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Abstract

Adaptive autonomous agents have to learn about the effects of their actions so as to be

able to improve their performance and adapt to long term changes. The problem of

correlating actions with changes in sensor data is 0(n2) and therefore computationally

expensive for any non-trivial application. I propose to make this problem more

manageable by using focus of attention. In particular, I discuss two complementary

methods for focus of attention: perceptual selectivity restricts the set of sensor data the

agent attends to at a particular point in time, while cognitive selectivity restricts the set of

internal structures that is updated at a particular point in time. I present results of several

implemented algorithms-variants of the schema mechanism [Drescher 91 ]-which

employ these two forms of focus of attention. The results demonstrate that incorporating

focus of attention dramatically decreases the computational expense of learning action

models without affecting the quality of the knowledge learned, with only small increases

in the number of training examples required to learn the same knowledge.
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Chapter 1: Introduction

1.1 What is an adaptive autonomous agent?

An agent is a system that tries to fulfill a set of goals while situated in a complex and

changing environment. The agent might be composed of hardware (e.g., a robot) and situ-

ated in the physical world, or composed entirely of software running in a computer. In the

latter case, the agent may be situated in a simulated world (a synthetic actor) or may inter-

act as a peer with other entities, such as network databases (a software agent, interface

agent, knowbot, etc).

Being situated in this environment, the agent can sense it in various ways, and can take

actions to change the environment or its place in it. The goals can be of many forms, such

as end goals or goals of attainment (e.g., in a robot, finding a coffee cup); goals of homeo-

stasis (e.g., not letting the robot's batteries run down); they may be rewards of some sort

that the agent attempts to maximize or punishments that it attempts to minimize; and so

forth.

The agent is autonomous if it operates in an independent fashion: in other words, when

it decides itself how to relate sensor data to actions in a way that leads to timely or reliable

satisfaction of its goals. The agent is adaptive if it can improve over time, presumably by

learning. 1

1. Other kinds of adaptation are certainly possible (for example, in biological systems, muscles adapt to

repeated high loads by gradually increasing in strength). However, we will confine our attention here to cog-

nitive adaptation-those techniques which allow the agent to understand what to do better



Unless otherwise specified, the term agent in this thesis will be taken to be an adaptive,

autonomous agent, whether physically-based or composed completely of software.

Given the specifications above, an adaptive autonomous agent thus has at least two

major problems facing it:

- Action selection, in which it must decide what action to take next, and

- Learning from experience, in which it must improve its performance over

time.

Neither of these problems is well understood; a summary of current open problems and

progress to date appears in [Maes 94]. Current solutions to either problem tend to scale

poorly, may have performance characteristics that are difficult to predict, can be difficult

to reuse in different systems, can get stuck in behavioral loops, and more.

For agents that learn, [Maes 94] specifies some desiderata that should be addressed:

- Learning should be incremental, with the agent learning after every experi-

ence, rather than being divided up into separate learning and performance

phases.

- The agent should be biased toward learning information which is relevant

to its goals.

- Learning should be able to cope with a nondeterministic world, in which

unpredictable things might happen occasionally, sensor information is

noisy, and so forth.

- The learning should be unsupervised: the agent should learn mostly auton-

omously.

- Ideally, it should be possible to build in some knowledge to the agent at the

start, so it does not have to start from scratch, especially in situations in

which prior knowledge is easily available.

IntroductionChapter 1



Additionally, she points out the problems that must be addressed when designing the

architecture of a learning agent:

- How does the action selection mechanism work?

- How does the agent learn? What hypotheses can it create, and how does it

decide which are worthwhile?

. What is the agent's experimental strategy? In other words, through what

mechanism does the agent decide when to exploit (performing some task as

optimally as it current knows how to do) versus when to explore (perform-

ing some action suboptimally in an attempt to discover a new, even better

strategy).

This thesis primarily explores the question of learning. Along the way, it also investi-

gates certain topics related to action selection and experimental strategy.

1.2 Some basic concepts

In studying learning in an autonomous agent, there are a few basic concepts that must

be understood. First of all, any agent operates in some particular world. The characteristics

of this world exert a strong influence on the design of the agent. For example, if the agent

is operating in a very dangerous, physical world (such as exploring a rock face near a cliff),

architectures which put great emphasis on accurate sensing and avoiding risk are quite

important. On the other hand, a software agent investigating the contents of databases may

emphasize exploratory behavior over most other considerations. The world also strongly

determines what sorts of sensors the agent may have, what sort of data it can expect to

receive from them, and so on. The design of the sensors and their interaction with the world

may determine whether the world appears essentially deterministic or highly nondetermin-

istic; this may in turn influence the design of the learning system, since not all learning sys-

IntroductionChapter 1



tems can tolerate noise in their inputs, and some tolerate different kinds of noise in

different ways.

The agent's goals also play an important role in its design. For example, can the agent

choose which goal to pursue next, or is it directed externally? Are its goals primarily goals

of attainment or goals of homeostasis? How many tactical (short-range) goals might it have

to execute to reach a strategic (long-range) goal? (The latter question may determine

whether the robot must engage in sophisticated reasoning or planning, for instance.)

Finally, when talking about learning in agents, one must decide whether the agent is to

display any selectivity orfocus in what it learns, or whether it should attempt to learn indis-

criminately. In evaluating how well the agent is learning, one must ask about the correct-

ness of the information learned-is the agent learning things that are actually true in the

world?-and its completeness-is the agent learning enough? In the case of an agent which

uses some form of selectivity or focus, one might also ask about relative completeness, in

which the influence of its selectivity is considered: if the agent is only supposed to be learn-

ing about certain topics, one should restrict one's evaluation of its performance to those

topics, rather than inquiring about its ability to learn everything about the world. In agents

that have goals, one might also ask about the relevance of its learning to the performance

of its goals: in other words, is what the agent learns useful in accomplishing its goals, and

does it avoid trying to learning things that are not useful for those goals?

1.3 Focus of attention in learning

Autonomous agents have to learn about their environment so as to improve (because

user programming has its limitations) and adapt (because things change). Several learning

methods for autonomous agents have been proposed, in particular reinforcement learning

[Sutton 91] [Kaelbling 93], classifier systems [Holland 86] [Wilson 85], action model

12
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Chapter 1 Introduction

learners [Drescher 91] [Maes 92] and mixed methods [Sutton 90] [Booker 88]. No matter

which of these algorithms is used, a learning agent will have to correlate some number of

sensory inputs with some number of internal structures (its internal memory of what it has

learned so far) in an attempt to extend its knowledge. This is conceptually a cross-product

problem: each sensory bit should be correlated in some fashion with each already-built

internal structures. As the number of sensory bits or the number of internal structures

grows, the work required to perform this correlation grows approximately as O(n2 ). Solu-

tions which can decrease either the constant or, preferably, the exponent, may be very help-

ful in keeping the work of learning within feasible bounds.

Most unsupervised learning algorithms attempt to learn all that there is to know about

the environment, with no selectivity save the implicit or explicit limits on the generaliza-

tions that they can entertain. 2 They flail about, often at random, attempting to learn every

possible correlation. It takes them far too long to learn a mass of mostly-irrelevant data. For

example, the schema mechanism [Drescher 91] introduces an algorithm for building suc-

cessively more reliable and abstract descriptions of the results of taking particular actions

in an unpredictable world. However, the algorithm scales poorly, and hence is unsuitable

for realistic worlds with many facts, given the current state of computational hardware. If

no provision is made to bound the number of concepts that may be learned,3 its running

speed decreases monotonically as more is learned about the world. This means that, on cur-

rently-available hardware, the algorithm eventually becomes extremely slow.

2. For any finite set of data, there are infinitely many distinct hypotheses that are consistent with those

data. However, all learning systems impose selectivity on the generalizations that they can entertain,

whether that selectivity is implicit or explicit, by virtue of their representations of the domain and the opera-

tions they perform upon those representations.
3. Say, by assuming a finite learning lifetime, or by implementing some sort of garbage-collection of con-

cepts that maintains a fixed upper bound on their number.
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In general, real creatures use variousfocus of attention mechanisms, among others per-

ceptual selectivity and cognitive selectivity, to guide their learning. By focusing their atten-

tion to the important aspects of their current experience and memory, real creatures

dramatically decrease the perceptual and cognitive load of learning about their environ-

ment and making decisions about what to do next [Aloimonos 93]. This research uses sim-

ilar methods of selectivity to build a computationally less expensive, unsupervised learning

system that might be suitable for use in an autonomous agent that must learn and function

in some complex world.

This thesis presents a range of algorithms for learning statistical action models which

incorporate perceptual and cognitive selectivity. In particular, it discusses several varia-

tions on Drescher' s schema mechanism [Drescher 91] and demonstrates that the computa-

tional complexity of the algorithm can be significantly improved without harming the

correctness and relative completeness of the action models learned. The particular forms of

perceptual and cognitive selectivity that are employed represent both domain-dependent

and domain-independent heuristics for focusing attention that potentially can be incorpo-

rated into many learning algorithms.

The thesis is organized as follows. Chapter 2 discusses different notions of focus of

attention, concentrating on heuristics for perceptual and cognitive selectivity, and lays a

basic framework for this research. It also describes the two microworlds selected in which

various algorithms were tested. Chapter 3 describes the basic methods of goal-independent

focus of attention. It also introduces some notation for talking about the methods and their

results, and discusses results in using goal-independent focus of attention. Chapter 4 then

discusses the implementation of goal-directed focus of attention, extending the results pre-

sented in Chapter 3, and describes in detail some additional methods of evaluating the

learning. Chapter 5 discusses related work in machine learning and cognitive science; both

IntroductionChapter 1



Chapter 1 Introduction

fields have different insights into focus of attention. Chapter 6 summarizes the research,

discusses certain limitations of the approaches used, and speculates on some possible

future directions. Appendix A provides some details of the architecture used to run the

learning systems, and Appendix B details the mechanisms used, in evaluating the learning

in Chapter 4, to keep the planning process computationally efficient.



Chapter 2: The Basic Framework

2.1 Focus of Attention Methods

2.1.1 Introduction

To ease its learning task, an agent can employ a range of methods for focus of attention.

It can be selective in terms of what sensor data it attends to as well as what internal struc-

tures it considers when acting and learning. These forms of focus of attention are termed

perceptual and cognitive selectivity respectively. They are illustrated by the left and right

braces respectively in Figure 1 below, and discussed in more detail in the following sec-

tions.

sensor data schema 1
(including state) schema 2

schema 3

schema n

internal structures

Figure 1: Sensory (left) and cognitive (right) pruning

Along another dimension, there is a distinction between domain-dependent and

domain- independent methods for focus of attention. Domain-independent methods repre-

sent general heuristics for focus of attention that can be employed in any domain. For

example, one can attempt only to correlate events that happened close to one another in

16



Chapter 2 The Basic Framework

time. Domain-dependent heuristics, on the other hand, are specific to the domain at hand.

They typically have been preprogrammed (by natural or artificial selection or by a pro-

grammer). For example, experiments have shown that when a rat becomes sick to its stom-

ach, it will assume that whatever it ate recently is causally related to the sickness. That is,

it is very hard for a rat to learn that a light flash or the sound of a bell is correlated to the

stomach problem because it will focus on recently eaten food as the cause of the problem

[Garcia 72]. This demonstrates that animals have evolved to pay attention to particular

events when learning about certain effects.

Finally, the focus mechanism can be goal-driven and/or world-driven. Focus of atten-

tion in animals is both strongly world- and goal-driven. The structure of the world and the

sensory system determines which sensory or memory bits may be "usually" ignored (e.g.

those not local in time and space), while the task determines those which are relevant some

of the time and not at other times. For example, when hungry, any form of food is a very

important stimulus to attend to; learning how to get to some would presumably take on

greater important in this case.

The results reported in Chapter 3 concern world-dependent, domain-independent cog-

nitive and sensory selectivity. Such pruning depends on invariant properties of the environ-

menti and common tasks, and does not take into account what the current goal of the agent

is. The methods can be applied to virtually any domain. While it is true that, in complex

worlds, goal-driven and domain-dependent pruning is quite important, it is surprising how

much of an advantage even goal-independent pruning can convey. Using Chapter 3's work

as a base, Chapter 4 then investigates the added leverage of adding goals to the learning

1. In a physical, terrestrial environment, such properties might include causality (actions must precede

their effects), locality (most effects are near their causes), space, time, gravity, etc.

17



system. That is, the actions taken and cognitive and perceptual pruning that occurs are con-

trolled by the short-term goals of the agent.

2.1.2 Perceptual selectivity

Perceptual selectivity limits what stimuli might possibly be attended to at any one time,

which puts limits on what might be learnable at that time. For example, a real creature

would not pay attention to every square centimeter of its skin and try to correlate every

nerve ending therein to every possible retinal cell in its eyes at every moment. Conse-

quently, it might never learn some peculiar correlation between a particular patch of skin

and a flash of light on some part of its retina, but presumably such correlations are not

important to it in its natural environment.

Obvious physical dimensions along which to be perceptually selective include spatial

and temporal selectivity. 2 The universe tends to display spatial locality: many causes are

generally located nearby to their effects (for example, pushing an object requires one to be

in contact with it). Further, many causes lead to an observable effect within a short time

(letting go of an object in a gravity field causes it to start falling immediately, rather than a

week later). Real creatures use these sorts of spatial and temporal locality all the time, often

by using eyes that only have high resolution in a small part of their visual field, and only

noticing correlations between events that take place reasonably close together in time.

While it is certainly possible to conceive of an agent that tracks every single visual event

in the sphere around it, all at the same time, and which can remember pairs of events sep-

arated by arbitrary amounts of time without knowing a priori that the events might be

related, the computational burden in doing so is essentially unbounded. 3 The algorithm dis-

2. Another dimension of selectivity concerns the amount of preprocessing done to the input. For example,

Drescher points out that, in a realistic world, correlating unprocessed retinal input is not very useful, because

it does not map well onto aspects of the world that are good building blocks for inductive generalization

[Drescher 94]. Such changes of level are not addressed in this research.

Chapter 2 The Basic Framework



cussed in this research implements temporal selectivity as well as spatial selectivity to

reduce the number of sensor data that the agent has to correlate with its internal structures

(see Figure 1, on page 16). Note that the perceptual selectivity implemented is of a passive

nature: the agent prunes its "bag of sensory bits," rather than changing the mapping of that

bag of bits to the physical world by performing an action that changes the sensory data

(such as changing its point of view). The latter would constitute active perceptual attention

(e.g., [Aloimonos 93] among others).

2.1.3 Cognitive selectivity

Cognitive selectivity limits what internal structures are attended to at any given

moment.

Notice that for any agent that learns many facts,4 being cognitively selective is likely

to be even more important than being perceptually selective, in the long run. The reasons

for this are straightforward. First, consider the ratio of sensory to memory items. While the

total number of possible sensory bits is limited, the number of internal structures may grow

without bound.5 This means that, were we to use a strategy which prunes all sensory infor-

mation and all cognitive information each to some constant fraction of their original,

unpruned case, we would cut the total computation required by some constant factor-but

this factor would be much larger in the cognitive case, because the number of facts stored

would likely far outnumber the number of sensory bits available.

3. Many algorithms for learning from experience employ an extreme form of temporal selectivity: the

agent can only correlate events that are "one timestep" apart.

4. In this case, since we are discussing a causal model builder, these facts are correlations of actions and

their results.
5. The assumption here is that every fact learned requires some internal structure to represent it. If the

learning algorithm in use must examine prior facts to decide whether to invalidate the fact, create a new one,

etc, then the computational effort of the algorithm will tend to increase as more facts are learned.

The Basic FrameworkChapter 2



Second, consider a strategy in which a constant number of sensory bits or a constant

number of remembered facts are attended to at any given time. This is analogous to the sit-

uation in which a real organism has hard performance limits along both perceptual and

cognitive axes; no matter how many facts it knows, it can only keep a fixed number of them

in working memory. In this case, as the internal structures grow, the organism can do its

sensory-to-memory correlations in essentially constant time, rather than the aforemen-

tioned 0(n2) time, though at a cost: as its knowledge grows, it is ignoring at any given time

an increasingly large percentage of all the knowledge it has.

Compromise strategies which keep growth in the work required to perform these cor-

relations within bounds (e.g., less than O(n2)), yet not give in completely to utilizing ever-

smaller fractions of current knowledge (e.g., more than 0(1)) are possible.

For example, one can use properties of the world or characteristics of the sensor data to

restrict the number of structures looked at (as is the case in the algorithms described in this

thesis). Not all internal structures are equally relevant at any given instant. In particular,

internal structures that refer neither to current nor expected future perceptual inputs are less

likely to be useful than internal structures which do. This is the particular domain-indepen-

dent, goal-independent, world-driven heuristic for cognitive selectivity which is employed

in Chapter 3. One might argue that, in real creatures, evolution optimizes them to ignore

those aspects of the environment which do not change; for example, there is little reason to

perceive nor reason about the existence of air unless one is in an environment in which it is

not ubiquitous.

Another way to compromise is to use the current goal to help select what facts are rel-

evant; such goal-driven pruning is discussed in Chapter 4. Since generally only a small

number of goals are likely to be relevant or applicable at any one time (often only one), this

can help to keep the amount of correlation work in bounds. 6 Again, in real creatures
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domain-dependent and goal-driven cognitive selectivity play a large role too. For example,

the subset of internal structures that are considered at some instant is not only determined

by what the agent senses and what it expects to sense next, but also by what it is "aiming"

to sense or not sense (i.e., the desired goals).

2.2 The testbed microworlds

In order to evaluate the effects of adding focus of attention to a system that can learn a

world model, we need something which learns (the agent) and some world model for it to

learn in (the domain or environment of the agent). The two agents chosen here were both

software agents, operating in a a microworld consisting of a simulated environment. The

combination of a particular agent and its associated environment is called a scenario.

The sections immediately following describe the two scenarios used here. Later, in

Section 3.2.1, on page 40, we describe what the learning system does with the sensory

information it receives from either environment.

In both scenarios, the world may be unpredictable; actions are allowed to have no per-

ceivable effect for any of several reasons, including incomplete sensor information (in nei-

ther scenario does the agent have an all-encompassing sensor view of the world), and

external motions or actors in the world that cannot be controlled by the agent.

In general, the learning system is connected "at arm's length" to either of the two

microworlds, and can issue only one of a small number of commands at each timestep of

the simulation. It gets back a collection of sensory bits describing what the simulated sen-

sors are perceiving, and does not have any other access to the internal state of the micro-

6. Another way to compromise might be to investigate much more of memory when other demands on the

agent's time are minimal, essentially doing as much extra work as possible when not otherwise occupied

with immediate concerns or goals which must be completed under tight deadlines.
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world. Actions are taken at random in the case of goal-independent learning, but are

informed from the goal system when performing goal-dependent learning.

Appendix A describes the overall system architecture used in this research, and shows

a schematic of how the learning system, the action selection system, and the goal system

interact. Figure 20, on page 132, describes what pieces of the system communicate with

which other pieces, and Figure 21, on page 134, shows details of when the learning system

and the microworld are allowed to exchange information. Appendix A also provides some

implementation details specific to this particular system, which might be of use in repro-

ducing it.

2.2.1 The infant/eyehand scenario

The most extensively studied scenario, both in prior work with the particular learning

system employed [Drescher 91], and in this research, concerns a simulated infant in a sim-

ple, mostly (but not completely) static microworld.

Drescher's original system is concerned with Piagetian modeling, so his microworld is

oriented towards the world as perceived by a very young infant (younger than eight months

old, e.g., before early fourth Piagetian stage). The simplified microworld, shown in

Figure 2, on page 23, consists of a simulated, two-dimensional "universe" of 49 grid

squares (7 by 7). Each square can be either empty or contain some object. Superimposed

upon this universe is a crudely simulated eye which can see a square region 5 grid squares

on a side, and which can be moved around within the limits of the simulated universe. This

eye has a fovea of a few squares in the center, which can see additional details in objects

(these extra details can be used to differentiate objects enough to determine their identi-

ties). The universe also includes a hand which occupies a grid square, and can bump into
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Figure 2: The eyehand/infant domain microworld

and grasp objects. (The infant's arm is not represented; just the hand.) An immobile body

occupies another grid square.

The infant has 10 possible actions that it can take at any given timestep, consisting of

moving the hand or eye forward, backward, left, or right (8 actions in all), and of opening

or closing the hand. It takes one of these actions at every timestep.

The possible sensory inputs consist of all bits arriving from the eye, proprioceptive

inputs from eye and hand (which indicate where, relative to the body, the eye is pointing or

the hand is reaching), tactile inputs from the hand and body, and taste inputs from the

mouth (if an object was in contact with it).7 The eye reports only whether an object (not

which object, only the presence of one) is in a grid square or not, except in its central fovea,

where it reports many additional bits.8

7. The hand gets four one-bit details when it is in contact with an object on its left side, which can be used

to differentiate objects by touch. It also gets one bit per side indicating whether an object is in contact with it

on that side. Similarly, the body gets one bit apiece to indicate contact on any of its four sides; if an object is

in contact on the front side of the body (the mouth), then four bits of taste information are also available.

Finally, there is one bit each representing whether the hand is currently closed and whether it is grasping an

object.
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The simulated infant does not have a panoramic view of all 49 squares of the universe

at once; at any given instant, it only knows about what the eye can see, what the hand is

touching, or what the mouth is tasting, combined with proprioceptive inputs for eye and

hand position. In particular, certain senses, viewed unimodally, are subject to perceptual

aliasing, in which two distinct situations in the environment appear identical to the sensory

system of the agent [Whitehead and Ballard 90]. For example, if a schema mentions only

a particular bit in the visual field, without also referring to the visual proprioceptive inputs

(which determine where the eye is pointing), then that schema may be subject to such alias-

ing-several different situations have been collapsed into the same representation, as far as

the agent is concerned. Similarly, any schema mentioning any visual-field sensory item

that is not in the fovea may alias different objects, since the non-foveal visual field reports

only the presence or absence of an object in each position, rather than the exact identity of

the object in question.

Typical knowledge that is learned about the world includes correlations between

motion of the hand and motions of the image of the hand in the visual field; motions of the

eye and motions of all objects in the visual field; correspondences between proprioceptive

and haptic or visual information; whether or not an object will be graspable depending on

whether or not it is felt to be in contact with the hand, and many more ([Drescher 91] and

[Ramstad 92] report at length the many unimodal and multimodal facts about the micro-

world learned by this system).

8. Each of the five foveal squares provides 25 bits of detail information. Each different object sets a differ-

ent combination of these 25 bits; hence, objects may be differentiated visually when they are in a foveal

square, because different combinations of bits are perceived. Note that each foveal square covers one coarse

visual square, and all motion is quantized by these coarse visual squares: this means that the details corre-

sponding to some object will never be half on one foveal square and half on another. To put this another way,

if an object is somewhere in the fovea, there are only five different positions (corresponding to the five dif-

ferent foveal squares) that any one object can be in. Objects are never rotated.
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Typical strategic goals for the infant in this microworld include centering an object in

the visual field, moving the hand into proximity to an object in order to grasp it, and so

forth. Clearly, such goals cannot be accomplished in reasonable time without having

learned about the effects of the infant's actions.9

2.2.2 The Hamsterdam scenario

The second agent and environment used in this research were based on the Hamster-

dam system [Blumberg 94]. This system's primary use is for investigating ethological

models of action-selection [Blumberg 94], and it is also used as a major component of the

"magic mirror" virtual environment created for the ALIVE project [Darrell 94] [Maes 93].

The Hamsterdam system consists of a three-dimensional world in which simulated

hamsters and predators may interact. The world also includes a floor, walls, food and water

sources, and so forth. A second instantiation of the ALIVE project included a humanoid pup-

pet, which ran under control of a simple finite-state machine, rather than the more compli-

cated, ethologically-based controllers used for the hamsters and the predators. The entire

microworld ran in real time, and was rendered as it ran using SGI Inventor on a Silicon

Graphics workstation. Figure 3, on page 26, shows a typical scene from Hamsterdam, in

which a hamster is in the lower left, and a predator is in the upper right. (The predator is

currently unable to escape its box of walls, but a human outside of the simulation has the

ability to slide the wall aside and enable the predator to reach the hamster.) Figure 4, imme-

diately below Figure 3, shows the puppet, pictured standing alone in the world.

9. The phrase "reasonable time" is important: since the world is relatively small and the action set con-

strained, it might be possible to accomplish certain strategic goals by taking random actions and eventually

reaching the goal by luck. However, as demonstrated in Section 4.4.3, on page 91, the average number of

actions employed to reach a typical strategic goal are at least an order of magnitude shorter when the agent

has learned the consequences of its actions than when the agent is not allowed to learn.
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Figure 3: Hamsterdam with a hamster and a predator

Figure 4: Hamsterdam with a puppet
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The animals in the original Hamsterdam system have a sensory system resembling that

of a robot sonar system. They shoot out 15 simulated rays in a horizontal fan at floor level,

subtending 180 degrees total, and get back sonar-like echoes which indicate, along each

ray, how close any given object is. The echo actually reveals the identity and type of any

given object, rather than simply reporting that "something" is there. A typical representa-

tion of such a sensor fan appears in Figure 5, below, as rendered by Hamsterdam, in which

Figure 5: Hamsterdam sensor fan

the white squares at various distances along the radials are the sensor echoes of (in this

case) part of a cul-de-sac where several walls meet. This sensory system, unlike that in the

infant/eyehand scenario, is not particularly multimodal. The information returned for an

object consists of the range r and angle 0 at which the object is sighted: this is essentially

purely visual. No proprioceptive information is available. The qualities reflected by taste

and texture in the infant/eyehand scenario are reflected most closely by the tags returned

by the sensor system, which indicate object identity and type.

Since the underlying learning system used in this research (e.g., the schema system

[Drescher 91], without the composite-action system) requires all sensory information to be

reduced to individual boolean predicates, rather than, e.g., numbers or ranges (see

Section 3.2.1, on page 40), the results of the sensory fan must be discretized. This is

accomplished as follows.
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First, positions in the polar coordinate system defined by r and 6 are quantized. The

original, continuous value of r is reduced to one of five ranges, compressing r values to

only five distinct quantities. These ranges are, in fact, scaled logarithmically, so that ranges

which are farther from the agent cover more distance in the unscaled, original space; this

provides more detailed range information for objects which are nearby without requiring a

large number of additional ranges.

If an object is at some particular combination of r and 6, the sensory item (a single bit)

corresponding to that combination is turned on. Since there are 15 radials and 5 ranges, this

means that there are 75 sensory items devoted to ritheta information. Note that these sen-

sory items cannot be used to differentiate one object from another, but merely to indicate

that an object occupies that particular position. In this respect, they are similar to the coarse

visual field items in the infant/eyehand scenario.

In addition to these inputs, the sensor fan is also "foveated" to yield higher-quality

information at short ranges in the center of the fan. The central three radials, for the nearest

four ranges, also return one bit apiece to indicate whether an object at that position is one

of: a hamster, a predator, a wall, food, or water. The cross product of these 3 by 4 by 5 pos-

sibilities yields another 60 sensory items.

The discretized sensory system is illustrated in the schematic below. The foveation is

Figure 6: Discretization and foveation of the Hamsterdam sensor fan

shown by the gray region. Note that the logarithmic scaling of r is actually more pro-

nounced than shown in this diagram

28

Chapter 2 The Basic Framework



Chapter 2 The Basic Framework

This sensory system has all of the possible problems with sensory aliasing described in

Section 2.2.1, on page 22, in the description of the infant/eyehand scenario, and more. In

particular, the infant/eyehand scenario at least has proprioceptive inputs from its eye, so it

could (in theory) be able to build a complete world picture by taking into account the cur-

rent portion of the world encompassed by its eye (as revealed by proprioceptive inputs),

combined with current inputs from the eye itself. In the Hamsterdam scenario, even that

level of information is unavailable, since the actors in the world are free to roam about it,

and information about their current position or orientation is not available from the sensory

system (and would have to be inferred either from available sensory information, dead

reckoning from a known landmark, or something similar). If the infant/eyehand scenario

did not make proprioceptive sensory items available from the hand and eye, it would

resemble this aspect of the Hamsterdam scenario.

In the ALIVE system [Maes 93], the puppet never "shared the stage" with the hamsters

and the predators; instead, users of the systems could switch between these two worlds. As

modified for this research, the puppet and the animals are both allowed to share the same

world.

Further, the puppet in ALIVE did not have an ethologically-based action controller;

instead, inputs from the visual tracking system which tracked human participants drove a

simple finite-state machine which in turn commanded various movements of the puppet.

As modified here, the puppet's actions are controlled by the learning system, and it has had

the hamster sensory system "grafted on" to serve as input sensory items to the learning sys-

tem.

The learning system may only control the puppet, and not any of the other animals or,

e.g., the position of the walls. The allowable motions of the puppet include walking for-
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ward a step, turning in either direction, 10 standing up from a sitting position, and sitting

down again.

As in the infant/eyehand scenario, learning the consequences of actions includes learn-

ing the correlation between actions such as rotating or walking and the observed movement

of objects in the sensor fan. Goals include rotating until an object is centered along a foveal

ray, walking until an object is at minimum range, and so forth.

Because the Hamsterdam scenario is significantly more active than the infant/eyehand

scenario (e.g., hamsters or predators may be rolling around all the time, causing many

changes to the environment regardless of what the agent is doing), the learning system has

an explicit representation of a null action in this scenario, used to help model the result of

not doing anything. See Appendix A for further details about null actions.

10. The puppet turns by an amount which matches the angular offset of a pair of rays in the sensor fan, e.g.,

about 12.857 degrees. This was chosen to conveniently match the action to the sensory system, in the way

that moving the eye or hand in the eyehand/infant scenario causes all the other sensory inputs (e.g., proprio-

ceptive, visual) to slide one position in some direction.
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Chapter 3: Goal-independent Learning

This research started with an existing learning algorithm [Drescher 91], and added a

focus of attention mechanism, as described below, to make learning faster (requiring less

computation per timestep). While Drescher's original work does include a concept similar

to both tactical and strategic goals, his system does not exploit goals to guide the learning

process. Further, it has no perceptual selectivity and assumes that every sensory bit might

be useful all the time.1 This approach leads to a theoretically "pure" result for the issues

which Drescher was investigating, but one which is difficult to use in a real application,

and which seems somewhat implausible in describing how real organisms learn.

The following discussion is an overview of the operation of the schema system; for a

much more complete and detailed explanation of its intricacies, see [Drescher 91] and

[Ramstad 92].

3.1 Model of the learning system

This section presents a very brief overview of the schema system [Drescher 91] to aid

in understanding the focused and unfocused learning algorithms presented later. The

schema system is designed to be used in building causal models of the results of actions.

1. With one very small exception, as follows. The last action taken is itself represented in the bits given to

the learning algorithm (since any new schema created to represent the results of the action just taken will be

a schema mentioning that action, and no other). Since only the last action taken is so represented to the

learning algorithm, only the last action taken is attended to when attempting to correlate actions with their

results. All other sensory inputs (e.g., proprioceptive, visual, etc) are attended to whether or not they have

changed recently.



Hence, it is designed to be hooked up to some agent which is situated in an environment,

and which has some sensory inputs and motor outputs.

3.1.1 The sensory system: Items

Every sensory item is represented in the simulation as a single bit. In Drescher's origi-

nal algorithm, there is no grouping of these bits in any particular way (e.g., as a retinotopic

map, or into particular modalities); the learning algorithm sees only an undifferentiated

"bag of bits."

This means that values in the world which are not simple binary bits must somehow be

turned into individual bits. Ranges, for example, are most usefully represented as a set of

bits, any one of which would be asserted when the value is within some particular interval

of the range. 2

3.1.2 The motor system: Actions

The schema system assumes a known, fixed number of possible actions that the agent

may take. It takes one of these actions at every timestep of the simulation, and observes

which sensory items have changed after the action.

In Drescher's original implementation, the system spent most of its time (a fixed 90%)

taking random actions and observing the results. The remaining 10% of its time was spent

taking actions which had led to some reliable outcome before, to see if actions could be

chained. 3 The work reflected in this chapter instead represents a totally random action

selection strategy: the agent always picks its next action at random. In Chapter 4, in the

2. There is no particular reason why such range values could not be represented instead as, e.g., a binary

number. However, such a representation, though more compact in terms of the number of sensory bits,

would be somewhat slower to learn, since a schema (see Section 3.1.3) which made accurate predictions

about the value might have to have a conjunctive context or result (see Section 3.1.3.2.6) which completely

specified all n bits of the number. Generating such conjunctions would be quite timeconsuming.

3. See the composite action mechanism of [Drescher 91].
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context of goal-directed focus of attention, we also investigate less random and more goal-

oriented action selection strategies.

3.1.3 The knowledge base: Schemas

3.1.3.1 What is a schema?

The "facts" learned by this system are called schemas. They consist of a triple of the

context (the initial state of the world, as perceived by the sensory system), the action taken

on this iteration, and the result (the subsequent perceived state), which maps actions taken

in a particular configuration of sensory inputs into the new sensory inputs resulting from

that action. In the infant/eyehand scenario, a typical schema might therefore be, "If my

eye's proprioceptive feedback indicates that it is in position (2,3) [context], and I move my

eye one unit to the right [action], then my eye's proprioceptive feedback indicates that it is

in position (3,3) [result]." A simple textual way of representing this would be

vP23/EYER/VP33, as described in [Drescher 91] and [Ramstad 92].

Another typical schema might be, "If my hand's proprioceptive feedback indicates that

it is in position (3,4) [context], and I move it one unit back [action], I will feel a taste at my

mouth and on my hand [result]," or HP34/HANDB/TASTE&TACT. 4 Notice that this latter

schema is multimodal in that it relates a proprioceptive to taste and tactile senses; the learn-

ing mechanism and its microworld build many multimodal schemas, relating touch to

vision, vision to proprioception, taste to touch, graspability to the presence of an object

near the hand, and so forth. It also creates unimodal schemas of the form illustrated in the

first schema above, which in this case relates proprioception to proprioception.

Since behavior of the world may be nondeterministic (e.g., actions may sometimes fail,

or sensory inputs may change in manners uncorrelated with the actions being taken), each

4. This is because the hand will move from immediately in front of the mouth to in contact with the mouth.

We assume that the infant's mouth is always open, which seems empirically reasonable for most infants.
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schema also records statistical information which is used to determine whether the schema

accurately reflects a regularity in the operation of the world, or whether an initial "guess"

at the behavior of the world later turned out to be a coincidence. (For details about how this

actually works, see the next section.) This information is recorded in a schema's extended

context and an extended result, which keep these statistics for every item not yet present in

the context or result.

3.1.3.2 How are schemas created? The marginal attribution mechanism

A schema is deemed to be reliable if its predictions of (context, action, result) are

accurate more than a certain percentage of the time. If we already have a reliable schema,

and adding some additional sensory item to the items already expressed in either its context

or its result makes a schema which appears that it, too, might be reliable, we spin off a new

schema expressing this new conjunction. 5 Spinoff schemas satisfy several other con-

straints, such as not ever duplicating an existing schema, and may themselves serve to be

the basis for additional spinoffs later.

The description below, until the end of this section (Section 3.1.3.2), is quoted with a

few modifications from [Ramstad 92]; that description, in turn, was a summarization of

[Drescher 91]. See the latter in particular for more depth on the subtleties of the schema

system and marginal attribution in particular; this description, being a summary, glosses

over particular refinements which prevent certain combinatorial explosions.

5. For example, consider the schema VF33/EYER/FoVF22, which states that, if a particular coarse visual

field bit (the one at 3,3) is on, and the agent moves the eye right, it will see a particular fine foveal visual bit

turn on (the one at 2,2). If this schema is sufficiently reliable, and it also seems from experience that VF32 is

usually off just before we take this action in this case, the schema system might spin off the schema

-,VF32&VF33/EYER/FOVF22 from the original schema. (Note that the notation often used in, e.g.,

[Ramstad 92] would say -VF32 instead of -,VF32; we use both forms interchangeably here.) While the origi-

nal schema must be deemed reliable to be considered for a spinoff (to prevent combinatorial explosion), the

new one is not yet known to be reliable, and will itself be considered a spinoff candidate only if it, too, is

later shown to be reliable.
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3.1.3.2.1 Bare schemas

Schemas are bootstrapped from an initial set of bare schemas, which have neither con-

text nor result and hence do not predict anything. There is one bare schema for each action

that can be taken.

As the simulation is run, a technique known as marginal attribution is used to discover

statistically important context and result information. This information is then used to fine-

tune existing schemas by creating modified versions of them. Marginal attribution suc-

ceeds in greatly reducing the combinatorial problem of discovering reliable schemas from

an extremely large search space without prior knowledge of the problem domain.

3.1.3.2.2 Result spinoffs

Many different results may occur from the execution of a given action. For every bare

schema, the schema mechanism tries to find result transitions which occur more often with

a particular action than without it. For example, a hand ends up closed and grasping an

object much more often when the grasp action is taken than with any other action. Results

discovered in this fashion are eligible to be included in a result spinoff-a new schema

identical to its parent, but with the relevant result item included. The marginal attribution

process can only create result spinoffs from bare schemas.

Specifically, each bare schema has an extended result-a structure for holding result

correlation information. The extended result for each schema keeps correlation informa-

tion for each item (primitive or synthetic). The positive-transition correlation is the ratio of

the number of occurrences of the item turning on when the schema's action has been taken

to the number of occurrences of the item turning on when the schema's action has not been

taken. Similarly, the negative-transition correlation is the ratio of the number of occur-

rences of the item turning off when the schema's action has been taken to the number of

occurrences of the item turning off when the schema's action has not been taken. Note that



an item is considered to have turned on precisely when the item was off prior to the action

and on after the action was performed, and similarly for turning off. The correlation statis-

tics are continuously updated by the schema mechanism and weighted towards more recent

data. When one of these schemas has a sufficiently high correlation with a particular item,

the schema mechanism creates an appropriate result spinoff-a schema with the item pos-

itively included in the result if the positive-transition correlation is high, or a schema with

the item negatively included in the result if the negative-transition correlation is high.

These simple statistics are very good at discovering arbitrarily rare results of actions, espe-

cially when the statistics of the non-activated schemas are only updated for unexplained

transitions. A transition is considered explained if the item in question was included in the

result for an activated schema with high reliability (above an arbitrary threshold) and it did,

in fact, end up in the predicted state.

3.1.3.2.3 Context spinoffs

For schemas which have non-negligible results, the marginal attribution mechanism

attempts to discover conditions under which the schema obtains its result more reliably. To

extend the example cited above, a hand ends up closed and grasping something much more

often an object can be felt touching the correct part of the hand before the grasp action is

executed. This information is used to create context spinoffs-duplicates of the parent

schema, but with a new item added to its context.

Schemas with non-empty results have an extended context. For each item, this structure

keeps a ratio of the number of occurrences of the schema succeeding (i.e., its result obtain-

ing) when activated with the item on the number of occurrences of the schema succeeding

when activated with the item off. If the state of a particular item before activation of a given

schema does not affect its probability of success, this ratio will stay close to unity. How-

ever, if having the item on increases the probability of success, the ratio will increase over
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time. Similarly, if having the item off increases the probability of success, the ratio will

decrease. If one of these schemas has a significantly high or low ratio for a particular item,

the schema mechanism creates the appropriate context spinoff-a schema with the item

positively included in the context if the ratio is high, or one with the item negatively

included if the ratio is low.

There is an embellishment to the process of identifying context spinoffs. When a con-

text spinoff occurs, the parent schema resets all correlation data in its extended context, and

keeps an indication of which item (positively or negatively included) was added to its

spinoff child. In the future, when updating the extended context data for the parent schema,

if that item is on (if positively included in the spinoff) or off (if negatively included in the

spinoff), the trial is ignored and the extended context data is not modified. This embellish-

ment means that the parent schema has correlation data only for those trials where there is

no more specific child schema, and it encourages the development of spinoff schemas from

more specific schemas rather than general schemas.

Redundancy is also reduced by a further embellishment. If, at a particular moment in

time, a schema has multiple candidates for a context spinoff, the item which is on least fre-

quently is the one chosen for a context spinoff. The system keeps a generality statistic for

each item which is merely its rate of being on rather than off-it is this statistic which is

used when deciding between multiple spinoff possibilities. This embellishment discour-

ages the development of unnecessary conjunctions when a single specific item suffices.

3.1.3.2.4 Conjunctive contexts and results

The context can be iteratively modified through a series of context spinoffs to include

more and more conjuncts in the context. For a variety of reasons, but primarily to avoid

combinatorial explosion, a similar process for result conjunctions is undesirable. The mar-

ginal attribution process therefore requires that result spinoffs occur only from bare sche-
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mas, and only one relevant detail can be detected and used as the result for the spinoff

schema. However, conjunctive results are necessary if the schemas should be able to chain

to a schema with a conjunctive context. (See Chapter 4 for much more about chaining

schemas.) This problem is solved by adding a slot to the extended result of each bare

schema for each of the conjunctions of items which appear as the context of a highly reli-

able schema. Statistics are kept for these in the same fashion as those kept for single items,

and if one of these conjunctions is often turned on as the result of taking a given action, a

result spinoff occurs which includes the entire conjunction in the result. Effectively, this

process is able to produce schemas with conjunctive results precisely when such schemas

are necessary for chaining.

3.1.3.2.5 Summary of marginal attribution

Schemas created by the marginal attribution process are designed to either encapsulate

some newly discovered piece of knowledge about causality in the microworld (result

spinoff), or to improve upon the reliability of a previous schema (context spinoff). By con-

tinuously creating new versions of previous schemas, the system iteratively improves both

the reliability and the scope of its knowledge base. It is interesting to note that, once cre-

ated, a schema is never removed from the system. Rather, it may be supplanted by one or

more spinoff schemas which are more useful due to higher reliability and greater specific-

ity.

3.1.3.2.6 Synthetic items

The schema system also defines many other concepts; we mention here briefly one

other, namely synthetic items, that will become more important in Section 4.4.2, on

page 87. This section can safely be skipped, at least until then, without loss of continuity.

There are certain concepts that primitive items are unable to express, for example, that

a particular object is present at a particular location while the glance orientation is such that



the object is out of view. The schema mechanism contains a facility for building synthetic

items-items which, when on, indicate that a particular unreliable schema, if activated,

would succeed. Suppose a schema saying /[MOVE GLANCE ORIENTATION TO VPOl]/vOvFO2

(note that this schema has no context) is very reliable if some object in the microworld is

in the correct position. However, this object spontaneously moves around between a few

different positions and so, on average, is only in the correct position some of the time.

Notably, this schema, if activated and successful, will continue to be very reliable for some

period of time (equal to the duration that the object remains in that position), even though

on average it is normally not very reliable. To discover such situations, the schema mech-

anism keeps a local consistency statistic which indicates how often the schema succeeds

when its last activation was successful. If a schema is unreliable but highly locally consis-

tent, the mechanism constructs a synthetic item-an item which, when on, indicates that

the schema (its host schema), if activated, would succeed. Effectively, such an item, when

on, predicts what the result of activating the host schema would be. For a variety of reasons

(see [Drescher 91]), synthetic items are fundamentally very different from primitive items

and express concepts which are inexpressible through any conventional combination of

primitive items.

Primitive items get their state directly from the microworld. On the other hand, the

schema mechanism itself must maintain and update the state of all synthetic items. (The

rules for how this update is accomplished are complicated and not explained here.) The use

of synthetic items effectively allows the schema mechanism to invent new concepts-con-

cepts which are not expressed well by the microworld or cannot be expressed by conjunc-

tions of boolean values at all.

Goal-independent LearningChapter 3
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3.2 Improving learning via focus

If we are to talk about improving the computational effort of learning, we must first be

clear about what happens during learning, and how to describe how much work is per-

formed for various modifications of the basic learning algorithm.

3.2.1 The work of learning

Given the action model learning algorithm described above, at each clock tick, we must

do two things:

. First, we must update various statistics reflecting what just happened; this is

the "perception" part of the learning algorithm. A focus mechanism dictates

which sensory items will be attended to6 (Stati), for which schema num-

bers (Stats).

- Second, we must decide whether to spin off a new schema; this is the

"learning" part of the algorithm, and here the focus mechanism dictates

which item numbers to check for reliability (Spini) for which schema num-

bers (Spins).

Thus, our choice of these four sets of numbers determines which sensory items and

schemas are used in either updating our perception of the world, or deciding when a corre-

lation has been learned. Stat, and Stats determine the perceptual selectivity, while Sping and

Spins determine the cognitive selectivity of the agent, as shown in the table below)

Statistics Spinoffs
Which items? Stati Spin
Which schemas? Stats Spins

6. In other words, will have their associated statistics reflecting frequency of occurrence updated in all

schemas which mention them.
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The algorithm does the vast majority of its work in two 0(n2) loops (one loop for

updating statistics, reflecting what is currently perceived, and one loop for deciding

whether to spin off new schemas, reflecting learning from that perception). The number of

items and the number of schemas selected at any given clock tick determines the amount

of work done by the learning algorithm in that tick. Thus, if Workstat is the work done

during the statistical-update part of the algorithm (e.g., perceiving the world) of any one

clock tick, and Workspin is similarly the amount of work done in deciding which spinoff

schemas to create, then the work done during either one is the product of the number of

items attended to and the number of schemas attended to, or:7

Workstat = Stati|| e ||Stat,||

Workspin = Spini|| o ||Spin,1

This means that the total work per step (clock tick) is simply the sum of these individ-

ual pieces, and that the total work over some particular number of steps is simply the sum

of the work during the individual steps: 8

Workstep = WorkStat + Workspin

WorkTotal = X Workstep
steps

Thus, the behavior of Workstep over time tells us how well the algorithm will do at

keeping up with the real work, e.g., how much it slows down as the number of iterations

(which is proportional, though not in a particularly simple way, to the number of schemas)

increases.

7. Where lixJl denotes the cardinality of the set x.

8. There is no particular end to this series of learning steps. In this research, the number of steps taken was

limited by the amount of time available to learn, or by the approximate number of schemas that were desired

for a run, and so forth. In a real agent, we might turn off the learning system once the agent has shown that it

is competent (see Chapter 4) to perform some set of tasks-or not. After all, if we were ever to turn off the

learning system, the agent would fail to change its internal world model even if the external world were to

change.
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The discussion above looked at the work per step, e.g., per clock tick of the simulation.

Another way of evaluating the utility of the various algorithms is to examine the amount of

work performed per schema learned (either reliable schemas or all schemas; the former

being perhaps the more useful metric):

Wo rkse
Work StepSchemaRel = step

SchemaRelstep

which is simply the amount of work performed during some steps (Workstep) divided

by the number of reliable schemas generated by that work (SchemaRelstep).9 A similar def-

inition for total schemas over total work is straightforward: 10

Work
Work StpSchemaTotal = Step

Step SchemaTotalstep

An algorithm which determines these choices is thus described by the pairs

<<Stat ,,Stat, >,<Spin,,Spin,>>; we will call each element a selector.

A little more terminology will enable us to discuss the actual selectors used.

Schemamax is the number of schemas currently learned. Itemmax is the number of sen-

sory items. Itemn is the value of sensory bit n, and Item , t is the value of that item at some

time t. SchemaDepOni denotes some schema s which is dependent upon (e.g., refer-

ences in its context or result) some item i.

9. Note a peculiar detail here. It is possible for a schema that was formerly thought to be reliable to be later

decided to be unreliable. This could happen if the world has changed in the meantime, or if some not-very-

correct correlation happened often enough to push the schema over the arbitrary threshold from not being

considered reliable to being considered reliable, and then later data pushed the schema's reliability back

down. Hence, it is possible for the number of reliable schemas to decrease during a single step, and this is

not an altogether infrequent occurrence. This means that, while the average of WorkstepSchemaRel is posi-

tive, the instantaneous value might be negative if Step is a single step or a small number of steps.

10. Since the total number of schemas (as opposed to reliable schemas) can never decrease, this number

must always be nonnegative.



Chapter 3 Goal-independent Learning

3.2.2 The basic learning algorithm

In Drescher's basic algorithm, every possible sensory bit before an action taken by the

"infant" was correlated with every possible sensory bit after the action, for every schema

that has been created so far. In other words, Stat; and Sping use the selector all item num-

bers, or AIN:

Stati = Spin = AIN, where

AIN = {nIO 5n !Itemmax}

and Stats and Spins use the selector all schema numbers, or ASN:

Spin = Spin = ASN, where

ASN = {nI0! n ! Schemamax}

This means that the basic algorithm does a tremendous amount of work in the two n x m

inner loops, where n is the size of the set of items in use, ||AIN|I , and similarly m is the size

of the set of schemas in use, ||ASNI . Hence,

WorkStat = Workspin = ||AIN|| * ||ASN||

This algorithm can eventually learn a large number of facts about the world in this way,

but it runs slowly, and becomes increasingly slow as the number of known facts (e.g., sche-

mas) increases. Furthermore, if we were to increase the number of sensory bits available

(e.g., by putting a higher-resolution camera in an agent using this technique), the work

involved would increase in direct proportion to the number of added sensory bits, even if

none of these bits ever changed.



3.2.3 The focused algorithm

Various pruning techniques help a great deal over the basic approach. The most suc-

cessful of the approaches examined, which we shall call the focused algorithm, takes the

following tack (why these particular parameters were chosen is explained at the end of this

section):

- Perceptual selectivity. When updating statistics, only consider sensory

items which have changed very recently (last two clock ticks) and only in

schemas which make predictions about those items.

- Cognitive selectivity. When deciding whether to spin off a schema (make a

new fact), only consider sensory items which have changed in the last clock

tick, and only consider schemas which have had their statistics changed in

the last clock tick (such schemas can only have had their statistics changed

if they themselves made predictions involving sensory items which them-

selves have changed).

Put more precisely, the items used were as follows. Stat; used the all changed items in

history, or CINIH selector (where the word "history" refers to a timeline of prior events,

of some chosen length or horizon, and in this case of length 2):

Stati = CINIHH , where

CINIHH = AIN n {3 (0 < T ! H) IItemt # Item, t - TI

while Sping used a specialization of this, in which the history is only the very last event,

which we shall call the changed item numbers, or CIN, selector for compactness:

Spini = CIN, where

CIN =AIN r {Itemt # Itemn, t -} = CINIH I

Chapter 3 Goal-independent Learning
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Similarly, the schemas used were as follows. Consider the set all bare schemas, or

ABS:II

ABS = ASN n {V (0 ! i Itemmax) -,SchemaDepnOn}

To define Stats, we add to these schemas dependent upon changed items, to get:

Stat = ABSPSDUCIH, where

ABSPSDUCI = ABS u {SchemaDepOni CIN}

This selector is a special case of the more general one (which uses an arbitrary-length

history), in that it uses a history of length 1. The general case, of course, is:

ABSPSDUCIIH = ABS u {SchemaDepnOni e CINIHH}

Finally, Spins is defined as schemas with recently updated statistics, or

Spin = SWRUS, where

SWRUS = ASN r) {SchemaDep,0n (i e CIN) }

Adding these changes amounts to adding some simple lookup tables to the basic algo-

rithm that track which items were updated in the last clock tick, and, for each item, which

schemas refer to it in their contexts or results. These tables are then used to determine

which sensory items or schemas will be participants in the statistical update or spinoffs.

Keeping the tables updated requires a negligible overhead on the basic algorithm. 12

3.2.3.1 How has focus changed the computational effort?

The computational effort in the two n x m major loops is reduced by these selectors as

follows:

11. Recall, from Section 3.1.3.2, on page 34, that bare schemas make no predictions about anything, and

that there is one of these per action at the start of any run.

45



WorkStat = ||CINIH 21 ||ABSPSDUCIII

Workspin = ||CIN|| e ||SWRUS||

In any run which generates more than a trivial number of schemas or has more than a

handful of sensory bits, this is a dramatic reduction in the complexity, as shown in

Figure 8, on page 55. Another way to look at it is as follows:

- The unfocused algorithm allows the work of learning to grow as the full

cross-product of the total number of sensory bits (items) and the total num-

ber of predictions we make about the world (schemas).

- In the focused algorithm, the work of learning instead grows as the product

of the amount of change in the world times the number of predictions we

make about those items which changed.

If the world were such that every item changed at every step, and we had (somehow)

managed to make a prediction about every item in every schema, then these two algorithms

would behave identically. However, this does not describe very many plausible worlds in

which we might want an agent to do learning, nor is it plausible that every prediction the

agent may want to make about the world needs to mention every possible sensory bit the

agent can perceive.

12. Sensory: Updating the list of items which have changed recently (where recently is defined by the hori-

zon in use) runs in time linear with the number of items.
Cognitive: Each time we spin off a schema, we must update the table that maps items to schemas which

depend upon them, in order to properly reflect the dependence of the schema on the items. This update runs

in time linear with the number of items mentioned by the schema, and this number is very small anyway

(less than half a dozen or so in the runs described).
Result 1: The work per spinoff is linear, which means it is negligible compared to the rest of the algo-

rithm, which runs overall in approximately O(n2 ) time.
Result 2: We must perform the cognitive step above for each spinoff. Spinoffs become somewhat more

frequent per clock tick as the number of clock ticks increases (e.g., if there are more schemas in the knowl-

edge base, the number of new, spinoff schemas we are likely to create is higher). Thus, there is a slow

growth in the overall work per clock tick to keep these tables updated, which grows per clock tick as the

number of spinoffs per clock tick grows.

Goal-i ndependent LearningChapter 3
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The problem of learning here is still 0(n2), of course. We are still correlating some sen-

sory bits with some predictions. However, the magnitude of this correlation has been

decreased by an amount reflecting the behavior of the world and the characteristics of our

predictions about that world.

3.2.3.2 Why were these parameters chosen?

The perceptual and cognitive strategies above place a high value on novel stimuli.

Causes which precede their effects by more than a couple of clock ticks are not attended to.

In the world described above, this is perfectly reasonable behavior. If the world had behav-

iors in it where more prior history was important, it would be necessary to attend further

back in time to make schemas which accurately predicted the effects of actions.

The actual temporal horizons13 used were determined empirically. For example, sev-

eral runs using horizons for parameters of 1, 2, 3, 5, 10, 20, and 100 were tried, for both

horizons (in other words, the cross-product of most of the combinations), and it was

observed that the increase in learning was negligible (though not zero) above the values

chosen. In the particular case of the sensory update horizon, values smaller than two tended

to cause the statistical machinery to malfunction, missing most transitions (e.g., it became

difficult to perceive that some particular bit did not change after some particular action).

Those readers familiar with the full schema mechanism described in [Drescher 91] may

wonder about the interactions of synthetic items and this temporal horizon, particularly

synthetic items employing composite actions. The runs investigated did not tend to gener-

ate large numbers of synthetic items (although see Section 4.4.2, on page 87, for some

other remarks on this subject). If synthetic items with composite actions (which are used,

for example, to represent object persistence [Drescher 91] and whose values might change

13. As specified in Section 3.2.3, the horizons were two clock ticks when doing perceptual update, and one

clock tick when finding candidates for spinoffs.



due to events arbitrarily far in the past) were much more common, the temporal horizons

used would most likely require some adjustment upwards. However, as Drescher points out

[Drescher 94], it might suffice to represent intermediate states that keep track of the effects

of the past events, so that only the temporally local values of those intermediate states need

be attended to. However, this has not been investigated here.

Note that the above problem with synthetic items and the temporal horizons would only

be true, however, if such synthetic items had actions which were composite-and this

implementation, which lacks composite actions, cannot ever generate such synthetic items.

Since all synthetic items generated in this implementation are therefore noncomposite,

looking arbitrarily far back in history is not necessary.

These particular strategies also place a high value on a very specific spatial locality.

Even sensory items that are very near items which have changed are not attended to. Since

this microworld only has objects which are one bit wide, and the actions which involve

them are, e.g., touch (which requires contact), this strategy works well. 14 In a world where

actions had effects farther away than a single pixel in the visual field, or which contained

objects subtending more pixels in the visual field, for example, such a strategy would have

to be modified.

14. Selectors which attended to the unchanged items in a spatial "halo" around changed items were found to

be less efficient, in terms of work per reliable schema, than the selectors described here. A different micro-

world (such as one with spatially larger objects, or different types of actions available to the agent) might

require selectors that attended to a wider radius of (unchanged) sensory items around items which actually

changed, in which case such "haloing" would be necessary to reliably learn the effects of actions.

48
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3.3 Results

3.3.1 Evaluation of the focused algorithm

Two crucial questions that must be addressed concern how much the system learns

(completeness), and whether what it learns actually reflects its experience (correctness).

We must evaluate whether these focus of attention mechanisms impair that learning in any

way. After all, one way to decrease the work of learning would be to simply ignore the

world completely-but the resultant gain in speed could hardly be said to be worthwhile,

because nothing would be learned.

The discussion below is based on results from the infant/eyehand scenario. Results

from the Hamsterdam scenario have been comparable. However, since the majority of the

goal-independent mechanism was developed using the infant/eyehand scenario, the Ham-

sterdam results were primarily restricted to simple verification of similar savings for simi-

lar mechanisms, and a relatively smaller number of experiments were performed. (The

infant/eyehand scenario had literally dozens of experimental runs performed while the

algorithms were being developed, from which, e.g., the chart shown in Figure 8, on

page 55, is only a small sample. The Hamsterdam scenario tried out the resultant algo-

rithms for verification and demonstrated that they worked acceptably there, too, but was

not as exhaustively sampled as was the infant/eyehand scenario.)

3.3.1.1 Completeness

The schema system generates thousands of schemas in runs of reasonable duration, for

instance, runs of ten or twenty thousand iterations have generated over 7000 schemas. How

is one to know what all of these facts really represent? The state of the knowledge base is

critically dependent upon prior knowledge: a more-detailed schema can only be generated

from a less-detailed one, so any change in the learning mechanism which changes which
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schemas are generated leads to rapidly-diverging sets of generated schemas. While all may

say approximately the same thing, the fine details of exactly which facts are learned will

tend to be different. It would be possible to run enough iterations so that almost every pos-

sible fact that is true about the microworld could be learned to be true, but this is an unrea-

sonably large amount of computation (the total number of learned schemas plotted over

time appears to have an asymptote at least in the tens of thousands of schemas, even for this

simple world).

3.3.1.1.1 Manual evaluation methods

Manual inspection of the schemas generated by these runs was employed as a first cut

at establishing that alternative focus mechanisms were not substantially decreasing com-

pleteness, and tools were developed for examining how many schemas, representing what

general categories of facts (e.g., unimodal visual field, multimodal across various modali-

ties, etc) were being learned. By comparing rough totals of different types of generated

schemas, one could obtain at least some assurance that some particular class of schemas

was not being systematically omitted.

Another manual method of checking the results employed n-way comparisons of the

generated schemas themselves. The (context, action, result) triple of each schema can be

represented relatively compactly in text (ignoring all the statistical machinery that also

makes up a schema); by sorting the schemas generated in any particular run into a canoni-

cal order, and then comparing several runs side-by-side, one can gain an approximate idea

of how different runs fared. Figure 7, on page 52, demonstrates a tiny chunk from a 5-way

comparison of a certain set of runs, in which 5 somewhat-different runs were compared for

any large, overall changes to the types of schemas generated. 15
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3.3.1.1.2 Automatic evaluation methods

Manual methods are tedious and error-prone. Furthermore, the underlying reason that

an agent learns is to aid it in the pursuit of its goal. This means that a sensible evaluation

strategy is to ask if the agent has, indeed, learned enough to accomplish goals that it was

unable to accomplish before learning.

A simple way to establish what the agent knows is therefore to use the generated sche-

mas as parts of a plan, chaining them together such that the result of one schema serves as

the context of the next, and to build these chains of schemas until at least one chain reaches

from the initial state of the microworld to the goal state. If we can build at least one such

chain, we can claim that the agent knows how to accomplish the goal in that context; the

shortness of the chain can be used as a metric as to how well the agent knows. 16 For this

task, the schemas to be used should be those deemed reliable, e.g., those which have been

true sufficiently often in the past that their predictions have a good chance of being correct.

Simply employing all schemas, reliable or not, will lead to many grossly incorrect chains.

(A more complete description of the chaining system, and its use in evaluating the results

of learning, is deferred until Chapter 4, where the generated chains are also used in goal-

directed learning and behavior.)

At the start, no facts about the world are known, hence no chain of any length can be

built. However, after a few thousand schemas are built (generally between 1000 and 5000),

15. The layout of this chart, and its ordering, is not accidental. This is, after all, a manual evaluation

method; it depends on the ability of the human visual system to pick out aberrations in patterns. Large holes

or gaps in the columns merit closer attention, allowing the effort of checking carefully to be limited to only a

small number of cases.
16. Note that the small size of the microworld and the small number of actions possible at any given

timestep mean that even a random walk through state space has a significant chance of accomplishing the

goal, if we are willing to wait long enough; hence, a path which is close to optimal, rather than one which

exists at all, should be our metric for whether learning has succeeded. See Section 4.4.3, on page 91, for a

comparison of the length of the chains built for a typical goal versus the average length of a random-walk to

the goal.

Goal-independent LearningChapter 3
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most starting states can plausibly chain to a simple goal state, such as centering the visual

field over the hand, in a close-to-optimal number of steps.

3.3.1.1.3 Completeness results

Given this mechanism, how well did the focus of attention mechanisms fare? Quite

well. In general, given the same approximate number of generated schemas, both the basic

and focused approaches cited above learned "the same" information: they could both have

plausibly short chains generated that led from initial states to goals. Both the chaining

mechanism described above, and manual inspection, showed no egregious gaps in the

knowledge or particular classes or types of facts that failed to be learned.

As shown in Figure 8, on page 55, and explained in Section 3.3.2, on page 54, the

focused approach tended to require approximately twice as many timesteps to yield the

same number of schemas as the unfocused approach. This means that a real robot which

employed these methods would require twice as many experiments or twice as much time

trundling about in the world to learn the same facts. However, the reduction of the amount

of computation required to learn these facts by between one and two orders of magnitude17

means that the processor such a robot must employ could be much smaller and cheaper-

which would probably make the difference between having it onboard and not. This is even

more compelling when one realizes that these computational savings get bigger and bigger

as the robot learns more facts.

3.3.1.2 Correctness

The statistical machinery of the schema mechanism goes to great pains to avoid being

fooled by occasional coincidence. Only if some change in the state of the world is posi-

tively correlated with an action more often than it is negatively correlated, and only if we

have seen enough instances of both the event happening after some specific action and the

17. For runs of this length, e.g., 1000-2000 schemas generated.
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event not happening in the absence of the action, and if the event is unexplainable by any

other schemas, will the mechanism conclude that the action is truly the cause of the event.

(This is an overview of the marginal attribution mechanism described in Section 3.1.3.2,

on page 34, and in [Drescher 91].)

Because of this, the only way that any learning algorithm which uses this system could

learn "incorrect" facts (e.g., correlations that do not, in fact, reflect true correlations in the

world) would be to systematically exclude relevant evidence that indicates that a schema

that is thought to be reliable is in fact unreliable. No evidence of this was found in spot

checks of any test runs. It is believed (but not proven) that none of the focused algorithms

described can lead to such systematic exclusion of relevant information: the mechanism

may miss correct correlations (such is the tradeoff of having a focus of attention in the first

place), but it will not miss only those correlations that would tend to otherwise invalidate a

schema thought to be reliable.

3.3.2 Comparison of the different strategies

Figure 8, on page 55, presents partial results from several runs with different choices of

selectors. Only the most salient combinations of selectors were included in this table. Of

those, the rows in boldface will be discussed below; the non-boldfaced rows are included

to give a feel for how different choices can influence the results.

The results in this table were all produced by runs 5000 iterations long. Similar runs of

two or three times as long have produced comparable results, with correspondingly greater

increases in P (see below).

The first four columns of the table show the particular selectors in use for any given

run; the top row shows those selectors which correspond to the basic (Drescher) algorithm,

Goal-independent LearningChapter 3



Algorithm Learning Work required Facts per work unit

Spinoff selectors Statistic selectors Schemas Inner loops (x10 6) Reliable schemas over

Items Schemas Items Schema Total Rel T/R Spin Stat Both Spin Stats Both
AIN ASN AIN ASN 1756 993 1.77 533 533 1066 1.9 1.9 0.9

AIN ASN CINIH ABSPSDUCI 1135 403 2.82 398 12 410 1.0 33.6 1.0

AIN ASN AIN ABSPSDUCI 1110 518 2.14 391 55 446 1.3 9.4 1.2

CIN ASN AIN ASN 1693 948 1.79 44 524 568 21.5 1.8 1.7

CIN SWRUS AIN ASN 1395 791 1.76 2 463 466 316.4 1.7 1.7

CIN ABSPSDUCI AIN ASN 1622 924 1.76 15 510 525 61.6 1.8 1.8

CIN ASN AIN ABSPSDUCI 1110 506 2.19 33 54 87 15.3 9.4 5.8

CIN ABSPSDUCI AIN ABSPSDUCI 1110 506 2.19 10 54 64 50.6 9.4 7.9

CIN ABSPSDUCI CINIH ASN 1366 643 2.12 13 64 77 49.5 10.0 8.4

CIN ASN CINIH ABSPSDUCI 1136 399 2.85 34 12 46 11.7 33.3 8.7

CIN SWRUS AIN ABSPSDUCI 1102 498 2.21 1 53 54 415.0 9.4 9.2

CIN SWRUS CINIH ASN 1353 688 1.97 2 64 66 275.2 10.8 10.3

CIN ABSPSDUCI CINIH ABSPSDUCI 1136 399 2.85 10 12 22 40.7 33.3 18.3

CIN SWRUS CINIH ABSPSDUCI 1134 398 2.85 1 12 13 331.7 33.2 30.2

Figure 8: Summary of goal-independent results

The names for the algorithms used in learning are explained in Section 3.2.1 through
Section 3.2.3. Results from the rows in boldface are discussed in this section. The non-bold-
faced rows are not discussed in the text, but are included for additional context. This table
is a sampling; in all, in excess of 30 different combinations of selectors were investigated.

The top line is effectively the "unfocused" case, as in [Drescher 91]; the bottom line is
considered the "best" or most tightly-focused case.
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Chapter 3 Goal-independent Learning

while the bottom row shows the most highly-focused algorithm, as described in

Section 3.2.3, on page 44.

The table is sorted in order by its last column, which shows number of reliable schemas

generated during the entire 5000-iteration run, divided by the amount of total work

required. For conciseness, we shall call the value in this column P, which is defined as:

SchemaRelTotal
Facts per work unit = $ = -6

Workrotalx10

where the multiplication by 10-6 is simply to normalize the resulting numbers to be near

unity, given the millionfold ratio between work units and number of schemas generated.

The bold rows in the table show successive changes to the selectors used, one at a time.

The top row is the basic algorithm, which shows that about a billion total inner loops were

required to learn 1756 schemas, 993 of which were reliable, which gives a P of 0.9.

Note that, because the world is stochastic (for example, the two "inanimate" objects

occasionally move from one square to a neighboring square, approximately every few hun-

dred clock ticks), one might imagine that there would be variance in the number and reli-

ability of schemas generated between two runs, even if they use the same strategy. In fact,

this is true, but the variance is quite low: out of a run of two or three thousand schemas with

the same strategy and different seeds for the random number generator (hence different

random behaviors in the world), the difference in the number of schemas generated is gen-

erally less than ten. In other words, the number of schemas generated is usually within 1%

between runs using the same algorithm. Further, the types of schemas generated also match

each other quite closely, as determined by n-way comparisons between runs, using the

techniques discussed in Section 3.3.1.1.1, on page 50. (The exact schemas generated will,

of course, be different, as discussed in Section 3.3.1.1, on page 49).
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Let us examine changes to the selectors for spinoffs, which determine the cognitive

selectivity, or what is attended to in learning new schemas from the existing schemas.

When we change Sping from AIN to CIN (e.g., from all item numbers to those whose items

changed at the last clock tick), the amount of work drops by about a factor of two, while

the number of generated schemas barely decreases. This means that virtually all schemas

made predictions about items which changed in the immediately preceding clock tick (e.g.,

that corresponding to the action just taken), hence looking any further back in time for

them costs us computation without a concomitant increase in utility.

Changing Spin, from ASN to SWRUS (e.g., from all schema numbers to those whose

statistics were recently updated), given that Sping is already using the selector CIN, yields

a small improvement in P (not visible at the precision in the table), and also a small

improvement in the ratio of reliable to total schemas. (Were Spin; not already CIN, the

improvement would be far more dramatic, as demonstrated in runs not shown in the table.)

Note, however, the enormous decrease in the amount of work done by the spinoff mecha-

nism when Spins changes from ASN to SWRUS, dropping from 10% of WorkTotal to 1%.

Next, let us examine the effects of perceptual selectivity. Changing Stats from ASN to

ABSPSDUCI (e.g., from all schema numbers to all bare schemas plus schemas dependent

upon changed items) increases P by a factor of 5.4, to 9.2, by decreasing the amount of

work required to update the perceptual statistics by almost an order of magnitude. In

essence, we are now only bothering to update the statistical information in the extended

context or extended result of a schema, for some particular sensory item in some particular

schema, if the schema depends upon that sensory item.

Finally, examine the last bold row, in which Stat; was changed from AIN to CINIH

(e.g., from all item numbers to all item numbers whose items changed in the last two clock

ticks). P increases by a factor of 3.2, relative to the previous case, as the amount of statis-
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tical-update work dropped by about a factor of four. We are now perceiving effectively

only those changes in sensory items which might have some bearing in spinning off a

schema which already references them.

Note that each successive tightening of the focus has some cost in the number of sche-

mas learned in a given number of iterations. This means that, e.g., a real robot would

require increasingly large numbers of experiments in the real world to learn the same facts.

However, this is not a serious problem, since, given the focus algorithm described here,

such a robot would require only about twice as many experiments, for any size run, as it

would in the unfocused algorithm. This means that its learning rate has been slowed down

by a small, roughly constant factor, while the computation required to do the learning has

dropped enormously.

Goal-independent LearningChapter 3



Chapter 4: Goal-dependent Learning

4.1 Introduction

This chapter discussed the influence of goals on reducing the work of learning. First, in

Section 4.2 below, it summarizes the fundamental impact of goals in the learning system

used here, and motivates the relation of goals to planning. In short, and as summarized in

Section 4.2 and explained at length in Section 4.3.1.1, on page 64, the key ideas in using

goals to focus are:

- Every goal has some built-in percepts and actions associated with it.

. Learning is restricted to those percepts and actions.

In Section 4.3, on page 63, we cover in depth the general concepts that will be required

to evaluate the results presented later. In Section 4.3.1, we go into much greater detail

about goals as they are used here, including their structure and more precisely how they are

used to focus the learning process. Then, in Section 4.3.2, on page 71, we discuss how to

evaluate the learning that has occurred, with emphasis on using planning to search the

space of generated schemas and so prove, via successful construction of plans, that the

schema system has indeed learned a relevant set of schemas for the given goals.

Finally, in Section 4.4, on page 86, we present some results from this paradigm, using

the terminology and mechanisms described in the aforementioned sections to describe the

amount of work required to learn, and the nature of the learning that has taken place.
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4.2 Why goals?

Goal-independent filtering is often insufficient to accomplish effective learning. With-

out goals, it is difficult to know what would be useful to learn, hence there is no way to

know a priori whether some particular fact needs to be learned or not. This leaves an agent

with the task of trying to learn everything, just in case it will be needed later.

This chapter investigates one way of adding goals to the learning process. The aim is to

reduce the amount of work performed, by reducing the scope of learning from every corre-

lation that appears in the microworld to those correlations that seem relevant for some par-

ticular set of goals.

Using goals allows us to define two sets which constrain the amount of work per-

formed, in a similar manner to the way in which the work of learning was reduced in

Chapter 3; furthermore, both the methods of Chapter 3 and the methods described in this

chapter may be combined, to decrease the work of learning in two ways at once.

For any given goal, the set of percepts defines those sensory items which this goal

allows the learning system to attend to. When updating item statistics, only these items are

updated; when deciding which schemas to spin off, only schemas dependent upon (e.g.,

making predictions about) those items are noticed. This same mechanism is used in a goal-

independent fashion in Section 3.2, on page 40.

Similarly, the set of actions defines which actions are allowable when this goal is

active. Typically, this set is "all actions" or "all eye motions" or "all hand motions," etc.

This constraint of percepts and actions is the central mechanism in this research by

which goals decrease the effort of learning; the rest of this chapter details how the mecha-

nism works, and how to evaluate it.
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Note that the word goal can mean many different things in different contexts. A goal

could be the final, end result desired from a long series of actions (e.g., strategic), or the

next small result that one desired (e.g., tactical), or something in between. This research

treats the word "goal" more as a tactical, e.g., short-range, pursuit, and chains such tactical

goals together to make larger, strategic or long-range, pursuits. This is explained in more

detail in Section 4.3.1.2, on page 68, when we show some representative goals used in this

system.

4.2.1 Where do goals come from?

In real creatures, goals may come from a variety of sources. Simple creatures (such as

insects, small mammals, etc) are generally directed essentially completely by instinct. In

this case, the animal's strategic goals are generally motivated by homeostasis concerns

(e.g., not getting get too hungry, thirsty, hot, or cold), and genetic concerns (e.g., mate

and/or care for offspring in the right season, etc). Its tactical goals are motivated by a com-

bination of these strategic goals and its immediate environment and situation (e.g., if the

animal is hungry and there is food nearby that appears edible, it eats it).

More complicated creatures have more complex sets of goals, enabled in general by

more complex and capable sensory systems and cognitive mechanisms of greater sophisti-

cation. As we walk up the phylogenetic tree towards human-level performance, the influ-

ence of instincts on choosing and following goals diminishes. Such more complicated

animals have more cognitive autonomy in choosing their own goals, formulating new

goals, and deciding how to carry them out. At the human cognitive level, we can confi-

dently assert that we can reason about our goals, use introspection to evaluate them, and so

forth. The mapping between some tactical or strategic goal and the resulting behavior has

become more and more divorced from a simple stimulus/response paradigm, and the



immediate environment plays less and less of a role in determining what the organism's

next action or next cognitive procedure shall be.

This research does not attempt to model such a high level of competence. Here, we treat

goals as they might be in an insect or simple animal. It is presumed, therefore, that the map-

ping from a goal to what actions might be performed, or what aspects of the world shall be

attended to, is hardwired into the organism; in a real organism, such hardwiring is presum-

ably accomplished evolutionarily, by favored survival and reproduction of creatures for

which the correct mapping of goal and current situation to cognitive focus and action

existed. Similarly, the complete set of possible goals is fixed in advance; the agent cannot

invent a new goal for itself.

In addition, the toplevel goal for any given run (whether it is a learning run, in which

case new schemas are being generated, or a performance run, in which schemas that were

generated earlier are being evaluated to determine the agent's competence) is chosen at the

beginning of the run, and is thus outside of the agent's control.

Goals and the ways in which we use them, both for learning and for evaluation of what

learning has taken place, are described in much more detail in Section 4.3.1, on page 63.

4.2.2 The relation of goals to planning

Pursuit of a strategic goal generally implies attempting a sequence of behaviors that is

intended to lead to the goal's successful completion. Since all but trivially simple worlds

generally require executing a series of such behaviors to get from the initial state to the goal

state, goal-oriented behavior leads immediately into the realm of planning.

The literature on planning is immense; this research does not explicitly attempt to

extend it. Instead, it uses some results from that prior art to implement goal-directed focus

of attention: in particular, it plans chains of tactical goals from some starting state to some

Goal-dependent LearningChapter 4



strategic goal state. Plans and the ways in which we use them, both for learning and for

evaluation of what learning has taken place, are described in more detail in Section 4.3.2,

on page 71.

4.3 General concepts

The two most important concepts that must be understood in how we use goal-directed

learning are those of goals and plans. Goals and plans are used both to guide the learning

process, and to evaluate, after some learning has taken place, how competent the agent is,

e.g., whether or not it has learned any useful information about the results of its actions in

its environment.

4.3.1 Goals

As used here, a goal is primarily composed of a set of percepts (which determine which

sensory inputs will be attended to, and which schemas will be available for lookup in the

memory) and a list of permitted actions (which determine which actions are allowed).

Using this mechanism, it is possible to focus sensory and cognitive attention to a particular

subset of all possible inputs for a given goal, and it is also possible to restrict the actions

available for execution to those that might be useful for the goal.

There is little distinction in this system between strategic and tactical goals. In general,

goals are treated as tactical (e.g., each one defines a relatively simple desired change from

the current perceived state of the world to the intended state), and these tactical goals are

chained together to make more complicated and long-range goals. However, the system

does not treat a chain of such goals as some more complicated (strategic) goal in and of

itself, and has no representation for "a goal composed of several subgoals." Instead, it rep-

63
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resents the set of tactical goals in any given run as a finite-state machine, executing the

transition from one tactical goal to another when each such goal claims that it is satisfied.

When talking about evaluating the competence of a set of schemas (in order words, did

the schemas learned enable the system to reach some particular goal),to reach the goal

denotes some particular tactical goal which is distinguished as the goal. This goal is like

any other goal in the system, except that it also tells the FSM that it is time to record a suc-

cess and to try another test goal. Hence, to "reach the goal" is terminological shorthand for

to "reach the strategic goal," which is itself short for "to reach the goal which has the dis-

tinguished marker stating that this is the end goal, whose satisfaction should be recorded as

a success in accomplishing some strategic pursuit."

The FSM evaluates the various parts of the active goals,1 and decides which new

goal(s) should become active, at each clock tick; thus, for each clock tick, we take an action

from the set of actions permitted by the currently-active goals, update the internal represen-

tation of those sensory bits that the active goals allow us to observe, run the learning system

one clock tick, and advance the FSM one transition.

4.3.1.1 The structure of goals

There are several pieces or slots which make up a complete goal. The complete struc-

ture of a goal, excluding certain implementation-specific slots used for internal housekeep-

ing, is therefore as follows. Remember that these goals are essentially tactical goals, and

that each goal contains the information inside it which specifies which tactical goals may

become active when it declares itself to have succeeded.

- Name. The name of this goal. (This is how one goal refers to some other

goal, and how the programmer can specify which goal is which.)

1. There can be more than one goal active at a time; see the next section.

64



Chapter 4 Goal-dependent Learning

- Percepts. Set of which items that this goal allows the learning system to at-

tend to.

- Actions. Set of which actions this goal allows the learning system to take.

- Concurrent. Which other goals to pursue at the same time. (These other,

concurrent goals add their percept and action sets in to those defined in this

goal, and the union of all of them makes up the set of percepts and actions

that are attended to at the moment.)

- Next. Which other goal (singular!) to pursue next, if this goal claims to have

succeeded on this clock tick.

- Lose. Goal to (maybe) transition to if this goal does not succeed on this

clock tick.

- Win. A function called to determine this goal's success (used while learn-

ing).

" Schemas-final. A function called to determine membership in FINAL (used

while chaining to goals; the meaning of FINAL will be defined in

Section 4.3.2.5.4, on page 81).

The set of percepts defines those sensory items which this goal allows the learning sys-

tem to attend to. When updating item statistics, only these items are updated; when decid-

ing which schemas to spin off, only schemas dependent upon (e.g.,making predictions

about) those items are noticed. This same mechanism is used in a goal-independent fashion

in Section 3.2, on page 40.

Similarly, the set of actions defines which actions are allowable when this goal is

active. Typically, this set is "all actions" or "all eye motions" or "all hand motions," etc.

The WIN slot for a goal, if specified, contains a function which is run to determine

whether or the goal is considered to have succeeded. This function is particular to each
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goal, and generally specifies some combination of sensory items whose state must be on,

off, or don't-care for the goal to succeed.

Goals can inherit from other goals; this is a way of easily and modularly building up

more complex goals from simpler goals. If goal A has a concurrent slot that mentions goal

B, then A inherits the percepts and actions of B, increasing the number of possible percepts

and actions that A has available. (In other words, inheriting from another goal can only

increase the number of sensory bits attended to, or the number of permitted actions, and can

never decrease it.)

Suppose, as above, that goal A inherits from goal B. The inheritance is actually man-

aged by running both goals in parallel; there is nothing preventing A from inheriting from

B while B is inheriting from A. Both of their WIN slots, for example, will be evaluated, and

whichever one wins chooses the NEXT slot that determines which next goal state will

result.

If, in this case, A claims to have won, and B does not, then its choice of the next goal

completely overrides whatever B's NEXT slot might claim. The FSM transitions to the

goal named by A's NEXT slot, completely abandoning A and any other concurrent goals

that were running at the same time (e.g., B).

If both A and B both claim to win during the same clock tick, then the real winner (the

one whose NEXT slot chooses the next goal) is undefined; one or the other will be chosen

arbitrarily.

The reason that this parallelism is called "inheritance" stems from what happens if B,

to use the example above, fails to mention any WIN, NEXT, etc, slots. In that case, B can-

not possibly influence which goal is picked next, but only what sensory items are attended

to or actions are possible; A has inherited B's "focus."
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Given the above, we run a finite-state-machine, using the goals as a simple rule-based

system-the goals determine under what conditions the FSM will transition to the next

state, and what state that will be. First, we call the WIN slot, to see if the goal is satisfied

or not. Once we have decided whether the goal is satisfied or not, we have two choices. If

the goal was satisfied, then we transition to the goal named in the NEXT slot for this goal.

If the goal was not satisfied, then we remember the goal named in the LOSE slot, and we

try any other concurrent goals that may exist. (Note that the order in which we try concur-

rent goals is undefined and should be viewed as "simultaneous"-this is why it is unde-

fined which goal's NEXT slot will be used if they both claim to win.) If none of them

succeed, then we pick the next goal randomly from the goals in the LOSE slots. If none of

the concurrent goals had any LOSE goals defined, then we stick in the current goal. (This

allows us to define a goal that we cannot come out of, assuming no concurrent goals are

being run with it, by failing to define anything for the LOSE slot. On the other hand, we

can avoid getting stuck by making sure that at least one concurrent goal has this defined.)

The actual implementation of the FSM piggybacks somewhat upon the implementation

of goal-independent learning described in Section 3.2, on page 40. In particular, the itera-

tors that determine which schemas and sensory items are attended to (see Section 3.2.3, on

page 44) are masked by the set of active percepts and allowed actions, such that the existing

goal-independent iterators may be reused. The masking action allows the goal-dependent

part of the algorithm to use the logic from the goal-independent part of the system

untouched; adding goals will never increase the number of attended items or schemas, and

usually decreases it. However, using goals does not necessary mean that the goal-indepen-

dent system must be running in the most tightly-focused mode as described in

Section 3.2.3, on page 44; in particular, were one to wish to, one could run the goal-depen-

dent system while using the full-crossbar (e.g., most inefficient) mode of the goal-indepen-
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dent system. (There seems little or no reason to ever want to do so, but it would certainly

be trivially possible to do so.)

There is an important additional detail about the way the FSM runs. It is not always the

case that the action taken is drawn from the set of goal-dependent currently-permitted

actions. A fixed percentage of the time (at the moment, 10%), the set of allowed actions is

expanded to include all possible actions. Why is this done? Because, especially in the case

of the infant/eyehand microworld, the microworld is relatively static. (So-called inanimate

objects move around every few hundred clock ticks, and the hand never moves unless com-

manded.)

Consider what would happen in, e.g., the infant/eyehand scenario if the goal system did

not occasionally allow a completely random action to take place. Suppose that the goal set

being run was one which tried to learn how moving the eye affects what is seen, and that

the hand was never allowed to move. This relatively-static microworld would otherwise

falsely teach the learning system that, e.g., the hand is always in some particular position,

because the agent was never allowed to move it. When it then came to take action based on

what the agent had learned, this belief that the hand never moved would cause many plans

to go awry.

Thus, in worlds in which nothing much happens unless it is in response to an action

taken by the agent, it is important to occasionally allow the agent to take an action which

seems unrelated to what it is currently trying to learn-otherwise, it may falsely learn

things it believes to be always true which are instead simply true when the agent is not per-

mitted to take some particular action.

4.3.1.2 Using goals for learning

A typical use of these tactical goals for learning is to concentrate effort on a particular

strategic goal deemed useful for some reason.2 In this case, such a strategic goal would be
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"center an object in the visual field," "identify what object is in the visual field" (which

requires at least getting it into some foveal region, where enough detail is available to do

so), "grasp an object," and so on.

A typical set of goals which comprise an FSM for identifying an object appears in

Figure 9, on page 69. This FSM was designed for the infant/eyehand scenario; the Ham-

General Scan

? VP+VF

Move Eye

START

General Scan High Res Scan Into
Until In Fovea Dead Center

WI| {VFFovea} WI VFDead-ctr -

Wait A Random Time

WIN Random> Threshold '

! Any Action

Figure 9: A typical set of goals

SUCCESS

Identify Without
Scanning

Fovea
WINE V Details=OK
LO SEJ

sterdam FSM for the same task is similar. In this chart, percepts are denoted by a "?" and

permitted actions by "!". The use of VP+VF in the percepts for General Scan, for example,

indicates that visual-proprioceptive and coarse-visual sensory items should be attended to,

and the rest ignored (assuming, of course, that no other concurrent goal adds to this set).

VFFovea and VFDead-ctr denote a WIN function that succeeds if any sensory item corre-

sponding to "somewhere in the fovea" or "dead-center in the fovea" is on, respectively.

Similarly, the WIN slot in the goal Identify Without Scanning specifies that all the details

2. Such strategic goals are currently declared useful by the programmer, not by the system.

69

Goal-dependent Learning



Chapter 4 Goal-dependent Learning

(from the fine-foveal bits) of the object must match some target set of details for the goal

to declare that it has succeeded.

The FSM shows that the goals General Scan Until in Fovea and High Res Scan Into

Dead Center both inherit percepts and actions from General Scan (the hands show the

inheritance pathway). When General Scan Until in Fovea succeeds, the FSM transitions to

High Res Scan Into Dead Center; when that succeeds, the FSM transitions into Identify

Without Scanning, which finally transitions to a state which simply waits a random amount

of time to let the world random-walk away from the goal state. 3 Then we repeat the exer-

cise.

Expressed in a more general fashion, the idea in this goal set is to notice an object

somewhere in the (coarse) visual field, scan until it is in the fovea (in this goal, we first scan

until it is somewhere in any coarse visual item corresponding to the position of the fovea,

then scan with the foveal fine-detail bits enabled while we try to get the item dead-centered

in the fovea), then to attempt to identify it using the foveal detail sensory bits.

This FSM is actually slightly more than is necessary; for example, in the two micro-

worlds used here, having an object anywhere in the foveal region is sufficient to get enough

detail to identify it. However, in order to make the goal somewhat harder and more inter-

esting to achieve (given that the area occupied by the fovea is relatively high in both micro-

worlds), we insist that the object be exactly centered before attempting to identify it. (In the

Hamsterdam scenario, instead of insisting that the object be "centered," we insist that it be

"in the center foveal ray and at very short range.")

3. See Section 4.3.2.7, on page 83, for why this random walk is necessary. In short, the idea is to allow the

state of the world to decay away from the strategic goal, by allowing random events to transpire. If we did

not do this, then we would immediately try to get to that goal again, and presumably succeed immediately.

This would not be very informative.
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4.3.2 Evaluating learning

The simplest way to evaluate what the schema system has learned is to use the same

methods as in Chapter 3, namely, to count schemas and to count the work required to gen-

erate them. In Section 4.4.1, on page 86, we do exactly this for a typical example of a goal-

directed run. But what exactly does this mean? After all, with the introduction of goals,

entire swaths of domain knowledge may be purposely omitted, in order to concentrate

computational effort on different areas of the domain-consider, for example, that there

will be no schemas in the example above which talk about hand motion, since none of the

goals in the run allow movement of the hand, nor do any of those goals allow the percep-

tion of any hand-related sensory items.4 Consider also that the number of conjunctions and

synthetic items generated in a goal-directed run is much larger than that for a non-goal-

directed run (see Section 4.4.2); what are we to make of this?

In Section 3.3.1, on page 49, we glossed over the issue of exactly what the schema sys-

tem had learned in various configurations. The introduction of goals makes such evaluation

more problematic. Different choices of goals lead to different information being learned.

The techniques used in Section 3.3.1, can no longer be assumed sufficient a priori; instead,

in this section and succeeding sections, we shall examine the issue of what the system has

learned much more rigorously.

Note that the planning process described in this section is sufficient to understand the

results presented below in Section 4.4. However, a naive implementation of the planner

described quickly runs afoul of many O(n3) or even exponential-time complexity blowups.

Appendix B briefly describes some strategies for dealing with these problems in order to

4. Even though Section 4.3.1.1, on page 64 specifies that the agent is occasionally allowed to execute a

completely random action, unspecified by any goal, the set of allowable percepts is not similarly expanded.

Thus, though the hand in this example may randomly be allowed to move, hand-related items such as haptic-

proprioceptive or tactile senses will not be perceived anyway.



do planning in a reasonable amount of time; it may safely be skipped without loss of con-

tinuity.

4.3.2.1 Using chaining to evaluate learning

Instead of the more qualitative methods described above, here we turn to simulation to

evaluate the knowledge expressed by a collection of schemas. The simulation consists of

putting the schema system in a particular state of the microworld, specifying a goal, and

evaluating how often there is sufficient stored knowledge to predict how to reach the goal

from the starting state.

There are several ways in which one might proceed. We examine some of the options

here. Next, we look at whether or not to learn while performing the evaluation, and later

sections examine some details of running the simulations themselves.

4.3.2.2 Should we learn during evaluation?

Should we learn additional schemas while attempting to reach the goal? In the work

reported here, this is not the case; the learning part of the schema system (e.g., updating

statistics of sensory items, and spinning off new schemas) is inhibited during the simula-

tion or evaluation phases. This is in part to keep from muddying the waters (continuing to

learn would mean that, the longer a simulation ran, the more knowledge would be available

for it or for future runs with different parameters, complicating comparison), and in part for

issues having to do with speed of evaluation (certain techniques used in the evaluation

would be more difficult or run much more slowly if learning during the simulation was

allowed; in particular, many of the caching strategies described below in Appendix B

would fail).

In general, of course, a real agent should not suppress learning while attempting to

reach a goal; this is done here simply as a convenience. There are also other solutions than

the sort of planning involved here; for example, the composite action mechanism of
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[Drescher 91], especially when combined with the intrumental and delegated values mech-

anisms defined there, shows one way to plan paths to goals that is particularly efficient on

parallel hardware.

4.3.2.3 When to plan?

If one is planning a path from an initial state to a goal state, and if the path is longer than

a single step, a natural question to be addressed is whether to replan the path at each step

towards the goal.

Nonincremental, or ballistic,5 planning, in which the path to be followed is planned

once, at the start, and then executed open-loop until it is played out, has the advantage of

being faster to compute than incremental, or closed-loop, planning, since the plan must

only be generated once per attempt. This, of course, assumes a situation in which generat-

ing the entire plan is feasible. If the space to be planned in has an exponential computa-

tional complexity-as is almost always the case-then such open-loop planning takes a

very long time. If we are allowed to plan only partway to the goal, and then replan, we start

to approximate incremental planning.

On the other hand, if we plan the complete path from the current state to the goal state

at every timestep, we can cope better with failures of the plan en route. Intermediate solu-

tions (e.g., build a partial or complete plan, execute it for some number of steps, and check

along the way for certain "disaster" indications and replan if so) are also common in the

planning literature.

The approach taken here is twofold. Some runs were performed with completely ballis-

tic planning, in which the plan was formulated and the entire sequence of actions was car-

ried out, after which the state of the microworld was checked to see if we were in the goal

state. (But see Section 4.3.2.5, on page 79, for a slight modification to this procedure which

5. By comparison with ballistic, e.g., open-loop, movements such as ocular saccades.
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more accurately describes how planning was performed.) Other runs were performed with

incremental planning, in which the entire plan was completely replanned at every timestep.

4.3.2.4 How to plan?

4.3.2.4.1 Chaining

When building a plan from some starting state to the goal state (often referred to here

as chaining, e.g., building a chain of schemas which reflects, at each step of the plan, what

action to take to cause one world state to be transformed into the next desired state), one

must decide what validly constitutes a plan.

As described here, a plan consists of a series of schemas. The first schema in the plan

has a context which is satisfied. In other words, the schema's context, for any items which

it asserts either positively or negatively, accurately describes the states of those sensory

items which it specifies. Don't-care items in its context (i.e., most of them) are allowed to

take on any value in the world (on, off, or unknown). This is the standard definition of the

applicability of a schema from [Drescher 91].

The last schema in the plan has a context which is considered satisfied when the world

is in the goal state. In other words, the last schema is applicable when the goal has suc-

ceeded. Note that this schema's action should not be executed as part of the plan, since it is

this schema's context that we are interested in; its result (which would probably obtain if

we executed its action) would take us one step past the goal state into some other state.

When talking about the length of a plan, however, we ignore this special "last" schema and

talk only about the number of actions that would be taken to execute the plan; thus, the

notion of plan length is identically equal to the number of actions we expect to take.

In the simplest case, a chain of schemas composing a plan would look something like

A/FOO/B, B/BAR/C, C/BAZ/D, etc, where the result of one schema is the context of the next

schema. This plan specifies, "If sensory item A from the microworld is asserted, then tak-
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ing the actions FOO and BAR in that order will probably lead to sensory item c being

asserted." 6

4.3.2.4.2 Path metrics

The second major question about planning consists of evaluating whether a plan is any

good. In the case of the microworlds investigated here, it is generally the case that a typical

goal state might be reachable from the given starting state via several thousand paths-

having 30,000 paths to choose from is quite common, for example. By almost any reason-

able metric, most of these plans are quite poor:

- Many depend upon an initial schema whose context is null (meaning, "don't

look at any sensory items; just assume that this plan will succeed, ignoring

the prior state of the world-such a plan is called a contextless start or a

desperation plan).

- Many others are improbably long or contain redundant steps ("move the eye

left; now move it right; now move it left again," etc: there would be an infi-

nite number of such plans if we allowed a schema to appear more than once

in any given plan (we do not-see Appendix B); as it is, the number of such

paths is merely very large.

- Many other plans contain one or more schemas with low reliability, in some

cases vanishingly small.

- Other plans might contain a schema such as A/FOO/A, 7 which says that, "If

sensory bit A is true, and we take action FOO, A is still true thereafter" -if

6. This becomes less simple when either contexts or results are conjunctive. Are plans such as A/FOo/B&C,
B/BAR/D or A/FOO/B&C, B&C&D/BAR/E valid plans? As implemented here, the former is a valid plan, while

the latter is not a valid plan. Why? In the case of the former plan, it is clear that the first schema expects that

both B and C should be asserted after FOo happens; if this is in fact the case, then executing BAR (which only

requires B) is fine; therefore, these two schemas chain. On the other hand, in the case of the latter plan, the

first schema only predicts that two items should be asserted if action FOo is taken, yet the second schema

will not be applicable unless an additional item (D) is asserted that the first schema did not predict. Since this

is unlikely, these two schemas do not chain.
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we did not somehow penalize paths for excessive length, then many paths

might contain such "no-operation" schemas, since clearly inserting such a

schema can be done in any case in which A is true.

Given all this, how are we to choose a reasonable path? We implement a path metric

which, given a path, computes its merit; we then use the path which has the highest merit.

(This path consists of all schemas whose actions we should take; it does not include the

special "last" schema, as described above in Section 4.3.2.4.1, on page 74.) This is surpris-

ingly tricky to do right; certain apparently-reasonable path metrics lead to grossly unstable

planning behavior. Let us examine some of these cases.

- Case 1. The most obvious path metric is to simply multiply all the reliabil-

ities together of the individual schemas making up the path. In other words,

if Rn is the reliability of some schema n in a path, then the merit M of the

entire path is simply M = HRn.
n

This simple metric leads to unfortunate consequences. Since all schemas

have reliabilities strictly less than one, it tends to favor shorter paths, which

appears reasonable on the surface. But, since the only thing the metric no-

tices is reliability, what this really means is that it favors very short paths

with very reliable schemas-with no concern for whether the individual

schemas in the path say anything that actually helps get to the end goal. In

practice, the paths are almost useless: the cost of adding even one additional

schema to some path is so high that it is never worthwhile to do so-even if

adding some schema is exactly what would make it more likely to reach the

end goal.

e Case 2. The major problem with Case 1 above is that the paths were insuf-

ficiently predictive of the world's behavior. An easy fix is to make the merit

7. For example, in the infant/eyehand world, there are many reliable schemas of the form

HPO2/HANDF/HPO2, which says, "If the hand is already fully forward, trying to move it forward will not do

anything."
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of any individual schema proportional to both its reliability R and to the

number of items it mentions in its context (Ic) and result (IR). Thus, for

two schemas, both of cardinality IT = I + I, and reliability R, we should

favor the one with a higher value of Ir *

Naively applying this approach, by making a schema's merit

M = R - IT, leads to disaster. In general, schemas mention at least one

context item and one result item (the exception being schemas with null

contents); thus, typical schemas have IT 2. This implies that M for a typ-

ical schema is greater than unity; this tends to exert a strong bias in favor of

longer paths, as long as each step in the path contains a schema whose

IT 2. The resulting paths are highly redundant, consisting of many ac-

tions followed at some point by their inverses, and the sheer length of the

paths, even ignoring its redundancy, makes them quite unlikely to ever suc-

ceed.

Case 3. The next obvious refinement to Case 2 above is to normalize the

cardinality of each schema before computing its merit by dividing the raw

cardinality IT by the total number of sense bits that could be on in any sche-

ma. If this latter number is ITOTAL, this new approach specifies

M = R- 2- IT . (We have to double ITOTAL in the denominator, since
TOTAL

a schema that made a prediction about every item in both its context and re-

sult would have a cardinality of 2 - ITOTAL ')

Alas, this approach fails also, for the opposite reason as Case 2. By nor-

malizing in this fashion, we exert a very strong selective pressure for short

paths-because no schema has more than a few percent of all items speci-

fied, every schema added to the path beats down the total merit by approx-

imately two orders of magnitude. Given that, no reliability, no matter how
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good, can hope to beat the negative effects of lengthening the path by even

one schema, so we tend to go for the shortest possible path (e.g., one action,

i.e., two schemas, of which we do not count the last one). Among all possi-

ble one-action paths, we then pick the one with the biggest individual merit,

which might favor a relatively unreliable schema (which should thus be of

low merit) that just happens to have a large number of items. This was seen

immediately in a run in the infant/eyehand scenario, wherein we picked a

path of /EYEL/(VF20&VF21) (a schema with a null context), which, not un-

surprisingly considering its lack of context, had a reliability of only

3.47-1014: ridiculously small, but probably the best individual merit of the

applicable schemas (e.g., those whose result mentioned some item we need

to be on for the goal to be satisfied)-of which most probably only had one

item in their result, so they lost.

Case 4. Rather than normalizing merit by multiplying reliability by cardi-

nality, this approach exponentiates reliability to the cardinality, e.g.,

M = R . It tends to push relatively reliable schemas that mention several

items up near, but certainly never above, unity, while very quickly beating

relatively unreliable schemas into the dust (and the more items they men-

tion, the worse such unreliable schemas will fare). Note carefully that this is

not the normalized cardinality defined in Case 3 above. That would basical-

ly yield the same answer as Case 3 itself did (and did, when it was acciden-

tally written that way at first), because we would be exponentiating to tiny

powers (like 10-14 or whatever), rather than to small positive integer powers

instead (like 2 or 4).

The path metric actually used for the results presented here was therefore that in Case 4

above.
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4.3.2.5 Exceptional conditions while planning

4.3.2.5.1 Actions having "no effect"

The planning situation is slightly more complicated than described above. At each step

of plan execution, we check to see if the previous step led to no change in the perceived

state of the external world, e.g., no changed primitive items. If so, we assume that the

action had no effect and therefore that the plan would not succeed even if we ran to com-

pletion. (The most common case in which this is true is when attempting to take an action

that would move the eye or the hand out of bounds, e.g., attempting to move the eye left-

ward when it is already as far left as it can go, etc; in the infant/eyehand world, for instance,

if one uses a world exactly the size described in Section 2.2.1, on page 22, and in

[Drescher 91], moving the eye at random will encounter a limit stop and result in no effect

exactly 1/3 of the time.) While it is possible that a perfectly valid action might have no

effect some of the time, and therefore it should simply be tried again if nothing seems to

change, it is unlikely in the microworlds used here, and we must in any event decide how

many times to try again before concluding that the action will never have the predicted

effect; in this case, our threshold for making such a decision is one trial.

4.3.2.5.2 Serendipity

In addition to checking for cases in which the agent's actions seem to have no effect,

we also check for serendipitous completion of the goal. In the simple microworlds used

here, the chances for reaching the goal state are nontrivial; for very simple goals (e.g., get

anything into any of the five coarse foveal visual regions, etc), the chances can be 10-20%

that taking any of the actions permitted by the goal at random might nonetheless lead to a

goal state. (For more complex goals, or in more complex microworlds, the chances of ser-

endipitous completion can be arbitrarily low, of course-assuming that we start far enough

from the goal state; see Section 4.3.2.7, on page 83, for some comments on that.)
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Therefore, at each step in plan execution, we check for a serendipitous outcome,

defined as reaching the goal state when there are still actions awaiting execution. Such a

serendipitous result is not considered a planning success, since if it was because of some

feature of the microworld (e.g., given enough knowledge, one might have predicted it),

then it clearly indicates missing knowledge that should have been learned (and would have

resulted in a shorter generated plan).

4.3.2.5.3 Goal loops

If incremental replanning is enabled during some run (meaning that the agent plans the

entire path to the goal anew each time it takes an action), there is a possibility of goal loops.

Such loops have been observed, and take the form of (say) a plan saying A/FOO/B, B/BAR/C,

CIBAZID on some particular iteration. After taking action FOO, we then replan, and happen

to get (say) B/BIFF/A, A/BOO/D, D/BAZ/C. We take action BIFF, replan, and end up with a new

plan of A/FOO/B, B/BAR/C, C/BAZ/D again. (One particularly popular loop seen during one

run involved a period-four loop (e.g., it took four actions to repeat itself), with two two-

action plans and two three-action plans involved in the loop.)

In order to avoid this sort of pathological behavior, the number of times that replanning

happens when pursuing a particular single goal from a starting state is tracked; if this num-

ber goes above a threshold, we assume that the large number of replans indicates that we

are in a loop, and the current attempt to reach the goal is declared a failure. While it would

certainly be possible to keep track of every single plan generated while pursuing some

attempt at a goal, and immediately declare that we are in a loop if a repeat is seen, the

approach taken has the features of simplicity and, perhaps, robustness-if something went

wrong while executing a plan due to some unpredictable event (such as a random motion

of an object outside of our control), and the replanned path happens to be the same as some

previous path in this attempt, we should not gratuitously abandon the attempt. Simply
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counting replans and aborting if the count exceeds a threshold works well in practice and

is quite easy to implement, especially considering that planning loops are relatively rare

anyway-though quite destructive if not caught.

This approach to avoiding loops has an intuitive feel like that of avoiding boredom-if

some series of actions seems highly repetitious, we have been doing them for a long time,

and the goal still has not been reached, perhaps it is time to give up on the attempt.

4.3.2.5.4 Other ways to be stymied

Many other things can go wrong while attempting to plan a path to a goal. This section

details a few of the ways which we track explicitly. In all such cases, such a planning fail-

ure results in the complete abandonment of this attempt to reach the goal; we do a relax-

ation cycle to recover (see Section 4.3.2.7, on page 83).

When planning a path to a goal, we attempt to compute a path from some schema in the

set INITIAL (consisting of all schemas whose contexts are currently satisfied by the cur-

rently-sensed state of the world) to some schema in the set FINAL (consisting of all sche-

mas whose contents would be satisfied if the goal were to be satisfied). It may be that either

one of these sets might be empty; this could happen if we know so few schemas (or so few

schemas relevant to the current goal) that we cannot find even one such schema that could

be satisfied in either the start or goal states. Such "stymied" configurations are referred to

as stymied-initial or stymied-final, respectively.

It may also be the case that, even though INITIAL and FINAL are both nonempty, we

still cannot find any path, no matter how bad, between at least one schema in each set. Such

a failure is a stymied-can't-start failure, in which we cannot even start the planning pro-

cess. A similar failure can occur if incremental replanning is allowed, in which we sud-

denly find, during a replan, that there is no path from the schemas in the current INITIAL

Goal-dependent LearningChapter 4
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set (remember, this set will change with each change to the microworld) to FINAL. Such a

failure is a stymied-can't-continue failure.

It may also be that the current state of the microworld, combined with the current goal,

is such that some schema is in both INITIAL and FINAL simultaneously. This would indi-

cate that, given the way the goal is specified, we need take no action to reach the goal-we

are already in it. Such a situation is called a short-circuit.

This is distinct from a situation in which no element appears in both INITIAL and

FINAL, yet the current state of the world is such that the context of some schema in FINAL

is already satisfied. Such a situation is a done-at-start situation; we just happened to decide

to reach a goal that we are already at.

4.3.2.6 Planning for learning versus planning for evaluation

As described above, the way that goals are used for learning are slightly different from

the way that goals are used for evaluation of schemas. In particular, when learning, we run

an FSM to determine which goal to execute after the current goal. In evaluation, we pick a

goal in advance, and build a chain composed of schemas we may find in the memory to

attempt to plan from the starting state to the goal state.

There is nothing in particular which stops us from running an FSM during evaluation

as well; such a mechanism would constrain which schemas might possibly participate in a

plan in the same way that the goal mechanism constrains which sensory items and schemas

may participate in learning. However, since we are interested here in evaluating how much

has already been learned by some prior run of the schema system, it seemed more appro-

priate to allow all possible schemas that have been learned to participate in path planning

(though see Section 4.3.2.8, on page 84, for an exception to this).
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4.3.2.7 Randomizing the world

It is very often the case that the current state of the world is unsuitable for performing

an evaluation of the schema system's knowledge base.8 Most of the reasons have been

mentioned above; for example, being stymied in some way (see Section 4.3.2.5.4, on

page 81) is the direct result of an interaction of the current goal and the current state of the

microworld.

In most cases of being stymied, immediate abandonment of the plan is indicated. These

cases are stymied-short-circuit, stymied-can't-start, stymied-can't-continue, stymied-ini-

tial, and stymied-final. In these cases, we take aimless steps by taking a fixed number of

actions totally at random. By taking random actions, we side-effect the world in various

ways; the world also has a chance to allow any other events that may happen independent

of our actions to happen as well. The end result of this "aimlessness" is to do a random-

walk away from whatever point in state-space caused us to be stymied. After this random

walk, it makes sense to try the evaluation again on the current goal. If the agent repeatedly

tries to evaluate given some goal, and repeatedly has to aimlessly wander away due to a

planning failure, eventually it passes a threshold (denoted below as being frustrated) and

abandons the goal, entering a relaxation cycle as described immediately below.

Other cases indicate abandonment of the goal itself. Not all of these cases are necessar-

ily planning failures. If the agent is stymied because some action had no effect (e.g., sty-

mied-no-effect), or if it succeeded serendipitously, or if it was frustrated by having to do too

much aimless wandering, these are planning failures; however, successful completion of

the goal at the predicted instant (e.g., at the end of the plan) is a planning success. In these

cases, the agent relaxes, also by taking random actions, in an attempt to random-walk away

8. This is independent of the state of the knowledge base. For instance, if we have just succeeded in get-

ting to some end goal, and then try to run an evaluation to that same end goal, we surely should not start

from where we left off, because it would take zero steps to get to the goal. This would tell us nothing.
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from the current state; this is identical to "aimlessness" as described above, though the

number of steps taken during relaxation may or may not be the same (in the current system,

they happen to be the same). When done relaxing, the agent takes the another goal from the

set of goals being used to evaluate the competence of the knowledge base, and starts over.

4.3.2.8 Lobotomies

It is often useful to evaluate, not only how one set of goals compares to another in pro-

ducing useful learning for some task, but how fast that learning takes place, or after how

many facts are learned that the agent may be said to be competent.

In general, this was done by generating a full knowledge base and then lobotomizing it

by making some percentage of it invisible to the evaluation system, simulating earlier

states of knowledge.

4.3.2.9 Scorecards

Given all the above, an overview of the evaluation process is straightforward. For any

given evaluation, we must decide the conditions under which the evaluation takes place,

namely:

- the knowledge base of schemas to be evaluated

- which goals will be used

e the extent of any lobotomies

e whether or not incremental replanning is allowed

Once these parameters are chosen, the procedure for evaluating a run is to repeatedly

attempt to reach a goal from the starting state, as described above. If multiple goals are

specified, we round-robin among them; this makes it more likely, even with aimless or

relaxation, that the next goal to be evaluated will not have the state of the world already

preset to a goal-satisfied configuration. Very often, runs will include various cross-product

84
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settings of the parameters (e.g., trying several goals, with and without incremental replan-

ning, over some set of lobotomy values).

Such simulation runs are organized into a system of scorecards; each scorecard is

keyed by the name of some goal. A scorecard is essentially a bag of state, reflecting many

of the quantities above, plus a few new ones. The complete list is:

- N: Number of times the agent has tried with this goal.

- Goal: The goal the agent is trying to achieve.

- Wins: How many times the agent was able to plan and reach the goal; does

not include serendipity or aimless-wins.

- Stymied-initial: How many times the agent was not even able to begin plan-

ning (INITIAL empty).

- Stymied-final: How many times the agent was not even able to begin plan-

ning (FINAL empty).

- Stymied-can't-start: How many times the agent could not compute an initial

plan.

- Stymied-can't-continue: How many times the agent was suddenly unable to

continue after a replan (no new plan can be formed).

- Stymied-short-circuit: How many times the agent was suddenly short-cir-

cuited.

- Stymied-no-effect: How many times no primitive items were changed by the

action the agent just took.

- Serendipity: How many times the agent succeeded earlier than the current-

ly-amended plan thought it would.

- Done-at-start: How many times the agent was done before taking any ac-

tion at all.

Goal-dependent LearningChapter 4



Chapter 4 Goal-dependent Learning

- Replans: How many times the current plan changed (ignoring simple short-

ening as it is executed).

- Replan-loops: How many times the agent exceeded the maximum permissi-

ble number of replans when trying to collect a card.

e Aimless-steps: Number of aimless steps the agent took while hoping to en-

counter a state it could plan from.

- Totally-frustrated: Number of times the agent gave up after being aimless

too long.

- Ave-winning-plan-length: Average length of any winning plan or replan

(from when it was initially planned, not at the end, of course).

- Ave-serendipitous-plan-length: Average length of the remaining length of

the plan when it was discovered that the plan was serendipitously done.

- Contextless-path-starts: Number of times the agent picked a schema with

an empty context as the start of the best path.

The results presented below make use of this terminology and organization of score-

cards.

4.4 Results

4.4.1 The work required for learning with goals

Goals can exert a powerful effect on the work required to learn. Figure 10, on page 88,

shows that a run with goals as described above in Figure 9 leads to substantially less work

than the goal-independent case, for similar numbers of schemas. For comparison purposes,

this chart uses the same microworld as the chart shown in Chapter 3, which was run in the

infant/eyehand scenario. 9
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This is quite similar to the sort of results obtained in goal-independent learning. After

all, in the model used in this research, the imposition of goals can only decrease the number

of percepts which are attended to, either by the sensory or the cognitive systems. Hence

they will tend to act as selectors or filters, just as in the goal-independent case. The effect

of the restriction of possible actions is less clear in advance; as the table demonstrates,

however, adding goals in fact serves to greatly increase the efficiency, in terms of compu-

tational work.

However, this is not the whole story. After all, as explained at great length in

Section 4.3.2, on page 71, goals can dramatically and qualitatively change the nature of

what facts are learned about the world, by directing the learning effort away from particular

features and toward others. The following sections will investigate those effects.

4.4.2 Changes in the characteristics of the schemas learned

One of the most obvious effects of learning with a particular goal in place is that very

few schemas addressing parts of the world that are not deemed relevant by the goal are

generated. Consider the goal shown in Figure 9, on page 69. This goal is concerned with

building competence at centering objects in the visual field and identifying them. As such,

it does not attempt to manipulate the objects. Because this is so, the goal never allows the

hand to move, which means that the agent will never discover what would happen if it did

move the hand. (This is not completely true, because of the occasional randomness dis-

cussed in Figure 4.3.1.1, on page 64-but it is virtually true.)

9. Some analogous goal runs have been accomplished in the Hamsterdam scenario. For similar goals (e.g.,

center an object in the sensor fan), similar performance can be obtained, which is unsurprising (though reas-

suring) considering the approximate correspondence of actions and sensor systems between the two scenar-

ios. The Hamsterdam scenario also offers the possibility of creating goals that depend on dynamic aspects of

the environment (for instance, learning to chase a moving object), however, work on such more-sophisti-

cated goals is still preliminary.



Algorithm Learning Work required Facts per work unit
Spinoff selectors Statistic selectors Schemas Inner loops (x10 6) Reliable schemas over

Items Schemas Items Schema Total Rel T/R Spin Stat Both Spin Stats Both
AIN
AIN
AIN
CIN
CIN
CIN
CIN
CIN
CIN
CIN
CIN
CIN
CIN

ASN
ASN
ASN
ASN
SWRUS
ABSPSDUCI

ASN

ABSPSDUCI

ABSPSDUCI

ASN

SWRUS
SWRUS

ABSPSDUCI
VTM AwnUS

AIN
CINIH
AIN
AIN
AIN
AIN
AIN
AIN
CINIH
CINIH
AIN
CINIH

CINIH

ASN
ABSPSDUCI

ABSPSDUCI

ASN
ASN
ASN

ABSPSDUCI

ABSPSDUCI

ASN

ABSPSDUCI

ABSPSDUCI
ASN

ABSPSDUCI

1756
1135
1110
1693
1395
1622
1110
1110
1366
1136
1102
1353
1136

CTNTH AMgPRDUT 11134

993
403
518
948
791
924
506
506
643
399
498
688
399

1.77
2.82

2.14

1.79
1.76
1.76
2.19

2.19

2.12

2.85
2.21
1.97
2.85

398 2.85

533
398
391

44
2
15

33

10

13

34

1

2

10

533
12

55

524
463
510
54

54
64

12

53
64

12

1066
410
446
568
466
525
87

64

77

46

54
66
22

12 13

1.9
1.0
1.3

21.5
316.4

61.6
15.3
50.6
49.5
11.7

415.0
275.2

40.7

1.9
33.6

9.4
1.8
1.7
1.8
9.4
9.4

10.0
33.3

9.4
10.8
33.3

0.9
1.0
1.2
1.7
1.7
1.8
5.8
7.9
8.4
8.7
9.2

10.3
18.3

331.7 33.2 30.2

Figure 10: Goal-dependent learning and its effect on the work required

This table is a recap of Figure 8, on page 55, with additional results for a typical goal run (in this case, the goal
demonstrated in Figure 9, on page 69). The new results are in the box at the bottom. Goal-independent selectors and
the goal mechanism are run simultaneously.

The first, lightly shaded line shows a run with the given selectors and the goal of Figure 9, in which the occa-
sional randomness in permitted actions described in Section 4.3.1.1, on page 64 is disabled (in other words, the per-
mitted actions are always completely determined by the specification of the active goals).

The remaining pair of more heavily-shaded lines show results in which occasional randomness in permitted
actions is enabled (the normal case). The top line of the pair is exactly the same run as that shown by the lightly-
shaded line above it. The bottom line of the pair shows the "best" strategy from Chapter 3 (on the bottommost line
of that table, and immediately above the box in this one) combined with the goalfrom Figure 9.



A less obvious effect concerns the coverage of that part of the world that is deemed

important by the goal (in other words, how thoroughly the generated schemas make predic-

tions about all the possible states of the world and the effects of the agent's actions in those

states). Consider conjunctions, which are used whenever a schema's context or result must

talk about more than one item, and synthetic items, which are used to provide the basis for

the mechanism used to learn concepts such as object persistence [Drescher 91].

The table below compares the number of generated conjunctions and synthetic items

Algorithm Goal Learning

Spinoff selectors Statistic selectors Schemas Items

Items Schemas Items Schema Total Rel Conj Syn
AIN ASN AIN ASN none 3244 1856 184 10

CIN SWRUS CINIH ABSPSDUCI none 3213 1299 112 13

CIN SWRUS CINIH ABSPSDUCI High Res Scan 3209 1317 994 119

Figure 11: The effect of goals on selected schema characteristics

generated in goal-independent and goal-dependent learning. First, two goal-independent

runs, which were created using different selectors, are compared. It is clear that using a

more-focused algorithm tends to decrease the number of conjunctions learned, though only

by a small amount. However, adding goal-dependent learning dramatically increases the

number of conjunctive contexts and results in the generated schemas, by a factor of 5.4

over the least-focused algorithm (in which we are comparing apples and oranges, really-

we are comparing unfocused, goal-independent learning with focused, goal-dependent

learning), and by a factor of 8.9 when the selection algorithm is held constant. (In other

words, if we compare two runs which were both generated with the same type of goal-inde-

pendent filtering-as shown by the bottom two lines of the table-and then use goal-

dependent learning in one of those runs, the number of conjunctions in the run that used

goal-dependent learning is vastly increased.) These figures are for a particular number of

generated schemas, of course: these ratios will change as the length of the run changes. In

Chapter 4 Goal-dependent Learning



general the number of generated schemas, conjunctions, and synthetic items all follow an

n2-shaped curve as the number of iterations increases, starting off slowly and then growing

more and more quickly.

Similarly, the number of synthetic items generated has also increased enormously, by

about an order of magnitude.

What can be causing these changes? It appears that, by restricting the learning to sche-

mas making predictions about only some aspects of the given microworld, we are decreas-

ing the breadth of learning, while increasing its depth. Certain things are learned much

more slowly (e.g., in this case, the effects of hand motions), but those things which are

learned (e.g., the effects of eye motions) are learned in much greater detail. 10

To demonstrate the above claim about increased depth, let us examine the average car-

dinality of the generated schemas. (Cardinality was defined in Section 4.3.2.4.2, on

page 75, in the discussion of path metrics. It is equal to the number of items appearing in

the context and result of a particular schema.) If conjunctions are more common, the aver-

age cardinality is higher, since each schema mentions more items on average.

The table below shows that, for roughly comparable numbers of generated schemas,

Algorithm Goal Learning

Spinoff selectors Statistic selectors Schemas Ave Cardinality

Items Schemas Items Schema Total Ctxt Res Both
AIN ASN AIN ASN none 3599 0.99 1.15 2.14

CIN SWRUS CINIH ABSPSDUCI High Res Scan 3366 1.72 1.32 3.04

Figure 12: Average schema cardinalities with and without goals

the average cardinality of schemas has increased substantially-each schema, on average,

10. If one had the time to run a much larger number of iterations, as Drescher has done on various types of

Connection Machines, one might see these large numbers of conjunctions and synthetic items even if no

focus is being employed, since the entire microworld will be very thoroughly covered if enough schemas are

generated. Indeed, this is exactly the case, as reported for long runs on parallel machines, producing tens of

thousands of schemas, in which conjunctions and synthetic items dominate the results [Drescher 93].
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makes a prediction about more of the world."1 The first line shows a run that uses the orig-

inal, unfocused learning algorithm-which tends to generate more conjunctions than any

of the more-focused algorithms-when running in a goal-independent fashion. The second

line shows the most tightly-focused algorithm-which would normally generate many

fewer conjunctions than the unfocused algorithm, if it were running goal-independently-

in which the algorithm is being run with goal-dependent learning. Even with the odds

stacked against the tightly-focused run on the second line, the addition of goal-dependent

learning clearly shows that the average cardinality has increased.

4.4.3 Competence

As examined in Section 4.3.2, on page 71, simple comparisons of the numbers of sche-

mas generated is not necessarily sufficient when reasoning about the effects of learning

with goals. In this section, we use the terminology and methods of that section to evaluate

what the schema system has learned when operating in a goal-directed fashion. To keep the

length of the presentation reasonable, we shall again use the goal shown in Figure 9, on

page 69, as our exemplar. 12

11. There are two possible confounding influences in this chart, but both are relatively minor. First, we are

making a comparison with different selectors. However, Figure 11, on page 89, demonstrates (as do other

results not shown here) that using a focused, goal-independent run, instead of the unfocused one used here,

would tend to generate somewhat fewer conjunctions for a given number of schemas, hence resulting in

lower average cardinalities-which would only increase the contrast seen between the goal-independent and

goal-dependent results presented. Second, we are assuming, when we say that "the goal-dependent schemas

are predicting more about the world," that the average reliabilities of schemas in each set is comparable.This

is in fact the case.
12. Incidentally, several other goal sets have been specified and run, although many of them are less inter-

esting than the one used repeatedly here. For example, a goal set which attempts only to get any object into

any foveal region was tried early on-but its performance is uninteresting, because almost any eye motion

will tend to get an object into some portion of the visual field, in either scenario, because of the relatively

larger percentage of the eye occupied by the fovea. Other, more difficult goal sets showed similar properties

to those related here for object centering.
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In general, the learning was evaluated by generating a set of scorecards for any given

combination of parameters. Usually, the scorecard set is composed of simulation runs with

different lobotomy levels imposed, to examine how learning longer affects the results.

A few scorecard sets from the larger number 13 generated for various goal sets are

shown in Figure 13, on page 93, and Figure 14, on page 94.14 When examining these

scorecards, which report (among many other things) the average length of plans to reach

the end goal, it is reasonable to ask how long a path a random plan might be expected to

produce, in other words, the length of a random walk from a random point in the state space

to the goal state.

For the goal shown in these charts, the length of such a random plan is approximately

13.4 steps. This was determined by the simple expedient of taking a random action at every

timestep, and counting up the length of each plan from one encounter of the goal state to

the next, over several hundred thousand timesteps.

Figure 13 demonstrates the effects of grossly insufficient learning, caused by loboto-

mizing the knowledge base at a very small number of schemas. Until we get to somewhere

above 90 schemas in this case, there is no schema which actually includes the goal state in

its result. Before this point, planning cannot even begin, as no chain may be built from any

initial state to the goal state. The number of aimless steps taken while attempting to recover

from these planning failures is quite large; so is the number of times that the pursuit of the

13. On the order of a couple of dozen, for various goal sets, including scanning into anywhere in the fovea,

scanning into dead center, moving the hand until it contacted something, scanning to a particular spot on the

edge of the visual field (inspired by orientation to peripheral vision), and so forth.

14. N in these charts shows the number of attempts made to plan a path to the goal; we run any given score-

card either until 50 wins have occurred, or until we have tried 100 times to begin planning. Thus, if a large

number of events which prohibit even trying to plan occur in a run (for example, many instances of done-at-

start or stymied-short-circuit failures, in which we cannot even being planning until the world state has

changed somewhat), N will be substantially less than 100.
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goal is declared to be totally frustrated (because the simulation never manages to take

enough aimless steps that it lands in a state from which planning may proceed).

Even after we pass the point at which there are enough schemas that planning can com-

mence, the results are poor with this few schemas. There are few wins and many types of

planning failures, such as no-effect stymies. Almost every plan starts with a schema with a

null context (a desperation plan). The average winning path length is 1.00-because any

plan involving more than one step ends in failure due to insufficient knowledge about the

world, and hence is not counted in an average of winning path lengths. 15

Figure 14, on the other hand, compares two otherwise-similar runs with a much larger

number of schemas. One run allows incremental replanning (bottom table), and one does

not (top table). Allowing replanning while attempting to reach the goal demonstrates more

clearly that the schemas have learned what to do: the average path length to the goal is sig-

nificantly shorter when replanning is allowed, since incorrect predictions or changes in the

world can be compensated for en route. When the knowledge base has been extensively

lobotomized (e.g., below around 1300 schemas in this example), replanning tends to lose

its effectiveness, however. This can be seen by several factors, such as the high average

plan length, even for winning plans; the number of times an action has no effect; and the

number of times that a plan that starts with a contextless schema, indicating a desperation

move. In short, when very little is known about the domain, planning more frequently is of

no use.

As a final exercise, let us compare goal-independent with goal-dependent competence

directly, using as parameters the number of path wins, the number of "no effect" stymies,

15. Indeed, it is quite likely that almost all of those one-step plans were desperation plans, which also

explains their low reliability. If the plan just happened to start from a state that was one step away from the

goal (though it did not really "know" it, because its context was empty), then it might win. But if it was any

farther away, the lack of a context at its start dooms the plan to failure, because it essentially "looked before

it leaped."
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and the number of "no starting context" (desperation plans). Figure 15 below examines

0 1000 2000 3000 4000

Limit

Figure 15: Goal-independent and goal-dependent performance compared

these variables. It shows the number of schemas in the knowledge base increasing towards

the right ("limit" shows the top schema number allowed in the range permitted under the

current lobotomy and is equal to the number of schemas). The vertical axis is a simple

count of the various types of planning scorecard entries for wins, no-effect stymies, and no-

context (desperation) plans, for both goal-dependent and goal independent learning.

In general, and as might be expected, planning successes for either method increase as

the number of schemas increases, and stymies and desperation plans decrease. (After all,

Goal-dependent LearningChapter 4



Chapter 4 Goal-dependent Learning

all graphs of learning algorithms show this sort of trend, since learning systems that

become less competent as they learn more are generally considered uninteresting.)

The most peculiar thing about this graph is that goal-independent learning does so well.

One might imagine that, having learned less deeply but more broadly, goal-independent

planning would do less well than goal-dependent learning. 16 Instead, goal-independent

learning does better, at least for our example goal set. What could explain this surprisingly

good performance?

Part of the answer lies in the relative simplicity of the microworlds employed in either

scenario, and in the goals we use. There are only a small number of unique objects in either

microworld; this has interesting consequences. Consider the infant/eyehand scenario when

using goal-independent learning. At any given point in a run, even if relatively few sche-

mas mentioning coarse visual items have been generated (relative to all schemas which

have been generated) there are a large number of schemas dependent upon fine foveal

visual items, which make predictions about particular details seen in the fovea in response

to moving the eye.' 7 Since there are so few objects (e.g., four), the number of different con-

figurations of perceivable details is small; this means that fine foveal items can essentially

take the place of coarse visual items in predicting the result of eye motions.

16. Of course, all of this assumes that, if we are testing goal-dependent learning, the goals used in learning

have something to do with the goals used in evaluation. If we were to train the system by only running goals

involving eye motions, then evaluate the system by only running goals involving hand motions, we would

rightly expect very poor performance. Indeed, if the "occasional randomness" factor for permitted actions is

turned off, performance would be uniformly zero in this case.
17. In the infant/eyehand scenario, fine foveal items make up approximately half of all sensory items.

Coarse visual items make up another quarter or so. This means that the contribution of haptic, taste, etc,

inputs is small, so adding in schemas which also make predictions about those inputs (as the goal-indepen-

dent case does) tends not to "dilute" the general pool of schemas with non-visually-predictive schemas.

Hence, by being completely unselective, we do not materially affect the performance of visual goals in this

microworld-if and only if such goals involve the region in or near the fovea in some way.



Chapter 4 Goal-dependent Learning

To be more specific, consider a plan such as vF42/EYER/VF32, VF32/EYER/VF22. The

end result of this plan is to activate item VF22, e.g., to land something dead-center in the

coarse visual field: such a plan should only be invoked if the agent started out with some

object at vF42. Suppose, however, that VF32/EYER/VF32 did not exist as a reliable schema

in the current knowledge base-this might well be the case, even in a large knowledge

base, in a goal-independent run (see also the discussion a few paragraphs below and

Figure 16, on page 100, for a real example of this).

A goal-independent run, though it was missing VF42/EYER/VF32, would be quite likely

to have some schemas such as VF42/EYER/FOVRO3 and FOVR03/EYER/VF32, for some

foveal detail in FOVR (in this case, it happened to be 03).18 In this case, we can nonetheless

form the plan vF42/EYER/FOVRO3, FOVR03/EYERIVF32, and we are quite likely (because

there are so many foveal sensory items-roughly half of all items) that there will be some

pair of schemas that can continue the chain in this fashion.

In essence, plans that would otherwise use coarse visual items may also use fine visual

items, with equivalent predictive power, because large "clumps" of fine foveal items

behave en masse, hopping as a group from one foveal region to another in the same way

that single coarse visual bits do under similar actions. 19

18. FOVR is the right foveal area; it covers exactly the same area as VF32.

19. Because so many foveal items hop "as a group" (there being only a very small number of distinct

clumps of details, given the small number of objects), highly-conjunctive schemas are also common. In the

goal-independent case, most of the conjunctions in schemas are conjuncts of multiple fine foveal items; in

the goal-dependent case, most of them are conjuncts of coarse visual items, arrived at with considerably

more experimentation due to their poorer correlations in the world. This means that, in the goal-independent

case, the large number of correlated foveal bits tend to cause the Case 4 path metric (Section 4.3.2.4.2, on

page 75) to preferentially use them as well. This large number of conjunctions means that we may find a

large number of paths such as, e.g., vF42/EYER/FOVRO1&FOVRO2&FOvRO3&FOVRO 4 , FOvR03/EYER/vF32,

since the second schema need only depend on one of the bits asserted by the first, and since any object that

causes one foveal bit to be asserted will tend to cause many others in that foveal area to be asserted simulta-

neously as well, leading to a large number of generated conjunctions.
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This outcome was unexpected. While goal-dependent learning clearly uses less compu-

tational work and still produces quite reasonable results, the ability of goal-independent

learning to "compensate" by using, in this case, fine foveal items, makes it difficult to see

the advantages of goal-dependence.

There are several ways of constructing better test cases for goal-dependent learning,

given the situation. Results from one such test case are illustrated in Figure 16, on

page 100.20 This pair of scorecards shows performance for the somewhat-peculiar task of

scanning an object into coarse visual field position 0,1-a point chosen completely at ran-

dom on the periphery of the visual field, in this case near the lower left corner. 21

Since there are no fine foveal inputs there, foveal schemas cannot help us. In this case,

it could be expected that goal-independent learning would do substantially worse than

goal-dependent learning. In fact, as Figure 16 demonstrates, goal-independent learning for

this randomly-chosen goal was a complete disaster-even with as many schemas as existed

in the entire goal-independent run, the knowledge base was apparently completely unable

to determine how to achieve the goal. 22

The reason for this is clear from the above discussion. Since the goal-independent case

allocates its learning effort more indiscriminately, it covers any particular part of the state

space less thoroughly. In this case, even after generating 3600 schemas, it never happened

20. Another solution, which received some experimental attention, but not enough to report here quantita-

tively, is to employ microworlds with larger "diameters" (e.g., in the infant/eyehand scenario, one might

expand the world from 7-by-7 to 20-by-20 or more) or, given a larger diameter universe to work in, a sen-

sory systems with similarly larger diameters (making the fovea cover proportionally less area in the eye).

Such changes would make longer paths more important for correct planning, which would tend to expose

even small weaknesses; the combination of a long path and a small fovea should make goal-independent

learning rather poor.
21. Such a task is akin to a human trying to see a very dim object by scanning it to the retinal periphery,

where the high-sensitivity rods reside.
22. It so happens that the particular goal-independent run used was one using the original (unfocused)

Drescher algorithm-so if any goal-independent run should have picked up the necessary schemas, this one

should have.
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to generate a schema whose result was vFO 1. This lead to a complete failure of the planning

system, as illustrated by the fact that a stymied-can't-start failure occurred for every

attempt to plan. The only other outcome of any attempt to reach the goal in this case was

the infrequent random occurrence of the goal already being true by chance when the sys-

tem was about to try planning a way there (the done-at-start values in the rightmost col-

umn).

On the other hand, the goal-directed case covered the state space much more densely.

Even with a third as many schemas as the goal-independent case, it was never unable to

generate a plan. As schemas are added to the knowledge base, the accuracy of the plans

apparently increases (note the increasing number of wins). There are still a fair number of

mis-steps and desperation plans, evidently caused by still-incomplete coverage of the state

space, but at least the goal-dependent case makes some progress. It would probably make

substantially better progress if it had been trained with the same goal-in fact, this run

shows the performance in trying to reach a goal (VF01 asserted) for which the system was

not even explicitly trained-its training consisted of the High Res Scan Into Dead-Center

goal, which has a different emphasis in the state space it attempts to investigate (but one

which is still more biased towards visual scanning behavior than a goal-independent strat-

egy).

One of the most important lessons from these results is that there is often very tight

coupling between the world, the sensory system, and the goals that might be employed. All

three interact quite strongly, and untangling that interaction can require persistence and

care.
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Chapter 5: Related Work

Work in selective attention can draw from two major fields for inspiration and guid-

ance. The first is work in machine learning, primarily that concerned with causal model

builders and active agents, and secondarily passive learners and the reinforcement learning

literature in general.

The second is the study of attentional processes in the cognitive science literature.

There has been considerable work on attention in cognitive science, and the questions

asked and insights gained into attentional processes, while themselves often insufficiently

well-specified to serve as computational theories, may serve as inspiration for approaches

to machine implementation.

5.1 Related Work in Machine Learning

5.1.1 Introduction

As illustrated earlier, a typical agent in the world cannot perceive every part of the

world at once, nor should it--even "perceiving" without "learning" is expensive if the

agent must perceive everything. However, not perceiving the whole world at once can lead

to a phenomenon that [Whitehead and Ballard 90] calls perceptual aliasing, in which dif-

ferent world states can appear identical to the agent, and which causes most reinforcement

learning mechanisms to perform poorly or not at all. Both they and [Woodfill and

Zabih 90] propose systems which combine selective visual attention (which is used to
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"ignore" certain parts of the world at certain times) with special algorithms to attempt to

overcome the aliasing problem.

Many of the methods described in earlier chapters may be available to other machine

learning systems, and several such extensions are discussed in later sections. While

Drescher's schema system keeps exhaustive statistics and is thus easy to adapt in the man-

ner shown, any agent that tries to correlate its actions with results must keep around some

sort of statistics regarding those results from which to learn, even if they are only available

for the instant of perception, and those stored statistics are candidates for pruning. Further,

any such agent must somehow perceive the world, and its sensory inputs are likewise can-

didates for pruning.

For example, the techniques used in the most-focused of the goal-independent strate-

gies shown in Chapter 3 (bottom line of Figure 8, on page 55) are likely to be available to

most learning systems operating in a discrete microworld. They require being able to keep

track of which sensory items have changed recently, and which facts depend upon (e.g.,

make predictions concerning) those items. This does not seem an insurmountable obstacle

for many algorithms. It is even possible that particular algorithms which do not possess

absolute knowledge about, for example, which sensory items are mentioned in any given

learned fact (such as the hidden nodes of a neural net) might nonetheless be able to yield a

probabilistic estimate of how likely it is that some particular part of the internal knowledge

base might depend on a particular sensory input. If so, such algorithms might also allow

cognitive pruning to take place.

Selective attention and goal-directed learning have recently been getting considerably

more attention in the literature than previously. Several researchers have advanced frame-

works or architectures for thinking about and taxonomizing such systems, usually based

either upon a model offiltering or discarding information deemed unnecessary or harmful
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for the learner [Markovitch and Scott 93], or upon explicitly modelling goals, using goals

both to inform the learning process and as input to metareasoning strategies which reason

about the performance of the learner [Ram and Leake 94].

The next few sections will discuss some of these issues. Section 5.1.2, examines the

selective attention side of the issue, and Section 5.1.3, on page 108, addresses goal-

directed learning aspects.

5.1.2 Selective attention as filtering

[Markovitch and Scott 93] propose an information filtering framework for evaluating

and specifying selection mechanisms in machine learning systems. As shown in Figure 17,

Selective
Retention

Selective Selective Selective Selective Problems
Experience Attention Acquisition UtilizationI

Experience Attention Acquisition Knowledge problem
SpaceProcedure Procedure Baesolver

Solutions

Figure 17: Markovitch and Scott's information-flow filtering model

they propose five different places in which filtering may be employed as a selectional

mechanism:

- Selective experience reduces the acquisition of knowledge when the num-

ber of possible training experiences is large.

- Selective attention reduces the acquisition of knowledge when individual

training experiences are complex.

- Selective acquisition reduces knowledge that has been acquired from some

training example(s) from reaching the permanent knowledge base, but can

be somewhat limited by not knowing how the knowledge might be used.
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- Selective retention allows "forgetting" knowledge that will not be worth its

storage cost (or is actively harmful), for any later problem.

- Selective utilization allows "ignoring" parts of the knowledge base that will

not be useful for solving the current problem.

Using this framework, they summarized several well-known machine learning sys-

tems. Figure 18, on page 106, is from [Markovitch and Scott 93], amended to include the

current research. According to their framework, the work described in previous chapters

employs selective attention (in the form of how sensory information is accepted, e.g., sen-

sory pruning) and selective utilization (in the form of which schemas are updated or spun

off from, e.g., cognitive pruning). Selective utilization, as is used here, is not often used in

current machine learning systems; 1B4 [Aha and Kibler 91] and EGGS [Mooney 89], both

relatively recent systems, make use of it, but few others. 1

[Kaelbling and Chapman 90] propose a technique (the G algorithm) for using statistical

measures to recursively subdivide the world known by an agent into finer and finer pieces,

as needed, making particular types of otherwise intractable unsupervised learning algo-

rithms more tractable. One could view that as an example of perceptual selectivity: the

agent gradually increases the set of state variables that are considered, as needed, when

selecting actions and learning (updating statistics).

Along these lines, [Moore and Atkeson 93] propose a technique called prioritized

sweeping. This approach concentrates learning effort in those regions of the world that are

likely to be least well-understood, creating a tree of which questions should be answered

and in what order, and shows promise in substantially decreasing the computational com-

1. In IB4, which functions similarly to memory-based reasoning [Stanfill and Waltz 86], instances which

perform poorly are simply discarded from the database (selective retention), and newly-acquired instances

are prevented from contributing to decisions until sufficient evidence has accumulated to demonstrate that

they are reliable (selective utilization). In EGGS, an explanation-based learner, the system only uses learned

rules that completely solve a problem, and no use is made of learned knowledge to prove subgoals.
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[System Filter Description Evaluation Metric

Checker Player [Samuel 59]

Genetic algorithms
[Holland 86]

MetaDENDRAL [Bucha-
nan and Feigenbaum 82]

Version Space [Mitchell 82]

ID3 [Quinlan 86]

INDUCE [Dietterich and
Michalski 81]

LEX [Mitchell, Utgoff, and
Banerji 83]

Retention Discards least useful board
position

Retention Randomly retains elements
with probability proportional
to their fitness

Acquisition Attempts to find smallest set of
rules that accounts for data

Experience Chooses experience that will
reduce version space by great-
est amount

Experience Selects only misclassified
instances

Acquisition Eliminates candidate generali-
zations using several evalua-
tion criteria

Experience The Problem Generator con-
structs new practice problems

Attention The Critic marks positive and
negative instances in the
search area

Frequency of use

Fitness defined in a domain-spe-
cific manner

Rules that correctly predict
peaks not predicted by other
rules score higher

Selects experience that comes
closest to matching half remain-
ing hypotheses

Correctness of classification

Includes coverage, specificity,
and user defined function

Prefer problems that will refine
partially learned heuristics

Select search steps on the lowest
cost solutions as positive

MetaLEX [Keller 87]

DIDO [Scott and
Markovitch 89]

PRODIGY [Minton 88]

Retention Removes subexpressions that A weighted combination of esti-
are estimated to be harmful mated cost and estimated benefit

Experience Performs experiments on
classes with high uncertainty

Experience Generates experiments when
discovers incomplete domain
knowledge

Attention The OBSERVER selects train-
ing examples out of the trace
tree

Acquisition Estimates utility of newly
acquired control rules and
deletes those unlikely to be
useful

Retention Empirical utility validation by
keeping the running total of
the costs and frequency of
application

Prefer experiences involving
objects of classes with higher
uncertainties

Incompleteness

Training example selection heu-
ristics eliminate "uninteresting"
examples

Eliminate rules whose cost
would outweigh saving, even if
always applicable

Estimated accumulated savings
minus accumulated match cost;
if negative, discard rule

Figure 18: Selection mechanisms in some existing learning systems (Sheet 1 of 2)
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MACLEARN [Iba 89]

FUNES [Markovitch and
Scott 88]
CLASSIT-2 [Gennari 89]

Hypothesis Filtering
[Etzioni 88]

1B4 [Aha and Kibler 91]

Attention The macro proposer uses
peak-to-peak heuristics

Acquisition Static filtering; only macros
estimated to be useful are
acquired

Retention Dynamic filtering; invoked
manually

Retention Various heuristics to decide
what macros to delete

Attention Attributes with low salience
are ignored

Retention Runs a test on sample popula-
tion; passes only hypotheses
which are PAC

Acquistion Acquires misclassified
instances

Propose only macros that are
between two peaks of the heuris-
tic function

Redundancy test (primitive) and
limit on length and domain spe-
cific test

Frequency of use in solution

Random, Frequency of use x
Length

Salience

For a given E and 6, compute an
upper bound on the distance
between the hypothesis and the
target concept

Correctness of classification

Retention Removes instances that appear Confidence interval of propor-
to be noisy tions test

Utilization Only instances that have
proved reliable are used for
classification

Utilization Learned macros are used only
if they solve the problem

Attention Sensory bits not relevant to
typical world behavior or cur-
rent goals are not perceived

Utilization Schemas which do not make
predictions concerning cur-
rently useful sensory bits,
actions, or goals, are not
updated or spun off

Confidence interval of propor-
tions test

Macros that do not solve the
problem are worth nothing

Spatial and temporal proximity
(goal-independent); relevance to
current goal (goal-dependent)

Spatial and temporal proximity
(goal-independent); relevance to
current goal (goal-dependent)

Figure 18: Selection mechanisms in some existing learning systems (Sheet 2 of 2)
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plexity of many common learning situations. They demonstrate it in system that learns a

world model in a world of stochastic Markov chains; it is somewhat similar to DYNA

[Sutton 90] .

As another way to look at the problem, consider classifier systems, such as in

[Holland 86]. Classifier systems have a built-in mechanism for generalizing over situations

as well as actions and thereby perform some form of selective attention. In particular, a

classifier may include multiple "don't care" symbols which will match several specific

sensor data vectors and actions. This makes it possible for classifier systems to sample

parts of the state space at different levels of abstraction and as such to find the most abstract

representation (or the set of items which are relevant) of a classifier that is useful for a par-

ticular problem the agent has. [Wilson 85] argues that the classifier system does indeed

tend to evolve more general classifiers which "neglect" whatever inputs are irrelevant.

Others have also addressed the problem of finding the proper tradeoff between effi-

ciency (the number of measurements a robot must take, for example) and accuracy (num-

ber of prediction errors) when attempting to build a world model. For example, [Tan 93]

proposes a unified framework for learning from examples, based on four distinct spaces in

concept learning: example space, feature space, concept space, and concept description

space. This framework is applied to analyzing CS-ID3 and CS-IBL in detail, which are

learning-cost-sensitive (hence "CS-") algorithms which can trade off accuracy for effi-

ciency in decision-tree-based (CS-ID3) or instance-based (CS-IBL) learning.

5.1.3 Selective attention as goal-driven learning

There has been considerable work in goal-driven learning in recent years. For example,

Ram, Leake, Cox, and Hunter have between them produced on the order of thirty papers

quite recently which all bear in some way or another on this topic. Some of them are dis-
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cussed below; other relevant papers include [Ram 90a], [Ram and Cox 90], [Cox and

Ram 94], [Ram 90b], and [Cox and Ram 92].

For example, [Leake and Ram 93] describe aspects of goal-directed learning from the

perspectives of Al, psychology, and education in a survey paper that reported on a work-

shop involving participants from all three areas. They summarized four taxonomies of

learning goals: by overarching tasks, by knowledge gap or failure-necessitated learning, by

the learning results, and by the learning activity. They also talk briefly about how goals for

learning arise, how they affect the learning process, how different types of learning goals

relate to each other, and how they are represented.

[Ram and Leake 94] propose a general framework for describing goal-driven learning

systems. This survey paper discusses how goals guide task performance, task learning, and

knowledge storage, with a strong emphasis on using plans to manage the growth of com-

plexity in all these areas. They propose a two-step framework for managing the learning,

in which the first step attempts to reach some particular goal, maintaining a trace of the rea-

soning performed. Plan failures or deficiencies during this reasoning are then used in the

second step, which uses credit/blame assignment to find the source of the failure. Thus,

learning in the second step is guided by a knowledge of what must be learned and why,

stemming from the information resulting from analysis of plan failures. Such explicit rea-

soning about goals is also discussed in [Ram and Hunter 92].

In addition, they point out the importance of multistrategy learning. Large, compli-

cated learning systems that operate on real-world problems are increasingly being imple-

mented as multistrategy learners. Such a technique allows using the appropriate learning

strategy for the particular piece of the problem which is currently of interest, but are often

hard to control or program without some automated way of determining when to use par-

ticular algorithms. Learning systems that can reason about their goals and use this informa-
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tion to select particular learning modules can make multistrategy learning more feasible. In

addition, they increase the feasibility of systems that can actively seek out additional

sources of information, rather than having to be spoon-fed information from a small num-

ber of hand-picked sources. For example, reasoning involving multistrategy learning is

employed by [Ram, Narayanan, and Cox 93] in a system that learns to troubleshoot and is

based on observations and a model of human operators engaged in a real-world trouble-

shooting task.

In recent work, [Hunter 94] provides two examples of these strategies in action. Both

are drawn from the domain of biology, which is becoming increasingly important as a

source of real-world applications of machine learning due to the large number of interest-

ing datasets, the possibility of external verification and grounding of results via physical

experiments, and the discipline imposed by having to cope with very large and scaled-up

systems from the start. Molecular biology is also increasingly in need of advanced compu-

tational tools to accomplish knowledge discovery.

The first of these examples concerns situations in which there is too little data for many

learning systems to operate effectively. Hunter's example in this case concerns determin-

ing the causes of lethality in osteogenesis imperfecta, a sometimes-fatal bone disorder

involving point mutations in the amino-acid coding sequences for collagen. The dimen-

sionality of the space is vast (approximately 243-dimensional), yet only approximately 70

relevant sequences have been determined from sufferers of the disease. With such a small

dataset, conventional clustering techniques are useless. However, systems such as RELIEF

[Kira and Rendall 92], a Focus/Induce/Extract system, can attempt to eliminate irrelevant

features in the dataset using statistical tests. (The system described uses C4.5 [Quinlan 86]

to extract condition/action rules from the resulting decision trees; see also [Dietterich 89]

and [desJardins 92] for related work.)
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The system described by Hunter has successfully discovered previously-unknown

information about this disease. It has a large collection of machine-learning algorithms in

it, and determines which of them to use for the part of the problem at hand by consulting

lists of preconditions and applicability conditions: a tool's preconditions must be com-

pletely satisfied for it to be eligible, whereas a tool's applicability conditions are used to

help determine which of the eligible tools to use (in general, the cheapest, fastest such tool

is chosen).

The second example concerns situations for which there is too much data, such as in

megaclustering of protein sequences. The current database set being produced by biolo-

gists consists of approximately 100,000 sequences, comprised of 20 million amino acids,

and doubles about every 18 months. Hunter's system actively determines, based on the cur-

rent subgoals, which of multiple data sources to contact over the network, how to commu-

nicate with the variety of different databases, what sort of analytical tools should be used

to analyze the data, which platform(s) to use to do so (since some tools require very large

machines, whereas others do not), and so forth.

This system, too, has discovered new scientific results,2 which is a strong claim of the

utility of the reasoning techniques employed. 3

In both of these examples, and in the goal-directed learning literature in general, the

problem of learning has been transformed from a search problem to a planning problem. A

naive approach is quite likely to result in simply turning one intractable problem into

another, so this transformation should not devolve into first-principle planning, but should

instead yield what Hunter calls a discovery strategy, or skeletal plans for learning, an espe-

2. Resulting in publications in the biological literature of its discoveries.

3. Hunter also makes the point that such a multistrategy approach is similar in spirit to the multiple-com-

petence-modules model proposed in the Society of Mind [Minsky 86]; this point is taken up again in the

next section.
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cially important feature in learning systems that must query databases-since otherwise

the expected outcome of any plan is sufficiently unpredictable that almost all plans of non-

trivial length will fail.

Such transformations show great promise in making machine learning in large, real-

world problems both tractable and useful in true knowledge discovery applications.

5.2 Related Work in Cognitive Science

5.2.1 Introduction

The cognitive science literature about attentional processes is vast. This overview will

examine some of the high points of that literature that seem most salient and that seem to

be of most utility in producing ideas about implementations of focus of attention in a

machine learning system.

One of the most interesting things about the literature of the last two or three decades

is that many of the same questions have been asked for all that time. It is slowly becoming

apparent that, in some cases, the questions themselves are likely to be misguided; in others,

while it has become clear that certain mechanisms are not responsible for attention, it is

still unclear which mechanisms are.

The confusion exists on many levels, from what constitutes a reasonable theory (e.g.,

there is disagreement about whether it need be computational, in the sense of [Marr 82])

even to simple aspects of terminology (many have railed against the vague use of suppos-

edly well-defined terms, and, amusingly enough, [White 64] dedicates an entire and rather

delightfully readable book to philosophical definitions of terms such as "attention," "real-

izing," "noticing," and so forth).
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Many people have summarized important parts of this literature and the questions sur-

rounding it, with an eye towards computer modeling of the mechanism (one example

would be [Chapman 90]) or to debate and clarify certain of the confusions of the field (see,

for example, Allport's excellent retrospective [Allport 90]). The debates over whether the

questions even make sense are not particularly new; for example, many of the concepts and

ideas that [Kinchia 80] feels necessary to bury still have enough life in them that

[Allport 90] is still driving stakes through their hearts. [Van der Heijden 92] spends an

entire chapter of a book doing likewise, exploring and denigrating theories such as the

belief in [Broadbent 71] (for example) of central and limited capacity.

Such guides to the other literature have been very useful in determining how the field

has progressed, and in which directions to proceed in examining this enormous array of

work; in some of the discussion that follows, I am particularly indebted to the keen and

sometimes provocative thinking of Allport and Kinchia.

A large part of the problem with much of the literature on attention is due to its treat-

ment of "attention" as a single, unitary, central process, rather than as a variety of cognitive

mechanisms that mediate human information processing. [Kinchia 80] proposes several

illustrative theoretical processes, summarized as:

All-or-none attention model, and weighted integration model. These models

posit a sort of zero-sum information processing paradigm, in which any at-

tention devoted to one stimulus necessarily robs attention from an unattend-

ed stimulus. The former model assumes that this works like a switch-at-

tending to one stimulus essentially completely ignores another stimulus-

whereas the latter assumes a sort of linear transfer function between two

stimuli, where attention can be "shared" between them, albeit with lower

processing efficiency for each.
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Serial coding models. Many influentual models of perception characterize

the initial internal representation of a stimulus as being held in a sensory

register, which is assumed fairly rich but unprocessed, and which must be

processed relatively quickly lest it decay while in temporary storage in this

register. Some view attention in this regard as a switch [Broadbent 58] or a

filter [Treisman 69] which determine what information was retrieved from

the register for further processing. [Rumelhart 70] characterizes this mech-

anism as a feature-extraction process, in which individual features are seri-

ally extracted and coded from this register.

Note that much of the debate about a single locus of attention seems rooted in more

fundamental conceptions of how the mind works, in areas unrelated to selective attention

per se. There is a long history of dealing with the mind as if it possessed a homunculus

somewhere, leading to theories whose explanatory powers are negligible. Dennett and

Kinsbourne, for example, feel this problem keenly [Dennett and Kinsbourne 92]. In report-

ing research results concerning the perception of subjective time, they spend considerable

effort first demolishing the Cartesian Theater model of the mind, in which the mind is pre-

sumed to have some place where "it all comes together." Their research instead supports

what they call the Multiple Drafts model, in which discriminations in multiple modalities

are not registered and synchronized before "presentation" to "consciousness," but instead

are distributed in both space and time in the brain. The arguments that they present in

demolishing the Cartesian Theater model are of the same sort required to demolish the

"single, serial" model of attentional processes, as delineated below.

Two of the major aspects of the problem concern arguments over early versus late

attention (e.g., whether attentional selection occurs before or after stimuli are coded into

categories), and which cognitive processes require attention, and are hence limited by

attention, and which do not. The major thrust of these arguments is to determine possible
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constraints in the processing architecture of the brain, so as to determine the overall and

detailed architecture of how the brain processes information. Unfortunately, many of these

architectural models are imperfect at best, and are surprisingly unhelpful in generating use-

ful architectures with sufficient explanatory power to permit either further analysis of the

system, or its reproduction (e.g., as a program).

The vast majority of studies of attention concentrate on visual attention. Of those, many

are detailed neuroanatomical studies of either humans or other primates (often via lesion

studies or examination of pathological cases). Others are performance tests of healthy

human volunteers. A small percentage deal with auditory attention, with an almost insig-

nificant percentage examining other forms of attention. This means that examples of atten-

tion are heavily biased towards human (or at least primate) visual attention only.

Such studies of attention are examining a system (namely, human cognition) which is

far more complicated than those yet investigated in machine learning. Consequently, while

they serve as interesting inspirations for approaches to try, it is not claimed that the

research in this thesis either explains anything about mammalian visual attention, or that

such studies necessarily will lead to a direct implementation.

5.2.2 The plausibility of attention as a system of limitations

There is a very widespread view that the need for selective attention stems from funda-

mental limitations in cognitive processing power in particular portions of the brain, and

that, if the brain were to have infinite computational power, such attentional limitations

would be unnecessary. This is argued over a span of decades by [Broadbent 58]

[Broadbent 71] [Broadbent 82], among many others. He and others view attention itself,

therefore, as a limited-capacity system, one which must be shared by many processing

stages and whose capabilities are therefore competed for by various portions of the brain.
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This view also espouses that some tasks are "automatic" and hence do not require

attention, presumbly by using portions of the brain whose capacity is not as severely lim-

ited [Kahneman 73]. The appeal of dividing cognition up in this rather intuitive fashion, of

course, is that, if one could identify the bottlenecks, one might begin to get a handle on how

cognition is structured.

Allport [Allport 90] describes Treisman's feature-integration theory (FIT) [Treisman

and Gelade 80], [Treisman 88] as one of the best-known of the theories that equate atten-

tional mechanisms with intrinsic bottlenecks in processing. It includes careful character-

ization and theoretical arguments that, according to the theory, necessitate serial focusing

on each item to be perceived in turn in order to correctly perceive objects that must be dis-

tinguished by conjunctions of separable features. Yet, immediately after describing Treis-

man's (and others') theories of attention, Allport (quite rightly) takes issue with much of

the terminology of the field; even what is meant by the word selection is ambiguous: Does

it mean "any task-dependent modulation of sensory neuronal responses?" "Selective facil-

itation?" "Attentional tagging?" "Selective feature integration?" "Entry to a limited-capac-

ity short-term memory store?"

The term attention has similar problems in cognitive science: [Johnston and Dark 86]

ask whether attention is some hypothetical causal agency which can be directed or focused

on an entity (with the result that this entity may be "selected"), or an outcome, characteriz-

ing the behavior of the whole organism. They point out that most current attentional theo-

ries postulate the above hypothetical causal agency, but that there is a great deal of drift

between the two concepts; they also mention that, in most contemporary theories, this

causal agency "has all the characteristics of a processing homunculus," which does not

help us to understand the underlying mechanisms.
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Many of the assumptions about cognitive architecture adopted by models of attention

appear in the following list, adapted from [Allport 90]:

- Information processing follows a linearly ordered, unidirectional sequence

of processing stages from sensory input to overt response. Parallel or recip-

rocal processing is disallowed in this model.

- Such a sequence is already known, or can be assumed a priori.

- The processing of nonsemantic attributes occurs before processing of se-

mantic attributes.

- Spatial attribute and relation processing logically precedes categorical or

semantic distinctions. There is just one locus of attentional selection, hence

it can be early or late, but not both.

- Attentional selection therefore serves as a gate for any further processing to

be performed; whatever does not make it past this gate will be remain un-

processed.

- There exists a single "central system" of limited capacity, responsible for all

cognitive processes that "require attention," which can only be bypassed for

"automatic" processes (defined, of course, as those which do not "require

attention").

I will detail below only a few of the ways in which, as mentioned in the introduction to

this section, this set of assumptions has begun to fall apart. But as an overall trend, there is

growing pressure to develop a theory of attentional selectivity and control, rather than the

current conception of attention as being a passive informationfilter.

Let us start at the top. If processing is inherently serial, why does the brain seem to have

separate processing for "what" versus "where" information? Consider the primate visual

system, composed of at least twenty different modules [Desimone and Ungerleider 89]

[Ullman 91]. These modules can be broadly grouped into the ventral system, crucial for
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form-based object recognition, and the dorsal system, responsible for spatial vision and

coordination [DeYoe and Van Essen 88] [Ungerleider and Mishkin 82]. This "what" ver-

sus "where" system is quite well established in the literature of visual attention, and poses

a rather embarrassing problem for the "single, serial" assumption above. (Indeed, [Felle-

man and Van Essen 91], to pick only one of many similar papers, demonstrate that among

32 areas that are associated with visual processing in the primate visual cortex, approxi-

mately 40% of all possible connection pathways between the modules actually exist! This

makes cortical visual processing organization look more like a bush than a hierarchical or

serial system, and does not even include the straightforward reciprocal neural connections

in each cortical area; see the discussion immediately below.)

Worse yet, almost everywhere in the cortex, the "forward," afferent connections that

one would expect (leading from the retina toward higher centers of processing) are paral-

leled by equally rich, "backward," or efferent connections [Ullman 91]. If all processing

proceeds in the afferent direction, what are all of those reciprocal connections doing there?

Many have proposed ideas: for example, [Mumford 91] proposes that each cortical area is

responsible for updating and maintaining knowledge of a specific aspect of the world, at

any given level from low level raw data to high level abstract representations, and that the

multiple, often conflicting hypotheses which result are integrated by thalamic neurons and

then sent back into the cortex, making the thalamo-cortical loop a sort of "active black-

board" system and thereby explaining the density of reciprocal cortical connections.

Ullman [Ullman 91] has proposed a particularly interesting idea with his sequence-

seeking counterstreams model, in which he posits that the neocortex searches for mappings

between "source" and "target" representations, exploring both "top-down" and "bottom-

up" a large number of alternative sequences in parallel. 4 Finally, even though most dia-

grams of the visual cortex show each module interacting with a few nearby ones in a semi-
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well-behaved processing mesh, almost every module also has a direct connection (e.g., an

output pathway) to some motor or action system, forming a number of direct, parallel links

between sensory and motor systems that could potentially bypass all levels of higher pro-

cessing [Creutzfeldt 85]. What are those links doing there, if the "single, serial" model is

correct?

It has also been argued by many that tasks conforming to what [Kahneman and

Treisman 84] call the "filtering paradigm," in which the to-be-selected visual items are

cued by nonspatial visual attributes such as color or size, may instead depend on selective

cueing by location [Butler and Currie 86, Johnston and Pashler 90], and that where this

spatial separation is absent, performance drops [Johnston and Dark 86]. This tends to

imply that many "early selection" paradigms of visual attention may instead correspond to

spatial selection.

But the picture is murky even in spatial selection. For one thing, extensive experimen-

tal evidence reveals many different coordinate systems and corresponding transformations

along the path from the retinotopic input through the cortex. For example, [Allport 90] pro-

vides a virtual laundry list of such transformations, mentioning some that take account of

eye and head position, some that code location in terms of arm- or body-centered coordi-

nates, and some based on environment- and perhaps object-centered coordinate systems; a

small sampling of work in this area can be found in [Andersen 87] [Andersen 89] [Ellis et

al 89] [Feldman 85] [Hinton and Parsons 88] [Marr 82] [Soechting, Tillery, and

4. Such counterstream architectures, if they exist in the brain at all, may no longer be unique to it, how-

ever. Bob Sproull of Sun Microsystems has proposed [Sproull 94] a novel, "counterflow pipeline" architec-

ture for advanced, pipelined RISC CPU's which shares many remarkable features with Ullman's

counterstreams model of processing. Instructions and results propagate in opposite directions in a processing

ladder, interacting with each other as they pass, and employ only local interaction (e.g., only within a ladder

level, or between two adjacent rungs of the ladder). Such a design also admits an asynchronously-clocked

implementation, making it more similar to possible cortical models such as Ullman's. However, the intersec-

tion between cognitive science and machine architecture is understandably not what it could be: neither Ull-

man nor Sproull had heard of the other's work.
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Flanders 90] [Zipser and Andersen 88]. This does not even include the many lesion studies

which investigate neglect in various coordinate systems after brain damage.

If recent results seem to put nails in the coffin of attention as a serial, feedforward,

strictly limitation-based strategy, what models are proposed instead? [Allport 90] argues

that the influence of attention in noncategorical, spatial-vision systems is of the form of

enhancement of neuronal responsiveness in attended locations, rather than attentuation of

unattended locations, and that many results involving delays in attending to stimuli reflect

the time cost of disengagement from the cued location, rather than withdrawal of process-

ing resources from the uncued location. (He also notes work, such as [Driver and

Tipper 89], which points out the problems with equating "no processing" and "no interfer-

ence.")

Indeed, lesion studies such as in dorsal simultanagnosia, in which the patient perceives

only one part of any given object even though his visual field is often full and complete,

seem to indicate that such damage leads to an inability to disengage from one part of the

visual field in order to shift attention to a different part of it: unilateral lesions

[Posner et al 87] [Morrow and Ratcliff 88] can lead to problems shifting attention to the

contralateral side, and full simultanagnosia can lead to problems shifting attention in any

direction [Luria et al 63].

Viewing attentional processes as a process involving commitment of resources, rather

than filtering, leads [Crick and Koch 90], for example, to suggest that attention facilitates

local competition among neurons: in other words, when a local group of neurons is not

attended to, it can have multiple (ambiguous) outputs, but attention then narrows down the

possible outputs, forcing disambiguation. This view of attention is quite different from that

of protecting the limited computational power of a single center from overload.
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This argument for a multiplicity of attentional mechanisms, each "specialists" in a par-

ticular cognitive area, fits in nicely with the Society of Mind hypothesis [Minsky 86].

While Minsky posits that many of the aspects of attention have to do with limits (e.g., lim-

itations in processing leading to the intuitively serial feeling of thought, or limitations in a

particular agent's ability leading to inability in tracking multiple locations simultaneously),

the theory does not say that there is a single limit anywhere-only that different agents will

likely contribute different limitations.

The existence of multiple loci of attentional control are reinforced dramatically by

[Mangun, Hillyard, and Luck 90], who use a combination of MRI brain images, behavioral

data, and event-related brain potential mapping. While this research comes down rather

strongly on the side of "early" selection (since the effects cited occur very quickly, within

150 msec), [Sperling, Wurst, and Lu 90] introduce a new theoretical construct, attentional

"tags," through which visual item traces may be selected from short-term memory, rather

than positing a single filter. Such an interpretation is completely in support of multiple loci

of attentional control.

It is interesting to note that the majority of even current work in the machine learning

community still treats attention as a single, serial pathway, and structures its systems

accordingly. (See, for example, Figure 17, on page 104, from [Markovitch and Scott 93],

and the discussion in Section 5.1, on page 102.)

One reason for this might be that current machine learning systems are still too primi-

tive to take advantage of architectures rich in reciprocal connections, or that contain multi-

ple loci of control or information processing. For example, the bulk of this thesis concerns

itself with single-agency pruning, of the type of "limitations and bottleneck" school so den-

igrated above. In addition, the sensory and cognitive system modelled in this research is

greatly simplified compared to even the most rudimentary levels of human cognition;
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many insects might have more sensory processing abilities, and even the simplest mammal

must be better at memory and generalization. 5

Just because the evidence for a single, serial control of attention no longer appears to

be compelling is no reason, of course, to discount much of the work that has been done in

attention. While it may not be the case that an explanation of one particular aspect of atten-

tion explains all of attention (either in that modality or others), there are many probably-

correct explanations of parts of the attention puzzle. Unfortunately, few have implemented

their theories, possibly because many of them are insufficiently precisely described for

such implementation. This makes it even more difficult to determine which theories might

be correct.

For example, [Chapman 90] cites several aspects of visual attention, such as results in

covert attention [Posner et al 80], and the winner-take-all addressing pyramid in [Koch and

Ullman 85] in support of visual spotlight search behavior. [Treisman and Gormican 88]

have done extensive research on visual pop-out behavior in visual search routines; for sur-

veys of visual search in general, see [Julesz 84] and [Treisman and Gelade 80]. But Koch

and Ullman did not implement their theory; in fact, Chapman's work is one of the few to

implement several subtheories of visual attention.

It may be, as machine learning systems become more sophisticated, employing multi-

ple processing strategies in a richly-connected information architecture, that they will be

better positioned to take advantage of current thinking about attention in cognitive science.

5. Although the lack of generalization in the schema system, as currently designed, does seem to put it on

a par with certain insects. For example, bees apparently remember places retinotopically-if they learn a

shape with one part of their eye, they can only recognize it again with that same part [Christensen 94]. Bees,

which have magnetite in their abdomens as part of their navigation system, face magnetic south (or magnetic

northwest in certain cases in which south is infeasible) when encountering and departing targets of interest.

By doing so, they can image the target in the same orientation; rather than rotating a mental representation of

the target, they simply rotate their real eyes instead until a match is acquired. Artificially imposed external

magnetic fields lead to predictable perturbances of this behavior.

122

Chapter 5 Related Work



Chapter 5 Related Work

Organizations such as the subsumption architecture [Brooks 86], for example, or the Soci-

ety of Mind [Minsky 80] seem as if they will be logical computational testbeds for imple-

menting computational verification of multiple-loci attentional models.

Indeed, as shown by the some of the systems mentioned in Section 5.1.3, particularly

the multistrategy systems of Hunter, Ram, Cox, and others, the increasing complexity of

modern learning systems is forcing implementations of the control of their attentional

focus down just the sort of pathways that the multi-locus models of modem cognitive sci-

ence might lead one to expect.
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Chapter 6: Conclusions

6.1 The effectiveness of focus of attention

The results described earlier in this thesis demonstrate that mechanisms for focusing

attention can greatly decrease the amount of work required by a learning system. Both

goal-independent and goal-dependent focus methods can be employed simultaneously,

decreasing the work of learning (and hence increasing its speed) by taking advantage both

of invariant characteristics of the world and of guidance provided by the set of goals that

the agent must achieve.

Because these methods can decrease the rate of growth of a fundamentally 0(n2) pro-

cess, their effects only increase as the size of the problem or the number of known facts

increases. This research showed combined improvements of over a factor of 50; longer

runs would have shown even more.

In addition, it was demonstrated both qualitatively and quantitatively that the correct-

ness and completeness of the learning performed in the systems studied was not impaired

by these techniques. One pays a price for them, namely having to perform more experi-

ments in the focused case to learn roughly comparable amounts of knowledge about the

world, but this price is quite small compared to the increase in efficiency that results. It is

possible that there are many other systems which can utilize similar techniques to achieve

faster learning without substantially sacrificing correctness or relative completeness.

As mentioned in Section 3.3.1, on page 49, and in Section 4.4.1, on page 86, the results

presented here are primarily from the infant/eyehand scenario. However, a smaller number
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of similar runs have been performed in the Hamsterdam scenario, with comparable results.

Given the approximate similarity of sensor systems and action repertoires in the two sce-

narios, this is unsurprising, but reassuring. The Hamsterdam scenario additionally offers

the potential for more interesting goal sets, due to the more dynamic world available-

there are many opportunities available there for more sophisticated experiments involving

goals and their control.

In short, using focus of attention is one of the many techniques that can and should be

employed to allow autonomous agents to learn more about their environment with less

computation. This can allow certain applications, which formerly ran too slowly to be prac-

tical, to be run at more reasonable speeds.

6.2 Future work

There are many ways in which this work might be improved or extended. A represen-

tative sampling of such ideas follows.

This is clearly far from an exhaustive list. Indeed, viewed in a larger context, the ques-

tions from [Maes 94] are still very much with us. Focus of attention cannot hope to address

all of those questions, but many of them might be partially answerable by using more

sophisticated focus mechanisms. This is an area deserving of future investigation.

6.2.1 Generalization and abstraction

One of the most frustrating aspects of the current schema system concerns its inability

to generalize in certain ways. The synthetic item machinery allows one form of generaliza-

tion, which is important for shifting to different levels of abstraction, but the implementa-

tion used in this research lacks composite actions, which severely limits the sort of

generalizations that might be made. Even with this machinery in place, simple generaliza-
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tion across a category of input would be very useful; 1 currently, the learning system

requires several examples at each point in the state space and therefore does not perform

this sort of generalization. This research has not addressed the details of what would be

required to function effectively in a learning system which employed such types of gener-

alization.

The focus system as currently implemented does not explicitly address different levels

of abstraction in the learning system. A system which created explicit categories at various

levels of abstraction would require some form of support for focus; how to do this well is

an open problem.

6.2.2 Filtering

In addition, the overall focus mechanism as implemented decides how tofilter its per-

ceptions, cognition, and actions based on characteristics of the domain and its current set

of goals, analogously to certain ideas about attention as a system of limitations that were

questioned in Chapter 5. It does not reason at a metalevel about the goals themselves,2 nor

does it use multiple concurrent learning mechanisms or multiple simultaneous processing

pathways. As such, there are large opportunities for further work using multistrategy learn-

ing and recent, non-filter-based, multi-locus ideas from cognitive science. Such work could

enable a more sophisticated action selection system.

1. An example would be automatically inferring that, if moving the eye right causes an object to appear to

slide left from one particular visual location to another (e.g., by turning off one visual item and turning on

the visual item to its left), then this would be true at all points in the retina. Such generalization would

require a retinotopic map (e.g., not the unordered "bag of bits" currently employed) so that concepts such as

"to the left of" could be inferred without exhaustively acquiring data about every adjacent pair of visual

items. Without such a map; there is no way of even determining adjacency without such exhaustive experi-

mentation. Such a retinotopic map is assumed in particular goals defined here (e.g., we assume that we know

a priori, due to hardwiring, which coarse visual items actually correspond to the fovea, in certain goals), but

this is not a general mechanism and cannot really be used by the schema system per se in order to increase

its representational power.
2. For example, to change their hardwired mapping from the goal to the allowed set of percepts and

actions.
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6.2.3 Experimental strategy

In addition to the above ideas about the action selection system, a more intelligent

experimentation strategy would be welcome. In particular, within the currently-allowed set

of actions specified by the active goals, actions are chosen randomly. This leads to explo-

ration of the state space in a manner which is probably quite inefficient. Consider the figure

below, from [Thrun 94]. In this figure, we have a robot which must simply navigate from

.0I | . .. 1

n states

Figure 19: A task which is 0(1) with counters, and 0(2") without

one end to the other, without learning. If the robot takes steps randomly either to the left or

to the right, its expected time to reach the goal is exponentially bad, e.g., 0(2"). If, on the

other hand, the robot is allowed a counter-based approach in which it simply drops a

counter on each visited square, and picks a square without such a counter when it can, its

performance improves to 0(1). Indeed, it has been proven that, subject to some simple and

common assumptions 3 any learning technique based on random walk is inefficient in time

[Whitehead 91a] [Whitehead 91b]. On the other hand, even a very simple strategy such as

''go to the least visited neighboring state" can reduce this inefficiency from exponential,

e.g,. 0(2") time to polynomial, e.g., 0(n2) time, regardless of whether or not one has a

model that can predict the next state from the current one [Thrun 92] [Thrun 94].4

3. These are: a state space which is finite, deterministic, and ergodic (e.g., no states from which, once

entered, the agent cannot escape), in which the agent receives a reward only in the goal state; there is no

information available about the domain a priori; random actions change the distance to the goal state by only

+1, 0, or -1, and can be expected to increase the distance to the goal on the average; and, finally, the size of

the state space is polynomial in the largest possible distance to the goal state, e.g., the depth of the state

space (this holds for most state spaces studied in literature, e.g., grids of arbitrary dimensionality).
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The system explored in this research does not quite meet Whitehead's conditions. In

particular, because of the stochastic characteristics of the domain microworlds studied, in

which other entities may move and hence change parts of the state space, and because of

the effects of sensor aliasing [Whitehead and Ballard 90], the system is nondeterministic.

Similar results do not exist for nondeterministic domains, and for some malicious domains,

it can be shown that any exploration technique will take exponential time to find a goal

state [Thrun 92].

Nonetheless, given domains which are not malicious, and which are not too stochastic,

it is quite possible that some sort of counter-based approach could increase the rate at

which relatively-unexplored parts of state space are encountered, hence decreasing the

amount of work per generated schema. One possible (but untried) approach would there-

fore be to use something akin to prioritized sweeping [Moore and Atkeson 93]. An even

simpler approach could be to always pick that action A for which the average reliability of

all currently-applicable 5 schemas containing action A is minimized.

6.2.4 Goals

The goal system implemented here is unsophisticated. It is unlikely to scale well to

large numbers of goals, in part because of its rather nonhierarchical space of goals, and in

part because goals and their relations to each other must currently be hardwired. It also

offers little support for multiple concurrent strategic (as opposed to tactical) goals, or for

sharing work between goals, nor do goals reason about their performance at a metalevel in

order to better guide the learning, as is done in some current multistrategy learners

[Hunter 94] [Ram and Leake 94]. A system which learned useful mappings from goals to

the correct strategy for focus of attention, rather than having such a strategy hardwired in

4. Such a predictive model does help, but the problem is still 0(n2).

5. E.g., context satisfied, meaning that their context agrees with the currently perceived state of the world.
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for each goal, would also be quite useful. It would extend the current work from the realm

of very simple animals further up the phylogenetic tree, and may help some of the probable

scaling issues in the current design.

6.2.5 Occasional defocusing

The focus system's selectively is a bit sharp; it is essentially an all-or-nothing sort of

focus. One that occasionally defocused might lead to more opportunistic exploration of the

space without undue cost; integrating this into the system in an intelligent way touches

upon many of the explore/exploit problems mentioned in [Maes 94].
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Appendix A: System Architecture

Figure 20, on page 132, summarizes the architecture of the two testbeds built for this

research. In general, the learning system is connected "at arm's length" to the microworld.

The learning system can only send simple commands (one of a small number of actions) to

the microworld, and it only receives what sensor information the microworld transmits

back. It does not have access to internal microworld state.

The learning system is the same in either scenario. As shown in Figure 20, it contains

the schema system proper (which consists of, essentially, a reimplementation of Drescher's

schema system [Drescher 91] without certain elements),1 plus the goal-independent focus

mechanism described in Chapter 3 and the goal-dependent mechanism described in

Chapter 4. The action selection system picks actions at random in both the unfocused reim-

plementation of the original algorithm and in the goal-independent work described in

Chapter 3, but is informed by the goal system in the further work described in Chapter 4.

In addition, the learning system contains a large amount of diagnostic and performance-

monitoring code, from which the results (in terms of work per schema, etc) described in

this research were derived.

The microworld used in each scenario is, of course, different. In the case of the

infant/eyehand scenario, it runs in the same process as the learning system, though its only

connections to the learning system are via the aforementioned sets of actions and sensory

bits. In this case, the entire system was implemented as a single process in Lisp under Sym-

bolics Genera. 2 The microworld itself has no sophisticated rendering apparatus; instead,

1. Such as the composite-action system or the mechanism for computing delegated or instrumental value.
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simple character-based diagrams can be produced of its current state for inspection, evalu-

ation, and debugging.3

In the Hamsterdam scenario, however, the microworld is a separate process, imple-

mented as C and C++ code using SGI Inventor, and runs on a Silicon Graphics worksta-

tion. Hamsterdam includes sophisticated, real-time, three-dimensional graphic rendering.

It communicates with the learning system (in this case, implemented in Harlequin Lisp-

Works and running in a separate process, on either the same machine as Hamsterdam or a

different one) via a network connection consisting of a UNIX TCP socket.4 This proved to

be implementationally less than ideal, but of no interest theoretically, because the already-

enforced "arm's length" relationship between the learning system and any associated

microworld already decreases the possible coupling between the learning system and its

microworld to a very loose connection.

In both cases, the Lisp portion of the system (learning system and microworld in the

infant/eyehand scenario, or the learning system only5 in the Hamsterdam scenario) could

be snapshotted to disk and restored later using a component called the snapshotter. This

was an implementation convenience to make it easy to duplicate runs with different param-

2. Since the system is coded in Common Lisp, it could run under any Common Lisp implementation, how-

ever. It currently runs under Symbolics Genera and Harlequin LispWorks, and ports to other lisp implemen-

tations would be extremely straightforward.
3. A simple, colorful, graphical representation of this world was also constructed to demonstrate certain

aspects of the early system, but was essentially equivalent to the character-based diagrams in content.

4. Were LispWorks able to directly incorporate the code and libraries of Hamsterdam, the learning system

and Hamsterdam could run in a single process. However, because they were required to run in separate pro-

cesses due to limitations in currently-released versions of LispWorks, there is no reason why any learning

system, running on any other machine, could not be substituted for the current configuration.

5. The state of the Hamsterdam microworld cannot be so preserved in the same fashion, having never been

designed for it. Thus, strict reproducibility of runs in the Hamsterdam scenario is not possible, due to the dif-

fering environments that would be faced even by "identical" runs of the learning system. This makes the

Hamsterdam scenario slightly more difficult for debugging, since events would not always unfold identically

even if the same code were to be run.
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( Moves only under control
of learning system

O Moves autonomously

Network connection
(TCP socket)

Figure 20: System architecture of both scenarios

In the infant (top) scenario, everything runs in a single process. The
only object under control of the learning system is the infant; the other
objects in the world occasionally move by themselves.

In the Hamsterdam (bottom) scenario, the learning system runs in

one process, and Hamsterdam runs in a separate process. The only

object under control of the learning system is the puppet; the hamsters
and predators are free to wander around autonomously, and do so con-

tinuously.
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eters, or to return to a long run after a reboot, given that the unmodified, unfocused system

could take up to 3-4 days to produce 3000 to 4000 schemas. 6

A communications signature of the interactions between the learning system and any

given microworld is summarized in Figure 21, on page 134. It is expressed in the typical

fashion for network protocols, as a Feynman diagram. In general, there is a lockstep rela-

tionship between an action being requested by the learning system, and the corresponding

sensory bits being returned by the microworld after the action has been performed. This

lockstep relationship, while perfectly reasonable in the infant/eyehand scenario, is less

realistic in a more dynamic microworld, such as that employed in the Hamsterdam sce-

nario.

Because of this difference in microworld characteristics, the communications protocol

employed for the Hamsterdam scenario was slightly modified. An explicit null action, not

present in the infant/eyehand scenario, was introduced. Like any other null action, it is able

to be part of a generated schema. Strictly speaking, such a null action could simply be mod-

elled as an action that never produces any detectable result, except for taking some amount

of time (and, indeed, this is exactly how it was implemented). However, it serves as a

placeholder in the schema system to model the result of not doing anything, which is itself

an important concept in a dynamic world.7

6. While the snapshotter's contribution was considerable early on in the course of this research, its utility

steadily decreased, because each successive refinement to the learning system, as described in later chapters,

served to increase the speed of the resulting system and thereby decrease both the real time and the compu-

tational work of producing equivalent states. In some cases, when using the most highly-selective learning,

runs of useful size could be produced in an hour or two-a considerable improvement.

7. Consider a robot which must outwit a motion detector. If it never stops and waits, it will never have a

chance to observe the little red light on the motion detector go out. This means it will never be able to corre-

late its motion in the environment with the behavior of the motion detector, since the detector will always be

detecting movement, and the light would always be on.
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Infant/Eyehand scenario

Leaminq system Microwo rid

tAction NwMicrowvord state

Action

Ne mcrowotid state

Hamsterdam scenario

Figure 21: Communication signature for both scenarios

Time flows downward in both diagrams. In both scenarios, the learning

system requests an action, has it performed in the microworld, and gets a set

of sensory bits returned. In the Hamsterdam case, an explicit null action is

also possible.
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By explicitly representing null actions, we allow changing the ratio of the number of

"real" actions performed to the number of "null" actions performed. Let us define this ratio

as follows:

A
0 A

where A is the number of "real" actions taken over some interval, OA is the number of

"null" actions taken over the same interval, and a is therefore a measure of behavior: if a

is substantially less than unity, the behavior of the system can be said to be shy or inhibited,

whereas if a is substantially greater than unity, the system's behavior can be said to be out-

going or audacious, to use some rather anthropomorphic terms. The parameter a thus

behaves vaguely like the level of limbic-system activation in the mammalian brain. When

the learning system is outgoing, taking action most of the time and never pausing to watch

the world go by, it can learn a great deal about the effects of individual actions it takes, but

not how the world functions if it were not taking actions at all. Conversely, when the learn-

ing system is shy, not taking action and instead observing how the state of the world

changes when it does nothing, it can learn how doing nothing affects the world.8

There is a secondary reason why null actions were introduced. The Hamsterdam micro-

world is continually updating its internal state, because its agents operate in real time, and

it must continue to update so as to re-render the scene and preserve the illusion of a

dynamic, changing world. Such updating happens several times a second, which is sub-

stantially faster than the learning system can keep up with the world on the current hard-

8. If the system were provided with a much more sophisticated source of data about the world, which cor-

responded to being told about the actions taken by other agents in the world, it would be possible for it to

learn the correlations between other agents' actions and their effects. However, no source of data like this

exists in the current scenarios studied; to make such a source available, the control structure of the learning

system would have to be modified to substitute other agents' actions for its own while computing statistics

and producing schemas. Presumably, the right time to make such a substitution would be when the agent is

otherwise performing a null action, or some action whose result is "overlearned" and hence whose results

are no longer interesting to the learning system.
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ware, even with the improvements described in later chapters. Were the learning system to

accept every update, it would be forced to discard many of them, or it would lag further and

further behind the current state of the world. Yet, the microworld cannot be expected to

know how fast the learning system can run. (Any such attempt would be doomed to failure,

given that the learning system's running speed varies dramatically based on what sort of

focus it employs and how much it already knows, and because both the learning system and

Hamsterdam are not tied to particular platforms.)9

Null actions provide an explicit solution to this dilemma. By allowing the learning sys-

tem to dictate exactly when it receives sensory input (it always gets one update after any

action, whether real or null, no more and no less), the learning system polls the microworld

for sensor updates. Therefore, the microworld's sensor update rate is throttled by the learn-

ing system. This is reasonable, since more-frequent updates would be useless to the learn-

ing system anyway. If the learning system is quite slow in requesting updates compared to

the speed at which the microworld runs, it will miss many important events and may in fact

not learn anything useful. Thus, any real agent employing this approach would have to be

placed in a situation where its cognitive speeds are up to the task of the world with which

it must interact, a familiar problem in both engineering and biology, or would at least

require the ability to be infrequently but quickly interrupted if some high-priority sensory

signal (such as being about to go over a cliff) demanded prompt attention.

9. The learning system can run under Symbolics Genera, at a variety of speeds depending upon the type of

Lisp Machine in use, or under Harlequin LispWorks, again at a variety of speeds depending on the type of

SGI used. Hamsterdam can run on many kinds of SGI platforms, each at a different speed.
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Appendix B: Implementation of Efficient Planning

B.1 Introduction

This appendix provides some details of how certain parts of the planning algorithms

were implemented. Perusal may help to clarify why certain things were done the way they

were, and give some insight into where difficulties remain.

These planning algorithms were designed to run essentially nonincrementally, e.g.,

they do not amortize their effort over the learning lifetime, but do all of it at the end. In a

real agent, of course, a system that incrementally built or modified the data structures

would be more appropriate.

Note that all of these algorithms were developed for use on a serial machine. Parallel

machines may be able to finesse some of these problems by doing their planning in a par-

allel fashion-at least as long as the problem does not grow larger than the number of

available processors, of course.

B.2 Reachability

The first requirement when attempting to plan a path from one schema to another is to

be assured that there is, in fact, such a route. Simple explorations of a digraph composed of

several thousand schemas will run exponentially slowly and are completely unsuitable;

other algorithms, such as the iterative deepening algorithm discussed in Section B.4, on

page 140, will fail to terminate if called to compute a path that does not, in fact, exist.

The general idea is to function like a depth-first, mark-sweep garbage collector. We

build a root set of all schemas with null contexts and non-null results. (Such schemas must
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be at the start of any chain, since, with null contexts, they cannot be chained to.) For each

root object, we traverse the set of all schemas with non-null contexts. If we find an

unmarked schema whose context chains from the result of the root object, we add it to the

chain being built, mark the schema we just found, and then use the new schema as the base

of a chain to be recursively extended. At any point during this process, we abandon the

attempt to extend the chain if we either cannot find a next schema to chain to, or if the next

schema is already marked (to prevent loops)-a marked schema must, by definition, have

already had its chain traversed, or to be in the process of having its chain traversed at the

moment. Since schemas are never duplicated and are therefore guaranteed unique

[Drescher 91], we cannot find that the first schema we find to extend the chain is already

marked, since the only way that two contextless schemas in the root set have the same next

schema in the chain is if their results are identical, and we just assumed that this cannot be.

Therefore, every schema in the root set that has any next schema will eventually wind up

pointing at such a next schema.

While extending the chain is depth-first, we also go breadth-first in finding other sche-

mas that might extend the chain from this schema for the case where this schema's result

might chain to more than one other schema at this level (e.g., if the current schema is

A/FOO/B, then valid next schemas are both B/BAR/C and B/BAZ/D, where there are two dif-

ferent actions leading from the same context to [same or different] results [C might or

might not equal D]).

When we extend a chain from schema A to schema B, we push B onto a list maintained

by A. At the end of this mark-sweep process, each schema contains a list of all other sche-

mas that can possibly be reached, by any path, from that schema. This constitutes the

reachability information. This is a relatively expensive operation; it can consume several

minutes on a fast Lisp processor. 1
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Note that the root set does not need to be regenerated when performing or recovering

from a lobotomy; this is explained further in Section B.3 below. This means that it may be

generated once for some particular set of schemas, and never regenerated unless schemas

are added to the knowledge base (schemas can never be subtracted).

The reachability results generated display interesting properties. In particular, there

exist "islands" of connections, such that any schema in an island is reachable (via some,

possibly quite convoluted and low-reliability) path from any other schema in the island.

(This is all the more interesting when one considers that schema chaining generates a

digraph, but islands of connections are generally connected in both directions.) As one

increases the number of schemas in the knowledge base, the initially large number of small

islands decreases, as the average size of each island increases. A knowledge base of 3000-

4000 schemas typically displays on the order of half a dozen such islands, which among

them completely partition the space.

B.3 Cached (lobotomized) reachable schemas

Given the above reachability information, we can relatively quickly compute a related

concept, namely those schemas reachable from some given schema when the knowledge

base has been lobotomized. For some schema still in the knowledge base, we can compute

this by doing a mark-sweep along the schema's precomputed reachable schemas, immedi-

ately abandoning any path which mentions a schema in a lobotomized section.

In practice, we do not do this exhaustively for every lobotomy; instead, we maintain a

hash table which caches lookups for any given schema. If some caller wishes the reachabil-

ity information for a schema, it retrieves the cached information if present; otherwise, it

computes it as described above and caches the result.

1. E.g., a Symbolics MacIvory Model 3.
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Obviously, this cache must be flushed if the reachability criteria (e.g., the extent of the

lobotomy) changes.

B.4 Computing paths from one arbitrary schema to another

The above cached reachability information now makes it possible to (relatively)

quickly compute possible paths between any pair of schemas. In general, the number of

possible paths between any given pair of schemas is quite large (perhaps millions in large

runs); it would be helpful if we could quickly find just one path that is very likely to be the

"best" we could do, especially since we must find such a path for every possible pair of

schemas (e.g., hundreds of millions or billions of possible paths if looking at the full cross

product).

Note that this is subtly different from the description of chaining (Section 4.3.2.4.1, on

page 74) and path metrics (Section 4.3.2.4.2, on page 75) in the description of planning in

Section 4.3.2.4. There, we were talking about picking a best path from amongst the thou-

sands of possible paths from pairs of schemas the INITIAL and FINAL sets. Here, we are

talking about picking a best path from amongst the millions of possible paths between

some arbitrary pair of schemas. To put it another way, in Section 4.3.1.1, we were given

(relatively) small sets of schemas-perhaps 50 to 100 schemas in each of INITIAL and

FINAL. We had to find one path from some schema in INITIAL to some schema in

FINAL; we were free to choose both ends of the path, plus the path itself, subject to the

constraints of which schemas were in which set and the dictates of the path metric. Here,

must find,for each possible pair of schemas in the entire knowledge base, some "best" path

connecting that pair.

Thus, the problem here is as follows. We must compute, for the full cross product of

every schema (call it A) to every other schema (call it B), what path to cache for the route
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from A to B. Several approaches to the problem of computing a path from A to B are

described below; any such approach would then have to be run several thousand or more

times to generate the complete set of paths (e.g., a 3600-schema path could conceivably

have 36002 or about 13 million paths; in practice, the graph is never that fully connected).

There are several approaches which are clear losers, as can be predicted from the Al

literature on search problems (see, e.g., [Norvig 92], to pick a nice example). Depth-first

search, for example, tends to favor long paths, which is a disaster in this system: the longer

the path, the lower its expected reliability. A typical search in a large run might lead to a

path several hundred actions long, when the "best" path (determined, say, by the algorithm

described in Case 4 in Section 4.3.2.4.2, on page 75) might be only one or two actions.

Using A* search is an attractive possibility. Unfortunately, it is far too slow. Because

we do not have a heuristic function available to guide the search, it takes far too long2 to

search the space, and conses enormous amounts intermediate garbage (in the form of path

data structures and lists of them) in the process.

It turns out that using iterative deepening is in fact a very efficient way to generate

short, useful paths in this case. This is where the cached reachability information becomes

critically important: if we are guaranteed that some path exists between two schemas, then

iterative deepening is guaranteed to find it. (And, in practice, the path found is generally

half a dozen actions or less.) However, if no such path exists, then iterative deepening will

run forever. Specifying an arbitrary upper limit on the length of a path may unnecessarily

deprive us of a good path that is, e.g, just one action past our limit, but using reachability

information, we may confidently set the upper limit at (effectively) infinity without worry-

ing about failing to terminate.

2. Minutes to an hour or more on the aforementioned processor.
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Using iterative deepening in this way, we stop computing the path between any given

pair of schemas when we find thefirst one. Because of the way in which iterative deepen-

ing works, this path is guaranteed to be as short or shorter than any other possible path (if

it were not, we would have found some different path at a shallower search depth). Rather

than enumerate all such possible paths of this length, we simply assume that the first one

we find is "good enough." In practice, this is perfectly reasonable behavior.

B.5 Computing a path between the INITIAL and FINAL sets

Given some combination of evaluation parameters as described in Section 4.3.2.9, on

page 84 (e.g., the knowledge base of schemas to be evaluated, the extent of any loboto-

mies, and the path metric in use), we can build a cache of known-best paths from any pair

of schemas (one in INITIAL, one in FINAL) that we have investigated. (This cache must

be flushed if the evaluation parameters change.)

This works as follows. To recap the discussion in Section 4.3.2.5.4, on page 81, in the

naive (e.g., no-cache) case, when planning a path to reach a goal, we must compute, for

each possible pair of schemas in INITIAL and FINAL, the path from the selected schema

(call it A) in INITIAL to the selected schema in FINAL (call it B). (The computation is per-

formed, as it was in Section B.4 above, in an iterative depth-first manner.) Once we have

computed all such paths, we then run the path metric on each such path, and pick the path

with the best merit.

The iterative depth-first computation of the path from A to B will never change, how-

ever, as long as the evaluation parameters remain constant. We can therefore cache this

work, so long as we are careful to flush the cache if these parameters change. Hence, the

revised algorithm, before computing the path from A to B using iterative deepening, instead
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checks the cache, and uses the cached path if it exists. Otherwise, it computes the path, and

caches it.3

Using the cache in this way vastly speeds up computation of candidate paths. When the

evaluation parameters are first changed (and the cache therefore flushed), the very first

attempt at path planning generates several thousand to several tens of thousands of cached

plans between different pairs of schemas. The next attempt at planning (after an action has

been taken) generates a much smaller number of new entries in the cache, since many sche-

mas that were in INITIAL and FINAL in the previous step may still be there (since only a

few sensory bits in the world are likely to change at any given step). Empirically, the cache

tends to grow asymptotically to about 5% of the total number of possible cross-products

from all schemas to all other schemas, and does so in a small number (10 to 20) of actions

executed. This is true because many schemas never wind up in INITIAL or FINAL in any

given evaluation.

Hence, by caching the results of path lookup, we eliminate redundant calls to the itera-

tive deepening algorithm. By computing the path between any given pair of schemas only

on demand, instead of computing the entire cross-product, we decrease the required size of

the cache and the effort of computing all those paths by a factor of 20 or so.

B.6 The promise of randomized algorithms

Despite the care with which the algorithms described above attempt to avoid combina-

torial explosion and minimize redundant computation, they are still just barely in the

bounds of reasonability for runs of several thousand schemas. On current hardware, gener-

ating the complete set of cached reachable schemas for a run of 3000-4000 schemas takes

3. The cache is implemented as a simple hash table, keyed by a number unique to each possible ordered

pair of schema numbers. (For example, if x and y are the two schema numbers, a possible hash key could be

xn+y, so long as n>y.) Keying by a number eliminates consing and allows use of an EQL hash table, which is

extremely quick.\
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most of an hour. Generating the majority of the cached INITIAL/FINAL paths for a run of

that size can easily take another hour or more. Once several possible goals have been run

in the same evaluation cycle, the results of the caching start to pay off, but planning is still

somewhat slow, averaging a few seconds to half a minute or more (depending on the nov-

elty of the situation, e.g, how many initial/final pairs were already cached) per plan gener-

ated.

It seems clear that, short of parallel implementation (which can at least pull one degree

out of a polynomial blowup, at least until one runs out of processors), a better solution may

to make use of randomized algorithms such as so-called Monte Carlo algorithms. This was

not investigated in this research, but the significant speedups that randomized algorithms

can offer in quickly finding a close-to-optimal path is probably well worth the small prob-

ability of not finding the truly optimal path. Given the somewhat ad-hoc nature of both the

existing path metrics and the random nature of exactly which schemas have been created at

any point in time, it is unlikely that a well-written randomized algorithm would noticeably

degrade accuracy in path formation, and is likely to be orders of magnitude faster. This is

an area deserving of future research.
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