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Abstract

This work deals with the problem of representing and recognizing human body movements,
given XYZ tracking data. Prior approaches by other researchers used a smaller number of
classification categories, which demanded less attention to representation.

We develop techniques for representation of movements based on space curves in sub-
spaces of a "phase space." The phase space has axes of joint angles and torso location
and attitude, and the subspaces are subsets of the axes of the phase space. Using this
representation we develop a system for learning new movements from ground truth data by
searching for subspaces in which the movement to be learned describes a curve which is eas-
ily separated from other movements. We then use the learned representation for recognizing
movements in data.

We train and test the system on nine fundamental movements from classical ballet by two
dancers, and show the system can learn, recognize and segment out five of the movements
accurately, but confuses one pair of movements from one dancer and another pair from the
other dancer. Finally, we suggest how the system can be improved and extended.

Thesis Supervisor: Aaron F. Bobick
Title: Assistant Professor of Computational Vision, MIT Media Lab

This work was supported in part by a grant from Interval Research.

I Nd 1- -1 1 1 1 _101



Recognizing Classical Ballet Steps Using Phase Space
Constraints

by
Lee Winston Campbell

The following people served as readers for this thesis:

Reader:
Richard A. Bolt

Senior Research Scientist, Advanced Human Interface Group
Program in Media Arts and Sciences

Reader:
C Jessica K. Hodgins

Assistant Professor, College of Computing
Georgia Institute of Technology



I'd like to thank my advisor, Aaron Bobick, for originally suggesting this fascinating

topic, for his ideas and suggestions while I was trying out approaches, and for his useful

comments and insights while writing up the thesis. The two years that have gone by so

quickly have been rewarding, interesting, and fun, due in no small part to Aaron.

The readers for this thesis, Dick Bolt and Jessica Hodgins, were helpful both in clarifying

my thesis proposal and in preparing the final document. Ms Hodgins was particularly

insightful in her comments on rough drafts.

Dean Wormell, of Adaptive Optics Associates, has been helpful above and beyond the

call of duty in loaning us AOA's tracking cameras and processors, helping to gather the

movement data, and teaching me to use the tracking software. Dean and AOA have been

a pleasure to collaborate with.

I've been aided by many interesting conversations I've had with the other students in the

Vision and Modeling group; particularly Stephen Intille, Nassir Navab, and my officemate

Andy Wilson. VisMod has provided an exciting, stimulating environment and its people

have been great resources.

Our ballet experts and dancers, Katy Evanco, Meg MaGuire and Chen Yu have been

enthusiastic, patient, and helpful; even while dancing with reflectors attached to them and

while answering numerous questions about the art and practice of ballet.

Finally, my brother and sister, Bruce and Jan Campbell, and my parents, Malcolm

and Jeanne Campbell, have provided their steady love and support at all times. I have

no adequate way to thank my parents for all they have given me over the years except to

acknowledge how they have encouraged and helped me in every endeavor.



Contents

1 Introduction 7

1.1 Computers Understanding Human Body Motion . . . . . . . . . . . . . . . 7

1.2 Goal of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Problem Description 11

2.1 Human Body Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Domain of Ballet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Related Work 18

3.1 Moving Light Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Spatiotemporal Behavior Without Models . . . . . . . . . . . . . . . . . . . 21

3.3 Human Body Pose Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Representation of trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Representation and Recognition in Phase Space 30

4.1 Representation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Recognition in Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Representation of Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



4.4.1 Correlations and Fitness Functions . . . . . . . . . . . . . . . . . ..

4.4.2 Volumes in Phase Space, Compound Predictors, and Search . . . . .

4.5 Sum m ary . . . . . . . . . . . . . . . . . . - - - . . - - - - - - - - - - - .

5 Experiments

5.1 Introduction . . . . . . . . . . . . .

5.2 Testing . . . . . . . . . . . . . . .

5.3 Summary of Results . . . . . . . .

6 Summary and Future Work

6.1 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Future W ork . . . . . . . . . . . . . . . . . . . . .. .

A The Tracking System and Data Gathering

6

47

48

57

. . . . . . . . . . . .-

. . . . - .- . .- . .- . .-

. . . . . . . . . . . .

-. -. - . .- . .- . .- . .- .

-. -. . -. - -. - . .- . .- .



Chapter 1

Introduction

1.1 Computers Understanding Human Body Motion

As computers become more inexpensive, powerful, and ubiquitous, they will take on more

of the drudgery in people's lives and watch out more for our safety. They may watch

traffic for pedestrians in crosswalks, monitor other traffic from cars, and observe operators

of dangerous machinery. In order to do these things, computers must see and understand

people and the movements of their bodies. This thesis is a small step towards the goal of

making computers into guardians of our safety and more useful helpers.

To understand the movements of people means much more than merely quantifying

the details of the movements - at the very least it means identifying or recognizing the

movements, and equating them with symbols. This problem is analogous to the problem of

understanding speech: in each case the input is a signal represented by a large amount of

numerical data and the output is a sequence of symbols expressed at a level of detail which

is the natural level of detail for human reasoning and speaking.

In order to study a problem it is useful to work in a well-defined domain where the

scope of the problem can be controlled. In order to study the identification and recognition

human movement, the domain must have the following three features:

A vocabulary of symbols is important because symbols are equivalent to categories for clas-

sification. Using symbols or categories from an existing language means we are pro-

vided with a ready-made and tested set of classification categories. The symbols exist

because they have been found useful for classification.



Level of detail of the symbols is important because if computers are to reason and commu-

nicate in human ways, they must do so at the same level of detail as humans. Speech

understanding is much more important than sound characterization because speech

symbols are a major channel of human reasoning and communication. Similarly, if

movements can be understood by computers at the same level of detail as notions

such as walking, sitting down, reaching, and falling, then computers will have some

of the right symbols with which to reason about human safety, needs, and intentions.

Availability of ground truth for the movement identification is important because any sys-

tem which purports to do recognition must be tested, and the ready availability of

ground truth data makes it easy design tests. Ground truth can also be used by a

system that automatically "learns" movements from training data (supervised learn-

ing).

Ballet is a good testbed for work in understanding human body movement because it

has the requisite features: there is a vocabulary of some 800 names of steps as well as

several notation languages; the vocabulary has been useful in ballet for over a hundred

years, thus it is at the appropriate level of detail for human reasoning and communication;

and human observers can easily provide ground truth identifications against which to check

the computer recognition.

1.2 Goal of this work

This work is a step towards a system capable of seeing and understanding human body

movement. This is a huge project with many tasks, and many computer vision researchers

are working on parts of it. One part of the task is finding a person in imagery and identifying

their body pose. In its most general form this problem is extremely difficult: people are

non-rigid, articulated, self-occluding objects, all of which greatly complicates the problem

of finding them in imagery. Many researchers are working on finding people in imagery

assuming a stationary camera, specially marked clothing, or some other constraint. We

have chosen to assume solutions will be found to the problems of finding and tracking

people and recovering their 3D body pose, so the system developed for this thesis takes

as input XYZ tracking data instead of imagery. This leaves us free to concentrate on the
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problem of recognition of movement. An important part of the recognition system is a

representation for movement which facilitates recognition.

Thus the goal of this work is to develop a system capable of representing and recognizing

classical ballet steps, given an input of XYZ tracking data. This is a subgoal in the larger

task of understanding human body motion from images. However, even given XYZ tracking

data, there are significant challenges: How does one capture what is invariant in a ballet step

while remaining tolerant of the normal variation between dancers? What features can be

used, and how can they be extracted from the data? How shall dance steps be represented?

All these questions are interrelated - no single one can be answered without addressing

them all. We shall approach the problem by beginning with representation issues and then

developing recognition techniques.

Classical ballet comprises some 800 steps, depending on how they are counted. Major

categories of steps include jumps, turns, traveling steps, and stationary poses or attitudes.

There also exists a set of movements performed frequently in practice which make up sub-

parts of many of the other movements. We will do recognition experiments in this set of

movements, as will be explained in Section 2.3.

1.3 Other Applications

The goal of realtime general understanding of human body movement may be twenty or

more years in the future. However, understanding limited to a specialized domain, or off-

line, slower-than-real-time understanding of human body motion may be realized sooner,

and there are applications of it which have social and financial value.

One such application is video annotation [10]. Entertainment companies, newscasters,

and sports teams are acquiring ever larger video databases. If these can be automati-

cally scanned and annotated, the video can be organized, catalogued, cross-referenced, and

searched for keywords. Powerful text search tools can be applied once the mass of signals

has been annotated with natural language symbols, and speed of annotation is relatively

unimportant.

Another interesting application is fair judging of athletic events such as gymnastics,

diving, and ice skating. In such an application the task of the computer would not be

recognition so much as identifying the deviations from ideal form. An automatic judge
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would also be useful as a training tool, helping to teach athletes specifically what to change

to improve form and performance (already there are rudimentary automatic systems to

diagnose golf swings).

Finally, automatic notation of dance and movement may be a useful application. Chore-

ography has been called "the throwaway art" because the choreography was lost after a

company stopped performing a particular version of a work. Systems of dance notation and

general body movement notation such as Labanotation were developed to record choreog-

raphy. This has been supplanted to some extent by videotape, but notation can convey the

choreographer's intent in a way that videotape cannot. Moreover, Badler [5] proposed an

animation and simulation system which could take several forms of input and output, and

used Labanotation as its internal representation. Motion capture for animation is growing

in commercial importance, and a system capable of changing the expressive content of the

motions by re-generating the motion from notation would be a useful tool.

1.4 Outline of the Thesis

Having provided the motivation behind this work, we must now explain our approach to it.

Chapter 2 briefly describes the domain of ballet as it pertains to this thesis, and then

states the detailed problem addressed by this work. Chapter 3 lays out the assumptions

behind the problem and surveys the literature related to the assumptions and problem.

Chapter 4 develops a phase space approach to representing and recognizing human body

motion. Chapter 5 describes the results of testing, and Chapter 6 sums up the work thus

far and areas needing improvement in future work.



Chapter 2

Problem Description

The problem of understanding human body motion from images is one that leads into such

diverse areas as dynamics, athletics, and cognitive science. We will briefly survey several

areas of human motion study and then discuss the nature of balletic motion. We will then

state the specific problem this thesis addresses.

2.1 Human Body Motion

Human body motion has many constraints. Some of the constraints come from the laws

of physics. Others, which come from the rules of an athletic or artistic form, we will call

cultural constraints. To understand the motions, it is first necessary to understand the

constraints. These can then be exploited to guide search and limit computation.

For example, gymnastics routines often contain many airborne rotating maneuvers.

Without ground contact, the center of mass travels in a parabola with constant downward

acceleration and the angular momentum is constant. Within these constraints, gymnastic

skill is expressed in the height achieved, the number of rotations, control of twisting and

tumbling, and especially control of body form. 1 It might seem that an airborne person

has no freedom to alter his or her trajectory, but gymnasts adjust their moment of inertia

by piking, arching and arm motions. These actions allow limited control of body attitude.

'There is an interesting reason why form is a cultural constraint. It is constrained because it is difficult
to achieve, and it is difficult because many gymnastic maneuvers involve rotation about a line through the
body from left to right. This is the axis of median moment of inertia and rotation about it is unstable for
small errors in initial conditions - tumbling occurs. If the gymnast tumbles uncontrollably, she or he must
break form to land safely. Thus the constraint of good form is prized because the subtle physics of rotational
inertia make it difficult.



Gaits are constrained (or perhaps defined and categorized) to be rhythmic and repetitive,

and these constraints allow searches for periodicity [33]. Both Hogg [25] and Rohr [38]

treated walking as a 1DOF motion for purposes finding limb orientations on a walking

person.

Hand gesture recognition has many similarities with whole body motion. The hand has

many degrees of freedom (10 1D joints and 5 2D joints) and a great range of expression.

However, it is subject to different constraints: it does not need to obey the constraint of

maintaining balance and support which the whole body obeys. Its motions are highly con-

text sensitive. The most extreme example is American Sign Language, which is a full context

sensitive grammar plus all the puns, slang, abbreviations, and neologisms one expects from

a living language. Moreover, the hands are usually involved in co-articulation, [11] either

with the voice and/or the face and posture. So to understand hand gestures it is necessary

to understand context and the other modes of articulation. This is a much more complex

set of constraints than ballet.

2.2 The Domain of Ballet

Ballet has its own set of cultural and physical constraints. Classical ballet is made up of a

finite number of discrete movements or steps. People with expertise can easily name and

recognize most of them, even when seen on video. In addition to named steps there are

classifications or categories of steps and written notation languages for recording ballet and

other forms of dance.

There are three major schools of classical ballet: Russian, French, and Cecchetti or

Italian. Since some steps are performed differently in different schools there are about

300 or 400 steps per school and about 800 to 1000 steps total. Major categories of steps

that occur in performance include stationary poses, turns and pirouettes, linking steps and

movements, jumps, and beats (a fluttering of the legs during a jump). Steps that occur in

practice or class and during warmup include relev6s, battements and ronds de jambe. Most

of the steps can be started from any of five foot positions (Although first, fourth, and fifth

positions are far more common). Many of the steps can be done either on pointes or on

demi-pointes. There are 8 arm positions in the Cecchetti school, six in the French, and four

in the Russian. There is more freedom for the arms to be expressive and to take a range of



positions, and not all arm positions occur with all steps [19, 46].

The practice steps are interesting because they tend to be simple movements with one

degree of freedom which are pieces of the more complex movements. Thus they are a sort

of syllable or phoneme of dance and we call them "atomic" movements. They include pli6,

relev6, tendu, d6velopp6, and battement. Many steps involve one support leg and the other

leg is termed a "working" leg.

Although most steps can be categorized, there are also steps which do not bear any

family resemblance to any other steps. Historically, they may have entered ballet from folk

dances. Examples of such steps are pas de basque and pas de chat [50].

When steps occur in sequences, the beginnings and ends often change a little to ac-

commodate the neighboring step. This is analogous to continuation in speech, where a

vowel sound can be changed a great deal by context. Another source of variation is called

"extension:" the term refers to the height to which a leg is lifted or the height of a jump.

Because of variations in style and bodies, different dancers may do some movements with

less extension; sometimes the choreographer may utilize the special abilities of a dancer and

call for a "bravura" form of the movement with more extension.

Ballet is subject to several cultural constraints. Placement and technique are the terms

for the correct positions of the limbs and ways of moving. They are learned one ballet

step at a time. Yet some generalizations can be made about ballet's cultural constraints.

An obvious one is called "turnout" and it requires that the toes and knees be pointed

completely to the sides, 1800 away from each other. Another constraint is grace: it is

better to do a movement with less extension gracefully than with large extension that

shows straining. Another constraint is maintenance of support and balance. Although that

may seem too obvious to mention, we believe this constraint has a profound effect on whole

body movement and constrains most of the motions of the major masses of the body to one

intrinsic degree of freedom. As an example of the support and balance constraints outside

of ballet, consider the movement of sitting down: people bend at the ankle, knee, hip and

spine when they sit, and though there are many possible combinations of angles that will

land them in a chair, most people sit with similar movements. It is likely this similarity

occurs because people try to maintain their balance and comfortably support their torsos

during the movement.

The most popular form of dance notation today is Labanotation [21], first published by



Rudolf von Laban [49] in 1928. Labanotators are certified by, and can be hired from the

Dance Notation Bureau in New York. The reader may wonder why, with the low cost of

videotape, anyone would wish to notate dance by hand. The answer lies in an analogy to

music: sheet music of a solo conveys the intent of the composer and indicates what parts

of the performance are left to the performer's interpretation, while recorded music only

conveys a particular performance, complete with errors and the performer's interpretation.

Choreographers would like something analogous to sheet music from which dancers could

learn new repertoire.

Labanotation provides varying amounts of specificity. Positions can be prescribed all

the way out to feet and fingertips, or some of the details can be left up to the dancer. There

are ways to express coordinated movements or coordinated dancers, points of contact, and

paths on stage as well as positions of the body. Thus Labanotation is an attempt to capture

the constraints of choreography as well as the constraints of the movements. Unfortunately,

notation is slow: on the order of an hour's work by a highly trained person for each minute

of notated dance. At present only a few large professional dance companies notate the

dances they commission.

Good reviews of movement notation are in [32, 20]. Other dance notation systems2 in

current use include Benesh [7], Eshkol-Wachman [15], and Sutton [44].

2.3 The Specific Problem

The specific problem this work attempts to solve is to learn and identify a set of nine

atomic ballet movements from XYZ tracking data. The nine movements (see Figure 2-1),

all performed starting from a flat-footed position with legs turned out and with the right

leg working and the left leg supporting, are:

1. plii lowering the torso by bending the knees, then rising back up (used when launching

and landing every two-legged jump, and with many other steps);

2. relevi rising up on the balls of the feet and then lowering (preparation for many steps;

a pli6 or relev6 is part of almost every ballet step);

2also indexed under kinesiology. See also gymnastics notation.
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3. tendu d la seconde sliding the foot to the side and bending the ankle as needed to

maintain toe contact with the floor (preparation for many steps);

4. digagi raising the leg rapidly about 450 to the side (part of many steps involving

transfer of weight or traveling),

5. fondu a pli6 on the supporting leg while the working leg bends at the knee and points

the toe down (a fluid step frequently used by itself);

6. frappi raising the working foot vertically by bending the knee and hip until the hip

makes a 45* angle, then rapidly straightening the knee and ankle to kick to the side

(part of many jet6s (one-legged jumps) and assembles);

7. diveloppi like frappe but the foot is raised until the hip makes a 900 angle before

straightening the knee (frequently used before a promenade, or by itself, especially in

partnering, to extend the leg out horizontally);

8. grand battement d la seconde with the knee straight, raising the leg to the side until

the foot is at shoulder height;

9. grand battement devant same as battement a la seconde except the leg is raised to the

front (both grand battements can be used by themselves in allegro passages instead

of d6velopp6).

These steps were chosen for the following reasons:

* this gives leverage for recognizing more complex steps if several parts of the step are

known;

* several of the movements have similarities which will test the system's ability to make

fine distinctions;

* several of the movements are quite simple and thus suitable for beginning development

of a representation.

The input data was recorded in two different sequences, one from each of two dancers.

The task will be to learn the movements from the two sequences with a single dancer-

independent representation for each movement, and then test the representation by recog-

nizing the start time and duration of the movements in the same sequences. This is known
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plie

relev6
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opp e --------
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batt.
side

grand
batt.
front

Figure 2-1: Nine "atomic" ballet moves.



as a resubstitution estimate [12]. The reasons for using this weaker form of test are given

in Chapter 5. We will use two measures of success: the less rigorous one is to correctly and

uniquely state that the movement has taken place, and the more rigorous one is to count

the number of time steps that are correctly labeled and the number that are incorrectly

labeled.



Chapter 3

Related Work

This thesis is a link in the chain to a larger goal: understanding human body motion in

real image sequences. Because the whole task is as yet too challenging, we have chosen the

subgoal of recognizing ballet steps given XYZ tracking data from points attached to the

dancer's joints, and we have chosen a method which involves using a phase space represen-

tation of joint angles on a human body model. We make several assumptions in claiming

that our subgoal is a part of the larger goal, and several more in our choice of representa-

tion. In this Chapter we make our assumptions explicit and then look to the literature for

justification.

Our choice of subgoal makes the following assumptions:

1. that the task of determining dance steps from tracking data is achievable;

2. that recognizing human body motion from real imagery is too difficult a

task;

3. that it is an acceptable simplification to use input from tracking data in-

stead of images;

4. that there exist low-level vision algorithms which could derive the necessary

input from images.

Moreover, in our choice of representation we make these assumptions:

5. that a human body model is a necessary part of the representation;

6. that the phase space method and representation (described in Chapter 4)

is appropriate;



7. that other representations cited in the literature are not well suited to this

task.

The discussion of moving light displays justifies assumptions 1, 2, and 4. The discussion

of spatio-temporal behavior without models justifies assumption 5. The discussion of phase

space justifies assumption 7; and the discussion of human body pose recovery supports

assumptions 3 and 7.

3.1 Moving Light Displays

Psychophysics

The perceptual experiments of Johansson in 1973 [28] opened up the field variously

known as "Moving Light Displays" or "Point Light Walker Displays" or "Biological Mo-

tion" (referring to patterns of movement created by living creatures). Johansson attached

reflective patches to ankle, knee, hip, shoulder, elbow, and wrist joints, and to the head, and

took videotapes with the signal adjusted such that only white spots on a dark background

could be seen. In some tests, subjects viewing the videos were able to tell whether or not

the motion was biological in times as short as 100 or 200msec [29]. In other tests, common

motions were added to or subtracted from all the points, and subjects still identified the

motion. In most of the tests 100% of the subjects responded correctly, even though they

had not been prepared or trained in any way. Another experimenter [13] found that other

activities were recognized such as hammering, box lifting, ball bouncing, and stirring; and

two-person activities such as dancing, greeting and boxing. Yet another series of experi-

ments [6] showed that people could determine the gender of a walker and even identify a

friend based on MLD's of their walk.

It is perhaps surprising that people can make such quick identifications from such a

paucity of data. The effect is quite robust. For computers, the paucity of data may be a

benefit because they have such difficulty identifying and tracking objects in real images.

Since people can identify movements in MLD so easily, perhaps it is possible for a computer

to make such identifications as well. Johansson's work raises the question of whether people

viewing MLD's identify structure first and then identify parts (e.g. hands and feet) from

the structure; or whether the motion leads us to identify the parts first, after which we infer

the structure.



Computer Vision

Johansson's experiments show that the model of the human body as moving locations of

joints rigidly linked by limbs is in some sense a sufficient model for a number of recognition

tasks. This has inspired work in the computer vision research community to explain how

details of body pose can be extracted from the 2D projection which is a moving light display.

Though not necessarily inspired by Johansson, Ullman proved a basic structure from

motion theorem: Given three distinct orthographic views of four non-coplanar points in a

rigid configuration, the structure and motion compatible with the three views is uniquely

determined [45). This theorem plus Ullman's rigidity assumption and rigidity test suggests

that the rigid links of a jointed body can be found.

Rashid [37] made an early attempt to link points into a structure based on clustering of

2D positions and velocities. His system tracked points through frames, grouping and linking

them into objects according to their relative velocities. The system was tested on synthetic

2-D perspective projection MLD's of several objects such as a man walking a dog. The

points that were rigidly linked in space as well as independently moving sub-parts could

frequently be found by the program even though their projections were not rigidly linked.

Although velocity clustering may provide a good first estimate of how points are linked into

objects, it is too weak a model of objects to be relied on.

Webb and Aggarwal [51] assume the links between points are known, and that points

rotate around fixed axes. They use orthographic projection and show that points will

sweep out ellipses in the projection, and that the eccentricity and orientation of the ellipses

determine the 3-D axis of rotation to within a reflection. Their work was later extended by

Asada [4] (with an assumption of constant angular velocity) to a case where, for example,

points rotate about the shoulder which in turn rotates about some other axis.

Hoffman and Flinchbaugh [24] present a method which uses the fixed axis assumption

of Webb, but recovers both linkages and axes. Thus they recover 3-D structure in the case

where the axis directions are fixed. This is a good approximation for the cases of walking

and running, but not dancing.

Zhao [53] built a system to do accurate automatic 3D model fitting to 2D moving light

displays. It takes as input target centroids representing a monocular 2D sequence of a

moving light display, plus initial identifications and camera calibration parameters. It uses

0 NOW-_



Jack' as a human body model. It tracks points, recovers joint angles, and corrects limb

lengths on the model. It was tested with data that had been filtered through Jack in the

following way: Real world data was collected for sitting people reaching; the Jack model

was constrained to follow the data as closely as possible and extract joint angles, and then

the joint angles were played through another Jack model projected to 2D to make synthetic

tracking data. Zhao's tracking system took that data as input, as well as a body model with

errors in starting limb lengths. Operating on the test data, the system demonstrated near

perfect recovery of the information lost during monocular imaging. However, it is not clear

how robust the system is to errors in tracking point placement; in the tests, it appeared the

tracking points were placed in the centers of the actual joints, which is not possible with

real people.

Each of these systems makes similar assumptions about the input: that points or features

corresponding to limbs can be found and tracked through successive frames to provide an

MLD input. Webb and Zhao assume starting identification (i.e. linkage) is given; Webb

and Flinchbaugh assume fixed axes. This body of work, taken as a whole, shows that it is

within grasp of computer vision to recover structure and thus joint angles from a moving

light display or its equivalent. This justifies our use of 3D structure data as input to our

system for dance step recognition.

3.2 Spatiotemporal Behavior Without Models

The following is work aimed at doing recognition directly from motion, without the inter-

mediate stage of recovering structure.

Rangarajan, Allan and Shah [36] state a goal of distinguishing between two similar

objects with different motions, or two objects with the same motion but different shapes.

They developed a system to match trajectories. They represent a trajectory as two curves:

one is speed vs time; the other is direction vs time. They then produce scale space images of

the two curves, and run a matching algorithm on the scale space zero crossings. They used

as test input a trajectory, three versions of that trajectory that were rotated, magnified,

and noise added, and a distinct trajectory. They show that the more similar trajectories

1a commercial package for simulating human body movements, developed by Badler at University of
Pennsylvania



have better match scores. They then run the matching algorithm on trajectories from the

images of three walking people (9 points tracked per person) where two of the sequences

are the same person at different times. They use a subset of points from head, hand and

heel to compare match scores. The two sequences of the same person produce higher match

scores.

Polana and Nelson [35] present a textural method for detecting periodicity in an XYT

solid. Their method assumes a stationary camera. They take the Fourier transform along

the time axis and then sum the peak frequencies over x and y to develop an overall period-

icity measure for the sequence which they call "activity". They ran tests on 21 sequences

that included periodicity (at least four cycles), and 8 that did not. All 21 periodic sequences

had higher "activity" than any of the non-periodic sequences. This provides a classification

of sequences according to overall temporal periodicity.

Allman and Dyer [3] call their technique "Dynamic Perceptual Organization." It con-

sists of treating an image sequence as an XYT solid, finding the optic flow in the solid; then

tracing curves as a function of time, and k-means clustering curves with similar slope and

curvature. Data is shown for two test sequences of rotations and translations of textured

objects against a stationary background. They then suggest how curves might be decom-

posed into common and relative motion, and how this might be used for recognition. They

show flow curves derived from tracking wingtips of a flapping bird and describe how the

curves make apparent the cyclic nature of the flapping. Though the data is suggestive, they

do not demonstrate motion identification.

Goddard [17] built a connectionist network to recognize three different gaits. The orig-

inal signal comes from a WATSMART tracking system, however it is converted to 2D

unlabeled spots. The connectionist network takes as input an "augmented optical flow"

which includes spot location, velocity, and instantaneous curvature of a path and a "tempo"

variable that adjusts the time scale. It has intermediate levels to connect the dots into com-

ponents and the components into assemblies. The network can identify walking, running,

and skipping gaits under a variety of conditions of noise and clutter.

Goddard's work isn't quite model free, but his lack of discussion of any intermediate

component structures implies that they were not useful as models, hence we classified it with

the model-free techniques. Evaluating it against other recognition systems, we note that

three is a small number of categories, and that the strength of the connectionist approach



shows up in its robustness in the face of clutter, but not in the number of motions it

identified.

The model-free techniques of Allman and Dyer, and Polana and Nelson are interesting.

It is plausible that motion recognition systems could work without any assumptions about

objects, at least when there is a small number of recognition categories. A shortcoming of

Allman and Dyer's technique is that it requires high quality optical flow, and this is not

a solved problem. However, model-free motion can be used as another cue for grouping

features into objects, their work suggests ways to do that grouping independent of prior

guesses about object grouping.

3.3 Human Body Pose Recovery

The problem of human body pose recovery from real imagery is an important one in com-

puter vision. Some representative work will be discussed here, with an intent to demonstrate

that it is as yet too difficult to recognize many different motions in real imagery.

O'Rourke and Badler [34] used constraint propagation to implement a feedback loop

between high-level and low-level processes of image motion analysis. The idea is that a

high level model of a human body can be used to indicate where in the image to track low

level features; the low level features then determine the new state of the high level model.

The constraints are used both to limit search of the image and to reject data from low level

tracking that is inconsistent with the high level model. Constraints on the high level model

include acceleration limits, joint angle limits, and constancy of limb length. Only the hand,

foot, and head segments are explicitly searched for in the images. Tests on two sequences

are reported; one involving a jumping-jack motion and the other a hand going behind the

back and being occluded. In both tests the images are synthetic human figures against a

dark background. The system has a complex architecture which these tests did not fully

plumb.

Hogg [25] built a system to find and track people walking in real images against complex

backgrounds. It contains a human body model made out of cylinders [8]. Walking is modeled

as a set of postures (keyframes) where each posture is subject to its own set of positional

and velocity constraints. The body model is projected onto an edge map made from the

image and "plausibilities" are calculated for each part of the model, and some kind of search
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is done to maximize the plausibility of the model. The walking model described used four

postures of fronto-parallel walking. it was tested on one sequence of 45 images of a walking

person against a complex stationary background, and it found and tracked the person. It

is hard to determine, from the single test reported, the degree to which the approach will

generalize.

Rohr [38] built a similar system to find and track pedestrians crossing streets in real

images against natural backgrounds. It assumes a stationary camera and uses change detec-

tion (background subtraction) to fit a rectangle around the walking person. An edge map

is made, and line segments are fitted to groups of edge points. The human body model,

similar to Hogg's, is used to guide a search of the line segments. The highly detailed walking

model was derived by averaging motion curves from medical studies of 60 men, and yielded

a walking motion that has just one degree of freedom - pose (canonical time or phase),

which varies from zero to one. Information from the walking model and the human body

model is used to project windows onto the image, and the window areas are searched for

line segments corresponding to the appropriate part of the model. After an initialization

search, a Kalman filter is used to estimate three variables: the walker's pose and X and Y

position, and these constrain later search. Experimental data is presented for three image

sequences: one synthetic and two real, and all involve fronto-parallel walking. The system

worked well on these cases. The greatest difficulty was in determining which leg was nearer

the camera; it was prone to a pose error of .5.

The work of Akita [2] is similar to that of Hogg and Rohr except that it uses a sequence

of keyframe stick figures plus a table describing occlusions for each keyframe, which were

entered manually.

The contribution of O'Rourke and Badler is in their sophisticated architecture, which

allows bidirectional communication between the high level and low level parts of the system.

Each of the remaining systems systems attempts to find humans in real imagery. Hogg and

Rohr each had to make a number of assumptions to limit search time. They each assume a

fronto-parallel direction, uniform walking gait, and stationary camera. They each capitalize

on the stationary camera which allows them to use change detection to draw attention to

the rough location and size of the walker.

The problem of seeing people in natural scenes is very hard and while there is much merit

in the work of Hogg, Rohr, and Akita it is not clear how to generalize from their systems to



our problem of dance step recognition. One can claim that employing a number of systems

in parallel will allow a number of gaits and directions to be searched for simultaneously.

However, given hundreds of dance steps and a reasonable number of orientations, this

approach would require thousands of specialized recognizers.

3.4 Representation of trajectories

Gould and Shah [18] present a set of representations called the "Trajectory Primal Sketch."

Their system takes as input XY data over time of tracked points, and returns as output the

identification of various features on the trajectories such as changes in direction or speed.

They present what they call the <P - S representation which has axes of distance along

the curve and local curvature, making the representation independent of x,y position and

rotational orientation. However, they do their feature finding on curves of x-velocity and

y-velocity (equivalent to 4- and 4) which are independent of position but dependent on

x-y axis orientation. They show how primitive trajectories (e.g. translation, rotation, and

cycloids) can be found. They plot trajectories in scale-space, search for significant features

(ones which appear at coarse scales), and then annotate the original x,y trajectories with

symbols at the points where the features occurred.

The work of Gould and Shah is closer in spirit to the work in this thesis. Their goal is to

label features on a trajectory, while our goal is to identify the trajectory. An XY trajectory

is a projection of phase space, and their position and angle independent representations are

interesting.

3.5 Phase Space

One of the classical techniques for analyzing the dynamics of a system is the phase portrait

in phase space. Phase space is a Euclidean space with axes for all the independent variables

of a system and their time derivatives. For a given set of initial conditions, the system can

be modeled as the motion of a point along a path in this space. Each point in phase space

represents a state of the system, and as the system evolves over time it moves along a phase

path. For a large set of systems 2 only one phase path passes through each point in the

2 autonomous systems: systems in which parameters such as spring constants do not change with time (if
they do, they should be dimensions of the phase space, not constant parameters)



space. This property is particularly useful in systems of a single variable, e.g. a mass on

a spring. Such systems have a 2D phase space of position and velocity and the property

requires that phase paths can never intersect. So plotting a few phase paths with different

initial conditions will often carve up the phase plane and show the behavior of the system

for all initial conditions. The family of phase curves is the phase portrait or phase diagram

of the system. Sometimes in higher dimensional phase spaces, all the phase paths will lie

on a lower dimensional manifold in phase space. Some paths may converge on fixed points

which correspond to unchanging states. Some may form closed loops known as orbits, which

correspond to periodic motion. For more on all this see Jackson, Chapter 2 [27].

Phase space has been used in the Artificial Intelligence research community in systems

which understand and reason about physical dynamics. For example see, The Dynamicist's

Workbench [1]. Sacks [39] wrote software that analyzes the qualitative behavior of non-

linear ordinary differential equations by emulating the strategies of human experts reasoning

about portraits in phase space. Phase space has been used in the animation community for

systems which provide more flexible animations [23]. In the computer vision community,

phase space has not been widely used as a representation. It was used by Verri, et al. [47]

in a theoretical study of properties of optical flow, and, as noted below it has been used by

Shavit as a representation of overall motion.

In the computer vision community, Shavit [41, 42] developed a different way to repre-

sent qualitative "visual" dynamics using phase space. He considered the binary image of a

moving creature to be a 2D picture printed on a blob of elastic material undergoing defor-

mations and rotations over time. From the changes in the image he computed the forces,

strains, and rotations that best accounted for the shape changes of the image. The forces

give rise to a flow velocity and position that varies with time. He made phase diagrams of

flow velocity versus position, and segmented them into sections with simple dynamics (for

example, mass on a spring, or viscous damping). Thus, as the system orbited around the

phase curve over time, he could identify different sections as having particular dynamics

such as linear spring or applied force or damped oscillation. Using inputs such as black

silhouettes of walking, running, and jumping cartoon characters; moving light displays of

actors performing the same gaits; and some images derived from films of running animals;

he was able to identify characteristics about the gaits and to distinguish among the three

gaits.



Sclaroff's [40] Modal Matching technique uses finite element analysis to find the vibra-

tional modes of binary images of objects. When it tracks a deforming object it records how

much deformation comes from which modes. It then measures similarity as a sum of strain

energies over the modes. Given two extremal views (X-rays) of a beating heart, Sclaroff

shows a phase diagram of similarity with one extreme view versus the other as the heart

goes through the diastole / systole cycle.

Haken, et al. [22] report an interesting psychophysical experiment that had test subjects

in a forced choice situation classifying according to relative phase of two angles. Subjects

were shown an image similar to an arm which had the elbow and wrist angles in motion.

They were shown completely in-phase and out-of-phase motions as target categories A and

B. They were asked to classify motions with various phases into either A or B. Haken,

et al. report that "Labeling Probabilities changed abruptly along the continuum for all

10 subjects tested. Around a phase difference of 900 the identification function possessed

a rather steep slope." This result demonstrates that people are quite sensitive to phase

relationships when they look at motion.

The work cited above suggests that phase paths may be a useful representation of

motion. Shavit shows how useful information can be extracted from phase diagrams of

variables derived from the overall deformation of an image. We will build on this work and

show how phase space representations can be useful for identification.

3.6 Other Methods

Other possible methods which could be applied to the problem of dance step recognition

include Hidden Markov Models and various techniques from statistical pattern recognition.

Hidden Markov Models (HMM's) are widely used in speech recognition, where they

provide the benefits of time scale invariance and a way of combining segmentation and

classification into one task. HMM's were used by Yamato et al. [52] to recognize tennis

strokes within a vocabulary of six strokes where the input was a subsampled binary image.

This means their representation of a tennis stroke is a sequence of images with a particular

camera angle, background, clothing, and lighting. HMM's operate on sequences of symbols,

so some kind of feature must be extracted from the signal and fed to the HMM learning

algorithm. In the work of Yamato et al. features were grey level changes, making their



recognition entirely dependent on details of lighting, etc. so it is not clear if their system

is classifying movements or if it is only classifying views. If HMM's were applied for the

tracking data used in this thesis, input features could include peaks and zero crossings of

velocities and accelerations of joint angles.

A major advantage of HMM's is that the signal does not need to be segmented before

recognition. A major disadvantage is that many training instances must be supplied. Yam-

ato et al. used 30 instances of each stroke (10 from each of 3 players; 5 for training, 5

for test). In their test they presented their HMM's with separate data sequences for each

stroke. By eliminating the segmentation task during recognition, (as well as eliminating any

context dependent variations in the motion), the HMM needs less training. As the vocab-

ulary and difficulty of segmentation increases, the number of training instances must also

increase. Starner et al. [43] used HMM's to recognize cursive handwriting. Their training

set included 25,600 words in cursive. The necessity of such large training sets make HMM's

inappropriate for this project.

A typical pattern classification technique such as Maximum Likelihood [14] (or Baysian

classification if unequal priors are introduced) would begin by forming an n-dimensional

vector from the parameters for each dance step. The training instances for a given step

would map to a cluster of points in n-space. The centroid of that cluster would be the

canonical instance of the step, and its covariance matrix would be used to compute the

likelihood that a new point is a member of the cluster. Once all steps were learned in

this way, a new step could be classified by calculating likelihoods from all learned steps

and picking the maximum. The difficulty of applying this technique to ballet data is that

the stream of data must be segmented into separate dance steps before it can be formed

into a vector and classified. All the difficulty in this approach becomes concentrated in the

segmentation phase.

3.7 Summary

Little work has been done in the area of recognizing whole body movements. The work that

has been done involves only a small number of categories. Rohr, Hogg, and Akita assume

a single type of motion (walking) and search for it, while Goddard and Shavit each assume

three categories. This small a number of categories does not adequately test the ability of



the representation or the recognition system to discriminate between different movements.

Yamato uses six categories, but he may be classifying views rather than movements.

Other work that has been done focuses on developing an intermediate representation of

movements. Webb and Aggarwal, and Hoffman and Flinchbaugh can be seen as extracting

an axis and angle from a set of coordinates of an object; Gould and Shah, and Shavit segment

trajectories and characterize the segments or their endpoints. However, only Shavit uses

his representation for recognition, and the others do not use theirs for any further task and

so cannot be evaluated.

The task of this thesis involves more recognition categories, and this puts greater de-

mands on the representation. Phase space, which was used by Shavit, has many valuable

features (which will be discussed below) and a representation based on it is used in this

thesis. However Shavit's model of an object as a deforming rubber slab is not adequate for

ballet and so a more complex 10 joint, 24 DOF human body model is used in this thesis.

- --------- -



Chapter 4

Representation and Recognition

in Phase Space

A recognition task can be rendered simple or complex depending on the choice of repre-

sentation, and a representation can be judged on how it facilitates the task to which it is

applied. In this Chapter our representation of human body motion is presented, followed

by the selection criteria and desiderata.

Consider several occurrences of a movement; e.g. a plie, in which the legs repeat exactly

the same motion, while the arms behave differently each time; and consider plotting all the

movements in the same full phase space of all the torso position and attitude parameters

and joint angles, and all their derivatives, and no explicit time axis. Plotting only the

leg variables while holding the arm variables constant would show a space curve, and each

repetition of the movement would traverse that same space curve. However, if the arm

variables are plotted as well, each repetition may traverse a different space curve. The

intuition here is that the invariance of the plie is captured in the leg variables, while the

variation is in the arm variables. Equivalently, the invariance can be found in a subspace

of the full phase space. This intuition motivates our choice of representation for movement.

Figures 4-1, 4-2, and 4-3 show 2D projections of space curves in phase space for three ballet

movements embedded in the phase plots of other motions; using joint angles extracted from

XYZ data (see Appendix A for details).

We represent movement by a space curve in a subspace of phase space. The subspace

is obtained by a trivial projection parallel to certain axes (such a projection is equivalent
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Phase Plot of Releve
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Phase Plot of Degage
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to ignoring the coordinates along those axes). Our method of selecting the subspace is

described in Section 4.4.

We parameterize the space curve as a smooth and continuous curve. In the current

implementation the parameterization is an intersection of manifolds, each of which when

projected onto the appropriate 2D plane makes a segment of a cubic curve of two variables.

However, the representation admits any continuous curve parameterization such as piecewise

linear segments or b-splines.

Recognition occurs for a sequence of time steps. At each time step the state of the

system can be represented as a point in phase space. We conditionally accept a point as

being part of a recognized movement if it is within a threshold distance from a space curve

in the projected space (actually there is a different threshold for each axis of deviation, so

the accepting volume is swept out by an n-dimensional rectangle). We accept a sequence

of time steps as being a recognized movement if all the points in the sequence stay within

an accepting volume for more than a duration threshold. In the present implementation,

velocity is not considered when a sequence is accepted.

The 1978 publication of Marr and Nishihara contains valuable insights for selecting a

representation for vision, and the 1979 publication of Badler and Smoliar contains valu-

able insights on representation of movement. We shall evaluate the general form of our

representation according to the sets of criteria published in these two works.

4.1 Representation Considerations

Marr and Nishihara [31] discuss representing three dimensional shapes for object recogni-

tion, and they suggest three criteria and make three recommendations. Badler and Smo-

liar [5] discuss representations of human movement for purposes of animation, simulation,

and translation. Though their purposes are slightly different from ours, the considerations

they put forth proved valuable in this thesis, and so we will evaluate our representation in

light of their criteria.

Marr and Nishihara present three criteria: accessibility, scope and uniqueness, and sta-

bility and sensitivity; and their three recommendations are: use an object centered coordinate

system, include volumetric primitives of varied sizes, and have a modular organization [em-

phasis mine].



* Accessibility: is it easy to compute the representation from the raw data?

Yes, joint angles are easily computed from tracking data, and our learning algorithm

easily finds regions of phase space.

* Scope and uniqueness: what class of movements is the representation designed for,

and do the movements have canonical descriptions in the representation?

For an autonomous system, a space of torso position and attitude parameters and joint

angles and velocities will describe all possible motions uniquely. This is equivalent to the

statement that only one phase path passes through each point in the space. A dancer

exerting forces on the ground is not an autonomous system, so multiple phase paths can

pass though the same point, but if two whole paths are coincident, they are considered the

same motion.

However, since two different dancers will probably not traverse identical phase paths, a

question still remains: can two motions judged to be the same by a human observer also be

placed in the same category by a system using this representation? In other words, is there

a way to represent the commonality between movements, as well as the differences? The

ability to project out (ignore) dimensions of phase space which do not help prediction helps

to identify commonality, but this is only a partial answer. As will be seen in Section 4.4,

for each movement to be learned, we ignore velocities and search all possible pairs of a set

of configurational parameters, N(N - 1) 2D subspaces, to accumulate a set of parameters

which describe the "invariant subspace" for that movement.

* Stability and sensitivity: Does degree of similarity in the representation reflect simi-

larity in the motions? And can subtle differences be expressed in the representation?

The representation is capable of expressing degrees of similarity by some metric of

distance between two paths in phase space. However, the Euler angle representation of

3DOF joints such as hips and shoulders has singularities at certain orientations, and near

these singularities the sensitivity becomes unacceptably high (near singularity, an arbitrarily

small change in the tip of a vector can cause two of the Euler angles in the representation

to make maximal 1800 swings). One solution to this sensitivity problem is to use multiple

different sets of Euler angles to represent 3DOF joints, and to do recognition in the angle

set which is not near singularity. Nearness to singularity can always be detected because



the axis of the third Euler angle becomes nearly parallel to the axis of the first Euler angle.

If 0 is the angle between the first and third axes, either 1/ sin(9) or 1/ cos(9) is a measure

of sensitivity, and an indicator of when to switch representations. This will be discussed in

greater detail in Section refreporient.

* Object centered coordinate system:

The hierarchical human body model we use is object-centered.

* Primitives of varied sizes:

No, this is a weakness of our system. Our only primitive is a single segment of a cubic

curve. This is adequate for "atomic" motions but not for more elaborate compound motions.

* Modular organization:

The hierarchical human body model is modular. The idea of atomic motions is modular,

but not all dance steps are built out of atomic motions. Thus we have partial modularity.

Badler and Smoliar present four considerations relevant to recognition:

1. Both destinations (goals) and movements (changes) can be specified.

2. Movement can be constrained by described relationships between body

parts or other objects such as physical contact, proximity, and surrounding.

3. The dynamics and phrasing of a movement should be separable from the

spatial displacement of each body part.

4. The system should be tested on movement sequences noted for their scope

and variety.

1. destinations and movements: Our representation cannot describe destinations with-

out movements; however this criterion of Badler's is directed at ergonomic studies where the

purpose of a motion is paramount. In ballet, destination and path are equally important.

2. constrained by described relationships: our representation provides such constraints

only in the human body model which enforces connection of limbs and prevents elbows and

knees and ankles from bending beyond straight.

3. dynamics and phrasing separable: Our representation makes this explicit since phase

space has separate position and velocity axes.



4. tested on sequences of scope and variety: this is good advice in general, however

we are testing on a relatively small number of dance steps. It would be easy to prepare a

widely disparate test sequence which would make recognition easier, but a better test of the

system's ability to make fine distinctions would include some steps that are close together.

One question still remains: why use a phase space of joint angles as opposed to some

other set of variables? For the recognition method to work, we need successive repetitions

of a motion by different dancers to lie close to the same space curve in phase space, and thus

need to represent or describe motion using a set of variables which will give us this property.

Such a description needs to be independent of position and orientation of the torso, and it

is certainly useful if the description of one limb is independent of the descriptions of the

other limbs. Joint angles are a simple representation that has these properties.

4.2 Recognition in Phase Space

In order to represent motions in phase space, we must first convert the XYZ tracking data to

joint angles and torso position and attitude parameters. The mechanical details of collecting

tracking data and converting to joint angles are described in Appendix A. XYZ data for

14 points is recorded, and joint angles for six IDOF and four 3DOF joints in the arms and

legs are computed.

Any body motion can be represented as a space curve in the full phase space 1. However,

repetitions of the motion will not trace the same space curve unless they are performed at

the same location, attitude, and speed. The representation can be made invariant with

respect to location and attitude by projecting out those six variables and their derivatives

which correspond to torso position and attitude. The representation can be made invariant

to speed of performance by projecting out all time derivatives. Similarly, if arm positions

do not repeat during different repetitions of a body motion, but leg positions do, then

all variables corresponding to arm positions can be projected out, leaving a much smaller

phase space. Note that projecting out time derivatives does not remove all considerations of

dynamics and velocity: relative velocities must be preserved if relative angles are invariant

'the full phase space is composed of 48 dimensions, the following 24 parameters and their time derivatives:
torso location and attitude: 6 parameters represented by X, Y, Z, yaw, pitch, and roll; shoulders and hips -
3 parameters each, represented by 3 Euler angles; elbows, knees and ankles: 1 parameter each represented
by 1 angle. See Figure 5-1.

ON I a kv- 0 i 01 , - --



with respect to velocities.

The smallest usable phase space is a 2D phase plot, and that is where this method begins.

Some of the advantages of a phase plot with the above mentioned variables projected out

are:

* These plots will be independent of the speed of performance, because speed does not

affect the phase relationship of the angles;

* They will also be relatively independent of the degree of extension with which a

movement is performed if the right pair of variables is chosen;

* There is no need to segment the movements before attempting to identify as long as

each movement has its "own" region of phase space.

The phase plot will only work perfectly when there is one degree of freedom in the

system; in other words, when it has an intrinsic dimensionality of 1. For example, in a

perfect pli6, the center of gravity is raised and lowered along a vertical line passing midway

between the feet. The hip, knee, and ankle joint axes of both legs are parallel, so all are

constrained to move through the same sequence of configurations each time the motion is

performed.

Though most real world moves are not constrained to one degree of freedom, the con-

straints of balance and support frequently combine to produce a "most natural" or "most

comfortable" motion with one degree of freedom for the major body masses. Furthermore,

in ballet the correct forms of many movements require that they be performed as if con-

strained to one degree of freedom. For example, dancers have the option to move their

center of gravity from side to side (as long as it remains above their feet) but ballet posture

requires that it be centered. When a leg is extended for a weight transfer, the toe is brushed

along the floor (tendii) while the ankle bends to maintain toe contact. when a leg is raised

for a pirouette, the instep of the raised leg slides along the supporting leg to rest near the

knee. Each of these moves has just one degree of freedom, and there are many more such

examples.

Sometimes only subsections of the body move with 1 DOF: e.g. in a pli6 the arms are

unconstrained but the legs and torso move with 1 DOF. So the problem is to find those

variables which encode the 1 DOF. This is done by using training data with dance steps
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Starting attitude: Rotate leg Rotate leg Rotate leg
femur vertical, about x about y about z
knee bent

Figure 4-4: Three successive rotations illustrate Euler angles representing 3 rotational de-
grees of freedom of hip joint. Coordinate axes are rigidly attached to femur, i.e. rotations
are measured in frame of reference of leg.

already identified, searching all the N(N - 1) potential 2D phase plots to find the ones

that make the best predictors, and saving a list of the best predictors. This procedure is

explained fully in Section 4.4 on learning.

The recognition system we implemented runs an independent detector for each dance

step. Thus it is not a pattern recognition system because it is not prevented from classifying

the the same input data as two different dance steps.

4.3 Representation of Orientation

Hip and shoulder joints have three rotational degrees of freedom, and there are several

methods available to represent the orientation of objects with three rotational degrees of

freedom. The most widely used include rotation matrices, Euler angles, and quaternions

(also known as the Euler parameters or Euler's symmetric parameters representation) [26,

30]. In each of these representations, the values of the parameters can be thought of as

measuring an angular displacement from an initial orientation. The problem of representing

orientation occurs in disciplines such as aircraft and spacecraft guidance, robotic control,

and computer graphics, and in these different domains different choices of representation

ON



are often made.

A rotation matrix R is an orthonormal 3 x 3 real matrix and thus has nine parameters

while only three degrees of freedom. It can be thought of as a composition of three successive

rotation matrices representing rotations about three orthogonal axes, e.g.:

RxRYRZ = R.

where the initial orientation is represented by a unit matrix. The components are products

of trigonometric functions of the rotation angles; in the above example

r33 = cos 01 cos 02 cos 03 - sin 01 sin 03.

Rotation matrices are common in computer graphics but they are a poor choice of rep-

resentation for recognition because the three degrees of freedom are distributed over nine

parameters, so all nine parameters must be considered together to recognize an orientation.

Since there are only three degrees of freedom, it is more straightforward to consider a three

parameter representation.

Euler angles (01, 02, 03) consist of three parameters representing angles of rotation about

the three coordinate axes (see Figure 4-4). For small deviations from the nominal they are

independent, and for a significant range of orientations they are essentially "linear" e.g.

similar sized movements of the knee in that range result in similar sized changes in the

Euler angle values. There are 12 possible sets of Euler angles: six are similar to the axes

shown in Figure 4-4 where all axes are perpendicular when 01 = 02 = 03 = 00; they

come from the six possible permutations of the X, Y, and Z orthogonal axes and may be

denoted X-Y-Z, X-Z-Y, Y-X-Z, Y-Z-X, Z-X-Y and Z-Y-X. The other six from "polar

coordinate" representations where when 02 = 0*, 01 and 03 are parallel, and may be denoted

X-Y-X, X-Z-X, Y-X-Y, Y-Z-Y, Z-X-Z, and Z-Y-Z. Euler angle representations all suffer

from a problem of singularities: there always exists a value of 02 such that 01 and 03 are

parallel. When this happens there is no longer a canonical representation for the orientation

- rotations about the two parallel axes can be allocated arbitrarily to 01 and 03. A worse

problem is that near singularity, arbitrarily small changes in orientation can cause maximal

changes in 01 and 03. This means that the representation has too much sensitivity to noise

near singularity (singularity occurs at 02 = 90* for the initially perpendicular sets, and



02 = 0* for the "polar coordinate" sets).

Quaternions are based on Euler's theorem, which states that any angular displacement,

which can be composed of arbitrary rotations about arbitrary axes, can be expressed as a

single rotation about a particular axis. Quaternions consist of four parameters (ni, n2, n3, P),

three of which represent an axis, while the last represents rotation about that axis. There

is a constraint that n? + n! ± n2 + p2 = 1. The values of the parameters can be found thus:

let V- be a unit vector parallel to the axis; let w1, W2 , and W3 be the projections of 9- on the

coordinate axes (the so-called direction cosines); and let 4 be the angle of rotation about

v. Then

(ni, n2 , n3, P) = (w1 s W2 sin w3 sm , cos)

Quaternions have no singularities, but they do have some curious properties: there are two

representations for every orientation (negating ni, n 2, n3 , and p yields a different quaternion

but the same orientation), and as the angle approaches zero, the axis parameters become

small and lose sensitivity.

Many ballet movements involve rotating the hip joints about a single axis axis such

as the left-right or front-back axis of the torso. These axes can be aligned with an Euler

angle coordinate system fixed to the frame of reference of the torso so that the movements

cause changes in a single Euler angle. Thus if the problem of singularities can be solved,

Euler angles make a good choice of representation for ballet. As is noted above, one can

use multiple different sets of Euler angles to represent 3DOF joints, and do recognition

in the angle set which is not near singularity. The second Euler angle can be used to

detect when to change representations: 1/ sin(9) indicates sensitivity for perpendicular axis

representations and 1/ cos(9) for polar coordinate axis representations, so, e.g. changeover

from a perpendicular axis representation to a polar coordinate axis representation can occur

as 02 becomes greater than 45*.

An additional advantage of Euler angles for representing ballet data is related to missing

data. When the ankle marker is obscured but hip and knee markers are visible, only

partial data can be recovered for hip orientation (at most two out of the three Euler angles

depending on the representation). For Euler angles the partial data can be computed and

used for recognition, but for quaternions no values can be computed from the partial data.

Thus Euler angles are slightly more robust in the presence of missing data. Quaternions



are interesting because they have no singularities, but their use in recognition remains for

future work.

4.4 Learning

The learning phase of the system is supervised learning in which the system processes input

where each time step is previously identified as being part of a particular dance step, or

as part of a non-dancing pose. To find good predictors, the system does a hierarchical

search, so that it can bound a region of phase space as the accepting region of a movement.

There are several intuitions behind the algorithms used, having to do with the nature of

correlations, a way to limit search, and a way to find successively smaller regions of phase

space.

The algorithm operates on a list of parameters including joint angles and torso position

and attitude parameters. Some parameters, (e.g. torso position on stage) are removed from

consideration using a priori knowledge that they are not part of the "invariant subspace."

Recall that for each time step there is a point in the full phase space which can be pro-

jected into a lower dimensional phase space, and that there are instances of each movement

in the ground truth training data. With this in mind, some terms can be defined:

Pair Relation: fig a smooth function 95 = fij(#b) where O; is an input parameter and Oi

is a predicted parameter.

Threshold: a distance h above and below a pair predictor |bj - fij(Vi)| < h which bounds

the accepting region of that predictor.

11 if |@g - f~~~Ig (<h)
Pair Predictor: a binary function of time gij(t) = composed

0 otherwise
of a simple relation and threshold.

Pair Prediction: the output of a pair predictor.

Smoothed Predictor: a filter gq,(t) over the pair prediction which eliminates short periods

of acceptance or rejection which are less than a set time constant.

Predictor Fitness: a function F(gq-(t)) used to evaluate pair predictors and to order them.

Predictor functions used in this thesis take the form 1F(g) = wAf(g) + Rf(g) where



Af(g) and Rf(g) are the number of false acceptances and false rejections respectively,

and w is a weight factor.

Compound Predictor: a function g*(t) = g -(t) A gq(t) where i f j, p / q, and {i,j} #
{p, q}; created by logically anding together the smoothed predictions of two or more

pair predictors.

For each movement to be learned, the system considers all possible pair predictors

for that movement, finds the best threshold for each pair predictor (evaluating predictors

according to a fitness function), and saves the k best pair predictors. Several of these are

then combined to form a compound predictor for the move. Central to this process is the

fitness function, which must evaluate the quality of correlation revealed by a predictor.

4.4.1 Correlations and Fitness Functions

Correlations in the world lead to categorizations. Correlations come in two types: always

true, e.g. laws of physics or math, and true when an item is a member of a category -

useful for classifying [9]. The learning method tries to find correlations between variables

which occur during a move. But how to find the second kind of correlations which are useful

for categorization? Our technique is to minimize a weighted sum of false acceptances and

false rejections of a predictor. The false rejection part of the fitness function seeks a good

correlation during the move. The false acceptance part of the function seeks anti-correlation

during the non-move. Thus this rule finds the second kind of correlations and not the first.

The ability to find functions correlating with category membership allows some freedom

in choice of representation - we can allow multiple different representations of the same

variable. Although two representations of one variable may be perfectly correlated at all

times, they make a poor predictor of category membership and so are not selected by the

learning rule.

The same fitness function is used for all ballet steps, both to select the best threshold

for each pair predictor, and the k best pair predictors from the set of all pairs. These are

different uses with different strengths and weaknesses, and will be discussed separately.

The fitness function determines the threshold; the threshold represents a window about a

curve fitted to the training data, corresponding to the idea that a certain amount of noise or

variation must be tolerated in each parameter measurement. In the current implementation,



the threshold is fixed, independent of position along the curve. This is a shortcoming which

fails to acknowledge the fact that variation is a function of Euler angle sensitivity, of the

dancer's degree of control in various positions, and of differences in kinematics of dancer's

bodies.

The fitness function also determines which pair predictors are the k best. Since there

is a finite number N(N - 1) of pair predictors and the pairs are searched exhaustively, the

best one, as measured by the fitness function, is found. However, different fitness functions

serve different goals. We found that compounding eliminates many more false acceptances

than correct acceptances, so a lower penalty could be put on false acceptances if two way

or three way compounding was used than if no compounding was used. The intuition here

is that true acceptances will be be correlated, so they will tend to be accepted after logical

anding, but false acceptances will be uncorrelated and so will tend to be eliminated by

anding. For example: consider a sequence of 1000 time steps where a pli6 occurs for 50 time

steps. Assume pair predictors A and B each have 90% correct acceptance and 10% false

acceptance. If the predictors are completely uncorrelated, then after anding predictions of

A and B one would expect 81% correct acceptance and 1% false acceptance. In practice

the false acceptances tend to be partially correlated, but anding predictions still decreases

the false acceptance rate in most cases. Anding can also be interpreted in terms of phase

space volumes, as will be seen below.

The fitness function handles missing data by treating it as rejected by every predictor,

but with no score or penalty for correct or false rejection of missing data. Missing data can

be accepted by the smoothing filter, and if it is falsely accepted it will be penalized in the

same manner as any other false acceptance.

4.4.2 Volumes in Phase Space, Compound Predictors, and Search

The acceptance region of a pair predictor is represented by an area about smooth curve

in a 2D projection of the full N dimensional phase space. This means that in the ND

phase space the acceptance region sweeps out a tube-like volume which is bounded only

in the two dimensions of the pair predictor. When the predictions of two predictors are

logically anded together, the acceptance volume of the resulting compound predictor is

the intersection of the acceptance volumes of the component predictors. This is a smaller

volume and is bounded in more dimensions, which is why compound predictors are more

I OR"N M! .....



conservative discriminators.

In the current implementation, the threshold of a pair predictor is a distance from a cubic

curve measured parallel to the dependent axis. A predictor compounded from two pairs has

two thresholds. Its acceptance region is a curving tube of rectangular cross-section which,

when sliced with the plane defined by the two dependent axes, yields a constant rectangle

whose half-dimensions are the two thresholds. The fact that the cross-section is rectangular

instead of ellipsoidal, and the fact that the cross-section is constant are both limitations

of the implementation, not of the method. In the current implementation, compounding is

done by logically anding the three best pair predictors, and thresholds are not altered after

compounding. These are both shortcomings; it would be preferable to try compounding all

of the k best predictors and to search for a local optimum in thresholds of the compound

predictor.

Since the result of the learning process is a multidimensional tube-like volume in phase

space, the question arises: why construct it by compounding instead of directly optimizing

all parameters simultaneously? The answer is that the compounding approach limits search.

The fitness measure as a function of threshold does not necessarily have a single minimum

(i.e. the receiver operating characteristic is not convex), so a large range of values of each

threshold need to be searched. If multiple thresholds were searched simultaneously, it would

lead to combinatorial explosion. The approach we use is a sequence of local optimizations

which is not necessarily a global optimum, but the global optimum is computationally

intractable.

4.5 Summary

There are several benefits to the phase space representation: it can be made invariant to the

speed of a movement by projecting out the speed axes, and it is invariant to the extension

of a movement. Thus the representation simplifies the recognition task. The representation

is easily computed and can be learned automatically from ground truth data.

Learning occurs in three areas: learning a threshold for each pair predictor, learning

which pair predictors are best, and learning which compound predictor is best. At present,

the first two kinds of learning are implemented by maximizing the fitness function, and the

third is implemented by anding the three best pair predictors. There is a fourth area of



learning which is not automated: the experimenter must learn what fitness function to use.

The major shortcoming in the representation comes about because projecting out ve-

locity variables removes dynamics from the representation. This is not a problem when the

system is not presented with distractors (a distractor in this sense is a non-ballet motion;

e.g. a motion that starts as a pli6 but halts or oscillates). Some techniques for handling

velocity data are considered in Chapter 6.
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Chapter 5

Experiments

5.1 Introduction

We have presented a system for representation and recognition of ballet steps. From the

design goals of the system come these criteria for evaluating the recognition system:

Discriminability: that it can classify a fairly large number of steps; our goal is 20 and we

have tested for nine in the current implementation.

Abstraction: that it can learn ballet steps from several dancers and recognize new instances

of the learned steps from those dancers.

Noise Tolerance: that the recognition system is robust to small errors in tracking data;

Speed Invariance: that the system be able recognize movements performed faster and

slower;

Extension Invariance: that the system be able recognize movements performed to different

extensions;

Segmentation: the degree to which the system can classify each time step into the correct

dance step category (or the non-dance category).

In addition to the above criteria, it is convenient for development and testing to have

a system which is easy to train. We designed our system to learn new steps from ground

truth data automatically.



A test of a recognition system for the above properties involves: training the recognition

system on several sequences of the dance steps from several different dancers, and attempting

recognition on several other sequences from the same and different dancers. Both the

training data and testing data must be annotated with ground truth data indicating when

each step begins and ends.

The tests will be scored in two different ways:

* Correct timing: measure the time step at which recognition system indicates that each

step began and ended, and the time difference from the ground truth beginning and

ending times. Deduct these times from the score.

* correct labeling: Let the "announce time" be defined as the time halfway between the

time when recognition system indicates a ballet step begins and ends. Count a success

each time the announce time occurs some time during the ground truth duration of

that step. Count a mis-labeling error each time the wrong step is announced during

a step. Count a false positive error whenever a step is announced and no step is

occurring. Count a double positive error if a step is correctly identified, but announced

twice during a single step. subtract 1 from the score for each error.

As noted earlier, the recognition system we implemented runs an independent detector

for each dance step; thus it may err by labeling the same input data as two different dance

steps. Tests are always scored for correct labeling, and those which are correctly labeled

are scored for correct timing.

5.2 Testing

Our tests were resubstitution estimates in which the same data is used for training and for

testing.

Input data was obtained from the multitrax tracking system which tracked markers

attached to the main joints of ballet dancers (toes, ankles, knees, hips, shoulders, elbows,

wrists). Details of the tracking setup are described in appendix A. Our system extracted

joint angles from the tracking data according to a human body model with 1DOF joints at

ankles, knees, and elbows, and 3DOF joints at hips and shoulders, plus six more coordinates

for torso location and attitude.



Articulated Body Model
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toes 1 DOF knee joints
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Figure 5-1: Tracking and human body models.

Data was recorded from two different women dancers, of height 157 and 173 centimeters.

This is enough of a size difference so they had differently proportioned feet. One was a

serious amateur and one a professional ballet dancer.

As detailed in Section 2.3 the ballet steps to be recognized are: pli6, relev6, tendu,

degag6, fondu, frapp6, developpe, grand battement i la seconde, and grand battement

devant.

Training data consisting of joint angles and ground truth annotations are sent to the

learning system which is described in Section 4.4. Figure 5-2 shows joint angle data for the

nine ballet steps for the right hip, knee, and ankle joints. Spikes in the values are missing

data codes (missing data receives zero weight in the learning system). The hip-Z angles are

quite noisy; this is because when a dancer points her toe and the knee is straight, the hip,

knee, ankle, and toe markers are nearly collinear and thus near singularity. Noisy angles

make poor predictors, so the learning system does not choose them as part of a predictor.

Learning occurs in three areas: learning a threshold for each pair predictor, learning

which pair predictors are "best" (i.e. maximize the fitness function), and learning a com-

pound predictor. At present, the first two kinds of learning are implemented by choosing

the threshold or pair predictor that evaluates highest in the fitness function, and the third

is implemented by anding the three best pair predictors. There are two parameters which

must be set manually: the fitness function weight ratio, and the smoothing time constant.

The fitness function is a negative weighted sum of false rejections and false acceptances,



F Right Ankle m Right Ankile
Time Time
Steps Steps
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Figure 5-2: Input data for two dancers processed by dance step recognition system. The
top graph is ground truth identification; the next is torso height scaled by dancer's leg
length; three Euler angles representing the dancer's right hip; a fourth Euler angle from a
different representation; and right knee and ankle angles. The time base along the bottom
is measured in video frames. The "spikes" clipped at the tops of graphs (e.g. in Right
Hip <p) are missing data codes.
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Figure 5-3: Predictor outputs for two sets of movements. Note false positives from predictors
5 and 6 (fondu, frapp6) on the left chart, and 7 and 8 (developpe, and grand battement

side) on the right. Also note the "double announcement" of step 8 on the left chart.
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so the degree of freedom lies in choosing the relative weights. For the data we tested the

system responded similarly to weight ratios in the range of 4.5:1 to 6.3:1 (false rejection

penalty : false acceptance penalty). The final version of the fitness function had a ratio

of 5.9:1. Though the relative weights in the fitness function might appear to favor false

acceptance it is explained by the effects of compounding (anding) of predictors: compound-

ing can never increase acceptances; they must either decrease or remain unchanged. It was

found that compounding decreased false acceptances much more than correct acceptances

(see Section 4.4.2 on phase space volumes) so the fitness function could be set to allow

many more false acceptances than false rejections with the expectation that most would be

rejected during compounding.

A smoothing time constant is used to remove short periods of acceptance or rejection.

A time step is not accepted as part of a dance step alone; it must be part of a sequence of

accepted time steps, and the sequence must be longer than the smoothing time constant to

be accepted. Similarly, a gap in a sequence of accepted points will not be rejected unless it

is longer than that same time constant. The value for the smoothing time comes from the

idea that ballet steps must have a duration of a sizable fraction of a second, i.e. no ballet

movement is performed in less than a tenth of a second. We tried values in the range of .1

to .2 seconds, and used .2 seconds in the final version.

Figure 5-3 shows predictions for all nine ballet steps, and Table 5.1 summarizes the

scoring. Steps 1, 2, 3, 4, and 9 are predicted extremely well; the average error for begin and

end times is 4 time steps or 67 msec. Predictors for steps 5, 6, and 7 all falsely predicted in

addition to their correct predictions. This is because all three are compound movements,

and are poorly represented by simple cubic curves. When the curve fits poorly, the system

must allow a larger threshold to accept the training data; this allows more false acceptances.

When the cubic is replaced by a more general model of curves, these false predictions should

improve. Figures 5-4 and 5-5 show more complex movements that are poorly represented

by cubics. They also show a problem in inverse kinematics: the two curves are similarly

shaped but offset. This is because small errors in location of a reflector on the dancer's

body cause offsets in joint angle measurements. Step 8 is double-predicted on one dancer.

This is due to missing data during the gap. Finally, the predictor for step 8 falsely accepted

step 7 for one dancer. This is because the final parts of the steps sweep through the same

range of angles, though at different velocities. Evaluating the labeling, there are 18 correct



Timing errors
True Step Predictor output Pred. errors start end

plii plie 0 .017 0
relevi relev6 0 .075 .125
tendu tendu 0 .117 .058
digagi d6gag6 0 .117 .083
fondu fondu, frapp6 1

fondu, frappe
frappi' developp6 2

frappe, developpe
developpi g. batt. side 2
g. batt. side g. batt. side (double) 1
g. batt. front g. batt. front 0 .092 .067

Table 5.1: Scoring of test of two sequences of nine ballet steps, showing predictor errors and
timing errors (Timing errors are not reported unless prediction is correct and unambiguous).

labelings, 5 false predictions, and 3 double predictions.

The learning algorithm was allowed to use only the seven variables shown in figure 5-2,

which include Z-height scaled for the height of the dancer, one full set of Euler angles for

the right hip and one extra hip angle from a different representation, and the right knee and

ankle. Since the right leg was the working leg these are reasonable angles to consider, but

why eliminate other variables? Several experiments were tried using 16 variables including

six from each leg, Z-height, and torso orientation. This produced better results (confusion

occurred only when the predictor for step 7 falsely labeled step 6); however, we believe the

better results were due to a spurious correlation because of the small amounts of testing data,

and that the effect is not robust. One of the learned predictors of tendu is also essentially

a spurious correlation, as can be seen in Figure 5-6. The change in both variables is small;

the predictor learned a patch in phase space rather than a curve.

A demonstration of invariance to speed and extension can also be seen in Figure 5-2.

The two plots have different time bases: one is 16 sec., the other 22; an average of 50%

difference in speed of movements. For Tendu the speed difference was 100% (a factor of

2). There is a difference of extension of 15% on relev6 and 18% on d6gag6. Despite these

differences in speed and extension, the system showed excellent recognition on these steps.

Segmentation can be seen in the errors in the begin and end time estimates for steps 1,

2, 3, 4, and 9. The average error for those five steps is 67 msec, the maximum error is 150

- -------- -



Phase Plot of Frappe
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Figure 5-4: x and + mark time steps during frappes for two dancers; "." marks time steps

during other movements. This figure illustrates curves are more complex than cubics. The

offsets are due to differences in angle measurement due to differences in reflector placement.
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Phase Plot of Fondu
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Figure 5-5: x and + mark time steps during fondu for two dancers; "." marks time steps

during other movements. This figure also illustrates more complex curves and offsets due

to differences in reflector placement.
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Phase Plot of Tendu
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Figure 5-6: x and + mark time steps during tendus for two dancers; ". marks time steps
during other movements.
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msec, and the minimum error is zero. From the start of data to the end of step 4 for the

two sequences shown, there are 357 timesteps with 35 misclassified for one dancer, and 503

with 36 misclassified for the other. This is an error rate of 8% in classifying timesteps over

the first four dance steps.

5.3 Summary of Results

The system meets its goals for ease of training: it trains automatically, and is robust to

variations of 50% or more in the smoothing time constant and in the fitness function penal-

ties. However, the system is less than halfway to its discriminability goals; discriminability

should be improved when the model for atomic movements is improved from the present

cubic curve. The system demonstrated abstraction over two fairly different dancers; more

data from more dancers will be needed to better evaluate discriminability. The representa-

tion demonstrated invariance to speeds differing by up to 100%, and to extension differing

by 18%. The system segmented more than half the steps with high accuracy. Noise toler-

ance was not directly tested; however it shows up in the system's ability to reject the noisy

hip-Z data, and in the fact that the cubic model works as well as it does: since the cubic

does not fit the data perfectly, the actual variations in the data show up as noise on top of

the cubic model, and yet the system recognizes the actual data.

Clearly, the system needs to have the cubic model improved, and it needs more testing

on more data. Despite such shortcomings, it demonstrated ease of training, abstraction, and

segmentation on a difficult set of movements: tendu and degag6 are similar; fondu, frappe,

and ddvelopp4 start out similarly, and tendu, ddgagd, ddveloppd, and grand battement all

end similarly. Adding turns and jumps to the test set should not add to the difficulty of

predicting these nine steps because turns and jumps have characteristics not shared with

these nine.
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Chapter 6

Summary and Future Work

6.1 Summary

In this work we have developed a system for recognizing classical ballet steps from an input

of XYZ tracking data. This problem is a part of the larger problem of understanding human

body motion from images. We have assumed a solution will be found to the problems of

finding and tracking people in images, leaving us free to work on issues of understanding.

Here our working definition of "understanding" is identification: translating from a signal

representation to a symbol representation where the symbols are at the level of detail natural

to human thought and communication.

Our examination of representation issues led us to a novel "phase space" representation

based on techniques from classical physics. Our review of the literature shows other workers

using low dimensional phase spaces of position and velocity, and no other workers projecting

out all the velocity axes to achieve speed independence. In our phase space, the axes

are joint angles, points represent configurations of the body, and movements are space

curves through a continuous sequence of body positions. Among the claimed advantages

to the representation were invariance to changes in speed and extension. In testing, the

representation demonstrated invariance to differences of up to 100% in speed and 18% in

extension.

We developed a learning method that examines relationships between pairs of joint an-

gles, searching for those relationships which best predict category membership of ground

truth data, and constructing simple detectors from the relations. The method then com-

pounds the best detectors, which improves detector performance. The learning method



works automatically on movement sequences annotated with ground truth ballet step iden-

tifications. There are two parameters to the learning algorithm which must be set manu-

ally: the penalty weight ratio for the fitness function which evaluates predictors, and the

smoothing time constant. The learning system shows robustness to variations in both of

these parameters, producing similar results for changes of 50% in each of the parameters.

The ballet step recognition system works extremely well on five out of the nine test

ballet steps, correctly identifying them and estimating the start and stop times with an

average error of only 67msec. On the other steps it sometimes produced two identifications

of the step; one correct and one incorrect. These errors point the way for future work.

6.2 Future Work

The testing performed so far has demonstrated the plausibility of phase space recognition,

but not yet its viability. To show viability, we must improve the system so it can do higher

accuracy prediction then demonstrated so far, and on a larger number of ballet steps. It

is also important to test the representation on different kinds of data. Below we propose

some improvements, other applications, and extensions.

At present, pair relations are represented by simple cubic curves, and this is adequate to

represent simple movements of pli4, relev6 tendu, d6gag6, and grand battement. However

fondu, frappe, and d6velopp6 are actually composed of two simple movements and thus

are not well represented by simple cubics. One approach to this problem is to rigorously

define an "atomic" movement as one representable by simple low order curves, and enforce

that definition when annotating ground truth data. However, doing so deviates from the

principle of identifying movements at a level of detail natural to humans. A preferable

approach is for the system to detect compound movements of a small number of segments,

and separate them into their simple components automatically.

The system could be improved by considering velocities. As long as the system pro-

cesses only positional variables such as joint angles, it is evaluating movement based on

kinematics. The smoothing filter ensures a degree of continuity of positions which goes

beyond pure kinematics, however processing velocities would allow it to evaluate dynamics.

Because many movements occur at varying speeds, it may make sense to consider velocity

inequalities, e.g. the system might learn that velocity is negative in one part of the plie and



and positive in another part.

The representation developed in this work may have applications outside of human body

movement. We intend to apply it to facial expression recognition, building on the work of

Essa [16]. Essa tracks facial movements from images, and extracts estimates of muscle

activation. We intend to use these muscle estimates as axes of a phase space, and see if,

when different subjects make the same expression, their muscle activations map into the

same region of phase space.

Another possible extension of this system is to try and do recognition on 2D moving

light displays of dancers instead of 3D tracking data. To do this we would assume weak

perspective and the camera pointing approximately horizontal. Most researchers assume

this, and they also assume fronto-parallel motion. If that assumption is relaxed, we are left

with one degree of freedom, which can be represented as the facing direction of the dancer.

It may be possible to search this one degree of freedom and still recognize ballet steps.

The contribution of this work is the use of the phase space representation for both

representation and recognition of human body movement. Phase space has been widely

used in physics for decades, and in the computer vision community it was used by Shavit

[41] for recognition. We extend that work by finding subspaces of phase space that contain

invariants of the motion (our subspaces are formed by a subset of the axes of the original

space). We also show that it is possible to segment movements (detect start and end times)

using phase space.



Appendix A

The Tracking System and Data

Gathering

Our tracking data came to us by the courtesy of Adaptive Optics Associates of Cambridge

MA, who kindly loaned us their MultiTrax cameras, electronics, and software, as well as

their expertise in using the equipment.

The Multitrax system does video-based tracking. Each camera lens is surrounded by

infrared LED's, and the camera lenses have filters to make them sensitive to IR only. The

dancer is fitted with reflective spheres or hemispheres about 4cm diameter on toes, ankles,

knees, hips, shoulders, elbows, and wrists. The reflectors use tiny transparent beads which

reflect light strongly back to its source, similar to highway signs. The video signal from the

cameras goes directly to special processors which extract target centroids in real time. The

video processors are all connected by serial links to a Macintosh computer running software

to store the data from each camera. We used two, four, and six cameras in various runs,

and up to twenty reflectors on the dancer (in some cases head and hands were tracked for

other users of the data).

Reflector placement can cause two kinds of problems in data gathering. One is that

a reflector can be occluded from one or more cameras by some part of the dancer's body.

This problem is worst with the ankles. The other is that one reflector can come too near

another in some camera's view. Then the two targets merge into one and a single "average"

centroid is recorded, which produces erroneous 3D data. We tried to be consistent in placing

reflectors on the dancers. We wanted unhindered dance, we wanted the reflectors visible as



much of the time as possible, and we wanted the reflectors as near the joints as possible;

not all of these conditions could be met.

We had the most problems near the ankle reflectors, because fifth position presses the

inside of one ankle very near the outside of the other, and many motions involve brushing

the feet past the ankles. We settled for hemispheres placed on the inside just forward of the

projecting ankle bones. This had the disadvantage of poor visibility in fifth position, but

the advantages were: good separation in first position and relative freedom to brush the

backs of the ankles. Toe reflectors were placed on top of the foot opposite the ball of the

foot. Knee reflectors were placed on the inside between the kneecap and the top of the tibia.

Hip reflectors were placed just above the crease between torso and leg, and centered on the

width of the leg. Shoulder reflectors were placed on top of shoulders where the clavicle

meets the scapula. Elbow reflectors were placed on the outside of the elbows on the end of

the radius. Wrist reflectors were placed on the back of the wrists just before the wrist joint.

When hand reflectors were used, they were splinted to the middle fingers so they stayed at

the fingertips. When head reflectors were used, hemispheres were placed above the outside

corner of each eye, and a spherical reflector on top of the head towards the back. We used

two-sided medical electrode tape to adhere the reflectors to the dancers' clothes, and we

placed their head reflectors on scarves. Only the wrist reflectors were attached to skin.

The cameras are set up to view the sensing area. They are calibrated by placing in

the sensing area a calibration frame with nine reflectors at known locations, and orienting

it so each camera can see all reflectors simultaneously. This calibration frame determines

the coordinate system of the tracking data, and the orientation of each camera in that

coordinate system.

When data files are saved, they are saved with calibration data, and with 2D target

centroids from all video processors. An offline, semi-automated process called "sorting"

establishes correspondences between camera views and tracks points over time.

We gathered data in several different sessions using different numbers of cameras, and

alternating between two dancers. each run was from 10 to 25 seconds and contained five

to ten dance steps. Sometimes the steps were done with deliberate pauses between them;

other times they were chained together in a flowing sequence. We collected more data than

we used in this thesis.

The sorting process can automatically track points, but it requires human operator



intervention to establish the initial correspondences and sometimes to re-establish corre-

spondence after a reflector disappeared and reappeared. The operator must also be vigilant

in detecting and cancelling merged markers. Otherwise a bad centroid could be used, re-

sulting in bad 3D data. A later version of the tracking software alleviated many of the

sorting problems.

The sorted tracking data consists of the XYZ coordinates of each marker, or missing

data codes when a marker is obscured. Our system begins by extracting joint angles from

the tracking data according to a human body model with 1DOF joints at ankles, knees, and

elbows, and 3DOF joints at hips and shoulders, plus six more coordinates for torso location

and attitude.

For each time step where there is missing XYZ data for a marker, joint angles associated

with that marker cannot be computed, so missing data codes are propagated to the uncom-

putable angles. For example if there is missing data for a hip marker, then both hip and

knee angles are flagged as missing. The ankle markers are the most frequently obscured;

when only an ankle marker is missing, both ankle and knee are marked missing and at most

two of the three hip angles can be computed depending on the representation. In those

cases the system computes data for the angles determined only by the knee position, and

marks the rest as missing data.
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