
A MODEL OF A MULTIPROGRAMMED

DEMAND PAGING COMPUTER SYSTEM

by

Judith Lynn Piggins

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQ.UIREMENTS FOR THE DEGREES OF

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September, 1973

Signature of Author

Department of Electrical Engineering, August 13, 1973

Certified by

Thesis Supervisor

Accepted by

Chairman, Departmental Committee on Graduate Students

A MODEL OF A MULT~~PROGRAMMED

DEMAND PAGING COMPUTER SYSTEM

by

Judith Lynn Piggins

Submitted to the Department of Electrical Engineering on

August 13, 1973 in partial fulfillment of the requirements

for the degrees of Bachelor of Science and Master of Science.

ABSTRACT

This thesis describes a model of a demand paging computer
system and provides samples of results obtained from experi-
ments made with the model. The model is implemented in PL/l
in a highly modularized and parameterized form. This form
facilitates adjustments to the model to enable it to be used
in simulating systems of many different types. The model is
well suited to comparative studies of systems where one or
more of the parameters of modules is systematically varied to
yield a spectrum of results. The output from sample runs is
discussed in some detail as an illustration of the use of the
model. Finally, some of the limitations of the model are dis-
cussed along with suggestions for extensions and improvements
to it and possibilities for further experiments.

THESIS SUPERVISOR: Stuart E. Madnick
TITLE: Assistant Professor of Management

ACKNOWLEDGEMENTS

A note of thanks is due first to Professor Stuart

Madnick who advised this thesis for his suggestions,

criticisms and support of the work. Appreciation is due

also to Professor F.J. Corbat6 for his interest and under-

standing during the course of the work described here.

Mr. Joseph R. Steinberg and Mr. Leo Ryan of the MIT Infor-

mation Processing Center were very helpful in providing

the calibration data used in the experiments described in

this document. Finally, the author is grateful to Mr.

Harry Forsdick and Mr. Charles Lynn for their suggestions

and encouragement throughout the development of the model

described here and their comments on the written results.

J.L.P.

Cambridge, Massachusetts

August, 1973

-3-

TABLE OF CONTENTS

Page

ABSTRACT 2

ACKNOWLEDGEMENT 3

LIST OF FIGURES 5

LIST OF TABLES 6

CHAPTER 1 - INTRODUCTION 7

Motivation for the Research 8
Overview of the Scheduling Pr-ocess 9
Summary of Related Literature 16
Summary of the Thesis 18

CHAPTER 2 - DISCUSSION OF THE MODEL 20

Overview 20
Description of the Model 27
Data Bases 32
Detailed Discussion of the Modules
Comprising the Model 38

CHAPTER 3 - SOME EXPERIMENTAL RESULTS OBTAINED
WITH THE MODEL 82

Parameter Values Describing the Simulated System 83
The Schedulers 92
A Word of Caution 101
Summary of Results from the Test Runs 104

Resource Usage 105
Job Behavior 115
Overall System Performance 125

Conclusions 133

CHAPTER 4 - LIMITATIONS OF THE MODEL AND SUGGESTIONS
FOR FURTHER STUDY 137

Limitations and Inaccuracies 139
Additions and Improvements 147
Some Further Experiments 157

APPENDIX A - HOW TO USE THE MODEL 163

APPENDIX B - LISTINGS OF THE TEST SCHEDULERS 177

APPENDIX C - SAMPLE OUTPUT PRODUCED BY THE MODEL 195

APPENDIX D - SAMPLE STUDENT ASSIGNMENT 213

BIBLIOGRAPHY 238

-4-

LIST OF FIGURES

Page

1-1 Basic Scheduling Scheme 11

1-2 Alternative Scheduling Scheme 14

2-1 General Form of Simulated System 25

2-2 Structure of the Model 28

2-3 Job Stream List Entry 33

2-4 System Event List 37

2-5. Main Loop of Supervisory Routine 41

2-6 General Form of Scheduler 45

2-7 Scheduler Data Structures 52

2-8 Curve Governing Time Between Page Faults 58

2-9 Example of Generation of Time Between Page Faults 60

4-1 Simple I/O Network 151

4-2 More Complex I/O Network 154

-5-

LIST OF TABLES

Page

3-1 Average Number of Jobs in Main Memory 106

3-2 Average Amount of Main Memory Assigned to Jobs 107

3-3 Average Number of Pages in Main Memory 107

3-4 Percentage of Maximum Possible Number of Pages
in Main Memory (Actual Main Memory Usage) 108

3-5 Total Number of Page Faults Incurred 109

3-6 Average Page Wait Time 110

3-7 Total Number of Peripheral I/O Requests Incurred 112

3-8 Average Peripheral I/O Wait Time 113

3-9 Average Time Between Page Faults 116

3-10 Average Time Between Peripheral I/O Requests 117

3-11 Average Percentage of Active Time in each
Traffic Control State 119

3-12 CPU Idle Time 125

3-13 Average Throughput 127

3-14 Average Turnaround Time for the Aggregate
Job Stream 129

3-15 Average Number of Jobs in System 130

3-16 Turnaround Time by Priority Level (Preemptive
Scheduler only) 133

-6-

CHAPTER 1

INTRODUCTI DN

This thesis describes a model which represents a single

processor, demand paged multiprogramming computer system and

generates jobs to be scheduled for processing by a scheduling

algorithm. The model is designed to facilitate the running

and evaluation of different scheduling algorithms for the

purpose of determining their relative effectiveness. The

model has a number of parameters which may be modified to

reflect the characteristics of different systems and differ-

ent aggregate behavior in the set of jobs to be processed.

These parameters may be adjusted to yield a picture of the

behavior of any algorithm under a variety of conditions.

Clearly, a model such as this one provides only an approxi-

mation of the behavior of a real system. It can, however,

give a relatively clear idea of the comparative performances

of different schedulers in a given environment and of a

single scheduler in a spectrum of environments. The model

is constructed with fairly extensive error checking. Diag-

nostic printouts are provided in response to scheduler com-

mands which are invalid. This makes the model well suited

for pedagogical use in courses and seminars studying operating

systems. In particular, assignments may be made to write

different scheduling algorithms, and these programs may then

be tested out in the modelled environment.

-7-

Motivation for the Research

Scheduling is an important task in contemporary computer

systems, both batch-processing and time-sharing systems. It

will become increasingly so in the future as the growing

size and complexity of computer systems require better

algorithms for coordinating the processing of jobs. The

only reliable way to determine for certain how well a given

scheduling algorithm will perform on a given system is to

try it out on that system. Furthermore, this approach is

required in order to debug and validate an implementation of

a given scheduler. This experimental approach is not always

feasible, however, due to difficulties in changing super-

visory programs on systems which are already running, or to

not having the system available, as in the case of systems

which are still in the design stage. Developing a model to

reflect the relevant aspects of the system and running

various scheduling algorithms in the environment of the

model is a logical alternative in such a case. The short-

comings of such a model in terms of inaccuracies of represen-

tation of the system under study must be borne in mind when

interpreting the results of such studies. However, a model

provides the capability of testing scheduling algorithms

-8-

over a wide range of conditions, and such experiments lead

to some general hypotheses which may prove useful both in

the study of scheduling in theory and its implementation

in specific cases.

Overview of the Scheduling Process

Scheduling in a multiprogramming system has been

viewed by Hansen (1) and Browne et al (2) as being com-

prised of two basic processes or tasks which interact with

one another. First, the scheduler is responsible for

choosing the job to be run by the central processor at all

times. This is termed short-term scheduling or CPU

scheduling. It involves selecting a job from among the set

of eligible jobs in the system to be run whenever the pro-

cessor becomes free. In a preemptive scheduling system the

scheduler may also interrupt the running of one job to allow

another job to be processed first. Each job assigned to the

processor is assigned a timeslice by the scheduler which

limits the time for which it may be processed without being

interrupted. Secondly, the scheduler is responsible for

managing the set of jobs which are assigned space in main

memory. This task is referred to as medium-term scheduling

or job scheduling. In the context of the model described

here jobs having at least one page in core are known as

-9-

active jobs; those which do not are termed inactive. In

order to keep as many runnable jobs in main memory as possible

the scheduler can activate and deactivate jobs. Activating

a job involves allocating a set number of blocks of main

memory to that job. This amount of memory, referred to as

the job's partition size, represents the maximum number of

pages of that job which may be in primary memory at any one

time. When a job is activated its first page is brought

into main memory. Other pages are brought in on demand as

the job runs. Deactivating a job causes the job's assigned

core space to be freed and any of its pages in core to be

written out to secondary storage. A good scheduling al-

gorithm in general is one that manages these interrelated

processes so as to maintain a high level of system through-

out and keep turnaround times as short as possible. In

addition, various other objectives may be important in

scheduling for specific systems, such as maintaining a good

level of response to terminal users in a time-shared system,

or giving special consideration to achieving fast turn-

around for jobs of high priority in a batch system.

The basic process involved in scheduling in a multi-

programming system is shown in figure 1-1. This diagram

and the accompanying discussion are based on the control

framework described by Saltzer ,(3). The scheduler selects

jobs to be processed from among those in the ready state;

-10-

ENT ERING
JOB 5TREAM

1/0 REQUEST
COMPLETE

JOb
TERMINATtoNS

FIGURE 1-1
BASIC SCUEUUNG SCHEMI

-11-

this choice constitutes a transfer to the running state.

A job leaves the running state for one of four reasons.

First, it may terminate and leave the system. Or it may

generate an I/O request, causing it to be transferred to

the blocked state. An I/O request here may be either a

page fault or an explicit request for disk or tape I/O.

Third, it may run out its time allotment, in which case

it is returned directly back to the ready state to await

its turn to be processed again. Lastly, it may be pre-

empted in favor of some other job, and here again it is

returned to the ready state to await another chance at

the processor. Jobs leave the blocked state and enter the

ready state when an interrupt occurs indicating that the

request they issued has been satisfied.

Jobs arriving at the system for processing are placed

in the hold state. When a job is activated by the scheduler

it is promoted to the blocked state. It is placed in

blocked rather than ready because it is not eligible to be

processed until its first page has been brought into core.

This page swap is effectively the same as that performed

for a running job which incurs a page fault, and thus it

is treated in the same manner. A job chosen to be deac-

tivated may be in either the ready or blocked state; in

either case the chosen job is moved back to the hold state.

A variety of scheduling algorithms may be used to per-

-12-

form these tasks, depending upon the aims of the particular

system in question and the amount of overhead it can

tolerate in terms of time spent executing the scheduler.

For instance, in a simple batch-processing system where

low system overhead is desired a scheme such as first-come-

first-served, or round-robin, might be used. Under this

scheme, jobs entering the ready state are placed at the

end of a single queue and each time the processor becomes

free the job at the head of the queue is chosen for pro-

cessing. Activations are usually performed in the order in

which jobs arrive at the system. Often no deactivations are

ordered; jobs which are brought into core remain resident

until they terminate. This sort of a scheduling algorithm

might operate under the basic pattern shown in figure 1-1.

Alternatively, in a system with more diverse require-

ments such as a time-sharing system which must maintain good

response to terminal users as well as performing computa-

tional tasks, a more complex framework will probably pro-

vide better results. One scheme which might be used in

such a case is diagrammed in figure 1-2. In this scheme a

job leaving the running state is handled differently depen-

ding on the reason for which its processing was suspended.

If a job incurs a page fault it is sent to the blocked

state, and when the required page has been brought into

core the job is placed in the high-priority ready state.

-13-

RE GLUE

P E~R I

JOS

T EPrlNAT IONS

FIGURE 1-?
ALTERNATIVE SCHEDULING SCHE

JOB 5TREAM

If the job runs out its timeslice it is placed in the low--

priority ready state. In choosing a ready job to be pro-

cessed the scheduler first checks the high-priority ready

state. If there are jobs in this state one of them is

chosen to be run and is assigned a timeslice of fifty milli-

seconds. Only if this state is empty does the scheduler

select a job from the low-priority ready state. Once

chosen, however, a job from this state is allowed to run

for three hundred milliseconds. The rationale behind this

procedure is the assumption that a job which has just in-

curred a page fault is likely to do so again relatively

quickly. Such a job should be run as soon as possible in

order to keep the paging devices busy, overlapping I/O

and processing as much as possible. Similarly, a job which

ran out its timeslice when it was last processed is assumed

to be likely to repeat this behavior. Such a job is forced

to wait until all jobs which are more likely to require the

use of the paging devices in the immediate future have had

a chance to run. When it is allowed to run, however, such

a job is given a much longer timeslice. This avoids incur-

ring the overhead of stopping it again, and it does not

reduce the utilization of the I/O devices since there are

no other more urgent jobs waiting to be run. When a job

issues a request for disk or tape I/O it is deactivated.

The motivation here is that a disk or tape I/O request

-15-

generally takes much longer to service than a page request.

Rather than allowing main memory to be tied up by a job

which is waiting for peripheral I/O and is not eligible to

be processed, the job is removed from main memory, making

room for other jobs. which may be able to do useful work

during this period. When its I/O is complete, the job is

ready to be reactivated.

Summary of Related Literature

A number of articles dealing with the subjects of

scheduling methods and computer system modelling have been

published in recent years. These articles are highly

varied. Those pertaining to scheduling methods range from

discussions of different scheduling strategies to studies

of specific schedulers used in actual systems. Those related

to the modelling of computer systems include descriptions of

both theoretical mathematical models and more practical

simulation models. Some of this literature is discussed

briefly below. It is hoped that this discussion will serve

as a guide to the reader who may wish to further explore

some aspect of these areas.

On the subject of scheduling methods, a theoretical

discussion of the scheduling process is presented in Hansen

(1). A general discussion of different scheduling schemes

-16-

may be found in Coffman and Kleinrock (4). Oppenheimer

and Weizer (5) give a description of the relative perfor-

mance of different scheduling algorithms in a time-sharing

environment. Studies of the operation of actual systems of

the type mirrored by the model described in this thesis

under specific scheduling schemes are described by Browne

and Lan (2), Bryan and Shemer (6), Arden and Boettner (7),

Sherman et al (8), DeMeis and Weizer (9) and Losapio and

Bulgren (10).

There are a number of articles which provide a dis-

cussion of the reasons for constructing models and the

benefits which may be gained from models of different types.

These include papers by Calingaert (11), Estrin et al (12)

and Lucas (13). In the area of mathematical modelling,

McKinney (14), Adiri (15), Gaver (16), and Kleinrock (17)

provide general discussions of mathematical models of

computer systems. DeCegama (18) and Kimbleton (19) discuss

different approaches to the problem of formulating a model

of this type. Examples of actual mathematical models and

results obtained with them are provided by Fife (20),

Rasch (21), Shedler (22), Shemer (23), Shemer and Heying

(24) and Slutz (25). In regard to simulation modelling

techniques, general discussions of simulation methods as

applied to computer system modelling may be found in Blatny

-17-

et al (25), Cheng (27), MacDougall (28), and Nielsen (29,30).

Various approaches to the problems involved in constructing

simulation models of computer systems are discussed by

Bell (31), Lynch (32), Nutt (33) and Seaman and Soucy (34).

Practical examples of simulation models similar to the one

described here may be found in Boote et al (35), Fine and

McIsaac (36), Lehman and Rosenfeld (37), MacDougall (38),

Morganstein et al (39), Noe and Nutt (40), Rehman and

Gangwere (41), Scherr (42), Schwetman and Brown (43) and

Winograd et al (44).

Summary of the Thesis

The remainder of this thesis discusses the model

described briefly above and gives some examples of results

obtained from studies done with it using different

scheduling algorithms. Chapter two describes the functions

of the various modules of the model and their interactions

with one another. The third chapter discusses a comparative

study of three schedulers embodying different scheduling

strategies. Chapter four contains a discussion of the

limitations of the model, suggestions for possible extensions

and further experiments to be performed with it. Appendix

A gives a discussion of how to use the model including a

detailed description of the functions of its various

-18-

parameters. Appendix B contains listings of the three

schedulers used in the studies described in chapter three

and appendix C provides examples of the output produced

by the output modules which may be invoked by the model.

Appendix D gives a sample assignment which might be given

to a student who is to write a scheduler to be run under

the model.

-19-

CHAPTER 2

DISCUSSION OF THE MODEL

Overview

The differing aims of the various types of contemporary

computer systems make it necessary to specify at least the

general type of system under, study if a realistic picture

of system behavior is to be obtained. The model described

here simulates a computer system running under a virtual

memory, demand paging scheme. Each job is assigned a fixed

number of blocks of core, limiting the number of its pages

which may be in core simultaneously. The motivation for

choosing this type of system was to make the model widely

applicable; there are a number of systems of this sort in

operation today, and many others which will use similar

schemes are now being developed. The model also provides

an environment which presents a significant challenge to

writing a scheduler which will give good results. A mul-

titude of factors are constantly interacting in a system of

this type, and no "best" algorithm for such systems in

general has yet been developed.

Another design consideration is the decision of

whether the model is to represent a batch-processing or a

time-sharing system environment. There is not a sharp

-20-

distinction between the two in contemporary computer

systems. Time-sharing systems which allow users to run

background jobs exhibit the characteristics of both types

of systems, and standard batch-processing and time-sharing

systems can be run simultaneously on the same hardware. A

task in a batch-processing environment generally denotes a

single job or job-step. If we define a time-sharing task

as the work performed for a terminal user between two

successive reads to the terminal, then batch and time-

sharing tasks are seen to be very similar. They may differ

on the average in characteristics such as total compute

time or number of disk accesses per job, but they are the

same in basic form and may be treated as such. This is

the approach taken in the model.

As noted in chapter one, the literature presents a

spectrum of models which have been used to represent some

or all the aspects of computer systems which are at issue

here. For the most part models such as these have treated

computer systems in a general and rather abstract manner,

deriving detailed mathematical results about them, or have

mirrored a single specific system in great detail. The

model described here is a simulation model which represents

a compromise between these two extremes in that it provides

a framework which is both general enough to be similar to a

number of different systems and yet detailed enough to yield

-21-

a fairly accurate and realistic picture of the behavior of

such a system. It is constructed in a modular manner in

order to facilitate the modifications which may be necessary

to model different types of systems. As another aid to

adaptability, a large number of the parameters governing

the various functions of the simulated system are made

available to the user to be set to appropriate values on

each run.

Lucas (13) cites two basic approaches to simulation

modelling which are most often used in the simulation of

computer systems. One method is generally known as trace-

driven modelling. This approach makes use of measurements

of the behavior of an actual job stream as input to the

model. Probes are placed in an actual system to measure

the demands made on the system by the job stream. The

sequence of demands obtained from these probes is then used

to drive the model. Examples of this type of modelling are

found in the work of Sherman et al (8), Cheng (27) and Noe

and Nutt (40). This approach to modelling has the virtue

that no validation of the job stream is needed, since it is

taken directly from an actual system. Also, the performance

of the system from which the trace is taken may be monitored

to determine its performance during the processing of the

traced job stream. This provides a very good basis for com-

parison of the model's behavior with that found in practice.

-22-

The other basic simulation method is known as event-

structured or event-oriented simulation. This approach

involves maintaining a list of the events which are

scheduled to occur in the simulated system at various

specified times in the future. The quantities describing

the modelled system, such as job stream characteristics

and I/O service times, are usually generated from prob-

ability distributions. Event-structured models of com-

puter systems are described by MacDougall (28), Nielsen

(30), Boote et al (35) and Fine and McIsaac (36). This

method offers considerably more flexibility than the

trace-driven approach. For example, it allows easy adjust-

ment of certain characteristics of the job stream without

necessitating changes in all of them. This capability

enables the model user to study different job streams

which may be of interest regardless of whether they occur

in practice on systems he can monitor. It also makes it

unnecessary to have available an actual system which may

be monitored. One of the objectives in designing the

model described here was to make it applicable to studying

a number of different real-world system environments. The

event-structured approach is better suited to this task

than the trace-driven method, and it was the method chosen

to be used here.

-23-

The general form of the system simulated by the model

is shown in figure 2-1. The single CPU controls some set

amount of main memory and some number of paging devices,

disks and tape drives. The paging devices are assumed to be

drums. The number of devices of each type available in the

system may be varied within limits, as may characteristics

describing the operation of each individual device. For

time-sharing tasks the entering job stream is viewed as

coming in from a set of user terminals, and terminating jobs

are redirected to the appropriate terminal unit. The

operating characteristics of the terminal units are not of

significance in the model. An interactive job "arrives"

for processing when the command line invoking it has been

completely transmitted by a user terminal. The only

parameter of interest to the -model in this situation is the

average arrival rate of the jobs from the set of all term-

inals on the system. For this reason the characteristics

determining the operation of user terminals are not repre-

sented in the model. By the same token, the precise

identification of the user terminal which issues the request

initiating a given job is not of interest and is not repre-

sented in the model. Batch jobs submitted through card

readers are assumed to be SPOOLed. In other words, they

are read in under the control of a supervisory routine

-24-

NAIN
NEMORYuJj

0-

FIGURE ?-I
GENERAL FORN OF SIMULATED SYSTEM

-25-

which stores the card images on secondary storage. Thus

the jobs are effectively read in from secondary storage.

Output to printers and punches is similarly SPOOLed and is

effectively written out to secondary storage. Thus the

characteristics of any readers, printers and punches

available in the system are not of importance and are not

represented in the model.

The level of detail in the model varies among its

different modules. The various scheduling algorithms

which are to be investigated with the model must be written

in considerable detail, since these routines are presented

with the same variety of information as an actual system

would give them. The level of detail in other parts of the

model is not as great, since they are intended for support

purposes rather than to have their behavior submitted to

detailed examination. For instance, the job stream to be

generated as input to the simulated system need not be

generated as single individually representative tasks, but

rather can be treated as a set of separate entities which

combine to produce an overall picture of a job load. As

Denning has shown (49), it is possible to model a user

community and the requests it generates as a whole, but

quite difficult to characterize an individual user. The

hypothesis that the behavior of the total user population

is statistically reproducible has been verified in practice

-26-

by measurements made on the Michigan Terminal System (46).

Similarly, there is no need to consider which of a job's

pages are in core at any time. The scheduler is concerned

only with the question of whether a job is eligible to be

run and perhaps with estimates of the probable length of

time for which it will run before generating a page fault,

but not with the particular page for which the fault will

occur. Thus the other portions of the model are constructed

in much less detail than would be required for a more

general model.

Description of the Model

The model is implemented in PL/l. Its general struc-

ture is shown in figure 2-2. The arrows indicate the flow

of control among the different parts of the model. The

Scheduler (SCHED) is the module under investigation and its

actions drive the rest of the model, whose actions are

governed by the supervisory module (DRIVER). DRIVER main-

tains the model's data bases and calls the other program.

modules when their services are required. The Time Between

Page Faults module (PGNXT) generates the time intervals be-

tween successive page faults for each job, and the Time to

Service a Page Fault module (PGTIM) determines the time

needed to swap in each requested page. The Time Between

Peripheral I/O Requests module (DSTPNXT) generates the

-27-

-D5TPT\M

JSE.ARCH JHC

rNORMAL

FIGURE
STRUCTURE OF THE MODEL

intervals between successive disk or tape I/O requests fo:r

each job, and the Time to Service a Peripheral I/O Request

module generates the time needed to satisfy each such

request. The Job Interarrival module (TRMIO) generates

values for the interarrival times of new jobs coming into

the system, and the Job Characteristics module (JBARVL)

determines the static characteristics describing each of

these jobs as it enters the system.

The Debug Print Module (DEBUG), the Trace Print module

(TRACE), and the Accounting Routine (ACCNT) are modules

which produce printed information of various sorts describing

the operation of the model. DEBUG produces detailed dumps

of the Job Stream List, the System Event List and the

System Clock on each iteration of the model. These data

bases are described in detail below. This information is

useful for debugging the model should problems occur. TRACE

produces a sequential listing of the events which occur in

the course of the operation of the simulated system and the

response of the scheduler to each of these events. ACCNT

compiles a number of measures of the performance of the

simulated system during the course of the run and outputs

them at the conclusion of the run.

-29-

The Scheduler Command. Processor (SCHPROC) examines the

commands issued by the scheduler on each iteration. Correct

commands are carried out; those which are in error for any

reason are either ignored or replaced by default actions,

depending upon the type of the command in which the error

occurred. A message is printed explaining the error to the

user. The operation of this module includes treatment of

many special cases, and its detailed operation is described

below. The Procedure to Maintain the System Event List

(SELLINK) creates new entries for the System Event List

and links them into the existing list in the proper

chronological order. The Procedure to Locate a Job Descrip-

tion (JSEARCH) locates the description of a particular job

in the Job Stream List and returns a pointer to it. The

Procedure to Check Job Eligibility (JCHECK) examines the

description of a given job to determine whether it is

eligible to be run (i.e. both ready and active). These

last two routines are called by various modules of the

model as shown in the diagram whenever their functions are

required; they are implemented as separate routines to

avoid duplication of the code needed to perform these tasks.

The Normal Random Variable Generator (NORMAL) is a

procedure which produces a normally distributed value

based upon a mean and standard deviation passed as arguments.

-30-

The Random Number Generator (RANDOM) produces random numbers

evenly distributed between zero and one. These two modules

are service modules called by a number of the other modules

in the system as shown in the diagram.

The model is designed in this modular fashion so as to

allow any of the above modules to be replaced by another

which performs the same function according to some other

discipline. This makes it easier to adapt the model to

reflect the characteristics of different systems. For

instance, the model's routine to compute paging service

times (PGTIM) as described below assumes FIFO queuing of

page requests at the paging devices. If it is desired to

explore the effects of different I/O scheduling schemes for

paging on the operation of some scheduling algorithm, a

different paging routine may be written which implements

another scheme and this module may be -used in place of the

existing module. In addition to this the various parameters

which combine to determine the behavior of the simulated

system, such as the speeds of the I/O devices, average

time between peripheral I/O requests or the arrival of new

jobs to the system are accessible to the user on each run

in order that he may change them to suit his needs. Details

of the functions of these various parameters are given in

appendix A. As for the realistic performance of the model,

-31-

data from the 370/165 batch processing system at MIT's

Information Processing Center has been used as a yardstick

to measure the performance of the model and ensure that it

behaves in a manner approximating the operation of an actual

system.

Data Bases

The model makes use of three major data bases: the

Job Stream List, the System Event List and the System Clock.

The Job Stream List contains an entry for each job currently

in the system. The entries are implemented as PL/l data

structures linked together by pointers and have the form

shown in figure 2-3. These figures provide a complete pic-

ture of the state of a modelled job at all times during its

residence in the system. The Job Identifier Number, Job

Type, Priority Level, Total Job Size, Working Set Size and

Total CPU Time Required are static characteristics; they

remain the same throughout the life of the job. These

quantities are generated for each job by JBARVL when the

job arrives at the system. They are discussed further in

connection with that module. The fifth entry shown in the

diagram is a pointer to the next description in the Job

Stream List. The Memory Partition Size is assigned by the

scheduler when the job is activated, and the Timeslice is

-32-

308 %DLNTIFriER NVtBER

JOB TYPE

PRIORITY LEVEL

TOTAL .3013 S\ZE

POINTER TO NEXT ENTRY e

WORK1NG 3ET SIZE

TOTAL CPU TIME REQUIRED

MEMORY PARTMTON SIZE

T IME SLI CE

NUMaER OF PACGES IN CORE

CPU TtME SINCE LAST ACTIV/A\nCN

'TRAFFIC CONiTROL STATUS

CPU TIME VNTIL NEXT PA 6 E' f=AULT

CPU T(1ME UNTL NEXT

PER%?PvE~ZAL 1/O RE-QUEST

CPU TIME tUNTIL TERRMINIATI0N

FIGURE 2-3
JOB STREAM LIST ENTRY

-33-

specified by the scheduler whe± -. ihooses the job to be

processed. The Number of Pages in Core is a record of the

number of pages of this job which are currently in main

memory. This number is always less than or equal to the

partition size assigned to the job. The CPU Time since Last

Activation, also referred to as the the Active Indicator,

tells whether or not a job is presently assigned a partition

in main memory. An inactive job has a value of minus one

for this entry; one which is active has a value equal to the

amount of processor time devoted to it since it was last

activated. Traffic Control Status indicates whether the job

is running, ready to be run, or blocked awaiting the com-

pletion of a service request. Note that it is possible for

a job to be blocked awaiting more than one request at a

time. In particular, it may issue a peripheral I/O request,

causing it to enter the blocked state to wait for completion

of that request, and may then be deactivated and reactivated,

causing it to wait for its first page to be brought into core.

Traffic Control Status takes into account the number of

requests for which a job is waiting rather than just the

fact that it is waiting in order to properly handle this

situation. The Active Indicator and Traffic Control Status

are needed in order to enable the model to check the

operation of the scheduler to ensure that an ineligible job

is not assigned to be processed.

-34-

CPU Time Until Next Page Fault and CPU Time Until Next

Peripheral I/O Request record the processing time remaining

for this job until its next page fault and next disk or

tape I/O request, respectively. These figures are

initialized with values generated by the appropriate modules

(PGNXT and DSTPNXT) when the job is activated, and they are

refreshed in the same manner whenever they go to zero. CPU

Time Until Termination is initialized with the Total CPU

Time Required value generated for this job, and when it

reaches zero the job has finished processing and leaves

the system. These last three entries are decremented each

time the job is run by the amount of processing time it

receives.

The based structure facility of PL/l provides a con-

venient medium for implementing and maintaining this list.

JBARVL allocates an entry for each job as it arrives and

links it into the list, which is ordered by job number.

A particular job description is accessed by searching

through the list for a match with the corresponding job

number, using the forward pointer in each entry to find

the next element when a match is not found. When a job

terminates, its description is deleted by adjusting the

pointer in the element which precedes it in the list to

point to the element following it and then freeing the

-35-

storage it occupies.

The System Event List is a record of all events which

are to occur in the system at known times in the future, i.e.

events which will occur at certain times regardless of the

jobs which are chosen for processing in the intervening time.

Such a list has been used with good results by MacDougall

(28). In simulation terminology it constitutes a future

events list for the model as described by Sussman (47).

The events recorded in this list include the time at which

the next job will arrive at the system for processing and

the times at which all pending page requests and I/O

requests will be satisfied. These events are assigned

absolute times of occurrence rather than the length of

elapsed time figures described above for entries in the

Job Stream List. The form of the System Event List is

shown in figure 2-4.

The events in this list are maintained in chronological

order. As the time of occurrence of each of these events

is determined an entry is allocated for it and linked into

the list in the proper position to maintain the list in

chronological order. As events occur the entries for them

are freed after updating the pointer to the head of the

list. Due to the chronological ordering of the list, the

element to be deleted is always the first one in the list.

-36-

FIGURE -4

SYSTEM EVENT LIST
-37-

The System Clock is simply a variable that holds the

current simulated time in the model throughout its operation.

The clock is referenced in order to determine the length of

time until the next event is to occur in the system, and it

is updated by that value when the event occurs. Time moves

forward in the model each time the value of the clock is

increased.

Detailed Discussion of the Modules Comprising the Model

Supervisory Module (DRIVER)

The supervisory module defines the operation of the

model since it is responsible for coordinating the activities

of all segments of the model. Its functions in this regard

include:

- providing an interface to the scheduler under

investigation

- coordinating the other modules of the model

- maintaining the model's data bases

- simulating the flow of time in the modelled

environment

The first of these functions involves two processes. The

supervisory module passes to the scheduler the information

on which it must base its decisions on jobs to be run,

-38-

activated and deactivated. Similarly, it receives the com-

mands the scheduler issues in response to this information.

The second function involves calling the various modules

which comprise the model when their services are required.

For instance, when a job issues a page request, the Super-

visor Module first calls PGTIM to determine how long it will

take for the requested page to be brought into main memory.

It then calls PGNXT to determine the duration of time for

which the issuing job will run once this page has been

brought in before it again generates a page fault. The

third function, that of maintaining the model's data bases,

is an activity restricted primarily to the DRIVER routine.

DRIVER can determine beforehand what information will be

needed by a given module for the calculation it is to

perform, and in general it accesses the model's data bases

to determine that information and passes it to the module

in the form of parameters. Similarly, the other modules

communicate their results back to DRIVER to be entered in

the appropriate data bases rather than entering the values

into the data bases themselves. This centralizes the

routines needed to maintain the data bases and avoids dupli-

cation of code needed to perform these tasks.

Time in the model is viewed in terms of the intervals

between the various events occurring in the simulated

-39-

system. These events are of the following seven types:

- the arrival of a new job at the system

- the satisfaction of a page request issued by a

previously running job

- the satisfaction of a peripheral I/O request

issued by a previously running job

- timeslice runout by the currently running job

- a page fault incurred by the currently running job

- a peripheral I/O request issued by the currently

running job

- termination of processing of the currently running

job

A flowchart of the main loop of the Supervisory routine is

shown in figure 2-5. This flowchart shows the way in which

the simulation proceeds from one event to the next.

After each call to the scheduler DRIVER determines the

event which is to occur next in the simulated system and then

takes appropriate action to cause this event to occur. This

action may involve calling various other modules of the

system and/or making modifications to the entries of the

Job Stream List or the System Event List. For instance, if

the next event to occur is the incurring of a page fault by

the running job, DRIVER calls PGTIM to generate a value for

-40-

T IreR
RVNOUT

PERIP4ERA,L 1/O

REQUEST ISSVED

GALL DST PT IM

DES T JON
DESCal PT I ON

~ MIII CALL SELLINKI
READY INDICATOR

CALL TRM1'o
CALL D)STPNXT CA

T1RN ON JOB'

DE LET E EVENT BLOCUED INDICANT

CiALL A(CNT CA L O-EkW U
CP

IENAB3LED \F E NA BLED

FIGURE -5

lAIN LOOP OF SUPERVISORY ROUTINE

DATe joi3'S

1 E F16URES

ENTER

OR

the time at which the needed page will arrive in main memory.

It calls SELLINK to create an entry in the System Event List

to record an event for the completion of this page request

and then calls PGNXT to generate a value for the time for

which this job will run before it again generates a page

fault. This figure is entered in the CPU Time until Next

Page Fault entry in the description of the job in question

in the Job Stream List. The Traffic Control Status entry

in the job description is set to indicate that the job is

now blocked.

As another example, if the next event is the completion

of service of a previously issued I/O request (either for

paging or peripheral I/0), DRIVER's only responsibilities

are to note that the job has returned to the ready state by

modifying its Traffic Control Status entry appropriately

and to delete the entry corresponding-to this event from

the System Event List. Regardless.of what event has occurred

the Supervisor must decrement the pending time figures (CPU

Time until Next Page Fault, CPU Time until Next Peripheral

I/O Request, and CPU Time until Termination) for the job

which has been running, thus registering the processing

which has been done on it in this time interval. It must

also update the System Clock to the time of occurrence of

the event. Then the cycle is repeated, the scheduler being

-42-

informed of the latest event and making its choices of the

job to be run next and any jobs to be activated or deactivated

based on this new information. The output modules (TRACE,

DEBUG and ACCNT) are called at the indicated points during

each iteration of the Supervisor routine subject to the

values of variables which control the space of simulated time

over which they are enabled. These variables are described

below in connection with each output module.

The flowchart in figure 2-5 shows only the steady-state

operation of the model and does not include the initializa-

tion phase which is also part of the Supervisory Module.

Initialization of the model on each run involves first

calling JBARVL repeatedly to generate characteristics for

the initial job mix. One of the characteristics generated

for each job is its total size in pages. DRIVER assigns

each of these jobs a partition in main memory, the size of

which is arbitrarily chosen to be one-half of the total

size of the job. When a job is generated which is too

large to be assigned a partition from the remaining free

memory the generation of jobs is stopped. The jobs which

have been assigned partitions in main memory are treated as

already having been partially processed; the characteristics

describing them are generated as such by JBARVL. The pro-

cedure used for this is discussed further below in connection

-43-

with that module. The final job generated which can not be

assigned space in main memory is assumed to be unprocessed.

The rationale for this method of initiating the model's

operation is that an initial job mix made up of jobs which

have already been processed in varying degrees should pro-

duce a smaller startup transient in the behavior of the

simulated system than other methods, such as starting with

main memory completely empty or filled with totally unpro-

cessed jobs. DRIVER also initializes the System Event List

with the first known event to occur in the system, which is

the time of arrival of the next job coming into the system

for processing.

Scheduler (SCHED)

This module must perform all of the functions of a

scheduling algorithm in an actual system. Its detailed

form will not be specified here since a number of such

routines may be run with the system and these different

routines may use different algorithms to perform the tasks

involved in scheduling. But the duties to be performed

remain the same for each routine used for this purpose, as

do the input and output parameters with which it is supplied.

The general form of the scheduler is shown in figure 2-6.

-44-

ENTER

JOB ARRiVA' JOB TERMINATtON

IED

NOTE ARRIVPL AND

CHARACTU PISTCS

or NEW J0B

T IME R
RLUNOUT

MAKE DEACTIVA-

TION ENTaRVS

MAYE ACTIVA-

~ t

TION ENTRIIES

I F DES3\R fb'

C400SE JOB TO

C51 "PROCESSED

AND TIMESLUCE

EXIT

FIGURE ?-6

GENERAL FORM OF SCHEDULER

Its functions are as follows:

- choosing a job to be assigned to the processor each

time the processor becomes free and assigning a

quantum which limits the time for which that job

may be run.

- preempting the current job (if desired) in favor of

another which has just entered the system or has

just returned to the ready state.

- deactivating (removing from main memory) and

activating (assigning a partition inmain memory)

jobs, which includes assigning a maximum number

of blocks of core (partition size) to each newly

activated job.

The scheduler is called on each iteration of the DRIVER

routine; i.e. whenever an event occurs in the simulated

system. An event here is one of the seven types of events

discussed above in connection with the supervisory routine.

Each time the scheduler is called it must specify the job

to be processed next. This job may be the same as the job

currently being processed; the net effect in this case is

that the current job continues to run without interruption

since no time elapses in the simulated system during calls

to the scheduler. The scheduler must assign a timeslice to

-46-

each job it selects to be run, limiting the length of con-

tinuous processing time which may be devoted to it. If

desired, it may also activate or deactivate one or more jobs.

For example, if a job terminates, the scheduler may activate

another job to occupy the core freed by the old job. Or on

any given call the scheduler may choose to order no activa-

tions or deactivations, but simply to do some internal book-

keeping, as may be the case if it is informed that a new

job has entered the system but it does not wish to activate

this job immediately. It may then simply make note 6f

certain facts about the new job for future reference.

It is assumed in the model that jobs issuing peripheral

I/O requests have buffer areas set aside to hold the data

being brought into or written out of main memory. A job

which is blocked for a peripheral I/O request is not pro-

hibited from being deactivated. The buffer areas involved

in the I/O request are assumed to be left in core until

completion of the I/O request, and written out afterward

if necessary. Similarly, a job which is blocked for a

page fault may if desired be deactivated. This results in

the new page being brought into core without a chance of

being used, however, which is of questionable benefit in

most cases.

There are several things any scheduling algorithm must

-47-

do in order to perform its various tasks. These include:

- defining a scheduling framework such as the ones

shown in figures 1-1 and 1-2 and keeping track of

which jobs are in which states under this frame-

work at all times.

- defining a strategy to decide which eligible job

should be chosen to be run next, how long it

should be allowed to run, and, if desired, when

to preempt a running job in favor of another job

which becomes eligible.

- defining a strategy to determine under what con-

ditions jobs should be activated and deactivated,

and a method of choosing the particular job to be

brought into or removed from core when activations

or deactivations are to be performed.

In addition to these tasks a scheduler may wish to make

note of additional information about the behavior of jobs

in the simulated system. This information may include

anything which might help the scheduler to predict the

future behavior of jobs on the basis of past performance,

such as the average length of time each job runs between

page faults or other I/O requests.

-48-

All inputs to the scheduler are provided by DRIVER, and

outputs from the scheduler are likewise returned to the

supervisory module. The scheduler is not allowed to access

the model's data bases, with the exception of the first five

entries in the descriptionof each job. The first four of

these entries give the static characteristics of the jobs

which provide data that the scheduler in an actual system

would have knowledge of, such as the total size of the job

and its priority level. The last entry accessible to the

scheduler is the pointer linking each job description to

the next description in the Job Stream List. All other

data provided to the scheduler, such as the event which

occurred most recently in the system, is provided via

parameters passed by DRIVER. This is done for several

reasons. First, it helps to make the scheduling routine

less constrained by the structure of the model if it

receives its information from another routine, as would be

the case in an actual system, rather than reading it from

certain global variables. Also, it prevents the scheduler

from making modifications to the data bases and accessing

information it should not have knowledge of, such as the

length of time for which a given job will run before incur--

ring its next page fault. The inputs it is given to work

with include:

-49-

a pointer to the initial entry in the Job Stream

List, allowing the scheduler to access the static

characteristics of each job in the system. (These

characteristics include job type, priority level

and total memory size along with the identification

number of the job.)

- the event which has just occurred in the system and

the job involved in this event. (If the event was

a job termination, a page fault or peripheral I/O

request issued or a timeslice runout the job

involved is the current job; if it was a job arrival

or the completion of a previous request it is

another job in the system.)

- the present time in the model as recorded on the

System Clock in the main routine. This information

is of interest to the scheduler, for instance, when

the scheduler wishes to allow the current job to

continue to run governed by the timeslice origi-

nally assigned to it. It must be able to determine

how long the job has already run so that its time-

slice on this iteration may be reduced accordingly

when it is reassigned to be processed.

the total amount of main memory available to user

programs. This data is used by the scheduler for

-50-

determining the.amount of memory available for

activating new jobs.

The scheduler may issue the following commands which

are received by DRIVER and passed to SCHPROC for processing:

- activation commands, specifying the identification

number of the job to be activated and the partition

size to be assigned to that job.

- deactivation commands, specifying the identification

number of the job to be deactivated.

- the job to be processed next, specified by iden-

tification number, and the timeslice to be assigned

to that job.

The form of the data bases used by the scheduler to

communicate its commands to the rest of the model are as

follows. Activation and deactivation commands are passed

via chain-linked lists, with one entry to describe each job

to be brought into or removed from main memory on any given

iteration. The form of these lists is shown in figure 2-7.

A pointer variable corresponding to each of these chains is

passed as a parameter to the scheduler on each call. If one

or more activation commands are issued on a given call the

pointer for the activation chain is set to point to the

-51-

START
PO1 NTER

J

(NOT

Pc

DEACTIVAT ION

CHAIN

START
POI MTEPR

ACTIVATION
CHAIN

SCHEDULER DATA STRUCTURES
-52-

013 NUMG3ER

T I ME
USED PsY SCM"ED)

tNTER TO
E XT ENTRY Fm

JODS NUMBER

(NOT USED 3Y SC-AED)

V4 U L L

JOB NUMB ER

PART\TION S 1ZE

POlN TER. TO
NEXT ENTRY

JOB NUMBER,

PAR~TtTION SIZE

NULL

FIGURE

first entry in the activation chain; if not, it is given

the value NULL. The pointer for the deactivation chain is

treated in an analogous manner. Activation and deactivation

commands are handled in this manner because the number of

such commands issued by a scheduler on a given call is

highly variable. It is dependent on the policy of the par-

ticular scheduler in regard to activating and deactivating

jobs and on a number of other factors, such as the number

of jobs in the system and the amount of user memory available.

No apriori limit can reasonably be set on the number of these

commands which may be issued by a scheduler at any one time,

and thus a linked list where the number of entries may vary

freely is the most appropriate method. The job chosen to be

run next and the timeslice to be assigned to it, in contrast

to this situation, are simple numbers, and are passed as

individual parameters to be set by the scheduler on each

run.

The form of the scheduler parameters and data bases

discussed above is shown in the listings of the three

schedulers given in appendix B. These listings show the

declarations used to define the parameters passed to the

scheduler and the precise form of the data structures used

to reference the Job Stream List entries and to issue

activation and deactivation commands. The schedulers shown

-53-

in this appendix are discussed in some detail in chapter 3.

Procedure to Process Scheduler Commands (SCHPROC)

This is the routine which checks the validity of the

commands issued by the scheduler and carries them out on

each iteration of the model. It is called by DRIVER on each

iteration of the model immediately after the scheduler is

called. Its first task is to process deactivation commands.

This entails first locating the description of the job to

be deactivated, a function performed by JSEARCH. When the

description is found SCHPROC sets the job's Active Indicator

to -1, indicating that it is no longer assigned space in

main memory, sets its Number of Pages in Core entry to zero,

and adds the amount of core assigned to this job (its par-

tition size) to the total amount of free memory available in

the system. If a description is not found for a job ordered

deactivated (i.e., it is not in the system) or if the job

is found to be already inactive an appropriate error message

is printed out and the command is ignored.

When all deactivation commands issued by the scheduler on

this iteration have been processed SCHPROC processes any ac-

tivation commands. This involves calling JSEARCH to locate the

description of the job to be activated and setting the job's

Active Indicator to zero, signifying that this job is active

but has not yet been processed on this activation. It also

-54-

enters the partition size assigned to this job by the

scheduler in the activation command in its Job Stream

List description and subtracts this amount of memory from

the amount of free memory available in the system. Acti-

vating a job in the context of the model involves bringing

its first page into' core. SCHPROC calls PGTIM to generate

a value for the length of time it will take to bring this

page into memory, and then calls SELLINK to make an entry

in the System Event List for the completion of this page

request. A call to PGNXT yields a value for the length of

time this job will run in its first page before generating

another page fault, and a call to DSTPNXT produces a

similar figure for the length of time the job will run

before generating a peripheral I/O request. These two

figures are entered in the appropriate entries of the job

description. The job is now ready to be processed as soon

as its first page arrives in main memory. As in the case

of deactivations, an error message is produced if the

scheduler issues an invalid command (i.e. if the indicated

job is already active, if it is not in the system, or if

the scheduler assigns it a partition size which is larger

than the present amount of free memory or specifies a non-

positive number of pages). The invalid activation command

is ignored.

-55-

SCHPROC's final task is to assign the job chosen by the

scheduler to be run next to the processor. This involves

calling JSEARCH to locate the description of this job and

then calling JCHECK to make sure that it is eligible to be

run (i.e. it is both ready and active). If the chosen job

is not eligible to be run or is not in the system, job zero

is assigned to the processor as a default, i.e. the system

remains idle. The timeslice assigned by the scheduler is

then checked for validity (it must specify a positive time

interval). If it is valid it is recorded in the descrip-

tion of the job to be run (either the chosen job or job

zero)*- otherwise a default timeslice is used.

SCHPROC is responsible for freeing the storage

occupied by the structures describing scheduler commands

which have been processed. Descriptions of activation and

deactivation commands are left intact throughout the

iteration in which they are issued in order to make them

available to DEBUG and ACCNT if these modules are called.

SCHPROC maintains a pointer to the activation chain and the

deactivation chain issued by the scheduler on a given

iteration and then frees these structures on the next

iteration when they are no longer needed.

-56-

Time Until Next Page Fault (PGNXT)

This module generates values for the length of time a

particular job will run before generating its next page

fault. The frequency with which a job generates page faults,

or alternatively the length of time between page faults,

sometimes called the page residence time, has been shown to

depend primarily on the number of the job's pages which are

already in core and the amount of CPU time it has received

since it was last activated (48). The relationship

between these quantities is shown in figure 2-8. An approx-

imation to this curve has been used in generating times

until-the next page fault with good results in the SIM/61

simulation experiments (39, 44). The asymptote of the

curve is the working set size of the particular job in

question. Working set size is a term originated by

Denning (49) to refer to the set of a job's pages which

must be in core in order that it may execute without an

intolerable number of page faults. Working set size in

the context of the model is more broadly interpreted to

mean the set of pages of a job which are actually used on

a given execution. The curve is roughly exponential, and

in the model the curve is approximated as exponential

using the base of the natural logarithms, e, as the base

of the curve. The exponent to be used differs among the

-57-

CUMtULATtVE NUMt-BE

OF NEW ?NCAiE

wE0R E., E A E

SET S\-Zf

COMPUTE T I ME

FIGUR E
CURVE GOVERNING TIl1E BETWEEN

PAGE FAULT5
-58-

different types of jobs, allowing paging behavior of the

different job types to be individually specified.

PGNXT operates by using the working set size of a given

job and the paging exponent corresponding to its job type

to determine the exact curve to be used. It then takes the

number of pages which will be in core for this job after a

given page fault and inverts the curve to find the corres-

ponding value of compute time, which is the time at which

the fault for this page is to occur. An analogous pro-

cedure is followed to determine the time of the succeeding

page.fault, and the difference between these two values is

the time between the corresponding page faults, i.e. the

time until the next page fault will occur. This process

may be visualized more clearly with the aid of figure 2-9.

This figure illustrates the computations performed by PGNXT

when a page fault is incurred causing a job's nth page to

be brought into core. The paging curve is inverted to deter-

mine the amount of compute time tn which was theoretically

received by the job before it incurred this page fault. A

similar inversion is performed to determine the length of

compute time tn+1 elapsing before the n+lst page fault.

The difference t n+ - tn is then the compute time elapsing

between the nth and n+lst page faults for this job.

-59-

CUMULATWE NUMBER

OF NEW rA(E
WEFE R E KCES

WORKI KCa
SET 31ZE

I I
I I
I I
I I

TU To,+ COmpUTE-

EIGURE

EXAMNPLE OF GENERA\TION

TINE I3ETWEEN PAGE FAULT5
-60-

OF

PGNXT must also take into account the partition size

of the job which has incurred the page fault and the number

of its pages which are already in core. If a job already has

its full partition size in core but not its full working set,

the time between its page faults remains the time between

the fault for the last page in the partition and the fault

for the next page. This is so because once a job has its

full partition size in core each new page replaces one of

the pages already in core for this job, leaving the like-

lihood of another page fault at any given time in the

future the same as it was before. The working set size of

a modelled job is the total number of pages it will refer-

ence during its execution. Thus if the partition size

assigned to a job is large enough to accomodate its entire

working set then as soon as all the pages in the working

set are in core no more page faults will occur for this

job. This is ensured by setting the CPU Time between Page

Faults entry for this job in its description in the Job

Stream List to a sufficiently large value that the job

will terminate before incurring any more page faults.

PGNXT is called by DRIVER whenever a running job issues

a page fault in order to determine how long the job will run

before generating its next page fault. It is also called by

SCHPROC each time a job is activated to determine the

-61-.

processing time until the job will issue its first page

request, and by JBARVL in generating the initial job load

to provide a maximum value for the time until the next page

fault for the partially processed jobs.

Time to Service a Page Request (PGTIM)

This routine determines the length of time needed to

bring a page into main memory. This time interval is

dependent upon the number and characteristics of the I/O

devices used for paging and on the number of requests already

queued for these devices. The I/O device characteristics

include the average access time, which is the average time

needed to locate a page on the device, and transmission rate,

which is the speed at which information can be transferred

from the device to main- memory once it has been located.

A fixed page size is assumed in the model on any given run;

thus the transmission time is the same for all page requests.

Access time for any given request is assumed to be normally

distributed about the average access time of the device.

Page requests are queued at each device in a first-in-first-

out manner, thus generating an essentially random sequence

of requests to each device, so a normally distributed

access time seems a reasonable assumption. All device char-

acteristics are parameters which may be set by the user on

-62-

each run.

PGTIM operates by first calling RANDOM to generate a

random number which is used to determine on which paging

device (if there is more than one) the required page is to

be found. PGTIM then looks up the time at which all pre-

sent requests queued for this device, if any, will be com-

pleted. A value for the access time needed to locate the

page is generated, and the time needed to transmit it is

determined. The access time, transmission time and the

time at which the device will be free (which is the current

time in the model if no requests are presently queued for

the device) are then summed to give the time at which this

page request will be completed. The time at which the paging

device involved in this request will be free is set to this

value for reference in regard to future page requests, and

the result is. returned to the calling procedure.

PGTIM is called by DRIVER each time a page fault occurs

in order to determine the length of time needed to service

the request. It is also called by SCHPROC whenever a job is

to be activated to determine how long it will take to bring

in the first page of the newly activated job.

Time Between Peripheral I/O Requests (DSTPNXT)

This module determines the time between peripheral

-63-

I/O requests issued by each job. Values for the time a job

will run before it issues its next disk or tape I/O request

are drawn from a normal distribution. The mean value of

this distribution is specified separately for each job

type, making it possible to represent different peripheral

I/O behavior for jobs of different types. No distinction

is made between requests to disk and to tape in generating

interrequest times. It is assumed that any job issuing a

tape request has the required tape drive assigned to it.

Since the model is concerned only with the aggregate be-

havior of the job stream rather than dealing with individ-

ually representative jobs it is not necessary to specify

which jobs have control of tape drives and may therefore do

tape I/0. The only consideration of interest is the average

rate of occurrence of requests for peripheral I/O issued by

the job stream as a whole and the relative frequency of

disk requests to tape requests.

DSTPNXT is called by DRIVER each time a job issues a

previously scheduled disk or tape I/O request to generate a

value for the time it will run before issuing another

request for peripheral I/O. It is also called by SCHPROC

whenever a job is activated in order to determine how long

the job will run before generating its first peripheral I/O

request after activation, and by JBARVL in generating the

-64-

initial job load to determine the maximum time until the

next disk or tape I/O request for each job.

Time to Service a Peripheral I/O Request (DSTPTIM)

Although peripheral 1/0 requests are issued by jobs

without specification of whether they involve disk or tape,

the service times involved in requests to the different

types of devices must be determined in different ways.

Thus the first thing DSTPTIM must do when it is called is

to decide whether the request which has just been issued

involved a disk unit or a tape drive. This decision is

made by generating a random number which is compared with

a parameter which specifies the relative frequency of disk

requests among all peripheral I/O requests issued. The type

of the request as determined in this manner then causes one

of two subprocedures to be called to determine the time

needed to service the request.

The subprocedure which handles disk requests

operates very similarly to the way in which PGTIM treats

page requests. The exact device involved is determined

through the use of a random number, and the time at which

that device will be free (which may be the present simulated

time) is added to a value generated for access time and the

time needed for transmission to yield the time at which

-65-

the request will be satisfied. Again as in PGTIM this

value is noted as the time at which this device will next

be free.

The subprocedure which handles tape requests operates

somewhat differently. As mentioned above, it is assumed

that the job which issued the request has a tape drive

dedicated to it to service the request. Thus the tape drive

needed must already be free, and no tape drive wait enters

into the calculation of the total time needed to service the

request. Since tapes operate in a serial manner, the tech-

nique used to find values for tape service times is to

first generate a value for the number of records which must

be passed over (forward or backward) in order to reach the

desired record for this operation. Given the transport

speed and the time needed to come up to speed (read/write

access time) characterizing the tape drive being used

and the average record length it is then a simple matter

to determine the time needed to reach the desired record.

The length of the record to be read or written and the

transmission rate of the device combine to determine the

transmission time needed. These two values are summed to

provide a value for the total service time needed. DSTPTIM

is called by the same routines as is DSTPNXT to provide

values for the service times needed for each disk or tape

I/O request.

-66-

Job Interarrival Module (TRMIO)

This module differs somewhat from the modules which

handle disk and tape I/O requests and page faults in that

the requests initiating new jobs are not associated with jobs

already in the system. Instead, in the case of a time-

sharing system jobs are generated by communications from

user terminals, while in a batch-processing environment

they arrive via input devices such as card readers or

remote terminals.

One of the problems in simulating processes such as the

arrival of new jobs to the system is the probabilistic

assumptions made about the population which generates them.

In the case of a time-sharing system, if we consider the user

population to be finite and assume that any user has at most

one request pending at any time, then we must take into

account the number of jobs already in the system as a

decrease in the total user population generating further

requests. Denning has shown (45) that in a large time-

sharing system this need not be regarded as being the case,

but that one may assume an infinite user population for

purposes of predicting interarrival times for terminal

messages. A large batch system with a sizable user community

is analogous to this situation. The assumption of an

infinite user population is therefore made in the model.

-67-

Several studies (50, 51) have been done on interarrival

statistics for terminal communications, but they have concen-

trated primarily on the detailed interactions of a single user

with a computer system rather than on the activity of the

user population as a whole. However, Coffman and Wood (50)

have found that the assumption of the independence of the

arrivals of terminal communications is borne out in studies

of actual systems, both for a single user and for

the user population as a whole. Considering this indepen-

dence and the infinite user population we have to draw from,

the arrival process may be assumed to be Poisson in nature.

Consideration of the user population of a large batch system

leads to an analogous assumption for batch systems. The

arrival process is therefore treated as Poisson in the model.

The generation of the time between arrivals of jobs

to the system is performed by drawing a value from an

exponential distribution. This distribution is conditioned

on the average arrival rate of jobs to the system which is

a parameter of the model. On any given call to TRMIO the

value returned is the absolute simulated time at which the

next arrival is to occur; this quantity is found as the sum

of the value drawn from the exponential distribution and the

time in the model when the call is made.

-68-

TRMIO is called by DRIVER during initialization of the

model to generate the time at which the first job not in the

initial job load will arrive at the system. Thereafter it

is called each time a previously scheduled arrival occurs

to determine the time of the next arrival.

Generation of Job Characteristics (JBARVL)

This module generates the characteristics which

describe each job as it arrives at the system. Jobs are

described by a set of five static characteristics: job

type, total job size, priority level, working set size and

total processing time required. A maximum of six different

job types may be used on any model run. As an example, the

job types used by Scherr (42) in his model of CTSS were:

- File Manipulation

- Program Input and Editing

- Program Running and Debugging

- Program Compilation and Assembly

- Miscellaneous

Jobs of different types customarily perform different kinds

of tasks and place different average demands upon the system.

Interactive jobs will be considered here as individual

requests only rather than as sequences of related tasks, as

-69-

discussed above in connection with the Job Interarrival

module (TRMIO). Neilsen (30) and others have discussed

schemes whereby a time-sharing task load is modelled by

generating jobs which consist of a sequence of identical

interactions repeated some number of times. This method

was shown to give good results, but it involves more detail

than is needed here. Since we are concerned only with the

overall behavior of the simulated system over a significant

period of time, whether a task is represented by a sequence

of repeated commands from a specified user or by a number

of such commands from undesignated users interspersed among

other requests does not affect the overall results. A

scheme more like that used in RCA's SIM/61 system (39) is

used in the model described here. Jobs are generated

individually according to the probability of occurrence of

each job type, which may be entered as a parameter. This

method is quite general, is applicable to both batch and

time-sharing environments, and can be tailored to approximate

different job mixes on different runs of the model. Priority

level is generated separately according to another probability

distribution.

The total size, working set size and total processor

time required for any job are interrelated quantities.

Working set size as used in the model denotes the actual

-70-

number of pages required during the execution of a given

job. This is some fraction of the total number of pages

associated with this job, since not all of a job's pages

are necessarily used on any given execution. For each job

type an average working set size and a standard deviation

for this size are specified as parameters to the model. A

value for the working set size of any given job is generated

from a normal distribution conditioned on the mean working

set size associated with the type of the job. The total

size of the job is then found by multiplying the mean

working set size by a factor which is also a parameter of

the model and again drawing a value from a normal distri-

bution. The total CPU time required by this job is generated

using the same curve which will be used for finding the time

between page faults for the job. This curve is described

above in connection with the paging module PGNXT. The job

will terminate at some time after its final page is brought

into core, assuming that sufficient space has been assigned

to the job to allow its entire working set to be in core at

once. Using this assumption, an approximation is used to

generate a value for the total run time from the paging

curve.

In general the remaining entries of the description for

each job are initialized to zero, with the exception of the

-71-

Active Indicator (CPU Time since Last Activation) and CPU

Time until Termination. The Active Indicator is set to -1,

indicating that the job is inactive and CPU Time until Term-

ination is initialized with the total CPU time requirement

for the job. In the case of the initial job load, however,

JBARVL must generate jobs with characteristics indicating

that they have already been partially processed. This is

done by generating a job description in the manner described

above and then modifying certain entries. These entries

include Partition Size, Number of Pages in Core, Active

Time, and the entries giving the times remaining until the

job's.next page fault and next peripheral I/O request and

time until termination. The partition size of a job is

normally assigned by the scheduler when the job is activated,

but in this case we wish the job to be already active, so

JBARVL arbitrarily assigns each job in the initial job load

a partition size equal to one-half of its total size.

Number of Pages in Core and CPU Time since Last Activation

are interrelated, since the job must have run for a length

of time appropriate for it to have issued page faults to

bring in the number of pages it has in core. A value for

the number of pages in core for each job is drawn from a

normal distribution centered on one-half of the partition

size assigned to the job, and subject to the constraints

-72-

that the value generated must be less than or equal to the

partition size and also less than or equal to the total

working set size of the job. A value for CPU Time since

Last Activation is then generated as a random value uniformly

distributed between the time at which the last page fault for

the pages in core for this job would have been issued and the

time at which the next page fault is to occur. These times

may be found from the paging curve for this job as described

in the discussion of PGNXT above. The CPU Time until

Termination for this job is then simply its total required

time minus the time for which it has already been active.

Values for CPU time until next Page Fault and CPU Time until

next Peripheral I/O Request are found by calling PGNXT and

DSTPNXT respectively to yield maximum values for the corre-

sponding intervals and then choosing a random value evenly

distributed between zero and this maximum time in each case.

A number of possible inaccuracies are inherent in this

method of generating an initial job load. All jobs initially

in core are treated as having been activated at some time in

the past and having been allowed to remain in core thereafter;

i.e. no deactivations have been performed on these jobs.

The job which is generated last in the initialization calls

and which is not active has not been processed at all, and

there are no other jobs waiting for service. This is not a

-73-

particularly likely state in which to find the system duri.ng

the course of its operation, except perhaps in the case of

a scheduler which does no deactivations. Also, all jobs in

the initial load are ready to be run, and this is also an

unlikely event in normal operation. However, this approach

was felt to be more like the conditions found under normal

operation than most other feasible initial loads, and the

overhead involved in generating the initial jobs is little

more than that involved in generating normal jobs.

Routine to Produce Debugging Information (DEBUG)

This module is called by the supervisor routine on

each iteration of the model whenever the value of the System

Clock lies between an upper and a lower bound which are set

via parameters. Each time it is called, DEBUG prints out

three types of information. First, it produces a record of

the commands issued by the scheduler on the most recent

iteration of the model. This includes the identification

numbers of all jobs to be deactivated, the identification

numbers of all jobs to be activated together with the par-

tition sizes to be assigned to them, and the number of the

job to be processed next together with the timeslice to be

assigned to it. Then it produces a dump of the System Event

List, which records all the events scheduled to occur at

-74-

specified times in the future in the simulated system

together with the job involved in each event and the time

at which it is to occur. Lastly, it prints out a listing of

all the job descriptions presently in the Job Stream List,

showing the complete status of each job in the system.

Finally, it prints out the value of the System Clock, which

is the present time in the simulated system. This infor-

mation provides a clear and complete picture of the state

of the system and is quite useful in debugging the model

should problems occur.

The parameters which determine whether DEBUG will be

called on any given iteration allow it to be enabled for

all or for only a portion of a run. This saves on print

costs, since a sizable amount of output is produced each

time the routine is called, and this scheme facilitates

calling it only in the time interval for which detailed

information is needed. An example of the output produced

by DEBUG is shown in appendix C.

Procedure to Output Trace Listinig (TRACE)

This procedure is called by DRIVER once during each

model iteration when the value of the System Clock is

between an upper and a lower bound specified for the trace

routine. These limits may be set via parameters as

-75-

described above for DEBUG. Each time it is called TRACE

prints out the most recent event to have occurred in the

system and the job involved in that event (e.g. Job #6 has

incurred a page fault). It also provides a listing of any

activation and deactivation commands issued by the scheduler

after it was informed of this event, together with the

number of the job it has selected to be run next. The out-

put provided comprises a brief summary of the events

occurring in the simulated system in the course of a run.

If a summary of only part of a run is desired this is easily

obtainable via appropriate settings of the limit parameters.

Sample trace output is shown in appendix C.

Procedure to Produce Summary Information (ACCNT)

This routine collects statistics on the events occur-

ring in the simulated system in the course of a run and

processes them to produce figures describing the performance

of the scheduler being used and the behavior of the simulated

jobs running under that scheduler. It is called by DRIVER

once during each iteration of the model subject to a para-

meter setting which specifies the minimum simulated time at

which ACCNT is to be called. Setting this parameter to zero

causes ACCNT to be called on each iteration of the model;

-76-

giving it a larger value than the total run time specified

for a particular run ensures that it will not be invoked at

all on that run. Setting it to some intermediate value

causes ACCNT to be invoked only during the latter portion

of the run, thus producing a final summary which considers

only this portion of the run. This may be desirable in

order to minimize the effects of initial transients in the

operation of the simulated system on the figures compiled,

thus yielding a more realistic picture of the steady-state

performance of the system being simulated. On each call

during iteration of the model ACCNT collects data on

various aspects of the operation of the system. In addition,

if it is enabled, it is called a final time after the model

run is over to process these figures and print out the

results.

The figures produced by ACCNT fall into four basic

categories. First, it produces overall figures describing

the average state of the simulated system. These figures

include the average number of jobs in the system and in

main memory, the average amount of main memory assigned to

jobs, and the average number of pages actually in core. The

percentage of simulated time spent idle by the CPU is also

shown. Second, it provides figures describing the charac-

teristics of the jobs generated on this run. This includes

average total size and working set size, average CPU time

-77-

requirement, and type and priority level distributions. The

third group of figures gives information on the actions of

the scheduler used on a given run. This includes the

number of activations and deactivations performed and the

average timeslice assigned to jobs to be processed. The

last group of statistics describes the behavior of the jobs

in the system operating under this scheduler. This includes

the average occupancies of running, ready and blocked states,

total numbers of page faults and peripheral I/O requests

generated, average wait time for each type of request, and

total number of timeslice runouts. It also gives the number

of jobs which terminated in the course of the run and their

average turnaround times, including breakdowns of turnaround

time by job type and priority level. Taken as a whole,

these figures give a fairly comprehensive picture of the

overall performance of the system simulated on any given

run. As in the case of DEBUG and TRACE, an example of the

output produced by ACCNT is provided in appendix C.

The jobs considered by ACCNT in compiling statistics

on job and scheduler behavior include only those whose

processing is initiated after the beginning of the

accounting scan. The rationale behind this is as follows.

Jobs which are active before this time have already been

partially processed. When the run ends a number of jobs

-78-

will be left in the system only partially processed. If

the jobs considered in compiling statistics on the number

of jobs processed include only the jobs which are activated

after the beginning of the scan then the processing done on

the jobs which are initially active and which are not counted

after the beginning of the scan should on the average

balance off the work not yet done on the jobs left unfinished

when the run terminates. This should yield a fairly

reasonable count of the jobs actually processed by the system

during the course of the run. On runs of short duration

when few new jobs arrive at the system this may lead to mis-

leadingly small figures. On longer runs, however, this

method produces fairly representative results.

Procedure to Add an Entry to the System Event List (SELLINK)

This is the procedure which is used each time an event

is to be added to the System Event List. It is called by

the supervisor routine each time the time of occurrence of a

future event is determined. Whenever a job incurs a page

fault or issues a peripheral I/O request an event must be

set up for the completion of that request, and whenever a

job arrives at the system an event must be set up for the

arrival of the next job. In these situations DRIVER calls

SELLINK, passing it a number indicating the kind of event

-79-

which is to occur, the identification number of the job

involved in the event, and the time at which the event is

to occur. SELLINK then allocates an entry for this event,

sets the variables in that entry to the appropriate values,

and links it into the existing System Event List chain in

ascending chronological order.

Procedure to Find a Job Description (JSEARCH)

JSEARCH is called by DRIVER and SCHPROC to locate the

description of a given job in the Job Stream List. It takes

as an argument the identification number of the job to be

located. It returns a pointer which points to the desired

description if the job is found in the list, or has a value

of NULL if the indicated job is not in the list (i.e. is

not presently in the system).

Procedure to Check Eligibility of a Job (JCHECK)

This procedure is called by SCHPROC to determine

whether or not a given job is eligible to be run, i.e.

whether it is both ready and active. JCHECK takes as an

argument a pointer to the description of the job in

question and returns the same pointer if the job is

eligible, or NULL if it is not.

-80-

Procedure to Generate Random Numbers (RANDOM)

This procedure produces values evenly distributed

between zero and one via the multiplicative congruential

method (52). It is called by a number of the other routines

of the model whenever a random number is needed for the

generation of a sample value. It generates a repeatable

sequence of values on each run, beginning with the same

seed and using each generated value as the seed for the

value returned on the next call.

Procedure to Generate Normally Distributed Values (NORMAL)

This procedure is called by the other routines of the

model whenever a value drawn from a normal distribution

is needed. It takes as arguments the mean and standard

deviation of the desired normal distribution, along with a

third parameter which governs the number of ite2ations to

be used in producing the sample value. It returns an

integer value drawn from the indicated distribution by

means of the Central Limit Approach (52).

-81-

CHAPTER THREE

SOME EXPERIMENTAL RESULTS OBTAINED FROM THE MODEL

As described in chapter two, the model under discussion

includes a large number of parameters which may be modified

to approximate different sets of conditions existing in

actual or hypothetical systems. These parameters are in

many cases highly interrelated, and results from model runs

with different parameter values must be compared with care.

As an illustration of the kinds of results obtainable with

the model and their relation to behavior observed in actual

systems, a set of nine model runs was performed. These runs

involved systematic variation of the parameter which governs

the total amount of main memory available to user programs.

Three different schedulers were used, each of them being run

with three different values for user memory size. All other

parameters were held constant, with the exception of the

average interarrival rate of the jobs coming into the system

for processing. This parameter was varied as needed in an

attempt to maintain a sufficient number of newly arrived

jobs to keep the simulated systems in a saturated state.

Cost constraints prohibited its being set to some arbitrarily

high value which could have been held constant.

-82-

Parameter Values Describing the Eimulated System

In considering the results obtained from the test runs

it is first important to discuss the values assigned to the

various parameters of the model for these runs, including

those which were held constant as well as those which were

varied. The settings of these parameters determine the

characteristics of the system being simulated, and they

should represent a system similar to those found in practice

if the model runs are to yield results approximating those

found in actual systems. The parameter settings used in the

test runs were based on figures describing the 370/165 batch

processing system at MIT's Information Processing Center in

September, 1972 (53, 54, 55). This system does not use

paging but runs under OS/MVT, a multiprogramming system

where the number of tasks in main memory is variable. Thus

the characteristics of the paging devices in the modelled

systems and the paging behavior of the simulated job streams

could not be based directly on actual figures from this sys-

tem. They were chosen to be similar to those found in sys-

tems which do use paging. The remainder of the parameters

are based directly on the IPC system.

The parameters may be broken down into two major classes:

those which describe the physical equipment available in the

simulated system, and those pertaining to the job stream

processed by the system.

-83-

Parameters Governing System Configuration

The first class inclndes parameters governing the

number and characteristics of the I/O devices present in the

simulated system. These variables were set to reflect the

following configuration:

- twenty disk drives, including

- twelve disk drives having the characteristics

- average access time = 75 milliseconds

- transfer rate - 312,000 bytes/second

(IBM 2314 disks)

- eight disk drives having the characteristics

- average access time = 30 milliseconds

- transfer rate = 806,000 bytes/second

(IBM 3330 disks)

All disks were assumed to have the same frequency of

usage.

- an unspecified number of tape drives having the

characteristics

- read/write access time = 4 milliseconds

- transfer rate = 160,000 bytes/second

(IBM 2820 Model 4 tape drives)

The model assumes that any job issuing a tape request

has a dedicated tape drive available to service that

request; no effort is made to limit or monitor the

-84-

number of tape drives in use at any time.

- two drums having the characteristics

- average access time = 4 milliseconds,

- transfer rate = 1200,000 bytes/second

(IBM 2301 drums)

The drums were used exclusively as paging devices.

In addition to the above parameters which describe the

operating characteristics of the I/O devices there are

several parameters which specify factors affecting the usage

of these devices. These parameters had values as shown below:

pagesize = 4096 bytes

- disk record size = 1000 bytes

- tape record size = 800 bytes

Pagesize is in general a constant; disk and tape record

sizes are not constant in an actual system but may be

approximated as constant at their average values; this

is the approach used here.

- ratio of the number of disk requests to the total

number of peripheral I/O requests (disk and tape)

issued = .821

Peripheral I/O requests are generated in the model

without specification of the type of device they

address. When such a request is issued by a simulated

-85-

job it is necessary to determine the type of device

involved since the service times are computed in

different ways for the different devices. This ratio

is used to determine whether a given request involves

disk or tape.

These figures correspond in general to the configuration and

average usage pattern of the IPC system in September, 1972

and are representative of a number of large-scale batch

installations.

Parameters Governing Job Stream Characteristics

The second class of model parameters deals with the

characteristics of the jobs which are to be serviced by the

simulated system. The model provides for up to six different

types of jobs, each type having a separate set of charac-

teristics describing it. In the experiments to be described

here only one job type was used. Detailed data needed to

break the jobs down into several classes (e.g. I/O bound,

CPU bound, etc.) was not available for the IPC system. This

single job type may be viewed as representing an average of

the characteristics of the aggregate job stream serviced by

the IPC system. There is considerable variation in the

characteristics of the individual jobs of this single type

produced by the model due to the probabilistic methods used

-86-

to generate them.

Each job was assigned one of three priority levels

according to the following distribution:

level 1 - 7.61% (high priority)

level 2 - 37.49% (medium priority)

level 3 - 54.90% (low priority)

These numbers correspond to percent usages of the three

major priority levels on the IPC system.

The mean time between peripheral I/O requests for the

simulated system was 16 milliseconds. The exponent used

for the paging curve (the curve used to determine the time

until the next page fault) was .0003. This number does

not have any direct physical interpretation. It was chosen

by experiment to determine a value which resulted in reason-

able paging behavior.

Job size is generated in two steps, each one governed

by a different parameter. First the working set size is

determined, which in this context is the total number of

pages which will actually be used by the job during its

execution. The mean value for working set size for the jobs

generated was twenty-five pages. Total job size (all pages

associated with a job, regardless of whether or not they

are used on a given run) is then generated using a mean

-87-

value dei:ermined by multiplying the mean working set size by

a constant factor. For these runs this multiplier had the

value two. In other words, the simulated jobs used half of

all their; pages on the average during execution. As men-

tioned above, the IPC system is not a paging system, so

this figure is again an estimate of realistic behavior.

Total size is used only as an estimate to pass to the

scheduler; working set size is the size measure used by the

model in simulating job behavior. The average total size

for jobs submitted to the IPC system was about 200K bytes,

or fifty 4096-byte pages. Thus the modelled jobs resemble

very closely the actual jobs in total size.

The total CPU time required by each job is determined

by an extrapolation on the paging curve. (A job terminates

sometime after its last page has been brought into core.)

Thus a job's CPU time requirement is -affected by the expo-

nent of the paging curve. It is also affected by another

parameter which again has no direct physical interpretation

but which governs the length of time for which a job will

run after its last page has been brought into core. In

these runs this parameter had a value of 1.5, again deter-

mined through experimentation, which yielded CPU time

requirements averaging 408.3 milliseconds. The IPC data

indicate that an average job on that system runs for .63

-88-

minutes, or about ninety-three times as long as this. This

disparity is the result of a tradeoff between two opposing

factors. Since simulation runs using the model described

here are quite expensive, it was necessary to make them

fairly short. At the same time, in order to obtain mean-

ingful figures on turnaround time and throughput it was

desirable to have a fairly large number of jobs terminating

in the course of each run. A compromise was reached by

making the jobs quite short and running each test case for

thirty simulated seconds. The behavior of the simulated

jobs in respects other than CPU time requirements was

generated and measured on a per-unit-time basis rather than

on a per-job basis. For example, peripheral I/O behavior

was considered in terms of the average time elapsing between

requests rather than in terms of requests issued per job.

Thus each job in the simulated system behaves as an actual

job might behave over a short fraction of its run time. The

difference in CPU time requirements therefore should not

affect the behavior of the simulated system except in terms

of throughput and turnaround times, and its effect on these

measures should be a simple linear increase.

The parameter which was varied among the nine test runs,

as mentioned above, was the total size of user memory.

The values assigned to it were fifty pages, one hundred

pages and two hundred pages. The IPC system runs with a

-89-

maximum of 750K of user core, which is approximately one

hundred eighty-eight 4096-byte pages. This is represen-

tative of a large-scale batch system. This figure corre-

sponds fairly closely to the upper limit of two hundred

pages used in the model runs. However, this similarity

in total size is outweighed by the difference in the number

of jobs being multiprogrammed in the actual and the simulated

systems. The IPC system, running as a non-paged system,

loads an entire job into memory before running it. This

means it can accomodate an average of three to four jobs in

core simultaneously. In the simulated system under the

schedulers being used here, in contrast, each job is

assigned a partition size equal to half of its total size.

(This is described more fully below.) The modelled system

can accomodate up to eight of these jobs in main memory

simultaneously when it is given two hundred pages of user

memory. Thus it achieves a much higher degree of multi-

programming for the same memory size than the IPC system

does. An even larger number of jobs could of course be

accomodated by the simulated system if each job were

assigned a smaller partition. However, doing this would

mean that all the pages needed by a job (its working set)

could not be in core simultaneously. This introduces the

effects of page contention, which tend to complicate the

-90-

issues involved. Assigning partition sizes equal to half of

the total size of a job eliminates most page contention for

the job mix simulated here. When considered in terms of the

number of jobs being multiprogrammed, then, the one hundred

page simulated systems correspond most closely to the IPC

system. The other two sizes used represent values on

either side of this point, giving a spread of behavior about

this central focus.

The systems simulated in the test runs, then, represent

batch processing systems of varying sizes operating under a

virtual memory scheme. We should expect to see behavior

appropriate to that type of system reflected in the results

of the runs. Due to the lack of paging in the IPC system,

the short run times of the simulated jobs and a number of

other factors which lead to inaccuracies of representation

in the modelled systems, the results produced by the model

could not be expected to accurately mirror the operation of

the IPC system. However, since the model parameters have

realistic values and these values are held constant across

the various runs performed, we can expect that comparisons

of the results from runs using different core sizes and

different strategies will parallel those which might be

found in practice.

-91-

The Schedulers

The schedulers explored in the test runs embody three

different scheduling policies. All three schedulers are

built around the same basic code for performing the necessary

functions of scheduling in this system. The first scheduler

uses a simple round-robin selection scheme. The second uses

a preemptive scheme where jobs of higher priority are given

preferential treatment. The third pursues a policy of de-

activating any job which issues a disk or tape I/O request,

scheduling all other jobs in a round-robin manner. Listings

of the code for the three schedulers may be found in appendix

B. These modules will be discussed individually below.

Similarities Among the Schedulers

Before turning to the differences among the three

schedulers tested it is useful to point out the things they

have in common. Each of the three schedulers uses the same

basic data structure for keeping track of relevant information

about all jobs currently in the system. This structure,

called STATUS, has entries for the following pieces of

information:

- the identification number of a job

- an indicator telling whether it is currently

active or inactive

-92-

- an indicator telling whether it is currently

ready or blocked

- the partition size assigned to it (if it is

active)

- the clock time at which it was last assigned

to the processor

- a pointer used to chain together the separate

copies of this structure which describe the

different jobs

The declaration used to define the form of this structure

appears in the listings in appendix B. The information

maintained in these structures, together with the data passed

to the scheduler on each call, constitutes most of the infor-

mation needed to perform scheduling decisions. When a job

is to be chosen to be brought into core, the active/inactive

indicator in the STATUS entry is used to distinguish between

jobs which are eligible to be activated and those which are

already in core. This indicator is also checked in selecting

a job to be run, in order to ensure that a job which is not

in core is not assigned to be processed. The ready/blocked

indicator is used in an analogous manner to ensure that a

blocked job is not assigned to be processed. The partition

size assigned to each job is used when a job terminates or

-93-

is deactivated to determine the resulting amount of free

core. The time of the beginning of a job's run interval is

used in adjusting the timeslice assigned to the job if its

processing is interrupted by some independent event. For

instance, if some other job's previously issued page request

is completed while a job is running, the scheduler is called

and notified of this fact. Often the scheduler wishes to

continue processing the running job. It then reassigns the

running job to the processor with a timeslice equal to its

original timeslice minus the processing time it received

before the paging interrupt occurred. This has the desired

effect of limiting a job's total processing time to the time-

slice originally assigned to it, rather than resetting the

timeslice to its full original value every time an indepen-

dent event occurs in the simulated system. All three

schedulers assign an initial timeslice of fifty milliseconds

to all jobs. The items of information recorded in the STATUS

entry for each job are updated as they change during the

course of its processing. New entries are added to the STATUS

chain as jobs arrive at the system for processing, and

entries are deleted when the job they describe terminates.

The basic tasks performed by the three schedulers each

time they are called are as follows: First the information

passed via parameters by the DRIVER module is processed.

-94-

This involves changing appropriate entries in the STATUS

structures and other variables. Then, based on the present

state of the system as recorded in the STATUS chain and

related variables, commands are issued to activate as many

jobs as possible (if any), keeping main memory as fully

utilized as possible. The partition size assigned to any

job, as mentioned above, is half of its total size.

Finally, if one or more jobs are eligible to be run, one of

these jobs is chosen to be assigned to the processor. Job

zero is selected (i.e. the system is allowed to remain idle)

only when no job in the system is eligible to be run. The

scheduler makes appropriate entries in its output variables

to indicate the commands it wishes to issue and returns con-

trol to the main routine. The code used to perform these

tasks in the various schedulers is quite similar, differing

primarily in the policies used in selecting jobs to be

activated and run.

The Round-Robin Scheduler

The round-robin scheduler selects jobs to be activated

on the basis of size considerations. It scans the STATUS

chain for a job that will fit into the amount of free core

available. Since the STATUS chain is constructed by adding

new entries onto the end of the chain and each scan is begun

-95-

with the first (oldest) entry, this gives jobs which have

been in the system longest the best chance of being activated.

If a job which requires an amount of core less than or equal

to the available space is found, an ACTIVATE command struc-

ture is set up to activate it, and the partition size

assigned to this job is deducted from the amount of available

memory space. The search of the STATUS chain then continues,

looking for another job which will fit into the amount of

free core still unassigned. This process continues until

the end of the STATUS chain is reached. At this point there

are no other jobs which can be activated. Once a job is

activated it remains active until it terminates. This

scheme discriminates against large jobs in favor of keeping

core utilization high. In the system modelled in the test

runs this discrimination is minimized by the fact that all

jobs are in the same size range. In a simulation where this

was not the case one might wish to use some other selection

scheme in order to ensure that large jobs do not incur

unnecessarily long waits before being activated. For

instance, jobs might be activated strictly in the order

in which they arrive at the system.

The selection of the next job to be run is made in a

round-robin manner subject to the status of the job assigned

to be run on the last call. If the previously assigned job

is still eligible to be run and has not exceeded its time-

-96-

slice, it is reassigned to the processor with a reduced time-

slice as discussed above. If the running job is now blocked,

another job must be chosen to be run. The scheduler searches

through the STATUS chain starting with the entry following

the one pertaining to the previously running job. The first

job encountered in this scan which is both ready and active

is selected to be run. This scan is conducted in a circular

manner. If the last element in the STATUS chain is reached

without encountering a job which is eligible to be run, it

continues with the first element in the chain. If no

eligible job is found after a complete search of the STATUS

chain, job #0 is chosen to be run (i.e. the system remains

idle).

The Preemptive Scheduler

The preemptive scheduler operates in a manner similar

to the round-robin scheduler, except that it takes the

priority levels of the jobs into account. It should be

noted that this scheduler has an extra entry in its STATUS

structures to record the priority level of each job. When

searching for jobs to be activated it makes several passes

through the STATUS chain. On the first pass any jobs of the

highest priority level which will fit are chosen to be

activated. Then a second pass is made to scan for jobs of

-97-

the next highest priority level which will fit, and so on,

down through the lowest priority level being used. Under

this scheme a smaller job of low priority might be activated

before a larger high priority job. Thus it is not a strict

priority activation scheme, but gives preference to high-

priority jobs while keeping core utilization as high as

possible. As in the case of the round-robin scheduler,

once a job is in core it remains active until it terminates.

No job is preempted from active status in favor of a higher

priority job.

In choosing the job to be processed next the preemptive

scheduler first determines the highest priority level among

eligible jobs. If the previously running job is still

eligible to run, has not run out its timeslice and is of the

highest priority level among the set of eligible jobs, it is

reassigned to the processor. If a higher priority job is

eligible, the running job is preempted in favor of that job.

If the running job is no longer eligible or has timed out,

another job must be chosen. As in the case of the round-

robin scheduler, a circular scan of the STATUS chain is

made, beginning with the entry after the one pertaining to

the job run previously. The first eligible job encountered

in this scan which is of the highest priority among the set

of eligible jobs is chosen to be processed. This scheme

-98-

is in effect a round-robin selection within the set of jobs

having the highest priority level among the set of eligible

jobs. As before, if no jobs of any priority level are

eligible to be run job #0 is selected.

The Deactivating Scheduler

The third scheduler resembles the round-robin scheduler

in all respects except that it deactivates jobs whenever

they issue peripheral I/O requests. The rationale behind

this practice is as follows. A job which issues a request

to disk or tape will be ineligible to be run for a sizable

period of time while its I/O is being performed. If it is

deactivated there is a possibility that another job activated

in its place may be able to accomplish useful work during

this period. Paging I/O is much faster than disk or tape

I/O, so jobs waiting for pages may be allowed to remain in

core with a much smaller penalty incurred in terms of

memory space occupied by an ineligible job. The choice of

jobs to be activated on each call is made from among the

set of jobs which have been deactivated and whose I/O has

been completed as well as jobs which have not yet been

activated for the first time. Due to the ordering of the

STATUS chain (jobs longest in the system preceding newer

arrivals), jobs which have been deactivated and are now

-99-

ready to be activated again are given preference over those

which have not yet been adtivated. As before, however, the

size of the job is also a factor. A new job which is small

enough to fit into available memory space will be activated

before a larger job which has been active previously. The

selection of a job to be assigned to the processor by the

deactivating scheduler is made from among the set of ready

and active jobs in the same manner as in the round-robin

scheduler.

The three schedulers described above are very simple

and unsophisticated as compared with many schedulers used

in practice, such as the CTSS onion-skin scheduler described

by Scherr (42) or the multiqueue scheduler used in IBM's

CP/67 system (56). There are several reasons for this

simplicity. First, since the test runs are intended merely

as an illustration of the results obtainable from the model

and the conclusions which may be drawn from them, simple

scheduling schemes are sufficient. Indeed they are pre-

ferable in some ways, since they involve fewer factors which

must be taken into account in interpreting and comparing the

results obtained with each one. Secondly, there are a

number of factors which are considered in scheduling for

practical systems that are not represented or are not

appropriate to consider in the test runs. For instance,

-100-

in actual batch systems scheduling strategies often take

factors such as job type into account in order to achieve

a balanced mix of jobs in core. Since the simulated jobs

used for the test runs have not been separated according to

type it would not be practical or helpful to use schemes

which consider the type of the job in making scheduling

decisions. As another example, time-sharing systems often

use complex scheduling strategies aimed at providing good

response to the terminal users. Since the system under

simulation here is a batch system, no effort need be made

to ensure quick response. In short, the schedulers used

here are not intended to correspond to any particular

schedulers used in practice. Rather, they embody three

different scheduling philosophies in very simple form and

thus provide a basis for the comparison of those philosophies.

A Word of Caution

Several points which have bearing on the accuracy of

the results obtained from the test runs should be men-

tioned before discussing and comparing these results. First,

due to the way in which the model is constructed, the actual

job stream presented to the simulated systems for processing

was not identical across the nine test runs. A single ran-

dom number generator is used by the model to generate values

for the interarrival times of jobs, jobs characteristics,

-101-

I/O wait times, etc. The first quantities generated on each

run are the characteristics of the jobs initially in core.

Since there are more jobs in core initially in a one hundred

page system than in a fifty page system, runs using a core

size of one hundred pages require more random numbers to

perform the generation of characteristics for the initial

job load than those using a core size of fifty pages. This

difference extends in the same manner to runs using a size

of two hundred pages. Thus the random number sequence used

to begin actual operation of the model is different for

runs using different core sizes. This results in different

job interarrival times, and thus differing numbers of jobs

arriving for processing during the course of the various

runs. Also, for the same reason, the characteristics

describing the jobs generated on a given run do not corre-

spond directly to those of the jobs on other runs.

Similar problems exist among runs where the core size

was constant but different schedulers were used. The

three schedulers select jobs for activation and processing

in different ways. For example, the job selected to be

run by one scheduler may issue a page fault, requiring the

use of one random number to determine the paging device

involved in the request and another random number to

generate the time until its page request will be satis-

fied. The job chosen by another scheduler may time out,

-102-

requiring no calls to the random number generator. Thus even

though these runs begin with the same initial job load, they

will eventually use different random numbers for generating

corresponding quantities, again producing nonuniform job

streams. Probabilistically speaking the job streams for the

different runs are identical, since they are generated using

the same values for the mean and standard deviation for each

characteristic. Due to the differences in the random

number sequences, however, the resulting job streams are not

the same in actuality. Given runs of sufficient duration

these discrepancies would be minimized. In the relatively

brief runs made for testing purposes, however, the differences

are significant. These discrepancies must be borne in mind

in comparing the results obtained from the different runs.

In particular, small numerical variations in results may

well be due at least in part to differences in the job

streams presented to the simulated systems. Only clear

trends or marked differences in value should be interpreted

as significant.

A second factor which affects the accuracy of the

results obtained with the model stems from its method of

handling disk I/O. The model treats all disk units as

separate entities, any number of which may be accessed

simultaneously. This represents a simplification of the

-103-

operation of an actual computer system, since in general

the interconnections of the I/O channels and control units

with the disks results in only certain combinations of disk

units which may be accessed in parallel. Thus the represen-

tation of the twenty disk units in the test runs creates a

simulated environment where contention of disk usage is con-

siderably lower than it would be in an actual system with

that number of disk units. This will of course affect the

results obtained with the model in terms of disk usage and

other related aspects of system behavior. This must be

borne in mind in analyzing these results. Similar problems

could be expected in modelling systems with interconnected

networks of paging devices. However, since there are only

two paging devices in the systems simulated here and since

the paging store in not intended to resemble that of any

specific actual system, we can safely assume that they can

be accessed in parallel. Thus the treatment of paging

devices in the model should not introduce any specific error

factor into the results obtained in the test runs.

Summary of Results from the Test Runs

A sample of the summary output obtained from the model

is shown in appendix C, illustrating the different measures

collected and output by the model on a standard run. The

statistics produced by the test runs may be best compared

-104-

by breaking them down into classes to be considered individ-

ually. Three classes have been selected for discussion here.

They include figures on resource usage (usage of main memory,

paging drums and peripheral I/O devices), measures of job

behavior under the scheduling schemes used, and figures on

overall system performance. Not all the data produced by

the test runs is *presented here, but rather a representative

selection of the available statistics is shown. The values

obtained for the statistics in each class are discussed and

compared below. Conclusions from the separate classes are

then combined to yield a comparative analysis of the perfor-

mance of the three schedulers used in the simulated systems

of varying size.

Resourse Usage - Main Memory Usage

In discussing resource usage a logical starting point

is main memory usage. Main memory is an expensive resource,

and it is economically favorable to make the fullest possible

use of it. Also, the more fully it is utilized the larger

the number of jobs that may be multiprogrammed simultaneously.

Table 3-1 shows the average number of jobs assigned partitions

in primary memory at any one time for each of the nine test

runs. The partition size assigned to a job by each of the

three schedulers is half of its total size, or about 25

-105-

Round-Robin Preemptive Deactivating

50 pages 1.97 1.98 1.76

100 pages 3.66 3.99 3.91

200 pages 7.76 7.37 7.63

Table 3-1

Average Number of Jobs in Main Memory

pages on the average. Since some jobs require slightly

more space than the average and some slightly less, we

cannot expect an exact fit of main memory size/25 pages

jobs on the average. Rather, a figure slightly less than

this would be a reasonable expectation. And that is indeed

what is observed in each case, with minor numerical fluc-

tuations.

The average amount of primary memory assigned to jobs

at any given time (Table 3-2) shows the average number of

pages allotted to jobs on each run. These figures run

parallel to those of Table 3-1, as would be expected.

-106-

I I

Round-Robin Preemptive Deactivating

50 pages 48.49 48.59 44.16

100 pages 92.20 97.88 96.89

200 pages 193.67 185.36 191.91

Table 3-2

Average Amount o-f Main Memory Assigned to Jobs (in blocks)

The average number of pages actually in main memory (Table

3-3) shows some differences among the three schedulers.

These figures represent the actual usage of primary memory

as opposed to its allocation to each job, and thus represent

a much better guage of main memory usage than do figures on

the amount of memory assigned to jobs. Table 3-4 expresses

Round-Robin Preemptive Deactivating

50 pages 35.31 34.70 4.45

100 pages 67.96 73.57 8.93

200 pages 139.57 134.73 16.23

Table 3-3

Average Number of Pages in Main Memory

the figures of Table 3-3 as percentages of the maximum

possible number of pages in core. These figures show that

-107-

all three schedulers maintain roughly constant percentages

of main memory usage over the three core sizes tested. The

usage under the round-robin and preemptive schedulers is

roughly the same, while that under the deactivating scheduler

is almost a factor of ten lower. This observed behavior is

consistent with the policy used by this scheduler. The

deactivating scheduler removes jobs from main memory each

time they issue a disk or tape request. These jobs are

replaced by other jobs which start off with a single page

in main memory. Other pages of these jobs are brought in

on demand. Only a small number of pages for any given job

are brought in on the average before it issues a peripheral

I/O request, causing its pages to be swapped out and another

job to be brought in, again starting with a single page.

Round-Robin Preemptive Deactivating

50 pages 70.6% 69.4% 8.9%

100 pages 68.0% 73.6% 8.9%

200 pages 69.8% 67.3% 8.1%

Table 3-4

Percentage of Maximum Possible Number of Pages in Main

Memory (Actual Main Memory Usage)

-10 8-

This leads to low utilization of main memory, and indicates

that a partition size of 25 pages is considerably larger than

is necessary for this job stream under a deactivating scheme.

Resource Usage - Paging Devices

The figures on the usage of paging devices in the

simulated systems illustrate several trends and differences

among the schedulers and their performances in the various

systems modelled. These figures are shown in Table 3-5 and

Table 3-6. The figures on the total number of page faults

issued (Table 3-5) show an increase in page faults as

memory size increases for all schedulers. This increase

may be attributed to the larger number of jobs being multi-

programmed in the larger systems, leading to less idle time

and more overall activity in the system. The numbers of

page faults generated under the round-robin and preemptive

schedulers are roughly the same for corresponding sizes.

Systems running under the deactivating scheduler, in con-

Round-Robin Preemptive Deactivating

50 pages 715 721 3290

100 pages 1179 1270 5214

200 pages 1807 1778 5887

Table 3-5

Total Number of Page Faults Incurred

-109-

trast, experience three to four times as many page faults as

those running under the other two schedulers. As discussed

above in connection with core usage, this difference reflects

the large percentage of jobs with a small number of pages in

main memory on the average under the deactivating scheme.

Jobs with only a few of their pages in memory require new

pages at a much higher rate than those which have more pages

in memory. Thus the deactivating scheduler causes jobs to

incur page faults at a rate considerably higher than the

round-robin and preemptive schedulers which activate jobs

initially and allow them to remain in main memory until

completion.

The figures on average page wait time (Table 3-6) show

the response of the paging devices to these different levels

of paging activity. As discussed above in the section on

parameters, the simulated system includes two drums which

Round-Robin Preemptive Deactivating

50 pages 7.612 7.636 8.418

100 pages 7.880 7.893 13.610

200 pages 8.453 8.491 26.112

Table 3-6

Average Page Wait Time (in milliseconds)

-110-

are used exclusively for paging. The-page requests issued

are assumed to be evenly distributed between these two

devices. A request issued to an idle device is serviced as

rapidly as possible within the limits imposed by the charac-

teristics of the hardware (i.e. its processing is begun

immediately). One issued to a device which is already busy

must wait until all requests previously queued for this

device have been serviced before its servicing is begun.

Page requests are queued in a simple first-in-first-out

manner in the model, as are peripheral I/O requests. The

higher the level of paging activity, the longer the average

queue length at the paging devices and thus the longer it

will take on the average to service each page request. This

reasoning is borne out in the average page wait times

observed in the test runs. As mentioned above, larger user

memory sizes allow more jobs to be active simultaneously

and thus cause a higher level of paging activity. Table 3-6

shows that page wait times increase as memory size increases

under all three test schedulers. Also, runs made with the

deactivating scheduler, with its heavier paging load due

to deactivating and reactivating jobs, show significantly

longer page wait times than runs made using the same

memory size but another scheduler.

-111-

Resource Usage - Disk and Tape Units

Peripheral I/O device usage shows trends similar to

those discussed above for paging device usage. Increasing

memory size allows more jobs to be active and thus more

disk and tape requests are generated, as shown in Table 3-7.

Round-Robin Preemptive Deactivating

50 pages 691 688 837

100 pages 1149 1237 1322

200 pages 1790 1757 1504

Table 3-7

Total Number of Peripheral I/O Requests Issued

Contrary to the pattern shown by page faults, however, runs

made under the deactivating scheduler show results which are

generally similar to those found in runs made with the other

two schedulers. This is to be expected from the mode of

operation of the deactivating scheduler. It allows each

job to run until it generates a peripheral I/O request and

then removes it from core to make room for other jobs which

are treated in the same manner. Thus though the processing

of a given job may be spread out over a longer period of

time (it may not be reactivated immediately when its request

is completed), the aggregate level of peripheral I/O requests

-112-

issued should be about the same.

The figures on average peripheral I/O wait time (Table

3-8) show trends similar to those found in paging wait times

under the round-robin and preemptive schedulers. As user

memory size increases and the number of requests grows, wait

times for peripheral I/O increase under all three schedulers.

Note that while the numbers of page requests and peripheral

I/O requests issued are quite similar across the board

(excluding the special case of page requests issued under

the deactivating scheduler), the average percentage increase

in page wait times in going from the fifty page to the two

hundred page system in runs under the round-robin and pre-

Round-Robin Preemptive Deactivating

50 pages 58.832 59.398 59.634

100 pages 62.034 62.976 62.124

200 pages 63.157 62.841 62.086

Table 3-8

Average Peripheral I/O Wait Time (in milliseconds)

emptive schedulers is 11.7%, while the corresponding average

percentage increase in peripheral I/O wait times over runs

made with all three schedulers is 5.6%. This difference in

relative change represents a balance between two opposing

-113-

tendencies. Disk requests require six to seven times as

long to service as do page requests; thus a request issued

to a busy disk will be delayed much longer on the average

than a request to a busy paging drum. (Tape requests ex-

perience no queuing delay in the modelled systems; however,

disk requests make up over 80% of the peripheral I/O requests

issued in the test runs.) The longer service time for disk

requests tends to extend queue lengths and thus increase

wait times in comparison to those experienced at the paging

devices. This tendency is balanced by the difference in

the number of devices of each type available. All page

requests must be satisfied by one of two paging drums. Disk

requests, in contrast, are equally distributed among twenty

disk units, any number of which may be accessed simultaneously

in the simulated environment. Thus the probability of a

disk request being issued to a busy device is much lower

than the corresponding probability for page requests. This

tends to make the percentage increase in disk I/O wait time

smaller relative to page wait time as the number of requests

issued increases.

We must bear in mind here the inaccuracies introduced

by the model's treatment of all disk units as individual,

simultaneously accessible devices. In an actual system

where the interconnections of I/O devices affect the

-114-

accessibility of the devices we would expect to find con-

siderably more contention for disk usage than was observed

in the simulated system. The probability of issuing a disk

request to an inaccessible device is higher in the practical

case. The addressed device may itself be busy, or the hard-

ware needed to communicate with it (channels and control

units) may be bus-y servicing other devices. This decreases

the benefits of the wide availability of disk units found

in the simulated systems and should cause higher average

disk I/O wait times than those found in these runs. The

amount of difference between an actual system and a simu-

lated version of it would depend on the interconnections

used in the actual system and the pattern of references to

the different units.

Job Behavior - Page Faults

The figures reflecting job behavior in the simulated

systems include measures of average time between page faults

and between peripheral I/O requests, and distributions of

time spent in each of the running, ready and blocked states.

These figures are highly interrelated with the figures on

device usage presented above. In many cases they reflect

the same facts about the events occurring in the simulated

-115-

system as seen from the point of view of the job stream

rather than the physical devices. Table 3-9 shows the data

Round-Robin Preemptive Deactivating

50 pages 41.976 41.647 9.120

100 pages 25.451 23.625 5.754

200 pages 16.604 16.874 5.096

Table 3-9

Average Time Between Page Faults (in milliseconds)

gathered on the average time between page faults in the

various test runs. This quantity is effectively the con-

verse of the total number of page faults occurring during

a run. The figures show that the time between page faults

decreases as memory size increases for all three schedulers

tested. This pattern reflects the higher level of activity

in the larger systems as discussed above in connection with

device usage. The deactivating scheduler shows much

shorter average times between page faults than either of the

other two schedulers for each memory size used. This

difference reflects the effects of the mode of operation of

the deactivating scheduler from the point of view of the

job stream, just as the number of page faults generated

reflects it from the device usage point of view.

-116-

Job Behavior - Disk and Tape Requests

The figures on average time between peripheral I/O

requests are given in Table 3-10. These figures are the

converses of the total number of peripheral I/O request

figures given in Table 3-7. The pattern of decreasing inter-

request times with increasing core size is again followed

here as it is in the case of paging behavior as discussed

above. The small change in-this figure between the one

hundred page and two hundred page systems under the deac-

tivating scheduler as compared to the corresponding differ-

ence under the other two schedulers again parallels

Round-Robin Preemptive Deactivating

50 pages 43.434 43.645 35.846

100 pages 26.115 24.255 22.693

200 pages 16.762 17.076 19.948

Table 3-10

Average Time Between Peripheral I/O Requests

(in milliseconds)

the situation found in the paging case. In the case of

peripheral I/0, however, this effect cannot be attributed

to having reached the limiting disk service rate. This is

clear from the fact that the other two schedulers show

-117-

lower interrequest time for the two hundred page runs. It

can be explained instead in terms of the limitations.that

the paging devices place upon the system. Jobs waiting for

pages cannot generate disk or tape requests until after

their page requests have been completed. Jobs in the two

hundred page system under the deactivating scheduler spend

a large fraction of their time waiting for pages as dis-

cussed above. Their productivity in terms of both useful

computation and requests issued to other devices is

decreased accordingly.

Job Behavior - Active Time Distribution

The average distribution of time among the running,

ready and blocked states for an active job is shown in Table

3-11. As an example of the interpretation of these figures,

the average job in a fifty page system under the round-robin

scheduler spent 19.17% of the time it was in main memory in

the running state, i.e. in control of the CPU. It spent

28.98% of its time in the ready state waiting for its chance

at the processor, and the remaining 51.85% of its time in the

blocked state waiting for paging or peripheral I/O to be

completed. The time during which a job is not active is

not considered in compiling these figures. Several sig-

nificant trends are displayed by these figures. First, the

-118-

Running

Round-Robin Preemptive Deactivating

50 pages 19.17% 18.95% 27.45%

100 pages 17.29% 16.87% 18.55%

200 pages 12.59% 12.96% 10.70%

Ready

Round-Robin Preemptive Deactivating

50 pages 28.98% 29.44% 33.47%

100 pages 22.69% 22.17% 14.98%

200 pages 37.84% 36.20% 8.88%

Blocked

Round-Robin Preemptive Deactivating

50 pages 51.85% 51.61% 39.08%

100 pages 60.02% 60.96% 66.47%

200 pages 49.57% 50.84% 80.42%

Table 3-11

Average Percentages of Active Time in Each Traffic Control

State

-119-

percentage of time spent in the running state decreases

uniformly as user memory size increases. This is due to the

fact that larger memory sizes allow more jobs to be active

on the average, and this represents an increased number of

jobs which must share the processor. The more active jobs

there are the less time.each one of them can spend in the

running state, i.e. in control of the processor. These

figures may be compared to the Corresponding maximum theo-

retical values for running state occupancy to get an idea

of system utilization. For instance, in the case of the

two hundred page system running under the round-robin

scheduler we have an average of 7.76 jobs in main memory

at any given time (from Table 3-1). This means that if

the CPU were in use constantly each job would receive on

the average

100/7.76 = 12.88%

of the available processor time. The observed figure for

this system is 12.59%, which is quite close to this maximum

value. This indicates very high CPU utilization. In con-

trast, the fifty page round-robin system has a maximum

theoretical runni:ng state occupancy of

100/1.97 = 50.8%

-120-

The observed value in this case is only 19.17%, indicating

that the processor is idle a good deal of the time.

Another point of interest in these figures is the dif-

ference between the data from the deactivating scheduler

runs and that from runs made with the other two schedulers

tested. The running state occupancy for the fifty page runs

is markedly higher for the deactivating scheduler than for

the round-robin or preemptive schedulers. This reflects

the fact that no active jobs are waiting for peripheral

I/O under the deactivating scheduler. In a small system

where there are only one or two jobs in main memory at a

time this results in having a job eligible to be run during

a significantly larger fraction of Lhe time than a scheme

which allows jobs to tie up core while waiting for peripheral

I/O to be performed. This advantage diminishes and even-

tually disappears, however, as we look at the larger sys-

tems where more jobs can be multiprogrammed. The running

state occupancy observed in the one hundred page system

under the deactivating scheduler is not markedly different

from that found for the other two schedulers. For the two

hundred page system the deactivating scheduler shows a lower

value for running state occupancy than do the other two

schedulers. This may be attributed to the heavy paging load

in this system as discussed above. Jobs in this system

are forced to wait much longer for page faults to be satis-

-121-

fied, thus preventing them from reentering the running state

as soon as they might under other circumstances. This pat-

tern indicates that the deactivating scheme has an advantage

over the round-robin and preemptive schedulers in terms of

processor utilization in a system where the degree of multi-

programming is small, but this advantage is lost as the

number of active .jobs grows.

The benefits to be obtained from using a deactivating

scheme in a small system may not be as great in reality as

they were found to be in the modelled environment. The

model does not simulate the paging out of a job which is

deactivated. It merely assumes that this paging out occurs

in parallel with the execution of some other job. In most

cases this does not cause any significant distortion of

reflected behavior. However, in the case of the deactiva-

ting scheduler used here the level of paging activity is

very high. Here the paging out of deactivated jobs could

contribute significantly to the congestion at the paging

devices, serving to slow the paging response time down and

decrease the running state occupancy.

The figures on occupancies of the ready state for the

round-robin and preemptive schedulers first decrease and

then increase with increasing memory size. The blocked

state occupancies follow the reverse pattern. This

-122-

behavior may be explained in terms of the interaction of

two opposing factors. First, as the number of active jobs

goes up the I/O wait times increase because of loading on

the devices as discussed above. This means that a job

which issues an I/O request must wait longer for it to be

completed on the average in a larger system than in a

smaller one. This tends to increase the time that jobs

spend in the blocked state. This is turn decreases the

percentage of time the jobs spend in the ready state. With

more jobs in the blocked state a job which becomes ready

has fewer jobs to compete with for the processor, and can

expect to leave the ready state more quickly. In opposition

to this tendency is the effect of the variation in the

availability of the CPU. As mentioned above in discussing

occupancies of the running state, the two hundred page

systems come very close to the theoretical maximum for CPU

usage, at least under the round-robin and preemptive sched-

ulers, while the smaller systems show considerably less

than maximum utilization. As the number of active jobs

increases and the CPU becomes more fully utilized, jobs

which become ready to run must wait longer to have a chance

at the processor, since there is more competition for it.

This tends to cause jobs to pile up in the ready state

while they wait for their turn at the processor, and brings

-123-

about a corresponding decrease in the number of jobs in the

blocked state. Jobs cannot become blocked until they have

a chance to be processed and issue an 1/O request or incur

a page fault. From the pattern of occupancies found in

Table 3-11 one can conclude that the effects of I/O wait

times are dominant over those of competition for the CPU

in the one hundred page systems, while in the two hundred

page systems the balance has shifted in the other direction.

Here both CPU utilization and I/O wait times have increased,

but CPU availability has become the dominant factor.

The pattern of ready and blocked state occupancies

for runs made with the deactivating scheduler show a uniform

decrease with increasing core size rather than the more

variable behavior discussed above for the other two sched-

uling schemes. This may again be explained in Lerms of the

opposing trends outlined above. In the case of the deac-

tivating scheduler, as opposed to the round-robin and pre-

emptive schedulers, however, the effects of increased I/O

wait times outweigh those of contention for the CPU in both

the one hundred page and the two hundred page systems. This

is due to the much heavier paging load occurring under the

deactivating scheme in the larger systems.

-124-

Overall System Performance - CPU Idle Time

Overall system performance for the simulated systems is

reflected by figures on CPU idle time, throughput and turn-

around time as shown in Tables 3-12= through 3-14 and 3-16.

CPU idle time (Table 3-12) is the percentage of time during

which none of the active jobs were eligible to be run and

the scheduler was. forced to run job #0. These figures are

measured directly by the model's accounting routine, and

they corroborate the conclusions reached above from the

comparison of theoretical maximum values and observed values

for running state occupancy. For all three schedulers

tested CPU idle time decreases as user memory size increases.

This is due to the increased benefits of multiprogramming

with increasing numbers of jobs in core.

Round-Robin Preemptive Deactivating

50 pages 62.42% 62.49% 54.28%

100 pages 37.55% 32.56% 27.63%

200 pages 2.34% 4.44% 18.49%

Table 3-12

CPU Idle Time

The more jobs there are in memory, the more likely it is

that at least one of them will be eligible to be run when

-125-

it comes time to choose a new job to be processed. It has

been found in practice in demand paging systems (Madnick

and Donovan (61)) that multiprogramming more than a certain

number of jobs leads to degraded performance due to thrashing.

However, due to the fact that the model is organized to give

each job its own partition and since the schedulers used

here assign parti-tions large enough to minimize page con-

tention, this effect is not realized here.

The patterns of the CPU idle time figures under the

round-robin and preemptive schedulers are quite similar to

one another. The deactivating scheduler, on the other hand,

while showing a decrease in idle time with increasing core

size, does not achieve nearly as low a value for idle

time in the two hundred page system as do the other two

schedulers. This may be attributed to the heavy paging load

in the two hundred page system under the deactivating sched-

uler, which causes longer I/O waits and lower occupancy of

the ready state as described above. Note that for the

smaller memory sizes the deactivating scheduler performs

better in terms of idle time than the round-robin and

preemptive schedulers. It is not until the core size

becomes quite large that its performance degrades relative

to that of the other two schedulers. This is an indication

that the deactivating scheme has advantages in smaller sys-

-126-

tems. If jobs are deactivated when they issue peripheral

I/O requests, fewer active jobs are blocked for I/O on the

average than in systems where such jobs are allowed to

remain in core, and thus more useful work can be accomplished.

In larger systems, however, even though some jobs are waiting

for long periods for their I/O to be completed there are

enough active jobs that the probability that at least one

job is runnable is fairly high.

Overall System Performance - Throughput

The figures on average throughput(Table 3-13) represent

the average number of jobs terminating per second in the

simulated systems. The similarity between the performances

Round-Robin Preemptive Deactivating

50 pages .867 .90 .933

100 pages 1.37 1.53 1.60

200 pages 2.10 2.03 1.60

Table 3-13

Average Throughput (jobs/second)

of the round-robin and preemptive schedulers is again

apparent here. In both cases throughput increases as user

memory size increases. This is in line with the data on

-127-

CPU idle time, which indicates that the CPU is more fully

utilized as memory size increases, thus accomplishing more

useful work. The deactivating scheduler, on the other hand,

though it compares favorably with the other two schemes in

the fifty page and one hundred page systems, shows no gain

in throughput in the test runs in going from one hundred to

two hundred pages. This is in line with the figures on

idle time for this scheduler, and bears out the conclusion

reached above that its performance degrades relative to

those of the other two schedulers in systems using large

memory sizes.

Overall System Performance - Turnaround Time

Figures on average turnaround time were compiled both

for the aggregate job stream and for each priority level

individually. Table 3-14 shows the turnaround figures for

the job stream as a whole. Since the time required for

input and output is not considered in compiling these

figures, what is referred to as turnaround time here might

be more accurately termed system residence time. These

figures show that average turnaround time decreases as

memory core size increases for all three of the schedulers

tested. At first this might seem to run counter to intuitive

expectations, since with more jobs in core at a time in the

-128-

Round-Robin Preemptive Deactivating

50 pages 9657.484 7176.623 7130.944

100 pages 5649.057 5533.752 8284.443

200 pages _4919.109 4396.211 8248.683

Table 3-14

Average Turnaround Time for the Aggregate Job Stream

(in milliseconds)

larger systems each job should get a smaller percentage of

the processor time per unit time and thus would have its

total system residence time extended. However, there are

several other factors which have bearing on this situation

and must also be considered. First, it was observed above

that the smaller simulated systems had higher CPU idle times.

Thus the additional active jobs in a larger system are taking

up part of the processor time which was going to waste in

the smaller systems rather than causing the same amount of

processor time to be shared among a larger number of jobs.

Another factor to be considered is the average length of

the queue of jobs waiting to be activated for processing.

The figures describing the average number of jobs in each

of the simulated systems is shown in Table 3-15. In the

case of the round-robin and preemptive schedulers there

-129-

Round-Robin Preemptive Deactivating

are in creneral more jobs resident in the smaller systems

than in the larger ones. The round-robin and preemptive

schedulers activate each job only once, so the jobs coming

into the system form a queue to wait to be activated. Turn-

around time measures the time elapsing between the arrival

of a job at the system and the completion of its processing.

A job which arrives at a system under these scheduling

schemes where twenty jobs are already queued for activation

must wait considerably longer in general to be activated than

if it had arrived at a system where only ten jobs were

already queued. Since processing cannot begin until the

Round-Robin Preemptive Deactivating

50 pages 23.10 36.15 13.20

100 pages 10.51 24.81 17.12

200 pages 12.73 11.45 20.57

Table 3-15

Average Number of Jobs in System

job is activated, larger numbers of jobs in the system in

the smaller systems cause jobs to wait longer for activa-

tion. This in turn leads to higher turnaround times.

These conclusions must be modified somewhat in systems

where priority considerations are taken into account (i.e.

-130-

under the preemptive scheduler), but they are still valid

for the job stream considered as a whole.

The average number of jobs in the simulated systems

running under the deactivating scheduler, in contrast to

the trend discussed above for runs made with the other test

schedulers, increases with increasing core size. This is

an externally caused effect, accomplished by modifying the

value of the parameter governing the interarrival rate of

jobs coming into the system in order to ensure that there

were enough jobs in the system so that when a job was

deactivated another job was in general available to be

activated in its place. From the figures on the average

number of jobs in core (Table 3-1) we can see that this

objective was accomplished. The systems run under the

deactivating scheduler show numbers of jobs in main memory

comparable to those found with the other two schedulers.

Under the deactivating scheduler jobs do not follow

the sequence of awaiting activation, being activated,

being processed and terminating as they do under the

regimes of the round-robin and preemptive schedulers.

Instead, jobs are activated and deactivated a number of

times during the course of their processing. We may in

effect view this situation as multiprogramming among most,

if not all, of the jobs in the system rather than only among

-131-

the set of active jobs. The execution of a job run under

the deactivating scheduler is made up of a pattern of periods

when the job has control of the processor interleaved with

periods when the job is blocked. During these blocked

periods the job may be either active or inactive, depending

on whether it went blocked for paging I/O or peripheral I/O.

This means that jobs under this scheduling scheme do not

experience the relatively long initial waiting period in-

curred by jobs in systems run under the other two schedulers.

As memory size increases CPU idle time decreases as discussed

above; however, the number of jobs effectively sharing the

CPU under the deactivating scheme is quite large for all

these memory sizes. Thus the effect of the decrease in CPU

idle time as memory size increases is not as significant on

the individual jobs under the deactivating scheme as it is

under the round-robin or preemptive schemes. This resulted

in the test runs in turnaround times which increase as

memroy size increases for runs made with the deactivating

scheduler.

Turnaround time by priority level is significant only

in the case of the preemptive scheduler, since this method

is the only one of the three schemes considered which takes

priority level into account. The figures shown in Table 3-16

pertain only to the preemptive scheduler. The entry for

132-

I

Level 1 Level 2 Level 3

50 pages 4064.740 8732.563

100 pages 2951.904 4376.914 9732.781

200 pages 2743.777 3041.722 5582.023

Table 3-16

Turnarcund Time by Priority Level (in milliseconds)

(Preemptive Scheduler Only)

priority level 3 (the lowest level) for the fifty page case

is blank, indicating that no level 3 jobs terminated during

that run. The differences among the turnaround times for

the various priority levels decrease as memory size

increases, in parallel with the decrease in overall turn-

around time. This indicates that the benefits accorded to

level 1 jobs become less significant as the system becomes

larger and turnaround times decrease for all jobs.

Conclusions

From the foregoing analysis of the data gathered from

the nine test runs we can draw several conclusions regarding

the relative performances of the three scheduling schemes

tested under various user memory sizes in the modelled en-

vironment. First, the round-robin and preemptive scheduling

schemes show very similar overall performances under most

-133-

conditions. The scheduling of jobs according to priority

level and the preemption -of low priority tasks in favor of

higher priority ones does not noticeably degrade overall

system performance as measured by such quantities as

throughput and CPU idle time. In the simple batch-type

systems modelled in the test runs there is no particular

benefit to be derived from using the preemptive scheduler

rather than the round-robin scheduler. In many cases in

practical systems, however, the preemptive approach is

much more useful. This is true, for instance, in time-

sharing systems where fast terminal response is desired,

and in real-time systems where certain tasks must be per-

formed at certain times. The evidence gathered in the test

runs indicates that, at least in the type of system being

modelled here, preemptive scheduling can be used without

degrading overall system performance. We can expect this

conclusion to carry over into practical systems to a

greater or lesser extent depending upon the degrees of

similarity between a practical scheduler and the one used

in the test runs, and between an actual system and the

simulated environment.

The &activating scheduler performs somewhat better

than the other schemes tested in small systems where the

degree of multiprogramming is low. In these situations

-134-

it achieves lower CPU idle time and higher throughput than

the other schedulers. In larger systems its performance is

not as good, however. In the case of a large system with

a high degree of multiprogramming it is bogged down by the

heavy paging load it generates, resulting in higher idle

time figures and lower throughput than the round-robin and

preemptive schedulers.

Given the characteristics of the system modelled in the

test runs and the nature and inherent unsophistication of

the three schedulers tested, we can state the following

general conclusions. For a relatively small-scale system

a deactivating scheme produces better overall performance

in this environment than a scheme which does not perform

deactivations for peripheral I/O requests. For larger

systems non-deactivating methods are preferable. The

choice between the simple round-robin and the preemptive

schemes depends upon the need for and emphasis placed

upon fast response to certain tasks at the expense of

longer turnaround times for others.

The comparison of results from the nine model runs

performed indicates that the model produces results which

are intuitively realistic. The results obtained here are

internally consistent and can be explained in terms of the

physical constraints of the modelled systems and the pat-

-135-

terns of demands made by the job streams simulated. The

figures produced by the model provide a fairly comprehensive

picture of the behavior of the simulated system. Graphs of

the model results might well provide further insights into

trends in the various measures compiled. Graphical display

was not considered appropriate here, however, due to the

small number of samples taken with any one scheduler.

Careful consideration reveals the different statistics

produced to be highly interrelated, in many cases reflecting

the same facts about system performance from different

viewpoints. For instance, the observed percentage occupan-

cies of the ready state as compared to their theoretical

maximum values reflect CPU utilization from the point of

view of the individual job, while overall figures on CPU

idle time show the same situation in terms of the system

as a whole.

-136-

CHAPTER FOUR

LIMITATIONS OF THE MODEL AND SUGGESTIONS FOR FURTHER STUDY

The construction of a model such as the one described

here consists of several phases. The basic design must first

be worked out, dividing the tasks to be performed by the

model into classes which will be carried out by the various

modules. These modules are then coded and tested individually,

and when this is complete the modules are assembled to form

the model. The task of model-building from this point on

becomes an iterative process of comparing the model's

behavior to that of actual systems and making modifications

to the basic model which improve its approximation to reality

or the efficiency with which it performs its various func-

tions. This last phase of development is perhaps the most

important one in the entire process, since a model which

does not behave in a realistic manner is of little use,

regardless of how cleverly it is designed or how elegantly

it is coded. It can also be a very time-consuming phase,

for many different modifications may be necessary to

achieve a good approximation to realistic behavior, and

many test runs are needed to determine the model's respon-

ses to various sets of conditions.

There is no well-defined end point in this process.

-137-

One can almost always come up with another change to a model

which might further improve some aspect of its performance.

Nonetheless, one must choose a point at which to stop devel-

opment of the model, at least temporarily, if any useful

studies are to be made with it. Several criteria may be

used to select this stopping point. Accurate, detailed

models are needed for some purposes, such as detailed studies

of small changes in a single system parameter. Rougher, more

approximate models are adequate for more general studies.

The degree of accuracy required in a given model has bearing

on the amount of effort needed for the iterative phase of

its development. The practical constraints of time and re-

source limitations also have their effects on this decision.

Taking these various factors into account, the decision

was made to stop modifying the model described here when it

was in the form outlined in chapter two. It was acknowledged

in the discussion in that chapter that the model as such

could only be expected to provide estimates of aggregate

behavior rather than detailed information on underlying

processes. It was used to provide such aggregate infor-

mation in the test runs described in chapter three. The

experience gained in making these runs and analyzing the

results obtained from them has brought out a number of

interesting points about the model in its present form.

-138-

For insioance, some limitations and inaccuracies of represen-

tation which are.inherent in the design of the model have

become apparent. These limitations have varying impacts on

the usefulness of the model in different contexts. A number

of changes which could be made to further improve the model

were also pointed out by these experiments. Some of these

changes would affect the operation of the model in all cases,

while others might be desirable under certain circumstances.

Finally, this experience has suggested a number of other

experiments which might be performed with the model. These

limitations, modifications and further experiments are dis-

cussed individually in some detail below.

Limitations and Inaccuracies

Perhaps the first limitation of the model which becomes

apparent in considering the results of the runs described in

chapter three is in the area of scheduler efficiency.

Efficiency is an important consideration in the choice of a

scheduling algorithm. A scheduler which takes many factors

into account in choosing jobs to be activated or assigned

to the processor may require a good deal of CPU time to

make its decisions. If too much CPU time is taken up by

the execution of the scheduler, any benefits to be gained by

its elaborate scheme will be negated in a practical system

-139-

by the fact that the jobs it schedules must share a smaller

amount of CPU time. The model described here provides no

method of measuring or comparing scheduler efficiencies. One

can get an estimate of relative efficiency by comparing the

execution times of runs made with different schedulers using

identical model parameter settings. Due to the variabilities

and vagaries of operation of the real world system on which

the model program itself is executed, however, this can pro-

vide only an approximate measure. The set of jobs being

multiprogrammed at any time in the real system, for instance,

affects the operation of the system, and this set of jobs

will be different on each model run. This leads to dis-

crepancies in the execution times of the different runs.

A somewhat better estimate might be obtained by inserting

code in the model to note the time in the real world system

at which the scheduler is called on each iteration of a

simulation and the time at which it returns control to the

model supervisor. These figures could be used to generate

an estimate of the total real time spent in executing the

scheduler. The variabilities of the actual, system would

still have an effect on these figures, of course, but

since the time interval in question is much shorter than

that for execution of the entire model we could expect the

amount of uncertainty introduced to be smaller.

-140-

Another limitation of the model arises from its methods

of handling supervisor functions. In an actual system of

the type mirrored by the model, supervisory programs are

generally used to perform a large number of functions.

These include such tasks as maintaining certain items of

information on all the jobs in the system, maintaining and

referencing page tables, collecting accounting information

for billing purposes, and performing scheduling functions.

These tasks are represented in various ways in the model.

The Job Stream List maintained by the model's driver routine

keeps track of information on each job in the system. The

paging functions of the operating system are largely ignored

in the model since paging is treated only on the macroscopic

level. Accounting information of sorts is collected by the

model's accounting routine, and scheduling functions are of

course handled by the scheduler.

None of these tasks is viewed as requiring any CPU time

in the simulated system. There is no convenient way to

estimate how much simulated time these tasks would require,

and the model is set up in such a way that no simulated time

elapses during their performance. The modelled job stream

receives one hundred percent of the processor time in the

modelled system. Clearly this is not an accurate represen-

tation of an actual system, where supervisor functions often

-141-

require a significant fraction of the total processor time.

One could get around this problem in part by assuming that

the CPU time shared among the user jobs is that fraction of

the total processor time which is not required by the oper-

ating system. However, in many cases the amount of time

required for supervisor functions is not constant but instead

varies with the activities going on in the system. Many of

these activities are controlled by the scheduler. For

instance, there would be more paging overhead in a system

with a high level of paging activity than in one where fewer

pages were demanded. As the operating system overhead goes

up, the portion of the CPU time devoted to user jobs goes

down. This causes turnaround time to go up and throughput

to go down in general, i.e. system performance is degraded.

Due to the fact that supervisor execution time is riot

deducted from total CPU time in the model these factors are

not reflected in the results obtained with the model. It is

quite possible that a scheduler which produces better per-

formance measures than some other scheme in the environment

of the model might perform worse in comparison to the other

scheduler when supervisor time requirements are taken into

account. This blind spot in the information provided by the

model must be kept in mind in drawing conclusions based on

comparisons of model runs using different scheduling schemes.

-142-

An important part of the design of any model is the

choice of the scope of the simulation, i.e. the set of

factors which will be represented in the model. In any

model of manageable proportions only those aspects of actual

systems which are most central to the items under study can

be included. This leads of necessity to inaccuracies of

representation due to the factors which are left out. For

instance, in the model described here jobs are viewed as

arriving at the system in a state in which they may be

assigned to be processed immediately if desired. The assump-

tion behind this is that there is an input SPOOLing routine

which brings in each job from an input device and puts it

out to secondary storage, making it possible to load it

directly into main memory when it is activated. This input

routine is outside the scope of the model; i.e. it is not

explicitly represented in the model. Similarly, an output

SPOOLing routine is hypothesized to handle output functions,

and this routine is also outside the scope of the model.

This choice of scope for the model imposes a limitation on

the accuracy of the results obtained in that any interactions

of the SPOOLing routines with the rest of the model cannot

be represented. As an example, in a small system with few

disks, the SPOOLing routines may well interfere with user

job usage of the disks. The model is unable to reflect

-143-

the effects of this competition for access to the disks,

which could in some cases* have a significant impact on overall

system performance.

Another limitation due to the choice of scope stems

from the decision to view the processes involved in paging

in a simplistic, generalized manner. No effort is made to

keep track of which pages of a job are in core in the model.

Thus we cannot tell if a page for which a fault occurs has

already been referenced and has been written onto the drum

or has never been referenced and must be fetched directly

from the disk. In the model it is assumed that all pages

are fetched from the paging device(s), which is strictly

reasonable only if we assume that an entire job is copied

onto the paging store when it is first activated. Since

this is not the general practice in actual systems, this

represents an inherent inaccuracy in the representation of

paging behavior. In order to treat the paging process in

a more reasonable manner, however, significant changes to

the model would be needed. It would be necessary to main-

tain a list of the pages of each job which had been prev-

iously referenced. This list would have to be accessed

each time a page fault is incurred to determine whether

the page request should be issued to a disk or to a paging

device. The additional accuracy of representation in the

-144-

model to be gained from this did not seem to merit the extra

execution time and storage space it would require. Some

improvement in the representation of page wait times could

be obtained in the framework of the present model by increasing

the average access time and decreasing the transmission rate

of the paging devices. The amount by which these quantities

should be modified is difficult to determine, however, and

there is no easy way to approximate the effects of queuing

the requests at different devices.

Along the same lines, the model does not consider the

capacity of any of the secondary storage devices it repre-

sents. This could result in inaccuracies of representation

if, for instance, the size of the paging store on a system

being simulated was quite small. In this case the pages of

presently active and previously active jobs might overflow

the paging store. In many practical systems this would

necessitate transfers of pages from the paging devices back

to secondary storage. Since paging storage capacity is not

represented in the model, this situation could never occur

in the simulated system. This again leads to inaccuracies

of representation.

A number of studies (57, 58, 59, 60) have been done on

the effects of variation of the page size on the paging

behavior of programs and on the operation of systems as a

-145-

whole. Due to its macroscopic treatment of paging, the model

described here is not sui-ted to performing experiments of

this nature. Although pagesize is an input parameter to the

model, there is no provision for modifying the paging behavior

of jobs with changes in this parameter. Instead, paging

behavior is determined solely by the exponent used in the

paging curve. The value to be used for this exponent must

be determined via experimentation using a given page size.

Once this exponent is set, changes in pagesize will not change

the times between page faults issued, but will only change

the lengths of time required to bring new pages into core.

Clearly this is highly unrealistic behavior. However,

modifying the model to cause it to respond more realistically

to changes in pagesize requires incorporating pagesize as a

factor in the generation of page wait times. This is an

extremely complex task. The effects of pagesize on paging

behavior are not yet fully understood, and determining a

mathematical relation between them which would be valid

even in an average sense is a major task. This task was

beyond the scope of the modelling effort described here.

Any experiments using different page sizes performed with

this model must use paging curves calibrated to produce

behavior appropriate to those page sizes.

From the above examples it is clear that there are a

number of limitations and inaccuracies inherent in the

-146-

model described here. Some of these drawbacks are necessary

consequences of the way in which the model was constructed;

others represent a tradeoff between the accuracy desired in

the results and the modelling effort and computer time and

space required to achieve it. Some limitations and inaccur-

acies are to be expected in any practical model, and they

must be kept in mind when drawing conclusions based on

results produced by the model.

Additions and Improvements

One problem with the model in its present form became

especially apparent in the test runs. This was the use of

only one random number generator to produce all the random

numbers needed by the model. As discussed in chapter three,

the job streams presented to the schedulers on the different

model runs were nonuniform due to this fact, and thus the

different runs were not directly comparable. This problem

could be quite easily remedied by adding a second random

number generator to the model. One random number generator

could be used to generate job characteristics and inter-

arrival times while the other was used for all other pur-

poses, such as deciding which device was addressed by a

given request and how long it would take to service it.

-147-

In this case jobs would arrive at the same simulated times

and would have identical 'characteristics in all runs which

used the same values for the parameters governing these

quantities and the same main memory size. This would pro-

vide a much better basis of comparison for the results

obtained from the different runs.

For runs using different memory sizes the problem

becomes slightly more complicated. Even assuming that two

random number generators are used, runs made with different

user memory sizes would in general require different numbers

of random values for generating the initial job load. This

would result in different sequences of random numbers being

used to generate the jobs arriving after the beginning of

the run. This problem could be solved by resetting the seed

value of the random number generator used to generate the

job stream to some standard value after generation of the

initial job stream was complete on each run. The random

numbers produced from that point on would then be identical,

resulting in the desired uniform job streams. Note that

runs using different memory sizes will still have different

initial job mixes, since larger systems in general will have

more jobs in core initially than smaller systems. This

discrepancy is inherent in the process of using an initial

job load, and there is no way to get around it short of

-148-

starting all systems off with main memory initially empty.

The paging behavior module (PGNXT) in the present model

uses an exponential curve to generate values for the time

between page faults. Comparison of the interfault times

obtained using these exponential curves with the data from

actual systems (Fine et al (48)) shows that the shape of the

paging curve is not strictly exponential in general. The

SIM/61 experiments (39, 44) use an approximation to this

curve with good results. A somewhat more complex paging

behavior module which makes use of a more accurate repre-

sentation of this curve would improve the representation

of paging behavior. The form of the curve depends upon the

paging behavior of the particular jobs being simulated, and

might differ among jobs of different types on a single run.

Considerable study might be necessary to determine appro-

priate approximations. However, once determined, these

approximations could be substituted for the present exponen-

tial approximation, and could be expected to produce sig-

nificantly better results.

As discussed briefly in chapter three, the present

form of the model makes the rather simplistic assumption

that all secondary storage devices may be accessed simul-

taneously. In a real system this is in genera1 not the

case. There are I/O channels and control units involved in

-149-

the transfer of data between main memory and these devices

(disks, drums and tape drives). Often the devices serviced

by a given channel or control unit can only be accessed one

at a time. A somewhat more detailed discussion of this

situation is presented by Madnick and Donovan (61). One way

of representing this situation within the present framework

of the nodel is to view each channel and the devices con-

nected to it as a single device rather than representing each

device individually. For instance, as a simple example,

consider the system diagrammed in figure 4-1. This system

has twelve disk units (Dl through D12) and three I/O channels

(Cl through C3). Each channel is connected to four disk

units. We could view this group of devices and channels

as three large disks. These disks would have the same

access times and transmission rates as the individual units

attached to each channel. Since the capacity of secondary

storage units is not represented in the model, the greater

capacity of these aggregate devices makes no difference.

This solution is adequate for systems in which there

is only a single path to each device. In many practical

systems, however, such as the one shown in figure 4-2,

there may be two or more paths to some devices, and this

situation presents more complicated problems. This system

has the same number of disk units and channels as the one

-150-

D 5

FIGURE 4-1
SIPLPL I/o

-15 1-

NETWORK

M1EMORY

MAIN

shown in figure 4-1, but here there are two paths to six of

the disks and a single path to each of the other six disks.

In order to handle this situation the model must record which

devices are connected to each channel. When a request is

issued to a given disk it can be serviced only if the device

itself and at least one of the channels connected to it is

free. If this is not the case the request must wait until

a path becomes free. This presents a more complicated

queuing problem than the scheme presently in use in the model,

since here a request must be queued for two things (a chan-

nel and a device) rather than simply for a device. The

introduction of control units into the network in addition

to I/O channels adds an additional level of complexity to

the picture. A corresponding increase in the complexity of

the approach described above would be required to handle

that situation. A scheme analogous to the one described

above would be required to handle the interconnections to

the paging devices on the system.

Handling interconnections to tape drives presents

different problems than those discussed above for disks and

drums since the particular tape drive addressed by any given

request is not specified in the model. A partial solution

in this case might be to delay each tape request by some

probabilistically generated length of time to account for

-152-

the effects of contention for channels and control units.

The probability distribution to be used in generating these

times would depend on the interconnections of the tape

drives and the channels and control units in the particular

system being simulated. It is not clear how to determine an

appropriate form for this distribution in general.

The complicated scheme outlined above should produce

more realistic I/O behavior than the present simpler approach

'in modelling systems which have highly interconnected net-

works of I/O devices. It should be clear from the discussion

above, however, that a considerable amount of additional

overhead would be incurred in adding the capability of han-

dling this more complex situation. This extra overhead

must be weighed against the more realistic behavior of the

model it would produce in deciding whether such an addition

would be merited. The simpler scheme of aggregating devices

and channels might well prove sufficient in many cases. In

studies where disk utilization might be a limiting factor

on system performance and where the interconnections of

channels and devices are quite complex, on the other hand,

it would be unrealistic not to consider these interactions.

In contrast to the complexity of handl-ing I/O networks,

an addition to the model which could be made tairly easily

is to add the capability of prepaging. Many p.ractical

-153-

NAIN

FIGURE 4-Z
1ORE COFPLEX I/0 NE T\fORK

-154-

MEMORY

systems, such as the Multics system developed at MIT's

Project MAC (62), bring in several of a job's more recently

used pages when it is reactivated rather than starting it

off with only a single page and forcing the job to issue

page faults to bring in all other pages. To accomplish

prepaging in the model one could simply add an additional

model parameter to specify the numnber of pages to be

brdught in initially when a job is reactivated. If a value

of one were input for this parameter the present practice

of bringing in a single page would be followed; if some

larger value were provided, prepaging would be performed.

The choice of which pages are to be brought in need not be

considered since pages are not identified in the model.

The module which generates page wait times would have to be

modified to cause an initial page wait appropriate to the

number of pages being brought in. This addition would be

quite worthwhile if the model were to be used to simulate

systems which perform prepaging.

Analysis of the statistics produced by the model on

the test runs suggested several measures not presently

provided by the model's accounting routine which might be

of use. Depending on the studies to be performed with

the model, these or other figures would makc useful

additions to the output reports produced by the model.

-155-

First, throughput figures would be desirable. Throughput

for the test runs was computed manually by dividing the

elapsed simulated time by the number of jobs terminating

during that interval. More reliable measures of this quan-

tity could be obtained more easily by incorporating the

compilation of throughput data into the accounting routine.

Throughput could be easily broken down by job type and

priority level, as is presently done for turnaround time.

Other potentially useful figures include the average and

maximum queue lengths for requests at each disk and paging

device, along with the average queue length for all disks

and for all paging devices. We might also wish to collect

data to compute the percentage of time for which each device

in the simulated system was in use, and again average these

figures for all disks and all paging devices.

The foregoing discussion provides only a sample of the

additions and modifications which might be made to the model

as it exists now. They range from changes as simple as the

inclusion of routines for collecting new measures of system

performance to quite complex modifications such as accomo-

dating the representation of I/O networks. The decision of

whether to make a given change should be based on the

tradeoffs between the need for it in a given application

-156-

and the extra overhead it would entail in the execution of

the model.

Some Further Experiments

A number of ideas for further experiments emerge as

simple extensions of the test runs described in chapter

three. For instance, it would be! interesting to explore

the' effects of the variation of other parameters besides

main memory size on the performance of one or more of the

schedulers described there. Such parameters as the number

or characteristics of the I/O devices on the system or the

characteristics of the simulated job stream might be varied.

Experiments might be performed where several factors are

varied simultaneously in a coordinated manner. This would

yield information on the interactions of the quantities

being varied. For example, the I/O demands of the simulated

jobs and the capabilities of the I/O devices could be varied

to find the point at which these devices become the limiting

resource in the simulated system under different levels of

I/O activity. As another possibility, the simulated system

might be configured to resemble some actual system which

could be tried out under various job loads to investigate

its capabilities in handling different mixes of tasks.

Alternatively, a given job load found in practice could be

-157-

submitted to a variety of simulated systems to determine the

type of system that was best suited to processing it.

Schedulers that are far more complex than those used in

the test runs could be written and run under the model to

explore their relative strengths and weaknesses. For

instance, one might try out schedulers which might compute

dynamic priorities for jobs during the course of their

execution, maintain multiple queues for jobs behaving in

various different ways, or balance the mix of active jobs

according to job type. Schedulers which incorporate a

number of such disciplines simultaneously could also b'e-

tested. As mentioned in chapter one, a number of studies

have been done on the comparison of different scheduling

schemes in environments similar to those representable by

the model described here. These studies provide an excell-

ent source of suggestions for schedulers to be tried and

results with which to compare the data obtained with the

model described here. In order to obtain meaningful results

from such studies, the job stream to be generated by the

model should be described more explicitly in terms of job

types and their characteristics than was done for the test

runs.

Experiments beyond the realm of practical systems

could also be performed in order to gain insights into

-158-

hypothetical situations. This might, for instance, involve

simulating devices having capabilities which are not possible

under current technology but which might someday be realized.

This would allow exploration of the differences such devices

might make in system performance and overall behavior. As

an extension of this we might explore the effects of faster

and faster device speeds on the benefits of multiprogramming.

The theory behind multiprogramming relies on the fact that

jobs are blocked for I/O for some fraction of their run

time. Having multiple jobs in core simultaneously allows

the processor to go on to another job when the job it has

been executing must wait for the completion of an I/O request.

As I/O speeds increase, the fraction of its time that each

job spends in the blocked state will decrease. This should

lead to a decrease in the benefits to be gained from multi-

programming. As I/O wait times approach zero some limiting be-

havior should obtain. Just what will occur in this range is

difficult to determine a priori. The model provides an

excellent framework for investigating such a question.

One of the unanswered questions about the model at

present is the duration of its startup transient, i.e. the

length of time for which it must run before steady-state

behavior is 42hiev ~. As described in chapter two,

-159-

the model is initialized on each run with a full set of

active jobs in varying stages of execution. This is done in

an effort to minimize the startup transient. Since each

scheduler has its own conventions on the way it handles jobs

and the amount of core it assigns to each one, however, it

still takes some time for the model to settle down under

the scheduler being used on a given run. No work has yet

been done on exploring how long this transient is under

different conditions. This is an important question, since

data collected by the accounting routine during the startup

phase is included in the final results produced and tends

to decrease their accuracy in reflecting the steady-state

behavior we wish to measure. Sets of experiments could be

performed in which the accounting scan is begun at later

and later simulated times. When the results obtained from

these successive runs become uniform we can conclude that

the startup phase is over.

One of the major uses envisioned for the model described

here was as a pedagogical tool. The model provides a real-

istic environment under which students may test out sched-

ulers they have written. It allows them to observe the

behavior of these algorithms in various system environments.

Some experience with the model in this context has already

been gained from its use by a limited number of students.

-160-

Its major drawbacks as a teaching tool appear to be insuffi

cient error-checking of scheduler commands on the part of

the model supervisor and an efficiency of operation which

is not as good as might be desired. Changes are planned to

remedy these problems as much as possible and improve the

model's usefulness as a teaching tool.

Finally, experiments which require additions or modi-

fica'tions to the code of the model could be undertaken as an

exercise in the processes involved in model building. For

instance, the model presently assumes a simple first-come-

first-served scheduling of I/O requests to each device. A

new module could be written to perform I/O scheduling in

some other manner, perhaps according to priority level.

This module would have to be incorporated directly into the

model rather than replacing some other module, since there

is no separate module which performs this task at present.

Some changes would have to be made to the model's super-

visor routine to interface with the new module.

These examples of opportunities for further work.with

the model illustrate its applicability to various tasks and

the wide range of purposes for which it might be used. Due

to its modular construction and the large number of adjust-

able parameters available to the user the model may be

adapted to many different purposes. The model as it now

-161-

exists treats many of the processes which interact to make

up the operation of a computer system in a macroscopic

fashion, but in many cases it can be adapted to provide

more detail in a given area without requiring major changes

in its overall structure. Though it has limitations and is

not in a finalized form the model is nonetheless a useful

tool for many applications.

-162-

APPENDIM A

HOW TO USE THE MODEL

Running the Model

The model consists of sixteen program modules coded in

PL/l, not including the scheduler being used on a given run.

The easiest and most inexpensive way to use the model involves

com'piling each of these program modules separately, linking

the object modules together, and storing the resulting load

module on secondary storage. A sample of the JCL used to

perform this task on the MIT IPC 370/165 system is shown on

page 164. The scheduler to be tested on a given run may

then be compiled and linked into this load module to form

a complete version of the model for execution.

The parameters of the model which are accessible to

the user are read in via GET DATA statements during the

initialization performed by the supervisory routine on each

run. Two separate GET DATA statements are executed. The

first input statement reads variable names and values from

a data file called THDATA, which must be present in order for

the model to be run. This file contains the default values

for all user-accessible parameters in the form

VARIABLE = VALUE

-163-

//JA???CR JCH 1.
// P Tr' I NS, CL AS,= A , MS6LF VEL= (1 , 0)

/*W I T I jSht= (M9999 ,99Q)
* I STI ANDA RD

//LKFD EXEC P(M=TIELPA M=LIST,XFF.L ET .PFr,1IN=1?8K
//CZYcdP- INT P') SYs0UT=A

// YP () F Ni YSD A '-- 1 SP = P 1 (())

//qY L M f) F) DSNU. M% .1 04/ . SLM 1? . P= (Q K FFP)
//rYSL TN DD *

SC J CL

/.V'

SAVPLE JCL FOP Ad3NG LiL MODULF

= 0 a NMEAN(4) = 0,
D)NiEA IN (6) = 0, OfNST 0 Ni DEV = 2.

1)1 TA (C ! S
DT A CC7 SS

IDTAC SS

DTacf

DT w I P1)T Tk'\ "

IT
TV

TT.

F!- F I .

(3)
() -

'-s)

(1i2

(1I

(Id

(3) = T%.
()= 75).

('4) = 7L.

(1?) = 75.
(15)= 30.
(18)= 3,0.

= 312.
= 312,
= 31?.

)= 31'
)= 80S6-.
)= 8..

D T A CC '
DTP CF S
D T ACC
01/T ('CF
DT CCF

UT C C (F S
DT\rC[- s

S) IT C. C
DJTrCs

D T TDTTIN

DTTut a-

DTT A '
DT T

DT T i,

DT'-F4ITFns

UT- st
KT R t(

V

) V

r -('4)

H(1)
-e (1 6)

DT1 F T

di100CZcI /

- '0 ~. yvu_ CCF' = 1. 1J o-D 1

I--- -- (*3)= 3A P(2)

PTF r ' (2) = .- , TF V (3) = 0.. PTF .I)(4) = 0.

= 0,.

(I)]
(4)
(7)
(13
(1 3
(16
(1 '-

DT ACCF
D TArc C
D T C (C
DT CCE
DTA r CF
1 TA CC -
DT ACCE

A'-- e

0H-

qh,

= 7.
= 7L

=7
)= 7r
)= 30
)= 30
=30.

31?.
31.
31?.
3172.
'-4 ,l~

MoA.

(1)
(4)

(7)
(1 0
(13
(10

(19 -

31. .
31 p
312.
31/4
9 0.

A16

ITT''
) T T

TT

T) T
rTI K!

i IF r F

c)TFP -

ITRF h

.' -

1%*,
,-'~ '-, ,

) (-

(14
(} 1

.05,

.0%.

.05:

PTFP I-' (5)
=
= .0.

TT -T AN 1 = 1 0.

I'

LDNM 'FA N (1I) = 16. D NM'lE AN (?) = 0. f'Nj E FAN(3i)

PTACCF SS (1)
PTArCESS(5)

= 4, PTACCFSS(?) = 4. PTACCF SS(3) = 0. PTAC-ESS(4) = 0,
= 0.

PTTPANS(1) =120
PT T A IS (4) =
PT(ZTAN)EV = 1

TYrPF_APAY (1) =
TYrF _APPAY(4) =

PrP T_ APPAy(1)Y =
P T0P AD QAY(4)
PITOP APAY (7)
PpIC)P _A Rk AY(10)

SFPCTol = 2..

STi _ MFAN(4) =

JTF AC T O =)

P T T AN S(2)
PT T A N S (5)

.0. TYPF_ AP.AY(?)
., TYPE_ARPRAY ()

.0761,
- .0.

- .0.

= 0.,

f-PRIO _ ARA Y(?).
PRIOR_ APPAY (p) =
PPIORAPRAY (9) =

SFACTC) 2 = 1. o
25, SI _MFAN(?)
0. ST/F _MEAI()

ST7 _- S ()
= 0,

= 0,

-1200. PTT A=S3) 09
= 0.

= 0.. TYPEARRAY(3)

= 0., TYPEAPRAY (6)

3749.
.0,
.0.

PkIP_APAY
PPIO_APPAY

PRIORARRAY

= 0.,
= 0.,

.Sr49.
0.,
0.,

= A.
sl 70 _ MEAN (3)

S17FMEAN(6)

INT _ A FE = .01,
M AT VF 4000li,

Tu TC _ = 0 .
CCNT I = 0. T

TOTAL _SPAC> = 100. PA(,F lZE = 4(96,

IRACE_('FF = 0.

STOEaULT= 500002

SAfMPLE VFi-SI)N nF THDAT A

//JTFST JOr 1.
// PTGGINSCLASS=C,MYGLEVEL=(1.0)

/*MIT FID USER= (M9999,9990)

/*MA IN T TM =3, L Ir\E S=1

/*l I LW
// FEC PGM=TELDRGO. RE'ION=1I7?K

//';YSPRINIT DD SYOTAD8(FF=PRC=3.LSZ=06
//SYSLIT r) SYS(UT=A
//T- ATA DD D= I4 %9. 1 059. T HDA T n .S1SP=H-
//ZYL I: DD) DSN=SYS 1.PL 1LI.D~[ISP=';HP
// 0D DS=Y S2 .PL 1 q SP . SU DI SP=SH

//SYSL IN DD) DSJ=.99. 1 029. LMl ?H (THLM1) n1P= SHH

// rDD~

- CT V F) I N r F SC- (LE,

I T T = .

/*E0J JTFST

SAMPLE DFCK SFTUP FOF PiINNING THE MOPFL

where VARIABLE is the name of a parameter and VALUE is

the value to be assigned to it. The different assignments

are separated by commas, and the sequence is terminated by

a semicolon. The deck used to create the copy of THDATA

used in the test runs is shown on pages 165 and 166. Use of

this file permits the adjustment of default values without

the necessity of recompiling and relinking the model. No

initializations are performed in the code of the model itself;

thus it is essential that all parameters be assigned values

in this file.

The second GET DATA statement reads variable names and

values from SYSIN. Any variable which should have a value

different from that assigned to it in THDATA may be reassigned

via card input, using the same format as described above for

entries in THDATA. This facility allows for the modification

of one or more parameters on each run without the necessity

of making a new copy of THDATA each time. The use of the

DATA option for input allows easy specification of the

particular variables whose values are to be modified. At

least one variable must be specified in SYSIN on each run.

If no modification is desired to the value of any parameter

assigned in THDATA then some variable name should be input

via a data card reassigning it the value given to it in the

file. A sample deck setup for running the model is given

-168-

on page 167. It shows the JCL used to link a scheduler in

object form into the load module made up of the other modules

of the model. Three variables are assigned values via

SYSIN in this sample.

The Parameters

The parameters which are accessible to the user are

listed below, along with a brief discussion of the function

of each one. Variable names which are followed by numbers

in parentheses are array variables. The number associated

with each name indicates the size of that array. All arrays

are one-dimensional, and have index values beginning with

one. Those variables which deal with memory units are

described below as being expressed in bytes or words. The size

of the memory uhit used is of no concern to the model itself.

As long as all specifications of memory size are made using

the. same basic unit, the model will function in the proper

manner. The unit used on any given run must, however, be

taken into account in assigning values to parameters and

interpreting the results produced.

- The parameters are broken down for ease of reference

into the following categories:

- simulation control parameters.

-169-

These variables determine overall model charac-

teristics such as the length of the run to be

performed, user memory size, and arrival rate of

jobs coming into the system.

- parameters specifying job characteristics.

These quantities govern the nature of the jobs

which will be generated by the model, e.g. their

size, CPU time requirement, and I/O and paging

behavior.

- parameters governing the characteristics and usage

of the I/O devices.

These include device speeds and access times,

record sizes and distributions of device usage.

- parameters specifying the type(s) of output to be

produced by the run.

This includes options for DEBUG and TRACE printing

and for the standard accounting summary.

Simulation Control

MAXTIME - time limit for the model run, in micro-

seconds

TOTAL SPACE - total main memory space available to user

programs, in pages.

-170-

INTRATE - interarrival rate of jobs entering the

system, in jobs per second.

STDEFAULT - default valuein microseconds, to be used

as a timeslice if the value specified for

this quantity by the scheduler is invalid.

PRECISION - the number of iterations to be performed

in the routine used to generate normally

distributed values. A value of ten for

this variable yields good sample values

with minimal overhead.

Job Characteristics

TYPEARRAY(6) - relative frequency of occurrence of jobs

of the corresponding job type. If

fewer than six job types are needed the

unused'entries should be set to zero.

The sum of all entries in this array

must equal one.

PRIORARRAY(10) - relative frequency of occurrence of jobs

of the corresponding priority level. As

above, if fewer than ten priority levels

are desired the unused entries in this

array should be set to zero, and all

entries must sum to one. Level one is

the highest priority; level ten the lowest.

-171-

SIZEMEAN(6)

SIZESD

SFACTOR1

SFACTOR2

JTFACTOR

PNPAGEEXP(6)

- mean value for the working set size of

jobs of the corresponding type, in pages.

- standard deviation of values for working

set size.

- a multiplier applied to the mean values

for working set size given in SIZEMEAN

to yield mean values for the total size

of jobs' of each type.

- a multiplier applied to SIZESD to yield

a value for the standard deviation of the

total size figures.

- a factor used in generating values for

the total CPU time required by a job.

It governs the length of time for which

a job will run after its last page is in

main memory. This variable must have a

value greater than 1.0, and values close

to 1.0 yield run times which are longer

than those obtained using larger values.

- exponent used in generating values for

the time for which a job of the corre-

sponding type will run before generating

its next page fault. The larger the

exponent, the smaller the time intervals

generated.

-172-

DNMEAN(6) - average compute time between peripheral

I/O requests issued by jobs of the cor-

responding type, in milliseconds.

DNSTAN DEV - standard deviation of the times between

peripheral I/O requests.

DTREL DT - relative frequency of disk operations

versus tape operations. A value of .5

for this parameter implies that disk and

tape operations are equally likely;

values greater than .5 imply that more

disk operations than tape operations are

performed.

Characteristics and Usage of Devices

Paging Devices:

PTACCESS(5) - average access time for the corresponding

paging device, in milliseconds

PTSTANDEV - standard deviation of access time values

for paging devices.

PTTRANS(5) - transmission rate of the corresponding

paging device, in bytes or words per

millisecond.

PAGESIZE - number of memory units (bytes or words)

per page.

-173-

PTFREQ(5)

Disks:

DTACCESS(20)

DTSD ACCESS

DTTRANS(20)

DTREC SIZE

DTFREQ(20)

- relative frequency of reference to the

corresponding paging device. If fewer

than five paging devices are desired, the

unused entries in the array should be set

to zero. The sum of all entries in the

array must equal one.

- average access time for the corresponding

disk, in milliseconds.

- standard deviation of disk access time

values.

- transmission rate of the corresponding

disk, in bytes or words per millisecond.

- record size to be used in disk operations,

in bytes or words.

- relative frequency of requests to the

corresponding disk. A maximum of twenty

disks may be specified as being part of

the simulated system at any time; if a

smaller number is desired the unused

entries should be set to zero. The sum

of all entries in this array must equal

one.

-174-

Tape Drives:

DTRECORDS

DTSDRECORDS

DTINTERREC TIME

DTTPTRANS

DTTPRECSIZE

- the average number of tape records

which must be scanned before the desired

record is reached on a given tape operation.

- standard deviation of the number of

records scanned before reaching the

desired record.

- interrecord time (read/write access time)

of the tape drives, in milliseconds.

- transmission rate of the tape drives on

the simulated system, in bytes or words

per millisecond.

- record size to be used in tape I/O

operations, in bytes or words.

Output to be Produced

DEBUGON - simulated time at which DEBUG printing

is to begin, in microseconds.

DEBUGOFF - simulated time at which DEBUG printing

is to be discontinued, in microseconds.

(If no DEBUG printing is desired, DEBUGON should be given

a value greater than or equal to that given to DEBUGOFF.)

TRACE ON - simulated time at which TRACE printing

is to begin, in microseconds.

-175-

TRACEOFF - simulated time at which TRACE printing

is to be discontinued, in microseconds.

(As above, if no TRACE output is desired, TRACEON should

be assigned a value greater than or equal to that given to

TRACE OFF.)

ACCNT TIME - simulated time at which the standard

accounting scan is to begin, in micro--

seconds. If this variable is assigned

a value of zero, accounting information

is compiled throughout the run; if a

positive value is input for it, infor-

mation is collected only after the

simulated time in the model exceeds this

value. If no accounting report is

desired this variable should be set to

a value greater than that given to

MAXTIME, the total duration of the

simulation run.

-176-

APPENDIX B

LISTINGS OF THE TEST SCHEDULERS

-177-

POUND RORIN SCHEDULER ***+ */ P

STMT LEVEL NEST
/* ***4* ROUND RORIN SCHEDULER
/***e**e*******e0*4oo*4444*****4***04**44*********0*0**4*4**0e****/

SCHED:PPOCEDIJPF(J0ONUM,.INDEXTIMESPACFSJPTRNXTJORTSLIC;,IPTROPTP)

/* THIS SCHEDULEP CHOOSFS A JOB TO BE PUN FROM AtONG THE PFADY JOBS TN
COPE IN A POUND RORIN FASHION. JORC AHF ACTIVATED IN THE ORDER TN
WHICH THEY ARRIVED AT THE SYSTEM AS SOON AS THMFE IS ROOM FOP
THEM. THEY PEMAIN IN CORF UNTIL THFY TERMINATE. */

/0 JORNUM IS THE NUMBER OF THE JO4 WHICH HAS REE'N RUNNING JUST
PRIOP TO THIS CALL TO THE SCHEDUILEP. INDEX IDOTCATES THE CAUSE
OF THE TERMINATION OF ITS PROCESSINrG. INDFX VALUES HAVF
MEANINGS AS FOLLOWS:

Ik'OEx - -- INITIALIZATION
0--- TERMINATION
1 --- PAGE REQUEST ISSUED
2 --- 1ISK OR TAPE PFOUEST ISSUEO
4 --- TIME SLICE WINOUT

10 --- JOB ARRIVAL
11 --- PAGE REQUEST SATISFIED

12 --- DISK OR TAPE. PFOUEST SATISFIED
SPACE GIVES THE TOTAL MEMORY SPACE AVAILABLE TO USER PROGRAMS, AND

OD TIME THE PRESENT TIMF IN THE MODEL AS RECORDED ON THF SYSTEM CLOCK

IN THE VAIN ROUTINE. SJPTR IS A POINTEW TO THF FIRST ENTRY IN THF

JOB STqEAM LIST MAINTAINED BY THE MAIN POUTINI . NXTJOR IS THE
NUM8EP OF THE JOB CHOSEN PY THE SCHFDULER TO -F PROCFSSED NEXT,

AND TCLICE IS THE TIMESLICE ASSIGNED TO IT. IPTR IS A POINTER TO
THE FIRST SWAPIN COMMAND ISSUED BY THE SCHEDULER AND OPTR IS A
POINTER TO THE FIRST SWAPOUT COMMANO. */

2 1 DCL(JORNUM, INVEXSPACE) FIXED RIN(1S),TIME FIXED BIN(31),SJPTR PTRI
3 1 DCL (IPTROPTR)PTR, NXTJOP FIXED RIN(15), TSLTCE FIXFD RIN(31);

/*ANGUMENTS*/

/* STRUCTURES FOP INDICATING SWAPIN AND SWAPOUT COMMANDS */

4 1 OCL 1 SWAPOUT BASED(SOPTR),
2 JORM FIXED RIN(15)9
2 ATIME FIXEI) RIN(31),
2 NEXT POINTER:

5 1 OCL 1 SWAPIN BASED(SIPTP).
2 JOR# FIXED RTN(15),
2 SIZE FIXED RIN(15)9
2 NEXT POINTFR3

/* VERSION OF JOR DESCRIPTIONS AVAILARI E TO SCHEDULER */

6 1 DCL 1 SJOB RASED(SJPT),
2 JO9# FIXED RIN(lS), /*MATCHES UPPER PORTION OF*/
2 TYPE FIXED RIN(IS), /*JOR STREAM LIST FNTRIES*/

PAGE
/* *****

I 0OUND RORIN SCHEDULER *** */

CTMT LEVEL NEST

2 PPInPITY FIYED RIN(15), /*USED RY IAAIN ROUTINE*/
2 SIZE FIXED RIN(iS),
2 NEWT PTR;

DCL 1 STATUS RASED(STATPT), /*STHUCTUPE FOR KEFPING- TRACK OF*/
2 JORN FIXED PIN(IS)0 /*ACTIVE/INACTIVE AND TRAFFIC*/
2 ACT IND BIT(1)9 /*CONTROL STATUS, PARTITION S17F*/
2 TC_IND BIT(1), /*AND PEGINNIN, OF FACH RUN */
2 PARTSIZE FIXED HIN(IS), /*INTERVAL FOR EACH JOB*/
2 RFG.TIME FIXED RIN(31),
2 NEXT PTRS

DCL(FSTATPT,LSTATPT) POINTER STATICS
/*HOLD LOCATION OF INITIAL AND FINAL
STATUS BLOCKS*/

OCL(TPTRDPTR) PTR, FOUND BIT(I), (NEXTJOB*KPTR) PTR STATICS
DCL MFMSPACE FIXED BIN(Si) STATICS /*RUNNING, RECORD OF FREE MEM.*/
DCL ZEQO.FLAG BIT(1) INITIAL('O'8):
DCL RTImE FIxED BIN(31);

/* PROCESS INPUT INFORMATION */

IPTR = NULLt

IF INDEX -1
THEN DOI
OPTR = NULLt

26 1 2

/*INITIALIZE SWAPIN POINTER TO NULL*/

/*FIRST CALL - INITIALIZE THINGS*/
/*INITIALIZE SWAPOT POINTER TO NULL -

NO SWAPOUTS DONE NY THIS SCHEDULER*/
MEMSPACE = SPACE; /*INITIALIZE RECORD OF FRFF MEMORY*/
TPTR = SJuTR;
DPTR = NULLS
DO WHILE (TPTR ,= NULL); /*CPEATE A STATUS ENTRY*/

ALLOCATE STATUS SET(STATPT)s /*FOR FACH JO' CURRENTLY*/
STATUS.JO8# = TPTR->SJOR.JORBt /*IN THE SYSTEM*/
STATUS.TCIND ='1'8 /*.LL JOHS IPITIALLY PFADY*/
STATUS.ACT.IND '1'B; /*ALt JO9S 1^ITIALLY ACTIVE0/
STATUS.PARTSI7E = (TPTR->SJOP.SIZE + 1)/?:

/*INITIAL PAPTITIO\i SI7E IS HALF OF
TOTAL qIZE*/

MEMSPACE = MEMSPACE' - STATUS.DARTSI7EI
/*KEEP TPACK OF HOW MUCH MEMORY IS STILL

FkEE*/
IF DPTP = NULL /*PERFORM LINKING*/
THEN FSTATPT = STATPT
ELSE OPTR->STATUS.NFXT-= STATPTS
OPTR = STATPT;
TPTR = TPTR->SJOB.NEXT;

END;
LSTATPT = DPTR /*KEEP LOCATION OF FINAL RLOCK*/

T 1

8 1

13 1

/* ***** PAGE 3

ROUND RORIN SCHEDULER **** */

STMT LEVEL NEST

34 1 1 LSTATPT->STATUS.ACT.INO = '018:
/*LAST JnR GENEPATFO IS INACTIVE*/

35 1 1 MEMSPACE = MEMSPACE + LSTATPT->STATUS.PART-SI7E;
/*CORRFCT COINT OF TOTAL FRF MEMORY
FOW INACTIVE JOH-/

36 1 1 LSTATPT->STATUS.NFXT = FSTATPTI /*MAKE LIST CIRCUILAR*/
37 1 1 KPTR = FSTATPT->STATUS.NEXTt /*THIS POINTFR HOLDS A PLACE IN

THE JOB CHAIN*/

38 1 1 OPTP = NULLI /*NO SWAPOUTS DONE BY THIS SCHFDULEP*/

39 1 1 END;

40 1 ELSE IF INDEX = 0
41 1 THEN DO; /*A JOR HAS TEPMINATFD*/

42 1 1 TPTR = FSTATPT->STATUS.NEXT;
43 1 1 DPTR = FSTATPTI
44 1 1 FOUND = '00A;
45 1 1 DO WHILE (FOUND = f'OH)l /*SEARCH FOR STATUS ENTRY*/

46 1 2 IF TPTP->STATUS.JORU = JOANUA
47 1 2 THEN 00; /*ENTRY FOUN1*/

48 1 3 MEMSPACE = MEMSPACE + TPTP->STATUS.PARTSIZF;
/*RETURN CORE TO F4EF AREA*/

49 1 3 DPTP->STATUC.NFXT = TPTw->STATUS.NEXTS
/*ADJUST LINKING OF STATUS CHAIN*/

50 1 3 IF LSTATPT = TPTP
51 1 3 THEN LSTATPT = DPTR; /*RESET POINTFP TO LAST ENTRY-/

52 1 3 FREE TPTR->STATUSI /*DELETE THIS FNTRY*/
53 1 3 FOUND =tORI
54 1 3 ENDS
55 1 2 ELSE DOt /*KEEP LOOKING FOR PROPER ENTRY*/
56 1 3 DPTR TPTP&
57 1 3 TPTR TPTR->STATUS.NEXT:
58 1 3 END:
59 1 2 END;
60 1 1 END'

61 1 ELSE IF (INDEX=1)I(INDEX=2)l(INDEX=1IlI(INPEX=12)
62 1 THEN 00; /*1/0 PEOUEST ISSUFO OR SATISFIED*/

63 1 1 TPTR = FSTATPTI
64 1 1 FOUND = ''38
65 1 1 DO WHILE (FOUND = t99); /*SEAPCH FOR DESCRIPTION OF JOB IN

QUE ST ION*/
A6 1 2 IF TPTR->STATUS.JOR# = JORNUM
67 1 2 THEN 00; /*PROPER ENTRY FOUjD*/

68 1 3 IF INDEX >= 11
69 1 3 THEN TPTR->STATUS.TCIND = tl'Rt

/*REQUEST SATISFIE' - JO8 IS READY*/

70 1 3 ELSE TPTR->STATUS.TCIND = 10#B;
/*REQUEST ISSUED - JOR IS RLOCKED*/

71 1 3 FOUND = END$31
72 1 3 END;

PAGE
/*

POUND RORIN SCHEDULER ***** */

STMT LEVEL NEST

73 1 ? FLSF TPTR = TPTR->STATUS.NEXT: /*KEEP LOOKINr/
74 1 2 ENO;
75 1 1 END;

76 ELSE IF1
77 1THEN 0;
78 1ALLOCATE STATUS FT(STATPT-
79 1 1STATUS.JO = JORNUI /*INITIALIZE VALUES FOP NEW FNTRY*/
80 STTUS.ACTIND 0
Al 1 1STATUS.TC IND 1
P2 1 1FOINO 1
83 1 1SjPTR; /*INITIALIZE POTNT R TO J09 STREAM LIS7*/
P4 1DO WHILE (FOUND = O1R); /*FIND JOR OFSCP. FOR SIZE*/

AS 1 2 IF TPTP-SJOB.JOB = JORNUH
P6 1 2 THEN FOUND = 118; /*PHUPER ENTRY FOUOn/
RT 1 2 ELSE TPTR TPTH->SJO6.NEXT: /*KFFP LOOKIN60/
A 1 2 END*

89 1 1 STATUS.PART1SIZE =TPTR-SJOP.S17E+fl,2:
90 1 1 LSTATPT-STATUS.NFXT STATPT; /*LINK NEW ENTPY INTO CHAIN*/
91 1 1 LSTATPT = STATPT

-i 9?2 1 STATUS.NFxT =FSTATPT;
00 93 1 1 END:

/ SWAP AS MANY JOBS AS POSSIBLE INTO CORE/

Q4 1 DPTR= FSTATPT->STATI.NEXT N /*ANTTIAIIZF POINTER To STATUS LIST*/
95 1 L WHILE (DPTR-= FST STPTP;

/*SAPCH THROUGH THE JOB I ST FOR
INACTIVE JOBS THAT WILL FIT INTO FRF

I61 1 IF (PTR->STATUS.ACTINN = oR)&EmsPACF>= OPTR->STATUS.
PAPT 7E)(DPTR-STATUS.TCIND = 01

97 1 1 THEN DO; /*NEXT JOB IS RFADY ANt) WILL FIT - MAKE
ENTRIF TO SWAP IT IN*/

98 1 2 ALLOCATE SWAPIN;
99 1 2 IF IPTP NULL

1o0 1 2 THEN FPTR =SIPTR; /*INITIA IZ E PONTF TO FIPST SWAPIN*/
101 1 2 ELSE TPTR->SWAPIN.NEXT STQ; >*K SWAPINS*/
10? 1 2 TPTR = SIPTR; /*KEEP POINTER TO THIS ENTRY FOR

LINK INr*/
103 1 2 SwAPIN.JOB = NPTR->STATUS.JO ; /*ENTER NATA IN*/
104 1 2 SWAPIN.SIZE = PTR->.STATUS.PARTSIZF; /SWAPIN ENTRY*/
105 1 2 STAIN.NEXT = AULL
106 1 2 MEMSPACE = EDEMSPACE -DPT-STATUS.PART_17E;

107 1 2 FPTR->STATUS.NACTIND 1N8 T /AJO IS NOW ACTTVFL/
108 1 2 LDPTR-STATUS.TCR,= IND

/INAC IV BLOCKED UNTIL FIRST PAGE IS
BROUHT INTO CRF*/

109 1 2 ENDA
103 1 1 PTR = DPTR-STATUS.NEXTA

/* ***** PAGE

ROUND ROIN SCHEDULER *** */

STMT LEVEL NEST

111 1 1 END;

/* Noo CHOOSE JOB TO HE HUN - EITHER PPEVIOUS JOP OR A NEW ONE */
112 1 IF (INDEX >= 10) & (INDEX <= 12) k (NXTJOH - 0)
113 1 THEN DOI /*JOR RUN PREVIOUSLY IS STILL PUNNABLF -

REASsIGN IT WITH kFMAINING TIMESLICF*/
114 1 1 RTIME = TIME - NExTJ08->STATUS.RFG.TIMEI
115 1 1 TSLICE = TSLICE - WTIMFt
116 1 1 NEXTJOR->STATUS.BFG.TIME = TIME:

/*RESET REGINNING OF RUN INTFRVAL*/
1IT 1 1 END;
li 1 ELSE 001 /OPREVTOIS JOB WAS GIVEN ITS FULL

ALLOTMFNT OR IS rlIw PLOCKED - CHOOSE
A NEW JOB*/

119 1 1 NEXTJOH = NULLI
1?0 1 1 DO-WHILE (NEXTJOB = NULL);

121 1 2 IF (KPTR->STATUS.TC.IND = '1'M)(KPTP->STATUS.ACT _INO = 'B)
12 1 2 THEN 0OI /*NExT JOB IS READY AND ArTIVE*/
1?3 1 3 NEXTJOP KPTPI /*JOH CHOSEN*/
124 1 3 NXTJOR = NEXTJOB->STATUS.JORN:

/*DESIGNATE THIS AS NEXT JOB TO hE RUN*/
125 1 3 TSLICF 50000: /*ASSIGN STANDARD TIVE SLICE*/
1?6 1 3 NEXTJOB->STA TUS.BEGTIME = T I'E;

/*INITIAI IZE BEGINWING OF PUN INTFPVAL*/
127 1 3 ENns
1?8 1 2 .KPTR = KPTR->STATUS.NEXT; /*UPDATF P(vINTER TO NEXT JOR*/
1?9 1 2 IF KPTP->STATUS.JOB# = 0
130 1 2 THEN IF ZEROFLAG = '0'B
131 1 2 THEN DOI
132 1 3 KPTR = KPTR->STATUS.NEXT:

/*SKIP JOB ZFRO UNTIL ALL OTHER JOBS
HAVE RFEN TRIED.*/

133 1 3 ZEPO.FLAG = 'l'R;
/*,ET FLIG ON SO JOH ZERO IS CHOSEN IF

SCAN COMES AROUNn AGAIN.*/
134 1 3 END
135 1 2 END;
136 1 1 END;
137 1 END SCHEDI

PAGE 6
/* *****

PPEEMPTIVE SCHEDULER 0*0* */

STM4T LEVEL NEST
/* **E** PPFFMPTIVE SCHEDULER *** */
/**0******************0***************************/

SCHED:PCEURE(JORNUMINDEX,TIMESPACFSJPTRNXTJOHTSLICFIPTROPTP)I

/* THIS SCHEDULER CHOOSFS A JOR TO BE RUN FROM AMONG THF WFADY JOBS IN
CORE ACCORDING TO PRIORITY LEVEL. JOBS ARE ACTIVATED ACCORDING TO
PRIORITY LEVEL AS SOON AS THERE IS ROOM FOR THEM, AND REMAIN IN
CORE UNTIL THEY TERMINATE. */

/* JOBNUM IS THE NUMBER OF THE JOB INVOLVED IN THE EVENT WHICH HAS
JUST OCCURRED IN THE SYSTEM, AND INDEX IDENTIFIES THIS EVENT.
INDEX VALUES HAVE MEANINGS AS FOLLOWS:

INDEX -1 INITIALIZATION
o --- TEkMINATION

I --- PAGE REQUEST TSSUED
--- DISK OR TAPE QFQUEST ISSFD

4 --- TIME SLICE kUNOUT

10 --- JOR ARRIVAL
1 --- PAGE RElUEST SATISFIED
12 --- DISK OR TAPE RFOUEST SATISFIED

SPACE GIVES THE TOTAL MEMORY SPACE AVAILABLE TO USER PRPOGRAWS AND
TIME THE PRFSENT TIMF IN THE MODEL AS RECORDED ON THE SYSTEM CLOCK
IN Thf MAIN ROUTINE. SJPTR IS A POINTEP TO T4E FIRST E'iTRY IN THF
JOB SjiEAM LIST MAINTAINFD HY THE MAIN ROUTINF. NXTJOB IS THE
NUMBER OF THE JOB CHOSEN RY THE SCHEDULEP TO PE PROCESSED NEXT,
AND TLICr IS THE TIMESLICE ASSIGNFD TO IT. IPTR IS A POINTER TO
THE FJRST j4APIN COMMAND ISSUED BY THE SCHEDUtER AND OPTR IS A
POINTER TO-THE FIRST SWAPOUT COMMAND. */

2 1 DCL(JOBNUMSINDEXSPACE) FIXED BIN(15),TIME FIXED BIN(31),SJPTR PTR
3 1 DCL (JPTR,OPTR)PTR. NXTJOR FIXED RIN(15). TSLICE.FIXEO PIN(31);

/*ARGUMFNTS*/

/* STRUCTURES FOR INDICATING SWAPIN AND SWAPOUT rOMMANDS */

4 1 DCL 1 SWAPOUT BASEO(SOPTR),
2 JORU FIXED ATN(15),
2 ATIHF FIXFO 4IN(31),
2 NFXT POINTER:

5 1 DCL I SWAPIN RASED(SIPTR),
2 JORN FIXED RIN(IS),
2 S17E FIXED PIN(1S),
2 NEXT POINTERS

/* VERSION OF JOB DESCRIPTIONS AVAILABLE TO SCHEDULER */

6 1 DCL I SJOR BASED(SJPT),
2 JOR# FIXED RIN(15), /*MATCHES UPPER PORTION OF*/
2 TYPE FIXED RIN(IS), /*JOR STREAM LIST FNTRIES*/
2 PRIORITY FLXED BIN(15), /*USED 8Y MAIN ROUTINE*/

P AGE
/* *****

OREFMPTIVE SCHEDULER *****/

STMT LEVEL NEST

2 117E FIXED RIN(IS),
2 NEXT PTRT

DCL 1 STATUS PASED(STATPT),
2 JOP FIXED RIN(ISl)
2 ACT_IND BIT(lle
2 TC_IND BITill)
2 PARTSIZE FIXED AIN(l5).
2 REQTIME FIXED RIN(31).
2 PRIORITY FIXED 9IN(15),
2 NEXT PTR;

/*qTRUCTJFE FOR KEFPINGr TRACK OF*/
/*ACTIVF/INACTIVE AND TRAFFIC*/
/-CONTROL STATUS, PARTITION SIZF./
/*AND RFGINNTNG-OF EACH RUN */

/*INTFRVAL FOR EACH JOB*/

DCL(FSTATPTLSTATPT) POINTER STATIC:
/*HOLD LOCATION OF INITIAL AND FINAL

STATUS RLOCKS*/

DCL(TPTRqDPTR) PTR9 FOUND HIT(l)s (NEXTJOH*KPTP) PTR STATICI
DCL MEMSPACE FIXED RINdS) STATIC; /*ktJNNIN; kFCOR) OF FREE MFM.*/
DCL ZEROFLAG BIT(l) INITIAL('O'H):
DCL RTIME FIXED BIN(31)1
DCL PLEVEL FIXED BIN(15); /*VARIAPLE FOR KEEPING TRACK OF PRIOR-

ITY LEVELS FOR WJNNING, AND ACTIVE

/* PROCESS INPUT INFORMATION */

IPTR = NULL;
OPTR = NULL$

/*INITIALIZE SWAPI' POINTFR TO NULL*/
/*INITIALIZE SWAPOuT POINTFR TO NULL*/

IF INDEX = -i
THEN DO; /*FIRST CALL - INITIALIZE THINGS*/

MEMSPACE = SPACEI /*INITIALIZE RECORD OF FRFF PEMORY*/
TPTR = SJPTRI
DPTR = NULL$
Do WHILE (TPTR ,= NULL); /*CREATE A STATUS ENTRY*/

ALLOCATE STATUS SET(STATPT): /*FOF PACH JOR C"RPENTLY*/
STATU5.JOB# = TPTR->SJO8.JORmu /*IN THF SYSTFMO/
STATUS.TC.IND = '14R; /*ALL JOHS I~ITIALLY PFADY*/
STATUS.ACTl.INO =l'i /*ALI JOBS INITIALLY ACTIVE*/
STATUS.PARTSl7E .(TPTR->SJOR.SIZE + 1)/2:

/*INITIAL PAPTITION SIZE IS HALF OF
TOTAL SIZE*/

STATUS.PRIORITY = TPTR->SJOH.PRIORITY;
/*RECORD PRIORITY LEVEL FOR LATER USE*/

MEMSPACE = MEMSPACE - STATUS.PARTSI7E;
/dKFFP TRACK OF HO,. MUCH MEMORY IS STILL

FREE*/
IF DPTR = NULL /*PERFORM LINKING*/
THEN FSTATPT = STATPT;
ELSE OPTR->STATUS.NEXT = STATPT;

14 1
is I

/* ***** PAGE 3

PREEMPTIVE SCHEDULER *000* */

CT@T LEVEL NEST

;? 1 ? ;PTP = STATPT:
13 1 2 TPTP = TPTR->SjOB.NFXT;
14 1 2 END

4 1 1 LSTATPT = nPTRI /*KEEP LOCATIONJ OF FINAL PLOCK+/

36 l 1 LSTATPT->STATUS.ACT.INn.= v08:
/*LAST JOB GENERATFD IS INACTIVE*/

37 1 1 MFMSPACF = MENSPACE + LSTATPT->STATUS.PARTSIZF;
/*CORRFCT COUNT OF TOTAL FPFF MEMORY

FO INACTIVE JOR*/

38 1 1 LSTATPT->STATUS.NFXT = FSTATPTs /*MAKE LIST CIRCULAR*/

39 1 1 KPTR = FSTATPT->STATUS.NEXT; /*THIS POINTFR HOLDS A PLACE IN
THE JO CHAIN*/

40 1 1 OPTR = NULLI /*NO SWAPOUTS DONE BY THIS SCHEDULER*/

41 1 1 ENOZ

42 1 ELSE IF INDEX = 0
43 1 THEN nO; /*A JOB HAS TERMINATED*/

44 1 1 TPTR = FSTATPT->STATUS.NEXT;
45 1 1 DPTP = FSTATPTS

1 46 1 1 FOUND = 10';
F- 47 1 1 00 WHILE (FOUND = 'O'8)1 /*SEARCH FOR STATUS FNTRY*/
CC) 48 1 2 IF TPTR->STATUS.JORN = JORNUM
Ln 49 1 2 THEN 100 /*ENTRY FOUND*/

50 1 3 MEMSPACE = MEMSPACE + TPTP->STATUS.PART.SIZE
/*RETURN CORE TO FREE AREA*/

51 1 3 nPTR->STATUC.NEXT = TPTP->STATUS.NEXT:
/*ADJJST LINKING OF STATUS CHAINO/

52 1 3 IF LSTATPT = TPTP
53 1 3 THEN LSTATPT = PPTR; /*RESET POINTER TO LAST ENTRY*/

S4 1 3 FREE TPTP->STATUS; /*nFLETE THIS FNTRY*/

55 1 3 FOIJND = I P 4
56 1 3 ENDI
57 1 2 ELSE no0 /*KEFP LOOKIKG FOR PROPER ENTRY*/

58 1 3 DPTR TPTP;
59 1 3 TPTR = TPTR->STATUS.NEXT:
60 1 3 END&
61 1 2 ENr)
(,2 1 1 END*

63 1 ELSE IF (INOEX=1) (INDEX=2)1(INDE.X=11) (INDEX=12)
64 1 THEN 00; /*1/0 PEOUEST ISSUFD OR SATISFIED*/

65 1 1 TPTR FSTATPTI
h6 1 1 FOUND =I't8

67 1 1 00 WHILE (FOUND = 'OA)1 /*SEARCH FOR DESCRIPTION OF JOB IN
QUEST ION*/

68 1 2 IF TPTR->STATUS.JO8H = JOBNUM
f9 1 2 THEN DO$ /*PROPER ENTRY FOUND*/
70 1 3 IF INDEX >= 11
71 1 3 THEN TPTR->STATUS.TC.IND = *1tH1

/*REQUEST SATISFIED - JOB IS READY*/

PAGE 4
/* *****

PREEMPTIVE SCHEDULER ***** */

CTWT LEVEL NEST

72 1 3 ELSE TPTR->TATUS.TC.IND = *0PI
/*REQUEST ISSUED - JOB IS RLnCKEDO/

73 1 3 FOUND 'I'R;
74 1 3 ENO;
75 1 2 ELSF TPTR TPTR->STATUS.NEXT3 /*KEEP LOOKING*/
76 1 2 EAn0
77 1 1 ENDS

78 1 ELSE IF INDEX = 10
79 1 THEN DO; /*NEW ARPIVAL - GEN-ERATE STATUS ENTRY*/
RA (I ALLOCATF STATUS SFT(STATPT);
Al 1 1 STATUS.JOR4 = JORNUMI /OINITIALIZE VALUES FOR NEW FNTRY*/
42 1 1 STA TUS.ACTIND 01R;
R3 1 1 STATUS.TCIND = l'Bt
q4 1 1 FOUND = '01B1
Rs 1 1 TPTR = SJPTR9 /*INITIALIZE POTNTFR TO JnR STREAM LIST*/
P6 1 1 00 WHILE (FOUN6 = 'o'A;l /*FINU JOR DFSCR. FOR SIZE*/
87 1 2 IF TPTP->SJOH.JOB# = JOBNUM
As 1 2 THEN FOUND *118; /*PHOPER ENTRY FOUND*/

F 9 1 2 ELSF TPTR TPTR->SJO8.NEXT& /*KEEP LOOKING*/
90 1 2 END:
91 1 1 STATUS.PART.SIZE =(TPTP->SJOH.SI7E+)/2;
92 1 1 STATUS.PRtORITY = TPTR->SJOB.PRTnRITY:

/*RECORD PRIORITY LFVEL FOP LATER USF*/
93 1 1 LSTATPT-.STATUS.NFXT = STAfTPT /*LINK NEW ENTRY INTO CHAIN*/
94 1 1 LSTATPT = STATPT:
95 1 1 STATUS.NFXT = FSTATPT.
96 1 1 END;

/* SWAP AS MANY JOBS AS POSSIBLE INTO CORE*/

97 1 DPTW= FSTATPT->STATUS.NExT; /*INTTIAL IZF POINTER TO STATUS LIST*/
98 1 P.LEVEL = 11;
99 1 00 wwILE (DPTP= FSTATPT); /*FINn LOWEST PRIORITY LEVFL AMONG

ACTIVATABLE JOPS*/
100 1 1 IF (OPTR->STATUS.ACTIND = f0'R)&(MEMSPACE>= OPTP->STATUS.

PARTST7E) (UPTR->STATUS.TCIND= 'l'B)R.(PLEVFL >
OPTR-> TATUS.PRIORITY)

101 1 1 THEN P LEVEL = UPTR->STATUS.PPIORITYI
102 1 1 OPTR = nPTR->STATUS.NEXT;
103 1 1 ENDI
104 1 DO WHILE (PLFVEL <= 10); /*SWAP 14 AS MANY JOBS AS POSSIBLE*/
105 1 1 DPTR = FSTATPT->STATUS.NEXTI
106 1 1 DO WHILE (nPTR -= FSTATPT);
107 1 2 IF (DPTR->STATUS.ACTIND =0'B)&(MEMSPACE>=DPTR->STATJS.

PART.SIZE)&(DPTR->STATUS.TCINO = 'l'8)&(PLEVFL = DPTR->
STATUS.PRIORITY)

Ing 1 2 THEN O0; /*SWAP IN THIS JOB*/
109 1 3 ALLOCATE SWAPINI
110 1 3 IF IPTR = NULL

PAGE/* 9****

PPEEMPTIVE SCHEDULER ***** */

'i)T LEVEL NF'.T

THEN IPTR = STPTRI /*INITIALIZE POINTFW TO FIRST SWAPIN*/

ELSE TPTR->SWAPIN.NEXT = SIPTR; /*LINK SWAPINS*/

TPTP = SIPTR; /*KEEP POINTER TO THIS ENTRY FOR
LINK INC*/

SWAPIN.JOB# = nPTR->STATUS.JOR#W /*ENTER nATA IN */

SWAPIN.SIZE = OPTR->STATUS.PAPT.SIZE; /*SWAPIN ENTRY*/

SWAPIN.NEXT = NULL$
MEMSPACE = MFMSPACF - OPTR->STATUS.PART.SIZEI
DPTP->STATUS.ACTIND = '1'8t /*JOB IS NOW ACTIVF*/

OPTQ->STATUS.TCINO =0'';

/*JOR IS BLOCKED UjTIL FIPST PAGE IS
BROUGHT INTO CORF*/

ENDS
DPTP = DPTR->STATUS.NEXTS

ENDS
P.LEVEL = P.LEVEL + 13

END;

/* NOW CHOOSF JOR TO HF RUN - EITHER PPEVIOUS JOW OR A NEW ONE */

P.LEVEL = 115
DPTR = FSTATPT->STATi5.NEXTS

125

1127

112
118
119

133

1314

1 3

13 6
127

128

129
130
131
132

133

134
135
136

137
138

1 39
140

141
142
143
144

AND IS STILL HIGHEST PPIORITY RUNNARLE
JO8 - PFASSIGN IT WITH REMAINING
TIME SL T CE*/

RTIME = TIME - NEXTJOB->STATUS.RFG.TIME;
TSLICE = TSLICE - RTIMES

NEXTJ09->STATUS.REG.TIME = TIME;
/*RESET PEGINNING (F RUN TNTFRVAL*/

/*PRFVIOUS JOR WAS GIVEN ITS FULL
ALLOTMFNT OR IS NOw PLOCKED OR IS NO.
LONGER HIGHEST PRIORITY PUNNABLE JOS -
CHOOSE A NEW JOB TO BE RUN*/

/*NO JORK ARE ELIGIRLE TO 8E RUN - RUN

JOB 7EP0*/

/*THERE IS AT LEAST ONE ELIGIBLE JOB -

ENDI
ELSE DOS

IF P.LEVEL = 11
THEN DOS

NXTJOH = 01
TSLICE = 500001

ENDS
ELSE 00;

;* e****
PAGE 6

DO WHILE (DPTR -= FSTATPT)l /*FIND LOWEST PRIORITY LEVEL AMONG
PUNNABLE JOPS*/

IF (DPTR->STATUS.TCIND = l1'B)&(PTw->STATUS.ACTINr) = *1'8)
(DPTR->STATUS.PRIORITY.< P.LFVEL)

THEN P.LEVEL = DPTR->STATUS.PRInPITY:
DPTR = DPTR->STATTuS.NEXTI

ENDI
IF (INDEX >= 10) L (INDEX (= 12) & (NXTJOR - 0) & (PLFVEL =

NEXTJOR->.STATUS.PRIORITY)
THEN 00 /*JOH P10N PREVIOUS Y IS STILL RUNNABLE -

/* **** PPEEMPTIVE SCHEDULER

STMT LEVEL #EST

CHOOSE ONE*/

145 1 2 NEXTJO4 = NULLt
146 1 2 00 WHILE (NEXTJOB = NULL)l

149 1 4
150 1 4

151 1 4
157 1 4

153 1 4
154 1 3
155 1 3
156 1 3
1ST 1 3
158 1 ?
159 1 1
160 1

IF (KPTR->STAUS.TCIND = wl'8)k(KPTR->STATUS.ACTIND = '198)
&(KPTP->STATUS.PRIORITY = P LFVEL)

THEN 001 /ONEXT JO 'IS READY AND ACTIVE AND
HIGHEST PRIORITY*/

NFXTJOR KPTQ: /*JOR CHOSEN*/

NXTJOk = NEXTJOR->STATUS.JORNI
/*DESIGNA TE THIS Ac NEXT JOR TO RE RUN*/

TSLICE 50000; /*ASSIGN STANDARD TIME SLICE*/

NEXTJOR->STATUS.BEGTIME = TIPE;
/*INITIALIZE REGINNING OF PON INTERVAL*/

EN'I
KPTR = KPTR->STATUS.NEXT;
IF KPTR->STATUS.JOH# = 0
THEN KPTR = KPTR->STATUS.NEXTS

ENDI
END;
END;

END SCHED .

/*UPDATF POINTER TO NEXT JOB*/

/*SKIP JOH ZFRO*/

**** */ PAGE

DFACTIVATIN6G SCHEDULEP *AGE o/

* 4T LEVEL NEST
/4 ooo** DEACTIVATING SCHEDULER #0oo* */

SC 4ED:PPr CEDRjEFJONtt,INDEX.Tl"IE,SHACFSJRTRNxTJOR,TSLICF.IPTR,0PTP) t

/o THIS SCHEDUtEP CHOOSES A JOH TO HE PUN FROM A"ONG THF QFA0Y JOBS IN
CORE IN A.PONND POP3TN FASHION. JORS ARF ACTIVATED I T -E ORDER IN
WHICH THEY ADDIVED AT THE SYSTEtA og SOON AS T-E;F IS POO FOP

THEM. JOAS APE DEACTIVATFD wHENvEP THEY DOI1K OR TAPE I/O AND
APE ELIGIPLF TO HE RFACTIVAIED wHFD THEI- I/0 IS rOMPLETE. 0/

/* JONIIV IS TWF NUMPER OF THE JOH WHICH HAS RFEM -UNNING JUST

PRIOR TO THIS CALL To THE SCHEUULED. 4DEX II)ICATFS T-E CAUSE
OF THE TERMINATION OF ITS PwOCESSkING. INDEX VALUES HAVE
MEANINGS AS FOLLOWS:

INDEX -l INITIALIZATION
S --- TERMINATION
I --- PAGE REJUEST TSSUED
? --- DISK OR TAPE REQUEST ISSUED
4 TIME SLICE RWNnUT

10' -- JOR ARRIVAL

S--- PAGE PEOUEST SATISF IED
D .I? - IK OP TAPE QFOUEsT SATISFIFD

SPACE GIVES THE TOTAL MEMOrY SPACE AVAILAHLE TO WUER PP6RAMS9 AND
TIME THE OPFSFNT TIMF IN THE MODEL AS RECORDED ON THF SYSTEM CLOCK
IN THF MAIN O0UTINE. SJPTR IS A PATNTER TO T'E FIRST ENTRY IN THF
JOB -TQEAM LIST MAINTAINED HY THE MAIN ROUTINF. NXTJOH IS THE
NUMwFP OF THE JOB CHOSEN HY THE SCHFDULER TO RE PROCFSSFD NEXT,
AND TSLICF IS THE TIMESLICE ASSIGNF TO IT. IPTR IS A POINTER TO
THE FIRST SWAPIN COMMAND ISSUED 8Y THE SCHEDU ER AND OPTR IS A
POINTE TO THE FIRST SWAPOUT CUMMAND. */

2 1 DCL (JORNUM,TNDEX,SPACE) FIXED 8IN(lS),TIME FIVED HIN(31iSJPTR PTR;
3 1 DCL (IPTRPTP)PTR. NXTJOP FIXED RIN(IS), TSLICE FIXED "IN(31);

/*ARGUMFJTS*/

/* STRUCTURES FOP INDICATING SWAPIN AND SWAPOUT COMMANDS */

4 DCL 1 SWAPOUT BASED(SOPTR),
2 JOR FIXEn RIN(15),
2 ATIME FIXED PIN(31),
2 NEXT POINTERS

5 1 DCL 1 SWAPIN RASED(STPTR),
2 JORO FIXED 4IN(15),
2 S17E FIXED ATN415),
2 NEXT POINTER:

/* VERSION OF JOB DESCRIPTIONS AVAILARLE TO SCHEDULER 0/

6 1 DCL 1 508 BASED(SJPT),
2 JOB# FIXED RIN(1S), /*MATCHES uPPER PORTION OF*/

PAGE 2/* 0***

* *0**** DEACTIVATING SCHEDULEP ***** */

ST"T LEVEL NEST

2 TYPE FIXE) R IN(lc),
2 PRIOPITY FIXED PIN(IS),
2 517E FIXE) "IN(15),
2 NEXT PTRI

DCL I STATUS RASED(STATPT),
2 JORM FIXED RIN(1'),
2 ACT ND HIT(1).
2 TC.IND RIT(fl,
2 PAPT SIZE FIXED HIN(15).
2 FG _TIME FIXED RIN(31),
2 NEXT PTRZ

/*jOp STRE'M LIST FNTRIES*/
/dUSFD HY iAIN RUIJTINE*/

/*STPUCTJP r9P KEFPING TRACK OF*/

/*ACIIvF/INArTIVF AND0 TRAFFIC*/
/*CONTPOL STA.TUS. PAPTITION SI7F*/

/*AND iEGFINNING OF -ACH PUN */
/*INTEPVAt FOP EACH JOH*/

DCL(FSTATPT*LSTATPT) POINTER STATICt
/4HOLD LOCATION OF INITIAl AND FINAL
STATUS HLOCKS*/

DCL(TPTP,nPTR) PTP. FOUND PIT(l), (M-EXTJOR.KPTP) PT ST'ATIC;
DCL MEMSPACF FIXED 913N(IS) STATIC% /*PUNNIN'; RFCOP OF FREE MFM.*/

DCL 7FROFLAG RIT(I) INITIAL('Ob)l
DCL PTIME FIXED HIN(31)H

/* PPOCFSS INPUT INFORMATION /

13 1
14 1

?6 1 2

2,7
28
29
30
31
32
33

IPTR = NULL:
OPTQ = NULLI

/*INITIA(IZE SwAPIP POINTFP TO NILL*/
/*INITIAI IZE SwAPOtlT POINTFR TO NULL*/

IF INDEX = -1
THEN no: /*fINST CALL - INITIALIZE THTNGS*/

MEMSPACF = SPACE: /*INITInt IZE RECO- OF FRFF MEMONY*/

TPTw = SJPTR;
DPTR = NULlI
00 wHILE (TPTR - NULL); /*CwFATE A STATUS ENTRY*/

ALLOCATE STATuS SET(STATPT): /*FOP ;ACH JOW CHRPFNTLY*/

STATUS.JOH = TPTP->SJOR.JOHN: /*IN THE SYSTFM*/

STATJS.TC_INO =) lR; /*ALL JORS 1IN1 IALLY PFADY*/
STATUS.ACT_IND = 'l 4B /*ALL JO;4c INITIAl L Y ACTIVE*/
STATUS.PART-STZF = (TPTR->SJ0.SI/E * 1)/2l

/*INITIAI PAPTIT10 SIZE IS HALF OF
TOTAL cIZE*/

MEMSPACE = MFMSPACE - STATUS.PAkTS17E;
/*KEFP TPACK OF HO'1 PIUCH MEMORY IS STILL

FREE*/

IF nPTq = NULL /*PEPFOP4 LINKIN(,*/
THEN FSTATPT = STATPT;
ELSE OPTR->STATUS.NEXT STATOTI

DPTR = STATPT:
TPTR = TPTR->SJUB.NFXTI

END;
LSTATPT = DPTR; /*KEEP LOCATION OF FINAL 4LOCK*/

PaGE 3

/* *4*e*
PAGEDFACTIVATING SCHEDuLLP ***** */

C-TMT LFVL 04- T

34 1 1 LSTATPT->STATUS.ACTIND = 1O1H;

/*LAST ,OR GFNEWATED IS pArTIVE*/

P 6A S WSPACF = M E MSC E + LSTATPT->STATUS.WAP T7FVE;
/COPPRFCT C tNT OF TiTAL F FF MtMOkY

FO INACTIvF Ji-1"/

, 1 LSTATPT->STATtJS.NFXT = FSTATPT? /*P AwF L TST CIwrUjLm*/

-7 1 1 KPTP j FSTATPT->STATIJS.NFxTi /*THIS POINTFH HOL)C A PLACE IN
THE J04 Cdt INO/

Si ijTL' = Nti I /*NO SOULTS r)OE kY THIS SCHEPD)LEk*/

60 ELSE IF INDFX = 0

41 1 THEN 00 /*A JOR HAS 1F.4MIN TFD*/

42 1 1 TVTR = FSTATPT->STATuS.NEWT;
43 1 1 OPTQ = FSTATPTI
44 1 1 FOUND = 1'O'i

45 1 1 00 WHILE (FOUNn = 'o'R); /*CEARCH FOP STATUS ENTPY*/

46 1 2 IF TPTP->STATIiS.JORN = JORHNUM
47 1 ? THEN 0O /*ENTRY FOUN[v*/

1 48 1 3 mFMSPACE = MFMSPACE + TPTP->STATUS.PART.SIZFI

pa /*RETURN CORE TO FPEE ARFA*/

4w 49 1 3 DPTR->STATUS.NFXT = TPTR->STATUS.NEXTI
FI- /*ADJUST LINKING OF STATUS CHAIN*/

'0 1 3 IF.,LCTATPT = TPTR

S1 1 3 THFM LSTATPT = DPTRS /*QFSET POINTEP TO LAST FNTRY*/

92 1 3 FRFE TPTP->STATUS; /*DELETE THIS FNTRY*/
r3 1 3 FOUND = Rt
S4 1 3 END:
C 1 2 ELSE 0o: /*KEFP LOOKING FOR PROPER FNTRY*/

6 1 3 f)PTW = TPTPI
C*7 1 3 TTP = TPTk->STATUS.NEXTI
Cq 1 3 END;

At) I END;

Al1 1 ELSE IF (INDFX=l) INUEX=2) I(INEx=1 I)(INExl?)
7 1 THEN nol /*I/() oFOLiEST ISSIFO On SATICFIED*/

0-3 1 1 TOTR= FSTATPT;

0,4 1 1 FOUND = 1R;

AC; 1 DO WHILF (FOUND = '0H) I; /*SEApCH FOP OESrWIPTIONl O JOH IN
QUESTION*/

A6 1 2 IF TPTR->STATUS.JOR# = JOHNHM
#67 1 2 THEN nO; /*PWOPER ENTPY FOUiD*/
A-P 1 3 IF INDEX >= 11

f69 1 3 THFN TPTP->STATUS.TC.IND = 'l'R
/*REOUEST SATISFIFn - JOH IS PEAOY*/

70 1 3 ELCE TPTP->STATUS.TC.INl) = 'O';
/*REQUEST ISSUEO - JO IS RLOCKED*/

71 1 3 FOUND = 91'A;
72 1 3 ENDt

/0 #**e

CZIIT LEVEL NFST

nFArTIVATpIG SCHEDULEP ***** */

PLSF TPTP = TPTR->STATUS.NxFT: /*KFEP LOOKINGF.*/

EN):

IF INPEX = 2
THEFN r)r0,

.02 I 2

03 1 ?

Q4 1 1

a

04

07
11
02

'.4 A

GC

I' n

103 1
14 1

/*JOB HAS ISsUET) A PFkIPHF,4Aj I/O

PEQUIFST - SWAP IT OUT*/

ALLOCATF SWAPOIjTS
OPTP = SOPTRS /*AT MOSTONE SWAPOUT ON ANY CALL*/

SWAPOUT.JOBN = JOHN!IMI

SWAPOUT.NEXT = NULLS
TPTP->STATUS.ACTIND = 'o'P;

/*NOTF THAT THIS JOR IS NO LON(;ER IN
CORE */

MEMSPACF MEMSPACE + TPTP->STATIUS.PAPTST7F;
/*ADJUST A40NT OF FWFF METAOPY TO

REFLFCT DEACTIVATION*/

EN;
END;

ELSE IF IjN)FX = 10
THEN no; /*NtW APQIVAL - GFNEATE STATUS ENTRY*/

Atlf)CATF STATUS SFT(STATPT)l

bTATUS.J)O~ = JINNUM: /*INITat Il/E VALUES FOP NEW FNTRY0/

STATUS.ACT_IND = 1O'H

STATUS.TCIND = 11H;
FOIUNt = 01H,
TPTW SJPTR: /*INITIAL IZE POINTFR TO JOR STREAM LIST*/

DO wHILF (FOUND = ''H); /*FIND JOR DFSCP. FOP SIZE*/
IF TPTR->SJOR.JUBh = JOHNUM

THFN FOUND '1'H: /*PROPFP FNTRY FOUI)*/

ELSF TPTR = TPTP->SJOR.NEXT: /*KFFP LOOKING*/

STATUS.PARTSIZ? =(TPTP->SJOR.SI7F+1)/23

LSTATPT->STATUS.NFXT = STATPTI /*LINK NEW ENTRY INTO CHAIN*/

LSTATPT = STATPT:
STATUS.NEXT = 7%TATPTI

END I

/* SWAP AS MANY JOBS AS POSSIBLE INTO CORE*/

DPTR= FSTATPT->STATUS.NEXTl

DO WHILE (nPTP-= FSTATPT)3

/*INITIALIZF POINTER TO CTATUS LIST*/

/*SEAWCH THROUGiH THF JOB LIST FOR

INACTIVE JOBS THAT WILL FIT INTO FRFF

COlF */

IF (DPTP->STATUS.ACTIND = 'f'R)FC(MEMSPACE>= DPTP->STATUS.

PART.SIZE)&(DPTR->STATLJS.TC_ t'D) = 1'B)

THEN 001 /*NEXT JOB IS WFADY AND WILL FIT - MAKF
ENTRIFS TO SWAP IT IN*/

ALLOCATE SWAPINI

IF IPTR = NULL

PAGE

***** 0/ PAGE

C-TUT LFVEL NFST

l'nQ I ? THEhN IDTR = S1DTR; /*INITIALIZE POINTER TO FIWST SWAPIN*/
11 1 ? FLSF7 TPTP->S*APIN.NFXT = SIPT01 /*LIIK SWAPINS-'/
121 I 2 TPTR = STPTP: /cKFFP POINTFP TO THIS ENTRY FoR

L INK {NG,*/

112 1 ? SWAPIN.JOB# = rPTW->STATUS.JOAO: /*ENTEw fATA IN */
113 1 ? SWAPIm.cIZE = oiJw->STATUS.PAPTSIZF% /*SWAPIN FA:TWY'/
114 1 ? SA-'IN.NFEXT = NULL;
115 1 2 MEMSPACF = Mt.MSPACE - DPTH->STATUS.PART 517F1
116 I ? DPTQ->STATUS.ACTIND '6H; /*JOR IS I"OW ACTIVF*/
117 1 2 DPTR->STATUS.TCIND =0''R

/*JOP IS RLOCKFD UTIL FIwST PAGE IS
HROUGHT INTO CORI*/

1 1 1 2 END:
119 1 1 DPTR = DPTP->STATIJS.NEXT;
l?0 1 1 END;

I' NOW CHOOSF JOP TO HE' RUN - EITHER pL)FvInIiS JOP OR A NF'W ONE *
I?1 I IF (IND)EX >= lfl) & (INDEX <= 1?) &. (NXTJM13 -= n)
I? THEN 009 /OJOH Pill PRFVIOUSI-Y Ir, STILI PUNNABLE -

REASqI(;N IT wITH REM(AINING TIMFSLICF*/
1?3 1 1 wTIH4E =TImE - NFxTJOR->STATUS.PF3 TIME:
124 1 1 TSLICE TSLICF - PTIMF
I ? NFYTJOH->STATUS.RFG-TIME = TIMF:

/*RESET PEGINNTN; OF RIJN INT9:RVAL*/
I? 1 1 END
1?7 1 ELSE not /1PWEVIOIIS JOR WAS GIVFN ITS FULL

ALLOTM/NT OR IS COW HLOCKEr CHOOS
A NE-W IOH*/

I ?94 1 E NEXTJ = 1EIJLE
129 1 1 00 WHILE (NEXTJOB = NULL):

I i) I ? IF (KP1-STATIJS.TCIN(= 11'R&F(KPTP->STATUS.ACT_ - IN' 1113)
131 1 ? THEN DOS /*JEXT JOR I VFADOY AN ACTTvE*/
13? 1 3 NITTWJOT KPTEA N /NJOG CHOSENT/

T3 1 3 NXTJO E NEXTJOH->TATUS.J'RFG
/*DESIGNIATE THIS AS NEST)OR TO HE RUJN*/

T1C3 TSLICF -5000 /*ASSIN STAtMEAWD TImE SLICF=/
I 1c 1 3 NEXTJO->STATUS.FG-TIME = TIMAE

/*INITIAIIZE REGINt4IN OF PURU INTENVALT/
ENO

137 1 2 KPTR = KPTR->STATtS.NEXT4 /*UPEAATL POINTER TO EXT JOBO/
13A 1 2 IF (KPT->STATUS.JH 0 =
13Q 1 2 THEN IF 7/XON JFLAG J FAC
140 1 2 THEN DOS
141 1 3 N PT = KPTJ->STATUS..NEXT

/*SKIP GOT ZTRO UNTIL ALL OTERE JORBS
HAVE RZEN TRIED. /

14 1 3 THN F7ROFLAG = 99

/*SET FLAG ON SO JOB ZERO IS CHOSEN IF

DEACTIVATING SCHEDULER/* *****

142 1 3 ZEROFLAG = '1'B:

U N 4

/0 00* ?~4rf3HJS C) i v AA ''~-J 39Vd

APPENDIX C

SAMPLE OUTPUT PRODUCED BY THE MODEL

The sample output provided in this appendix was pro-

duced by the test run described in chapter three which used

the preemptive scheduler and fifty pages of user memory.

The output shown enclosed in starred boxes beginning on page

202 was produced by the TRACE routine. The boxes are used

to set off this information from any output produced by the

DEBUG routine and from any diagnostic print put out by the

scheduler being used. The TRACE output shown on pages 202

through 205 was produced between the simulated times of

1,000,000 microseconds and 1,500,000 microseconds in this

run, i.e. it covers the simulated time between 1.0 and 1.5

seconds.

The TRACE module is called each time an event occurs

in the simulated system. When called, it prints out the

current simulated time (in microseconds), the event which

has occurred and the job involved in this event, and the

response of the scheduler to this event. The scheduler

response includes commands issued to indicate the job to be

processed next and any jobs to be activated or deactivated.

For instance, the first call to TRACE was issued at time

1,023,500 microseconds. At this time job #1 has its

-195-

peripheral I/O request completed and is now ready to be run

again. The scheduler responds to this information by

selecting job #1 to be assigned to the processor.

A study of a sequence of TRACE reports provides a fairly

clear picture of the successive events occurring in the

simulated system during model operation. Though no infor-

mation about the jobs not directly involved in the various

events is provided, one can make some inferences about the

state of the system from the observed pattern of events and

scheduler commands. For instance, the second TRACE report

shows that the scheduler has selected job #0 to be processed,

i.e. the system is to remain idle. This indicates that none

of the active jobs are in a runnable state at this time.

At time 1,080,840 microseconds a new job, job #6, arrives at

the system, and this job is not immediately ordered to be

activated. This indicates that there are enough jobs already

in main memory to make it fairly full, not leaving enough

room to activate this additional job. Consideration of the

overall TRACE report shows that processing alternates

between jobs #1 and #4 during the time covered by this

scan. Since neither job #2 or #3 appears we can conclude

that these two jobs have already terminated and have left

the system. We also note that job #0 is assigned to the

processor a good deal of the time, due to both jobs #1 and

-196-

#4 being blocked. Neither job #1 nor job #4 terminates during

the period covered by the' TRACE scan, and no other jobs can

be activated while these jobs are in core.

The output produced by the TRACE routine provides an

overview of the microscopic operation of the model. This

represents a compromise between the summary figures pro-

duced by the accounting routine and the copiously detailed

information provided by DEBUG. It is useful for such tasks

as exploring the operation of the model to corroborate or

investigate summary figures which seem counterintuitive.

It produces enough output to enable the user to follow the

course of the simulation without forcing him to wade through

a great deal of possibly irrelevant information. In cases

where the TRACE routine points up an apparent error or

anomaly the DEBUG routine may be called to print out more

detailed information about the system during the time inter-

val in question.

Only a single DEBUG snapshot is reproduced here (pages

206through 208) due to the large amount of output pro-

duced on each call to this module. The information repre-

sented by the sample output shown includes the following

facts. On the most recent call to the scheduler job #9 was

selected to be processed, and was assigned a timeslice of

50,000 microseconds. The System Event List shows the future

-197-

events scheduled in the system at the time job #9's processin'g

was halted. It shows that job #9 will have a peripheral I/O

request satisfied (event type 12) at time 5,107,177 micro-

seconds. This indicates that the halt in the processing of

this job was due to its issuing a. peripheral I/O request.

Other events in the System Event List are the completion of

a peripheral I/O request for job #17 which will occur at

time 5,123,767 microseconds, and the arrival (event type 10)

of job #22 at time 5,287,906 microseconds.

The job descriptions shown indicate the state of the job

stream in the simulated system after the halt in the processing

of job #9. Each job presently in the system is represented

in this list, and all the characteristics describing its

present state are shown. For instance, we see that job #2

is of type one and priority level two. Its total size (SIZE)

is fifty-three pages, and its working set size (WSS) is twenty-

one pages. It will require a total of 338,539 microseconds

of processing time (CPUTIME). Its entries for partition

size, timeslice and number of pages in core ate all zero,

indicating that it has not yet been activated. This is not

surprising since the scheduler being used here takes priotity

level into account in choosing jobs to be activated, and

this job is not a high priority job. The value of -l for

its active indicator (ACTIVEIND) denotes the fact that it

-198-

is inactive at the present time. Its traffic control status

(T_C_STATUS) is READY. CPU time until next page fault

(PAGETIME) and CPU time until next peripheral I/O request

(DSTPTIME) are given values when a job is activated; they

have value zero here since this job has never been active.

The CPU time still required to complete the job's processing

(TERMTIME) is 338,539 microseconds, the same as the value

of CPUTIME. This is as it should be since no processing has

yet been done on this job to cause its time-remaining figure

to be decreased.

Now consider the description of job #9, the job which

has just been processed. It is of type one and priority

level two. This is the same priority level as job #2, but

job #9 is considerably smaller than job #2 in total size.

Its working set size is larger than that of job #2, but

since the scheduler has only the total size figures to use

in making its scheduling decisions the relative working set

sizes have no effect on activation choices. Job #9's total

CPU time requirement is 377,755 microseconds. It has been

assigned a partition size of twenty-three pages, and a

timeslice of 50,000 microseconds. It has eleven pages in

core at present (# PAGES IN CORE). Its ACTIVE IND value of

46,675 indicates that it is now active and has received

46,675 microseconds of processing time since its last

-199-

activation. Its traffic control status is BLOCKED because

the job has just issued a peripheral I/O request and is now

waiting for it to be completed. The processing time until

it issues its next pagefault is 3,197 microseconds, and it

will issue another peripheral I/O request after 11,597

microseconds of processing. It requires another 331,080

microseconds of processing for completion.

The descriptions of the other jobs may be interpreted

in the same manner as the two described above. An interesting

thing to note about the job stream shown here is the absence

of descriptions for some of the jobs. The list is maintained

and displayed in order of increasing job number. Running

down the list, we find that jobs #1, #4, #7 and #11 do not

appear. This indicates that these jobs have already term-

inated and left the system. The last item of information

provided on each call to the DEBUG module is the simulated

time at which the snapshot was taken, which in this case

was 5,076,508 microseconds.

Careful study of the output provided by the DEBUG

module provides a clear and comprehensive picture of the

state of the simulated system at a given instant of time.

Comparison of a sequence of DEBUG reports shows the micro-

scopic processes occurring in the simulated system in great

detail. Such information is invaluable in locating errors

-200-

in the logic of the model or exploring in detail unexpected

behavior observed at the macroscopic level. The sheer

volume of information generated, however, makes it expensive

and time-consuming to perform this kind of detailed inspec-

tion.

The summary data output by the accounting routine

(ACCNT) for this -run is shown on pages 209 through 212.

Since this data has already been discussed in chapter three

it will not be analyzed in detail here. Most of the

statistics produced are self-explanatory. The report is

divided into four sections, each printed on a separate page.

The first section gives overall figures on system activity

and performance. The second describes the average charac-

teristics of the jobs generated on this run, and the third

gives data on the various activities of the scheduler used.

The last section provides data on the behavior of the jobs

under this scheduling scheme and the response of the simu-

lated system.to the demands of these jobs.

-201-

0 A-T T1'-W 12')jUo 1 F-iTEP-S T~iF ,-EtIAY STATE (EWIP,iPAL u110 P 'JcsiT Cl~kIP ETE).

ij , SELvrTl jii I T - : 4 N N

f tT T1 I 103,01213 J~ I Tl S JF< A PFwjPrirQAL 1/0 P(-(JVjF4T.

4 'Z-4 "'ILE- SELFCT' J();, TO 1) oF Q N '-F v

0I T 1. n5r'7'- WU'l 4 FlTI-NS Ti-F a~l-hY 'TATF (PERIP-GAL 7/1 RF,1JSr C"M'Ai ETr.
* r.-.frJLE J 'EL-CTS:, JO- ~.Tf AP QUN NFX I

0 AT T I 105k' -' ~i Joit 4 ifjCu ;s A PAGE FtI'jLI.0
* ~cr-FUI~jE-, SE-Lt~rS j.)- 0) TO -' - N xr*

<-0 t.T T I-A C: 6"' J')d 4 V'iTFw-S fHE REAfUV STATE- (PAUF Ql)E.ST CUMPI HII).0

K) - * 'LE SELFrTS j'j-' To ~i-- Dtjoi r4ExT.4

4AT TJI"A 1071144 JOH 4 T'IYCIPW A PAGE AIJLT.0
* SEL--ITS JO-' 0 TO FP1IJN NEXT.

0 T TI'7 1 OR0,, Jutj 6 FNTEI-cS THF SYIF-.
0 (C-F01ILE.o SELFCTIS JOP 0 T 0-I H PUNih N x T

0AT TI"P 10609474 JOH 4 F #TFRS THF kEAIUY STATF (PAGE PP(UUE5T COMPI TE)*

Sr'-Ff'IjLEw SELECTS jO'- 4 TO ;-4 P(iJ~ NEXT.0

0AT TJlm 1OPi444 JOR 4 TN-CUPI; A PACE FAUILT.
0 ~.-~tJEPSELPCTS JO - n TO kF PUJN NEXT.4

4AT TI-E 1090123 JUH- 1 ENTEMSr THE WEAnY STATE (PERJPHEFPAL 1/0 RE'jUF-T CMPLETE). 0

4 ,Cw-EOULER SELECTS JC)H 1 TO BF PiJkl NEX I.

I T T T F 1 094,.i,,i j)t- 4 i:NTFPS TB-F PEAiy S-TATF (PAULE ;V1E S Cfl'API t' 1.

-)-' LE- SEL~rTS 1 T0 6 7R s)H K T

" A t Ti- I I-i -r' 4 ISSItES A PF~jP -FP4L 1/0 kE(PfJFlT.

"r- jLE- SELE7CT'S jj: 6 TO vHF PIHj NEYT.

*4: Ar T4C ;Lo SE-- ' TS 4~; TOUE A P6 PI I/O X T .F~T

* <rw-) L SELr~rT$ Jog TO P'E PUN NEXiT.4

*AT T IME 116-i'-4 JOh 0 PUNTSc T!i IT AI) TESTAE(PG FQCF. OPLT)

cr'-4FAJLE-4 SELFCTS iA 4 TO ip RUN~' NE~XT.*

ATD TI-IF 1 M91?S Jobt I FrJTFW. THiE WEAtY S TATF (P[N1PHFP~AL 1/o) Wi-trST CriMPLEFtE). 0

* r Fi-)LFw SEL~FTS JOR 4 TO H~E PU;N NET.

AD 0 T TT"F 117'-?33 jUl 4 ISCUPS A PAPIPHFAL 1/0EU-T

r-r" ~ FDULE- SFLFCTS J(A Il TO RF DtjN NEXT.

" TTI4E 12079LO4 JOH 1 EN"TENS- THEF READY TATF (P~AGE PEOIIEST COMP~LETE).4

" -HEUJEQ SELECTS JOk I TO 14F PU!N NEXT.*

" a T T9~ 1! I2E JuF 1 1Sk I Pl-PAL 1/0 4EW) ST.
* ' C..JFfOLEjF SELFCTS jut- f) TO H (F7 p~ iE x T.

* tT TI,; 1?65rvj4 job E NTEwq THE QE;) STATE (PEW1Pw~FPAL 1/0 WFfQUrST ComPI ETE).
" ~clrFr~ILE.. SELFCTS j0P 4 TO HF P-UP 14LXT *

* AT TjJ-'r 1265215 JoH 4 P iCUPS; A PA(t- VAIML.*
SC.-fE!IJLE . SELFEC- ic) jO) TO HEPUN ET4

*AT T 1"V 1?71% (JOCA 4 FE:TE'z T"6: kEAFO STATE (PAbF QEO~ijtST C('mPIETFr.
* ~~-ui .~SELiFCTs j7) 4 To HF OL)N NEXT.

0 PT Tl~AF 128174.9 JOtI 4 TM'CUl~ A PAGE FAuILT.4
0 ~cr-Fr!IJ~lL SELECTS JOH 0 TO NE PUJN NEXT.

* AT TTP- 12P9149 .JO 4 -'IITFwS; P4F HEADY 5TATE (PAuE PF~OUFST COMPI ETE).
4 tzrL-wrEr'tjE SELFCIS JUQ 4 TO' kE a' ON NEYT.4

* AT TImP- 12934'43 JUH 4 ISSUES A PEkIPHFPAL 1/0 o4FN(EST.
* SrwFflULEk SELECTS joR 0 TO0 HF (IN NE XT7.4

" AT Tlt-a' 1323312 JOb 4 FNTEPS THE kEAW~y STAlE (PEHIPHFwAL 1/O Krlut%T rn4PLETE). 4
" C'-'Of)LER SELECTS JOR -4 TO HF PUN NEXT.4

-47A TImE 113IAhl JOB3 4 INJCURS A PAGE FAUtLT. 4
* S(-aFnlaJ[SELECTS JON- r TO RE PUIN NEXT,

444*44*44 **4*****4444444*************i**0 ***4* *******4444* *44444
* AT Til'Ir l33u113o7 JUHb 4 FNTF~)S THE PEAf)Y STATF WPAGE OFQIJES7 CnmpI FIE).
* 5C'-Eni~iLP SELECTS jUw 4 To AP '-UN NE X I.

" AT TIME 134c;141 JOI3 I ENTEkS THE qEAilY STATE (PERTPHE'WAL 1/0 kEoUFST CrmPLETE). 4
* SC-'EtoLER SELECTS JOT- 4 TO HP PUN NEXI9

IT T T 1j346 ' I~ d l 4 lSco A PEI-IJP-,F ;AL 1/0 WdFI0AhST.
*r-P r.;EFSELr T S J' 1, Io TOF k r 'IF XT.

*AT TjvF 1364')15 JOl 1 ISSUJES A PE-,P-FPIAL 1/0 W(UutSr.
* c~rr'LEP rELECTS JOUi 0 TO PF PUN~ NL)YT.

*AT T I k, 1 347794 J001 I FNiTEP.S TH~E wEAry STATE (PEkIPNFPPAL 1/0 PF'IjFST UONPI ETE).
* lC.-fru;FP SELFCTS)Ow~ I TO BF PItN NEXT.

oAT TJ-' Q .0QQ7 J')h 1 TrSIJFS I PEqIPPa:L AL 1/0 'PFiUEST.
~~~~~~ TE' f)(

T  
J(H(1T F *tJN NdE XT.

" 5T TPb4r 1*?15131 job 4 FNTENS T-4F REAC'Y STATE (PERIP-NFOAL 1/0 Pi-U1FST COMPETE).
" r-r"DIiLER SELECTS JOFR 4 TO RF c~ljt NEYT.

4 TTTMA; 1'.29q7b Jut 4 TYCt)Pc; A 0AGt FAilLT.*
4 Cf O'jLFW cELECTS JO0l 0 TO tsE W'IN NEXT.4

f AT I !~ I " -i5L Jost 4 FNTFPS TW-F )REAI) STATE (PAGE WFM;JEST COMP(T F EI.
* C"p" .JLE qELECTS JOR 4 TO 14E QJN PIE xT .

4AT TI L-F 1 44b119 job 4 ISSIJFS A -PEWIPHFPAL 1/0 4fUUk'_;T.
* CPFC'rULEk StiLECTS 101' 0 TO FiF f'tJ% NEXFT.

*AT TTVW 1..-(#-2 Jt 1 cNJTFP-S THF READY STATE (PEPIPHFOAL 1/0 kFB'UEST CokMPI ETE). 4

* 
4
fHp'ULEf' r-LE( IS JOH I rO OF r-11N NEXT



DEQ)G OUTPUT

C a Aua'. S F3, 
THIS ITERATION:

r T =TImESLICE = 50000

F 7E LI';T (AFT;7; PUN INTEOVAL):

TYPF
12
12
10

7
2

r, P;1T7,L

(-;- PTIO-F

ACTIVEINO
PLET I'E -

.J J It
T YP
CPTIMVF
ACTIVE _ INO

PA GET I E

JOi "
TYPE
CPIUTIME
ACTIVEINO
PAGETINE

Jo44

TYPF
CPUTIMF
ACT IVE_IND
PAGETIME

(AFTER RIJN INTERVAL):

0 PRIORITY
Q9q999Qq9 PARTITION SI7F

3?81c'15 T_C_STATuS
99671A494 OSTPTIMF

1 PRIORITY
338539 PARTITION SIZE

-1 TCSTATUIS
0 OSTPTIPF

1
377755

5
I

-1
0

6

519299
-1
0

PRIORI TY
PARTITION SIZE
TC_STATIJS
OSTPTIME

PRIORITY
PARTITION SIZF
TCSTATUS
DSTPTIMF

PRIORITY
PARTITION SIZF
TCSTATuS
DSTPTITMF.

0 517E
0 T,'FSLICE

RFADY

99671R494 TEOMTIME

2 S17F
0 TIMFrLICF

READY
0 TE 'MTIME

3 SI7F
0 TI'ESLICF

READY
0 TEQMTIME

2
0

RFADY

3
0

RFADY
0

0 WSS
50000 # CODFFArFC

9967104Q4

53 WSS
0 _CO)RFPA(ES

33A539

55 W~S
0 #_COQF_PAGEC

37775S

wSs
#_COPE_PArES

SI 1E
TIMESLICE

0 TEWMTIME

S17E
TIMESLICE

.TERMTIME

1929s

45 WSS
0 #_CORE_PAr-ES

519295

TIME
c107177
51?3767
52P7Q06

30
0



ACTIVFND
DP GET I at

V

T Y'

ACT IVEIND
PMGFTIME

CPUT IMF
AC T IVEINO
PAGCET It

JOIM V

TY~c

CC-TI m
ACT IVE.IND
PAV.ET I E

JO 
Ty PF
CPUTIUF
ACT IVEIND
oieETINF

JOQ 4
TYPE
CPUT IME
ACTIVE_IND
PAGETI -F

JOM V

TYPE
CPUTI4F
ACTIVE_IND
PAGETImE

TYPE

CPJTIMF
ACTTVEIND
PAGETIME

3
0

RFADY
0

2
23

BLOCKED
11597

, 1 76
TI mESLICE

TEPMTIME

SI/ F
TI IESLICE

TEOMTIME

1
338';39

-I
n

9
1

377755
46AT5

3197

10
1

377755
-1
0

12

358071
-1
0

13

3975A4
-1

pI

14

519295
-1
0

15
1

339539

1

457AA7
-1
0

PP IORIT Y
PARTITION SIZE
T.CSTATIIS
rSTPTIMF

PRIORITY
PARTITION SIZE
T.CST A TUS
OSTPTImF

PRIORITY
PARTITION SIZE
T.CSTA TI'S
D STPTI F

PRIORITY
PARTITION SIZE
TCSTATIIS
OSTPTIMF

PPIORITY
PARTITION SIZE
TCSTATUS
nSTPTIMF

PRIORITY
PARTI1IO SI7E
TCSTATi'S
DSTPTIMF

PPIORITY
PARTITION SIZE
T.C-STATUS
OSTPTIMF

PRIORITY
PARTITION SIZF
T.CSTAT IS
DSTPT I MF

SI7E
TIM'ESLICE

TEqMTIME

S17E
TIMFSLICE

TEPMTIME

50 WSS
0 #_COQEPAGES

33A539

45 WSS
soo 0 #_COPF_PAGES

3110A

C;? WSS
0 #_CORE_PArEC

377755

Z; Wss
0 # COPE_PAIES

35R071

53 WSS
0 #_CORE_PAGEq

3975A4

53 WSS
0 #_COPE_PAGES

514295

51 w5S
0 #_CORF_PAC-EC

33A539

47
0

457RA2

WSS
#_CORE_PAGEC

0
-3

I S17E
0 TIIE5LICE

MFADY
0 TEPMTIME

2 517F
0 TI'ESLICE

RE ADY
0 TEwMTIME

2 SI7F
0 TI'ESLICE

READY
0 TEoMTIME

2 S17F
0 TI"FSLICE

READY
0 TEWMTIME

I
0

RFADY
0

3
0

READY
0



I L011SE

j)vvd 3bo3-#

S0m

I L 0 k:E

~3tJVd AdO) U

ssM

I LS I e

0Uuu

3b111wd3i 0

3DIb~iC1li 0

3H lSciili 0

33 S iIS 1

3wliSd.'I 0

-4ZlS ?

341lf13i 0
A av te

JimllidlS(

AZIS 'JOIIIUIvad
AldOIdd

AAlidISu

3ZIS NO1lllb9d
AlldOlIdd

AZSNlIId~d

All dUlIdd

3v411imin3 L9sl~l aWldldL

03AJUIH $flivs-3I

3LIS IAildOldd

0
I-

1L05

I-

0

1)

I-
ILURGE

IS(g
14 1I

15092L

3"113')Vd
NI-3A I l31

.3dAi

0'vCA 113
ON IEI If iO)

idAJ.

3v, 1I~i9v a
0I 3AIi.)v

.3dAi

AnI I 3i V d
ON I - A I j

iiI LI to:$
-iciA L

OhN13A1 iW
Ai0I1flo3

.dur

= Ajula



at*** *****************z******************

*-,"A-Y STtTISTICS DFSCPIdIN, T-4' RFHAVI(O OF THE SIMULATF SYSTEM *

OVF-ALL STATISTITS:

AVEPAGtE NJIWtjE OF JOsS IN SYCTFM; 3,.lS

AVEQAGE #'MBWER OF JO8C IN COPE: 1.9k

PAGE SIZE USED: 409GA WEMOPY UNITS.

TOTAL AMOINT' OF CONE SPACE AVAILABLE TO USER PROGRAMS: SO PAGFS.

N0 AVEPAGE A-OUNT OF COME ASSIGNED TO JOsS: 48.S9 PLOCKS.

AVEPAGE NUMnER OF PAGES ACTUALLY IN CoRE: 34.70

CPU IOLE TIME: 62.49%



89 JORS ARRIVED AT THE SYSTEM OVER A SCAN PERIOD OF 30027.c20 MILL ISFCONDS, REGINNING AT TIME

THECF JORS WERE DESCRIRFD 8 THE FOLLOWING AVERAGE CHAACTFPISTICS:

AVERAGE OORKING SET SIZE = 24.26 PAGES.

AVERAGE TOTAL SIZE = 49.48 PAGES.

AVERAGE CPUTIME REQUIRED 403.3q9 MILLISECONOS.

TYPE OISTRIBUJTION:

TYPE 1 -
TYPE 2 -
TYPE 3 -
TYPE 4 -
TYPE S -
TYPE 6 -

100 .0fl)
0.004
0 004
0 004
0.00
0.004

PRIORITY LEVEL DISTRIBUTION:

LtVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL

10.114

53.Q34
S 000
0.00%
0.00%
0.6'0%
0.004
0.004
0.00%

0.000O MILi ISECONDS.



THE FOLLOWING FIGURES OFSCR19E THE BEHAVIOR OF THE SCHEDULE IN REGAPn TO THFSE JOBS:

DEACTIVATIONS:

ACTIVATIONS:

TOTAL NUMREP = 0

TOTAL NUMBER = 29

AVERAGE PARTITION SIZE ASSIGNED'= 24.AA PACES.

AVERAGE TIMESLICE ASSIGNED = 49.611 MILLISECONDS.



THF FOLLOw1Nri FIGUrFS 0"'E COmPILFO ON THE 4E"AVIOP OF THFSF JOHS:

Ttk AVEhArE PERCFrTAGES OF Ti-t SPENT RY AN ACTIvF J) IN EACH OF THE THWEE TQAFFIC CONTROL STATES WAS AS FOtt owS:

RwltNw: p .95-+
PFR?.Y: 7-.44
BLrCKED: L1.61%'

PArFFF AUL TS

OICK AVID
TAPF wEQUFSTS:

TOT4L NUM0F0 = 721
AVFwAG3E Pa"E WATT =
AVF>-AGE TIME NFTwEEN

TOTAL N)aFR = 488
AVEwAGE rDISK OR TAPE
AVF';AGE TILE HETwEEN

7.36 MILLISECON()C.
PAG; FAULTS = 41.A47' MILLISFCONOS.

*AIT = c9.398 MILI ISECONOS.
DISK OR TAPE REQIJFSTS = 43.k45 MILLISFCONDS.

TIUFOITS:

TELPINATIONS:

I-

JOTAL NUMRFP = 70

TOTeL NUOPFR = 27

AVEPAGE TURNAU00IND TIME: 717A.623 MILLISECONDS.

AVERAr-E TURNAkOUND TIMF HY JOB TYPF:

TYPF I
TYPF 2
TYPF 3
TYP 4
TYPP S
TYPF 6

7176.?1.MIL ISECONDS.
--- MILLISFCONOS.
--- MILLISP CONDS.
--- MILLISqCONDS.

MILL ISrCONUS.
MILL ISF CONOS.

AVERAGE TURNAWOUND TIME HY PRIORITY LFVEL

LEvFL 1 - 4064.740 MIlLISECONDS.
LEVEL 2 - 873?.563 MIt L ISFCONDS.
LEVFL 3 - MILLISECONUS.
LEVEL 4 - MILL ISECONOS.
LEVFL 5 - MILL ISECONDS.
LEVFL 6 - Mit LISECONL)S.
LEVEL 7 - MILLISECONDS.
LEVEL 8 - --- MILLISECONDS.

LEVEL 9 - --- MILLI-SECONDS.
LEVEL 10 - --- MILLISECONDS.



APPENDIX D

SAMPLE STUDENT ASSIGNMENT

The student is asked to write a process scheduler for

a single processor demand paged computer system to meet

certain specifications provided by the instructing staff

(e.g. high overall throughput, fast response to high-priority

jobs, etc.). This scheduler is to be coded in PL/l and will

be run under the supervision of a calling procedure which

simulates the environment of a multiprogramming system,

providing the scheduler with information about the charac-

teristics and behavior of jobs in a simulated job stream

running in the simulated environment. This information is

described in detail below. Based on this information the

scheduler issues commands which are carried out by the

calling program. A report on the performance of the sched-

uler as measured by various statistics collected during the

run is output at the end of each run. These statistics

include figures such as average turnaround time and average

system idle time as well as many more detailed figures.

The scheduler to be written is to perform the task of

selecting jobs to be processed from among the jobs in the

ready state as shown in the diagram below:

-213-



DE-PARTI6N

JOB STR-EAM

I/O RE.CUE5T
JOB ST REAM DEACTIVAfThONS SKTI 5 F 'D

It also has the option of causing jobs to be moved back and

forth between the hold and ready states via activate and

deactivate commands. (Jobs in the ready state are resident

in main memory; jobs in hold are not.) When a job is

activated the scheduler must assign it a partition size.

This represents the maximum number of 1K blocks of core

which can be occupied at any one time by pages of that job.

A job which is assigned a partition size of n blocks is

assumed to occupy all of those blocks throughout the time

it is in main memory. Thus the set of jobs which may be

in memory at any one time is constrained by the limitation

that the sum of the partition sizes of all such jobs must

be less than or equal to the total amount of memory

available to user jobs. It should be borne in mind that

-214-



activating and deactivating jobs incurs considerable overhead

in terms of I/O resources and time needed to perform the

transfer of data. These commands should not be used

indiscriminately.

Description of the Simulator

The simulator which will call your scheduler starts

out. by setting up an initial list of jobs to be processed.

These jobs are identified by number, and initially all but

one of them (the one with the highest number) are in main

memory and are partially processed. Each time it is called

the scheduler must select a job to be processed, and it

must assign this job a timeslice, which is the maximum

amount of CPU time for which the job may be processed

without being interrupted. In addition, the scheduler may

issue commands to activate and deactivate jobs. Note that

a job cannot be run if it is not in main memory. On some

calls to the scheduler no jobs may be ready to be run. This

situation may occur, for instance, when all active jobs

(jobs in main memory) are blocked for I/O. When this is

the case, or whenever the scheduler wishes for some other

reason to let the processor remain idle, it selects job #0

as the next job to be processed. This is a dummy job which

is run whenever no useful work is possible or desired. In

-215-



this case the timeslice assigned specifies the maximum length

of time for which. the processor is to remain idle without

interruption.

When the scheduler is finished issuing commands it

returns control to the simulator, which carries out those

commands in the simulated environment. First any deactiva-

tions requested a're performed, followed by any activations

ordered. Then the job chosen to be processed next is run

until one of the following events occurs:

- the job being processed terminates

- the job being processed goes blocked for I/O

- the job being processed runs out its timeslice

- a new job arrives at the system for processing

- another job enters the ready state (its I/O is

complete and it is now ready to run)

When any of these events occurs processing is suspended and

the scheduler is called to decide which job to process next.

Note that this scheme allows for preemption of the current

job in favor of any other job which has just become ready

(i.e. was not ready at the time the current job was selected

for processing). If preemption is not desired the current

job is again assigned as the job to be processed. If the

current job is no longer runnable (it is blocked or has

-216-



terminated), some other job must be chosen to be processed.

This pattern is-maintained for the duration of the run.

A note on activations: A job is considered to be in

main memory and therefore runnable when one or more of its

pages is in main memory. Activating a job is interpreted

by the simulator simply as bringing its first page into

core. Some amount of time is required for the I/O operations

to perform this transfer of data. A job which the scheduler

orders to be activated is then not immediately runnable, and

cannot be selected as the next job to be processed at the

same time it is chosen to be activated. When the page

transfer is complete the activated job becomes runnable,

and the scheduler is informed of this as described above

(a job has entered the ready state).

Description of the Scheduler

The scheduler to be written must be called SCHED, and

must not be declared with OPTIONS(MAIN). It is called with

nine parameters which convey the following'information:

1. The identification number of the job involved in

the event which caused the halt in processing.

(If the event was a time-out or a page request or

peripheral I/O request issued by the running job,

-217-



this number is the number of the job which has

been running; otherwise it is the number of some

other job in the system. This is passed as a

FIXED BIN(15) variable.

2. The cause of the immediately preceding halt in

processing. This information is represented as a

FIXED BIN(15) integer, and its values have meanings

as follows:

-l - Initialization (This value is passed to

the scheduler the first time it is

called, when there is no current job.

Variables in the scheduler which need

initialization may be set up when this

value is passed.)

0 - The job being processed has terminated.

1 - The job being processed has generated a

page fault.

2 - The job being processed has issued a

disk or tape I/O request.

4 - The job being processed has exceeded its

time limit.

10 - A new job has arrived at the system for

processing.

11 - Another job has had its page request

satisfied and is now ready to be run.

-218-



12 - Another job has had its disk or tape I/O

request satisfied and is now ready to

be run.

3. The present time (in microseconds) in the simulated

system as recorded on a clock maintained by the

calling routine. This variable should be declared

FIXED BIN(31).

4. The total main memory space available to user pro-

grams, expressed in pages. This variable has

attributes FIXED BIN(15).

5. A pointer to the first description in a list con-

taining descriptions of all jobs presently in the

system. The format of these descriptions is out-

lined below. This parameter should be declared

POINTER.

6. A variable in which the scheduler enters the iden-

tification number of the job to be processed next.

This is a FIXED BIN(15) quantity.

7. A variable in which the scheduler enters the time-

slice to be assigned to the job chosen to be pro-

cessed next, in microseconds. This is a FIXED

BIN(31) quantity.

8. A pointer to be set by the scheduler to point to

the first entry in the chain of entries describing

-219-



activation commands. (The form of these entries is

described below.) If there are no activations to

be performed on a given call to the scheduler, no

value need be assigned to this variable. This

variable should be declared POINTER.

9. A pointer to be set by the scheduler to the first

deactivation entry as described above for activa-

tions. This variable should be declared POINTER.

Job Descriptions

Job descriptions are stored as based structures which

should be declared as follows:

DCL 1 SJOB BASED(SJPT),

2 JOB# FIXED BIN(15),

2 TYPE FIXED BIN(15),

2 PRIORITY FIXED BIN(15),

2 SIZE FIXED BIN(15),

2 NEXT POINTER;

The first such description is accessed via the pointer to

the job stream list which is passed as a parameter to the

scheduler. Successive descriptions are linked together by

the pointers in SJOB.NEXT. In the final description SJOB.NEXT

has a value of NULL. On each call to the scheduler all

-220-



jobs currently in the system are represented in this list,

which is maintained by the calling routine. The scheduler

need not and should not make any changes to these descriptions.

The information contained in this structure is as follows:

JOB# - The identification number of the job being

described. All jobs have nonnegative

identification numbers, which are assigned

in ascending order to the jobs as they enter

the system.

TYPE - The type of the job (i.e. compilation,

execution, file manipulation, etc.). Job

type is represented as an integer between

1 and 6 with meanings of the various

values as specified by the instructing

staff.

PRIORITY - The priority level of the job, represented

as an integer between 1 and 10, 1 being

the highest priority.

SIZE - The total size of the job, in pages.

Command Structure

The structure in which the scheduler enters its acti-

vation commands should be declared as shown below:

-221-



DCL 1 ACTIVATION BASED(SIPTR),

2 JOB# FIXED BIN(15),

2 SIZE FIXED BIN(15),

2 NEXT POINTER;

Each activation command issued by the scheduler is described

by a separate copy of this structure. The use of each

variable is as follows:

JOB# - The identification number of the job to be

activated.

SIZE - The partition size to be assigned to this job

when it is activated. This quantity is ex-

pressed as a number of pages.

NEXT - A pointer used to chain the activation commands

issued on a given call together. It should

point to the next copy of the structure in the

chain, except in the case of the final entry,

when it should have a value of NULL.

The corresponding structure for deactivations should

be declared as:

DCL 1 DEACTIVATION BASED(SOPTR),

2 JOB# FIXED BIN(15),

2 ATIME FIXED BIN(31),

2 NEXT POINTER;

-222-



The use of variables in this structure is described below-

JOB# - The identification number of the job to be

deactivated.

ATIME - A variable used by the model routines but of

no relevance to the scheduler. Its value

should not be modified by the scheduler.

NEXT - A pointer for chaining deactivation entries

together. Its use is analogous to that described

above for NEXT in the activation structure.

Data Compiled by the Scheduler

In addition to the information explicitly provided by

the calling routine, certain records should be kept by the

scheduler itself if it is to operate in an efficient manner.

For instance, the scheduler needs to know which jobs are in

main memory at any given time, since only jobs which are in

main memory may be chosen to be processed. Similarly, it

should keep a record of which of the jobs in main memory are

blocked and which are ready to run. It will also need to

keep a record of how much memory space it has assigned to

each job it has ordered to be activated so that when a job

terminates it knows how much memory is available for bringing

in new jobs.

-223-



Other information may also be of use in certain sched-

uling schemes, depending upon the aims of the particular

scheduler in question. For example, it may be useful to keep

track of the number of I/O requests issued by different jobs

in order to determine which are I/O bound and which are com-

pute bound. This information may then be used to maintain

a balanced load of jobs in core. All information to be com-

piled by the scheduler must be deduced from the parameters

passed to it by the calling routine.

In Case of Error

For each scheduler command there are certain values for

the various command parameters which indicate legal commands

and others which do not. If the identification number of a

nonexistent job is entered in ACTIVATION.JOB# or DEACTIVATION.

JOB# the command is ignored by the calling routine. If the

partition size given in ACTIVATION.SIZE is nonpositive or is

greater than the actual amount of free memory space remaining

the command is again ignored. In each case a message is

printed out explaining what has occurred. If the job number

given as the next job to be processed specifies a job that

is not in the system, is not in main memory, or is blocked,

the command cannot be executed. In this case job #0 is

-224-



assigned to be processed and is given the same timeslice

specified by the scheduler for the illegal job. A message

is output indicating what was wrong with the choice of the

job to be run. If a negative value is specified for the

timeslice a default value of fifty milliseconds is used,

and again a diagnostic message is provided.

Sample Scheduler Run

The following pages give a listing of a simple scheduler

and the output produced when it is run under the simulator.

Pages 227 through 230 show the code for the scheduler. This sched-

uler selects a new job to be run each time it is called.

This choice is made in a simple round-robin manner. It does

not perform any activations or deactivations, but simply

operates on the set of jobs present in core at the beginning

of the simulator run.

Pages 231 through 233 show the TRACE listing produced in

the course of the run. Each starred box corresponds to one

event occurring in the system. As described above, such an

event may be the arrival or termination of a job, the issuing

of a page request or a peripheral I/O request by the running

job, the satisfaction of a page or peripheral I/O request

issued by some other job, or the current job's exceeding its

timeslice. Whenever such an event occurs the scheduler is

-225-



called. Each box identifies the event which has occurred,

the time (in microseconds) at which it occurred, and the

commands issued by the scheduler in response to this event.

In the case of the scheduler used here the only command

issued is the choice of the job to be processed next. In

the case of a scheduler which orders activations and deac--

tivations of jobs those commands are also shown.

The last four pages (234 through 237) show the summary

information produced by the model. The total simulated

time for this run was only 110 milliseconds, in order to

make it feasible to reproduce the entire TRACE listing. For

this reason the figures shown are not really representative

of the behavior of this scheduler; however, they do illus-

trate the kinds of data produced by the model. Page 234

gives overall data and performance figures, and page 235

gives figures describing the jobs submitted to the simulated

system. The number of jobs monitored as shown on the first

line of this page represents the number of jobs which arrived

for processing after the beginning of the run. Over a long

simulation period this figure approximates the number of jobs

which have passed through the system; for a run as short as

this one the number is not valid. Page 236 gives a summary

of the behavior of the scheduler being used, and page 237

summarizes the behavior of the jobs in the simulated system.

-226-



(-TnAT LWVEL NR QT

/* SPAOH I cSf-Ft)IIEk - Wjt ArTIVATIO)S Ot4 L A(T1IATIONS*/

DCL(j,~ AT F ~'r F IXEI) HI Nfl ' I Fl !, I I l (31) *SJPTiq PTP -

~~C (IT~~-~T)PT, ATJ(")H F Ixrz-;I 1 TSLTC , F IxED PIN(31) ;
/ *A r,( i ' ? T S /

/* S;Tt4ucT~j-- F F'wQ Iri.jlr/,TI 1'4; ACT IVA TF A D AT1'FCOMIS

I % T -41HI ;r .F!' ~f R ILt -N.0 '/

(NOT (JREr

1)CL *Fl.r-ACTT",ATI'x' w,^Lfl(SOPTk) q

ANFXT POINTHW:

DCL I LCTTVATTO,i Hecv(5PTk~q
2 jo,')Pf F IXE ) f Io a(IL))v

q TI?'- F I xEDli7 I %) o

DCL 1 S.JOP k;SE(s ,jP T )

? TYPP FIXFO *t(~1

? *PPIC-L~'ITY FT)(EO HIN (IS).
2 I7v FIXR7', -IN(11 ),
2 '.'X)T Prk;

DCL I 'TAT1US PASEI)(S.TATP'T),
2 ~f FIX iu v IN(1h )q

2 TC-_TlNV) HIT ( I)
2 L~A PT~ _I ZF F IX E nPIN (i1),v

2 rFYT PTR;

DCL FqTATPT POINTF,4 ,RPATICt

/*JO . OFSC ,IPTIONS*/

/*,,-TqJCTiJl) RO KEEPINr( TRACK nF*/
/*ACT I\jF/INACTIVF AND TRAFFIC*/
/*rC~NThOL STAT(US, PAQTITION S17F*/

HOLDS LOCATIO)N OF INITIAL STATUS

;tncCK*/

0CL(TP~TRDPTP) PTP* PUUND BIT ( I)~ q 'EXTJnl~qKPTP) PTR ST/iTIC;

DCL ME-:SP 6CF F IXED PI N ( I ) ST AT IC '

3 1

4 . I

--j

7 1



TL -4 L iFT

Th)(L 7P"Ci L AG BIT (1) INITIAL( U'0-f)
/-4uT ILT TY VAk-I APLFZ*/

/* PPOC(- S'- I "POT I NFO,-'A T ION */

IF I'~- = -1
THH;. nf): /*Fl ST rALL - INJITIkLIZF THTNCGS*/

=SPACt- /*INIdTIAI I/F., PECOPt OJF FPFF s1-EwJ)PY*/

n fl ILF (TPTN -~= NULL)'q /*CPEATF- A STATUS ENTRY*/
AL LCCA TF %- T AT I I - S FT ( ST AT PT) /*FOF- PACH J09 CuPFPENTLY*/

STATUS).JOt-# = TPT ->SJOHt.JOHHt /*IN T-'4_ SYSTRM*/
-,'TAT!1IS.TC_ 1tNi I = /*ALL 10O;S P'ITIALLY READY*/
S TATlJS-.ACT_ If'!r I= b /*ALL JORS IkITTI4LLY ACTLvE*/
",TATlt<.PAwT_',T7L = (TPTP->S.jOP#S17F +1)/12:

/*INITI- Pft-iTITIO'. S;IZF IS HALF OF

PM-.MSIj'F = MF-m5HACIE - ST4Toq.DAPT _qIZF;
/ThtEFf TPACK OF HO- MAUCH mf-mORY IS STM
FR FF* /

lF IlPT.- = N01 1 /*PJFCPm~ LINKING*/

3? 1

T HE

I PT q

f-)T9->STAtjSNFXT = STATPT;

F,,i n:
0PT4->TATll,ACT 1',,D =90H

/-'LA'-T JtO GFNFQATFIh IS INIACTI'VE*/
,-,Wml-,PACF = TAMO'r PT, ->' Tt.T''.PpPT _SI7E;

/*COP- FCT Cku(irNT OIF TOTAL FQFF MEMORY
FO!- It\YACT1vE JOH-"/

i-T-->STATliSeNE.XKT = FSTAT'T; /*,HA'- LIST CIRCIIL'ARc/
K = FqTATPT->STTJlSefNEXT; /*THIS POINTR HOLD)S A PLACE IN

THE JOH CHrIl,*/
1T9 I /*NO ACTIVATIOPNS 0'"NE HY THIS SCHEDIJLFP*/

itiP N1;_ /*ijO IFAC7TIVATUr\JS tITHE~i*/
E.Nn ;

3 1ELSE IF 1'iF tX = 0

2-3 1 p
LL

37 - I



T -, IQ / 1 A j(v - (..S, I F T Nitx1 TF)

*- F F (ir.t 'r t~ /-rF~-kH FOP. STATUS FNTPY*/
F T PT -,STTt J*Ja'k. !

4 C- CE + I T; % tT S I !F

TOrL-J ~~.CC~rF hY THIS J()ii TO

/*AttJ1j1ST LIM'jr IN(- Ow STJATUS CHAIN*/
FQVI- TP- L->r-TATtVIS /*t)F1ETL THIS FfITfPYa/

F -

FtSF r~; /*K-FP LflOKI!'G FOR~ PR<OP-ER FNTRY*/
00 = TPTi.,:

TPT.- TPTP->STATUS.vN XT;

E- Nl)

ELSE IF (IN)F )(=I ) I ( D0EX=?.) I ( IitXl1,-=11) I ( INDEX=12)
THEN Do:, /*1/0 PFI)IIEST ISSUP0 OR SATIS.FIEI)*/

TPTt" =.FqrTATPT:

DO H11,F (FO0UNfl = 109H); /peFprm FOP? OESCkjPTION, OF J011 IN

IF TPT- ->STATFU.JC-,I = JUH (JM
Hftj\1 [-.: /*PP'OPVP F~iTL~Y FOU. t*/

I F I P',iEX > =I I
THF'o TPTP->(STATUS*TC_ I~i = 'il[;

*~L()~~S U A1~F~ IS RE-ADY*/

FLqV TPTk->c TATUSoTC_ 1ND = 101i4-;

/*kE0riEST 1S',-UE[) - JOH 11; FLOCKED*/
FO, t.\F) = vI o .1;

! LS F TPTR =TPTP->STATUS.KfEXT:

E N

/*KFEP LOOtKINf'*/

f 1 -3

4 11- 1



'-T'-T I-FvE- N4FCT

C/ " ,-) 1;F JOG- T 0 1F P,- f- sS Fr) tFiX T

,NFXTJjrN = MII
DO W'ITLE (NMFXTJOB = UJLL);

77 ?

A 4

7

IF (PTP->STATtjsTC-TN1 = V'1H)&KPT4->;TaTUS.ACT _IN') = 118)
T'E: " F. /*N~EXT J04 1' qFA'i-Y A~in AcTIvE*/

FX TJn"' =< PT : /J()" ) t

'X TJOr, E :IX Tj,('-> STA4TU S. ,j)q
/*I'tESI(;'tTL THIr- A", 'NET JOR TO HE Rlim*/

1TC- -,nt /*ASSZ,1 i STAI\DAP-D TIME SLICE*/
/*INITIA!ITZb. HEI!%IG OF Q~f INTEIPVAL*/

KPTP = KP.TQ->STATllStiFXT, /*U.fbATE POINTER TO N'EXT JOB*/
IF KoTP->5TATUS,,J-"i# = 0
THE"*' IF 7FPOFLL- = tt

T H E 'PO :
KPTP = KPTQ->STATUSoN-XT;

/*SKIP' JOH ZRLQO UNTIL ALL OTH-EN JORS
HAVE REN TPIFD.i /

7FPo-FLAG
/*SET FLA(; Ut SO J'OH ZERO TS CHOSEN IF

SCAN CnMES AikOUN.) AG-AIN,*/
F \If

E ND;l
Etin SC"EtP'

71
72 1



** o4*44o4o*44*04*44o*4*4* 40o44444440o44o*4o444oooooooooooooooooooooooo o44444o44o44444oooo4

o4'NITIAL ITERATION
* SCHEDJLE SELECTS JOB 1 TO BE PUN NEXT.

*444*44 o4o*o444*4*4***o4o4*4*4*****o4*****o*o**44**o**44*4o4*44****4**4*o*o******o444**4*4

* AT TI>E 2093 J03 1 INCUPrS A PAGE FAULT.
* SCEDULER SELECTS JOB 2 TO BE PUN NEXT.

4 AT TIME 2597 JOB 2 INCuRS A PAGE FAuLT.
* SCHED'JLER SELECTS JOB 3 TO BE PUN NEXT.

*44o444oooo4*4*444o4ooo44o4o*444*44*4444**4**44*44*oo4***44o0o4*4*44***o4444444*o*4o**4o4*4

4 AT TIME 3506 JOB .3 INCURS A PAGE FAULT.
o SCHEDULER SELECTS JOB 4 TO RE RUN NEXT. *

4*4404*44*4*44*44444*4*44444o*44444444*04*4444*44*o44o444044444444404 4*gw4oo4***444oo4444*

oco44o4o4o4o*o4oo*oooooo04ooo44o4oo444o4ooo4o404oo0444oo444**44o44o*4ooooooo4o4444444444444

i AT TIME 6315 JOB 4 ISSUES A PERIPHERAL I/O REQUEST.
tM e SCHEDULER SELECTS JOB 5 TO BE RUN NEXT.

* AT TIME 7713 JOB 5 ISSUES A PERIPHERAL I/O REQUEST.
* SCHEDULER SELECTS JOB 6 TO BE RUN NEXT. *
44o44o44o**4oo0o444o4o44o4440o4oo44o44444444440o*4o*44oo444444444oo944o444oo44ee44o4444444

* AT TIME 13863 JOB 2 RETURNS TO THE READY STATE (PAGE REQUEST COMPLETE). *
* SCHEDULER SELECTS JOB 7 TO BE RUN NEXT.

* 444444444 *o4 4 * 4444444 * *44444444*4404444e44044404ooo0ooooooo444440444.4*4444,4444444444

* AT TIME 15062 JOB 7 INCURS A PAGFE FAULT.
0 SCHEDULER SELECTS JOB 2 TO BE RUN NEXT.

4444444444444404o444o****oooooo*oo*oooo4*o*o*o*o444**o44*o**4*444*44*o4444444444*e**44e

44444o0444oo44ooo4oo44oo44o4 444444444440444444 oooo40oo4444**444404404044444o4444o44o444*4

* AT TIME 15426 JOB 1 RETURNS TO THE READY STATE (PAGE REQUEST COMPLETE). *
* SCHEDULER SELECTS JOB 6 TO BE RUN NEXT.

o AT TIME 15659 JOB 3 RETURNS TO THE READY STATE (PAGE REQUEST COMPLETE). *
* SCHEDULER SELECTS JOB 1 TO BE RUN NEXT.
***e**o0o***444444*444*4o44*4*4*4oo 444444444*4*4*44o44A****444444.o*4o4*** *o * *4 * * * 4 * 444



* iX3N Nid 3d 01 0 e0C SiA)313IS d3;r(%HDS
* ~~~~IS~no3H 0/1 I V6]HdI 13d v £]flssi 2 gor 'Ev ~~i

* X3.N N.fldl 39 01 8 Cr S12D313S e,-r3 *3
* *(13dWOD .LS3no38 AE9d) 31I~JS A0VAl ]Hi Ci sNHO±3'd 2 9or It ~ I Iv L*

* ~IY3N Nnd -J 01 0 80r Si13S ~Tl;3
* 12~OlfV~J 30Vd v s8ODNI C RC o AL rI

* 1~*X'3N Nrid 3 i 01. c UCC SiD3 13S d7CH)
* Jlfinv 9vd v sONI T 8Cr 1811£ 1~~ -1v

* IY3N Nld -33 01 1 8Cr sio-Tis Hg203-4Ds
* ~(313dNOD2 1S~flO38 39Vd) 31VIS AQV38 3-Hl 01 s,,48%I38 T ROr 6LSC I 1*

4 1X3N N~d 3H 01 E $800 SI.D§13Vs ~r~

4 ~~~IX3W NlW 3H 01 L 6Cr153S ii>- -

* IS3l'3H 0/1IlV6]HdlH3d V SJOSS! 9 800 19c982

* (3131'dNODC IS~flo~i 4Vd) 21VIS )A0Vdd 3Hi 01Ji~ c L i3) f,

* *§ ~ 2 3Vd V SC - r?



AT TT52189 J'> . T t  
HE -FADY STATE '3PE 0QEST CO'PLETE .

SCH SXE CEJTS JOB NXT*

* AT TE 54T63 JOB I SSES A PEPIPHEPAL I/O PEQUEST.
* SCHEDULER SELECTS JCB 0 TO BE PUN ET.
******** * ** * * *************** ***************

4******~*******'** ********* **** *** ****~* ***********************************

* AT TITME 60783 JOB 7 ETURNS TO THE PFADY STATE (PAGE REOUEST COMPLETE).
* SCHEDLLER SELECTS JOB 7 -O BE U NEXT. *

*0***** ****oooooo* **** oo** *o*********************

**4000*** ****************************************

AT TIME 61073 JOB 7 ISSUES A PERIPHERAL I/O REQUEST. *

SCHEDULER SELECTS JOB 0 TO bE RUN NEXT.
*0****0*******0*0*****00********************************************4** **

0000000 ****000*0*00**************************000000000*********************** * *0

AT TIHE 73567 JOB 3 PETURNS TO THE READY STATE ,PAGE REQUEST COMPLETE).
SCHEDULER SELECTS JOB 3 TO BE PUN NEXT.

***** ** 0***********'*****00* *****************~**********0*******************0

AT TIME 74320 JOB 3 ISSUES A PERIPHEDAL I/O REQUEST.
SCHEDULER SELECTS JOB 0 TO BE PUN NEXT.

AT TIME 86774 JOB 4 RETURNS TO THE RFADY STATE (PERIPHERAL I/O REQUEST COMPLETE).*
SCHEDULER SELECTS JOB 4 TO BE PUN NEXT.

*4*0***>***************0********0*******************00**04*****0**********************

***** **** * *** 0 ***** ** * * * * **** * *** * ******* ** *0* *** * *** ****** ** ** ** * * * ** ****

* AT TIME 93870 JOB 4 ISSUES A PERIPHERAL I/O REQUEST.
* SCHEDULER SELECTS JOR 0 TO RE PUN NEXT.

********** * o************o****** **********************

* AT TIME 99240 JOB 9 ENTERS THE SYSTEM.
* SCHEDULER SELECTS JOB 0 TO BE QUN NEXT.
* ********** ** ***** **00 **** ** 0* ***** *** * ********* * * * * * ********* * 0** *

0**00******0********* **00**** *- **********************

* AT TIME 110650 JOB 6 ENTERS THE SYSTEM.
* PUN TERMINATES.
******** * ** ** ****** * * * * ** *** * *** 0*0000 *0000000 * * * * 0* ** * * * * * ** *



S .VMAPV STATISTICS DE5CiIBING THE BEHAVIfr) OF TWE SIULATED SYSTEM *

5 * ***00 4**00 * * * ***~****** * ** ** * * * * * * * * * *

OVERALL STATISTICS:

AVERAGE NUMBER

AVERAGE NUMBER

PAGE SIZE USED:

TCTAL AMOUNT OF

AVERAGE AMOUNT

AVERAGE NUMBER

CPU IDLE TIME:

OF JOBS IN SYSTEM: 8.07

OF JObS IN COPE: 7.00

1024 MEMORY UNITS.

CORE SPACE AVAILABLE TO USER PROGRAMS:

OF CORE ASSIGNED TO JORS: 96.00 BLOCKS.

OF PAGES ACTUALLY IN COPE: 43.69

55.92%

100 PAGES.



THE FOLLOWING FIGURES WERE COMPILED ON THE REHAVIOR OF THESE JOBS:

THE AVERAOE PERCENTAGES OF TIME SPENT BY A JOH IN EACH OF THE THREE TRAFFIC CONTROL STATES WAS AS FOLLOWS:

RUNNI NG:
READY:
BLOCKED:

6.30%
18. 16
75.54%

PAGEFAULTS:

DISK AND
TAPE REQUESTS:

Un TIMEOUTS:

TOTAL NUMBER = 9
AVERAGE NUMBER PER JOB = 4.50
AVERAGE PAGE WAIT = 18.198 MILLISECONDS.
AVERAGE TIME -BETWEEN PAGE FAULTS = 12.294 MILLISECONDS.

TOTAL NUMBER = 8
AVERAGE NUMBER PER JOB = 4.00
AVERAGE DISK OR TAPE WAIT = 150.781 MILLISECONDS.
AVERAGE TIME BETWEEN DISK OR TAPE REQUESTS = 13.831 MILLISECONDS.

TOTAL NUMBER = 0
AVERAGE NUMBER PER JOB = 0.00



THE FOLLOWING FIGURES DESCRIBE THE BEHAVIOR OF THE SCHEDULER IN REGARD TO THESE JOBS:

DEACTIVATIO4S:

ACTIVATIONS:

TOTAL NUMBER = 0

TOTAL NUMRER = 0

AVERAGE TIMESLICE ASSIGNED 50.000 MILLISECONDS.



2 JOBS WERE MONITORED OVER A SCAN PERIOD OF 110.650 MILLISECONDS, BEGINNING AT TIME

THESE JOBS WERE DESCRIBED BY THE FOLLOWING AVERAGE CHARACTEPISTICS:

AVERAGE WORKING SET SIZE = 17.00 PAGES.

AvEPAGE TOTAL SIZE = 33.50 PAGES.

AVERAGE CPUTIME REQUIRED = 378.813 MILLISECONDS.

TYPE DISTRIsUTION:

TYPE I -
TYPE 2 -
TYPE 3 -
TYPE 4 -
TYPE 5 -
TYPE 6 -

0.000 MILLISECONDS.

0.00%
50.00%
50.00%

0.00%
0.00%
0.00%

PRIORITY LEVEL DISTRIBUTION:

LEVEL 1 -
LEVEL 2 -
LEVEL 3 -
LEVEL 4 -
LEVEL 5 -
LEVEL 6 -
LEVEL 7 -
LEVEL 8 -
LEVEL 9 -
LEVEL1O -

0.00%
100.00%

0.00%
0.00%
0.00%0
0.00 %
0.00%
0.00%
0.00%
0.00%



BIBLIOGRAPHY

1. Brinch Hansen, Per," Short-Term Scheduling in Multi-
programming Systems", Proceedings Third ACM Symposium
on Operating System Principles, Stanford University,
October, 1971, pp. 101-105.

2. Browne, J.C., Lan, Jean and Baskett, Forest, "The
Interaction of Multi-programming Job Scheduling and
CPU Scheduling", Proceedings AFIPS Fall Joint
Computer Conference, 1972, pp. 13-21.

3. Saltzer, Jerome H., "Traffic Control in a Multiplexed
Computer System", MAC-TR-30 (Thesis), July, 1966.

4. Coffman, Edward G. Jr. and Kleinrock, Leonard, "Com-
puter Scheduling Methods and Their Countermeasures".
Proceedings AFIPS Spring Joint Computer Conference,
1968, pp. 11-21.

5. Oppenheimer, G. and Weizer, N., "Resource Management
for a Medium Scale Time-Sharing Operating System",
Communications of the ACM (11,5), May, 1968, pp. 31 3-3 33 .

6. Bryan, G. and Shemer, J., "The UTS Time-Sharing System:
Performance Analysis and Instrumentation", Second ACM Sym-
posium on Operating System Principles, October 20-22,
1969, Princeton University, pp. 147-158.

7. Arden, B. and Boettner, D., "Measurement and Performance
of a Multiprogramming System", Second ACM Symposium on
Operating System Principles, October 20-22, 1969,
Princeton University, pp. 130-146.

8. Sherman, Stephen, Baskett, Forest and Browne, J.C.,
"f "Trace Driven Modeling and Analysis of CPU Scheduling

in a Multi-programming System", ACM SIGOPS Workshop on
Performance Evaluation, April 5-7, 1971, Harvard
University, pp. 173-199.

9. DeMeis, W.M. and Weizer, N.,"Measurement and Analysis
of a Demand Paging Time Sharing System", Proceedings
ACM National Conference, 1969, pp. 201-216.

10. Losapio, N.S. and Bulgren, William G., "Simulation of
Dispatching Algorithms in a Multiprogramming Environment",
Proceedings ACM Annual Conference, 1972, pp. 903-913.

-238-



11. Calingaert, Peter, "System Performance Evaluation -
Survey and Appraisal", Communications of the ACM (10,l),
January, 1967, pp. 12-18.

12. Estrin, G., Muntz, R.R, and Uzgalis, R.C., "Modelling,
Measurement and Computer Power", Proceedings AFIPS
Spring Joint Computer Conference, 1972, pp. 725-738.

13. Lucas, Henry C., "Performance Evaluation and Monitoring",
Computing Surveys (3,3), September, 1971, pp. 79-91.

14. McKinney, J.M., "A Survey of Analytical Time-Sharing
Models", Computing Surveys (1,2), June, 1969, pp. 105-
116.

15. Adiri, Igal, "A Note on Some Mathematical Models of
Time-Sharing Systems", Journal of the ACM (18,4),
October, 1971, pp. 611-615.

16. Gaver, D.P., "Probability Models for Multiprogramming
Computer Systems", Journal of the ACM (14,3), July,
1967, pp. 423-438.

17. Kleinrock, Leonard, "Time-Shared Systems: A Theoretical
Treatment", Journal of the ACM (14,2), April, 1967,
pp. 212-261.

18. DeCegama, A., "A Methodology for Computer Model Building",
Proceedings AFIPS Fall Joint Computer Conference, 1972,
pp. 299-310.

19. Kimbleton, Stephen R., "Performance Evaluation - A Struc-
tured Approach", Proceedings AFIPS Spring Joint Computer
Conference, 1972, pp. 411-416.

20. Fife, Dennis W., "An Optimization Model for Time-Sharing",
Proceedings AFIPS Spring Joint Computer Conference, 1966,
pp. 97-104.

21. Rasch, Philip, "A Queuing Theory Study of Round-Robin
Scheduling of Time-Shared Computer Systems", Journal
of the ACM (17,1), January, 1970, pp. 131-145.

22. Shedler, G.S., "A Cyclic-Queue Model of a Paging Machine",
IBM Research, RC2814, March 25, 1970.

-239-



23. Shemer, Jack, "Some Mathematical Considerations of Time-
Sharing Scheduling Algorithms", Journal of the ACM (14,2),
April, 1967, pp. 262-272.

24. Shemer, Jack E. and Heying, Douglas W., "Performance
Modelling and Empirical Measurement in a System Designed
for Batch and Time-Sharing Users ", Proceedings AFIPS
Fall Joint Computer Conference, 1969, pp. 17-26.

25. Slutz, Donald R., "A Look at Paging Algorithms and Pro-
gram Models", Proceedings Fifth Annual Princeton Con-
ference on Information Sciences and Systems, 1971,
pp. 432-436.

26. Blatny, J., Clark, S.R., and Rourke, T.A., "On the
Optimization of Performance of Time-Sharing Systems by
Simulation", Communications of the ACM (15,6), June,
1972, pp. 411-420.

27. Cheng, P.S., "Trace-Driven System Modeling", IBM Systems
Journal (8,4), 1969, pp. 280-289.

28. MacDougall, M.H., "'Computer System Simulation: An
Introduction", Computing Surveys (2,3), September,
1970, pp. 191-209.

29. Nielsen, Norman R., "An Approach to the Simulation of
a Time-Sharing System", Proceedings AFIPS Fall Joint
Computer Conference, 1967, pp. 419-428.

30. Nielsen, Norman R., "The Simulation of Time Sharing
Systems", Communications of the ACM (10,7), July,
1967, pp. 397-412.

31. Bell, Thomas E., "Objectives and Problems in Simulating
Computers", Proceedings AFIPS Fall Joint Computer Con-
ference, 1972, pp. 287-297.

32. Lynch, W.C., "Operating System Performance", Communica-
tions of the ACM (15,7), July, 1972, pp. 579-585.

33. Nutt, G.J., "Evaluation Nets for Computer System Per-
formance Analysis", Proceedings AFIPS Fall Joint Com-
puter Conference, 1972, pp. 279-286.

34. Seaman, P.H. and Soucy, R.C., "Simulating Operating
Systems", IBM Systems Journal No. 4, 1969, pp. 264-279.

-240-



35. Boote, W.P., Clark, S.R., and Rourke, T.A., "Simulation
of a Paging Computer System", The Computer Journal (15,1),
February, 19.72, pp. 51-57.

36. Fine, Gerald H. and McIsaac, Paul V., "Simulation of a
Time-Sharing System", Management Science (12,6), February,
1966, pp. B-180-B-194.

37. Lehman, Meir M. and Rosenfeld, Jack L., "Performance of
a Simulated Multiprogramming System", Proceedings AFIPS
Fall Joint Computer Conference, 1968, pp. 1431-1442.

38. MacDougall, M.H., "Simulation of an ECS-Based Operating
System", Proceedings AFIPS Spring Joint Computer Con-
ference, 1967, pp. 735-741.

39. Morganstein, S-J., Winograd, J., and Herman, R., "SIM/61:
A Simulation Measurement Tool for a Time-Shared, Demand
Paging Operating System", ACM SIGOPS Workshop on Perfor-
mance Evalution, April 5-7, 1971, Harvard University,
pp. 142-172.

40. Noe, J.D. and Nutt, G.J., "Validation of a Trace-Driven
CDC 6400 Simulation", Proceedings AFIPS Spring Joint
Computer Conference, 1972, pp. 749-757.

41. RehmannSandra L. and Gangwere, Sherbie G., "A Simulation
Study of Resource Management in a Time-Sharing System",
Proceedings AFIPS Fall Joint Computer Conference, 1968,
pp. 1411-1430.

42. Scherr, Allan, "An Analysis of Time-Shared Computer
Systems", Thesis, Massachusetts Institute of Technology,
June, 1965.

43. Schwetman, H.D. and Brown, J.C., "An Experimental Study
of Computer System Performance", Proceedings ACM
Annual Conference, 1972, pp. 693-703.

44. Winograd, J., Morganstein, S.J., and Herman, R., "Simu-
lation Studies of a Virtual Memory, Time-Shared, Demand
Paging Operating System", Third ACM Symposium on
Operating System Principles, October, 1971, Stanford
University, pp. 149-155.

45. Denning, Peter, "A Statistical Model for Console Behavior
in Multiuser Computers", Communications of the ACM (11,9),
September, 1968, pp. 605-612.

-241-



46. Kimbleton, Stephen and Moore, Charles, "A Probabilistic
Framework for System Performance Evaluation", ACM
SIGOPS Workshop on Performance Evaluation, April 5-7,
1971, Harvard University, pp. 337-361.

47. Sussman, Joseph, 1.154 Course Notes, Department of
Civil Engineering, Massachusetts Institute of Technology,
February, 1973.

48. Fine, Gerald, Jackson, Calvin, and McIsaac, Paul,
"Dynamic Program Behavior under Paging", Proceedings of
the ACM National Meeting, 1966, pp. 223-228.

49. Denning, Peter, "The Working Set Model for Program
Behavior", Communications of the ACM (11,5), May, 1968,
pp. 323-333.

50. Coffman, E.G. and Wood, R.C., "Interarrival Statistics
for Time Sharing Systems", Communications of the ACM
(9,7), July, 1966, pp. 500-503.

51. Fuchs, E. and Jackson, P.E., "Estimates of Distributions
of Random Variables for Certain Computer Communications
Traffic Models", Communications of the ACM (13,12),
December, 1970, pp. 752-757.

52. Martin, F.F., Computer Modeling and Simulation, Wiley,
New York, copyright 1968.

53. Ryan, Leo, Private Communication, January, 1973.

54. Steinberg, Joseph R., Private Communication, January,
1973.

55. The Bulletin, Massachusetts Institute of Technology
Information Processing Center, Number 107, October,
1972.

56. Control Program 67 - Cambridge Monitor System, January,
1970.

57. Baylis, M.H.J., Fletcher, D.G., and Howarth, D.J.,
"Paging Studies made on the I.C.T. ATLAS Computer"
Proceedings IFIPS Conference, 1968, pp. 831-836.

-242-



58. Hatfield, D.J., "Experiments on Page Size, Program
Access Patterns, and Virtual Memory Performance",
IBM Journal of Research and Development, January, 1972,
pp. 58-66.

59. Joseph, M., "An Analysis of Paging and Program Behavioux",
The Computer Journal (13,l), February, 1970, pp. 48-54.

60. Coffman, E.G. and Varian, L,.C.,, "Further Experimental
Data on the Behavior of Programs in a Paging Environment",
Communications of the ACM (11,7), July, 1968, pp. 471-474.

61. Madnick, Stuart and Donovan, John, Operating Systems'
(draft), copyright 1972.

62. Sekino, Akira, Private Communication, April, 1972.

-243-


