings of gesture to shape, color and
motion.

A still from Motion Phone

Non-interactive dynamic forms, or kinetic art, is exemplified through
film, animation and musical, lyrical compositions of shapes and colors.
Early 20" century avant-garde aesthetics rested on the conviction that
light and movement build the poetic dimension of cinema. The lyricism
of movement that can be achieved with computers is often compared to
poetry or musical forms.

Sims’ Primordial Dance is an experimental animation containing a
progression of abstract textures and patterns. It is a study of emerging
and transforming mathematical equations that might be considered
visual music in that it attempts to provoke emotion with underlying
structure and complexity without relying on specific representational
entities. Whitney [WHI91] was a pioneer of composition that
simultaneously encompassed music and visual form. He explored the

! First built in 1991. Presented at SIGGRAPH 95. Prix Ars Electronica 96 in the category
[nteractive Art.

COMPUTATIONAL EXPRESSIONISM: Dynamism 35

relationships that exist between musical and visual design. Musical
tempo and harmony determined much of the visual aspects of his work.
In Digital Harmony, fluid, orderly form and movement generates or
resolves tensions much in the manner that orderly sequences of
resonant tonal harmony impact emotion and feeling.

John Whitney's Digital Harmony

Maeda has introduced the concept of reactive graphics, computational
designs that are programmed to directly respond to actions from the
viewer of the graphics. “There are reactions that are concise, cooperate,
and can smoothly flow into other reactions in a breathtaking manner
appropriate to the digital medium.” [MAE98b]

The computational medium allows us to create tactile, interactive
environments inviting an exploratory involvement between the user and
the artwork. The process becomes a new interaction model with which
the user and computer can communicate. It has to be learned and can be
controlled to produce expressive compositions. Both movement and
physical change are very important elements of computational art, just
as important as shape, color and composition are to a painter. Because a
computer contains a processor that constantly and consistently
assimilates data, manipulates it and can output continually
metamorphosing sets of objects, computation is a most natural medium
for the exploration of dynamism.

SECOND ATTRIBUTE: DYNAMIC LINES

Computation allows us to
create dynamic,
interactive, exploratory
work. We create drawing
tools that respond in
unconventional ways,
lines that fill the canvas
with color, and animate as
they are drawn.

Some of the traditional formal components and unifying principles of
design are line, shape and form, space, texture, value, color,
dimensionality, repetition, variety, rhythm, balance and emphasis.
Computation allows us to add a new word to the traditional vocabulary

COMPUTATIONAL EXPRESSIONISM: Dynamism 36

Using the conventional physical interface of a mouse for hand drawn
input and a monitor for visual output, we see the result of gestures we
make with our hands. With behavior, the gesture is mapped to more
than process and appearance. It is mapped to a behavior that influences
both the appearance of the element over time (dynamism) and the
appearance and relationship of other elements around it. What is
exciting is that we can define this behavior and make it abstract.

DAFFODIL composition by Joanna Berzowska

The DAFFODIL composition was created using a dynamic stroke. A
gesture delineates a string of points. Each point is the center of a small
circle. The pools of color are drawn as concentric circles of ever-
increasing radii. The centers of the circles follow the path of the line,
and create ripples of color. The distances between consecutive circles
can be adjusted to create grid patterns or continuous areas of color. The
distance between consecutive generator points can also be altered. The
colors are also affected by time, and intricate patterns emerge from the
process of lines drawing over each other until their lifespan ends. The
circles draw over each other, in a dynamic, animated, interactive
process. The interaction of colors is particularly captivating and
entertaining. Dynamic lines create a rich visual and animated
environment controlled directly by gesture, by the hand. Unfortunately,
the process often becomes more pleasurable than the composition.

Designing dynamic lines is a difficult task. It is easy to think of
algorithm when devising a static algorithmic line, but with added
dynamism it becomes increasingly difficult to realize the connection
between the individual computational line, and the eventual
composition. Sketching with the lines and altering their design becomes
a fun but time-consuming process.

The HAIRY line projects little hairs or
tentacles from its spine. The tentacles are
revealed differently as they change color
over time, slowly fading to white. Their
life span ends when their color fades
completely. Because they are drawn in
slightly different places each time they
redraw, the black edge remains, and
becomes positive space. Overlapping . -
fading tentacles form texture.’ The HAIRY line

1

The following sequence illustrates the drawing process. The lines start
out as a thick, black mark. After it has been drawn, the mark expands,
grows in thickness, projecting hundreds of little hairs out of its spine.

' The basic component of this line is a method in the JoeyGraphics class called
drawHairyLine(int x L, int x2, int y1, int y2) which fades over time. The line segments
redraw in different places but shift over time, so the effect is an interesting border.

COMPUTATIONAL EXPRESSIONISM: Dynamism 37

The hairs start out dark, but become lighter and lighter over time. The
color of later hairs fades as they are drawn over previous ones. As a
result, the overall composition fades. The space where the initial line
was drawn becomes textured negative space, and only the outline
remains as dark positive space. The following sequence of stills
illustrates the drawing process as several lines are added over time,
building up a drawing. The leftmost picture in each row depicts the
state of the drawing as a new line is drawn. The rightmost picture in
each row shows the drawing after all animation has come to a standstill.

.

Consecutive stages in the drawing of a HAIRY drawing

Each line, although it is dynamic, comes to rest in a predictable final
state. The animation does not continue indefinitely. This can be
compared to painting where the paint can drip initially, but will always
dry in an expected manner.

The next series of stills are the end products of simple lines drawn with
the DynamicExpress package. It is a package of dynamic lines, which
do not change color, but extend spatially with time. The vertex of each
triangular shape is the originating point of a gesture. The quality of the
gesture, its speed, direction and position, determine the appearance and
direction of the animation. The animation consists of a visual echo of
repeating lines originating from the vertex. As the cursor draws over
the display, the smallest lines at the vertex of the triangular shapes are
traced on the display. Each small line generates a resonant visual
reaction of progressively larger lines that are rendered in relation to the
movement of the cursor.

COMPUTATIONAL EXPRESSIONISM: Dynamism 38

LT

Compositions drawn by Joanna Berzowska with her DynamicExpress package
The first panel shows a short, controlled gesture. The next two are
representations of more vigorous, repetitive gestures. The last two show
a repetitive movement back and forth.

COMPUTATIONAL EXPRESSIONISM: Dynamism 39

This example draws a

% series of parallel lines,
which redraw, line by
line, for a finite time.

§ As such, close lines
redraw over each other,
and the composition
changes over time, to
eventually settle on its
final state. At any one
moment in time,
however, we can say

& that the line has a

§ certain appearance. The
dynamism is more
difficult to describe.

PLEASE SAVE MY WORK

The drawing programs do not have an undo function. This can easily be
programmed, but goes against the spirit of computational drawing. The
nature of computation is such that the state of a composition can be
saved at any moment in time, and older states can be reverted to,
mistakes can be undone. Is this desirable for drawing?

Each drawing is stored in computer memory as a vector of time
annotated line objects, recording the coordinate points that make up the
gesture, and the parameters and algorithms used to represent the gesture
on the canvas. As such, each drawing is a computer file of numbers and
methods. That file can be conserved and thus can be recreated and
replayed. We must ask whether we want a unique process of drawing or
a performance. Do we want drawing or animation?

“Can an art which is concerned, as western art has always been, with
appearance, with the look of things, with surface reality, have any
relevance in our systems-based culture in which apparition, emergence,
transformation are seminal? Can representation coexist with
constructivism?” [ASC93] Then again, we should not confuse the
procedure by which the artist creates algorithms with the procedures by
which the algorithms execute the work. This may be the most important
distinction we need to bear in mind when discussing art and algorithm.

Computational art has a potential for distribution and for the making of
multiple copies. The longevity and non-degradable character of digital
material (considering back-ups and multiple copies) is also
problematic, as well as its fragility and dependence on hardware (so the
hardware is really an inherent part of the work, as the canvas is an
integral part of a painting).

Digital media not only lends itself to being copied, but itself
operates in terms of reproductive operations. On the web,
novices learn to make their own web sites by copying the
scripts making up other sites. But experienced programmers at
times do no different when writing code. And computers are
designed to copy information from one area of memory to
another. [BRO98]

COMPUTATIONAL EXPRESSIONISM: Dynamism 40

Works can be copied and reproduced in such a way that each copy, as a
digital document, is intrinsically identical to the original. In fact, the
concept of the original falls apart when we consider how a
computational work is created. The recursive and continuous process of
shaping a piece of computation precludes the concept altogether. The
western tradition of visual art relies heavily on the concept of original.
In computation, this concept is absent even in “the most perfect
reproduction”. [BEN92] Walter Benjamin speaks of the importance of
the concept of the original in a work of art, especially of its presence in
time and space. The presence implies authenticity and includes all the
patina that accompanies a work’s existence in the physical world.
[BEN92] Disallowing undo functions and the ability to save the
composition at arbitrary points during the process of drawing hopes to
retain some element of authenticity for the resulting compositions.

Maeda addresses the topic of continuous interaction in computational
art in one of the panels in his class, entitled “One shot performance vs.
Continuum”. He is referring to reactive graphics, and interaction with
graphical composition. Reactive graphics can incorporate human
gesture as the principal component of a real-time animated
environment. This environment is not a drawing, it is a composition, a
computational, dynamic composition. It can animate with a single soul,
its breath cannot be retrieved, or it can provide a continuous
environment of animated interaction. The viewer can return and
experience a similar interaction, or never be able to replicate the
original.

In the type example above, the center of the cross hair follows the
cursor around. The radius of the disk is equivalent to the shortest
perpendicular distance between the center of the circle and an edge of
the canvas. Animated text is displayed around the crosshairs, displaying
the consecutive letters of a poem. If we think of interactive art as visual

COMPUTATIONAL EXPRESSIONISM: Dynamism 41

dynamic forms for expression, the poem animation is an action/reaction
interactive occurrence, whereas the direct manipulation of the layout by
the cursor is a fully interactive experience. Similarly, there are two
sorts of temporal experiences here. The text that animates does so only
once. From the time that the Java applet is launched, the poem is
printed, letter by letter, until its last word. Then the letters stop. The
dynamic crosshairs and disk of gray offer a longer lasting temporal
interaction. The reader of the graphical poem can keep moving the
cursor long after the last stanza has run out.

Computational drawing is concerned with eventually shaping a static
composition. As such, it cannot consist of a continuous animated
environment. The dynamic lines have a pre-determined life span, and
always settle in a deliberate final state. Their dynamism is an integral
part of the process of drawing form. Dynamic lines execute some tricks
as they elucidate their ultimate visual form.

ARTISTIC PROCESS

At this historical moment, does it make sense
for an artist to write software and pursue an
individually styled algorithmic art? [VER94]

In computational drawing, the creative process is augmented to include
the creation of the drawing tools. Questions arise regarding the bipartite
composition of computational drawing, issues of authorship, the artist’s
shift from a creative role to an evaluative role, and the problem of
making tools versus making art. The computational medium offers us
two features: dynamic form and interactivity. These applications of
computation can be used to create pieces that are divorced from
physical references and that are evocative in an unfamiliar yet intuitive
way. Freed from the constraints of previous models, mappings and
metaphors, a more biologically intuitive form of art can emerge.

INTERACTIVITY

Interactivity is becoming one of the most important features of
contemporary civilization. [KLU95] In computation, it embodies the
dialogue between machine and artist. The adoption of computation as
an art medium has engendered new forms of interactive shaping of
form and content.

It has been advanced that the beginnings of interactive art coincided
with the advent of video tape, which allowed a previously linear film
experienced to be manipulated by the viewer, who could now influence
the course of the film experience. Film viewing was transformed into
film reading, a linear yet adaptable process of perceiving,
comprehending and selecting the narrative and stylistic experience.
Umberto Eco describes a purgatory of lost art, where everyone is
watching personalized films and deserting the movie theatres. “With a
single pattern and an accompanying package of variants an individual
could make, for example, 15,741 Antonini movies.” [EC0O93] These
features of interactivity should not be perceived as a threat to the
author, the editor of form and content. Interactivity is simply a new
element of style that must be understood and applied in meaningful
ways.

COMPUTATIONAL EXPRESSIONISM: Artistic Process 42

Interactive art demythologizes the role of the artist, assigning to it the
function of the designer of contexts for receptive creation. The concept
of the author is being replaced with the notion of authorship. [KLU95]
Instead of creating, expressing, or transmitting content, the artist is
more concerned with designing environments or contexts within which
the viewer can construct experience and meaning. [ASC93] Seaman
has coined the term “recombinant poetics” to talk about computation as
an artistic medium which heightens the potential for an intermingling
of the knowledge of the viewer with the “re-embodied intelligence” of
an author. Computers can function as databases of media objects
(image, sound, video, text) and the artist, or maker of interactive pieces,
can author environments in which these objects interact with each other
and with the viewer. These environments enable intelligent emergent
poetic responses to viewer interactivity via the application of models of
poetic construction. [SEA96]

Here, two levels of interaction are at work. The first level is the writing
of the drawing program, the programming of the computational lines.
The second level involves interfacing with the computer program,
using the hand, and a hand-held input device to produce images with
the computational lines. A single user, the artist, is asked to perform
both interactions.

AUTHORSHIP AND RE-APPROPRIATION

The drawing procedure has been previously described as a bipartite
operation of iterative programming and mark making with the hand.
Let us consider a different approach to computational drawing, as a
process comprised of three elements. The first is a raw material or
medium, traditionally ink and paper, which is replaced by the
computer, a programming language and devices for input and output.
The second element embodies the gestures performed by the artist in
the chosen medium. These gestures become more efficient and produce
more interesting or unique results as a deeper understanding of the
medium is achieved. Finally, there is an element of intended meaning
attached to those gestures. The intended meaning manifests itself
through memory, metaphor, and an obscure reasoning process that is
often described as the gift of artistic insight.

In computational expressionism, the artist is encouraged to program
individual algorithms, then use elements of gesture to deposit traces of
these algorithms on the pixels of the CRT. The intended meaning,
artistic desire and intuition guide the entire process.

Let us define “the second artist” as someone who decides to use
computational lines programmed by someone we will call “the
programmer”, without altering the algorithms. The line created by the
programmer has physical appearance, a shape, a pattern, a
representation of an algorithm, a color. The drawing process demands a
gestural method of interaction with the canvas to generate images. The
line making abilities of the hand, and the interface of an input device
and the screen, appeal to the second artist as a way to produce visually
lyrical worlds. How can we think of the expressive experience of the
second artist? Is it merely exploratory, or can it be thought of as a
whole creative encounter with the medium? Is the programmer merely
a tool maker, or an artist in her own right?

COMPUTATIONAL EXPRESSIONISM: Artistic Process 43

When the second artist decides to use the same computational lines,
authorship is shared, and the second author navigates in a world
equipped with elements of style, expression and composition, which are
explored to create visual pieces. The programmer provides visual
metaphors that establish stylistic guidance. The programmer is an
author of visual context more so than visual content. The second artist
completes the visual experiences through action and interaction with a
system of form or meaning that carries expressive potential constructed
of image elements within a defined system of constraints.

A majority of meaningful art necessitates great expanses of
deliberate emptiness, both visual and conceptual, that excites the
reflective sensibility and stimulates viewers to introspection and
thought. Thus, the second artist can have an audience experience in
the sense of utilizing minimalist elements of style provided by the
programmer to reflect upon questions of form and style within
these constraints.

The experience of the second artist can also be thought of in terms of
re-appropriation, a common theme in post-modernist art where
elements of art pieces created by others are used and composed in ways
that is individual to the appropriator. The process of making art always
requires an artist to use the whole of previous knowledge, wisdom,
insight and memory, and reevaluate it so as to evoke, to create
something new. Levels of authorship are ultimately irrelevant.

The extensive arguments regarding authorship of interactive work are
not very meaningful in the definition of computational drawing,
because this is a study of an artist programming individual tools, and
drawing with them. The drawing is ideally a two-stage process, where
creating the line algorithms constitutes one half of the work. In this
vein, others can use the lines as well, and authorship of the resulting
compositions is shared in a sense, but the desire is that each artist will
modify at least some of the code to make it unique. As such, the Java
classes are organized in a logical and object-oriented way, so that
alteration can be easier. Artists are expected to work with the code and
create their own dynamic, interactive lines, which are subsequently
used to draw the compositions.

ROLE OF THE ARTIST
0 23%S 6> When asked to produce a composition
S+ ' \ ’ t+—r——t ’ g consisting of three lines that slice through
33 40 5 red square, the artist can write a

zf ':;' program. The procedure is to subdivide
| 1 each edge of a square into ten segments

1 .a ofequal length, and label the endpoint of

L5~ each segment in a clockwise manner from

16 0 to 39. By asking the computer to

;':: generate three pairs of random integers in

[® the range 0-39, we can connect these as

A ks 2321 8% 4 endpoints of intersecting lines.

Repeating the process one hundred times produces one hundred
compositions. The artist’s role then becomes to select the most
interesting ones. The process is evaluative rather than creative.

COMPUTATIONAL EXPRESSIONISM: Artistic Process 44

__// / i /
/ \ _ // ,/

P
Three compositions selected by the above process

A similar situation is to be found in photography, where photographers
used to require lengthy poses of a single composition. Materials were
costly and exposure times lengthy. In the present world of fashion
photography and photo documentary, thousands of shots are taken in
order to produce the award-winning photograph. This situation is
exactly that of computational art. Copies and minute changes in the
program itself are trivial to make and undo.

The evaluative skills of the artist are important. The algorithm creation
is a repetitive, iterative process, until desired results are achieved.
Similarly, the nature of computation is unique insofar as the digital has
no concept of original, or concept of finished work. The bits can be
saved, changes undone, and possible combinations of visual elements
escalate. The artist must choose from among many possibilities, instead
of creating in a single breath of creation.

Computers are procedural beasts. The evaluative process of making
computational lines, the decisions the artist makes are the artistic
procedures. These have to do with the individual sensibility of each one
about the entire art-making process. “Each makes artistic choices as to
which procedures he will articulate, what form the work will assume
(size, materials), how the work will be presented-and, yes each one
assembles the code to generate them-just so in terms of all their
physical qualities whether in visual or sound arts forms.” [VER94] The
role of the artist, in response to new technologies, has been to shift
towards a more evaluative role.

ARTISTS AS PROGRAMMERS

We are studying what sorts of art forms will emerge as artists start
working with a programming language as a raw material. Designers of
interactive digital forms who do not program must express form and
interactivity with concepts derived from available software. Their
image of the design space is fragmented and incomplete. It is shaped to
a large extent by the tools they have been using and by the solutions
they have seen. Consequently, many possible solutions are
unimaginable. In addition, because most tools with which one creates
digital pieces have underlying metaphoric or stylistic structure, the
content generated can be heavily influenced. By working in a
programming environment, we produce pieces that exist independently
of the hand of other authors or programmers. Maeda, in Design by
Numbers, states that the core skill of a digital designer is the practiced
art of computer programming, or “computation”. [MAE98b] Artists
must design their own tools and their own interactive experience.

For a programmer, the artistic process is the act of writing the code.
Different skills are involved in traditional art, which requires great
hand/eye coordination and intuitive faith in the hand, and
computational art, which demands concise, analytical thinking. Artists

COMPUTATIONAL EXPRESSIONISM: Artistic Process 45

will choose one set of skills over another, depending on their level of
comfort and practice. Programming languages can be designed for
artists who necessitate a more bricoleur approach to producing
algorithms and procedures.

To support the bricoleur interaction designer, it is important
that the tools and materials allow for the designer to work
fluently in an iterative and explorative modus operandi. Itis
important that the software environment enhances a “dialogue
with the material” in the creative design process. [SVA9T]

In Svanaes’ Painting with Interactive Pixels [SVA97], interaction
designers are asked to construct GUISs by painting with pixels that have
inherent behavior. Interaction is constructed directly with the brushes
that create the lines and shapes on the canvas. Svanaes defines
kinaesthetic thinking as corresponding to visual thinking for design, the
modus operandi involved when interactive behavior is designed
directly, without making use of abstract representations of behavior.

For a visual artist the study of drawing primitives, the line, the circle,
can be very instructive, especially those that deal with transformations
such as translation, rotation, and scaling. To design a procedure for
generating a new form one must think in very primitive and analytical
ways about the very nature of the drawing process.

MANIPULATING THE CANVAS

Drawing a stroke with a pen is no different from drawing a
stroke with a mouse. The real challenge is to discover the
intrinsic properties of the new medium, and to find out how
the stroke you “draw” with computation, is perhaps a stroke
you could never imagine without the computational medium.
[MAE98b]

Algorithmic and dynamic strokes have been
discussed in previous sections. An even greater
abstraction of the mapping between gesture and
computational line representation can produce a
stroke that creates and alters the patterns and colors
displayed on the canvas. A design is programmed to
reflect certain parameters. The artist determines its
color range, patterns, and rules of manipulation.
Certain characteristics, however, remain dependent
on later input. The input takes the form of a gesture,
a stroke. The whole design, therefore, can be
manipulated with gesture. Rubbing and manipulating
the canvas with the input device creates interesting
variations in the design. These variations would be
much harder to achieve were the artist to try to
program each one separately. The design on the right
can be altered to produce a wide variety of
compositions, simply by drawing strokes over its
surface. The hue, saturation and value of each
colored square are direct functions of x and y m11 by Joanna
coordinates of the canvas and the gesture. Berzowska

COMPUTATIONAL EXPRESSIONISM: Artistic Process 46

The computational line defines shape, color,
pattern and motion. The canvas can also
have properties; it can assign color to the
composition depending on the coordinates
of the pen, or affect the shape of the line, as
a function of coordinates. In FIELDS, the
image begins with a series of pictures of an
abstracted landscape, like the still frames of
a film, each differing slightly from the next.
As the cursor starts moving over the images,
an amount of disorder is introduced. The
scenes fall apart, the colors become brighter,
more contrasted. Over time, the scene
reverts to its tranquil state. This is not a
drawing, but uses gestural input to affect
composition.

FIELDS by Joanna Berzowska

In this example, a
pattern is generated.
The user can upset its
regularity with the
repeated rubbing of the
cursor over its surface.
Some elements of the
Original pattern remain. md by Joanna Berzowska

The images on the left are two
further examples of manipulating
the canvas color space. The size of
the pattern as well as the colors are
determined by (x,y) coordinates of a
mouse click. The artistic process is
one of design, not drawing, but
design heavily mediated by
computation. A general visual theme
or set of constraints is programmed
and then explored along several
degrees of freedom, functions of
cursor position. This process of
design allows a greater amount of
experimentation and a different
approach to sketching.

m7 and m9 by Joanna Berzowska

The canvas can also be manipulated to reveal elements that were not
visible earlier because of optical illusions, or because ofa
rearrangement of geometrical objects. A Kaniza triangle consists of
illusory contours. We perceive a blue triangular surface in front of
yellow circles and a black triangle. Equiluminance inhibits motion
perception, direction sensitivity, stereo perception, perspective,
shading, and certain form perception, such as the illusion associated
with the Kaniza triangle.

COMPUTATIONAL EXPRESSIONISM: Artistic Process 47

In the KANIZA applet, the
motion of the cursor causes
changes in the scale and rotation
of the yellow graphical elements
on the purple background. The
position of the cursor also alters
the color of the background. As
the two colors become closer in
value, the Kaniza illusion
becomes less obvious. Shapes are
brought in and out of focus
through the manipulation of the
graphical elements.

KANIZA applet by Joanna Berzowska

This illustrates an even greater abstraction of gestural manipulation as
drawing. Shapes fade in and out of focus as a function of position,
which determines color and thus influences the optical illusion.

In the piece called MAN, a line does not link two
points visually, but metaphorically. The line
P becomes a storytelling or a semantic tool. The

f i O g
: S B canvas shows a minimalist silhouette of a man.

§ As a line is drawn, its origin is labeled with a

} o large black dot, superimposed on the man’s

5, " silhouette. The endpoint is labeled with a word
i that names the body part on which the starting

point lies. Drawing becomes a labeling game: the
line is signified by origin and identification. This
sort of metaphoric line is outside of the scope of
computational drawing, and approximates an
interactive graphical piece, a reactive design.

ARTISTIC EXPERIENCE

How to qualify the drawings that are produced? Are they
representative? Are they evocative? Are they expressive?

The present work with the code consists of non-representational,
abstract compositions, relying heavily on the line and texture created
with distinct computational lines as its main building blocks. The
computational lines themselves rely on a close mapping of gesture to
the vector of points that is drawn on the canvas.

This piece is created with a single ~
line, a repeated up and down
vertical movement, at varying
speeds and horizontal positions.
The line uses directional
textures—collections of strokes
arranged in different patterns—to
generate shape and value. The
movement of the pen achieves a
desired tone, and the computer
draws all the individual strokes.

In conducting experiments in what sort of creative, aesthetic,
expressionistic experience is possible when using computation as art
medium, we have to question whether it is possible to find the

COMPUTATIONAL EXPRESSIONISM: Artistic Process 48

necessary “soul” in computation, considering that it is so incorporeal
and immaterial. Can we ever achieve the same richness of expression
using the computer as we do using the hands and the whole body.
Every gesture is an extension of the movement through space, the
gestural expression of the muscles and bones and tendons moving and
reacting with the canvas.

Walter Bender has remarked that drawing is a closed-loop process:
there is feedback between the hand and the eye. [BEND98b] Drawing
is algorithmic in a very complex cognitive way. It can be loosely
described as the process of the hand attempting to obey the eye, but not
necessarily succeeding. Innovation is often a result of mistake, and
mistake is perhaps a result of inspiration, a cognitive process so
complex that it is often referred to as feeling and not reason. I want to
underline the aspect of computational drawing that consists of drawing.
Drawing is a process that cannot be planned out prior to execution and
as such, the programming sets up an element of style, but only that. The
hand and eye execute the rest.

The algorithms are necessarily methodical, deterministic. The gestures
can be slow and determined, to replicate a complete version of the
algorithm slowly and faithtully, but can also convey a vast world of
expressive possibilities. Repeated versions of the algorithm and the
layering lines produce beautiful textures and shapes. A representational
effect can be achieved, drawing with computational lines that allow a
greater control over every pixel drawn. Since most of the lines involve
abstract algorithms, it is difficult to draw representational shapes. The
algorithm determines the style, and content, of the drawing. The hand
provides character, expressiveness, and emotive content.

INTERFACE

Interaction between humans and computers hinges on the development
and mutual understanding of new languages and communication
models. These are referred to as interface. They involve the mapping of
concepts and user actions onto elements of cultural and technological
iconography, which are themselves representations of particular digital
events. Interface metaphors must partake in and reflect the concept, the
physical action and the digital event, as well as bridge the gap between
the user and the machine. As such, interfaces often become complex
and clumsy. Innovation in the area strives to reduce them to artifacts
that are transparent and intuitive, in both a cultural and biological
sense. .

L

[0 Jl1 2 B [a s 6 [z '8 fa |

The interface to the Stream applet

COMPUTATIONAL EXPRESSIONISM: Interface 49

© P NG W AW N =S

Interface of the WHEAT applet
The interface to the drawing programs is very simple. One menu allows
color choice, another menu offers different line choices, and the bottom
offers an erase bar. The interface is minimalist and perhaps unclear,
because it is created by the artist, to be used by the artist. The behavior
of the lines is well known, and thus no further explanation is needed.
The color palette is also chosen specifically for each set of lines. If the
focus were more on the drawing applet, a more thought out study of
interface issues would be necessary.

MODULAR TOOLS

Drawing with computation becomes a bipartite process. The artist
programs her own tools and uses them. Two aspects are experimented
with, the algorithm, and the subsequent gestures.

Two drawings with the JoeyGraphics class

Computational expressionism deals with the representation of a hand
gesture on a two-dimensional canvas. I have noted before that the
computational line possessed the added attributes of dynamism and
interactive behavior, in addition to the expected attribute of appearance.
The computational line is a Java composite of three properties, or
components, one from each of the three categories, and these can be
recombined to create an individual algorithmic style.

In the present definitions of lines, the artist has created combinations of
attributes that she finds aesthetically interesting. The computational

COMPUTATIONAL EXPRESSIONISM: Interface 50

artists who are reading this, and hope to utilize computational lines to
gain a greater understanding of the computational medium, should
change the parameters and manipulate the code to develop tools that
best suit their style of expression. In order to make this easy, or at least
in order to provide a plausible starting point for this endeavor, we have
developed class libraries for appearance, dynamism and interactive
behavior.

PHYSICAL INTERFACE

The physical interface to this system can initially be regarded as
irrelevant. Computational drawing concerns itself with the gestures, the
algorithms, and the relationship between them as displayed on the
monitor. The drawing can be done with the hand, with the mouse, a pen
or any other input device, traditional such as the keyboard or
untraditional such as Tom White’s bladders or Josh Smith’s Fish
sensors. [WHIT98] [SMI96] The results are displayed on a monitor.
There exists an interesting issue, however, that results from the
imposed physical distance between hand and eye focus. One of the
reasons that drawing on a computer is a substantially different
qualitative experience is the distance imposed by physical interfaces
between cause and result.

The input device and the method of viewing the work (monitor, high
resolution, print) are irrelevant in a philosophical sense. The issues are
to become fluent in the language of computation as an expressive tool.
One should talk about the methods, the environment, the procedures
and the technology used, in order to situate the work. One can achieve a
very different experience drawing directly on a display than drawing
away from the display. To an inexperienced user, it is stunning to
experience the computational line blooming from under the pen, as
opposed to being controlled from a remote mouse movement or
drawing palette.

Even though physical input devices will approximate more and more
the feel of traditional creative tools, the exact feel, behavior and
aesthetic of a certain pencil on a certain piece of paper cannot be
duplicated. That this is precisely not the point of the present work.
Computer applications are often concerned with replicating and
improving something physical. Computational art should be about
understanding the material and using it, in all its flaws and qualities.

What are the implications of the fact that the physical separation of tool
and canvas that exists in traditional media does not exist here, that
medium and tools are one? What are the temporal/qualitative
differences of not being able to use more than one tool at once?
Different applications will evolve from different working
environments. If artists had at their disposal an advanced vision system
so that they could waive their hands and record their movement
precisely, a different sort of art would evolve.

COLOR THROUGH COMPOSITION

Computational expressionism is also concerned with color. In
particular, an important question is how to integrate color into the
design process. How to integrate color in a way that goes beyond
picking a specific color to use for the drawing of an object.

COMPUTATIONAL EXPRESSIONISM: Interface 51

The computational line has dynamism and behavior that may affect its
color over time. This is one way of working outside the boundaries of
traditional color selection. The program decides for you.

Another possibility is to give color properties to the canvas
itself. In this example, the stroke of the line is chosen, but the
* color of the line depends on the pen’s location on the canvas.
The formula for color is a function of (x,y) coordinates.
Shape and form become a secondary consideration,
dependant upon the color that one wishes to use. This
demands a careful examination of the dependencies inherent
in the relationships between shape, line and color choices.

In an effort to ask designers and artists to better consider their choice of
color, another set of tools was created to promote the use of color as a
design tool, as opposed to using primarily line and shape. The first
program was a drawing application where the toolbox is composed of
color panels and scrollbars to help select the particular colors and color
combinations.

As you select and create colors, the
composition is created. You have no
control over the shapes or the placement of
the color in the composition, but obtain an
overall effect of the proportional color
combinations and the color composition.

The color panels in the color toolbox are of different sizes. A color that
we anticipate will be more often used in the eventual artwork should be
selected into a larger panel. Already, an idea of the color composition is
given by the arrangement of the color boxes. Additionally, there is a
small canvas to the right of the color toolbox. When a color is selected,
it appears randomly scattered on the canvas automatically without
having to use a line or shape tool. When another color is selected, it
also appears on the canvas, pushing some of the first color aside. The
size of these areas of color is directly proportional to the size of the
color panels from which the color originated.

. A set of color compositions that illustrate variations in palette selection.

In this example, a color coimposition made up of
rectangles of different sizes is provided. A
palette of colors is selected in the right upper
hand corner. As you select a color, you must use
it in the composition. One drags colors from the
palette and drops them on elements of the
composition. They immediately assume that
color. Each rectangle can store up to three
different colors and cycle through them at the
click of a mouse. This tool demands the
consideration of the palette choices through
making them fit into a fixed composition.

A color composition applet by Joanna
Berzowska

COMPUTATIONAL EXPRESSIONISM: Interface 52

This example provides a canvas of
squares, very large pixels whose color
is fixed by rubbing them with a cursor
that js dragging one of the special color
squares from the upper right corner. It
is a model of color pollination, of
determining the color of a square
through its spatial association with an
action square. The low resolution of the
display forces the consideration of
color composition over shape, line, and
realistic representation of objects.

The tool forces users to select color combinations before selecting the
shapes that will be represented. Many designers do that already. They
start out with palettes. But how do we help them choose better palettes?

How do the relationships between colors affect perception? Why are
some color combinations differently evocative than others? And can
this experience of the relationships among colors be translated across a
color space without disturbing the evocative quality of the
relationships? Inversely, can color be organized such that a mapping
between a color combination and an evocative reaction will remain
invariant under translation (along perpendicular axes) in the color
space? [JAC96]

This application allows designers to choose
combinations of colors that fit into one of four
categories. Diagrams (icons) of a little person
sleeping, waking up, falling down and leaping
illustrate the categories. They consecutively
describe monochrome, analogous, “beyond”
analogous and complementary relationships.
[JAC96]. The user selects one icon, and one
color. A set of colors that includes the chosen
color is chosen by the application reflecting the
color combination described by the icon.

Relationships between colors are, in many
respects, universal, and thus relatively free
from individual and cultural influences. The
“experience of color” can be described
objectively, so that predictable visual
sensations can be elicited by adjusting the
relationships among colors. A model of color
experience is described that is based on the
types of interactions among colors. [JAC96]

INTERFACE METAPHORS

We can distinguish between two kinds of intuitive interfaces. We can
say that an interface is intuitive when it offers us a set of symbols lifted
from cultural semiotics and the physical world. An example of this is
the desktop metaphor in the Macintosh operating system. This sort of
intuitive artifact can be described as culturally intuitive, because it
refers to a set of mediated, learned iconography and behaviors.

COMPUTATIONAL EXPRESSIONISM: Interface 53

We can also say that an interface is intuitive when it can be perceived
or directly manipulated in an expressive, tactile, gestural way. This is
how we use conventional physical tools. For instance, using gesture to
delineate a selected area in PhotoShop, or using color to mark a
progtession in time or space. These sorts of intuitive interface elements
I refer to as biologically intuitive, because they either demand to be
experienced and manipulated directly, and exhibit a pattern easy to
learn and assimilate, or they offer a clear mapping to physical gesture,
metaphor-less. Basic concepts like front/back, movement, stillness,
color, speed, whether they are instinctive or learned, have very little to
do with the mediated society we function in. These intuitive interfaces
should be able to span across different cultures and educational
backgrounds. [LAK87]

[t is important to note that the use of metaphor has different
significance whether it is used in a tool or in an art piece. Metaphors
usually enrich the perception of a work of art. Interaction between
systems of images and models of representation demands a new
perspective on a work, can engender meaning which reflects the
multitude and the superposition of interpretations and adds a whole
world of contextual meaning. The tool application attempts to make
metaphors useful and transparent the art piece tries to make them
revealing.

An interesting research direction is not to reduce or simplify the
interface metaphors, but to formalize them into new languages and
explore their effect on creative expression and cognitive perception.
Explicit formal mappings between distinct vocabularies and grammars
facilitate the creation of expressive works. Instead of attempting to hide
the interface elements, and assuming that the particular mapping used is
irrelevant to the resulting work, we should place the emphasis on the
mapping and exploit its role in producing content. [BER97]

Velcro Dreams is a project that uses the vocabulary of a paint program
in order to generate poetry. [BER97] It is a Java applet with a custom
painting and color selection interface. Salient features (color, shape,
position and texture) are extracted from an image. A loose grammar of
poetry is used to generate text based on the visual variables. Velcro
Dreams uses an overt mapping of color and shape to words and textual
structure. [BER97]

[T T The system is responsive and

d
G

dynamic, so the text evolves in

conjunction with the evolution of the

image. The mapping is intuitive to a

certain peint, applying cancepts of

~1"] color theory, but also allows a degreé
af of non-determinism and variation
between several instances of -
Elutt hailz! processing identical images. The

1[5l process becomes a new language with

!!i

:- —— which the user and computer can

' communicate, emphasizing the

A screenshot from the Velcro Dreams project COllaboration between an artist and a

set of digital tools in the creation of
poetic expression. [BER97]

COMPUTATIONAL EXPRESSIONISM: Emergence 54

EMERGENCE

Connectivity, interaction and emergence are becoming the watchwords
of artistic culture. [ASC93] Art no longer is a window onto the world
but a doorway through which media and processes enter a world of
interaction and transformation.

DEFINITION

For our hierarchical mentality, complex objects intuitively imply a
creator’s hand. Explanations attempted by folk science for intricate or
perplexing phenomena often revolve around supernatural causality or
other hegemony. In this thread of thought, religions have postulated the
existence of god, and modern authority figures, mass media, speculate
extraterrestrial life and paranormal phenomena. The mythical has been
replaced by the supernatural, but these objects and events that we
struggle to explain are often caused by something much simpler, by the
evolution or collective actions of simple rules of biology, physics or

chemistry.
—

Developmental model of a compound leaf,
modeled as a configuration of apices and internodes.

The figure above illustrates the development of a stylized
compound leaf including two module types, the apices
(represented by thin lines) and the internodes (thick lines). An
apex yields a structure that consists of two internodes, two
lateral apices, and a replica of the main apex. An internode
elongates by a constant scaling factor. In spite of the
simplicity of these rules, an intricate branching structure
develops from a single apex over a number of derivation steps.
The fractal geometry of this structure can be viewed as an
emergent property of the rewriting rules. [PRU98]

The leaf of a fern, the rotationally symmetric petals of a daisy, the
choreographed flight of a flock of birds, or the food gathering practices
of a colony of ants are some examples of the beautiful and surprisingly
complex patterns and behaviors that can emerge from simple rules or
interactions. The human being, product of many generations of
evolution, is another example of emergence. “Although evolution
didn’t create the watch, it did create the watchmaker, a much more
complex and beautiful result.” [RES97]

COMPUTATIONAL EXPRESSIONISM: Emergence 55

Some of the essential ideas developed by the Epistemology and
Learning group at the Media Laboratory deal with emergent behavior
as a way of explaining complex phenomena. Emergence is an important
aspect of understanding decentralized thinking and how intricate
behaviors and patterns can result from a simple set of rules. This is
used to teach children about geometry, arithmetic, scientific models,
programming, and much more. [RES95]

Emergence is a process in which a collection of interacting units,
simple rules or behaviors, generates or acquires qualitatively new
properties that cannot be reduced to a simple superposition of
individual contributions. Studies of emergence are among the central
themes of Artificial Life, “the study of man-made systems that exhibit
behaviors characteristic of natural living systems”. [LAN87]

Karl Sims uses evolutionary techniques of variation and selection to
create complex simulated structures, textures, and motions for use in
computer graphics and animation. [SIM91] In the example illustrated
below, he employs symbolic Lisp expressions to create two-
dimensional compositions. An image’s genotype, the symbolic
expression, is used to spawn a set of offspring, using some degree of
random mutation in the genotype that changes each child’s appearance.
He uses concepts of natural selection based on visual perception (a user
manually selects the most engaging image) to choose among the set of
procedurally generated offspring. This process allows the user of his
system to artificially evolve complex compositions, with a minimum of
effort and without the burden of having to understand the underlying
expressions. [SIM91]

A set of 19 random mutations and an artificially evolved image from Karl Sims' system.
This iterative process of repeated variation and user selection has
similarities to natural biological evolution of organisms. An alternative
interpretation might be that the computer attempts to learn from the
user about how to produce pleasing images. The user provides a
decision for preferred images, and the computer reacts by generatmg a
set of similar, related images. {SIM91]

The concept of emergence has several applications to the making and
the consumption of computational and interactive art. In his interactive
installation, What Will Remain of These, Dodge [DOD97] creates
animations of particles whose behavior emulates the emergent motion
patterns of the large collective audience that has walked through the
installation surveillance space. Ascott [ASC93] writes that interaction
and emergence are now a deeply relevant part of artistic culture. The
viewers or consumers of art are moving towards the center of the
creative process, from the periphery that they used to occupy.
Similarly, Bill Seaman believes that what he calls recombinant poetic
networks embody “the metaphor of recombinant DNA via the

COMPUTATIONAL EXPRESSIONISM: Emergence 56

computer-mediated recombination of operative poetic elements.”
[SEA97b] The aesthetic experience emerges from interactive
construction mechanisms and the navigation and exploration of content
elements by the viewer.

THIRD ATTRIBUTE: BEHAVIOR

The concept of emergence and emergent behavior for computational
drawing is introduced through simple examples. Even more so than
with dynamism, it becomes increasingly difficult to think of a
computational line as a composition element for the creation of static
images. The interaction and animation becomes engrossing and more
aesthetically engaging than the final piece. The focus of the creative
process moves away from the desire to create a drawing and becomes
more of an engaging interactive process, which has been described by
Scott Snibbe as an instrument. [SNI98] We play with the lines not to
achieve a final image, but to experience the pleasure of affecting a
dynamic, responsive environment. Just as it is pleasurable to elicit
sound out of a musical instrument, we take great pleasure in extort
movement and reactions from the computational lines. The process, the
experience, is of interest here.

In this work, emergence is evident in two
capacities: in the creation of each
- computational line and in the interactive
¢ / generation of the visual pieces with the
computational lines. The first process involves
a series of steps akin to the artificial evolution

g)’ of Karl Sims’ work. [SIM 91] The second
process relies on each computational line
5, affecting its neighbors on the canvas. Simple

for animation and behavior of each line
produce a more complex visual result.

The final algorithms for computational lines emerge (although a better
word here might be result) from the iterative, evaluative process of
writing code and testing lines. This is an evolving process, with the
artist’s eye serving as fitness function. The creative process has already
been described as being more evaluative than generative. The
programming of a computational line consists of making small changes
to its algorithms, compiling and running the drawing program, and
testing the results visually. The changes that are made are often an
arbitrary tweaking of numbers and mathematical functions. One does
not need to fully understand the algorithm to produce it. Sketching with
computation means many repetitive attempts to modify existing code,
without fully anticipating the outcome. Thus, the process of creating a
computational line can be described as an example of emergence.

Stills drawn with the symmetric line

COMPUTATIONAL EXPRESSIONISM: Emergence 57

The symmetric line (examples shown
above) is an example of what has been
called a computational sketching mistake.
It was a mistake, a typo, made during the
programming stage of the process. The
simple transposition of the letter x for y
produced this interesting visual form. The
function draws lines between the point
(Xn,¥n) to the point (X, 1,X,.) instead of
(X4-1,¥a-1)- The resulting drawings allow
the creation of symmetric shapes through
the drawing of the outline. The procedure
is illustrated on the left. The upper left

A\ panel shows the gesture that is actually
Symmetric Line process drawn with the hand..

The computational sketching mistake is an example of the first
category of emergence within this work. The second is the emergence
that governs composition, as computational lines interact with one
another to produce visuals that are more complex. In the next example,
the Stream applet, the vertex of each set of flowing lines follows the
movement of the cursor. The lines respond to each other’s presence
with a simplified physics model, they sense proximity and push each
other away. The compositions emerge from the interaction among the
different dynamic behaviors of individual lines.

SRR

11 Iz s Ta 15 6 7 s (9
In the Stream applet, a dynamic set of interactive lines responds to the direction of nearby
lines. After some time, all the lines move "downstream”.

The next example shows a different line, called REED, within the
Stream applet. This applet is one of the few drawing programs created
for this thesis where the dynamic behavior of the lines has no temporal
limit. Their motion does slow with time, but there is no such thing as a
final static state of the composition. The REED lines are pulled away
from the drawing gesture and swich direction over time. The gesture is
followed by the apex of each REED line, but their ondulating,
repetitive body follows and amplifies the gesture in constant motion.

. AT AN,

NN N \\ N \1‘ W i
A AN \\\\ —S N VLA LA 11
i \\\\\\\ \\ \\]\\\\ \J]‘i\\\\a\g \\\ \\ \\\\\."\\ \ \1'\ \ \ \\ \ \.'L \‘l \li'n\

\
LG

AN

...... SN \\\\\ \ \\‘ \ \\ N SRR N \\ \\
S R

The REED line in the Streams applet by Joanna Berzowska

COMPUTATIONAL EXPRESSIONISM: Discussion 58

discussion

FUTURE WORK

PROGRAMMING LANGUAGES FOR ARTISTS

The code is a set of computational drawing tools and environments that
enable me to make the kinds of drawings that I want to make. In my
definition of computational lines, I have created combinations of
attributes that I find aesthetically interesting. The computational artist
should alter these, and manipulate the code at will, to develop tools that
best suit her style of expression. To facilitate this task, or at least to
provide a possible starting point for this endeavor, [have developed
annotated class libraries for appearance, dynamism and behavior.

One focus of the project is to make a library of classes that will
encourage other artists to graphically express themselves using
computation. Another focus is to construct a learning environment for
programming, where graphical objects, drawings, can be written
quickly and easily in Java. Both of these will have to be developed
further.

John Maeda’s forthcoming book, Design by Numbers, introduces a
Java based programming system freely available on the web. “The
emphasis throughout the book is to build an understanding of the
motivation behind computer programming, as well as the many
wonders that emerge from effectively written programs.” [MAE98] The
language is designed for artists and designers, it has few commands and
is quite simple in comparison with other languages such as C, Java or
Lisp. The aim is to help the artist or designer overcome the initial
transition of thinking in a procedural way, and be prepared to begin
learning other programming languages. [MAE98]

Painting with Interactive Pixels is a tool that enables interaction
designers to construct graphical user interfaces by painting with pixels
that possess inherent behavior. Each pixel is an interactive agent
communicating with its neighboring agents. The designer constructs
interactive behavior directly at the pixel level with tools resembling
those in paint programs like MacPaint. [SVA97]

Pictorial Janus

COMPUTATIONAL EXPRESSIONISM: Discussion 59

Pictorial Janus is a language in which the syntax is defined in terms of
the topological relations between picture elements. Relations like
“inside,” “touching,” and “connected” are used in defining the syntax
of the language. Shape, color, size, and texture are left for programmers
to use as they see fit. Programs can be drawn on paper, scanned in, and
parsed or constructed using an illustration program. [KAH96]

The primary role of syntax in programming languages is to aid in the
communication of a program from a human to a computer. [KAH96]
Much of the debate about whether visual programming is better than
text-only programming and the debates about which visual
programming language is better are really debates about human
psychology. [KAH96] The greater issue of the role of visual thinking in
math, logic, and science has been studied by psychologists for more
than a century. [KAH96]

GENETIC ALGORITHMS

Karl Sims has demonstrated the creative potential of genetic algorithms
and artificial evolution techniques. By using various selection criteria,
he has programmed engines that evolved abstract two-dimensional
compositions and three-dimensional creatures. [SIM91] [SIM94]
Genetic algorithms are a specific method for generating a set of
offspring from a parent population, by introducing little variations in
their genetic code. [HOL98]

Lines with behavior that are aware of each other on a canvas can
employ selection criteria and use evolution theory to spawn offspring.
Slight variations in algorithms can be explored as lines replicate
themselves and grow and change as compositions are created.

DRAWING INTERFACES

Drawing interfaces refer to gestural, expressive approaches to
information design, interfaces that are choreographed and metaphor-
full or tactile and physically intuitive.

Gesture has been successfully employed as a communication tool, both
as formal sign language, and in interpretive dance, theatre, mime and
other performance art forms. Drawing, as an abstraction or application
of gesture, is also a very powerful expressive language. As such it has
much potential as a control mechanism or physical interface to
computation. Also, it is easier for present computer systems to
recognize and analyze gestures when they are drawn upon a surface
rather than performed in space. This has been illustrated by writing
recognition systems such as the Palm Pilot and the Apple Newton.

Animating images with drawings “extends the power of 2D animation
with a form of texture mapping conveniently controlled by line
drawings. By tracing points, line segments, spline curves, or filled
regions on an image, the animator defines features which can be used to
animate the image. Animations of the control features deform the
image smoothly.” [LIT94] Peter Cho’s Datapaint combines freehand
drawing with gestural navigation. It involves using freehand sketching
as a method for human-computer interaction, as a navigational and
expressive means of interacting with the computer. [CHO98]

COMPUTATIONAL EXPRESSIONISM: Discussion 60

Movement and, more specifically, movement of the hand to make lines
on a canvas can replace pressing on buttons and invoking discrete
choices. Gestural drawing tools can be very useful in performing tasks
such as authoring or browsing of content. The direct manipulative
powers of tracing on a surface are already employed when organizing
files on a desktop, for instance. Gesture is used to drag icons, and so
allows the user to organize files in directories. The drag-and-drop
mechanism is very much a drawing interface.

A close relationship with content can be achieved using elements of
traditional drawing and painting, so that users perceive and express
with line, shape, color, dynamism and other vocabulary from the art
world. Searches on the web, for example, can be refined using gestural
underlining or crossing out of search terms, as opposed to the
conventional check-boxes.

CONCLUSION

CLASSIFICATIONS

The computational line is an evolved form of what is traditionally
thought of as a line, through the incorporation of some elements of
computation. The qualities of computation that inform the present
definition of computational drawing are algorithm, dynamism,
interactivity and emergent behavior. The line can:

1. Display self — Algorithmic Appearance
2. Animate self - Dynamism

3. React to actions — Interaction

4. React to objects — Behavior

The following axes are useful when thinking of classifications of
possible computational lines. Each pair of terms offers a method of
situating a particular computational line.

DIRECT — ABSTRACTED

i A1 L

Three examples from an initial drawing applet by Joanna Berzowska
Mappings of hand movement to graphical representation are presented
in increasing levels of abstraction, from a direct line to a more abstract
(or spatially complex) line. The most direct representation is simply the
single thin line that accurately follows the hand’s gesture. Abstraction
or complexity increases as mappings that are more elaborate are
devised. These axes can also be described as ranging from a more
fiteral to a metaphorical representation, where an example of a
metaphorical line is one that manipulates the entire color composition
of the canvas through gestural input.

COMPUTATIONAL EXPRESSIONISM: Discussion 61

LOCALIZED - GENERAL

A set of skeiches produced with a single computational line.

One gesture can produce markings close to where the cursor has
traveled, but also in other areas of the canvas. The first panel shows a
straight line gesture that generates both a tracing of the straight line (the
outermost boundary of the shape in the lower right corner) and a
pattern, dependant on the gesture, yet filling the whole canvas. The
second panel shows a fluid gesture. It keeps the feeling of fluidity, but
augments it with a regular pattern of parallel lines. The last one shows
the sorts of shapes that can be drawn when the gesture is restricted
horizontally or vertically. The single computational line can produce
lines and shapes, locally, or covering the whole canvas.

ORDERED - VARIABLE

The WHEAT line.

A computational line can be represented as a very regular geometric
pattern, or used as a textural tool to produce areas of color. To produce
the first quality, the gesture must be slow and deliberate, for the second,
the gesture must be faster so as to create texture, tone and shape.

STATIC - DYNAMIC

5

The GRIDS line, the Hairy line and a behavioral line.

The first panel illustrates an algorithmic line that, as it is drawn, has a
more complex (or abstract) appearance. Once it is drawn, it does not
move, change color, or animate in any other way. The middle panel
shows the Hairy Line, which embodies a dynamic drawing process. Its
animation plays itself out and then stops in an expected final state. In

COMPUTATIONAL EXPRESSIONISM: Discussion 62

the third panel, parallel line segments originate from the drawn line and
over time redraw over one another, changing the colors of nearby lines
and generating shapes made up of color areas. The lines appear to be
moving upwards, adding an interesting element of three-
dimensionality. This animation is longer, and more involved. The
various lines of different colors interact with one another, it is an
appealing process, even though the final outcome is less interesting.

Computational lines are used to design dynamic, interactive
experiences whose end product is a static drawing. It is very difficult to
separate the beauty of dynamic interaction from that of a finished piece.

PERSISTENT — FLEETING and IMMEDIATE — LATENT

Drawn by Joanna Berzowska with the DynamicExpress package

The example above illustrates a line that, once it is drawn, continues to
animate. The marks that it has made on the canvas remain drawn, and
the finished look is the composite of all its positions in time. Another
model I have tested, which approximates animation, erases the canvas
between each consecutive redrawing of the line’s new position. Both of
these models are interesting, albeit the first is closer to a drawing
process, whereas the second is closer to an interactive animation tool.
Should the dynamism be immediate, or can the line have some hidden
attributes that only become apparent after it has been drawn? Can the
expressive quality of a dynamic line be re-experienced through history?

EVALUATION

This work has been evaluated in the art critique tradition, through a
collaborative consideration of and inquiry into the tools and images
created. At each step of the programming and drawing process, the
reviewers asked questions about components of the work, both
technical and aesthetic. Debate, predicated and informed by diverse
human experience, is a good method of evaluation for this type of
creative work as opposed to a quantitative approach. Individual
critiques consisted of the examination of drawn compositions and an
explanation of the concepts they illustrated as well as the underlying
mechanisms. We all brought different ways of modeling aesthetic
representation, different skills, and different spirit and humor to the
discussion. I was asked to concentrate less of the actual drawing tools,
and focus on the development of abstract forms, illustrations of my
vision of computational drawing. I was asked to develop a personal
algorithmic style, and to rigorously examine what sort of artwork I was
striving to produce, and how my expectations were challenged.

My computational lines and my drawings are only one example of what
could have happened in the exploration of computation as an art

COMPUTATIONAL EXPRESSIONISM: Discussion 63

medium. How can they be described as my personal expression? It is
very interesting that aesthetically, this work is very different from my
previous artwork in traditional media.

Andy and David, 1989. by Joanna Berzowska
The paintings presented here were painted between 1989 and 1998.
The earlier work is oils on canvas and the later is acrylic on canvas.
The self-portrait is drawn with charcoal on paper. The work draws
heavily upon the tradition of portraiture, and relies on the
expressionism of human forms as content.

Self-portrait, 1991 Kathrine, 1990. by Joanna Berzowska

This previous work shows a clear preoccupation with expression as
embodied in human faces and the composition of, and relationships
between, different human bodies. Meaning is derived less from stylistic
constraints than from the arrangement of human features and bodies. The
gaze, the formal composition of space and an aspect of discomfort created
through implied meanings and readings are the crucial aspects of the
expression. Style is an important, but by no means exclusive, component
of the visual experience.

Regret, 1998. by Joanna Berzowska

COMPUTATIONAL EXPRESSIONISM: Discussion 64

My work with photography deals exclusively with portraiture, the
introspective qualities of human representation. The five-panel
painting, Regret, owes its striking appearance to the multitude of story
interpretations possibilities presented to the audience, as they are faced
with this array of human forms.

Portraits of Paul, 1998. by Joanna Berzowska

The computational medium for me is vastly different. Algorithmic lines
do not lend themselves well to representational images. In particular,
the human form is difficult to reproduce and interpret.

The drawing on the left is
a quick sketch of a woman
done with a computational
line reminiscent of string
art from the 1970%. This
line is what I call a very
direct line, as it accurately
traces the movement of
the hand with only
minimal embellishment.
Overall, this drawing is
neither evocative of
human expression, nor
computationally
interesting.

Girl drawn with String Art line

On the other hand, representational art
need not be realistic. A high level of
stylistic abstraction is possible in the
replication of human form and expression.
The panel on the right shows a highly
abstracted figure drawn with the
Calligraphy1 line, which produces line and
shape out of the temporal characteristics of
a gesture. A quickly drawn line is ’
represented as a ragged linear form. A ’
pause in the drawing process or a slower

gesture produce shape artifacts whose size

is proportional to sluggishness. Calligraphy1 woman

In the second image, the apposition of anthropomorphic cues and
computational aesthetic produces a more intriguing image. The
composition is interesting because it blends human form with a more

COMPUTATIONAL EXPRESSIONISM: Discussion 65

involved algorithmic drawing process. The algorithm, however, is very
specifically suited for the task. It generates both direct linear forms that
can define precise boundaries, and solid shapes of various sizes and
orientations. The two can easily be combined to form compositions that
appeal to our need to anthropomorphize our surroundings.

In general, the aesthetic qualities of an algorithmic drawing or a
dynamic interaction far outweigh representational potential. Thus, my
work in computational drawing has been almost exclusively non-
representational. The quality of lines and the abstract composition of
areas of varying tones and textures in a constrained space are the main
aesthetic themes.

The most exciting aesthetic component for me is the apposition of
regular, mathematical and clearly algorithmic patterns with more
gestural shapes and areas of tone and texture. My favorite compositions
are those that use regular algorithms and impose qualities of variation
and irregularity to their representation. The combination of
mathematical order and gestural disorder is fundamentally enticing to
me, perhaps because of my dual training in pure mathematics and fine
arts. What is most exciting is that both aesthetic qualities can be
produced with a single computational line. They are merely a function
of the manner in which the line is used. I am showing off the unique
qualities of computation to produce such visual constructions.

I am interested in computational drawing primarily because of the
gestural input, which I regard as a very powerful expressive device.
Drawing is different from painting insofar as it is based on continuous
line paths as opposed to continuous surfaces. Textures and tones are
achieved through a layering of lines. The sharp contrasts of linear
forms and the expressive potential of gesture are very appealing to me.

Two images that illustrate the combination of mathematical order and gestural disorder
The drawings are mostly abstract and non-representational, in particular
as the computational line becomes a more complex mapping of gesture
to illustration. The algorithm as an element of style overpowers the
representation. Style becomes content. This illustrates, according to
Danto, an end-of-art condition characterized by the fact that style
becomes subject matter, and hence is something shown rather than
used. [DAN97] This raises questions of how and whether this work can
be considered art.

How can we discuss interactive digital artwork, when we consider its
overwhelming accessibility, longevity, and its potential for digital re-
appropriation and endless duplication (which are not qualities that have
historically been associated with high art)?

COMPUTATIONAL EXPRESSIONISM: Discussion 66

Our relationship with mass-produced goods has changed and
also with the products of ‘high’ art. Differences have been
reduced, or erased; but along with the differences, temporal
differences have been distorted, the lines of reproduction, the
befores and the afters. [It is] the development of the arts itself,
today, that tries to obliterate this distinction. [EC090]

An artwork can be defined as an “expression” because it is caused by a
feeling or an emotion on the part of its maker, and which it in fact
expresses. [DAN81] So art is differentiated from a mere thing by the
order of its mental cause, intention, feeling expressed. However, what
about other emotive products like tears? Are these artworks? [DANS81]
Art has at other times been described as mimesis, as a mirror held up to
nature in the tradition of representational art. [DAN81] This definition
is similarly inadequate in the case of contemporary art. The artwork has
also been described as design without constraints, or something that
lacks explicit function but possesses form. The postmodern concept of
intentionality has been advanced as a possible definition. If the artist
intends to make art, it is art.

All these are at best problematic and it is not clear to me whether I
should be concerned with the question of whether my work is regarded
as art. A better question is how to disseminate it, and of what value it
can be to others, both audience and other artists.

A definition of whether and how digital work is perceived as art
suggested by Scott Snibbe raises the question of venue. He writes,
“How and where a work is presented radically alters its perception.
This is why I control the presentation of my work - engaging in a
gallery or a talk creates a type of attention and thought impossible
when something is in the low attention arena of the web or freeware.”
[SNI98b]

Where is my work to be displayed, in what format, medium or size? Is
it to be shown in a gallery, or experienced momentarily on the monitor
and then deleted? How is the quality affected by the resolution of the
display device? How would stylistic content be affected by a change of
venue? It is clear that a purposeful showing is preferable to an
unstructured distribution, but what do I show? One immediate answer
is that a gallery showing of printed drawings would be essentially
different from an installation that allows users to interact with the
computational lines that I have created, and draw images with them.
The question is whether I should show this work in a printed format, or
on a computer display. Should I exhibit the finished drawings or the
models of interaction?

I maintain that the salient aspect of computational drawing is the
finished piece. If I want to stick to Scott Snibbe’s advice to experience
work in its proper form, I would have to insist on showing finished
drawings. The drawback is that it becomes impossible to judge the
quality of the dynamic pieces. Snibbe writes, “Often the good dynamic
pieces look terrible in a still image and vice versa.” [SNI98b]

The real question here is what exactly is the art form. Is it the
computational lines that I build, is it the body of drawings that I make
with my tools, or is it the process of combining computation and
drawing? Since I believe that the artist needs to program her own
computational lines and then draw with them in order to access the sort
of creativity I am speaking about, it is very important that each artist

COMPUTATIONAL EXPRESSIONISM: Discussion 67

programs her own computational lines. I am weary of using the terms
“user” and “tools” because I view the drawing process as composed of
two parts, the programming and the drawing. As such, the
computational lines I have written are not tools, simply one portion of
my own drawings.

How can I best apply what I have produced to other artists? Since I do
not view my computational lines as tools but as an intrinsic part of the
drawing process, I would feel uncomfortable displaying my own
drawing applets for use by others, and calling this process the showing
of art. I have no objection, however, in showing them, and distributing
the code, so that other artists can understand the process and begin to
imitate me.

How important is it for the artist to do all of the programming? What is
sacrificed if the artist becomes too involved in the technology? Scott
Snibbe writes, “As artists become programmers, the problems of
distraction come about. One can become obsessed with the technical
details and the mechanical goal of ‘making it work’ rather than the
aesthetic potential. I find that it takes a strong mind shift to go from
tool builder to user. In fact, it's better to separate these phases by large
amounts of time to come at the tool freshly as a user.” [SNI98b]

What is the distinction between the drawing and the programming?
How is the intentionality in the creative process divided? How much of
the aesthetic quality of a final composition is a product of the
algorithms, and how much depends on the gesture? The answers to
these questions depend strongly on the particular example. A
generalization I will venture to slip by is that the algorithm injects more
of the stylistic elements, whereas the gesture controls expressive
elements to a greater degree. That is why I have chosen to concentrate
on computational drawing as opposed to rendered algorithmic art, or
purely interactive art. It is vital to me that static compositions are
created by interacting with the algorithms through gestural input. The
process is really one of drawing.

As a new medium, computation offers enormous potential, but its
exploration is progressing slowly due to a lack of understanding of the
technology by many artists and to the aesthetic limitations of many
engineers and technologists. My battle cry echoes that of John Maeda:
computational artists must learn to program, in order to gain a more
meaningful understanding of the medium.

COMPUTATIONAL EXPRESSIONISM: Reference 68

reference

[ABE97] Abe, Yoshiyuki. WRO97 Media Art Biennale Catalogue.
Wroclaw, Poland. 1997

[ASC93]} Ascott, Roy. From Appearance to Apparition:
Communications and Consciousness in the Cybersphere, In Leonardo
Electronic Almanac. Cambridge, Massachusetts: The MIT Press, 1993.

[BAI97] Tilting at a Dreamer’s Windmills: Gesture-Based
Constructivist Interaction with Character. In Consciousness Reframed:
Art and Consciousness in the Post-Biological Era. First International
CAIIA Conference. Newport, Wales. 1997.

[BAR97] Barrett, Cyril. Kinetic Art. In Concepts of Modern Art, ed. By
Nikos Stangos. London: Thames and Hudson. 1997.

[BEND97] Bender, Walter. Personal web site.
<http://nif.media.mit.edu/people/walter/> [accessed 02 October 1998]

[BEND98] Bender, Walter. Web site for the Electronic Publishing
Group at the MIT Media Lab. <http://nif. www.media.mit.edu/ep/>
[accessed 09 September 1998]

[BEND98b] Email exchange with Walter Bender in September 1998.

[BEN92] Benjamin, Walter. The Work of Art in the Age of Mechanical
Reproduction. In Film Theory and Criticism, ed. G. Mast, M. Cohen
and L. Braudy, 665-681. New York: Oxford university Press, 1992.

[BER97] Berzowska, Joanna. Velcro Dreams: a Paint Interface to
Poetry. In Consciousness Reframed: Art and Consciousness in the
Post-Biological Era. First International CAITA Conference. Newport,
Wales. 1997.

[BIR97] Birkerts, Sven and Murray, Janet H. Digital Storytelling: Is it
Art? HotWired: Synapse - Brain Tennis.
<http://www.hotwired.com/synapse/braintennis/97/31/index0Oa.html>
[accessed 09 July 1997]

[BOLZ93] Bolz, Dieter. Some aspects of the user interface of a
knowledge based beautifier for drawings. In Proceedings of The
International Workshop On Intelligent User Interfaces, 45-52. 1993.

[BRI98] Encyclopedia Britannica Online <http://www.eb.com>
[accessed 10 October 1998]

[BRO98] Brooks, Sawad. Lapses and Erasures.
<http://www.thing.net/~sawad/erase/trait/text.html> [accessed 10 July

1998]

[BRO97] Brooks, Sawad. Technology in the 1990s.
<http://www.tech90s.net/sb/> [accessed 10 July 1998]

[COH95] Cohen, Harold. The Further Exploits Of AARON, Painter. In
Stanford Humanities Review. Constructions of the Mind: Artificial
Intelligence and the Humanities. ed. Stefano Franchi and Giiven
Giizeldere. Vol 4, issue 2, Spring 1995

COMPUTATIONAL EXPRESSIONISM: Reference 69

[COY95] Coyne, Richard. Designing Information Technology in the
Postmodern Age: From Method to Metaphor. Cambridge,
Massachusetts: The MIT Press, 1995.

[CRE98] Creature House Computer Graphics Research and
Development. <http://www.creaturehouse.com/> [accessed 27
September 1998]

[DANS81] Danto, Arthur C. The Transfiguration of the Commonplace:
A Philosophy of Art. Cambridge, Massachusetts: Harvard University
Press, 1981.

[DAN97] Danto, Arthur C. Criticism, Advocacy, and the End-of-Art
Condition: A Working Paper. In Artnet Magazine.
<http://www.artnet.com/magazine/features/danto/danto3-6-97.html>
[accessed 09 December 1997]

[DEH98] Dehlinger, Hans E. 25th Anniversary Celebration of
Pioneering Computer Artists. ACM SIGGRAPH 98 Conference
Proceedings. 1998. '

[DEN95] Denning, James. Palsy for Your Printer. In Wired Issue 3.01,
January 1995.

[DENO8] Dennett, Daniel C. Brainchildren. Cambridge,
Massachusetts: The MIT Press, 1998

[DOD97] Dodge, Christopher. The Abstracted Process: Providing for
Consistent Metaphors between Content and Computation in Interactive
Media Art. WRO 97 Media Art Biennale paper. <http://liquid-
sky.media.mit.edu/cdodge/papers/abstractedprocess.html> [accessed 19
September 1998]

[DRU96] Druckery, Timothy, ed. Electronic Culture: Technology and
Visual Representation. New York: Aperture Foundations Inc, 1996.

[ECO93] Eco, Umberto. Make Your Own Movie. In Misreadings, 145-
155. London: Jonathan Cape, 1993.

[ECO90] Eco, Umberto. The Multiplication of the Media. In Travels in
Hyper Reality, 145-150. New York: Harcourt Brace & Company, 1990.

[EVA98] Evans, Brian. Artist’s Statement.
<http://www.vanderbilt.edu/VUCC/Misc/Art1/statement.htmi>
[accessed 1 October 1998]

[FOU91] Foucault, Michel. What is an Author? In Rethinking Popular
Culture, ed. C. Mukerji and M. Schudson, 446-464. Berkeley:
University of California Press, 1991.

[HAE90] Haeberli, Paul. Paint by Numbers: Abstract Image
Representations, In Computer Graphics (ACM SIGGRAPH 90
Conference Proceedings), 207-214. 1990.

[HALO98] Halaby, Samia. Artist’s Statement.
<http://www.911gallery.org/samia/kinetic.html> [accessed 1 October
1998]

[HAR97] Harrison, Charles. Abstract Expressionism. In Concepts of
Modern Art, ed. By Nikos Stangos. London: Thames and Hudson.
1997.

[HEB97] Hebert, Jean Pierre. Artist Presentation Session #2.
SIGGRAPH 97 Art Exhibition: Ongoings. Leonardo On-Line:

COMPUTATIONAL EXPRESSIONISM: Reference 70

Siggraph 97 <http://mitpress.mit.edu/e-
journals/Leonardo/isast/articles/SIGGRAPH97panel/Panel_Two_B/Pan
el_Twonew.html> [accessed 1 October 1998]

[HER98] Hertzmann, Aaron. Painterly Rendering with Curved Brush
Strokes of Multiple Sizes. In Computer Graphics (ACM SIGGRAPH
’98 Conference Proceedings), 453-460. 1998.

[HOL9S] Holtzman, Steven R. Digital Mantras. Cambridge,
Massachusetts: The MIT Press, 1995.

[HOL98] Holland, John. Emergence. Reading Massachusetts: Addison-
Wesley Publishing Company, 1998.

[HSU93] Hsu, S.C. Lee, 1. H. H. and Wiseman, N. E. Skeletal
Strokes. In Proceedings of the 6™ Annual Symposium on User Interface
Software and Technology (UIST’93), 197-206. 1993.

[HSU94] Hsu, Siu Chi and Lee, Irene H. H. Drawing and Animation
using skeletal strokes. In Computer Graphics (ACM SIGGRAPH ’94
Conference Proceedings), 109-118. 1994.

[JACO96] Jacobson, Nat, and Bender, Walter. Color as a Determined
Communication. In IBM Systems Journal, Vol. 35, Issue 3&4, 1996.

[KAH96] Kahn, Ken. Drawings on Napkins, Video-Game Animation,
And Other Ways to Program Computers. In Communications of the
ACM. Vol. 39, No. 8, 49-59. Aug. 1996.

[KLU95] Kluszczynski, Ryszard. Audiovisual Culture in the Face of
the Interactive Challenge. In WRO95 Media Art Festival, 24-40.
Wroclaw: Open Studio, 1995.

[LAKS87] Lakoff, George. Women, Fire, and Dangerous Things: What
Categories reveal about the Mind. Chicago: The University of Chicago
Press, 1987.

[LAN87] Langton, Christopher G. Artificial Life. In Artificial Life
(Proceedings of the First International Conference), ed. by Chris
Langton, 1-47. Addison-Wesley, 1987.

[LEC80] Le Corbusier. The Modulor I and II. Cambridge,
Massachusetts: Harvard University Press, 1980.

[LIT94] Litwinowicz, Peter and Williams, Lance. Animating Images
with Drawings. In Computer Graphics (ACM SIGGRAPH *94
Conference Proceedings), 409-412. 1994.

[LYN97] Lynton, Norbert. Expressionism. In Concepts of Modern Art,
ed. By Nikos Stangos. London: Thames and Hudson. 1997.

[MAE] Maeda, John. Deconstructing Cyberspace.

[MAE93] Maeda, John and McGee, Kevin. Dynamic Form. Tokyo:
International Media Research Foundation, 1993.

[MAE97a] Maeda, John. A Framework for Digital Expression. In
Digital Communication Design Forum at Tokyo Design Center, 25-32.
Tokyo: International Media Research Foundation, 1997.

[MAE97b] Maeda, John. Reactive Books. Tokyo: Digitalogue, 1997.

COMPUTATIONAL EXPRESSIONISM: Reference 71

[MAE98a] Maeda, John. Aesthetics and Computation Research.
<http://acg.media.mit.edu/people/maeda/research.html> [accessed 10
January 1998]

[MAE98b] Maeda, John. Design by Numbers. To be published by the
MIT Press, 1998.

[MIT92] Mitchell, WIT. Word and Image. In Critical Terms for Art
History. Ed. Robert S. Nelson and Richard Shiff. Chicago: The
University of Chicago Press, 1992.

{MOH98a] Mohr, Manfred. Manfred Mohr/Monograph: Works from
1960 — 1998. <http://sciweb.nyu.edu/~mohr/ini_ri.html> [accessed 25
October 1998]

[MOH98b] Mohr, Manfred. The Digital Artist : Art, Abstraction and
Algorithms. <http://www.wmgallery.com/news/apr98.html> [accessed
25 October 1998]

[MOL98] Molnar, Vera. 25th Anniversary Celebration of Pioneering
Computer Artists. ACM SIGGRAPH ’98 Conference Proceedings.
1998.

[OXF98] The Oxford English Dictionary <http://bion.mit.edu:8000/>
[accessed 10 October 1998]

[PAV85] Pavlidis, Theo. An Automatic Beautifier for Drawings and
Illustrations, In Computer Graphics (ACM SIGGRAPH ’85
Conference Proceedings), 225-230. 1985.

[PEN94] Penny, Simon. The Darwin Machine: Artificial Life and Art.
In ISEA’94 Proceedings. 1994.
<http://www.uiah.fi/bookshop/isea_proc/nextgen/penny.htmi>
[accessed 19 September 1998]

[PRE93] The Premisys Corporation, Chicago. Squiggle, 1993.

[PRU98] Prusinkiewicz, P. Hammel, M. Mech, R. and Hanan, J. The
Artificial Life of Plants. In Artificial Life for Graphics, Animation,
Multimedia, and Virtual Reality, Course 22 of SIGGRAPH *98 Course
Notes. ACM SIGGRAPH, 1998.

[RES95] Resnick, Mitchel. Turtles, Termites and Traffic Jams:
Explorations in Massively Parallel Microworlds. Cambridge,
Massachusetts: The MIT Press, 1995.

[RES97] Resnick, Mitchel, and Silverman, Brian. Exploring
Emergence. An “active essay” on the Web.

<http://el. www.media.mit.edu/groups/el/projects/emergence/>
[accessed 16 January 1998]

[SAC98] Sack, Warren. Artificial Intelligence and Aesthetics.
<http://wsack.www.media.mit.edu/people/wsack/ai-aesthetics.html> To
appear in Michael Kelly (editor-in-chief). The Encyclopedia of
Aesthetics. New York: Oxford University Press, 1998.

[SAL94] Salisbury, M, Anderson, S, Barzel, R, and Salesin, D,
Interactive Pen-and-Ink Hlustration, In Computer Graphics (ACM
SIGGRAPH °94 Conference Proceedings), 101-109. 1994.

[SEA96] Seaman, Bill. Passage Sets: One Pulls Pivots at the Tip of the
Tongue, In Mediascape. Guggenheim Museum Soho, New York, 1996.

COMPUTATIONAL EXPRESSIONISM: Reference 72

[SEA97a] Seaman, Bill. Models of Poetic Construction and their
Potential use in Recombinant Poetic Networks. CADE97, April 1997

[SEA97b] Seaman, Bill. Emergent Constructions: Re-embodied
Intelligence within Recombinant Poetic Networks. In Proceedings of
Consciousness Reframed: art and consciousness in the post-biological
era. Wales, 1997.

[SIM91] Sims, K. Artificial Evolution for Computer Graphics, In
Computer Graphics (ACM SIGGRAPH ’91 Conference Proceedings),
319-328. 1991.

[SIM94] Sims, K. Evolving 3D Morphology and Behavior by
Competition, In Artificial Life IV Proceedings, ed. R. Brooks and P.
Maes, 28-39. Cambridge, Massachusetts: The MIT Press, 1994.

[SMI96] Crampton Smith, Gillian and Tabor, Philip. The Role of the
Artist-Designer. In Bringing Design to Software, ed. Terry Winograd,
37-57. Addison-Wesley, 1996.

[SMI96] Smith, Joshua R. Field Mice: Extracting Hand Geometry from
Electric Field Measurements. In IBM Systems Journal, Volume 35, No.
3&4.

[SNI98] Snibbe, Scott. Motion Phone.
<http://www.snibbe.com/scott/mphone/index.htm> [accessed 16
January 1998]

[SNI98b] Email exchange with Scott Snibbe in Ocotber 1998.

[SUT63] Sutherland, Ivan E. Sketchpad: The First Interactive
Computer Graphics.

<http://wwwwswest2.sun.com/9607 10/feature3/sketchpad.html>
[accessed 28 September 1998]

[SVA97] Svanas, Dag. Kinaesthetic Thinking: The Tacit Dimension of
Interaction Design, In Computers in Human Behavior, Vol 13, No. 4,
443-463. Elsevier, 1997.

[THO90] Thompson, James M. ed. 20" Century Theories of Art.
Ottawa, Canada: Carleton University Press, 1990.

[TUF90] Tufte, Edward Envisioning Information. Cheshire,
Connecticut: Graphics Press, 1990.

[TURS84] Turkle, Sherry. The Second Self: Computers and the Human
Spirit. New York: Simon & Schuster, 1984.

[TUR95] Turkle, Sherry. Life on the Screen: Identity in the Age of the
Internet. New York: Simon & Schuster, 1995.

[TRU98] Truckenbrod, Joan. 25th Anniversary Celebration of
Pioneering Computer Artists. ACM SIGGRAPH *98 Conference
Proceedings. 1998.

[VER98] Verostko, Roman. ALGORITHMIC ART: Composing the
Score for Fine Art.
<http://design.mcad.edu/home/faculty/verostko/algorithm. html>
[accessed 25 October 1998]

[VER94] Verostko, Roman. Algorithms and the Artist. In ISEA’94
Proceedings. 1994

COMPUTATIONAL EXPRESSIONISM: Reference 73

[WHI91] John Whitney, Fifty Years of Composing Computer Music
and Graphics: How Time’s New Solid-State Tactability Has
Challenged Audio Visual Perspectives. In Leonardo, 597-599. Vol. 24,
November 5, 1991.

[WHIT98] White, Tom. Introducing Liquid Haptics in High Bandwidth
Human Computer Interfaces. MS Thesis, MIT Media Lab, May 1998.

[WIL95] Wilson, Stephen. Artificial Intelligence Research as Art. In
Stanford Humanities Review. Constructions of the Mind: Artificial
Intelligence and the Humanities. ed. Stefano Franchi and Giiven
Giizeldere. Vol. 4, Issue 2, Spring 1995

[WIL98] Wilson, Mark. Distinction Prix Ars Electronica 92 in the
category Computer Graphics <http://www.aec.at/prix/1992/E92azG-
18.html> [accessed 25 October 1998]

[WON98] Wong, Michael T., Zongker, Douglas E., and Salesin, David.
Computer-Generated Floral Ornament. In Computer Graphics (ACM
SIGGRAPH ’98 Conference Proceedings). 1998.

[ZEL96] Zeleznik, R. Sketch: An Interface for Sketching 3D Scenes, In
Computer Graphics (ACM SIGGRAPH 96 Conference Proceedings),
163-170. 1996.

COMPUTATIONAL EXPRESSIONISM: Appendix A 74

appendix A

VISUAL ARTS SOFTWARE
MetaCreations

Kai’s SuperGOO
Real-time liquid image distortion tools.

Art Dabbler
Digital imaging tools that let you trace photos and turn them into
paintings or drawings. Teach you to draw, paint and animate.

Painter 5
Software that simulates traditional tools and techniques.

KPT 3
Creates texture backgrounds, color and 3D text effects.

Expression
Combines the stylistic expressiveness of traditional artist tools with the
speed, flexibility and resolution independence of vector-based drawing.

Imaja

Bliss Paint
Real-time painting and animated color synthesis. Generate images by
drawing from a large library of animated shapes and patterns.

Geometric Bliss
Dynamic tiling tools and paintings for Bliss Paint and Bliss Saver.

Adobe Systems

Adobe After Effects
The professional tool for broadcast design

Adobe Illustrator
The industry-standard illustration software

Adobe Photoshop
Create, paint, correct, and retouch with the “camera for your mind”

Xaos Tools

Paint Alchemy
Offers 75 built-in brushstroke effects, 36 brush styles and the ability to
modify the look or create individual styles or brushes.

Terrazzo 2
Creates symmetrical tiled backgrounds from any image by selecting a
tiling symmetry and then selecting an image area.

Corel
Core]DRAW
PHOTO-PAINT
Graphics Pack II

COMPUTATIONAL EXPRESSIONISM: Appendix B 75

appendix B

COMPUTATIONAL DRAWINGS

The TABLE line behaves very differently depending on which section
of the canvas it is drawing upon. The first two panels show two single
gestures: one large circle on the left panel and two smaller circles on
the right. The circles are represented by a series of small line segments
on the display. The computational line has additional components that
are also drawn. The parallel, intersecting lines, which occur farther
away from the gesture, but still, follow its directionality.

It is possible to create compositions of parallel lines alone, by keeping
the gesture outside of the boundary of the canvas.

7.7~ g7

OBl 4

I A
et d

Vo2 0
//;/7,////',

o

COMPUTATIONAL EXPRESSIONISM: Appendix B 76

Two types of linear representation are feasible: a set of parallel stripes
that shade the canvas, and the smaller segments that actually follow the
cursor. The smaller segments have an interesting erratic quality that
contrasts nicely with the parallel lines.

oy B
7, 7/ / s
/ 7/
7

COMPUTATIONAL EXPRESSIONISM: Appendix B 77

In GRIDS, each computational line is an algorithm that generates a
grid-like pattern of lines, a function of the coordinates of the pointer on

the canvas. The emphasis is on a set of lines that are parallel or all tend
towards the same vanishing points.

N

MMM

\\ = =
‘\ :

\ :

W
N \iie2

AN \ I
AN \
A |

These were inspired by a fascination with lines, and patterns formed by
the intersections of many parallel lines as well as a desire to create

COMPUTATIONAL EXPRESSIONISM: Appendix B 78

complex patterns with one single gesture, and to be able to shape that
pattern of lines through properties of the gesture. The speed and
direction of motion has a strong impact on the character of the
composition. The examples follow the development of complexity of
the GRIDS lines.

R 77 T

GRIDS lines can be used to create a single geometrical composition.
Texture can be built up from several lines, and shapes can be
constructed through the repeated definition of tone and texture. A more
rigid gesture produces a more geometrical composition, whereas frantic
movements deconstruct the geometry, and allow a more textural
approach to building up shape. It is a transition from drafting to
painting tools, the more expressive gestures exacting a more
expressive, less deterministic approach. It is interesting how this is a
natural result of computation. A faster input puts more strain on the
processor to perform calculations, and more disarray is introduced into
the algorithms and into the plotting procedures. The lines are no longer
exactly parallel, the pattern becomes muddled.

A

e ————]

COMPUTATIONAL EXPRESSIONISM: Appendix B 79

Finally, the two last panels show use of multiple colors.

The following example called BOXES illustrates a computational line
that restricts one degree of freedom of movement. Gestures along the
horizontal axis define where columns of boxes are drawn. Movement
along the vertical only determines frequency and sizes of boxes within
each column. Colors can be selected to apply strictly to particular
columns. The line can be drawn both as positive and negative space,
depending on the intensity of rubbing.

This drawing, called Angel3, was one of the first examples of a
dynamic line. The line originates from the central blue area, and rotates
while changing color to create the shape shown below.

COMPUTATIONAL EXPRESSIONISM: Appendix B 80

The next set of stills comes from a dynamic animated line called
OSCOPE. This was one of the first dynamic tools, and revealed a very
appealing process of drawing but a pedestrian outcome. The drawing
tools are essentially in constant movement, the lines draw over each
other, overlaying color and line in circular patterns, the center of the
circles follows the movement of the cursor. A faster input speeds up the
animation. The colors of the lines fade as the radius decreases. The
lines take turns drawing over each other, and the artist can spend long
periods of time making marks without a clear composition in mind.
This is certainly an animation tool, a way of exploring dynamic shape,
or drowning in the magic of hypnotic, multicolored, responsive motion.

)

The next line is one that has already been introduced in the body of the
thesis, called the Hairy Line. The lines start out as a thick, black mark.
After it has been drawn, the mark expands, grows in thickness,
projecting hundreds of little hairs out of its spine.

A range of effects can be achieved through differences in the quality of
the stroke. A quick stroke causes shorter hairs, close together and
perpendicular to the direction of drawing. A quick stroke generates
longer hairs, farther apart and more parallel to direction of the stroke.

Varying effects generated by the Hairy Line

COMPUTATIONAL EXPRESSIONISM: Appendix B 81

The hairs start out dark, but become lighter and lighter over time. The
color of later hairs fades as they are drawn over previous ones. As a
result, the overall composition fades. The space where the initial line
was drawn becomes textured negative space, and only the outline
remains as dark positive space.

The Hairy Line fades over time.

The following sequence of stills illustrates the drawing process as
several lines are added over time, building up a drawing.

w.", i - - -y 5% wvr s T -

Y.

Computational line ideas:

line (cartesian/polar)

shape and form

space (positive/negative)

texture

value

color

third dimension

repetition (patterns)

variety

rhythm

balance

emphasis

push (xyz)

pull (xyz)

infout of focus

agitate

stabilize

rub

act/react

time

place

speed up/down

your movements/speed

push the color

fade

erase

melt together

join paths

interact in abstract
animation

grow/shrink

along a path

geometric transformation

translation

reflection

rotation

scaling

background to
foreground

in and out of focus

change of appearance

change of color

change of state:

from line to shape

from photo to color

pixilated pictures

squeezed into shape

disappearing line

invisible line

force fields

COMPUTATIONAL EXPRESSIONISM: Appendix B

THE CREATIVE PROCESS

The role of sketching is important both in the idea planning stage and
in the execution stage where various algorithms are evolved through
experimentation. On the left, I have listed a set of computational line
variables and ideas that involve appearance, dynamism and behavior.
Hand drawn sketches were also used to generate computational lines.
The drawings below inspired the ARC computational line.

These panels illustrate a progression from a sketch on paper to a set of
computational drawings , using the ARC computational line shown in
the upper left corner.

The ARC computational line and the paper color drawing that inspired
the following two compositions, drawn with the ARC line.

N NN

Two compositions drawn with the ARC line

82

COMPUTATIONAL EXPRESSIONISM: Appendix B 83

Next, I show one simple example of code, and I explain the progression
of code development. All the code is available from
http://www.media.mit.edu/~joey/demo/, or by contacting the author.

THE POPPY LINE

==

Starting from a general parametric curve for a folium:

x = (cos(3t)) (cos(t)) y = (cos(3t)) (sin(t)) for O<t<Il

wWe evolved the following form:

public void drawLoopyLine(int x1, int y1, int x2, int y2) {
int xStep = (int) ((float) (x2-x1)/(float)32);

int yStep = (int) ((float) (y2-yl)/(float)32);

int ¢ = (x1+(3*yl))/4;

for (int t=-6; t<37; t++) {

float sl = (float) (t)/10;

float s2 = (float) (t+1)/10;

float X1 = (float) (c*Math.cos(3*sl)*Math.cos(2*sl));
float Y1 = (float) (c*Math.cos(3*sl)*Math.sin(sl));
float X2 = (float) (c*Math.cos(3*s2)*Math.cos(2*s2));
float Y2 = (float) (c*Math.cos(3*s2)*Math.sin(s2));

g.drawLine(200+ (int)X1l+t*xStep, 200+ (int)Yl+t*yStep,
200+ (int) X2+ (t) *xStep, 200+ (int)Y2+(t)*yStep);

}
}

CODE: FIRST ITERATION

Computational expressionism deals with the representation of a hand
gesture on a two dimensional canvas. The computational line possesses
attributes of dynamism and interactive behavior, in addition to the
primary attribute of appearance.

The first iteration of code consisted of individual applets that illustrated
single ideas or components of computational drawing. The Hairy line is
one such self-contained applet. It is made up of four classes:
DrawingApplet.java,

FadingLineObject.java,

PointObject.java

JoeyGraphics.java.

Another set of applets from the first
generation were the MATHART applets
which often consist of a single class (that
extends applet) and describe the even
handling of the gesture and the colors of all
the pixels represented on the canvas.

The color method in the following code
example takes as parameters the x and y
FH A ,ii coordinates of each pixel, the width and
SaaREmaiinl TiNNRERSiiEifaea.i. height of the canvas, and the size of little
MATHART example squares to be drawn. The posx and posy
variables represent mouse location.

- - -
=’=-‘-‘.-‘--=n-.--

SmEEE

COMPUTATIONAL EXPRESSIONISM: Appendix B 84

public void color(int x, int y, int rW, int rH, int sW, int
sH) {
for (int i=x-rW/2; i<x+rW/2; i=i+sW) {
for (int j=y-rH/2; j<y+rH/2; j=j+sH) {
double iq (double) ((double) i/ (double)30);
double jg (double) ((double) j/ (double) (80+posx)) ;
double ijg = (double)((2*(double)i+(double)]j)
/ (double) (25+posy/3));

int red = (int) ((ig) / (double)2*(double)255) ;

int green = (int) ((jq) / (double)2*(double)255) ;

int blue = (int) ((ijq) / (double)2*(double)255) ;

if ((red < 0) [| (red > 255)) red=255-(red%255);

if ((green < 0) || (green > 255)) green = 255-
(green%255) ;

if ((blue < 0) || (blue > 255)) blue = 255-(blue%255);

¢ = new Color(red,green,blue);
offGraphics.setColor(c);
offGraphics.fillRect (i, j,sW-2,s8H-2);
}
}
}

All the code is available from http://www.media.mit.edu/~joey/demo/,
or by contacting the author.

CODE: SECOND ITERATION

Each gesture that is drawn is abstracted into a vector of points in two-
dimensional Cartesian space. The vector is composed of point objects
that record the (x,y) coordinates and the processor time at which each
point was created. This is used for animating dynamic drawings as well
as to reserve the possibility of recreating the drawing in the future.

The vector also knows its starting point, the time at which the line itself
was drawn. Finally, the line is given an ID number, or simply sub-
classes an existing line object, to determine its appearance and
behavior. The computational line is a Java composite of three
properties, one from each of the categories, that can be recombined at
will.

The second iteration of the drawing tools organized the classes and
methods into three categories:

express.appearance
express.dynamism
express.behavior

The first category can be described as a set of methods that take two
coordinate pairs and an integer ID as arguments. The ID is used to
determine how the space between the two points is to be represented
graphically. Some representations are very simple, such as a straight
line connecting two points, of varying thickness and color, or a series
of little squares that overlap in the direction of the gesture that
generated them. Others are more complex, such as parametric patterns
of line or color, curves that are influenced by the direction of the stroke,
its speed, and the acceleration and deceleration. Finally, the concept of
line is abstracted to the point where a line can be graphically
represented as a color field, or a grid pattern, or text, or images from a
film.

The second category gives movement to the graphical objects (lines).
This movement can be a translation, rotation or other geometrical
transformation on the vector of points that make up the line. It can also
be a change of color, or an animation, or a fading into the background,

COMPUTATIONAL EXPRESSIONISM: Appendix B 85

change of scale. It occurs once, and is a very intrinsic quality of the line
making tool.

The third category takes movement one step further, into what I call
behavior. Behavior usually involves movement, but it is not a quality of
the line making tool, but a quality of the drawn line. To make an
analogy to painting, a movement is the paint that drips from the brush
onto the canvas, and the color that drips immediately after being
painted. A behavior is the way the paint cracks after drying, and the
way it reacts to other brushstrokes that are layered on top of it. If the
paint is relatively fresh, it will blend a little, otherwise it is masked.
Applying a faster drying paint on top of a slower drying one will
produce an interesting pattern of cracking paint. These are behaviors.
They center around the interaction between different strokes, and time.

An integral part was the JoeyGraphics class. JoeyGraphics has a
method called drawldLine(int id, int x1, int y1, int x2, int y2). Its
arguments are two coordinate pairs and and an integer ID, which is
used to determine how the space between the two points is to be
represented graphically. An ID of 1, for example, simply invokes the
Graphics.drawLine method. Other ID numbers invoke one or several
joeyGraphics methods. Some of their names are drawThickLine,
drawHairyLine, drawPensiveLine or drawlIrritableLine. There is also a
set of methods called drawParamXLine, where X is an integer. These
methods paint parametric curves.

CODE: THIRD ITERATION

The third iteration aims to decompose the computational lines into very
basic components. The package, called express, has the following
structure:

express
DrawingProgram.class
awt
ChoiceBox.class
ColumnOfBoxes.class
ColumnOfNumberBoxes.class
GBconstraints.class
NumberBox.class
RedrawingCanvas.class
TimedPoint.class
color
ColorSelector.class
HSVcolor.class
lines
Redrawable.class
RedrawableLine.class
ChangingColorLine.class
Line0O11.class
Line012.class
MovingLine.class
Line001.class
Line002.class

COMPUTATIONAL EXPRESSIONISM: Appendix B 86

The awt package is used to build the drawing applications. The color
package helps with color conversions and provides a framework for
building a color selector. The lines package contains the Redrawable
and RedrawableLine interfaces which are implemented in the abstract
classes ChangingColorLine and movingLine. These two abstract
classes describe basic color changes and movement for computational
lines. Individual line classes extend the abstract classes and provide
specific information for appearance, dynamism and behavior.

All the code is available from http://www.media.mit.edu/~joey/demo/,
or by contacting the author.

