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ABSTRACT

This thesis describes a model of a demand paging computer
system and provides samples of results obtained from experi-
ments made with the model. The model is implemented in PL/1
in a highly modularized and parameterized form. This form
facilitates adjustments to the model to enable it to be used
in simulating systems of many different types. The model is
well suited to comparative studies of systems where one or
more of the parameters of modules is systematically varied to
yield a spectrum of results. The output from sample runs is
discussed in some detail as an illustration of the use of the
model. Finally, some of the limitations of the model are dis-
cussed along with suggestions for extensions and improvements
“to it and possibilities for further experiments.
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CHAPTER 1

INTRODUCTION

This thesis describes a model which represents a single
processor, demand paged multiprogramming computer system and
generates jobs to be scheduled for processing by a scheduling
algorithm. The model is designed to facilitate the running

’and evaluation of different scheduling algorithms for the
purpose of determining their relative effectiveness. The
model has a number of parameters which may be modified to
reflect the characteristics of different systems and differ-
ent aggregate behavior in the set of jobs to be processed.
These parameters may be adjusted to yield a picture of the
behavior of any algorithm under a variety of conditions.
Clearly, a model such as this one provides only an approxi-
mation of the behavior of a real system. It can, however,
give a relatively clear idea of the comparative performances
of different schedulers in a given envifonment and of a
single scheduler in a spectrum of environments. The model
is constructed with fairly extensive error checking. Diag-
nostic printouts are provided in response to scheduler.com—
mands which are invalid. This makes the model well suited
for pedagogical use in courses and seminars studying operating
systems. In particular, assignments may be made to write
different scheduling algorithms, and these programs may then

be tested out in the modelled environment.
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Motivation for the Research

Scheduling is an important task in contemporary computer
systems, both batch-processing and time-sharing systems. It
will become increasingly'so in the future as the growing
size and complexity of computer systems require better
algorithms for coordinating the processing of jobs. The
only reliable way to determine for certain how well a given
scheduling algorithm will perform on a given system is to
try it out on that system. Furthermore, this approach is
required in order to debug and validate an implementation of
a given scheduler. This experimental approach is not always
feasible, however, due to difficulties in changing super-
visory programs on systems which are already ruﬁning, or to
not having the system available, as in the case of systems
which are still in the design stage. Developing a model to
reflect the relevant aspects of the system and running
various scheduling algorithms in the environment of the
model is a logical alternative in such a case. The short-
comings of such a model in terms of inaccuracies of represen-
tation of the system under study must be borne in mind when
interpreting the results of such studies. However, a model

provides the capability of testing scheduling algorithms



over a wide range of conditions, and such experiments lead
to some general hypotheses which may prove useful both in
the study of scheduling in theory and its implementation

in specific cases.

Overview of the Scheduling Process

Scheduling in a multiprogramming system has been
viewed by Hansen (1) and Browne et al (2) as being com-
prised of two basic processes or tasks which interact with
one another. First, the scheduler is responsible for
choosing the job to be run by the central processor at all
times. This is termed short-term scheduling or CPU
scheduling. It involves selecting a job from among the set
of eligible jobs in the system to be run whenever the pro-
cessor becomes free. In a preemptive scheduling system the
scheduler may also interrupt the running of one job to allow
another job to be processed first. Each job assigned to the
processor is assigned a timeslice by the scheduler which
limits the time for which it may be processed without being
interrupted. Secondly, the scheduler is responsible for
managing the set of jobs which are assigned space in main
mnemory . This task is referred to as medium-term scheduling
or job scheduling. In the context of the model described

here jobs having at least one page in core are known as
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active jobs; those which do not are termed inactive. 1In
order to keep as many runnable jobs in main memory as possible

the scheduler can activate and deactivate jobs. Activating

a job involves allocating a set number of blocks of main
memory to that job. This amount of memory, referred to as
the job's partition size} represents the maximum number of
pages of that job which may be in primary memory at any one
time. When a job is activated its first page is brought
into main memory. Other pages are brought in on demand as

the job runs. Deactivating a job causes the job's assigned

core space to be freed and any of its pages in core to be
written out to secondary storage. A good scheduling al-
gorithm in general is one that manages these interrelated
processes so as to maintain a high level of system through-
out and keep turnaround times as short as possible. In
addition, vafious other objectives may be important in
scheduling for specific systems, such as maintaining a good
" level of response to terminal users in a time-shared system,
or giving special consideration to achieving fast turn-
around for jobs of high priority in a batch system.

The basic process involved in scheduling in a multi-
programming system is shown in figure 1-1. This diagram
and the accompanying discussion are based on the control
framework described by Saltzer (3). The scheduler selects

jobs to be processed from among those in the ready state;
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this choice constitutes a transfer to the running state.
A job leaves the running étate for one of four reasons.
First, it may terminate and leave the system. Or it may
generate an I/0 request, causing it to be transferred to
the blocked state. An I/0 request here may be either a
page fault or an explicit request for disk or tape I/O.
Third, it may run out its time allotment, in which case
it is returned directly back'to the ready state to await
its turn to be processed again. Lastly, it may be pre-
empted in favor of some other job, and here again it is
returned to the ready state to await another chance at
the processor. Jobs leave the blocked state and enter the
Egégl state when an interrupt occurs indicating that the
reguest they issued has been satisfied.

Jobs arriving at the system for processing are placed
in the hold state. When a job is activated by the scheduler
it is promoted to the blocked state. It is placed in
blocked rather than ready because it is not eligible to be
processed until its first page has been brought into core.
This page swap is efféctively the same as that performed
for a running job which incurs a page fault, and thus it
is treated in the same manner. A job chosen to be deac-

tivated may be in either the ready or blocked state; in

either case the chosen job is moved back to the hold state.

A variety of scheduling algorithms may be used to per-
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form these tasks, depending upon the aims of the particular
system in question and the amount of overhead it can
tolerate in terms of time spent executing the scheduler.
For instance, in a simple batch-processing system where
low system overhead‘is desired a scheme such as first-come-
first-served, or round-robin, might be used. Under this
scheme, jobs entering the ready state are placed at the
end of a single gqueue and each time the processor becomes
free the job at the head of the queue is chosen for pro-
cessing. Activations are usually performed in the order in
which jobs arrive at the system. Often no deactivations are
ordered; jobs which are brought into core remain resident
until they terminate. This sort of a scheduling algorithm
might operate under the basic pattern shown in figure 1-1.
Alternatively, in a system with more diverse require-
ments such as a time-sharing system which must maintain good
response to terminal users as well as performing computa-
tional tasks, a more complex framework will probably pro-
vide better results. One scheme which might be used in
such a case is diagraﬁmed in figure 1-2. 1In this scheme a
job leaving the running state is handled differently depen-
ding on the reason for which its processing was suspended.
If a job incurs a page fault it is sent to the blocked
state, and when the required page has been brought into

core the job is placed in the high-priority ready state.
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If the job runs out its timeslice it is placed in the low-
priority ready state. In.choosing a ready job to be pro-
cessed the scheduler first checks the high-priority ready
state. If there are jobs in this state one of them is
chosen to be run and is assigned a timeslice of fifty milli-
seconds. Only if ﬁhis state is empty does the scheduler
select a job from the low-priority ready state. Once
chosen, hoWever, a job from'this state is allowed to run
for three hundred milliseconds. The rationale behind this
procedure is the assumption that a job whichvhas just in-
curred a page fault is likely to do so again relatively
quickly. Such a job should be run as soon as possible in
order to keep the paging devices busy, overlapping I/O

and brocessing as much as possible. Similarly, a job which
ran out its timeslice when it was last processed is assumed
to be likely to repeat this behavior. Such a job is forced
to wait until all jobs which are more likely to require the
use of the paging devices in the immediate future have had
"a chance to run. When it is allowed to run, however, such
a job is given a much longer timeslice. This avoids incur-
ring the overhead of stopping it again, and it does not
reduce the utilization of the I/0 devices since there are
no other more urgent jobs waiting to be run. When a job
issues a request for disk or tape I/O it is deactivated.

The motivation here is that a disk or tape I/O request
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generally takes much longer to service than a page request.
Rather than allowing main memory to be tied up by a job
which is waiting for peripheral I/0 and is not eligible to
be processed, the job is removed from main memory, making
room for other jobs which may be able to do useful work
during this period. When its I/O is complete, the job is

ready to be reactivated.

Summary of Related Literature

A number of articles dealing with the subjects of
scheduling methods and computer system modelling have been
published in recent years. These articles are highly
varied. Those pertaining to scheduling methods range from
discussions of different scheduling strategies to studies
of specific schedulers used in actual systems. Those related
to the modelling of computer systems include descriptions of
both theoretical mathematical models and more practical
simulation models. Some of this literature is discussed
briefly below. It is hoped that this discussion will serve
as a guide to the reader who may wish to further explore
some aspect of these areas.

On the subject of scheduling methods, a theoretical
discussion of the scheduling process is presented in Hansen

(1l). A general discussion of different scheduling schemes
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may be found in Coffman and Kleinrock (4). Oppenheimer

and Weizer (5) give a description of the relative perfor-
mance of different scheduling algorithms in a time-sharing
environment. Studies of the operation of actual systems of
the type mirrored by the model described in this thesis
under specific scheduling schemes are described by Browne
and Lan (2), Bryan and Shemer (6), Arden and Boettner (7),

- Sherman et al (8), DeMeis and Weizer (9) and Losapio and
Bulgren (10).

There are a number of articles which provide a dis-
cussion of the reasons for constructing models and the
benefits which may be gained from models of different types.
These include papers by Calingaert (11), Estrin et al (12)
and Lucas (13). In the area of mathematical modelling,
McKinney (14), Adiri (15), Gaver (16), and Kleinrock (17)
provide general discussions of mathematical models of
computer systems. DeCegama (18) and Kimbleton (19) discuss
different approaches to the problem of formulafing a model
of this type. Examples of actual matheﬁatical models and
results obtained with them are provided by Fife (20),

Rasch (21), Shedler (22), Shemer (23), Shemer and Heying
(24) and Slutz (25). In regard to simulation modelling
techniques, general discussions of simulation methods as

applied to computer system modelling may be found in Blatny
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et al (25), Cheng (27), MacDougall (28), and Hielsen (29,30).
Various approaches to the problems involved in constructing
simulation models of computer systems are discussed by

Bell (31), Lynch (32), Nutt (33) and Seaman and Soucy (34).
Practical examples of simulation models similar to the one
described here may be found in Boote et al (35), Fine and
McIsaac (36), Lehﬁan and Rosenfeld (37), MacDougall (38),
Morganstein et al (39), Noe and Nutt (40), Rehman and
Gangwere (41), Scherr (42), Schwetman and Brown (43) and

Winograd et al (44).

Summary of the Thesis

The remainder of this thesis discusses the model
described briefly above and gives some examples of results
obtained from studies done with it using different
scheduling algorithms. Chapter two describes the functions
of the various modules of the model and their interactions
with one another. The third chapter discusses a comparative
study of three schedulers embodying different scheduling

strategies. Chapter four contains a discussion of the

limitations of the model, suggestions for possible extensions
and further experiments to be performed with it. Appendix
A gives a discussion of how to use the model including a

detailed description of the functions of its various
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parameters. Appendix B contains listings of the three
schedulers used in the studies described in chapter three
and appendix C provides examples of the output produced

by the butput modules which may be invoked by the model.

Appendix D gives a sample assignment which might be given

to a student who is to write a scheduler to be run under

the model.
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CHAPTER 2

DISCUSSION OF THE MODEL

Overview

The differing aims cf the various types of contemporary
computer systems make it necessary to specify at least the
general type of system under study if a realistic picture
of system behavior is to be obtained. The model described
here simulates a computer system running under a virtual
memory, demand paging scheme. Each job is assigned a fixed
number of blocks of core, limiting the number of its pages
which may be in core simultaneously. The motivation for
choosing this type of system was to make the model widely
applicable; there are a number of systems of this sort in
operation today, and many others which will use similar
schemes are now being developed. The model also provides
an ehvironment which presents a significant challenge to
writing a scheduler which will give good results. A mul-
titude of factors are constantly interacting in a system of
this type, and no "best" algorithm for such systems in
general has yet been developed.

Another design consideration is the decision of
whether the model is to represent a batch-processing or a

time-sharing system environment. There is not a sharp
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distinction between the two in contemporary computer
systems. Time-sharing syétems which allow users to run
background jobs exhibit the characteristics of both types
of systéms, and standard batch-processing and time-sharing
systems can be run simultaneously on the same’hardware. A
task in a batch-processing environment generally denotes a
single job or job- step. If we define a time-sharing task
as the work performed for a terminal user between two
successive reads to the terminal, then batch and time-
sharing tasks are seen to be very similar. They may differ
on the average in characteristics such as total compute
time or number of disk accesses per job, but they are the
same in basic form and may be treated as such. This is
the approach taken in the model.

As noted in chapter one, the literature presents a
spectrum of models which have been used to represent some
or all the aspects of computer systems which are at issue
here. For the most part models such as these havé treated
computer systems in a general and rather abstract manner,
deriving detailed mathematical results about them, or have
mirrored a single specific system in great detail. The
model described here is a simulation model which represents
a compromise between these two extremes in that it provides
a framework which is both general enough to be similar to a

number of different systems and yet detailed enough to yield
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a fairly accurate and rea;istic picture of the behavior of
such a system. It is constructed in a modular manner in
order to facilitate the modifications which may be necessary
to model different types of systems. As another aid to
adaptability, a large number of the parameters governing
the various functions of the simulated system are made
available to the user to be set to appropriate values on
each run.

Lucas (13) cites two basic approaches to simulation
modelling which are most often used in the simulation of
computer systems. One method is generally known as trace-
driven modelling. This approach makes use of measurements
of the behavior of an actual job stream as input to the
model. Probes are placed in an actual system to measure
the demands made on the system by the job stream. The
sequence of demands obtained from these probes is then used
to drive the model. Examples of this type of modelling are
found in the work of Sherman et al (8), Cheng (27) and Noe
and Nutt (40). This approach to modelling has the virtue
that no validation of'the job stream is needed, since it is
taken directly from an actual system. Also, the performance
of the system from which the trace is taken may be monitored
to determine its performance during the processing of the
traced job stream. This provides a very good basis for com-
parison of the model's behavior with that found in practice.
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The other basic simulation method is known as event-
structured or event-oriented simulation. This approach
involves maintaining a list of the events which are
scheduled to occur in the simulated system at various
specified times in the future. The quantities describing
the modelled system, such as job stream characteristics
and I/0 service times, are usually generated from prob-
ability distributions. Event-structured models of com-
puter systems are described by MacDougall (28), Nielseﬁ
(30), Boote et al (35) and Fine and McIsaac (36). This
method offers considerably more flexibility than the
trace-driven approach. For example, it allows easy adjust-
ment of certain characteristics of the job stream without
necessitating changes in all of them. This capability
enables the model user to study different job streams
which may be of interest regardless of whether they occur
in practice on systems he can monitor. It also makes it
unnecessary to have available an actual system which may
be monitored. One of the objectives in designing the
model described here was to make it applicable to studying
a number of different real-world system environments. The
event-structured approach is better suited to this task
than the trace-driven method, and it was the method chosen

to be used here.
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The general form of the system simulated by the model
is shown in figure 2-1. The single CPU controls some set
amount of main memory and some number of paging devices,
disks and tape drives. The paging devices are assumed to be
drums. The number of devices of each type available in the
system may be varied within limits, as may characteristics
describing the operation of each individual device. For
time-sharing tasks the entering job stream is viewed as
coming in from a set of user terminals, and terminating jobs
are redirected to the appropriate terminal unit. The
operating characteristics of the terminal units are not of
significance in the model. An interactive job "arrives"
for processing when the command line invoking it has been
completely transmitted by a user terminal. The only
parameter of interest to the model in this situation is the
average arrival rate of the jobs from the set of all term-
inals on the system. For this reason the characteristics
determining the operation of user terminals are not repre-
sented in the model. By the same token, the precise
identification of the user terminal which issues the request
initiating a given job is not of interest and is not repre-
sented in the model. Batch jobs submitted through card
readers are assumed to be SPOOLed. In other words, they

are read in under the control of a supervisory routine
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which stores the card images on secondary storage. Thus
the jobs are effectively fead in from secondary storage.
Output to printers and punches is similarly SPOOLed and is
effectively wfitten out to secondary storage. Thus the
characteristics of any readers, printers and punches
available in the system are not of importance and are not
represented in the model.

The level of detail in fhe model varies among its
different modules. The various scheduling algorithms
which are to be investigated with the model must be written
in considerable detail, since these routines are presented
with the same variety of information as an actual system
would give them. The level of detail in other parts of the
model is not as great, since they are intended for support
purposes rather than to have their behavior submitted to
detailed examination. For instance, the job stream to be
generated as inpuf to the simulated system need not be
generated as single individually representative tasks, but
rather can be treated as a set of separate entities which
combine to produce an‘overall picture of a job load. As
Denning has shown (49), it is possible to model a user
community and the requests it generates as a whole, but
guite difficult to characterize an individual user. The
hypothesis that the behavior of the total user population

is statistically reproducible has been verified in practice
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by measurements made on the Michigan Terminal System (46).
Similarly, there is no need to consider which of a job's
pages are in core at any time. The scheduler is concerned
only with the question of whether a job is eligible to be
run and perhaps with estimates of the probable length of
time for which it will run before generating a page fault,
but not with the particular page for which the fault will
occur. Thus the other portions of the model are constructed
in much less detail than would be required for a more

general model.

Description of the Model

The model is implemented in PL/l. Its general struc-
ture is shown in figure 2-2. The arrows indicate the flow
of control among the different parts of the model. The
Scheduler (SCHED) is the module under investigation and its
actions drive the rest of the model, whose actions are
govérned by the supervisory module (DRIVER). DRIVER main-
tains the model's data bases and calls the other program
modules when their services are required. The Time Between
Page Faults module (PGNXT) generates the time intervals be-
tween successive page faults for each job, and the Time to
Service a Page Fault module (PGTIM) determines the time
needed to swap in each requested page. The Time Between

Peripheral I/O Requests module (DSTPNXT) generates the
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intervals between sucéessive disk or tape I/0 requests fo:
each job, and the Time to‘Service a Peripheral I/O Request
module generates the time needed to satisfy each such
request. The Job Interarrival module (TRMIO) generates
values for the interarrival times of new jobs coming into
the system, and thé Job Characteristics module (JBARVL)
determines the static characteristics describing each of
these jobskas it enters thevsystem.

The Debug Print Module (DEBUG), the Trace Print module
(TRACE), and the Accounting Routine (ACCNT) are modules
which produce printed information of various sorts describing
the operation of the model. DEBUG produces detailed dumps
of the Job Stream List, the System Event List and the
Sysﬁem Clock on each iteration of the model. These data
bases are described in detail below. This information is
useful for debugging the model should problems occur. TRACE
produces a sequenﬁial listing of the events which occur in
the course of the operation of the simulated system and the
response of the scheduler to each of these events. ACCNT
compiles a number of measures of the performance of the
simulated system during the course of the run and outputs

them at the conclusion of the run.
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The Scheduler Command Processor (SCHPRGC) examines the
commands issued by the scheduler on each iteration. Correct
commands are carried out; those which are in error for any
reason are either ignored or replaced by default actions,
depending upon the type of the command in which the error
occurred. A message is printed explaining the error to the
user. The operation of this module includes treatment of
many special cases, and its detailed operation is described
below. The Procedure to Maintain the System Event List
(SELLiNK) creates new entries for the System Event List
and links them into the existing list in the proper
chrbnological order. The Procedure to Locate a Job Descrip-
tion (JSEARCH) locates the description of a particular job
in the Job Stream List and returns a pointer to it. The
Procedure to Check Job Eligibility (JCHECK) examines the
description of a given job to determine whether it is
eligible to be run (i.e. both ready and active).‘ These
last two routines are called by various modules of the
model as shown in the diagram whenever their functions are
required; they are implemented as separate routines to
avoid duplication of the code needed to perform these tasks.

The Normal Random Variable Generator (NORMAL) is a
procedure which produces a normally distributed value

based upon a mean and standard deviation passed as arguments.
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The Random Number Generator (RANDOM) produces random numbers
evenly distributed between zero and one. These two modules

are seryice modules called by a number of the other modules

in the system as shown in the diagram.

The model is designed in this modular fashion so as to
allow any of the above modules to be replaced by another
which performs thé same function according to some other
discipline. This makes it easier to adapt the model to
reflect the characteristics of different systems. For
instance, the model's routine to compute paging service
times (PGTIM) as described below assumes FIFO queuing of
page requests at the paging devices. If it is desired to
explore the effects of different I/0 scheduling schemes for
paging on the operation of some scheduling algorithm, a
different paging routine may be written which implements
another scheme and this module may be used in place of the
existing module. In addition to this the various parameters
which combine to determine the behavior of the simulated
system, such as the speeds of the I/O devices, average
time between peripheral I/0 requests or the arrival of new
jobs to the system are accessible to the user on each run
in order that he may change them to suit his needs. Details
of the functions of these various parameters are given in

appendix A. As for the realistic performance of the model,
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data from the 370/165 batch processing system at MIT's
Information Processing Center has been used as a yardstick
to measure the performance of the model and ensure that it
behaves in a manner approximating the operation of an actual

system.

Data Bases

The model makes use of three major data bases: the
Job Stream List, the System Event List and the System Clock.

The Job Stream List contains an entry for each job currently

in the system. The entries are implemented as PL/1 data
structures linked together by pointers and have the form
shown in figure 2-3. These figures provide a complete pic-
ture of the state of a modelled job at all times during its
residence in the system. The Job Identifier Number, Job
Type, Priority Level, Total Job Size, Working Set Size and
Total CPU Time Reqguired are static characteristics; they
remain the same throughout the life of the job. These
quantities are generated for each job by JBARVL when the
job arrives at the system. They are discussed further in
connection with that module. The fifth entry shown in the
diagram is a pointer to the next description in the Job
Stream List. The Memory Partition Size is assigned by the

scheduler when the job is activated, and the Timeslice 1is
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specified by the scheduler wheun . ~hooses the job to be
processed. The Number of.Pages in Core 1s a record of the
number of pages of this job which are currently in main
memory.’ This number is always less than or equal to the
partition size assigned to the job. The CPU Time since Last
Activation, also referred to as the the Active Indicator,
tells whether or not a job is presently assigned a partition
in main memory. An inactive job has a value of minus one
for this entry; one which is active has a value equal to the
amount of processor time devoted to it since it was last
activated. Traffic Control Status indicates whether the job
is running, ready to be run, or blocked awaiting the com-
pletion of a service request. Note that it is possible for
a job to be blocked awaiting more than one request at a

time. In particular, it may issue a peripheral I/O request,
causing it to enter the blocked state to wait for completion
of that request, and may then be deactivated and reactivated,
causing it to wait for its first page to be brought into core.
Traffic Control Status takes into account the number of
requests for which a job is waiting rather than just the
fact that it is waiting in order to properly handle this
situation. The Active Indicator and Traffic Control Status
are needed in order to enable the model to check the
operation of the scheduler to ensure that an ineligible job

is not assigned to be processed.
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CPU Time Until Next Page Fault and CPU Time Until Next
Peripheral I/0 Request record the processing time remaining
for this job until its next page fault and next disk or
tape I/0 request, respectively. These figures are
initialized with values generated by the appropriate modules
(PGNXT and DSTPNXT) when the job is activated, and they are
refreshed in the same manner whenever they go to zero. CPU
Time Until Termination is initialized with the Total CPU
Time Required value generated for this job, and when it
reaches zero the job has finished processing and leaves
the system. These last three entries are decremented each
timé the job is run by the amount of processing time it
receives.

The based structure facility of PL/1 provides a con-
venient medium for implementing and maintaining this list.
JBARVL allocates an entry for each job as it arrives and
links it into the list, which is ordered by job number.

A particular job description is accessed by searching

through the list for a match with the corresponding job
number, using the forward pointer in each entry to find
the next element when a match is not found. When a job
terminates, its description is deleted by adjusting the
pointer in the element which precedes it in the list to

point to the element following it and then freeing the
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storage it occupies.

The System Event List is a record of all events which

are to occur in the system at known times in the future, i.e.
events which will occur at certain times regardless of the
jobs which are chosen for processing in the intervening time.
Such a list has been used with good results by MacDougall
(28). 1In simulation terminology it constitutes a future
events list for the model as described by Sussman (47).
The events recorded in this list include the time at which
the next job will arrive at the system for processing and
the times at which all pending page requests and I1I/0
requests will be satisfied. These events are assigned
absolute times of occurrence rather than the length of
- elapsed time figures described above for entries in the
Job Stream List. The form of the System Event List is
shown in figure 2-4.

The events in this list are maintained in chronological
order. As the time of occurrence of each of these events
is determined an entry is allocated for it and linked into
the list in the proper position to maintain the list in
chronological order. As events occur the entries for them
are freed after updating the pointer to the head of the
list. Due to the chronological ordering of the list, the

element to be deleted is always the first one in the list.
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The System Clock is simply a variable that holds the

current simulated time in the model throughout its operation.
The clock is referenced in order to determine the length of
time until the next event is to occur in the system, and it
is updated by that value when the event occurs. Time moves
forward in the model each time the value of the clock is

increased.

Detailed Discussion of the Modules Comprising the Model

Supervisory Module (DRIVER)

The supervisory module defines the operation of the
model since it is responsible for coordinating the activities
of all segments of the model. Its functions in this regard

include:

- providing an interface to the scheduler under
investigation |

- coordinating the other modules of the model

- maintaining the model's data bases

- simulating the flow of time in the‘modelled

environment

The first of these functions involves two processes. The
supervisory module passes to the scheduler the information

on which it must base its decisions on jobs to be run,
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activated and deactivated. Similarly, it receives the com-  ~
mands the scheduler issueé in response to this information.
The second function involves calling the various modules
which comprise the model when their services are required.
For instance, when a job issues a page request, the Super-
visor Module first calls PGTIM to determine how long it will
take for the requested page to be brought into main memory.
It then calls PGNXT to determine the duration of time for
which the issuing job will run once this page has been
brought in before it again generates a page fault. The
third function, that of maintaining the model's data bases,
is an activity restricted primarily to the DRIVER routine.
DRIVER can determine beforehand what information will be
needed by a given module for the calculation it is to
perform, and in general it accesses the model's data bases
to determine that information and passes it to the module
in the form of parameters. Similarly, the other modules
~ communicate their results back to DRIVER to be entered in
the appropriate data bases rather than entering the values
into the data bases themselves. This centralizes the
routines needed to maintain the data bases and avoids dupli-
cation of code needed to perform these tasks.

Time in the model is viewed in terms of the intervals

between the various events occurring in the simulated
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system. These events are of the following seven types:

- the arrival of a new job at the system

- the satisfaction of a page request issued by a
previously running job

- the satisfaction of a peripheral I/O request
issued by a previously running job

- timeslice runout by the currently running job

- a page fault incurred by the currently running job

- a peripheral I/O request issued by the currently
running job

- termination of processing of the currently running

job

A flowchart of the main loop of the Supervisory routine is
shown in figure 2-5. This flowchart shows the way in which
the simulation proceeds from one event to the next.

“After each call to the scheduler DRIVER determines the
event which is to occur next in the simulated system and then
' takes appropriate action to cause this event to occur. This
action may involve cailing various other modules of the
system and/or making modifications to the entries of the
Job Stream List or the System Event List. For instance, if
the next event to occur is the incurring of a page fault by

the running job, DRIVER calls PGTIM to generate a value for
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the time at which the needed page will arrive in main memory.
It calls SELLINK to create an entry in the System Event List
to record an event for the completion of this page request
and theﬁ calls PGNXT to generate a value for the time for
which this job will run before it again generates a page
fault. This figure is entered in the CPU Time until Next
Page Fault entry in the description of the job in question
in the Job Stream List. The Traffic Control Status entry

in the job description is set to indicate that the job is

now blocked.

As another example, if the next event is the completion
of service of a previously issued I/0 request (either for
paging or peripheral I/O), DRIVER's only responsibilities
are to note that the job has returned to the ready state by
modifying its Traffic Control Status entry appropriately
and to delete the entry corresponding .to this event from
the System Event List. Regardless of what event has occurred
the Supervisor must decrement the pending time figures (CpU
Time until Next Page Fault, CPU Time until Next Peripheral
I/0 Request, and CPU Time until Termination) for the job
which has been running, thus registering the processing
which has been done on it in this time interval. It must
also update the System Clock to the time of occurrence of

the event. Then the cycle is repeated, the scheduler being
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informed of the latest event and making its choices of the

job to be run next andenu; jobs to be activated or deactivated
based on this new information. The output modules (TRACE,
DEBUG ang ACCNT) are called at the indicated points during
each iteration of the Supervisor routine subject to the

values of variables which control the space of simulated time
over which they are enabled. These variables are described
below in connection with each output module.

The flowchart in figure 2-5 shows only the steady-state
operation of the model and does not include the initializa-
tion phase which is also part of the Supervisory Module.
Initialization of the model on each run involves first
calling JBARVL repeatedly to generate characteristics for
‘the initial job mix. One of the characteristics generated
for each job is its total size in pages. DRIVER assigns
each of these jobs a partition in main memory, the size of
which is arbitrarily chosen to be one-half of the total
size of the job. When a job is generated which is too
large to be assigned a partition from the remaining free
memory the generation of jobs is stopped. The jobs which
have been assigned partitions in main memory are treated as
already having been partially processed; the characteristics
describing them are generated as such by JBARVL. The pro-

cedure used for this is discussed further below in connection
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with that module. The final job generated which can not be
assigned space in'main memory is assumed to be unprocessed.
The rationale for this method of initiating the model's
operation is that an initial job mix made up of jobs which
have already been processed in varying degrees should pro-
duce a smaller startup transient in the behavior of the.
simulated system than other methods, such as starting with
main memory completely empty or filled with totally unpro-
cessed jobs. DRIVER also initializes the System Event List
with the first known event to occur in the system, which is
the time of arrival of the next job coming into the system

for processing.

Scheduler (SCHED)

This module must perform all of the functions of a
scheduling algorithm in an actual system. Its detailed
form will not be specified here since a number of such
routines may be run with the system and these different
routines may use different algorithms to perform the tasks
involved in scheduling. But the duties to be performed
remain the same for each routine used for this purpose, as
do the input and output parameters with which it is supplied.

The general form of the scheduler is shown in figure 2-6.
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Its functions are as follows:

- choosing a job to be assigned to the processor each
time the processor becomes free and assigning a
quantum which limits the time for which that job
may be run.

- preempting the current job (if desired) in favor of
another.which has just entered the system or has
just returned to the ready state.

B deactivating (removing from main memory) and
activating (assigning a partition in main memory)
jobs, which includes assigning a maximum number
of blocks of core (partition size) to each newly

activated job.

The scheduler is called on each iteration of the DRIVER
routine; i.e. whenever an event occurs in the simulated
system. An event here is one of the seven types of events
discussed above in connection with the supervisory routine.
Each time the scheduler is called it must specify the job
to be processed next. This job may be the same as the job
currently being processed; the net effect in this case is
that the current job continues to run without interruption
since no time elapses in the simulated system during calls

to the scheduler. The scheduler must assign a timeslice to
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each job it selects to be run, limiting the length of con-
tinuous processing time which may be devoted to it. If
desired, it may also activate or deactivate one or more jobs.
For example, if a job terminates, the scheduler may activate
another job to occupy the core freed by the old job. Or on
any given call the scheduler may choose to order no activa-
tions or deactivations, but simply to do some internal book-
keeping, as may be the case if it is informed that a new
» job has entered the system but it does not wish to activate
this job immediately. It may then simply make note of
certain facts about the new job for future reference.

It is assumed in the model that jobs issuing peripheral
I/0 requests have buffer areas set aside to hold the data
being brought into or written out of main memory. A job
which is blocked for a peripheral I/O request is not pro-
hibited from being deactivated. The buffer areas involved
in the I/O request are assumed to be left in core until
completion of the I/O request, and written out afterward
if necessary. Similarly, a job which is blocked for a
page fault may if desired be deactivated. This results in
the new page being brought into core without a chance of
being used, however, which is of questionable benefit in
most cases.

There are several things any scheduling algorithm must
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do in order to perform its various tasks. These include:

- defining a scheduling framework such as the ones
shown in figures 1—1 and 1-2 and keeping track of
which jobs are in which states under this frame-
work at all times.

- defining a strategy to decide which eligible jok
should be chosen to be run next, how long it
shoﬁld be allowed to run, and, if desired, when
to preempt a running job in favor of another job
which becomes eligible.

- defining a strategy to determine under what con-

| ditions jobs should be activated and deactivated,
and a method of choosing the particular job to be
brought into or removed from core when activations

or deactivations are to be performed.

In addition to these tasks a scheduler may wish to make
note of additional information about the behavior of jobs
in the simulated system. This information may include
anything which might help the scheduler to predict the
future behavior of jobs on the basis of past performance,
such as the average length of time each job runs between

page faults or other I/0 requests.
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All inputs to the scheduler are provided by DRIVER, and
outputs from the scheduler are likewise returned to the
supervisory module. The scheduler is not allowed to access
the model's data bases, with the exception of the first five
entries in the descriptionof each job. The first four of
these entries give the static characteristics of the jobs
which provide data that the scheduler in an actual system
would have knowledge of, such as the total size of the job
and its priority level. The last entry accessible to the
scheduler is the pointer linking each job description to
the next description in the Job Stream List. All other
data provided to the scheduler, such as the event which
occurred most recently in the system, is provided via
parameters passed by DRIVER. This is done for several
reasons. First, it helps to make the scheduling routine
less constrained by the structure of the model if it
receives 1its information from another routine, as would be
the case in an actual system, rather than reading it from
certain global variables. Also, it prevents the scheduler
from making modifications to the data bases and accessing
information it should not have knowledge of, such as the
length of time for which a given job will run before incur-:
ring its next page fault. The inputs it is given to work

with include:



a pointer to the initial entry in the Job Stream
List, allowing the scheduler to access the static
characteristics of each job in the system. (These
characteristics include job type, priority level
and total memory size along with the identification
number of the job.)

the event which has just occurred in the system and
the job involved in this event. (If the event was
a job termination, a page fault or peripheral I/0
request issued or a timeslice runout the job
involved is the current job; if it was a job arrival
or the completion of a previous request it is
another job in the system.)

the present time in the model as recorded on the
System Clock in the main routine. This information
is of interest to the scheduler, for instance, when
the scheduler wishes to allow the current job to
continue to run governed by the timeslice origi-
nally assigned to it. It must be able to determine
how long the job has already run so that its time-
slice on this iteration may be reduced accordingly
when it is reassigned to be processed.

the total amount of main memory available to user

programs. This data is used by the scheduler for
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determining the .amount of memory available for

activating new jobs.

The scheduler may issue the following commands which

are received by DRIVER and passed to SCHPROC for processing:

- activation commands, specifying the identification
number of the job to be activated and the partition
size to be assigned to that job.

- deactivation commands, specifying the identification
number of the job to be deactivated.

- the job to be processed next, specified by iden-
tification number, and the timeslice to be assigned

to that job.

The form of the data bases used by the scheduler to
communicate its commands to the rest of the model are as
follows. Activation and deactivation commands are passed
via chain-linked lists, with one entry to describe each job
to be brought into or removed from main memory on any given
iteration. The form of these lists is shown in figure 2-7.
A pointer variable corresponding to each of these chains is
passed as a parameter to the scheduler on each call. If one
or more activation commands are issued on a given call the

pointer for the activation chain is set to point to the
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first entry in the activation chéin; if not, it is given
the value NULL. The poinﬁer for the deactivation chain is
treated in an analogous manner. Activation and deactivation
commands are handled in this manner because the number of
such commands issued by a scheduler on a given call is
highly variable. I£ is dependent on the policy of the par-
ticular scheduler in regard to activating and deactivating
jobs and oh a number of othef factors, such as the number
of jobs in the system and the amount of user memory available.
No apriori limit can reasonably be set on the number of these
commands which may be issued by a scheduler at any one time,
and thus a linked list where the number of entries may vary
freely is the most appropriate method. The job chosen to be
run ﬁext and the timeslice to be assigned to it, in contrast
to this situation, are simple numbers, and are passed as
individual parameters to be set by the scheduler on each
run. |

The form of the scheduler parameters and data bases
discussed above is shown in the listings of the three
schedulers given in appendix B. These listings show the
declarations used to define the parameters passed to the
scheduler and the precise form of the data structures used
to reference the Job Stream List entries and to issue

activation and deactivation commands. The schedulers shown
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in this appendix are discussed in some detail in chapter 3.

Procedure to Process Scheduler Commands (SCHPROC)

This is the routine which checks the validity of the
commands issued by the scheduler and carries them out on
each iteration of the model. It is called by DRIVER on each
iteration of the model immediately after the scheduler is
called. Its first task is to process deactivation commands.
This entails first locating the description of the job to
be deactivated, a function performed by JSEARCH. When the
description is found SCHPROC sets the job's Active Indicator
to —i, indicating that it is no longer assigned space in
main ﬁemory, sets its Number of Pages in Core entry to zero,
and adds the amount of core assigned to this job (its par-
tition size) to the total amount of free memory available in
the system. If a description is not found for a job ordered
deactivated (i.e., it is not in the system) or if thekjob
is found to be already inactive an appropriate error message
is printed out and the command is ignored.

When all deactivation commands issued by the scheduler on
this iteration have been processed SCHPROC processes any ac-
tivation commands. This involves calling JSEARCH to locate the
description of the job to be activated and setting the job's
Active Indicator to zero, signifying that this job is active

but has not yet been processed on this activation. It also
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enters the partition size assigned to this job by the
scheduler in the activation command in its Job Stream
List description and subtracts this amount of memory from
the amount of free memory available in the system. Acti-
vating a job in the context of the model involves bringing
its first page into core. SCHPROC calls PGTIM to generate
a value for the length of time it will take to bring this
page into memory, and then calls SELLINK to make an entry
in the System Event List for the completion of this page
request. A call to PGNXT yields a value for the length of
time this job will run in its first page before generating
another page fault, and a call to DSTPNXT produces a
similér figure for the length of time the job will run
before generating a peripheral I/O request. These two
figures are entered in the appropriate entries of the job
description. The job is now ready to be processed as soon
as its first page arrives in main memory. As in the case
of deactivations, an error message is produced if the
scheduler issues an invalid command (i.e. if the indicated
job is already active, if it is not in the system, or if
the scheduler assigns it a partition size which is larger
than the present amount of free memory or specifies a non-
positive number of pages). The invalid activation command

is ignored.
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SCHPROC's final task is to assign the job chosen by -the
scheduler to be run next to the processor. This involves
calling JSEARCH to locate the description of this job and
then calling JCHECK to make sure that it is eligible to be
run (i.e. it is both ready and active). If the chosen job
is not eligible to be run or is not in the system, job zero
is assigned to the processor as a default, i.e. the system
remains idle. The timeslice assigned by the scheduler 1is
then checked for validity (it must specify a positive time
interval). If it is valid it is recorded in the descrip-
tion of the job to be run (either the chosen job or job
zero) s otherwise a default timeslice is used.

~SCHPROC is responsible for freeing the storage
occupied by the structures describing scheduler commands
which have been processed. Descriptions of activation and
deactivation commands are left intact throughout the
iteration in which they are issued in order to make them
available to DEBUG and ACCNT if these modules are called.
SCHPROC maintains a pqinter to the activation chain and the
deactivation chain issued by the scheduler on a given
iteration and then frees these structures on the next

iteration when they are no longer needed.
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Time Until Next Page Fault (PGNXT)

This module generates values for the length of time a
particular job will run before generating its next page
fault. The frequency with which a job generates page faults,
or alternatively the length of timé between page faults,
sometimes called the page residence time, has been shown to
depend primarily on the number of the job's pages which are
already in core and the amount of CPU time it has received
since it was last activated (48). The relationship
between these quantities is shown in figure 2-8. An approx-
imation to this curve has been used in generating times
until the next page fault with good results in the SIM/61
simulation experiments (39, 44). The asymptote of the
curve is the working set size of the particular job in
question. Working set size is a term originated by
Denning (49) to refer to the set of a job's pages which
must be in core in order that it may execute without an
intolerable number of page faults. Working set size in
the context of the model is more broadly interpreted to
mean the set of pages of a job which are actually used on
a given execution. The curve is roughly exponential, and
in the model the curve is approximated as exponential
using the base of the natural logarithms, e, as the base

of the curve. The exponent to be used differs among the
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different types of jobs, allowing paging behavior of the
different job types to be'individually specified.

PGNXT operates by using the working set size of a given
job and the paging exponent corresponding to its job type
to determine the exact curve to be used. It then takes the
number of pages which will be in core for this job after a
given page fault and inverts the curve to find the corres-
ponding value of compute tiﬁe, which is the time at which
the fault for this page is to occur. An analogous pro-
cedure is followed to determine the time of the succeeding
page fault, and the difference between these two values is
the time between the corresponding page faults, i.e. the
time until the next page fault will occur. This process
may be visualized more clearly with the aid of figure 2-9.
This figure illustrates the computations performed by PGNXT
when a page fault is incurred causing a job's nth page to
be brought into core. The paging curve is inverted to deter-
mine the amount of compute time t which was theoretically
‘received by the job before it incurred this page fault. A
similar inversion is performed to determine the length of
compute time t elapsing before the n+lst page fault.

n+1l

The difference tn - tn is then the compute time elapsing

+1
between the nth and n+lst page faults for this job.
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PGNXT must also take into account the partition size
of the job which has incurred the page fault and the number
of its pages which are already in core. If a job already has
its full partition size in core but not its full working set,
the time between its page faults remains the time between
the fault for the last page in the partition and the fault
for the next page. This is so because once a job has its
full partition size in core each new page replaces one of
the pages already in core for this job, leaving the like-
lihood of another page fault at any given time in the
future the same as it was before. The working set size of
a modelled job is the total number of pages it will refer-
ence during its execution. Thus if the partition size
assigned to a job is large enough to accomodate its entire
working set then as soon as all the pages in the working
set are in core no more page faults will occur for this
job. This is ensured by setting the CPU Time between Page
Faults entry for this job in its description in the Job
Stream List to a sufficiently large value that the job
will terminate before.incurring any more page faults.

PGNXT is called by DRIVER whenever a running job issues
a page fault in order to determine how long the job will run
before generating its next page fault. It is also called by

SCHPROC each time a job is activated to determine the
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processing time until the job will issue its first page
request, and by JBARVL in generating the initial job load
to provide a maximum value for the time until the next page

fault for the partially processed jobs.

Time to Service a Page Request (PGTIM)

This routine determines the length of time needed to
bring a page into main memory. This time interval is
dependent upon the number and characteristics of the I/O
devices used for paging and on the number of requests already
queued for these devices. The I/0 device characteristics
include the average access time, which is the average time
needed to locate a page on the device, and transmission rate,
which is the speed at which information can be transferred
from the device to main memory once it has been located.

A fixed page size is assumed in the model on any given run;
thus the transmission time is the same for all page requests.
Access time for any given request is assumed to be normally
distributed about the average access time of the device.

Page requests are gueued at each device in a first-in-first-
out manner, thus generating an essentially random sequence

of requests to each device, so a normally distributed

access time seems a reasonable assumption. All device char-

acteristics are parameters which may be set by the user on
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each run.

PGTIM operates by first calling RANDOM to generate a
random number which is used to determine on which paging
device (if there is more than one) the required page is to
be found. PGTIM then looks up the time at which all pre-
sent requests queued for this device, if any, will be com-
pleted. A value for the access time needed to locate the
page is generated, and the time needed to transmit it is
determined. The access time, transmission time and the
time at which the device will be free (which is the current
time in the model if no requests are presently queued for
the device) are then summed to give the time at which this
page request will be completed. The time at which the paging
device involved in this request will be free is set to this
value for reference in regard to future page requests, and
the result is returned to the calling procedure.

PGTIM is called by DRIVER each time a page fault occurs
in order to determine the length of time needed to service
the request. It is also called by SCHPROC whenever a job is
to be activated to determine how long it will take to bring

in the first page of the newly activated job.

Time Between Peripheral I/O Requests (DSTPNXT)

This module determines the time between peripheral
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I1/0 requests issued by each job. Values for the time a job
will run before it issues its next disk or tape I/O request
are drawn from a normal distribution. The mean value of
this distribution is specified separately for each job
type, making it possible to represent different peripheral
I/0 behavior for jobs of different types. No distinction
is made between requests to disk and to tape in generating
inteirequest times. It is assumed that any job issuing a
tape request has the required tape drive assigned to it.
Since the model is concerned only with the aggregate be-
havior of the job stream rather than dealing with individ-
ually representative jobs it is not necessary to specify
which jobs have control of tape drives and may therefore do
tape I/0. The only consideration of interest is the average
rate of occurrence of requests for peripheral I/O issued by
the job stream as a whole and the relative frequency of
disk requests to tape requests.

DSTPNXT is called by DRIVER each time a job issues a
previously scheduled disk or tape I/0 request to generate a
value for the time it will run before issuing another
request for peripheral I/0. It is also called by SCHPROC
whenever a job is activated in order to determine how long
the job will run before generating its first peripheral I/0O

request after activation, and by JBARVL in generating the
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initial job load to determine the maximum time until the

next disk or tape I/0O request for each job.

Time to Service a Peripheral I/O Request (DSTPTIM)

Although peripheral.I/O requasts are issued by jobs
without specification of whether they involve disk or tape,
£he service times involved in requests to the different
types of devices must be determined in different ways.

Thus the first thing DSTPTIM must do when it is called is

to decide whether the request which has just been issued
involved a disk unit or a tape drive. This decision is

made by generating a random number which is compared with

a parameter which specifies the relative frequency of disk
requests among all peripheral I/O requests issued. The type
of the request as determined in this manner then causes one
of two subprocedures to be called to determine the time
needed to service the request.

The subprocedure which handles disk requests
operates very similarly to the way in which PGTIM treats
page requests. The exact device involved is determined
through the use of a random number, and the time at which
that device will be free (which may be the present simulated
time) is added to a value generated for access time and the

time needed for transmission to yield the time at which
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the request will be satisfied. Zgain as in PGTIM this
value is noted as the time at which this device will next
be free.

The subprocedure which handles tape requests operates
somewhat differently. As mentioned above, it is assumed
that the job which issued the request has a tape drive
dédicated to it to service the request. Thus the tape drive
needed must already be free, and no tape drive wait enters
into the calculation of the total time needed to service the
request. Since tapes operate in a serial manner, the tech-
nigque used to find values for tape service times is to
first generate a value for the number of records which must
be passed over (forward or backward) in order to reach the
desired record for this operation. Given the transport
speed and the time needed to come up to speed (read/write
access time) characterizing the tape drive being used

and the average record length it is then a simple matter

 to determine the time needed to reach the desired record.

The length of the record to be read or written and the
transmission rate of the device combine to determine tﬁe
transmission time needed. These two values are summed to
provide a value for the total service time needed. DSTPTIM
is called by the same routines as is DSTPNXT to provide
values for the service times needed for each disk or tape
I/0 request.
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Job Interarrival Module (TRMIO)

This module differs somewhat from the modules which
handle disk and tape I/O requests and page faults in that
the requests initiating new jobs are not associated with jobs
already in the system. Instead, in the case of a time-
sharing system jobs are generatec by communications from
usér terminals, while in a batch-processing environment
they arrive via input devices such as card readers or
remote terminals.

One of the problems in simulating processes such as the
arrival of new jobs to the system is the probabilistic
assumptions made about the population which generates them.
In the case of a time-sharing system, if we consider the user
population to be finite and assume that any user has at most
one request pending at any time, then we must take into
account the number of jobs already in the system as a
decrease in the total user population generating further
requests. Denning has shown (45) that in a large time-
sharing system this need not be regarded as being the case,
but that one may assume an infinite user population for
purpoées of predicting interarrival times for terminal
messages. A large batch system with a sizable user community
is analogous to this situation. The assumption of an

infinite user population is therefore made in the model.
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Several studies (50, 51) have been done on interarrival
statistics for terminal communications, but they have concen-
trated primarily on the detailed interactions of a single user
with a.computer system rather than on the activity of the
user population as a whole. However, Coffman and Wood (50)
have found that the assumption of the independence of the
arrivals of terminal communications is borne out in studies
of actual systems, both for a single user and for
the user population as a whole. Considering this indepen-
dence and the infinite user population we have to draw from,
the arrival process may be assumed to be Poisson in nature.
Consideration of the user population of a large batch system
leads to an analogous assumption for batch systems. The
arrival process is therefore treated as Poisson in the model.

The generation of the time between arrivals of jobs
to the system is performed by drawing.a value from an
exponential distribution. This distribution is conditioned
on the average arrival rate of jobs to the system which is
a parameter of the model. On any given call to TRMIO the
value returned is the absolute simulated time at which the
next arrival is to occur; this guantity is found as the sum
of the value drawn from the exponential distribution and the

time in the model when the call is made.
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TRMIO is called by DRIVER during initialization of the
model to generate the time at which the first job not in the
initial job load Will arrive at the system. Thereafter it
is called each time a previously scheduled arrival occurs

to determine the time of the next arrival.

Generation of Job Characteristics (JBARVL)

This module generates the characteristics which
describe each job as it arrives at the system. Jobs are
described by a set of five static characteristics: job
type, total job size, priority level, working set size and
total processing time required. A maximum of six different
job.types may be used on any model run. As an example, the

job types used by Scherr (42) in his model of CTSS were:

- File Manipulation

- Program Input and Editing

- Program Running and Debugging

- Program Compilation and Assembly

- Miscellaneous

Jobs of different types customarily perform different kinds
of tasks and place different average demands upon the system.
Interactive jobs will be considered here as individual

requests only rather than as sequences of related tasks, as
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discussed above in connection witch the Job Interarrival
module (TRMIO). Neilsen (30) and others have discussed
schemes whereby a time-sharing task load is modelled by
generating jobs which consist of a sequence of identical
interactions repeated some number of times. This method
was shown to give good results, but it involves more detail
than is needed here. Since we are concernedonly with the
overall behavior of the simulated system over a significant
period of time, whether a task is represented by a sequence
of repeated commands from a specified user or by a number
of such commands from undesignated users interspersed among
other requests does not affect the overall results. A
scheme more like that used in RCA's SIM/61 system (39) is
used in the model described here. Jobs are generated
individually according to the probability of occurrence of
each job typé, which may be entered as a parameter. This
method is quite general, is applicable to both batch and
time-sharing environments, and can be tailored to approximate
different job mixes on different runs of the model. Priority
level is generated separately according to another probability
distribution.

The total size, working set size and total processor
time required for any job are interrelated quantities.

Working set size as used in the model denotes the actual
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number of pages required during the execution of a given
job. This is some fraction of the total number of pages
associated with this job, since not all of a job's pages
are necessarily used on any given execution. For each jokt
type an average working set size and a standard deviation
for this size are specified as parameters to the model. A
value for the working set size of any given job is generated
from a normal distribution conditioned on the mean working
set size associated with the type of the job. The total
size of the job is then found by multiplying the mean
working set size by a factor which is also a parameter of
the model and again drawing a value from a normal distri-
bution. The total CPU time required by this job is generated
using the same curve which will be used for finding the time
between page faults for the job. This curve is described
above in connection with the paging module PGNXT. The job
will terminate at some time after its final page is brought
into core, assuming that sufficient space has been assigned
to the job to allow its entire working set to be in core at
once. Using this assumption, an approximation is used to
generate a value for the total run time from the paging
curve.

In general the remaining entries of the description for

each job are initialized to zero, with the exception of the
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Active Indicator (CPU Time since Last Activation) and CPU
Time until Termination. The Active Indicator is set to -1,
indicating that the job is inactive and CPU Time until Term-
ination is initialized with ‘the total CPU time requirement:
for the job. In the case of the initial job load, however,
JBARVL must generaté jobs with characteristics indicating
that they have already been partially processed. This is
done by generating a job deséription in the manner described
above and then modifying certain entries. These entries
include Partition Size, Number of Pages in Core, Active
Time, and the entries giving the times remaining until the
job's next page fault and next peripheral I/0O request and
time until termination. The partition size of a job is
normélly assigned by the scheduler when the job is activated,
but in this case we wish the job to be already active, so
JBARVL arbitrarily assigns each job in the initial job load
a partition size eéual to one-half of its total size.

Number of Pages in Core and CPU Time since Last Activation
are interrelated, since the job must have run for a length
of time appropriate fdr it to have issued page faults to
bring in the number of pages it has in core. A value for
the number of pages in core for each job is drawn from a
normal distribution centered on one-half of the partition

size assigned to the job, and subject to the constraints
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that the value generated must be less than or equal to the
partition size and also less than or equal to the total
working set size of the job. A value for CPU Time since

Last Activation is then generated as a random value uniformly
distributed between the time at which the last page fault for
the pages in core for this job would have been issued and the
time at which the next page fault is to occur. These times
may be found from the paging curve for this job as described
in the discussion of PGNXT above. The CPU Time until
Termination for this job is then simply its total required
time minus the time for which it has already been active.
Values for CPU time until next Page Fault and CPU Time until
next Peripheral I/O Request are found by calling PGNXT and
DSTPNXT respectively to yield maximum values for the corre-
sponding intervals and then choosing a random value evenly
distributed between zero and this maximum time in each case.

" A number of possible inaccuracies are inherent in this
method of generating an initial job load. All jobs initially
in core are treated as having been activated at some time in
the past and having béen allowed to remain in core thereafter;
i.e. no deactivations have been performed on these jobs.

The job which is generated last in the initialization calls
and which is not active has not been processed at all, and

there are no other jobs waiting for service. This is not a
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particularly likely state in which to find the system during
the course of its operation, except perhaps in the case of

a scheduler which does no deactivations. Also, all jobs in
the initial load are ready to be run, and this is also an
unlikely event in normal operation. However, this approach
was felt to be more like the conditions found under normal
operation than most other feasible initial loads, and the
overhead involved in generating the initial jobs is little

more than that involved in generating normal jobs.

Routine to Produce Debugging Information (DEBUG)

This module is called by the supervisor routine on
each iteration of the model whenever the value of the System
Clock lies between an upper and a lower bound which are set
via parameters. Each time it is called, DEBUG prints out
three types of information. First, it produces a record of
the commands issued by the scheduler on the most recent
iteration of the model. This includes the identification
numbers of all jobs to be deactivated, the identification
numbers of all jobs to be activated together with the par-
tition sizes to be assigned to them, and the number of the
job to be processed next together with the timeslice to be
assigned to it. Then it produces a dump of the System Event

List, which records all the events scheduled to occur at
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specified times in thé future in the simulated system
together with the job invélved in each event and the time

at which it is to occur. Lastly, it prints out a listing of
all the job descriptions presently in the Job Stream List,
showing the complete status of each job in the system.
Finally, it prints 6ut the value of the System Clock, which
is the present time in the simulated system. This infor-
mation pro&ides a clear and éomplete picture of the state

of the system and is quite useful in debugging the model
should problems occur.

The parameters which determine whether DEBUG will be
called on any given iteration allow it to be enabled for
all or for only a portion of a run. This saves on print
costé, since a sizable amount of output is produced each
time the routine is called, and this scheme facilitates
calling it only in the time interval for which detailed
information is neéded. An example of the output produced

by DEBUG is shown in appendix C.

Procedure to Output Trace Listing (TRACE)

This procedure is called by DRIVER once during each
model iteration when the value of the System Clock is
between an upper and a lower bound specified for the trace

routine. These limits may be set via parameters as
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described above for DEBUG; Each time it is called TRACE
prints out the most recent event to have occurred in the
system and the job involved in that event (e.g. Job #6 has
incurred a page fault). It also provides a>listing of any
activation and deaétivation commands issued by the scheduler
after it was informed of this event, together with the
number of the job it has seiected to be run next. The out-
put provided comprises a brief summary of the events
occurring in the simulated system in the course of a run.

If a summary of only part of a run is desired this is easily
obtainable via appropriate settings of the limit parameters.

Sample trace output is shown in appendix C.

Procedure to Produce Summary Information (ACCNT)

This routine collects statistics on the events occur-
ring in the simulated system in the course of a run and
processes them to produce figures describing the performance
of the scheduler being used and the behavior of the simulated
jobs running under that scheduler. It is called by DRIVER
once during each iteration of the model subject to a para-
meter setting which specifies the minimum simulated time at
which ACCNT is to be called. Setting this parameter to zero

causes ACCNT to be called on each iteration of the model;
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giving it a larger value than the total run time specified
for a particular run ensufes that it will not be invoked at
all on that run. Setting it to some intermediate value
causes ACCNT to be invoked only during the latter portion
Qf the run, thus producing a final summary which considers
only‘this portion of the run. This may be desirable in
order to minimize the effects of initial transients in the
operation of the simulated system on the figures compiled,
thus yielding a more realistic picture of the steady-state
performance of the system being simulated. On each call
during iteration of the model ACCNT collects data on
various aspects of the operation of the system. In addition,
if it is enabled, it is called a final time after the model
run is over to process these figures and print out the
results.

The figures produced by ACCNT fall into four basic
categories. First; it produces overall figures describing
the average state of the simulated system. These figures
include the average number of jobs in the system and in
main memory, the average amount of main memory assigned to
jobs, and the average number of pages actually in core. The
percentage of simulated time spent idle by the CPU is also
shown. Second, it provides figures describing the charac-
teristics of the jobs generated on this run. This includes

average total size and working set size, average CPU time
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requirement, and type and priority level distributions. The
third group of figures gives information on the actions of
the scheduler used on a given run. This includes the

number of activations and deactivations performed and the
average timeslice assigned to jobs to be processed. The
last group of statistics describes the behavior of the jobs
in the system operating under this scheduler. This includes

the average occupancies of running, ready and blocked states,

total numbers of page faults and peripheral I/O requests
generated, average wait time for each type of request, and
total number of timeslice runouts. It also gives the number
of jobs which terminated in the course of the run and their
average turnaround times, including breakdowns of turnaround
time by job type and priority level. Taken as a whole,
these figures give a fairly comprehensive picture of the
overall performange of the system simulated on any given
run.. As in the case of DEBUG and TRACE, an example of the
output produced by ACCNT is provided in appendix C.

The jobs considered by ACCNT in compiling statistics
on job and scheduler behavior include only those whose
processing is initiated after the beginning of the
accounting scan. The rationale behind this is as follows.
Jobs which are active before this time have already been

partially processed. When the run ends a number of jobs
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will be left in the system only partially processed. If

the jobs considered in compiling statistics on the number

of jobs processed include only the jobs which are activated
after the beginning of the scan then the processing done on
the jobs which are initially active and which are not counted
after the beginning of the scan should on the average
balance off the work not yet done on the jobs left unfinished

when the run terminates. This should yield a fairly
reasonable count of the jobs actually processed by the system
during the course of the run. On runs of short duration
when few new jobs arrive at the system this may lead to mis-

leadingly small figures. On longer runs, however, this

method produces fairly representative results.

Procedure to Add an Entry to the System Event List (SELLINK)
This is the procedure which is used each time an event
is to be added to the System Event List. It is called by

the supervisor routine each time the time of occurrence of a

future event is determined.

fault or issues a peripheral
set up for the completion of
job arrives at the system an
In

arrival of the next job.

SELLINK, passing it a number

Whenever a job incurs a page
I/0 request an event must be
that request, and whenever a
event must be set up for the

these situations DRIVER calls

indicating the kind of event
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which is to occur, the identification number of the job
involved in the event, and the time at which the event is
to occur. SELLINK then allocates an entry for this event,
sets the variables in that entry to the appropriate values,
and links it into the existing System Event List chain in

ascending chronological order.

Procedure to Find a Job Description (JSEARCH)

JSEARCH is called by DRIVER and SCHPROC to locate the
description of a given job in the Job Stream List. It takes
as an argument the identification number of the job to be
located. It returns a pointer which points to the desired
description if the job is found in the list, or has a value
of NULL if the indicated job is not in the list (i.e. is

not presently in the system).

Procedure to Check Eligibility of a Job (JCHECK)

This procedure is called by SCHPROC to determine
whether or not a given job is eligible to be run, i.e.
whether it is both ready and active. JCHECK takes as an
argument a pointer to the description of the job in
question and returns the same pointer if the job is

eligible, or NULL if it is not.
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Procedure to Generate Random Numbers (RANDOM)

This procedure produces values evenly distributed
between.zero and one via the multiplicative congruential
method (52). It is called by a number of the other routines
of the model whenever a random number is needed for the
generation of a sample value. It generates a repeatable
sequence of values on each run, beginning with the same
seed and using each generated value as the seed for the

value returned on the next call.

Procedure to Generate Normally Distributed Values (NORMAL)
This procedure is called by the other routines of the
model whenever a value drawn from a normal distribution
is needed. It takes as arguments the mean and standard
deviation of the desired normal distribution, along with a
third parameter which governs the number of iterations to
be used in producing the sample value. It returns an
integer value drawn from the indicated distribution by

means of the Central Limit Approach (52).
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CHAPTER THREE

SOME EXPERIMENTAL RESULTS OBTAINED FROM THE MODEL

As described in chapter two, the model under discussion
includes a large number of parameters which may be modified
to approximate different sets of conditions existing in
actual or hypothetical systems. These parameters are in
many cases highly interrelated, and results from model runs
with different parameter values must be compared with care.
As an illustration of the kinds of results obtainable with
the model and their relation to behavior observed in actual
systems, a set of nine model runs was performed. These runs
involved systematic variation of the parameter which governs
the total amount of main memory available to user programs.
Three different schedulers were used, each of them being run
with three different values for user memory size. All other
parameters were held constant, with the exception of the
average interarrival rate of the jobs coming into the system
for processing. This parameter was varied as needed in an
attempt to maintain a sufficient number of newly arrived
jobs to keep the simulated systems in a saturated state.
Cost constraints prohibited its being set to some arbitrarily

high value which could have been held constant.
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Parameter Values Describing the Simulated System

In considering the résults obtained from the test runs
it is first important to discuss the values assigned to the
various parameters of the model for these runs, including
those which were held constant as well as those which were
varied. The settings of these parameters determine the
characteristics of the system being simulated, and they
should represent a system similar to those found in practice
if the model runs are to yield results approximating those
found in actual systems. The parameter settings used in the
test runs were based on figures describing the 370/165 batch
processing system at MIT's Information Processing Center in
September, 1972 (53, 54, 55). This system does not use
paging but runs under OS/MVT, a multiprogramming system
where the number of tasks in main memory is variable. Thus
the characteristics of the paging devices in the modelled
systems and the paging behavior of the simulated job streams
could not be based directly on actual figures from this sys-
tem. They were chosen to be similar to those found in sys-
tems which do use paging. The remainder of the pafameters
are based directly on the IPC system.

The parameters may be broken down into two major classes:
those which describe the physical equipment available in the
simulated system, and those pertaining to the job stream
processed by the system.
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Parameters Governing System Configuration

The first class includes parameters governing the
number and characteristics of the I/0 devices present in the
simulated system. These vériables were set to reflect the

following configuration:

- twenty disk drives, including
- twelve disk drives having the characteristics
- average access time = 75 milliseconds
- transfer rate - 312,000 bytes/second
(IBM 2314 disks)
- eight disk drives having the characteristics
- average access time = 30 milliseconds
- transfer rate = 806,000 bytes/second
(IBM 3330 disks)
All disks were assumed to have the same fréquency of
usage.
- an unspecified number of tape drives having the
characteristics
- read/write access time = 4 milliseconds
- transfer rate = 160,000 bytes/second
(IBM 2820 Model 4 tape drives)
The model assumes that any job issuing a tape request
has a dedicated tape drive available to service that

request; no effort is made to limit or monitor the
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number of tape drives iﬁ use at any time.

- two drums haviné the characteristics
- average access time = 4 milliseconds,
- transfer rate = 1200,000 bytes/second
(IBM 2301 drums)

The drums were used exclusively as paging devices.

In addition to the above parameters which describe the
operating characteristics of the I/O devices there are
several parameters which specify factors affecting the usage

of these devices. These parameters had values as shown below:

- pagesize = 4096 bytes

- disk record size 1000 bytes

- tape record size 800 bytes

Pagesize is in general a constant; disk and tape record

sizes are not constant in an actual system but may be

approximated as constant at their average values; this
is the apprqach used here.

- ratio of the number of disk requests to the total
number of peripheral I/O requests (disk and tape)
issued = .821

Peripheral I/0 requests are generated in the model

without specification of the type of device they

address. When such a request is issued by a simulated
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job it is necessary to determine the type of device
involved since the service times are computed in
different wafs for the different devices. This ratio
is used to determine whether a given request involves

disk or tape.

These figures correspond in general to the configuration and
average usage pattern of the IPC system in September, 1972
and are representative of a number of large-scale batch

installations.

Parameters vaerning Job Stream Characteristics

- The second class of model parameters deals with the
characteristics of the jobs which are to be serviced by the
simulated system. The model provides for up to six different
types of jobs, each type having a separate set of charac-
teristics describing it. In the experiments to be described
here only one job type was used. Detailed data needed to
break the jobs down into several classes (e.g. I/0O bound,
CPU bound, etc.) was not available for the IPC system. This
single job type may be viewed as representing an average of
the characteristics of the aggregate job stream serviced by
the IPC system. There is considerable variation in the
characteristics of the individual jobs of this single type

produced by the model due to the probabilistic methods used
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to generate them.
Each job was assigned one of three priority levels

according to the following distribution:

level 1 - 7.01

oo

(high priority)
level 2 - 37.49% (medium priority)

level 3 - 54.90% (low priority)

These numbers correspond to percent usages of the three
V major priority levels on the IPC system.

The mean time between peripheral I/0 requests for the
simulated system was 16 milliseconds. The exponent used
for the paging curve (the curve used to determine the time
until the next page fault) was .0003. This number does
not have any direct physical interpretation. It was chosen
by experiment to determine a value which resulted in reason-
able paging behavior.

Job size is generated in two steps, each one governed
by a different parameter. First the working set size is
determined, which in this context is the total number of
pages which will actually be used by the job during its
execution. The mean value for working set size for the jobs
generated was twenty-five pages. Total job size (all pages
associated with a job, regardless of whether or not they

are used on a given run) is then generated using a mean
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value derwermined by multiplying the mean working set size by
a constant factor. For these runs this multiplier had the
value two. In other words, the simulated jobs used half of
all their pages on the average during execution. As men-
tioned above, the IPC system is not a paging system, so
this figure is again an estimate of realistic behavior.
Total size is used only as an estimate to pass to the
scheduler; working set size is the size measure used by the
model in simulating job behavior. The average total size
for jobs submitted to the IPC system was about 200K bytes,
or fifty 4096-byte pages. Thus the modelled jobs resemble
very closely the actual jobs in total size.

The total CPU time required by each job is determined
by an extrapolation on the paging curve. (A job terminates
sometime after its last page has been brought into core.)
Thus a job's CPU time requirement is affected by the expo-
nent of the paging curve. It is also affected by another
parameter which again has no direct physical interpretation
but which governs the length of time for which a job will
run after its last page has been brought into core. In
these runs this parameter had a value of 1.5, again deter-
mined through experimentation, which yielded CPU time
requirements averaging 408.3 milliseconds. The IPC data

indicate that an average job on that system runs for .63
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minutes, or about ninety-three times as long as this. This
disparity is the result of a tradeoff between two opposing
factors. Since simulation runs using‘the model described
here are quite expensive, it was necessary to make them
fairly short. At the same time, in order to obtain mean-
ingful figures on turnaround time and throughput it was
desirable to have a fairly large number of jobs terminating
in the course of éach run. A compromise was reached by
- making the jobs quite short and running each test case for
thirty simulated seconds. The behavior of the simulated
jobs in respects other than CPU time requirements was
generated and measured on a per-unit-time basis rather than
on a per-job basis. For example, peripheral I/O behavior
was considered in terms of the average time elapsing between
requests rather than in terms of requests issued per job.
Thus each job in the simulated system behaves as an actual
job might behave over a short fraction of its run time. The
difference in CPU time requirements therefore should not
affect the behavior of the simulated system except in terms
of throughput and turnaround times, and its effect on these
measures should be a simple linear increase.

The parameter which was varied among the nine test runs,
as mentioned above, was the total size of user memory.
The values assigned to it were fifty pages, one hundred

pages and two hundred pages. The IPC system runs with a
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maximum of 750K of user core, which is approximately one
hundred eighty-eight 4096-byte pages. This is represen-
tative of a large-scale batch system. This figure corre-
sponds fairly closely to the upper limit of two hundred
pages used in the model runs. However, this similarity

in total size is outweighed by the difference in the number
of jobs being multiprogrammed in the actual and the simulated
systems. The IPC system, running as a non-paged system,
loads an entire job into memory before running it. This
means it can accomodate an average of three to four jobs in
core simultaneocusly. In the simulated system under the
schedulers being used here, in contrast, each job is
assigned a partition size equal to half of its total size.
(This is described more fully below.) The modelled system
can accomodate up to eight of these jobs in main memory
simultaneously when it is given two hundred pages of user
memory. Thus it achieves a much highér degree of multi-
programming for the same memory size than the IPC system
does. An even lérger number of jobs could of course be
accomodated by the simulated system if each job were
assigned a smaller partition. However, doing this would
mean that all the pages needed by a ﬁob (its working set)
could not be in core simultaneously. This introduces the

effects of page contention, which tend to complicate the
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issues involved. Assigning partition sizes equal to half of
the total size of a job eiiminates most page contention for
the job mix simulated here. When considered in terms of the
number of jobs being multiprogrammed, then, the one hundred
page simulated systems correspond most closely to the IPC
system. The other two sizes used represent values on

either side of this point, giving a spread of behavior about
this central focus.

The systems simulated in the test runs, then, represent
batch processing systems of varying sizes operating under a
virtual memory scheme. We should expect to see behavior
appropriate to that type of system reflected in the results
of the runs. Due to the lack of paging in the IPC system,
the short run times of the simuiated jobs and a number of
other factors which lead to inaccuracies of representation
in the modelled systems, the results produced by the model
could not be expected to accurately mirror the operation of
the IPC system. However, since the model parameters have
realistic values and these values are held constant across
the various runs performed, we can expect that comparisons
of the results from runs using different core sizes and
different strategies will parallel those which might be

found in practice.
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The Schedulers

The schedulers explored in the test runs embody three
different scheduling policies. All three schedulers are
built around the same basic code for performing the necessary
functions of scheduling in this system. The first scheduler
uses a simple round-robin selection scheme. The second uses
a preemptive scheme where jobs of higher priority are given
preferential treatment. The third pursues a policy of de-
activating any job which issues a disk or tape I/0 request,
scheduling all other jobs in a round-robin manner. Listings
of the code for the three schedulers may be found in appendix

B. These modules will be discussed individually below.

Similarities Among the Schedulers

Before turning to the differences among the three
schedulers tested it is useful to point out the things they
have in common. Each of the three‘schedulers uses the same
basic data structure for keeping track of relevant information
about all jobs durrently in the system. This structure,
called STATUS, has entries for the following'pieces of

information:

- the identification number of a job
- an indicator telling whether it is currently

active or inactive
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- an indicator telling whether it is currently
ready or blockea

- the partition size assigned to it (if it is
active)

- the clock time at which it was last assigned
to the processor

- a pointer used to chain together the separate
copies of this structure which describe the

different jobs

The declaration used to define the form of this structure
appears in the listings in appendix B. The information
maintained in these structures, together with the data passed
to the scheduler on each call, constitutes most of the infor-
mation needed to perform scheduling decisions. When a job

is to be chosen to be brought into core, the active/inactive
indicator in the STATUS entry is used to distinguish between
jobs which are eligible to be activated and those which are
already in core. This indicator is also checked in selecting
a job to be run, in order to ensure that a job which is not
in core is not assigned to be processed. The ready/blocked
indicator is used in an analogous manner to ensure that a
blocked job is not assigned to be processed. The partition

size assigned to each job is used when a job terminates or
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is deactivated to determine the resulting amount of free
core. The time of the beginning of a job's run interval is
used in adjusting the timeslice assigned to the job if its
processing is interrupted by some independent event. For
instance, if some other job's previously issued page request
is completed while a job is running, the scheduler is called
and notified of this fact. Often the scheduler wishes to
continue processing the running job. It then reassigns the
running job to the processor with a timeslice equal to its
original timeslice minus the processing time it received
before the paging interrupt occurred. This has the desired
effect of limiting a job's total processing time to the time-
Slicekoriginally assigned to it, rather than resetting the
timeslice to its full original value every time an indepen-
dent event occurs in the simulated system. All three

schedulers assign an initial timeslice of fifty milliseconds

to all jobs. The items of information recorded in the STATUS
entry for each job are updated as they change during the
course of its processing. New entries are added to the STATUS
chain as jobs arrive at the system for processing, and
entries are deleted when the job they describe terminates.
The basic tasks performed by the three schedulers each
time they are called are as follows: First the information

passed via parameters by the DRIVER module is processed.

-94-



This involves changing appropriate entries in the STATUS
structures and other variébles. Then, based on the present
state of the system as recorded in the STATUS chain and
related variables, commands are issued to activate as many
jobs as possible (if any), keeping main memory as fully
utilized as possible. The partition size assigned to any
job, as mentioned above, is half of its total size.

Finally, if one or more jobs are eligible to be run, one of
these jobs is chosen to be assigned to the processor. Job
zero is selected (i.e. the system is allowed to remain idle)
only when no job in the system is eligible to be run. The
scheduler makes appropriate entries in its output variables
to indicate the commands it wishes to issue and returns con-
trol to the main routine. The code used to perform these
tasks in the various schedulers is quite similar, differing
primarily in the policies used in selecting jobs to be

activated and run.

The Round-Robin Scheduler

The round-robin scheduler selects jobs to be activated
on the basis of size considerations. It scans the STATUS
chain for a job that will fit into the amount of free core
available. Since the STATUS chain is constructed by adding

new entries onto the end of the chain and each scan is begun
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with the first (oldest) entry, this gives jobs which have
been in the system longest the best chance of being activated.
If a job which requires an amount of core less than or equal
to the available space is found, an ACTIVATE command struc-
ture is set up to activate it, and the partition size
assigned to this job is deducted from the amount of available
memory space. The search of the STATUS chain then continues,
looking for another job which will fit into the amount of
free core still unassigned. This process continues until
the end of the STATUS chain is reached. At this point there
are no other jobs which can be activated. Once a job is
activated it remains active until it terminates. This
scheme discriminates against large jobs in favor of keeping
core utilization high. In the system modelled in the test
runs this discrimination is minimized by the fact that all
jobs are in the same size range. 1In a simulation where this
was not the case one might wish to use some other selection
‘scheme in order to ensure that large jobs do not incur
unnecessarily long waits before being activated. For
instance, jobs might be activated strictly in the order
in which they arrive at the system.

The selection of the next job to be run is made in a
round-robin manner subject to the status of the job assigned
to be run on the last call. If the previously assigned job

is still eligible to be run and has not exceeded its time-
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slice, it is reassigned to the processor with a reduced time-
slice as discussed above. If the running job is now blocked,
another job must be chosen to be run. The scheduler searches
through the STATUS chain starting with the entry following
the one pertaining to the previously running job. The first
job encountered in this scan which is both ready and active
is selected to be run; This‘scan is conducted in a circular
manner. If the last element in the STATUS chain is reached
without encountering a job which is eligible to be run, it
continues with the first element in the chain. If no
eligible job is found after a complete search of the STATUS
chain, job #0 is chosen to be run (i.e. the system remains

idle).

The Preemptive Scheduler

The preemptive scheduler operates in a manner similar
to the round-robin scheduler, except that it takes the
priority levels of the jobs into account. It should be
noted that this scheduler has an extra entry in its STATUS
structures to record the priority level of each job. When
searching for jobs to be activated it makes several passes
through the STATUS chain. On the first pass any jobs of the
highest priority level which will fit are chosen to be

activated. Then a second pass is made to scan for jobs of
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the next highest priority level which will fit, and so on,
down through the lowest pfiority level being used. Under
this scheme a smaller job of low priority might be activated
before a larger high priority job. Thus it is not a strict
priority activation scheme, but gives preference to high-
priority jobs while keeping core utilization as high as
possible. As in the case of the round-robin scheduler,

once a jobvis in core it reméins active until it terminates.
No job is preempted from active status in favor of a higher
priority job.

In choosing the job to be processed next the preemptive
scheduler first determines the highest priority level among
eligible jobs. If the previously running job is still
eligible to run, has not run out its timeslice and is of the
highest priority level among the set of eligible jobs, it is
reassigned to the processor. If a higher priority job is
eligible, the running job is preempted in favor of that job.
If the running job is no longer eligible or has timed out,
~another job must be chosen. As in the case of the round-
robin scheduler, a cifcular scan of the STATUS chain is
made, beginning with the entry after the one pertaining to
the job run previously. The first eligible job encountered
in this scan which is of the highest priority among the set

of eligible jobs is chosen to be processed. This scheme
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is in effect a round-robin selection within the set of jobs
having the highest priority level among the set of eligible
jobs. As before, if no jobs of any priority level are

eligible to be run job #0 is selected.

The Deactivating Scheduler

The third scheduler resembles the round-robin scheduler
in all respects except that it deactivates jobs whenever
they issue peripheral I/O requests. The rationale behind
this practice is as follows. A job which issues a request
to disk or tape will be ineligible to be run for a sizablé
periéd of time while its I/O is being performed. If it is
deactivated there is a possibility that another job activated
in its place may be able to accomplish useful work during
this period. Paging I/O is much faster than disk or tape
I/0, so jobs waiting for pages may be allowed to remain in
core-with a much smaller penalty incurred in terms of
memory space occupied by an ineligible job. The choice of
~jobs to be activated on each call is made from among the
set of jobs which have been deactivated and whose I/0 has
been completed as well as jobs which have not yet been
activated for the first time. Due to the ordering of the
STATUS chain (jobs longest in the system preceding newer

arrivals), jobs which have been deactivated and are now
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ready to be activated again are given preference over those

which have not yet been activated. As before, however, the

size of the job is also a factor. A new job which is small
enough to fit into available memory space will be activated
before a larger job which has been active previously. The
selection of a job to be assigned to the processor by the
deactivating scheduler is made from among the set of ready
and“active jobs in the same manner as in the round-robin
scheduler.

The three schedulers described above are very simple
and unsophisticated as compared with many schedulers used
in practice, such as the CTSS onion-skin scheduler described
by Scherr (42) or the multiqueue scheduler used in IBM's
CP/67 system (56). There are several reasons for this
simplicity. First, since the test runs are intended merely
as an illustration of the results obtainable from the model
and the conclusions which may be drawn‘from them, simple
scheduling schemes are sufficient. Indeed they are pre-
ferable in some ways, since they involve fewer factors which
must be taken into account in interpreting and compariﬁg the
results obtained with each one. Secondly, there are a
numbef of factors which are considered in scheduling for
practical systems that are not represented or are not

appropriate to consider in the test runs. For instance,
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in actual batch systems scheduling strategies often take
factors such as job type into account in order to achieve
a balanced mix of jobs in core. Since the simulated jobs
used for the test runs have not been separated according to
type it would not be practical or helpful to use schemes
which consider the type of the job in making scheduling
decisions. As another example, time-sharing systems often
use complex scheduling strategies aimed at providing good
response to the terminal users. Since the system under
simulation here is a batch system, no effort need be made
to ensure quick response. In short, the schedulers used
here are not intended to correspond to any particular
schedulers used in practice. Rather, they embody three
different scheduling philosophies in very simple form and

thus provide a basis for the comparison of those philosophies.

A Word of Caution

Several points which have bearing on the accuracy of
the results obtained from the test runs should be men-
tioned before discussing and comparing these results.. First,
due to the way in which the model is constructed, the actual
job stream presented to the simulated systems for processing
was not identical across the nine test runs. A single ran-
dom number generator is used by the model to generate values

for the interarrival times of jobs, jobs characteristics,
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1/0 wait times, etc. The first guantities generated on each
run are the characteristics of the jobs initially in core.
Since there are more jobs in core initially in a one hundred
page system than in a fifty page system, runs using a core
size of one hundred pages require more random numbers to
perform the generation of characteristics for the initial
job load than those using a core size of fifty pages. This
difference extends in the same manner to runs using a size
of two hundred pages. Thus the random number sequence used
to begin actual operation of the model is different for
runs using different core sizes. This results in different
job interarrival times, and thus differing numbers of jobs
arriving for processing during the course of the various
runs. Also, for the same reason, the characteristics
describing the jobs generated on a given run do not corre-
spond directly to those of the jobs on other runs.
Similar'problems exist among runs where the core size
was constant but different schedulers were used. The
three schedulers select jobs for activation and processing
in different ways. For example, the job seiected to be
run by one scheduler may issue a page fault, requiring the
use of one random number to determine the paging device
involved in the request and another random number to
generate the time until its page request will be satis-

fied. The job chosen by another scheduler may time out,
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requiring no calls to the random number generator. Thus even
though these runs begin with the same initial job load, they
will eventually ﬁse different random numbers for generating
corresponding quantities, again producing nonuniform job
streams. Probabilistically speaking the job streams for the
different runs are identical, since they are generated using
the same values for the mean and standard deviation for each
characteristic. Due to the differences in the random
number sequences, however, the resulting job streams are not
the same in actuality. Given runs of sufficient duration
these discrepancies would be minimized. In the relatively
brief runs made for testing purposes, however, the differences
are significant. These discrepancieé must be borne in mind
in comparing the results obtained from the different runs.

In particular, small numerical variations in results may

well be due at least in part to differences in the job
streams presented to the simulated syétems. Only clear
trends or marked differences in value should be interpreted
as significant.

A second factor which affects the accuracy of the
results obtained with the model stems from its method of
handling disk I/0. The model treats all disk units as
separate entities, any number of which may be accessed

simultaneously. This represents a simplification of the
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operation of an actual computer system, since in general

the interconnections of the I/0 channels and control units
with the disks results in only certain combinations of disk
units which may be accessed in parallel. Thus the represen-
tation of the twenty disk units in the test runs creates a
simulated environment where contention of diék usage is con-
siderably lower than it would be in an actual system with
that number of disk units. This will of course affect the
results obtained with the model in terms of disk usage and
other related aspects of system behavior. This must be
borne in mind in analyzing these results. Similar problems
could be expected in modelling systems with interconnected
networks of paging devices. However, since there are only
two paging devices in the systems simulated here and since
the paging store in not intended to resemble that of any
specific actual system, we can safely assume that they can
be accessed in parallel. Thus the treatment of paging
devices in the model should not introduce any specific error

factor into the results obtained in the test runs.

Summary of Results from the Test Runs

A sample of the summary output obtained from the model
is shown in appendix C, illustrating the different measures
collected and output by the model on a standard run. The

statistics produced by the test runs may be best compared
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by breaking them down into classes to be considered individ-
ually. Three classes haQe been selected for discussion here.
They include figures on resource usage (usage of main memory,
paging.drums and peripheral I/0 devices), measures of job
behavior under the scheduling schemes used, and figures on
overall system performance. Not all the data produced by

the test runs is presented here, but rather a representative
selection of the available statistics is shown. The values
obtained for the statistics in each class are discussed and
compared below. Conclusions from the separate classes are
then combined to yield a comparative analysis of the perfor-
mance of the three schedulers used in the simulated systems

of varying size.

Resourse Usage - Main Memory Usage

In discussing resource usage a logical starting point
is main memory usage. Main memory is an expensive resource,
and it is economically favorable to make the fullest possible
use of it. Also, the more fully it is utilized the larger
the number of jobs that may be multiprogrammed simultaneously.
Table 3-1 shows the average number of jobs assigned partitions
in primary memory at any one time for each of the nine test
runs. The partition size assigned to a job by each of the

three schedulers is half of its total size, or about 25
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Round-Robin Preemptive Deactivating
50 pages 1.97 1.98 1.76
100 pages 3.66 3.99 3.91
200 pages 7.76 7.37 7.63
Table 3-1

pages on the average.

Average Number of Jobs in Main Memory

Since some jobs require slightly

more space than the average and some slightly less, we

cannot expect an exact fit of main memory size/25 pages

jobs on the average.

this would be a reasonable expectation.

Rather, a figure slightly less than

And that is indeed

what is observed in each case, with minor numerical fluc-

tuations.

The average amount of primary memory assigned to jobs

at any given time (Table 3-2) shows the average number of

pages allotted toc jobs on each run.

These figures run

parallel to those of Table 3-1, as would be expected.
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Round-Robin Preemptive Deactivating
50 pages ©48.49 48.59 44,16
100 pages 92.20 97.88 96.89
200 pages 193.67 185.36 191.91
Table 3-2

Average Amount of Main Memory Assigned to Jobs (in blocks)

The average number of pages actually in main memory (Table
3-3) shows some differences among the three schedulers.
These figures represent the actual usage of primary memory
as opposed to its allocation to each job, and thus represent
a much better guage of main memory usage than do figures on

the amount of memory assigned to jobs. Table 3-4 expresses

Round-Robin Preemptive Deactivating
50 pages 35.31 34.70 4.45
100 pages 67.96 73.57 8.93
200 pages 139.57 134.73 16.23
Table 3-3

Average Number of Pages in Main Memory

the figures of Table 3-3 as percentages of the maximum

possible number of pages in core.
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all three schedulers maintain roughly constant percentages
of main memory usage over the three core sizes tested. The
usage under the found—robin and preemptive schedulers is
roughly the same, while that under the deactivating scheduler
is almost a factor of ten lower. This observed behavior is
consistent with the policy used by this scheduler. The
deactivating scheduler removes jobs from main memory each
time they issue a disk or tape request. These jobs are
replaced by other jobs which start off with a single page

in main memory. Other pages of these jobs are brought in

on demand. Only a small number of pages for any given job
are brought in on the average before it issues a peripheral
I/O request, causing its pages to be swapped out and another

job to be brought in, again starting with a single page.

Round-Robin Preemptive Deactivating
50 pages 70.6% 69.4% 8.9%
100 pages 68.0% 73.6% 8.9%
200 pages 69.8% 67.3% 8.1%
Table 3-4

Percentage of Maximum Possible Number of Pages in Main
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This leads to low utilization of main memory, and indicates
that a partition size of 25 pages is considerably larger than

is necessary for this job stream under a deactivating scheme.

Resource Usage - Paging Devices

The figures on the usage of paging devices in the
simulated systems illustrate several trends and differences
among the schedulérs and their performances in the various
systems modelled. These figures are shown in Table 3-5 and
Table 3-6. The figures on the total number of page faults
issued (Table 3-5) show an increase in page faults as
memory size increases for all schedulers. This increase
may be attributed to the larger number of jobs being multi-
programmed in the larger systems, leading to less idle time
and more overall activity in the system. The numbers of
page faults generated under the round-robin and preemptive
schedulers are roughly the same for corresponding sizes.

Systems running under the deactivating scheduler, in con-

Round-Robin Preemptive Deactivating
50 pages 715 721 3290
100 pages 1179 1270 5214
200 pages 1807 1778 5887
Table 3-5

Total Number of Page Faults Incurred
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trast, experience three to four times as many page faults as
those running under the Sther two schedulers. As discussed
above in connection with core usage, this difference reflects
the large percentage of jobs with a small number of pages in
main memory on the average under the deactivating scheme.
Jobs with only a few of their pages in memory require new
pages at a much higher rate than those which have more pages
in memory; Thus the deacti§ating scheduler causes jobs to
incur page faults at a rate considerably higher than the
round-robin and preemptive schedulers which activate jobs
initially and allow them to remain in main memory until
completion.

The figures on average page wait time (Table 3-6) show
the response of the paging devices to these different levels
of paging activity. As discussed above in the section on

parameters, the simulated system includes two drums which

Round-Robin Preemptive Deactivating
50 pages 7.612 7.636 8.418
100 pages 7.880 7.893 13.610
200 pages 8.453 8.491 26.112
Table 3-6

Average Page Wait Time (in milliseconds)
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are used exclusively for paging. The page requests issued
are assumed to be evenly distributed between these two
devices. A request issued to an idle device is serviced as
rapidly as possible within the limits imposed by the charac-
teristics of the hardware (i.e. its processing is begun
immediately). One issued to a device which is already busy
must wait until all requests previously queued for this
device have been serviced before its servicing is begun.
Page requests are queued in a simple first-in-first-out
manner in the model, as are peripheral I/0O requests. The
higher the level of paging activity, the longer the average
queue length at the paging devices and thus the longer it
will take on the average to service each page request. This
reasoning is borne out in the average page wait times
observed in the test runs. As mentioned above,. larger user
memory sizes allow more jobs to be active simultaneously

and thus cause a higher level of paging activity. Table 3-6
- shows that page wait times increase as memory size increases
under all three test schedulers. Also, runs made with the
deactivating scheduler, with its heavier paging load due

to deactivating and reactivating jobs, show significantly
longer page wait times than runs made using the same

memory size but another scheduler.
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Resource Usage - Disk and Tape Units

Peripheral I/0 devicé usage shows trends similar to
those discussed above for paging device usage. Increasing
memory size allows more jobs to be active and thus more

disk and tape requests are generated, as shown in Table 3-7.

Round-Robin Preemptive Deactivating
50 pages 691 688 837
100 pages 1149 1237 1322
200 pages 1790 1757 1504
Table 3-7

Total Number of Peripheral I/O Requests Issued

Contrary to the pattern shown by page faults, however, runs
made under the deactivating scheduler show results which are
generally similar to those found in runs made with the other
two schedulers. This is to be expected from the mode of
operation of the deactivating scheduler . It allows each
job to run until it generates a peripheral I/O request and
then removes it from core to make room for other jobs which
are treated in the same manner. Thus though the processing
of a given job may be spread out over a longer period of
time (it may not be reactivated immediately when its request

is completed), the aggregate level of peripheral I/0 requests
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issued should be about the same.

The figures on average peripheral I/0 wait time (Table
3-8) show trends similar to those found in paging wait times
under the round-robin and preemptive schedulers. As user
memory size increases and the number of requests grows, wait
times for peripheral I/0 increase under all three schedulers.
Note that while the numbers of page requests and peripheral
I/0 requests issued are quite similar across the board
(excluding the special case of page requests issued under
the deactivating scheduler), the average percentage increase
in page wait times in going from the fifty page to the two

hundred page system in runs under the round-robin and pre-

Round-Robin Preemptive Deactivating
50 pages 58,832 59.398 59.634
100 pages 62.034 62.976 62.124
200 pages 63.157 62.841 62.086
Table 3-8

Average Peripheral I/0 Wait Time (in milliseconds)

emptive schedulers is 11.7%, while the corresponding average
percentage increase in peripheral I/O wait times over runs
made with all three schedulers is 5.6%. This difference in

relative change represents a balance between two opposing
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tendenéies. Disk requests require six to seven times as
long to service as do paée requests; thus a request issued
to a busy disk will be delayed much longer on the average
than a'request to a busy paging drum. (Tape requests ex-
perience no queuing delay in the modelled systems; however,
disk requests make up over 80% of the peripheral I/0 requests
issued in the test runs.) The longer service time for disk
requests tends to extend queue lengths and thus increase
wait times in comparison to those experienced at the paging
devices. This tendency is balanced by the difference in
the number of devices of each type available. All page
requests must be satisfied by one of two paging drums. Disk
requests, in contrast, are’equally distributed among twenty
disk units, any number of which may be accessed simultaneously
in the simulated environment. Thus the probability of a
disk request being issued to a busy device is much lower
than the corresponding probability for page requests. This
tends to make the percentage increase in disk I/0 wait time
smaller relative to page wait time as the number of requests
issued increases.

We must bear in mind here the inaccuracies introduced
by the model's treatment of all disk units as individual,
simultaneously accessible devices. In an actual system

where the interconnections of I/0 devices affect the
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accessibility of the devices we would expect to find con-
siderably more cqntention'for disk usage than was observed
in the simulated system. The probability of issuing a disk
request to an inaccessible device is higher in the practical
case. The addressed device may itself be busy, or the hard-
ware needed to communicate with it (channels‘and control
units) may be busy servicing other devices. This decreases
the benefits of the wide availability of disk units found

in the simulated systems and should cause higher average
disk I/0 wait times than those found in these runs. The
amount of difference between an actual system and a simu-
lated version of it would depend on the interconnections
used in the actual system and the pattern of references to

the different units.

Job Behavior - Page Faults

The figures reflecting job behavior in the simulated
systems include measures of average time between page faults
and between peripheral I/0 requests, and distributions of

time spent in each of the running, ready and blocked states.

These figures are highly interrelated with the figures on
device usage presented above. In many cases they reflect

the same facts about the events occurring in the simulated
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system as seen from the point of view of the job stream

rather than the physical devices. Table 3-9 shows the data

Round-Robin Preemptive Deactivating
50 pages 41.976 41.647 9.120
100 pages 25,451 23.625 5.754
200 pages 16.604 16.874 5.096
Table 3-9

Average Time Between Page Faults (in milliseconds)

gathered on the average time between page faults in the
various test runs. This quantity is effectively the con-
verse of the total number of page faults occurring during

a run. The figures show that the time between page faults
decreases as memory size increases fo£ all three schedulers
tested. This pattern reflects the higher level of activity
in the larger sysﬁems as discussed above in connection with
device usage. The deactivating scheduler shows much

" shorter average times between page faults than either of the
other two schedulers for each memory size used. This
difference reflects the effects of the mode of operation of
the deactivating scheduler from the point of view of the
job stream, just as the number of page faults generated

reflects it from the device usage point of view.
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Job Behavior - Disk and Tape Requests

The figures on average time between peripheral I/0

requests are given in Table 3-10.

These figures are the

converses of the total number of peripheral I/0 request

figures given in Table 3-7.

The pattern of decreasing inter-

request times with increasing core size is again followed

here as it is in the case of paging behavior as discussed

above. The small change in-this figure between the one

hundred page and two hundred page systems under the deac-

tivating scheduler as compared to the corresponding differ-

- ence under the other two schedulers again parallels

Round-Robin Preemptive Deactivating
50 pages 43.434 43.645 35.846
100 pages 26.115 24,255 22.693
200 pages 16.762 17.076 19.948
Table 3-10

Average Time Between Peripheral I/0O Requests

(in milliseconds)

the situation found in the paging case.

In the case of

peripheral I/O, however, this effect cannot be attributed

to having reached the limiting disk service rate. This is

clear from the fact that the other two schedulers show
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lower interrequest time for the two hundred page runs. It
can be explained instead in terms of the limitations that
the paging devices place upon the system. Jobs waiting for
pages cannot generate disk or tape requests until after
their page requests have been completed. Jobs in the two
hundred page system under the deactivating scheduler spend
a large fraction of their time waiting for pages as dis-
cussed above. Their productivity in terms of both useful
computation and requests issued to other devices is

decreased accordingly.

Job Behavior - Active Time Distribution

The average distribution of time among the running,
ready and blocked states for an active job is shown in Table
3-11. As an example of the interpretation of these figures,
the average job in a fifty page system under the round-robin
scheduler spent 19.17% of the time it was in main memory in
- the running state, i.e. in control of the CPU. It spent
28.98% of its time in the ready state waiting for its chance
at the processor, and the remaining 51.85% of its time‘in the
blocked state waiting for paging or peripheral I/0O to be
completed. The time during which a job is not active is
not considered in compiling these figures. Several sig-

nificant trends are displayed by these figures. First, the
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Running

Round-Robin Preemptive Deactivating
50 pages 19.17% 18.95% 27.45%
100 pages 17.29% 16.87% 18.55%
200 pages 12.59% 12.96% 10.70%
Ready
Round-Robin Preemptive Deactivating
50 pages 28.98% 29.,44% 33.47%
100 pages 22.69% 22.17% 14.98%
200 pages 37.84% 36.20% 8.88%
Blocked
Round-Robin Preemptive Deactivating
50 pages 51.85% 51.61% 39.08%
100 pages 60.02% 60.96% 66.47%
200 pages 49.57% 50.84% 80.42%
Table 3-11

Average Percentages of Active Time in Each Traffic Control

State
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percentage of time spent in the running state decreases
uniformly as user memory size increases. This is due to the
fact that larger memory sizes allow more jobs to be active
on the average, and this represents an increased number of
jobs which must share the processor. The more active jobs
there are the less time .each one of them can spend in the
running state, i.e. in control of the processor. These
figures may be compared to the corresponding maximum theo-
retical values for running state occupancy to get an idea
of system utilization. For instance, in the case of the
two hundred page system running under the round-robin
scheduler we have an average of 7.76 jobs in main memory
at any given time (from Table 3-1). This means that if
the CPU were in use constantly each job would receive on

the average
100/7.76 = 12.88%

. of the available processor time. The observed figure for
this system is 12.59%, which is guite close to this maximum
value. This indicates very high CPU utilization. In con-
trast, the fifty page round-robin system has a maximum

theoretical running state occupancy of

100/1.97 = 50.8%



The observed value in this case is only 19.17%, indicating
that the processor is idle a good deal of the time.

Another point of interest in these figures is the dif-
ference between the data from the deactivating scheduler
runs and that from runs made with the other two schedulers
tested. The_ running state occupancy for the fifty page runs‘
is markedly higher for the deactivating scheduler than for
the round-robin or preemptive schedulers. This reflects
the fact that no active jobs are waiting for peripheral
I/0 under the deactivating scheduler. In a small system
where there are only one or two jobs in main memory at a
time this results in having a job eligible to be run during
a significantly larger fraction of the time than a scheme
which allows jobs to tie up core while waiting for peripheral
I/0 to be performed. This advantage diminishes and even-
tually disappears, however, as we look at the larger sys-
tems where more jobs can be multiprogrammed. The running
state occupancy observed in the one hundred page system
under the deactivating scheduler is not markedly different
from that found for the other two schedulers. For the two
hundred page system the deactivating scheduler shows a lower
Value’for running state occupancy than do the other two
schedulers. This may be attributed to the heavy paging load
in this system as discussed above. Jobs in this system

are forced to wait much longer for page faults to be satis-
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fied, thus preventing them from reentering the running state
as soon as they might under other circumstances. This pat—A
tern indicates that the deactivating scheme has an advantage
over the round-robin and preemptive schedulers in terms of
processor utilization in a system where the degree of multi-
programming is small, but this advantage is lost as the
number of active jobs grows.

The benefits to be obtained from using a deactivating
scheme in a small system may not be as great in reality as
they were found to be in the modelled environment. The
model does not simulate the paging out of a job which is
deactivated. It merely assumes that this paging out occurs
in parallel with the execution of some other job, In moét
cases this does not cause any significant distortion of
reflected behavior. However, in the case of the deactiva-
ting scheduler used here the level of paging activity is
very high. Here the paging out of deactivated jobs could
contribute significantly to the congestion at the paging
devices, serving‘to slow the paging response time down and
decrease the running state occupancy.

The figures on occupancies of the ready state for the
round-robin and preemptive schedulers first decrease and
then increase with increasing memory size. The blocked

state occupancies follow the reverse pattern. This
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behavior may be explained in terms of the interaction of
two opposing factors. First, as the number of active jobs
goes up the I/0 wait times increase because of loading on
the devices as discussed above. This means that a job
which issues an I/O request must wait longer for it to be
completed on the average in a larger system than in a
smaller one. This tends to increase the time that jobs
spend in the blocked state. This is turn decreases the
percéntage of time the jobs spend in the ready state. With
more jobs in the blocked state a job which becomes ready
has fewer jobs to compete with for the processor, and can
expect to leave the ready state more quickly. In opposition
to this tendency is the effect of the variation in the
availability of the CPU. As mentioned above in discussing
occupancies of the running state, the two hundred page
systems come very close to the theoretical maximum for CPU
usage, at least under the round-robin and preemptive sched-
ulers, while the smaller systems show considerably less
than maximum utilization. As the number of active jobs
increases and the CPU becomes more fully utilized, jobs
which become ready to run must wait longer to have a chance
at the processor, since there is more competition for it.
This tends to cause jobs to pile up in the ready state

while they wait for their turn at the processor, and brings
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about a corresponding decrease in the number of jobs in the
blocked state. Jobs cannbt become blocked until they have
a chance to be processed and issue an 1/0 request or incur
a page‘fault. From the pattern of occupancies found in
Table 3-11 one can conclude that the effects of I1/0 wait
times are dominant over those of competition for the CPU
in the cne hundred page systems, while in the two hundred
page systems the balance has shifted in the other direction.
Here both CPU utilization and I/O wait times have increased,
but CPU availability has become the dominant factor.

The pattern of ready and blocked state occupancies
for runs made with the deactivating scheduler show a uniform
decrease with increasing core size rather than the more
variable behavior discussed above for the other two sched-
uling schemes. This may again be explained in terms of the
opposing trends outlined above. In the case of the deac-
tivating scheduler, as opposed to the round-robin and pre-
emptive schedulers, however, the effects of incireased I/O
wait times outweigh those of contention for the CPU in both
the one hundred page and the two hundred page systems. This
is due to the much heavier paging lcad occurring under the

deactivating scheme in the larger systems.
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Overall System Performance - CPU Idle Time

Overall system performance for the simulated systems is
reflected by figufes on CPU idle time, throughput and turn-
around time as shown in Tables 3-12:through 3-14 and 3-16.
CPU idle time (Table 3-12) is the percentage of time during
which ncne of the active jobs were eligible to be run and
the scheduler was. forced to run job #0. These figures are
measured directly by the model's accounting routine, and
they corroborate the conclusions reached above from the
comparison of theoretical maximum values and observed values
for running state occupancy. For all three schedulers
tested CPU idle time decreases as user memory size increases.
This is due to the increased benefits of multiprogramming

with increasing numbers of jobs in core.

Round-Robin Preemptive Deactivating
50 pages 62.42% 62.49% 54.28%
100 pages 37.55% 32.56% 27.63%
200 pages 2.34% 4.,44% 18.49%
Table 3-12

CPU Idle Time

The more jobs there are in memory, the more likely it is

that at least one of them will be eligible to be run when
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it comes time to choose a new job to be processed. It has
been found in practice in'demand paging systems (Madnick

and Donovan (61) ) that multiprogramming more than a certain
number of jobs leads to degraded performance due to thrashing.
However, due to the fact that the model is organized to give
each job its own partition and since the schedulers used

here assign partitions large enough to minimize page con-
tention, this effect is not realized here.

The patterns of the CPU idle time figures under the
round-robin and preemptive schedulers are quite similar to
one another. The deactivating scheduler, on the other hand,
while showing a decrease in idle time with increasing core
size, does not achieve nearly as low a value for idle
time in the two hundred page system as do the other two
schedulers. This may be attributed to the heavy paging load
in the two hundred page system under the deactivating sched-
uler, which causes longer I/0 waits and lower occupancy of
the ready state as described above. Note that for the
smaller memory sizes the deactivating scheduler performs
better in terms of idle time than the round-robin and
preemptive schedulers. It is not until the core size
becomes quite large that its performance degrades relative
to that of the other two schedulers. This is an indication

that the deactivating scheme has advantages in smaller sys-
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tems. If jobs are deactivated when they issue peripheral

I/0 requests, fewer activé jobs are blocked for I/0 on the
average than in systems where such jobs are allowed to
remain in core, and thus more useful work can be accomplished.
In larger systems, however, even though some jobs are waiting
for long periods for their I/O to be completed there are
enough active jobs that the probability that at least one

job is runnable is fairly high.

Overall System Performance - Throughput
The figures on average throughput (Table 3-13) represent
the average number of jobs terminating per second in the

simulated systems. The similarity between the performances

Round-Robin Preemptive Deactivating
50 pages .867 .90 .933
100 pages 1.37 1.53 1.60
200 pages 2.10 2.03 1.60
Table 3-13

Average Throughput (jobs/second)

of the round-robin and preemptive schedulers is again
apparent here. In both cases throughput increases as user

memory size increases. This is in line with the data on
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CPU idle time, which indicates that the CPU is more fully
utilized as memory size ihcreases, thus accomplishing more
useful work. The deactivating scheduler, on the other hand,
though'it compares favorably with the other two schemes in
the fifty page and one hundred page systems, shows no gain
in throughput in the test runs in going from one hundred to
two hunclred pages. This is in line with the figures on
idle time for this scheduler, and bears out the conclusion
reached above that its performance degrades relative to
those of the other two schedulers in systems using large

memory sizes.

Overall System Performance - Turnaround Time

Figures on average turnaround time were compiled both
for the aggregate job stream and for each priority level
individually. Table 3-14 shows the turnaround figures for
the job stream as a whole. Since the time required for
input and output is not considered in compiling these
figures, what is referred to as turnaround time here might
be more accurately termed system residence time. These
figures show that average turnaround time decreases as
memory core size increases for all three of the schedulers
tested. At first this might seem to run counter to intuitive

expectations, since with more jobs in coxe at a time in the
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Round-Robin Preemptive Deactivating
50 pages 9657.484 7176.623 7130.944
100 pages 5649.057 5533.752 8284.443
200 pages 4919.109 4396.211 8248.683
Table 3-14

Average Turnaround Time for the Aggregate Job Stream

(in milliseconds)

larger systems each job should get a smaller percentage of
the processor time per unit time and thus would have its
total system residence time extended. However, there are
several other factors which have bearing on this situation
and must also be considered. First, it was observed above
that the smaller simulated systems had higher CPU idle times.
Thus the additional active jobs in a larger system are taking
up part of the processor time which was going to waste in
the smaller systems rather than causing the samevamount of
processor time to be shared among a larger number of jobs.
Another factor to be considered is the average length of

the queue of jobs waiting to be activated for processing.

The figures describing the average number of jobs in each

of the simulated systems is shown in Table 3-15. 1In the

case of the round-robin and preemptive schedulers there
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are in general more jobs resident in the smaller systems

than in the larger ones. The round-robin and preemptive
schedulers activate each job only once, so the jobs coming
into tﬂe system form a queue to wait to be activated. Turn-
around time measures the time elapsing between the arrival

of a job at the system and the completion of its processing.
A job which arrives at a system under these scheduling
schemes where twenty jobs are already queued for activation
must wait considerably longer in general to be activated than
if it had arrived at a system where only ten jobs were

already queued. Since processing cannot begin until the

Round-Robin Preemptive Deactivating
50 pages 23.10 36.15 13.20
100 pages 10.51 24.81 17.12
200 pages 12.73 11.45 20.57
Table 3-15

Average Number of Jobs in System

job is activated, larger numbers of jobs in the system in
the smaller systems cause jobs to wait longer for activa-
tion. This in turn leads to higher turnaround times.
These conclusions must be modified somewhat in systems

where priority considerations are taken into account (i.e.
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under the preemptive scheduler), but they are still valid
for the job stream considered as a whole.

The average number of jobs in the simulated systems
running under the deactivating scheduler, in contrast to
the trend discussed above for runs made with the other test
schedulers, increases with increasing core size. This is
an externally caused effect, accomplished by modifying the
value of the parameter governing the interarrival rate of
jobs coming into the system in order to ensure that there
were enough jobs in the system so that when a job was
deactivated another job was in general available to be
activated in its place. From the figures on the average
number of jobs in core (Table 3-1) we can see that this
objective was accomplished. The systems run under the
deactivating scheduler show numbers of jobs in main memory
comparable to those found with the other two schedulers.

Under the deactivating scheduler jobs do not follow
the sequence of awaiting activation, being activated,
being processed and terminating as they do under the
regimes of the round-robin and preemptive schedulers.
Instead, jobs are activated and deactivated a number of
times during the course of their processing. We may in
effect view this situation as multiprogramming among most,

if not all, of the jobs in the system rather than only among
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the set of active jobs. The execution of a job run under -
the deactivating scheduler is made up of a pattern of perioas
when the job has control of the processor interleaved with
periods when the job is blocked. During these blocked
periods the job may be either active or inactive, depending
on whether it went blocked for paging I/0 or peripheral I/O.
This means that jobs under this scheduling scheme do not
experience the relatively long initial waiting period in-
curred by jobs in systems run under the other two schedulers.
As memory size increases CPU idle time decreases as discussed
above; however, the number of jobs effectively sharing the
CPU under the deactivating scheme is quite large for all
these memory sizes. Thus the effect of the decrease in CPU
idle time as memory size increases is not as significant on
the individual jobs under the deactivating scheme as it is
under the round-robin or preemptive schemes. This resulted
in the test runs in turnaround times which increase as
memroy size increases for runs made with the deactivating
scheduler.

Turnaround time by priority level is significant bnly
in the case of the preemptive scheduler, since this method
is the only one of the three schemes considered which takes
priority level into account. The figures shown in Table 3-16

pertain only to the preemptive scheduler. The entry for
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Level 1 Level 2 Level 3
50 pages 4064.740 8732.563 ke
100 pages 2951.904 4376.914 9732.781
200 pages 2743.777 3041.722 5582.023
Table 3-16

Turnarcund Time by Priority Level (in milliseconds)

(Preemptive Scheduler Only)

priority level 3 (the lowest level) for the fifty page case
is blank, indicating that no level 3 jobs terminated during
that run. The differences among the turnaround times for
the various priority levels decrease as memory size
increases, in parallel with the decrease in overall turn-
around time. This indicates that the benefits accorded to
level 1 jobs become less significant as the system becomes

larger and turnaround times decrease for all jobs.

Conclusions

From the foregoing analysis of the data gathered from
the nine test runs we can draw several conclusions regarding
the relative performances of the three scheduling schemes
tested under various user memory sizes in the modelled en-
vironment. First, the round-robin and precmptive scheduling

schemes show very similar overall performances under most
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conditions. The scheduling of jobs according to priority
level and the preemption of low priority tasks in favor of
higher priority ones does not noticeably degrade overall
system performance as measured by such quantities as
throughput and CPU idle time. In the simple batch-type
systems modelled in the test runs there is no particular
benefit to be derived from using the preemptive scheduler
rather than the round-robin scheduler. In many cases in
practical systems, however, the preemptive approach is
much more useful. This is true, for instance, in time-
sharing systems where fast terminal response is desired,
and in real-time systems where certain tasks must be per-
formed at certain times. The evidence gathered in the test
runs indicates that, at least in the type of system being
modelled here, preemptive scheduling can be used without
degrading overall system performance. We can éxpect this
conclusion to carry over into practical systems to a
~greater or lesser extent depending upon the degrees of
similarity between a practical scheduler and the one used
in the test runs, and between an actual system and the
simulated environment.

'Thechactivating scheduler performs somewhat better
than the other schemes tested in small systems where the

degree of multiprogramming is low. In these situations
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it achieves lower CPU idle time and higher throughput than
the other schedulers. In larger systems its performance is
not as good, however. In the case of a large system with

a high degree of multiprogramming it is bogged down by the
heavy paging load it generates, resulting in higher idle
time figures and lower throughput than the round-robin and
preemptive schedulers.

Given the characteristics of the system modelled in the
test runs and the nature and inherent unsophistication of
the three schedulers tested, we can state the following
general conclusions. For a relatively small-scale system
a deactivating scheme produces better overall performance
in this environment than a scheme which does not perform
deactivations for peripheral I/0 requests. For larger
systems non-deactivating methods are preferable. The
choice between the simple round-robin and the preemptive
schemes depends'upon the need for and emphasis placed
upon fast response to certain tasks at the expense of
longer turnaround times for others.

The comparison éf results from the nine model runs
performed indicates that the model produces results which
are intuitively realistic. The results obtained here are
internally consistent and can be explained in terms of the

physical constraints of the modelled systems and the pat-
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terns of demands made by the job streams simulated. The
figures produced by the model provide a fairly comprehensivé
picture of the behavior of the simulated system. Graphs of
the model results might well provide further insights into
trends in the various measures compiled. Graphical display
was not considered appropriate here, however, due to the
small number of samples taken with any one scheduler.
Careful consideration reveals the different statistics -
produced to be highly interrelated, in many cases reflecting
the same facts about system performance from different
viewpoints. For instance, the observed percentage occupan-
'cies of the ready state as compared to their theoretical
maximum values reflect CPU utilization from the point of
view of the individual job, while overall figures on CPU
idle time show the same situation in terms of the system

as a whole.
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CHAPTER FOUR

LIMITATIONS OF THE MODEL AND SUGGESTIONS FOR FURTHER STUDY

The construction of a model such as the one described
here consists of several phases. The basic design must first
be worked out, dividing the tasks to be performed by the
model into classes which will be carried out by the various
modules. These modules are then coded and tested individually,
and when this is complete the modules are assembled to form
the model. The task of model-building from this point on
becomes an iterative process of comparing the model's
behavior to that of actual systems and making modifications
to the basic model which improve its approximation to reality
or the efficiency with which it performs its various func-
tions. This last phase of development is perhaps the most
important one in the entire process, since a model which
does not behave in a realistic manner is of little use,

- regardless of how cleverly it is designed or how elegantly
it is coded. It can also be a very time-consuming phase,
for manyvdifferent modifications may be necessary to |
achieve a good approximation to realistic behavior, and
many test runs are needed to determine the model's respon-
ses to various sets of conditions.

There is no well-defined end point in this process.
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One can almost always come up with another change to a model
which might further impro?e some aspect of its performance.
Nonetheless, one must choose a point at which to stop devel-
opment'of the model, at least temporarily, if any useful
studies are to be made with it. Several criteria may be
used to select this stopping point. Accurate, detailed
models zre needed for some purposes, such as detailed studies
of small changes in a single system parameter. Rougher, more
approximate models are adequate for more general studies.
The degree of accuracy required in a given model has bearing
on the amount of effort needed for the iterative phase of
its development. The practical constraints of time and re-
source limitations also have their effects on this decision.
Taking these various factors into account, the decision
was made to stop modifying the model described here when it
was in the form outlined in chapter two. It was acknowledged
in the discussion in that chapter that the model as such
could only be expected to provide estimates of aggregate
behavior rather than detailed information on underlying
processes. It was used to provide such aggregate infor-
mation in the test runs described in chapter three. The
experience gained in making these runs and analyzing the
results obtained from them has brought out a number of

interesting points about the model in its present form.
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For instvance, some limitations and inaccuracies of represen-
tation which are_inheren£ in the design of the model have
become apparent. These limitations have varying impacts on
the uséfulness of the model in different contexts. A number
of changes which could be made to further improve the model
were also pointed out by these experiments. Some of these
changes would affect the operation of the model in all cases,
while others might be desirable under certain circumstances.
Finally, this experience has suggested a number of other
experiments which might be performed with the model. These
limitations, modifications and further experiments are dis-

cussed individually in some detail below.

Limitations and Inaccuracies

Perhaps the first limitation of the model which becomes
apparent in considering the results of the runs described in
chapter three is in the area of scheduler efficiency.
Efficiency is an important consideration in the choice of a
scheduling algorithm. A scheduler which takes many factors
into account in choosing jobs to be activated or assigned
to the processor may require a good deal of CPU time to
make its decisions. If too much CPU time is taken up by
the execution of the scheduler, any benefits to be gained by

its elaborate scheme will be negated in a practical system
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by the fact that the jobs it schedules must share a smaller
amount of CPU time. The model described here provides no
method of measuring or comparing scheduler efficiencies. One
can get an estimate of relative efficiency by comparing the
execution times of runs made with different schedulers using
identical model parameter settings. Due to the variabilities
and vagaries of qperation of the real world system on which
the model program itself is executed, however, this can pro-
vide only an approximate measure. The set of jobs being
multiprogrammed at any time in the real system, for instance,
affects the operation of the system, and this set of jobs
will be different on each model run. This leads to dis-
crepancies in the execution times of the different runs.

A somewhat better estimate might be obtained by inserting
code in the model to note the time in the real world system
at which the scheduler is called on each iteration of a
simulation and the time at which it returns control to the
model supervisor. These figures could be used to generate
an estimate of the total real time spent in executing the
scheduler. The variabilities of the actual system would
still have an effect on these figures, of course, but

since the time interval in question is much shorter than
that for execution of the entire model we could expect the

amount of uncertainty introduced to ne smaller.
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Another limitation of the model arises from its methods
of handling supervisor fﬂnctions. In an actual system of
the type mirrored by the model, supervisory programs are
generaily used to perform a large number of functions.

These include such tasks as maintaining certain items of
information on all the jobs in the system, maintaining and
referencing page ‘tables, collecting accounting information
for billing purposes, and performing scheduling functions.
These tasks are represented in various ways in the model.
The Job Stream List maintained by the model's driver routine
keeps track of information on each job in the system. The
paging functions of the operating system are largely ignored
in the model since paging is treated only on the macroscopic
level. Accounting information of sorts is collected by the
model's accounting routine, and scheduling functions are of
course handled by the scheduler.

None of these tasks is viewed as requiring any CPU time
in the simulated system. There is no convenient way to
estimate how much simulated time these tasks would require,
and the model is set up in such a way that no simulated time
elapses during their performance. The modelled job stream
receives one hundred percent of the processor time in the
modelled system. Clearly this is not an accurate represen-

tation of an actual system, where supervisor functions often

~-141-



requiré a significant fraction of the total processor time.
One could get around this'problem in part by assuming that
the CPU time shared among the user jobs is that fraction of
the total processor time which is not required by the oper-
ating system. However, in many cases the amount of time
required for supervisor functions is not constant but instead
varies with the activities going on in the system. Many of
these activities are controlled by the scheduler. For
instance, there would be more paging overhead in a system
with a high level of paging activity than in one where fewer
pages were demanded. As the operating system overhead goes
up, the portion of the CPU time devoted to user jobs goes
down. This causes turnaround time to go up and throughput
to go down in general, i.e. system performance is degraded.
Due to the fact that supervisor execution time 1is not
deducted from total CPU time in the model these factors are
not reflected in the results obtained with the model. It is
quite possible that a scheduler which produces better per-
formance measures than some other scheme in the environment
of the model might perform worse in comparisocn to the other
scheduler when supervisor time requirements are taken into
account. This blind spot in the information provided by the
model must be kept in mind in drawing conclusions based on

comparisons of model runs using different scheduling schemes.
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An important part of the design ofvany model 1is the
choice of the scope of the simulation, i.e. the set of
factors which will be represented in the model. In any
model df manageable proportions only those aspects of actual
systems which are most central to the items under study can
be included. This leads of necessity to inaccuracies of
representation due to the factors which are left out. For
instance, in the model described here jobs are viewed as
arriving at the system in a state in which they may be
assigned to be processed immediately if desired. The assump-
tion behind this is that there is an input SPOOLing routine
which brings in each job from an input device and puts it
out to secondary storage, making it possible to load it
directly into main memory when it is activated. This input
routine is outside the scope of the model; i.e. it is not
explicitly represented in the model. . Similarly, an output
SPOOLing routine is hypothesized to handle output functions,
and this routine is also outside the scope of the model.
This choice of scope for the model imposes a limitation on
the accuracy of the results obtained in that any interactions
of the SPOOLing routines with the rest of the model cannot
be represented. As an example, in a small system with few
disks, the SPOOLing routines may well interfere with user

job usage of the disks. The model is unable to reflect
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the effects of this competition for access to the disks,
which could in some cases have a significant impact on overall
system performanée.

Another limitation due to the choice of scope stems
from the decision to view the processes involved in paging
in a simplistic, generalized manner. No effort is made to
keep track of which pages of a job are in core in the model.
Thus we cannot tell if a page for which a fault occurs has
already been referenced and has been written onto the drum
or has never been referenced and must be fetched directly
from the disk. 1In the model it is assumed that all pages
are fetched from the paging device(s), which is strictly
reasonable only if we assume that an’entire job is copied
onto the paging store when it is first activated. Since
this is not the general practice in actual systems, this
represents an inherent inaccuracy in the representation of
paging behavior. In order to treat the paging process in
a more reasonable manner, however, significant changes to
the model would be needed. It would be necessary to main-
tain a list of the pages of each job which had been prev-
iously referenced. This list would have to be accessed
each time a page fault is incurred to determine whether
the page request should be issued to a disk or to a paging

device. The additional accuracy of representation in the
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model to be gained
execution time and
improvement in the
be obtained in the

the average access

ffom this did not seem to merit the extra
storage space it would require. Some
representation of page wait times could
framework of the present model by increasing

time and decreasing the transmission rate

of the paging devices. The amount by which these quantities

should be modified

is difficult to determine, however, and

there is no easy way to appfoxiwate the effects of queuing

the requests at different devices.

Along the same lines, the model does not consider the

capacity of any of the secondary storage devices it repre-

sents. This could result in inaccuracies of representation

if, for instance, the size of the paging store on a system

being simulated was quite small. In this case the pages of

presently active and previously active jobs might overflow

the paging store.

In many practical systems this would

necessitate transfers of pages from the paging devices back

to secondary storage. Since paging storage capacity is not

represented in the model, this situation could never occur

in the simulated system. This again leads to inaccuracies

of representation.

A number of studies (57, 58, 59, 60) have been done on

the effects of variation of the page size on the paging

behavior of programs and on the operation of systems as a
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whole. Due to its macroscopic treatment of paging, the model
described here is not suited to performing experiments of
this nature. ,A}though pagesize is an input parameter to the
model, there is no provision for modifying the paging behavior
of jobs with changes in this parameter. Instead, paging
behavior is determined solely by the exponent used in the
paging curve. The value to be used for this exponent must
be determined via experimentation using a given page size.
Once this exponent is set, changes in pagesize will not change
the times between page faults issued, but will only change
the lengths of time required to bring new pages into core.
Cleérly this is highly unrealistic behavior. However,
modifying the model to cause it to respond more realistically
to changes in pagesize requires incorporating pagesize as a
factor in the generation of page wait times. This is an
extremely complex task. The effects of pagesize on paging
behavior are not yet fully understood, and determining a
mathematical relation between them which would be valid
even in an average sense is a major task. This task was
beyond the scope of the modelling effort described here.
Any experiments using different page sizes performed with
this model must use paging curves calibrated to produce
behavior appropriate to those page sizes.

From the above examples it is clear that there are a

number of limitations and inaccuracies inherent in the
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model described here. Some of these drawbacks are necessary
consequences of the way in which the model was constructed;
others represent a tradeoff between the accuracy desired in
the results and the modelling effort and computer time and
space required to achieve it. Some limitations and inaccur-
acies are to be expected in any practical model, and they
must be kept in mind when drawing conclusions based on

results produced by the modeél.

Additions and Improvements

| One problem with the model in its present form became
espeqially apparent in the test runs. This was the use of
only one random number generator to produce all the random
numbers needed by the model. As discussed in chaptexr three,
the job streams presented to the schedulers on the different
model runs were nonuniform dﬁe to this fact, and thus the
different runs were not directly comparable. This problem
could be quite easily remedied by adding a second random
number generator to the model. One random number‘generator
could be used to generate job characteristics and inter-
arrival times while the other was used for all other pur-
poses, such as deciding which device was addressed by a

given request and how long it would take to service it.
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In this case jobs would arrive at the same simulated times
and would have identical characteristics in all runs which
used the same vaiues for the parameters governing these
quantities and the same main memory size. This would pro-
vide a much better basis of comparison for the results
obtained from the different runs.

For runs using different memory sizes the problem
becomes slightly more complicated. Even assuming that two
random number generators are used, runs made with different
user memory sizes would in general require different numbers
of random values for generating the initial job load. This
would result in different sequences of random numbers being
used to generate the jobs arriving after the beginning of
the run. This problem could be solved by resetting the seed
value of the random number generator used to generate the
job stream to some standard value after generation of the
initial job stream was complete on eéch run. The random
numbers produced from that point on would then be identical,
resulting in the desired uniform job streams. Note that
runs using different memory sizes will still have different
initial job mixes, since larger systems in general will have
more jobs in core initially than smaller systems. This
discrepancy is inherent in the process of using an initial

job load, and there is no way to get around it short of
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starting all systems off with main memory initially empty.

The paging behavior module (PGNXT) in the present model
uses an exponential curve to generate values for the time
betweeﬁ page faults. Comparison of the interfault times
obtained using these exponential curves with the data from
actual systems (Fine et al (48)) shows that the shape of the
paging curve is not strictly exponential in general. The
SIM/61 experiments (39, 44) use an approximation to this
curve with good results. A somewhat more complex paging
behavior module which makes use of a more accurate repre-
sentation of this curve would improve the representation
of paging behavior. The form of the curve depends upon the
paging behavior of the particular jobs being simulated, and
might differ among jobs of different tyves on a single run.
Considerable study might be necessary to determine appro-
priate approximations. Howevex, once determined, these
approximations could be substituted for the present exponen-
tial approximation, and could be expected to produce sig-
nificantly better results.

As discussed briefly in chapter three, the present
form of the model makes the rather simplistic assumption
that all secondary storage devices may be accessed simul-
taneously. In a real system this is in general not the

case. There are I/0 channels and control units involved in
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the transfer of data between main memory and these devices
(disks, drums and tape dfives). Often the devices serviced
by a given channel or control unit can only be accessed one
at a time. A somewhat more detailed discussion of this
situation is presented by Madnick and Donovan (61). One way
of representing this situation within the present framework
of the nodel is to view each channel and the devices con*
nected to it as a single device rather than representing each
device individually. For instance, as a simple example,
consider the system diagrammed in figure 4-1. This system
has twelve disk units (D1 through D12) and three I/0 channels
(C1 through C3). Each channel is connected to four disk
units. We could view this group of devices and channels
as three large disks. These disks would have the same
access times and transmission rates as the individual units
attached to each channel. Since the‘capacity of secondary
storage units is not represented in the model, the greater
capacity of these aggregate devices makes no difference.
This solution is adequate for systems in which there
is only a single path to each device. 1In many practical
systems, however, such as the one shown in figure 4-2,
there may be two or more paths to some devices, and this
situation presents more complicated problems. This system

has the same number of disk units and channels as the one
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shown in figure 4-1, but here there are two paths to six of
the disks and a ;ingle péth to each of the other six disks.
In order to handle this situation the model must record which
devices are connected to each channel. When a request is
issued to a given disk it can be serviced only if the device
itself and at least one of the channels connected to it is
free. If this is not the case the request must wait until

a path becomes free. This presents a more complicated
queuing problem than the scheme presently in use in the model,
since here a request must be queued for two things (a chan-
nel and a device) rather than simply for a device. The
introduction of control units into the network in addition

to I/0 channels adds an additional level of complexity to

the picture. A corresponding increase in the complexity of
the approach described above would be required to handle

that situation. A scheme analogous to the one described
above would be required to handle the interconnections to

the paging devices on the system.

Handling interconnections to tape drives presents
different problems than those discussed above for disks and
drums since the particular tape drive addressed by any given
request is not specified in the model. A partial solution
in this case might be to delay each tape request by some

probabilistically generated length of time to account for
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the effects of contention for channels and control units.
The probability distribufion to be used in generating these
times would depend on the interconnections of the tape
drives.and the channels and control units in the particular
system being simulated. It is not clear how to determine an
appropriate form for this distribution in general.

The complicated scheme outlined above should produce
more realistic I/0 behavior than the present simpler approach
“in modelling systems which have highly interconnected net-
works of I/0 devices. It should be clear from the discussion
above, however, that a considerable amount of additional
overhead would be incurred in adding the capability of han-
dling this more complex situation. This extra overhead
must be weighed against the more realistic behavior of the
model it would produce in deciding whether such an addition
would be merited. The simpler scheme of aggregating devices
and channels might well prove sufficient in many cases. 1In
studies where disk utilization might be a limiting factor
on system performance and where the interconnections of
channels and devices are quite complex, on the other hand,
it would be unrealistic not to consider these interactions.

In contrast to the complexity of handling I1/0 networks,

an addition to the model which could be made feirly easily

is to add the capability of prepaging. Many practical
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systems, such as the Multics sys:-em developed at MIT's
Project MAC (62), bring in several of a job's more recently
used pages when it is reactivated rather than starting it
off with only a single page and forcing the job to issue
page faults to bring in all other pages. To accomplish
prepaging in the model one could simply add an additional
model parameter to specify the number of pages to be
brought in initially when a job is reactivated. If a value
‘of one were input for this parameter the present practice
of bringing in a single page would be followed; if some
larger value were provided, prepaging would be performed.
The choice of which pages are to be brought in -need not be
considered since pages are not identified in the model.

The module which generates page wait times would have to be
modified to cause an initial page wait appropriate to the
number of pages being brought in. This addition would be
gquite worthwhile if the model were to be used to simulate
systems which perform prepaging.

Analysis of the statistics produced by the model on
the test runs suggested several measures not presently
provided by the model's accounting routine which might be
of use. Depending on the studies to be performed with
the model, these or other figures would make useful

additions to the output reports produced by the model.
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First, throughput figures.would ke desirable. Throughput
for the test runs was computed manually by dividing the
elapsed simulated time by the number of jobs terminating
during that interval. More relieble measures of this quan-
tity could be obtained more easily by incorporating the
compilation of throughput data into the accounting routine.
Throughput could be easily broken down by job type and
Q;ibrity level, as is presently done for turnaround time.
Other potentially useful figures include the average and
maximum queue lengths for requests at each disk and paging
device, along with the average queue length for all disks
and for all paging devices. We might also wish to collect
data to compute the percentage of time for which each device
in the simulated system was in use, and again average these
figures for all disks and all paging devices.

The foregoing discussion provides only a sample of the
additions and modifications which might be made to the model
as it exists now. They range from changes as simple as the
inclusion of routines for‘collecting new measures of system
performance to guite complex modifications such as accomo-
dating the representation of I/O networks. The decision of
whether to make a given change should be based on the

tradeoffs between the need for it in a given application

-156~



and the extra overhead it would entail in the execution of

the model.

Some Further Experiments

A number of ideas for further experiments emerge as
simple extensions of thé test runs described in chapter
three. For instance, it would be interesting to explore
the effects of the variation of other parameters besides
main memory size on the performance of one or more of the
schedulers described there. Such parameters as the number
or characteristics of the I/O devices on the system or the
characteristics of the simulated job stream might be varied.
Experiments might be performed where several factors are
varied simultaneously in a coordinated manner. This would
yield information on the interactions of the quantities
being varied. For example, the I/0 demands of the simulated
jobs and the capabilities of the I/0 devices could be varied
to find the point at which these devices become the limiting
resource in the simulated system under different levels of
I/0 activity. As another possibility, the simulated system
might be configured to resemble some actual system which
could be tried out under various job loads to investigate
its capabilities in handling different mixes of tasks.

Alternatively, a given job load found in practice could be
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submitted to a variety of simulated systems to determine the
type of system that was best suited to processing it.

Schedulers that are far more complex than those used in
the test runs could be written and run under the model to
explore their relative strengths and weaknesses. For
instance, one might try out schedulers which might compute
dynamic priorities for jobs during the course of their
execution, maintain multiple queues for jobs behaving in
various different ways, or balance the mix of active jobs
according to job type. Schedulers which incorporate a
number of such disciplines simultaneously could ailso be-
tested. As mentioned in chapter one, a number of studies
have been done on the comparison of different scheduling
schemes in environments similar to those representable by
the model described here. These studies provide an excell-
ent source of suggestions for schedulers to be tried and
results with which to compare the data obtained with the
model described here. 1In order to obtain meaningful results
from such studies, the job stream to be generated by the
model should be described more explicitly in terms of job
types and their characteristics than was done for the test
runs.

Experiments beyond the realm of practical systems

could also be performed in order to gain insights into
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hypothetical situations. This might, for instance, involve
simulating devices having capabilities which are not possible
under qurrent technology but which might someday be realized.
This would allow exploration of the differences such devices
might make in system performance and overall behavior. As
an extension of this we might explore the effects of faster
and faster devicé speeds on the benefits of multiprogramming.
Thé-theory behind multiprogramming relies on the fact that
jobs are blocked for I/O for some fraction of their run
time. Having multiple jobs in core simultaneously allows
the processor to go on to another job when the job it has
been executing must wait for the completion of an I/O request.
As I/0 speeds increase, the fraction of its time that each
job spends in the blocked state will decrease. This should
lead to a decrease in the benefits to be gained from multi-
programming. As I/0 wait times approach zero some limiting be-
havior should obtain. Just what will occur in this range 1is
difficult to determine a priori. The madel provides an
excellent framework for investigating such a question.

One of the unanswered questions about the model at
present is the duration of its startup transient, i.e. the
length of time for which it must run before steady-state

behavior is «chiev . As described in chapter two,
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the model is initialized on each run with a full set of
active jobs in varying stéges of execution. This is done in
an effort to minimize the startup transient. Since each
scheduler has its own conventions on the way it handles jobs
and the amount of core it assigns to each one, however, it
still takes some time for the model to settle down under

the scheduler being used on a given run. No work has yet
been done on exploring how iong this transient is under
different conditions. This is an important question, since
data collected by the accounting routine during the startup
phase is included in the final results produced and tends

to decrease their accuracy in reflecting the steady-state
behavior we wish to measure. Sets of experiments could be
performed in which the accounting scan is begun at later

and later simulated times. When the results obtained from
these successive runs become uniform we can conclude that
the startup phase'is over.

One of the major uses envisioned for the model described
here was as a pedagogical tool. The model provides a real-
istic environment under which students may test out sched-
ulers they have written. It allows them to observe the
behavior of these algorithms in various system environments.
Some experience with the model in this context has already

been gained from its use by a limited number of students.

-160-



Its major drawbacks as a teaching tool appear to be insuffi-
cient error-checking of scheduler commands on the part of
the model supervisor and an efficiency of operation which
is not as good as might be desired. Changes are planned to
remedy these problems as much as possible and improve the
model's usefulness as a teaching tool.

Finally, experiments which require additions or modi-
fications to the code of the model could be undertaken as an
exercise in the processes involved in model building. For
instance, the model presently assumes a simple first-come-
first-served scheduling of I/O requests to each device. A
new module could be written to perform I/0 scheduling in
some other manner, perhaps according to priority level.
This module would have to be incorporated directly into the
model rather than replacing some other module, since there
is no separéte module which performs this task at present.
Some changes would have to be made to the model's super-
visor routine to interface with the new module.

These examples of opportunities for further work with
the model illustrate its applicability to various tasks and
the wide range of purposes for which it might be used. Due
to its modular construction and the large number of adjust-
able parameters available to the user the model may be

adapted to many different purposes. The model as it now
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exists treats many of the processes which interact to make
up the operation of a combuter system in a macroscopic
fashioﬂ, but in many cases it can be adapted to provide
more detail in a given area without requiring major changes
in its overall structure. Though it has limitations and is
not in a finalized form the model is nonetheless a useful

tool for many applications.
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APPENDIY A

HOW TO USE THE MODEL

Running‘the Model

The model consists of sixteen program modules coded in
PL/1l, not including the scheduler being used on a given run.
The easiest and most inexpensive way to use the model involves
compiling each of these program modules separately, linking
the object modules together, and storing the resulting load
module on secondary storage. A sample of the JCL used to
perform this task on the MIT IPC 370/165 system is shown on
page 164. The scheduler to be tested on a given run may
then be compiled and linked into this load module to form
a complete version of the model for execution.

The parameters of the model which are accessible to
the user are read in via GET DATA statements during the
initialization performed by the supervisory routine on each
run. Two separate GET DATA statements are executed. The
first input statement reads variable names and values from
a data file called THDATA, which must be present in order for
the model to be run. This file contains the default values

for all user-accessible parameters in the form

VARIABLE = VALUE
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where VARIABLE is the name of a parameter and VALUE is

the value to be assigned to it. The different assignments
are separated by commas, and the sequence is terminated by

a semicolon. The deck used to create the copy of THDATA

used in the test runs is shown on pages 165 and 166. Use of
this file permits the adjustment of default values without
the necessity of recompiling and relinking the model. No
initializations are performéd in the code of the model itself;
thus it is essential that all parameters be assigned values

in this file.

- The second GET DATA statement reads variable names and
values from SYSIN. Any variable which should have a value
different from that assigned to it in THDATA may be reassigned
via card input, using the same format as described above for
entries in THDATA. This facility allows for the modification
of one or more parameters on each run without the necessity
of making a new copy of THDATA each time. The use of the
DATA option for input allows easy specification of the
particular variables whose values are to be modified. At
least one variable mﬁst be specified in SYSIN on each run.

If no modification is desired to the value of any parameter
assigned in THDATA then some variable name should be input
via a data card reassigning it the value given to it in the

file. A sample deck setup for running the model is given
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on page 167. It shows the JCL used to link a scheduler in
object form into the load module made up of the other modules
of the model. Three variables are assigned values via

SYSIN in this sample.

The Parameters

The parameters which are accessible to the user are
listed beiow, along with a brief discussion of the function
of each one. Variable names which are followed by numbers
in parentheses are array variables. The number associated
with each name indicates the size of that array. All arrays
are one-dimensional, and have index values beginning with
one. Those variables which deal with memory units are
deséribed below as being expressed in bytes or words. The size
of the memory unit used is of no concern to the model itself.
As long as all specifications of memory size are made using
the same basic unit, the model will function in the proper
manner. The unit used on any given run must, however, be
taken into account in assigning values to parameters and
interpreting the results produced.

The parameters are broken down for ease of reference

into the following categories:

- simulation control parametears,
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These variables determine overall model charac-
teristics such as the length of the run to be
performed, user memory size, and arrival rate of
jobs coming into the system.

- parameters specifying job characteristics.
These quantities govern the nature of the jobs
which will be generated by the model, e.g. their
size, CPU time requirement, and I/0 and naging
behavior.

- parameters governing the characteristics and usage
of the I/0 devices.
These include device speeds and access times,
record sizes and distributions of device usage.

- parameters specifying the type(s) of output to be
produced by the run.
This includes options for DEBUG and TRACE printing

and for the standard accounting summary.

Simulation Control

MAXTIME - time limit for the model run, in micro-
seconds
TOTAL_SPACE - total main memory space available to user

programs, in pages.
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INT_RATE -

STDEFAULT -

PRECISION -

Job Characteristics

TYPE_ARRAY (6) -

PRIOR_ARRAY (10) -

inte;arrival rate of jobs entering the
system, in jobs per second.

default value, in microseconds, to be used
as a timeslice if the value specified for
this quantity by the scheduler is invalid.
the number of iterations to be performed
in the routine used to generate normally
distributed values. A value of ten for
this variable yields good sample values

with minimal overhead.

relative frequency of occurrence of jobs
of the corresponding job type. TIf

fewer than six job types are needed the
unused entries should be set to zero.
The sum of all entries in this array
must equal one.

relative frequency of occurrence of jobs
6f the corresponding priority level. As
above, if fewer than ten priority levels
are desired the unused entries in this
array should be set to zero, and all
entries must sum to one. Level one is

the highest priority; level ten the lowest.
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SIZE_MEAN (6)
SIZE_SD

SFACTOR1

SFACTOR2

JTFACTOR

PNPAGE_EXP (6)

mean value for the working set size of
jobs of the corresponding type, in pages.
standard deviation of values for working
set size.

a multiplier applied to the mean values
for working set size given in SIZE_ MEAN
to yield mean values for the total size
of jobs of each type.

a multiplier applied to SIZE_SD to yield
a value for the standard deviation of the
total size figures.

a factor used in generating values for
the total CPU time required by a job.

It governs the length of time for which
a job will run after its last page is in
main memory. This variable must have a
value greater than 1.0, and values close
to 1.0 yield run times which are longer
than those obtained using larger values.
exponent used in generating values for
the time for which a job of the corre-
sponding type will run before generating
its next page fault. The larger the
exponent, the smaller the time intervals

generated.
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DNMEAN (6)

DNSTAN_DEV

DTREL_DT

- average compuate time between peripheral -
I/0 fequests issued by jobs of the cor—'
responding type, in milliseconds.

- standard deviation of the times between
peripheral I/O requests.

- relative frequency of disk operations
versus tape operations. A value of .5
for this parameter implies that disk and
tape operations are equally likely;
values greater than .5 imply that more
disk operations than tape operations are

performed.

Characteristics and Usace of Devices

Paging Devices:

PTACCESS (5)

PTSTAN_DEV

PTTRANS (5)

PAGESIZE

~ average access time for the corresponding

paging device, in milliseconds
- standard deviation of access time values
for paging devices.
- transmission rate of the correspoﬁding
paging device, in bytes or words per
millisecond.

- number of memory units (bytes or words)

per page.
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PTFREQ (5)

Disks:

DTACCESS (20)

DTSD_ACCESS

DTTRANS (20)

DTREC_SIZE

DTFREQ (20)

relative frequency of reference to the
corrésponding paging device. If fewer
than five paging devices are desired, the
unused entries in the array should be set
to zero. The sum of all entries in the

array must equal one.

average access time for the corresponding
disk, in milliseconds.

standard deviation of disk access time
values.

transmission rate of the corresponding
disk, in bytes or words per millisecond.
record size to be used in disk operations,
in bytes or words.

relative frequency of requests to the
corresponding disk. A maximum of twenty
disks may be specified as being part of
the simulated system at any time; if a
smaller number is desired the unused
entries should be set to zero. The sum
of all entries in this array must equal

one.
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Tape Drives:
DTRECORDS - the éverage number of tape records
which must be scanned before the desired
record is reached on a given tape operation.
DTSD_RECORDS - standard deviation of the number of
records scanned before reaching the

desired record.

DTINTERREC TIME interrecord time (read/write access time)
of the tape drives, in milliseconds.
DTTPTRANS - transmission rate of the tape drives on

the simulated system, in bytes or words

per millisecond.

DTTPREC_SIZE record size to be used in tape I/O

operations, in bytes or words.

Output to be Produced

DEBUG_ON - simulated time at which DEBUG printing
is to begin, in microseconds.

DEBUG_OFF - simulated time at which DEBUG printing
is to be discontinued, in microseconds.

(If no DEBUG printing is desired, DEBUG_ON should be given

a value greater than or equal to that given to DEBUG_OFF.)

TRACE_ON - simulated time at which TRACE printing

is to begin, in microseconds.
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TRACE_OFF - simulated time at which TRACE printing
is tolbe discontinued, in microseconds.

(As above, if no TRACE output is desired, TRACE_ON should

be assigned a value greater than or equal to that given to

TRACE_ OFF.)

ACCNT_TIME - simulated time at which the standard
accounting scan is to begin, in micro-
seconds. If this variable is assigned
a value of zero, accounting information
is compiled throughout the run; if a
positive value is input for it, infor-
mation is collected only after the
simulated time in the model exceeds this
value. If no accounting report is
desired this variable should be set to
a value greater than that given to
MAXTIME, the total duration of the

simulation run.
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APPENDIX B

LISTINGS OF THE TEST SCHEDULERS
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/% seses

STMY LEVEL NEST

2 1
3 1
4 1
5 1
6 1

ROUND ROAIN SCHEDULER ss000 8/ PAGE

/e ssese HOUND RORIN SCHEDULER sosae
/.'.".OQOQOQOQQG.OO.QOQ'O000“66’.0.0669#“0OOQ’.QQQIQDQO#OG'..'...QOO'/

SCHED:PROCEDURF (JOHNUM INDEX s TIME s SPACF s SUPTReNXTUORVTSLICF 9 IPTRYOPTR) ¢

/® THIS SCHEDULEP CHOOSFS A JOB TO 8f RPUN FROM AMONG THF RFADY JOBS TN
CNRE IN & ROIND RORIN FASHION, JORS ARF ACTIVATED IM THE OKRDER TN
WHICH THEY ARORIVED AT THE SYSTE™ AS SOOM AS TWFRE [S ROOM FOR '
THEM, THEY REMAIN JN CORF UNTIL THEY TERMINATE, e/

/% JORNUM IS THE NUMRER OF THE J0R WHICH HAS PEE~ RUNNING JUST
PRIOP TO THIS CALL TO THE SCHREDULER. IMDEX IWDICATES THE CAUSE
OF THE TERMINATION OF 1TS PROCESSING, INDFX VALUES HAVF
MEANTNGS AS FOLLOWS:
IMDEX = -1 === INITIALIZATION
¢ - TERVMINATIUN
1 - PAGE REQUEST TSSUED

2 - HIsK OR TAPE QFQUEST ISSUED
4 —— TIME SLICE WUNOUT

10 —— JORB ARKRIVAL

11 - PAGE REGUEST SATISFILED

12 =-- DISK OR TAPE RFQUEST SATISFIED
SPACF GIVES THE TOTAL MEMNRY SPACF AVAILABLE TO USER PRNGRAMS, ANN
TIME THE PRESENT TIMF IN THE MODFL A4S RECORDEN ON THF SYSTEM CLOCK
IN THE MAIN ROUTINE. SJPTR IS A PNINTE® TO TwF FIRST ENMTRY IN THF
JOB STIEAM L IST MAINTAINED BY THE MAIN POUTINI o NXTUOR IS THE
NUMBER OF THE JOB CHNSEN RY THE SCHEDULER TO ~E PROCFSSFD NEXT,
AND TSLICE IS THE TIMESLICE ASSIGNED TO IT. [PTR IS & POINTER TO
THE FIRST SwAPIN COMMAND ISSUED BY THE SCHEDULEW AND OPTR IS A
POINTER TO THE FIRST SwAPOUT COMMAND, #/ ’

DCL (JORNUMy INDEXsSPACE) FIXED RIN(15)sTIME FIXED BIN(31)+SJUPTR PTRE
DCL (IPTR,OPTRIPTRs NXTJOR FIXED RIM(15)s TSLICE FIXFD RIN(31)3
/8 ARGUMENTS®/

/% STRUCTURES FOR INDICATING SwWAPIN AND SWAPQUT COMMANDS *®/

DCL 1 SWAPOUT BASED(SOPTR)
2 JOB# FIXED RIN(15)
2 ATIME FIXED RIN(31)»
2 NEXT POINTER?

DCL | SWAPIN BASED(SIPTR)«
2 JOR# FIXED BIN(15),
2 SIZE FIXED RIN(1S)
2 NEXT POINTFR1

/% VERSION OF JOR DESCRIPTIONS AVAILARIE TO SCHENULER &/
DCL 1 SUOR RASED(SJPT)»

2 JOR# FIXEO RIN(1IS). /#MATCHFS UPPER PORTION OF#®/
2 TYPE FIXED RIN(15), /#JOR STREAM LIST FNTRIES#/
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STMT LEVEL NEST

10
11
12

13

14
15
16

17
18
19
20
21
22
23
24
25

26

27

29
30
31
‘32
33

/® sssee

e bt

—

— b bt bt ot bt s Bt

P s et ot ot sy

~nN AVEL VI VI VRV IC R Eend

=N N NN N

ROUND RORIN SCHEDULER eonsas o/ PAGE

2 PRINRITY FIYED RIN(1S), /#USED RY “AIN ROUTINE®/
2 SIZE FIXED RIN(1S),
2 NEXT PTRS

DCL 1 STATUS RASED(STATPT), /9STRUCTUPE FOR KEFPING TRACK OF#/
2 JOR# FIXED RIN(1S), /8ACTIVE/INACTIVE AND TRAFFICe/
2 ACT_IND BIT(l)o /9CONTROL STATHS, PARTITION SI17Fe/
2 TC_IND BIT (1) /9AND FEGINNING OF FACH RUN #/
2 PARY_SIZE FIXED HIN(1IS)e /®INTERVAL FOR EACH .,08%/
2 BEG_TIME FIXED RIN(31).
2 NEXT PTR3

DCL(FSTATRPTLLSTATPT) POINTER STATIC?
/#HOLD LNCATION OF INITIAL AND FINAL
STATUS BLOCKS®/

DCL{(TPTRWDPTR) PTRs FOUND BIT(1l)s (NEXTJUOBIKPTR) PTR STATICS

OCL MEMSPACE FIXED BIN(1S) STATICS /#*RUNNING RECORD OF FREE MEM,®/
OCL ZERO_FLAG BIT(1) INITIAL('0'8)%

DCL RTYIME FIXED BIN(31)3

PROCESS INPUT INFORMATION #/

IPTR = NULL1 /eINITIALIZE SWAPIN POINTER TO NULL®/
IF INDEX = -1 ,
THEN DO} /9FIRST CALL - INITIALIZE THINGS®/
OPTR = NULL /SINITIALIZE SWAPOUT. POINTER TO NULL =
NO SwAPOQUTS DONE BY THIS SCHEDULER®/
MEMSPACE = SPACE3 /RINITIALIZE RFECORND OF FREF MEMORY®/

TPTR = SUPTR;
DPTR = NULLS
DO WHILE (TPTR == NULL)? /#CREATE A STATUS ENTRY®/
ALLOCATE STATUS SETI(STATPT)3 /%FOR FACH JOK CURRENTLY®/
STATUS.JOR¥ = TPTR=>SJ0OB.JOR#? /*IN THE SYSTEM#/
STATUS.TC_IND = *1'RB3 /#5LL JOHS IMITTALLY RFADYe/
STATUS ACT_IND = 91'B} /®ALL JORBS 1~ITIALLY ACTIVE®
STATUS.PART_SIZE = (TPTR=>S JORSIZE + 11/7:
/#INITTAL PARTITION SIZE IS HALF OF
TOTAL SIZEey
MEMSPACE = MEMSPACE - STATUS,PART_SIZE?
/UKEEP TRACK OF HOw MUCH MEMORY IS STILL
FREE®/
IF DPTR = NULL /3PERFORM LINKING®/
THEN FSTATPT = STATPT}
ELSE NPTR->STATUS.NFXT = STATPT:
DPTR = STATPTS
TPTR = TPTR=>SJOBNEXT}
END3
LSTATPT

DPTR} . /oKEEP LOCATION OF FINAL RLOCK#*/
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/% sasse ROUND KORIN SCHEDULER sonse 8/ PaGE

STMT LEVEL KEST

34 1 1 LSTATPT=>STATUS.ACT_IND = 1083
/eLAST UNB GENEWRATFD IS INACTIVEe/
35 1 1 MEMSPACE = MEMSPACE + LSTATPT=>STATUS,PART_SIZE}

/#CORRFCT COUNT OF TOTAL FREF MEMORY
FOR INACTIVE JOBe/

36 1 1 LSTATPT=>STATUS.NFXT = FSTATPT} /9MAKE LISY CIRCULBR#/
37 1 1 KPTR = FSTATPT=>STATUS,NEXTS /#THIS POINTFR HOLDS A PLACE IN
THE JOR CHaIN®/
38 1 1 OPTP = NULL?S /8NO SWAPOUTS DONF BY THIS SCHEDULER®/
35 1 1 END S
40 1 ELSE IF INDEX = O
41 1 THEN D03 /%A J0R HAS TERMINATFDe/
42 1 1 TPTR = FSTATPT=->STATUS.NEXTS
43 1 1 DPTR = FSTATPTH
[ 1 1 FOUND = '0*R;
45 1 1 DO WHILE (FOUND = '0'H) 3 /4SEARCH FOR STATUS ENTRY®/
46 1 2 IF TPTR=>STATUS.JOR# = JOBNUM
87 1 2 THEN PO /9ENTRY FOUNN®/
L1} 1 3 MEMSPACE = MEMSPACE + TPTR=>STATUS.PART_SIZF3
/oRETURN COWRE TO FRQEF AREA®/
&9 1 3 DPTR=>STATUSSNEXT = TPTR=>STATUS NEXTS
’ /7#ADJUSY LINKING OF STATUS CHAINa/
50 1 3 IF LSTATPT = TPIR
51 1 3 THEN LSTATPT = DPTRY /@RESET POINTFR TO LAST ENTRY®/
s2 1 3 FREE TPTR=->STATUSS /HDELETE THIS ENTRY®/
53 1 3 FOUND = ']1'R}
Sé 1 3 END 3 :
55 1 2 FLSE DOt /eKEEP LNOKING FOR PROPER ENTRY®/
56 1 3 DPTR = TPTR1
57 1 3 TPTR = TPTR->STATUS NEXT:
S8 1 3 ENDS
59 1 2 ENDS
60 1 1 END ¢
61 1 ELSE IF (INDEX=1))(INDEX=2) 1 (INDEX=11) 1} (INDEX=12)
62 1 THEN DO /#1/0 REOUEST [SSUFD OR SATISFIED®/
63 1 1 TPTR = FSTATPTH
hé 1 1 FOUND = '01'B3
L] 1 1 DO WHILE (FOUND = '0tR)§ /#SEARCH FOR DESCRIPTION OF JOB IN
: QUESTION®/
A6 1 2 IF TPTR=>STATUS.JOB# = JOBNUM
67 1 2 THEN DO3 /#PROPFR ENTRY FOUND®/
68 1 3 1F INDEX >= 11
~9 1 3 THEN TPTR=>STATUSSTC_IND = *'1'H3
/*REQUEST SATISFIEN - JOB 1S READY®/
70 1 3 ELSE TPTR=>STATUS.TC_IND = '0'B3
/2REQUEST ISSUED = JOR IS RLOCKED®/
711 1 3 FOUND = *]*B3
72 1 3 END3
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/e sosss ROUND RORIN SCHEDULER sesse e/ PAGE

STMT LEVEL NEST

73 1 2 FLSE TPTR = TPTR=>STATUSNEXT? /eKFEP LOOKINGS/

T4 1 2 END

78 1 1 END?

76 1 ELSE IF INDEX = 10

17 1 THEN DO 78NEW AROIVAL - GENERATE STATUS ENTRY®/

78 1 1 ALLOCATE STATUS SFYI(STATRPT)

79 1 1 STATUS.JOR#® = JORNUMS /#INITIALTZE VALUES FOR NEW FNTRY®/

RO 1 1 STATUSLACT_IND = +0'R? :

Al 1 1 STATUS.TC_IND = 1]'B}

r2 1 1 FOUND = 018}

R3 1 1 TPTR = SJUPTR: /eINITIALIZE POINTéR TO J0R STREAM LISTey

Ré 1 1 DO wWHILE (FOUND = '0'R)3 /eF IND JOH DFSCP, FOR SIZE®/

a5 1 2 IF TPTR->5U0B,J0B# = JOBNUM

a6 1 2 THEN FOUND = v1'R} /%PROPFR ENTRY FOUMDB/

R7 1 2 ELSE TPTR = TPTR=>SJOB.NEXT? /aKFEP LOOKINGS®/

AR 1 2 END3

89 1 1 STATUSPART_SIZE =(TPTR=->SJUOR,SI7E+1) /2%

90 1 1 LSTATPT=>STATUSNFXT = STATPTS /#LINK NEw ENTRY INTN CHAIN®/

91 1 1 LSTATPT = STATPT:

92 1 1 STATUS.HNFXT = FSTATPTS

93 1 1 END3

/% SWAP AS MANY. JOBS &S POSSIBLE INTO CORE#®/
s 1 DPTHR= FSTATPT=>STATUS.NEXT} /2#INJTIALIZF POINTER TO STATUS LIST#/
9S 1 DO wHILE (DPTR~= FSTATPT)}
. /#SEARCH THROUGH THE J0OB LIST FOR

INACTIVE JORS THAT WILL FIT INTO FRFF
CORE®/

96 1 1 IF (DPTR=>STATUS.ACT_IND = *0tR)K(MEMSPACE>= DPTR->STATUS,

PART_SIZE)& (DPTR=>STATUS.TC_IND = #]1'R)

97 1 1 THEN DO% /eNEXT JNB 1S READY AND WILL FIT ~ MAKE
ENTRIFS TU SWAP IT In®/

98 1 2 ALLOCATE SwWaAPING

59 1 2 1F IPTR = NULL

100 1 2 THEN IPTR = SIPTR}S /#INITIALLIZE POINTFR TO FIRST SWAPIN®/

101 1 2 ELSE TPTR->SWAPIN.NEXT = SIPTR; /% 11K SWAPTINS®/

102 1 2 TPTR = SIPTR;S /#KEFP POINTER TO THIS ENTRY FOR
LINKINGa/

103 1 2 SWAPIN,JOR# = NPTR=>STATUS,J0R#; /PENTER NATA IN @/

104 1 2 SWAPIN,SIZE = NPTR=>STATUS.PART_SIZFE; /oSWAPIM ENTRY®/

105 1 4 SWAPINGNEXT = NULLS

106 1 2 MEMSPACE = MEMSPACE = DPTR->STATUS.PART_SIZES

107 1 2 DPTR=>STATUSLACT_IND = 183 /2J0R IS NOW ACTIVFe/

108 1 2 DPTR=>STATUS.TC_IND = 10'83

/%JOB 1S BLOCKED UMTIL FIRST PAGE IS

BROUGHT INTO CORF®/

109 1 2 END?

110 1 1 DPTR = DPTR=>STATUS.NEXT}
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/9 s8sos ROUND RORIN SCHEOULER sevss &/ PAGE

STMT LEVEL NEST

111 1 1 ENDE
/% NOd CHODSE JOBR TO HE WKUN = EITHER PREVIOUS JOR OR A NEW ONE e/
112 1 IF (INDEX >= 10) & (INDEX <= 12} & (NXTJOB -= 0}
113 1 THEN DO? /78J0R RUM PREVIOUSLY IS STILL RUNNABLFE =
HEASSIAN 17T wITH KFMAINING TIMESLICFs/
114 1 1 RTIME = TIME =~ NEXTJOB=>STATUS,RFG_TIMES '
. 118 i 1 TSLICE = TSLICE = RTIMESR
116 1 1 NEXTJUOR=>STATUSBFG_TIME = TIME:
/7eRESET REGINNING NF RUN TMTFRVAL %/
117 1 1 ENDS
118 i ELSE DO /BPREVTIONS JOB WAS GIVEN ITS FuLL
ALLOTMFNT OR IS ~Ow RLOCKED -« CHOOSE
A NEW .JOH®/
119 1 1 NEXTJUOB = NULL?S
120 1 1 DO-wHILE (NEXTJOB = NULL)S
121 1 2 IF (KPTR=->STATUS,TC_IND = '11R)&A(KPTR=>STATUS.ACT_INN = 1]118)
122 1 2 THEN DOt /BNEXT JOB IS READY AND ACTIVE®/
123 1 3 NEXTJOR = KPTR} /2J08 CHOSEN®/
124 1 3 NXTJOR = NEXTJOB=>STATUS.,JORHI
/4DESIGNATE THIS AS NEXT JOB TO BE RUN®/
125 1 3 TSLICE = 50000: /#ASSIGN STANDARD TIME SLICE®/
126 3 NEXTJOB->STATUSBEG_TIME = TIMES}
/oINITIALIZE BEGIMMING OF RUN INTERVAL®/
127 1 3 ENDS )
128 1 2 KPTR = KPTR=->STATUS.NEXTS /72UPDATE POINTER TO NEXT JOR®/
129 1 2 IF KPTR=>STATUS.JNB# = 0
130 1 2 THEN IF ZERO_FLAG = '0'B
131 1 2 THEN DO
132 1 3 KPTR = KPTR=>STATUS.NEXT?S
/8SKIP JOR ZFRO UNTIL ALL OTHER JOBS
HAVE RFEN TRIED.®/
133 1 3 ZERO_FLAG = '1'R3
/#5ET FL2G ON SO JUNH ZERO IS CHOSEN IF
SCAN COMES ARDUNN AGAIN,®/
134 1 3 ENDS
135 1 2 ENDS
136 1 1 END
137 1 END SCHED}3
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/% ssess

STMT LEVEL NfST

2 1
3 1
4 1
5 1
6 1

PREEMPTIVE SCHEDULER esove oy PAGE

/® scaen PREFMPTIVE SCHEDULER ‘ evssose w7
/RSSO0 NI RO R IR NG BB OBRBUCRDEOOTERNTOANOVODANDIDNEOOROCDNDOBDOVIBORD

SCHED : PRNCEDURE (JOBNUM 3 INDEX s TIME+SPACF s SUPTReNXTUGBy TSLICFSIPTRIOPTR) §

/% THIS SCHEDULER CHOOSFS A JOB TO BE RUN FROM AMONG THFE RFADY JOBS IN
CORE ACCORDING TO PRIORITY LEVEL. JOBS ARE ACTIVATED aCCORDING TO
PRIORITY LEVEL AS SNNON AS THERE [S ROOM FOR THEM, AND REMAIN IN
CORE UNTIL THEY TERMINATE, @/

/* JOBNUM 1S THE NUMBER OF THE JOB INVdLVED IN THE EVENT WHICH HAS
JUST OCCURRED IN THE SYSTEM, AND INDEX IDENTIFIES THIS FVENT,
INDEX VALUES HAVE MEBANINGS AS FOLLOWS:

INDEX = =] === INITIALIZATION

n .- TEXMINATION

} - PAGE REQUEST T1SSUED

? —— DISK OR TAPE RFQUEST ISSHFD
4 -—— TIME SLICE wRUNOUT

10 -——— JOB BRRIVAL

11 - PAGE REDUEST SATISFIED

12 .- DISK OR TAPE RFQUEST SATISFIED

SPACF GIVES THE TOTAL MEMORY SPACF AVAILABLE TO USER PROGRAMSs AND
TIME THE PRFSENT TIMF IN THE MODEL AS RECORDEN ON THE SYSTEM CLOCK
IN ThE MAIN ROUTINE, SJPTR IS A POINTER TO THE FIRST EMTRY IN THF
JOB SY~EAM [ IST MAINTAINED By THE MAIN ROUTINF. NXTJU0O3 IS THE
NUMBER OF THE JOB CHOSEN RY THE SCHFDULER TO HE PROCESSHD NEXTe
AND YSLICE 1S THE TIMESLICE ASSIGNFD TO IT. IPTR IS A& POINTER TO
THE FKRST 3AAPIN COMMAND ISSUED BY THE SCHEDULER AND OPTR IS A
POINTER TH THE FIRST SWAPOUT COMMAND, #/

DCL (JOBNUNy INDEX¢SPACE) FIXED BINC15) s TIME FIXED BIN(31)+SJPTR PTR}
DCL (JPTR,OPTRIPTRe NXTJOR FIXED RIN(15)s TSLJICE.FIXED RIN(31)%
/B ARGUMFMTS®/

/% STRUCTURES FOR INDICATING SWAPIN AND SWwAPOUT COMMANDS #/

OCL 1 SWAPOUT BASED(SOPTR)
2 JOR# FIXED RIN(1S)
2 ATIMF FIXED RIN{(31)e
2 NEXT POINTER:

DCL 1 SWAPIM BRASED(SIPTR),
2 JOR¥ FIXED RIN(1S)
2 SIZE FIXED RIN(1S)y
2 NEXT POINTER:

/% VERSION OF JOR DESCRIPTIONS AVAILABLE TO SCHENULER ¢/

DCL 1 SJOB BASED(SJPT)
2 JOR# FIXED RIN(15), /#MATCHES UPPER PORTION OF#/
2 TYPE FIXED RIN(1S)e /4JOR STREAM LIST FNTRIES®/
2 PRIORITY FIXED BIN(1S). /RUSED BY MAIN ROUTINE®#/
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/e seess PREFMPTIVE SCHEDULER veane oy PAGE

STMT LEVEL NEST

2 SI7E FIXED RIN(1IS),
2 NEXT PTRY

7 1 DCL 1 STATUS RASED(STATPT) . /eSTRUCTURE FOW KEFPING TRACK OFs/
2 JOP# FIXED HIN(1IS), /oACTIVE/ZINACTIVE A4D TRAFFICe/
2 ACT_IND BIT(1), /9CONTROL STaTuSy PARTITION SIZFe/
2 TC_IND BIT(1) /2AND REGINNING-OF EACH RUN o/
2 PART_SIZE FIXED BIN(1S)e /®INTFRVAL FOR EACH JOB®/
2 REG_TIME FIYED RIN(31)s
2 PRIORITY FIYED BIN(15},
2 NEXT PTRY
8 1 DCL(FSTATPTLSTATPT) POINTER STATIC:

/#HOLD LNCATION OF INITIAL AND FINAL
STATUS BLOCKS*#/ .

9 1 DCL(TPTR+DPTR) PTRe FOUND BIT(1)es (NEXTJORKPTR) PTR STATICH
10 1 DCL MEMSPACE FIXED RIN(15) STATIC: /4RUNNING HECORD OF FREE MEM, o/
11 1 DCL ZFRO_FLAG BIT(1) INITIAL('0'*H)?
12 1 DCL RTIME FIXED BIN(31)3
13 1 DCL P_LEVEL FIXED BIN(1IS) 3 /#VARTARLE FOR KFEPING TRACK OF PRIOR-
. ITY LEVELS FOR WUNNING AND ACTIVE
Jnasay
/% PROCESS INPUT INFORMATION ¢/
14 1 IPTR = NULLS /2INITIALIZE SWAPIV POINTFR TO NULL%/
15 1 OPTR = NULL? /#INITIALIZE SwWAPOIT POINTFR TO NULL®/
16 1 IF INDEX = =1
17 1 THEN DO3 /9FIRST CALL - INITIALIZE THINGS#®/
18 1 1 MEMSPACE = SPACE? /#INITIALIZE RECORN OF FWFF MEMORY®/
19 1 1 TPTR = SJPTR}
2n 1 1 DPTR = NULL?S
21 1 1 DO WHILE (TPTR == NULL)S /#CREATE A STATUS ENTRY®/
22 1 2 ALLOCATE STATUS SETI(STATPT) /%FOF FACH JOR CHRRENTLY®/
23 1 2 STATUS, JOB# = TPTR->SJOR.JOR#? /721N THE SYSTFMey
24 1 2 STATUS.TC_IND = '1'R3 7eALL JORS I~ITIALLY RFADY®/
25 1 2 STATUSLACT_IND = *1'83 /eALL JUBS INITIALLY ACTIVE®/
26 1 2 STATUS.PART_S{7E = (TPTR=>SJUOR,SIZE + 1)/2%
/#INITIAL PAPTITION SIZE IS WALF OF
TOTAL SIZEe/
27 1 2 STATUS.PRIORITY = TPTR=>SJOR,PRIORITYS
/#RECORD PRIORITY LEVEL FOR LATER USE®/
28 1 2 MEMSPACE = MEMGPACE = STATUS.PART_STZ7E:
/SKEFP TRACK OF HOwv MUCH MFEMORY IS STILL
FREE®/
29 1 2 IF DPTR = NULL /#PERFORM LINKING®/
30 1 2 THEN FSTATPT = STATPT}
31 1 2 ELSE DPTR=->STATUS.NEXT = STATPTS
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/8 sesse PREEMPTJVE SCHEDULEFR sooce e/ PAGE

STMT LEVEL NEST

1?7 1 Ird nPTR = STATPT:

23 1 2 TPTO = TPTR=>SJ0BNEXTS

4 1 2 ENMS

35 1 1 LSTATPT = DPYR} /eKEEP LOCATION OF FINAL RLOMKS/
36 1 1 LSTATPT->STATUSCACT_IND .= '10'H:

/*LAST JOB GFNERATFD 1S INACTIVE®/
37 1 1 MEMSPACE = MEMSPACE ¢ LSTATPT->STATUS.PART _SIZF3
/eCORKECT COUNT OF TOTAL FRFF MEMORY
FOR INACTIVE JOR#/

38 1 1 LSTATPT=>STATUS.NFXT = FSTATPT: /9MAKE LIST CIRCULARe/
39 1 1 KPTR = FSTATPT=>STATUS.NEXTS /oTHIS POINTFR HOLDS A PLACE IN
THE J0% CHAIN®/
40 1 1 OPTR = NULL} /aNO SWAPOUTS DONE By THIS SCHEDULER®/
41 1 1 END?
42 1 ELSE IF INDEX = 0
43 1 THEN NO3 /°A JUOR HAS TERMINATED®/
44 1 1 TPTR = FSTATPT=->STATUSSNEXTS
45 1 1 DPTR = FSTATPTS
46 1 1 FOUND = '0'83
47 1 1 DO wHILE (FOUND = 10¢'8)3 /#SEARCH FOR STATUS FNTRY®/
48 1 2 IF TPTR=>STATUS.JOR# = JORNUM
49 1 2 THEN NOY /72ENTRY FOUNp®/
50 1 3 MEMSPACE = MEMSPACE + TPTR->STATUS.PART_SIZE:
/#RETURN CORE T0O FRFEE AREA®/
51 1 3 NPTR=->STATUSNEXT = TPTR=>STATUS.NEXT?S
/78ADJUST LINKING OF STATUS CHAINes
52 1 3 IF LSTATPT = TPTP
53 1 3 THEN LSTATPT = DPTR} -~ /¢RESET POINTEw TO LAST ENTRYS/
S& 1 3 FREE TPTR=>STATUSS /eNFLETE THIS FNTRY®/
S5 1 3 FOUND = *1*R3
s6 1 3 ENDS
s$7 1 2 ELSE PO} /eKEFP LOOKING FOR PROPER ENTRY®/
58 1 3 DPTR = TPTIR:
59 1 3 TPTR = TPTR=>STATUS.NEXT?
60 1 3 END$
&1 1 2 ENDY
w2 1 1 ENDS
&3 1 ELSE TF (INDEX=1)1 (INDEX=2) 1 (INDEX=11) | (INDEX=12)
LS 1 THEN DU} /21/0 REOQUEST ISSUFD OR SATISFIED®/
65 1 1 TPTR = FSTATPT ’
&6 1 1 FOUND = 'n*B3
67 1 1 DO WHILE (FOUND = '0'R)3 /#SEARCH FOR DESCRIPTIONM OF JOR IN
QUESTION®/
68 1 2 1F TPTR=>STATUS.JOB# = JOBNUM
~9 1 2 THEN DO% /#PROPER ENTRY FOUND®/
70 1 3 IF INDEX >= 11
71 1 3 THEN TPTR=>STATUS.TC_IND = t1'R3

/*REQUEST SATISFIEN - JOB 1S READY®/
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ELSE TPTR=>STATUSLTC_IND = *0*R}
/eREQUEST [SSUED = J0B IS RLNACKED®/
FOUND = *11'R}
ENDE
ELSE TPTR = TPTR=>STATUSNEXT? /2KEEP LOOXKING®/
£
END

ELSE IF INDEX = 10
THEN DU /#NEW ARRIVAL - GENERATE STATUS ENTRY#/
ALLOCATE STATUS SFT(STATPT)}
STATUS.JOHE = JOBNUME /oINITIALIZE VALUES FOR NEW FNTRY®/
STATUS,ACT_IND = ¢0*'R}
STATUS.TC_IND = v}183 .
FOUND = '0'B}§
TPTR = SJUPTRS /oINITIALIZE POINTFR TO JNB STREAM LISTs/
00 wHILE (FOUND = '0'9)3 /#FIND JOK DFSCR. FOR SIZEe/
IF TPTR->SJ0H,JOB# = JOBNUM
THEN FOUND = *1'8B3 /4PHOPER ENTRY FOUMD®/
ELSF TPTR = TPTR=->SJOB NEXT3 /#KEEP LOOKING®/
ENDS
STATUS.PART_SIZE = (TPTR=>SJ0B.SI7E+1)/23%
STATUS.FRIORITY = TPTR=>SJOB.PRINRITY?:
/#RECORD PRIORITY LFVEL FOR LATER USFe/
LSTATPT~>STATUSNFXT = STATPTS /#LINK NEW ENTRY INTO CHAIN®/
LSTATPT = STATPT:
STATUS.NFXT = FSTATPTS
END}

SwAP AS MANY J0BS AS POSSIBLE INTO CORE#/

OPTR= FSTATPT=->STATUS.NEXTS /RINTTIALIZF POINTER TO STATUS LIST®/

P_LEVEL = 113

DO wHILE (DPTR-~= FSTATPT) S /#FIND LOWEST PRIORITY LEVFL AMONG
ACTIVATABLE JowrSe/

IF (DPTR=>STATUS,aCT_IND = 'O0'R)A(MEMSPACE>= OPTR->STATUS,
PART_SIZENS(UPTR=>STATUSTC_IMD = "1'B)IS(P_LEVFL >
DPTR=>STATUS.PRIORITY)

THEN P_LEVEL = UPTR=->STATUS.PRIORITY}

DPTR = NPTR=>STATUS.NEXTS

END3
DO WHILF (P_LEVEL <= 10)3% /eSWAP 1N AS MANY JOBS AS POSSIBLE®/

DPTR = FSTATPT=>STATUS.NEXTS

DO WHILE (NPTR -~= FSTATPT) !

IF (DPTR=>STATUSACT_IND = "n*B)& (MEMSPACE>=DPTR->STATUS.
PART_SIZEIR(DPTR=>STATUS,TC_IND = '1*H)R(P_LEVFL = DPTR=>
STATUSLPRIORITY)

THEN DO /¢SWHAP IN THIS JOB=/

ALLOCATE SWAPINS

IF IPTR = NuLL
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i% saese PREEMPTIVE SCREDULER sanos o/ PAGE

1My LEVEL MFST ,

111 1 1 THEN [PTR = SIPTRY  /SINITIALIZE POINTFW TO FIRST SWAPIN®/
112 1 3 ELSE TPTR=->SWAPINJNEXT = SIPTR: /OLINK SWAPINSS/
113 1 3 TPTR = SIPTR: /eKEEP POINTER TO THIS ENTRY FOR
LINKING®/
11 1 3 SWAPIN.JOB# = NPTR=>STATUS,JOR#} JPENTER NATA IN #/
115 1 3 SWAPIN.SIZE = NPTR->STATUS.PART_SIZES /%SWAPIN ENTRYs/
P15 i 3 SWAPTIMJNEXT = NULL?
117 1 3 MEMSPACE = MEMSPACE = DPTR=->STATUS,PART_STZE}
118 1 3 DPTR=>STATUSCACT_IND = '198%  /¢JOB 1S NOW ACTIVF#/
119 ! 3 DPTR=>STATUS.TC_IND = *0'B}
/#JOR 1S BLOCKED UNTIL FIRST PAGE IS
BROUGHT INTO CORFe/

125 1 3 END!
el 1 ? DPTR = NDPTR=->STATUS.NEXTS .
122 1 2 ENDY
1723 1 1 P_LEVEL = P_LEVEL + 1%
124 1 1. END} ‘

/% NOW CHNOSF JOR TO 8F RUN = EITHER PPEVIONS JOR OR A NEW ONE #/
125 1 P_LEVEL = 113
126 1 . DPTR = FSTATPT=>STATUSSNEXT?S
127 1 DO WHILE (DPTR ~= FSTATPT)} /eFIND LOWEST PRIORITY LEVEL AMONG

) PUNNABLE JORG®/
128 1 1 If (DPTR=>STATUS.TC_IND = *1'B)&(NPTR=>STATUS.ACT_IND = *118)¢%
(DPTR=->STATUS (PRIORITY. < P_LFVEL)

129 1 1 THEN P_LEVEL = DPTR=>STATUS.PRINPITY:
130 1 1 DPTR = DPTR->STATUS.NEXTS
131 1 1 END3
132 1 IF (INDEX >= 10) & (INDEX <= 12) & (NXTJO®B -= 0) & (P_LFVEL =

NEXTJOB=>STATUS.PRIORITY)
i33 1 THEN DOt /#J0B RUN PREVIOUSEY IS STILL RUNNABLE -
AND 1S STILL HWIGHEST PPIORITY RUNNABRLE
JOB - PFASSIGN 1T wiTH REMAINING

TIMESLTCE®/

134 1 1 RTIME = TIME - NEXTJUOB->STATUS.RFG_TIMES

135 1 1 TSLICE = TSLICE = RTIMES}

136 1 1 NEXTJOR=>STATUS.BEG_TIME = TIME? .

/#RESET REGINNING NF RUN INTFRVAL®/

137 1 1 ENDS

138 1 ELSE DO /ePREVIOUS JOR WAS GIVEN ITS FULL
ALLOTMFNT OR IS ~mOw RLOCKED OR IS NO.
LONGER HIGHEST PRIORITY RUNNABLE JOBR -
CHOOSE & NEW JOH TO BE RUN®/

139 1 1 IF P_LEVEL = 11 .

140 1 1 THEN DOt /#NO JORS ARE ELIGIRLE TO BE RUN - RUN
JOB 7EPO®/

141 1 2 NXTJOR = 0%

142 1 2 TSLICE = 500003

143 1 2 END

144 1 1 ELSE 0013 ' /#THERE 1S AT LEAST ONE ELIGIBLE JOB -
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CHOOSE ONEey
MEXTU0R = NULLY
DO wHILE (NEXTJO0B = NULLIE

IF (KPTR=>STATUS.TC_IND = "1 'HiR(KPTR=->STATUSLACT_IND = '1'8)
& (KPTP->STATUS,PRIORITY = P_LFVEL)

THEN DO /8NEXT OB IS READY AND ACTIVE AND
HIGHESTY PRIORITY®/
NEXTJUOR = KPTQ1 /2408 CHOSENe/

NXTJOH = NEXTJOR=>STATUS.JOR#Y
/¢DESIGNATE THIS AS NEXT JOB TO RE RuUNe/
TSLICE = 500003 /oASSIGN STANDARD TIME SLICE®/
NEXTJUOR=>STATUS.BEG_TIME = TIMES
/#INITIALIZE BEGINNING OF PUN INTERVALS/ *
ENTS
KPTR = KPTR=->STATUS.NEXTS /eUPNATE POINTER TO NEXT JOBe/
IF KPTR=>STATUS.J0B® = 0
THEN KPTR = KPTR~>STATUS.NEXTS /RSKIP JuR ZERQ#/
END?
ENDS
ENDS
END SCHED?

3
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/* wsps

LEVEL NEST

/e

ODFACTIVATING SCHEDULER sonoe v/

cacss DEACTIVATING SCHEDULER soson w/

/BRI B0 0PN DEE DRI D RN BN NNE R G DR G OONRBIGOOARBERNNTIRNGOORAIRRDONRNDDN
SCHED:PRNCEDURE { JOBNUM g INDEX « TIME s SKACF ¢ SURPTRINXTUORGTSLICF ¢ IPTRWOPTRI S

/®

VA

THIS SCHEDULER CHOOSFS A JOH TO KF PUN FROM AVONG THF RFABY JOBS IN
CORE IN AROIND ROABIN FASHIGON. JNRS AKE ACTIVATED I TwE ORDER IN
WHICH THEY AQRIVED AT TWE SYSTEM aS SOON AS TwERE [S RONM FOR

THEM, JORS ARE DEACTIVATEU WHENEVERP THEY DO NISK GR TARE 1/0 AND
ARE FLIGIRLF TO BE RFACTIVATED writ THELIR 1/0 IS COMPLETE. </

JOSNUM 1S THE NUMREQ OF ThE JOB WHICH HAS HFEM ~UNNING JUST
PRIOR 1O THIS CALL TO THF SCHEVULFR, INMDEX IMDICATFS Tw=E CAUSE
OF TWE TERMINATION OF ITS PHOCESSING, INUDEX VALIIES HAVF
MEANINGS AS FOLLOWS:

INDEX = =1 ===  INITIALIZATION
0 em- TERMINATION
1 -=~  PAGE WEQUEST TSSUER .
? === DISK OK TAPE RFQUEST ISSUED

3 - TIME SLICE WyUNOUT

10 === JOR BRRAIVAL

11 -——— PAGE REGUEST SATISFIED

1? - DISK OR TAKE QFQUEST SATISFIFD
SPACE GIVFS THE TOTAL MEMCrY SPACF AVAILARLE TO USER PROGRAMS, AND
TIME THE PRFSFNT TIMF IN THE MODEL 84S RECORDEN ON THF SYSTEM CLOCK
IN THF MAIN ROQUTINE, SJPTKR IS A POINTER TO Tk FIRSY ENMTRY IN THF
JOB STI@FEAM L IST MAINTAINED BY THE MAIN WOUTINF, NXTJUOH IS THE
NUMHFR OF THE JOB CHNASEN HBY THE SCHFDULER TO ~E PKROCFSSFD NEXT,
AND TSLICF IS THE TIMESLICE ASSIGNFD TO IT7, [PTR IS A POINTER TO
THE FIRST SWAPIN COMMAND ISSUED BY THE SCHEDUI ER AND OPTR IS A
POINTEX TO THE FIRPST SwaPOUT CuMMaND, #/

DCL (JORNUMy INDEX s SPACE) FIXED BIN(IS)sTIME FIYED HIN(31)eSJPTR PTRY
DCL (IPTRVWOPTRIPTR. NXTJOR FIXED RIN(1IS)s TSLICE FIXFD =IN(31)%
/9 ARGUMFEMTS ey

STRUCTURES FOR INDICATING SWAPIN AND SWAPOUT COMMANDS #/

DCL 1 SwAPOUT BASED(SOPTR)
2 JORs FIXEDN RIN(1S)
2 ATIME FIXED RIN(31),
2 NEXT POINTERG

DCL 1| SWAPIN BASED(SIPTR)
2 JOR& FIXED HIN(1S).
2 SIZE FIXED ATN(15),
2 NEXT POINTER?:

VERSION OF JOB DESCRIPVIONS AVAILARLE TO SCHEDULER e/

DCL 1 SJOB BASED(SJPT)
2 JOR# FIXED RIN(IS), /R#MATCHES (JIPPER PORTION OF*®/

PAGE
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10
11
12

26

27
28
29
30
31

+ 32

33

/e sssse
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N VR VLV VR VI o

VI VIG VI VI VI

/%

DFACTIVATING SCHEDULER acnoe oy PaGE
2 TYPE FIXEO AINIIS) /8J0P STRR M LIST FNTRIESH/
2 PRIORITY FIXED HIN(IS) /4USED RY iBIN ROUTINMNE®/
2 SI7E FIXED RIN(1S).
2 NEXT PTR:
DCL 1 STATUS BASEN(STATPT), /oSTRUCTUKE FOP KEFPING TRACK OFe/
2 JOR# FIXFD AIN(1S), 728CTIVE/INACTIVE AND TRAFFIC®/
2 ACT_IND BIT(1l)s /9CONTROL STATUSe PARTITION SIZE®/

2 TC_IND BIT(1)y /8AND HKEGINNJNG OF FACH RUN #/
2 PART_SIZE FIXEN RIN(1IS). /#INTERQVAL FOR EACH JOHse/

2 RFG_TIME FIXED SIN(31).
2 NEXT PTR3

DCL(FSTATPTLLSTATPT) POINTER STATIC?
/9HOLD LNCATION OF INITIAL ARD FINAL
STATUS BLOCKS®/

DCL(TPTR,NPTR) PTRe FOUND BIT(1)s (NEXTJORIKPTR) PTR STATICH

DCL MEMSPACE FIXED BIN(15) STATICH JHRUNNING RFCORD OF FREE MFM ¢/
DCL 7ERO_FLAG RIT(1)Y INITIAL('0'B)3

DCL PTIME FIXED BIN(3]1)3

PROCESS TMPYT INFORMATION @/

IPTR = NULLS /oINITIALTIZE SwaPltt POINTF® TO NupLL®/

OPTR = NULL3 /RINITTAI 1ZE SWAPOUT POIMNTFR TO NuLL#®/

IF INDEX = =]

THEN D03 /RFIRST CALL = INITIALIZE THINGS®/
MEMSPACF = SPACEH: /e=INITIAI IZE RECOWn OF FRFF MEMORY®/

TPTH = SJUPTR;
DPTR = NULL $
N wWHILE (TPTR == NULL)? J#CREATE A STATUS ENTRY®/
ALLOCATE STATUS SET(STATPT): /eFOR FACH JOR CHRREMTLY®/
STATUS,JOB# = THTR=>SJ0R.JORMS 7EINM THE SYSTEMS/
STATUS.TC_IND = *t]1'R§ /e8LL JORS InIT1ALLY RFADY#/
STATUS.ACT_IND = *1'B1 /%ALL JOHS INITIALLY ACTIVE®/
STATUS,PART_STIZE = (TPTR=>SUNR,SIZE + 1)/21%
/2 INITIAL RPARTITION S1ZE IS HALF OF
TOTap SIZew/
MEMSPACE = MEMSPACE - STATUS,PA=T_SI7E:
/HKEFP TRACK OF HO'Y MUCH MEMORY IS STILL
FRFE#/
IF NPTR = NULL /#PERFNRM LINKING®/
THEN FSTATPY = STATPT
ELSE DPTR=>STATUS NFXT = STATPT3
DPTR = STATPT! ’

TPTR TPTR=>SJUBNEXT?
END3
LSTATPT = DPTR} /9KEEP LOCATION OF FINAL RLOCK®/
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LSTATPT=->STATUSLACT_IND = 10°'H3

/4LAST (INB GFNERATEN [S [HMACTIVES/
MEMGPACE = MEMSKHACE & LSTATPT=->STATUS,RART_ST763%

75CORRFCT COUNT OF TOTAL FRFF MEMOKWY

FOR INACTIVF JOme/
LSTATPT=>STATUSSNFXT = FSTATPTR /eMAKE LIST CIRCULARS/
KPTR 35 FSTATPT~>STATHS NEXTH /79THIS POINTER HOLDS A& PLACE IN
THE JOR CrrIne/
BOTE = NULL /eNO SWAPOUTS DOME KY THIS SCHEDULER®/
Enn g

ELSE IF [NDFX = 0

THEN DO /9A JOR HAS TFRMINATED®/
TPTR = FSYATPT=>STATUS.NEYTS
DPTR = FSTATPT}
FNUND = *0'83

DN WHILE (FOUND = *0'R)3 /B#SEARCH FOR STATUS ENTRY®/
1F TPTIR=>STATUS.JORE = JORNUM
THEN DO /9ENTRY FOUNDS®/

MEMSPACE = MEMSPACE ¢ TPTR->STATUS.PART_SIZF1
/eRETURN CORE TO FREE ARFA®/
NPTR=>STATUS.NFXT = TPTR=->STATUS.NEXT!
/#ADJUST LINKING OF STATUS CHAIN®/
IF LSTATPT = TPIR
THEN LSTATPT = DPTRi /#BFSET POINTER TO LAST ENTRY®/

FRFE TRPTR=>STATUSY /#DELETE THIS FNTRYS®/
FOUND = *11RY

END

ELSE DO /4KEFP LOOKING FOR PROPER FNTYRY®/
NPTR = TPTRE :
IPTR = TPTR=>STATUS,NEXTS

END S

Frng

END 3

ELSE IF (INDFX=1)] (INDEX=2) 1 (INDEX=11) 1§ (INDEX=17)
THEN DO 72170 BFNUEST ISSLED OR SATISFIED®/
TOTR = FSTATPRTS
FOUND = '0tR3
NO WHILE (FOUND = 0'H)% /SSEARCH FOR DESCRIPTIOM OF JOH IN
AUESTIUN®/
IF TPTR=->STATUS.JORSE = JOBNUM
THEN DO /¥PROPER ENTRY FOUMU®/
IF INDEX >= 11
THFN TPTR=>STATUS.TC_IND = *1'R}
/2REQUEST SATISFIEN - JOR IS READY#/
ELSE TPTR=>STATUS.TC_INND = '0'K3
/#REQUEST ISQUED = JOR IS RLOCKED®#/
FOUND = ¢]vAj
END3
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/e segoe NEACTIVATING SCHEDULER ssnpe o/ PAGE

RIMT LEVEL NFST
73 1 l ELSF TPTR = TPTR=>STATUSMNEXTS JRKEEPR LOOK]IHG2/
T4 i 4 EnD:
7= 1 1 IF INDEX = 2
T& 1 1 THEN NNS /9JOR HAS 1SQUED A PFWIPHFWAL 1/0
REQUFEST - SwaP IT auTeys
77 H 2 AULOCATF SWAPNHTE
7R } 2 OPTR = SOPTR3 /9AT MOST ,ONE SWAPOUT ON ANY CALL®/
79 1 ? SWAPOUT JOHS = JOHN!IMY
an 1 2 SWARPOUTNEXT = NULL?S
2} i 4 TPTR=>STATUS.ACT_IND = vQ'R2
/ENOTF THAT THIS JUNKH IS NO LONGER IN
CORt»/
22 1 2 MEMSPACE = MEMSPACE ¢ TPTR->STATUS,PART_STZF 3
; /#ADJIST AMOUNT OF FREF MEMORY TO
REFLFCY DEACTIVATINN®/
a3 1 rd ENDS
a4 1 1 - END
el 1 ELSE TF INDFX = 10
“h 1 THEN DO3 /eNEW ARCEVAL = GENFRATE STATUS ENTRY®/
“7 i 1 ALY OCATF STATUS SFTI(STATPT) S
aa 1 i STATUS,JORE = JOHBNUME /#INITIALLIZE VALUES FOR NEW FNTRY®#/
29 1 1 STATUSLACT_IND = *0'R3$
30 1 1 STATUS.TC_IND = v} B3
91l 1 1 FOunD = 10183
a2 1 1 TPTW = SYPTR: /#INITIALIZE POINTFR T0O JOR STREAM LIST®/
e3 1 1 DN wHILF (FOUND = *0'R)3 /RFIND JOR DFSCR, FOR SIZEw/
24 1 2 IF TPTR=>SJOK,JUBK = JOKNUM
as 1 ? THEN FOUND = 11%HS /9PROPFR ENTRY FOUtDe/
Q& 1 2 ELSF TPTR = TPTR=>SJOR NEXTS /RKEEP LOOKING®/
7 1 2 ENN
R 1 1 STATUS.PART_SIZt =(TPTR=>SJOR.,ST7F+]) /2%
Q99 1 1 LSTATPT=>STATUSNFXT = STATPTE /®LINK NEW ENTRY INTN CHAIN®#/
inn 1 1 LSTATPT = STATPT:
101 1 1 STATUSNEXT = 7STaTPT?
1n2 1 1 END3
/% SWAP AS MANY JOBS AS POSSIBLE INTN CORE®/
103 1 DPTR= FSTATPT=>STATUSNEXTS /HINITIALIZF POIMTER TO STATUS LIST#/
1ns 1 DO WHILE (NPTP-z= FSTATPT)S
/8SEARCH THROUGH THFE J0o8 LIST FOR
INACTIVE JORS THAT wltl FIT INTO FRFF
COWE e/
105 1 1 IF (DPTR=>STATUS.ACT_IND = '0*B)K (MEMSPACE>= DPTR=->STATUS,
PART_SIZE)&(DPTR->STA7US-TC_IND = 11'B)
106 1 1 THEN DO /¢NEXT JOB IS READY AND WILL FIT = MAKF
ENTRIFS TO SwAP 1T IN&/
107 1 2 ALLOCATE SWAPINY

108 1 2 . IF IPTR = NULL
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/% easse DFACTIVATING SCHEDULER enzea oy PAGE

STMT LFVEL NFST

179 1 2 THEM IOTR = SIOTH: /EINTTIALIZE POINTHR TO FIWST SwWARIN®/
110 1 ? FLSF TOTR=>SwaARINJNFXT = SIPTRY 72LINK SWAPINSe/
11 1 2 TPTR = SIPTIR: JOKEFR POINTFR TO THIS EMTRY FOMW
LINKINGS/
112 1 e SWAPIN,JOBHE = NPTR=>STaTUS,JnRwt JRENTER NATA IN @/
113 ! 2 SWAPIM,SIZ2E = NDPTR=>STATUS,PART_S[ZFE /¢SWAPIN FNTRYSs/
1le 1 I'4 SWAP TN NEFXT = wNULLS
115 1 2 MEMGPACF = MEMSPACE = DPTR=>STATUS , PART _SI7F3
116 1 ? DPTR=>STATUSLACT_IND = 1tk /9308 IS MOW ACTIVFey
117 1 2 NPTR=>STATUSLTC_IND = 10'R1
/#JOR 1S BLOCKFD UNTIL FIRST PAGE IS
BROUGHT INTO CORF®/
11R 1 2 ENDE
119 1 1 DPTR = DPTP=>STATHS NEXTS
170 1 1 END:
/0 NOW CHOOSF JOR TO HE RUN - EITHER PREVINUS JOR OR A NFW ONE #/
121 1 IF (IMDEX >= 10) & (INDEX <= 12) & (NXTJU0N8 ~= 0}
122 1 THEN NOY /¢J0R RUM PREVIOUSLY TS STILL RUNNABLE -
REASSIGN IT wITH REMAINING TIMESLICF#/
123 1 1 HTIME = TIME - NEXTUOR=>STATUS.RFG_TIME?
124 1 1 TSLICE = TSULICF - WTIMES
125 1 1 NFXTJOR=>STATUS RFG_TIME = TIMF:
/oRESET REGINNING (F RUN INTERvAL®/
126 1 1 ENDS
127 i ELSE nnt /9PREVINNIS JUR WAS GIVEN ITS FuLL
’ ALLOTMFNT OR IS MO0W RLOCKED < CHOOSF
: A NEwW JOH#/
128 1 1 NEXTJUOR = NULLS
129 1 1 00 WHILE (NEXTJOB = NULL)?
130 i ? 1F (KPTR=>STATUS.TC_IND = Y1'B)IR(KPTH=>STATUS.ACT_INA = 1118)
131 1 2 THEN 0§03 /eMEXT JOR IS RFADY AND ACTIvVE®/
132 1 3 NOXTJ0R = KPTRS /2J0R CHOSEN®/
133 1 3 NXTJOR = NEXTJYOR=>STATUSJLR#!
/4DESIGMATE THIS AS MNEXT JOB TC BE Runsa/
1 1 3 TSLICF = 50000 /4ASSIAN STANDAKD TIME SLICF»/
13% 1 3 NEXTJU0R=>STATUSBEG_TIME = TIMES
/2 INTTIAL IZE KREGINMING OF PUM INTERVAL®/
136 1 3 ENDS .
137 1 2 KPTR = KPTR=>STATUSNEXTS /BUPDATE POINTER TO NEXT JOR#/
138 1 2 1F KPTR=>STATUS.JOHM = 0
139 1 2 THEN IF 7ERO_FLAG = 0!8
1640 1 2 THEN DO
141 1 3 KPTR = KPTR=>STATUS.NEXT?S
/7#SKIP JOB ZFRO UNTIL ALL OTHER J0BS
. HAVE RFEN TRIFD,.#/
142 1 3 7FRO_FLAG = *1'R2

/#SET FLAG ON SO JnB ZERO 1S CHOSEN IF
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APPENDIX C

SAMPLE OUTPUT PRODUCED BY THE MODEL

Thé sample output provided in this appendix was pro-
duced by the test run described in chapter three which used
the preemptive scheduler and fifty pages of user memory.
The outpat shown enclosed in starred boxes beginning on page
202 was produced by the TRACE routine. The boxes are used
to set off this information from any output produced by the
DEBUG routine and from any diagnostic print put out by the
scheduler being used. The TRACE output shown on pages 202
through 205 was produced between the simulated times of
1,000,000 microseconds and 1,500,000 microseconds in this
run, i.e. it covers the simulated time between 1.0 and 1.5
seconds.

The TRACE module is called each time an event occurs
in the simulated system. When called, it prints out the
current simulated time (in microseconds), the eveht which
has occurred and the job involved in this event, and the
response of the scheduler to this event. The scheduler
response includes commands issued to indicate the job to be
processed next and any jobs to be activated or deactivated.
For instance, the first call to TRACE was issued at time

1,023,500 microseconds. At this time job #1 has its
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peripheral I/O request completed and is now ready to be run
again. The scheduler reséonds to this information by
selecting job #1 to be assigned to the processor.

A‘study of a sequence of TRACE reports provides a fairly
clear picture of the successive events occurring in the
simulated system during model operation. Though no infor-
mation about the jobs not directly involved in the various
events is provided, one can make some inferences about the
state of the system from the observed pattern of events and
scheduler commands. For instance, the second TRACE report
shows that the scheduler has selected job #0 to be processed,
i.e. the system is to remain idle. This indicates that none
of the active jobs are in a runnable state at this time.

At time 1,080,840 microseconds a new job, job #6, arrives at
the system, and this job is not immediately ordered to be
activated. This indicates that there are enough jobs already
in main memory to make it fairly full, not leaving enough
room to activate this additional job. Consideration of the
overall TRACE report shows that processing alternates

between jobs #1 and #4 during the time covered by this

scan. Since neither job #2 or #3 appears we can conclude
that these two jobs have already terminated and have left

the system. We also note that job #0 is assigned to the

processor a good deal of the time, due to both jobs #1 and
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#4 being blocked. Neither job #1 nor job #4 terminates during
the period covered by the TRACE scan, and no other jobs can
be activated while these jobs are in core.

The output produced by the TRACE routine provides an
overview of the microscopic operation of the model. This
represents a compromise between the summary figures pro-
duced by the accounting routine and the copiously detailed
information provided by DEBUG. It is useful for such tasks
as exploring the operation of the model to corroborate or
investigate summary figures which seem counterintuitive.

It produces enough output to enable the user to follow the
courée of the simulation without forcing him to wade through
a greét deal of possibly irrelevant information. In cases
where the TRACE routine points up an apparent error or
anomaly the DEBUG routine may be called to print out more
detailed information about the system during the time inter-
val in question.

Only a single DEBUG snapshot is reproduced here (pages
206 through 208 ) due to the large amount of output pro-
duced on each call to this module. The information repre-
sented by the sample output shown includes the following
facts. On the most recent call to the scheduler job #9 was
selected to be processed, and was assigned a timeslice of

50,000 microseconds. The System Event List shows the future
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events scheduled in the system at the time job #9's processing
was halted. It shows that job #9 will have a peripheral I/d
request satisfied (event type 12) at time 5,107,177 micro-
seconds. This indicates that the halt in the processing of
this job was due to its issuing a peripheral I/0 request.
Other events in the System Event List are the completion of

a peripheral I/0 request for job #17 which will occur at

time 5,123,767 microseconds, and the arrival (event type 10)
of job #22 at time 5,287,906 microseconds.

The job descriptions shown indicate the state of the job
stream in the simulated system after the halt in the processing
of job #9. Each job presently in the system is represented
in this list, and all the characteristics describing its
present state are shown. For instance, we see that job #2
is of type one and priority level two. Its total size (SIZE)
is fifty-three pages, and its working set size (WSS) is twenty-
one pages. It will require a total of 338,539 microseconds
of processing time (CPUTIME). Its entries for partition
size, timeslice and number of pages in core are all zero,
indicating that it has not yet been activated. This ié not
surprising since the scheduler being used here takes priority
level into account in choosing jobs to be activated, and
this job is not a high priority job. The value of -1 for

its active indicator (ACTIVE IND) denotes the fact that it
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is inac*ive at the present time. Its traffic control status
(T_C_STATUS) is READY. CPU time until next page fault
(PAGETIME) and CPU time until next peripheral I/0 request
(DSTPTIME) are given values when a job is activated; they
have value zero here since this job has never been active.
The CPU time still required to complete the job's processing
(TERMTIME) is 338,539 microseconds, the same as the value

of CPUTIME. This is as it should be since no processing has
yet been done on this job to cause its time-remaining figure
to be decreased.

Now consider the description of job #9, the job which
has just been processed. It is of type one and priority
level two. This is the same priority level as job #2, but
job #9 is considerably smaller than job #2 in total size.
Its working set size is larger than that of job #2, but
since the scheduler has only the total size figures to use
in making its scheduling decisions the relative working set
sizes have no effect on activation choices. Job #9's total
CPU time requirément is 377,755 microseconds. It has been
assigned a partition size of twenty-three pages, and a
timeslice of 50,000 microseconds. It has eleven pages in
core at present (#_PAGES_IN CORE). Its ACTIVE_IWD value of
46,675 indicates that it is now active and has received

46,675 microseconds of processing time since its last
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activation. Its traffic control status is BLOCKED because
the job has just issued a peripheral I/0 request and is now
waiting for it td be completed. The processing time until
it issues its next pagefault is 3,197 microseconds, and it
will issue another peripheral I/O request after 11,597
microseconds of processing. It requires another 331,080
microseconds of processing for completion.

The descriptions of the other jobs may be interpreted
in the same manner as the two described above. An interesting
thing to note about the job stream shown here is the absence
of descriptions for some of the jobs. The list is maintained
and displayed in order of increasing job number. Running
down the list, we find that jobs #1, #4, #7 and #11 do not
appear. This indicates that these jobs have already term-
inated and left the system. The last item of information
provided on each call to the DEBUG module is the simulated
time at which the snapshot was taken,‘which in this case
was 5,076,508 microseconds.

Careful study of the output provided by the DEBUG
module provides a clear and comprehensive piéture of the
state of the simulated system at a given instant of time.
Comparison of a sequence of DEBUG reports shows the micro-
scopic processes occurring in the simulated system in great

detail. Such information is invaluable in locating errors
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in the logic of the model or exploring in detail unexpected
behavior observed at the‘macroscopic level. The sheer
volume of information generated, however, makes it expensive
and time-consuming to perform this kind of detailed inspec-
tion.

The summary data output by the accounting routine
(ACCNT) for this 'run is shown on pages 209 through 212.
Since this data has already been discussed in chapter three
it will not be analyzed in detail here. Most of the
statistics produced are self-explanatory. The report is
divided into four sections, each printed on a separate page.
The first section gives overall figures on system activity
and performance. The second describes the average charac-
teristics of the jobs generated on this run, and the third
gives data on the various activities of the scheduler used.
The last section provides data on the behavior of the jobs
under this scheduling scheme and the response of the simu-

lated system.to the demands of these jobs.
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C3EBB5CEIRCIOBRECRBNOEDENCRS00000CICODUNNIBDNBONRAIDOORUREODOBARRDCEERARY
¢ Siwtpey STETISTICS DFSCRIGING THE AFHAVIOR OF THE SIMULAYFD SYSTEM 2

ﬁ‘O6'>6‘}DOO&{}0’.969006606’6..6’6.600600‘5QQQ&OD.DDQ0.0QO“OODQ““O“OQG.QOQ

OVF~ALL STATISTICS:

AVERAGE MitMpb& OF JOHS IN SYSTEM: 34,15

AVERAGE MUMHER OF JOdS [N CORF: Je98

PAGE SIZE USED: 40GA MEMORY UNITS,

TOTAL AMOUNT OF COKRE SPACE AVAILABLE TO USER PROGRAMS: 506 PAGFS.

AVERAGE Q"OUNT OF COWF ASSIGNED TO JOrS: 4H.,53 RLOCKS.,
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AVERAGE NUMBER OF PAGES ACTUALLY IN CORE: 34,70

CPU INLE TIME: A2.49%



89 JORS ARRIVED AT THE SYSTEM OVvER A SCaMN PFRIOD OF 30027.520 MILLISFCONDSs REGINNING AT TIME

THESF JORS WERE GESCRIBFD BY TwE

-0TZ~-

AVERAGE 4ORKING SET SIZFE =

AVERAGE TOTAL SIZE

AVERAGE CPUTIME REQUIRED =

TYPE NISTRIBUTION:

TYPE
TYeE
TYPE
TYPE
TYPE
TYPE

IS W N

160.00%
0.,00%
0.,00%
0.00%
0.,00%
0.00%

PRIORITY LEVEL DISTRIBUTION:

LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL 1

1
4
3
4
S
-]
7
8
9
0

10.11%
35.96%
53,.,93¢%
N.00%
0.00%
N.00%
N, 00%
N.00%
0,00%
0.00%

FOLLOWING AVERAGE CHARACTFRISTICS:
24,26 PAGES.

49,48 PAGES,

4034399 MILLISECONDS,

0.n00 MIL: ISECONDS,



THE FOLLOWING FIGURES NFSCRISE THE BFHAVIOR OF THE SCHEDULEW IN REGARN TO

DEACTIVATIONS: TOTAL NUMBRER = 0
ACTIVATIONS: TOTAL NUMBER = 29
AVERAGE PARTITION SIZE ASSIGNED = 24.,A& PAGES.

AVERAGE TIMESLICE ASSIGNED = 49,611 MILLISECONDS.
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THE FOLLOWLINA FIGURES uwf&fF COMPILFD ON THE RE-AVIOR OF THESF JORS:

Trbk AvERAGE PERCFMTASES OF Tlws SPENT BY AN ACTIVF JoH IN FACH OF THE THREE T,RAFFIC CONTROL STATES wAS AS

RittiINA S
REATY:
BLOCKED:

PAGFFAULTS:

Dlex anp
TaPF REQUFSTS:

TIMFNIjTS:

TECMIMNATIONS:

AN AY

12,9%4

Pu.bk%

51e61%
TOTAL NUMAFE = 721
AVFUAGE PAGE WAIT = T.96 MILLISECONDS,
AVFEAGE TIME RFTWEEN Pass FAULTS = 41,547 MILLISFCOMDS,
TOTAL NUMRFIZ = 4B8
AVEQAGE PISK 0R TAPE «AIT = 59,398 MLl ISECONDS,
AVFEAGE TIME HETWEEN DISk OR TARPE REQUFSTS =  643,~65 MILLISFCONDS. .
JOYEL NUMHFR = 70
TOTAL NUMRFR = 27

AVFERAGE TURNAROUND TIME: T176.623 MILLISECONDS.

AVERAGE TURNAKOUND TIMF HY JOR TYPF:

TYPE 1 = T7176.621, MILL ISECONDS,
TYPF 2 - ~== MILLISFCONPS,
TYPF 3 - === MILLISFCONDS,
TYPF 4 - === MILLISFCONDS,
TYPF 5§ - ~== MILLISFCONDS.
TYPF 6 = === MILLISFCONDS,

AVERAGE TURNARQUND TIME HY PRIORITY LFVEL

LEVFL 1 - 406A4,T740 M1 L ISECOMDS.
LEVEL 2 - A732.563 M1 LISFCONDS,
LEVFL 3 = -——- MILLISECONOS,
LEVEL 4 = -——— MILLISECONDS,
LEVFL 5 = -——— MIL L ISECONDS,.
LEVFL 6 = -——- M1t ILISECONDS,
LEVEL 7 - -——- MILLISECONDS.,
LEVEL 8 = —— MILLISECONDS,
LEVEL 9 - - MILLISECONDS,
LEVEL 10 - ——- MILLISECONDS.

FOLI OwS?



APPENDIX D

SAMPLE STUDENT ASSIGNMENT

The student is asked to write a process scheduler for
a single processor demand paged computer system to meet
certain specifications provided by the instructing staff
(e.g. high overall throughput, fast response to high-priority
jobs, etc.). This scheduler is to be coded in PL/1 and will
be run under the supervision of a calling procedure which
simulates the environment of a multiprogramming system,
providing the scheduler with information about the charac-
teristics and behavior of jobs in a simulated job stream
running in the simulated environment. This information is
described in detail below. Based on this information the
scheduler issues commands which are carried out by the
calling program. A report on the performance of the sched-
uler as measured by various statistics collected during the
run is output at the end of each run. These statistics
include figures such as average turnaround time and average
system idle time as well as many more detailed figures.

The scheduler to be written is to perform the task of
selecting jobs to be processed from among the jobs in the

ready state as shown in the diagram below:
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ENTERING

DEPARTING
JoB 3TREAM

ACTIVATIONS

I/0 REQUEST

It also has the option of causing jobs to be moved back and
forth between the hold and ready states via activate and
deactivate commands. (Jobs in the ready state are resident
in main memory; jobs in hold are not.) When a job is
activated the scheduler must assign it a partition size.
This represents the maximum number of 1K blocks of core
which can be occupied at any one time by pages cf that job.
A job which is assigned a partition size of n blocks is
assumed to occupy all of those blocks throughout the time
it is in main memory. Thus the set of jobs which may be

in memory at any one time is constrained by the limitation
that the sum of the partition sizes of all such jobs must
be less than or egual to the total amount of memory

available to user jobs. It should be borne in mind that
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activating and deactivating jobs incurs considerable overhead.
in terms of I/O resources and time needed to perform the
transfer of data. These commands should not be used

indiscriminately.

Description of the Simulator

The simulator which will éall-your scheduler starts
out. by setting up an initial list of jobs to be processed.
These jobs are identified by number, and initially all but
one of them (the one with the highest number) are in main
memory and are partially processed. Each time it is called
the scheduler must select a job to be processed, and it
must assign this job a timeslice, which is the maximum
amount of CPU time for which the job may be processed
without being interrupted. In addition, the scheduler may
issue commands to activate and deactivate jobs. Note that
a job cannot be run if it is not in main memory. On some
calls to the scheduler no jobs may be ready to be run. This
situation may occur, for instance, when all active jobs
(jobs in main memory) are blocked for I/O. When this is
the case, or whenever the scheduler wishes for some other
reason to let the processor remain idle, it selects job #0
as'the next job to be processed. This is a dummy job which

is run whenever no useful work is possible or desired. 1In
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this case the timeslice assigned specifies the maximum length
of time for which the proéessor is to remain idle without
interruption.

Whén the scheduler is finished issuing commands it
returns control to the simulator, which carries out those
commands in the simulated environment. First any deactiva-
tions requested are performed, followed by any activations
ordered. Then the job chosen to be processed next is run

until one of the following events occurs:

- the job being processed terminates

- the job being processed goes blocked for I/0

- the job being processed runs out its timeslice
- a new job arrives at the system for processing
- another job enters the ready state (its I/O is

complete and it is now ready to run)

When any of these events occurs processing is suspended and
the scheduler is called to decide which job to pfocess next.
Note that this scheme allows for preemption of the current
job in favor of any other job which has just become ready
(i.e. was not ready at the time the current job was selected
for processing). If preemption is not desired the current
job is again assigned as the job to be processed. If the

current job is no longer runnable (it is blocked or has
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terminated), some othér job must be chosen to be processed.
This pattern is-maintained for the duration of the run.

A note on activations: A job is considered to be in
main memory and therefore runnable when one or more of its
pages is in main memory. Activating a job is interpreted
by the simulator simply as bringing its first page into
core. Some amount of time is required for the I/O operations
to perform this transfer of'data. A job which the scheduler
orders to be activated is then not immediately runnable, and
cannot be selected as the next job to be processed at the
same time it is chosen to be activated. When the page
transfer is complete the activated job becomes runnable,
and the scheduler is informed of this as described above

(a job has entered the ready state).

Description of the Scheduler

The scheduler to be written must be called SCHED, and
must not be declared with OPTIONS (MAIN). It is called with

" nine parameters which convey the following information:

1. The identification number of the job involved in
the event which caused the halt in processing.
(If the event was a time-out or a page request or

peripheral I/O request issued by the running job,
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this number is the number of the job which has

been running; otherwise it is the number of some

other job in the system. This is passed as a

FIXED BIN{1l5) wvariable.

The cause of the immediately preceding halt in

processing. This information is represented as a

FIXED BIN(15) integer, and its values have meanings

as follows:

-1

10

11

Initialization (This value is passed to
the scheduler the first time it is
called, when there is no current job.
Variables in the scheduler which need
initialization may be set up when this
value 1is passed.)

The job being processed has terminated.
The job being processed has generated a
page fault.

The job being processed has issued a
disk or tape I/O request.

The job being processed has exceeded its
time limit.

A new job has arrived at the system for
processing.

Another job has had its page request

satisfied and is now ready to be run.
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12 - Another job has had its disk or tape I/O‘ 

request satisfied and is now ready to

be run.
The present time (in microseconds) in the simulated
system as recorded on a clock maintained by the
calling routine. This variable should be declared
FIXED BIN(31).
The total main memory space available to user pro-
grams, expressed in pages. This variable has
attributes FIXED BIN(15).
A pointer to the first description in a list con-
taining descriptions of all jobs presently in the
system. The format of these descriptions is out-
lined below. This parameter should be declared
POINTER.
A variable in which the scheduler enters the iden-
tification number of the job to be processed next.
This is a FIXED BIN(15) quantity.
A variable in which the scheduler enters the_time—
slice to be assigned to the job chosen to be pro-
cessed next, in microseccnds. This is a FIXED
BIN(31) guantity.
A pointer to be set by the scheduler to point to

the first entry in the chain of entries describing
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activation commands. (The form of these entries is
described below.) If there are no activations to
be perfbrmed on a given call to the scheduler, no
value need be assigned to this variable. This
variable should be declared POINTER.

9. A pointer to be set by the scheduler to the first
deactivation entry as described above for activa-

tions. This variable should be declared POINTER.

Job Descriptions

Job descriptions are stored as based structures which

should be declared as follows:

DCL 1 SJOB BASED (SJPT),
2 JOB# FIXED BIN(15),
2 TYPE FIXED BIN(15),
2 PRIORITY FIXED BIN(15),
2 SIZE FIXED BIN(15),

2 NEXT POINTER;

The first such description is accessed via the pointer to

the job stream list which is passed as a parameter to the
scheduler. Successive descriptions are linked together by

the pointers in SJOB.NEXT. In the final description SJOB.NEXT

has a value of NULL. On each call to the scheduler all
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jobs currently in the system are represented in this list,

which is maintained by the calling routine. The scheduler

need not and should not make any changes to these descriptions.

The information contained in this structure is as follows:

JOB# -

TYPE -

PRIORITY -

SIZE -

Command Structure

The identification number of the job being
described. All jobs have nonnegative
identification numbers, which are assigried
in ascending order to the jobs as they enter
the system.

The type of the job (i.e. compilation,
execution, file manipulation, etc.). Job
type is represented as an integer between
1 and 6 with meanings of the various
values as specified by the instructing
staff.

The priority level of the job, represented

as an integer between 1 and 10, 1 being

the highest priority.

The total size of the job, in pages.

The structuré in which the scheduler enters its acti-

vation commands should be declared as shown below:
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DCIL 1 ACTIVATION BASED(SIPTR),

2 JOB# FIXED BIN(15),

2 SIZE FIXED BIN(15),

2 NEXT POINTER;

Each activation command issued by the scheduler is described

by a serarate copy of this structure. The use of each

variable is as follows:

JOB# -

SIZE -

NEXT -

The identification number of the job to be
activated.

The partition size to be assigned to this job
when it is activated. This quantity is ex-
pressed as a number of pages.

A pointer used to chain the activation commands
issued on a given call together. It should
point to the next copy of the structure in the
chain, except in the case of the final entry,

when it should have a value of NULL.

The corresponding structure for deactivations should

be declared as:

DCL 1 DEACTIVATION BASED (SOPTR),

2 JOB# FIXED BIN(15),

2 ATIME FIXED BIN(31),

2 NEXT POINTER;
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The use of variables in this structure is described below:

JOB# - The identification number of the job to be
deactivated.
ATIME - A variable used by the model routines but of
no relevance to the scheduler. 1Its value
should not be modified by the scheduler.
NEXT - A pointer for éhaining deactivation entries
together. 1Its use is analogous to that described

above for NEXT in the activation structure.

Data Compiled by the Scheduler

In addition to the information explicitly provided by
the éalling routine, certain records should be kept by the
scheduler itself if it is to operate in an efficient manner.
For instance, the scheduler needs to know which jobs are in
main memory at any given time, since only jobs which are in
main memory may be chosen to be processed. Similarly, it
should keep a record of which of the jobs in main memory are
blocked and which are ready to run. It will also need to
keep a record of how much memory space it has assigned to
each job it has ordered to bevactivated so that when a job
terminates it knows how much memcry is available for bringing

in new jobs.
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Other information may also e of use in certain sched-
uling schemes, depending upon the aims of the particular
scheduler in question. For example, it may be useful to keep
track of the number of I/O requests issued by different jobs
in order to determine which are I/0 bound and which are com-
pute bound. This information may then be used to maintain
a balanced load of jobs in core. All information to be com-
piled by the scheduler must be deduced from the parameters

passed to it by the calling routine.

In Case of Error

For each scheduler command there are certain values for
the various command parameters which indicate legal commands
and others which do not. If the identification number of a
nonexistent job is entered in ACTIVATION.JOB# or DEACTIVATION.
JOB# the command is ignored by the calling routine. If the
partition size given in ACTIVATION.SIZE is nohpositive or is
- greater than the actual amount of free memory space remaining
the command is again ignored. 1In each case a message is
printed out explaining what has occurred. If the job number
given as the next job to be processed specifies a job that
is not in the éystem, is not in main memory, or is blocked,

the command cannot be executed. 1In this case job #0 is
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assigned to be processed and is given the same timeslice
specified by the scheduler for the illegal job. A message
is output indicating what was wrong with the choice of the
job to Ee run. If a negative value is specified for the
timeslice a default value of fifty milliseconds is used,

and again a diagnostic message is provided.

Sample Scheduler Run

The following pages give a listing of a simple scheduler
and the output produced when it is run under the simulator.
Pages 227 through 230 show the code for the scheduler. This sched-
uler selects a new job to be run each time it is called.

This choice is made in a simple round-robin manner. It does
not perform any activations or deactivations, but simply
operates on the set of jobs present in core at the beginning
of the simulator run.

Pages 231 through 233 show the TRACE listing produced in
the course of the run. Each starred box corresponds to one
event occurring in the system. As described above, such an
event may be the arrival or termination of a job, the issuing
of a page request Or a peripheral I/0 request by the running
job, the satisfaction of a page or peripheral I/0 request
issued by some other job, or the current job's exceeding its

timeslice. Whenever such an event occurs the scheduler is
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called. Each box identifies the event which has occurred,
the time (in microsecondsﬁ at which it occurred, and the
commands issued by the scheduler in response to this event.
In the case of the scheduler used here the only command
issued is the choice of the job to be processed next. In
the case of a scheduler which orders activations and deac-
tivations of jobs those commands are also shown.

The iast four pages(234 through 237) show the summary
information produced by the model. The total simulated
time for this run was only 110 milliseconds, in order to
make it feasible to reproduce the entire TRACE listing. For
this reason the figures shown are not really representative
of the behavior of this scheduler; however, they do illus-
traté the kinds of data produced by the model. Page 234
gives overall data and performance figures, and page 235
gives figures describing the jobs submitted to the simulated
system. The numbér of jobs monitored as shown on the first
line of this page represents the number of jobs which arrived
- for processing after the beginning of the run. Over a long
simulation period this figure approximates the number of jobs
which have passed through the system; for a run as short as
this one the number is not valid. Page 236 gives a summary
of the behavior of the scheduler being used, and page 237

summarizes the behavior of the jobs in the simulated system.
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6 1 DCL 1 SJ0H RaSEV(SUPT)
2 J0%a FIXED < IN(19) /%JOF DFESCwIPTIONS®/
2 TYPE FIXED 2IN(IR).
? PRINDITY FIXED RIN(IS) .
2 SI7% FIXFN (IN(15) .
2 FEXT PTRS

7 1 DCL 1 STATUS RASEN(STATRT) /#STRUCTUWE FOR KEEPING TRACK 0OF#/
2 J0Re FIXED 2IN(1S) /#0CTIVE/INACTIVE AND TRAFFICH/
2 ACT_IND RIT(1) e /HCONTHOL STETUS, PARTITION SIZF#/
2 TC_TIND #IT(1)s
? LARPT_SIZF FIXED RIN(1D)
2 MEXT PTR;S

8 ] DCL FSTATPT POINTEw STRTICS /#HOLDS LOCATION OF INITIAL STATUS

HE_OCK#®/
9 1 DCL(THTR«NPTR) PTRe FOUND BIT(1)e (MEXTJORBIKPTR) PTR STATICS

10 1 DCL ME«SPACF FIXED RIN(1S) STATIC:
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Pl ] DL 7FRG_FLAG BIT(1) INITIAL('UYm) 3
/#UTILTTIY VARTIAKLFS®/

/% PROCESS IMPUT IMFORMATION st/

12 1 IF IYnEx = =)
1A H THE~ DOT /#FIRST caLl - INITIALIZF THINGS*/
e i 1 MEMSEACE = SPACE S J#INITIAL LZE RECOP: OF FPRFF MEMORY®/
i~ 1 ! TOTE = ST
1+ 1 1 O=Tw = RS :
17 1 1 DN wHILFE (TPTR == nULLD) S /¥CHEATE A STATUS ENTRY®/
1% 1 ? ALLOCATE STATUS SET(STATPT) 3 /#FOR FACH J03 CURRENTLY#/
19 1 7 STATUS JOrE = TRTr=>5J0B.J0B# S /¥ IN Teg SYSTEM#/
20 1 s STATUSGTC_Int: = 9183 /ALl JORS I ITIALLY READY®/
21 1 ? STATUSJACT_IMND = 195 /#ALL JORS INMTTIALLY ACTIVE®#/
7?7 1 ? CSTATHS JPART_ST7e = (TPTR=>SUNR,SI7ZF + 1)/23

/#INITTIAL PARTITION SIZE IS HALF OF

v TOTal, STZes/

23 1 7 MEMSPACE = MEMGPACE = STATUS, PART_SI17F3

/HKEFP TRACK OF HO« MUCH MFMORY IS STILL

FREE®/

zu 1 ’2 IF bPTw = NUL YL /#PERFORM L INKIMNGH#/
25 1 4 THEN FSTATPT = STATPTS :
2A 1 ? FLSE D2TR=>STATUSJHNEXT = STATPTS
>7 1 7 WRPTR = <«TAaTPT:
7 1 ? TPTR = TPTR=>S JUHHF XT3
29 1 2 Frang
30 1 1 URTw=>STATUSGACT_TnND = (GBS

/ELAST JOR GFNFRATFN IS IMACTIVEw/
31 1 1 MEMOPACE = MEMSHFACE ¢ DPTR=>STAaTISPART_SI7E S '

/¥ CORRKFECT CuuNT OF TOTAL FRFF MEMORY

FO INACTIVE JOR=/
3?2 1 1 NoTe=>STATIISSNEXT = FSTATPTS /MARE LIST CIRCHLARS/
33 1 1 KPTE = FSTATPT=>STATUSNEXTS /7#THIS POINT#R HOLDS A PLACE IN
: THE JOR CHolwnsy/

34 1 1 . I8Tw = My 3 /#NO ACTIVATIONS DONE KY THIS SCHEDULFR#®/
35 1 1 0PTR = NI § /7#n0 DFACTIVATIONS £ ITHERH/
3A 1 1 END S
37 - 1 ELSE IF IWDEX = 0
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L7

a1’

4~
49
N}
&1

w7
=3
4
i

12
©7
Lo
Lo

0

Al

w7
A3
~a

A5

6h
~7
R
£9
79

RPN B WY b ot s et et bt bt bt o st ek bl e bk — ot At e et pnt el

st

o R

ME

—_ N W N W

b

NN =

-

ISR VR VIRV —

7S]

Leandi Y BER CERUS RRUN]

J03 HLS‘TFVNIMATFOG/

JESFARCH FOR STATUS ENTRY®/
= JORN A
/e iRy FQun #/

TrHE « T2 A
TETH = FOCTATSTwoQTaTHSNEXTS
T = FRTAT-TR
FOren = 8.1y
WO =1L F ROy o YD) g

IF TRT v e>QTaiils g g
Tﬁ'@j"‘ ST
VRS LEACE = b mSPAaCE o+

DR TLe>STATUS JNEXT

FaFe TPTk=><TATUSS
Fonsmn = ¢ e 3
S
FLSF Ting
NeTL = TPTw:
TPT= =
Frape
Foedlee
END e
ELSE IF (INDFX=1) 1 (TODEX=2)
THEN Drd
TPT~ =, FRTATPTS
Fotap = vprRs
DO «HILF (FOUND = totR);

IF TPT==>STATUS ¢ JOR
THENM e
TF INDEX >= 11
THFw TPTR=><TATUS,

FLSF TPTR=>STATUS.

FOitnp =
ENDS
FLSF TRTR =
EnD
EnND S

LIRS I

TRPTR=>STATUSNEXT?

TrT=>5TATiS,ParT _SI/7F ¢

/owe TR CUORE DCCUFTIED BY THIS JORB TO
Frbe CORE LREASE/

= THRTR=>STATUSMFXTS

/HADJUST LInn NG OF STATUS CHAIM®/

/7H0ELETE THIS FRTRY&/

/HKEFP LOOKING FOR PROPER ENTRY®/

TETR=->STATUS WEXTS

PCInnex=11) 1 (INDEX=12)
/#1770 REDUEST ISSUFD OR SATISFIEN®/

/¥SE AP FOR
GUFQTTOMsey/
= JUOR UM

DESCRIPTION OF JOR IN

/#PHOPER ENTHY FOU:D#/

TC_Iabn = v)1egg

/#*REVUEST SATISFIEN - Jon 1S READY#/
TC_IND = 10v&3 :

7¥RENUEST ISSUED = JOB IS RLOCKED®/

/PKEEP LOOKINGH#/
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STMT

71
72

73
74
75
7+

77

TH
79
N
2R
ap
a3

Ra

bl
RA
RT

LEVEL

= et ekt

[T e

p—

NF2T

NN

)

N bt e et )

/% CrONSE JOR TO 3F P-=0CESSFD LEXT #/

NEXTJUOn = MYyt 3
DO wWHILE (NFXTJOB = “upLbL) s

IF (KPTR=>STATUSLTC_TND = V1R R(KPTR=>STATUS.ACT_INN = 1}1vB)
THEN DO JutE YT U0’ IS wEAGY AND ACTIVE®R/
VEXTJYNR = KPTD: /% dlOs CHNSe N/

SXTJOR = HEXTJOR=>STATS. JOR:
JHDESTGUATE THIS AS NEXT JOR TO HE RUN#/
TSLICF = Sonone /#ASSIGMN STANDARD TIME SLICE«/
/#IMITIAY 1ZE BEGINSING OF RUM INTERVAL#/
Erng
KPTR = KPTR=>STATHS 4nFXTS /#UPDATE POINTER TO NEXT g08#/
IF KOTR=>STATUS.J HR# = 0
THEM IF 7FPO_FLEG = '0*'R
THEN PO
KPTR = KPTR->STATUSNEXTS
/4SKIP 0K ZFRO UNMTIL ALL OTHER JORS
, HAVE RFEN THRIFED.#/
ZEPO_FLAG = v]1¢3:
/#SET FLAG UM SO JoB ZERO TS CHOSEN IF
SCAil COMES AROUND AGAIN,#/
FNDY
ENDS
END SCHED S
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RO B R NP R IR N0 D E RO ORI LB DA NN RN 0N ERRRIRNRNRRRARORRNIRRONRODNABBIORAROTRNBDRBABDLDRTRBOOOBODY
2 INITIAL ITERATION °
® SCHETDJLEW SELECTS JC8 1 70 BE RUN NEXT,. @
LA R R AR AL ARl il asRRasAR 2220 2202.2-2-2-2-2-2-2.02-2 2 2. 2-2-2- 7.3

DORDLDRALBITRLRBNDRAGSARRRRRABOGL OB TCRCAORCLRIVTRBROOORCHBORVOTBDBORBIDRORBRNANDERRICODDOY

e AT TiME 2083 JoB 1 INCURS A PAGE FAULT,. ot
® SCHEDPULER SELECTS JOR 2 TO BE RUN NEXT, hd

LR 2 X 2R L EE-R-ALEERES LR - A Rt bR s a2 22X 3 )

[ X-X-Z-X-2-2-EX-F.X-F-F % X.2-F-R-2-X-F-3-X - 2. L-F-F-E-F. R P-F.9-F- - LY.L E.F XXX X-2-2-X.2.2.0.2-3-2-2.2. 3. 2. X.2- - 2. 2. 2. 2. - X.F.2.F.2- - F.¥. 2. 9. .. 2-2.F- X- X ¥ ¥ . %0 ¥.9
® AT TI4F 2597 JCB 2 IMCURS A PAGE FAULT. ' @
& SCREDULER SELECTS J0A 3 70 RE PUN NEXT, 2
LER-E-R-R-R- SR R-X-E-X-RF-R-L R E-E-F-F-E-E-R-2-F LR F-F22EE-X-R-2-X-R-F-F-2-F-F-5-E-F-F-F-R-X-F-X-X-2-F-F-F.F-F-X-2- 2 F-F-2-2-F- P ¥-2.2.2.3-2-.F-2. 2. F.2-F.2-F ¥-X- 3 ¥ ¥ ¥.3

L Ty gy N L L T L TRy YT
® A7 TIME 3506 JO8 3 INCURS A PAGE FAULT. o
¢ SCHECULER SELECTS Jo08 .4 T0 BE RUN NEXT, #

LAR-R D220 RE N2 R0 gt R0 2-2-2-L-2-2-F-L-2-E-F-E2 L2 LR AL L2202 22222222222 -0 N2 N N

eco?oqéuo#uué&naoboéqaooaooqoaoaco¢o¢aﬁoﬁooo&ooooq«#qooao#oc#ooqooQeooncooooocogcﬁéocouﬁgg
e AT TIME 5315 JO38 4 JSSUES A PERIPHERAL 1/0 REQUEST. : *
¢ SCHEDULER SELECTS 408 5 70 BE RUN NEXT, i

LA A A LA LRSS ERE Rl ErE- LA - TRy -2 -2 0020 2-2-2. 228222 0-2 0 2. 2-2-7.7-1

LEE-E-2-E-R-2-F-2-2-2-2- 2R 2-0-2-2-2-2-2-2-F 2-F2-F-2.2.-2.2. 2. 3-2-F-2- 22 F-P-X-L X-F-2-2-X-F-2-2-F-F-2-F ¥.2-2. L F-2.9.7-F- 2 -F-F-F-¥.2.2.7.9.2-7.2.2- 2.3 - 2.2.2. 2. F.¥.3
e AT TIME 7713 Jo8 S ISSUES A PERIPHERAL I1/0 REQUEST. o
# SCHEDULER SELECTS J0OB 6 TO BE RUN NEXT. *

GO RL O BN RSN RO RN R DR RSN R LN N BT RVD ARSI LRRRRLRERRAGRNRR LR RNNCRCOCODAORRRNORDOOBIDBRODINDYD

L Y 2 s L L LR TR YRy Yy Yy Y Y YT YRy 2y Y Y Y
® AT TIME 13863 J0O8B 2 RETURNS TO THE READY STATE (PAGE REQUEST COMPLETE). #
® SCHEDULER SELECTS JORB 7T 70 BE RUN NEXT, #

OGO ARTRORRL AR PERRORDIDRURRPEARLLBBLEIRRDINILRPQRBRI/QDDABLDOBRIBRDR LN RRDOBBOLDIGRDHBODY

(22 22222222 2 2-2-0-2-2-2-2-2-2-2-X-2-F-2-2.--2-F.F-F-F. -2 RF.L-F-F-L- XL L2 2 2-X-2-2.2. - 2L X2 Y222 FF. 2. F- 2Ly YY Y ¥
® AT TIME 19062 J0B 7 INCURS A PAGF FAULT. »
2 'SCHEDULER SELECTS JOB 2 TO BE RUN NEXT,. ®

G R R R RS R ARG AR SRR R RN R B L AN RN AR ORI NP ORBLR ORISR IR RIBRBRRLINBRROBORRBIDIRORDDIDEY

(AR L2 22222222220 Y2 22222 R YL EREEEITEF- LRS- 22282 2-X-2-2-0-2- 2. F-X- 1 2. 522 2.2 X E-2- 2 0. 2-7-3 ¥ WY
® AT TIME 15426 J0O8B 1 RETURNS TO THE RFADY STATE (PAGE REQUEST COMPLETE). 2
# SCHEDULER SELFCTS JOB 6 TO BE RUN NEXT, °
94@96@{@99##&oq&n00#####60&%909Qo%ééabﬂooaﬂs;QGQGODOQQQQO@&QQG&#Dh#§4§b§§§¢##9&9#60##00’90
LA A-X2-X-2- 22222 E2-F-2-2-2-LX-X-X-2-2.-3-2-F-F R Y- FEYEIrIss LY. 0-2-0.2-2-2- L2 2-L-0-X--F.2-2-2-X-2-RI2-2.X-¥. F-F.X-2.2-2-2-3- - - X-F-2-X-%. 3 -F.X. ¥ ¥ ¥
* AT TIME 15659 JOB 3 RETURNS TO THE READY STATE (PAGE REQUEST COMPLETE). °
® SCHEDULER SELECTS JOB 1 TO BE RUN NEXT, e

R R D R R R A R R R D R RN R R R B R R AR RO RDRRL OB RRREIRRLCRRRBDNLITHIRNDRBOBPORRRETORTRRRDRIRDODDEBORDY



GQOQ#G&GQ&GQG#GQQQ&Q{}##Gﬁ¢:~~I}~>Qi?-§~b%é#a%b&ﬁbﬁh&o%a&ob&ﬁ@§Q~}'}b~n09QOG
*1X3N NOd 38 0L 0 80f $10373S Y3ITNCIHIS =
*1S3N03Y 0/1 vHIH4INId v S3INSST 2 gor gidrw 3RlL LV e

o QQGQ#QQQQOQQQOQQQQW?GQ#{)QD-}DOQOGQQOQOQQQQQG#QQ“&OGQéQ#QGQQOQ&G#Q
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DR LOCDB S

@ LT TivwE 52145 JCB i (.57 PEGUEST COMPLETE), s
e SCHEUULER STZLFCTS J0R i @
BOLLLTILDTCRLREVICL2OTL200DTARE

PLLBIRILGDRRIVLEOILZLLRRICRNOSL GO

A GG DLE ARG R EAGR OB AP RS UG L L0000 0ARRLOTILBRIRNIRNBORIDOD
e £T TiME 54763 JuB I ISSUES A PERIPHERAL 1/0 REGUEST. L
® SCHEQULER SELECTS U8 5 T0 BE RUN NEXT. &
DGO D NOCINROLORGDRDARBAIEPEDIL I LG

EX-RE-T-E-E R R EERE-P-E-RE-2-2- 2.2 X 2-X-X-5-2-2F -4 X-2- - X -2 X-2-X-2-2-X-8-L-X.X-X- -

DL SADRNIOALOINALBONSDINBDADDLINHIDRCBRILLDOLEEHDOBOIBNBBBRGHLOLBIBHOBLOBLELONGEGNBBOLGDY

¢ AT TI%E 607383 JOB 7 RETURNS T0 THE RFADY STATE (PAGE REQUEST COMPLETE)Y. #
¢ SCHEDLLER SELECTS J0OB 7 7TC BE Ry KEXT. @

6’656099&iﬁ0560660090”96@059DQG§DQQ°¢¢QQDQQQQQQ&Q0#9§°90“060009690#56595996#0QﬂQQQGGQQQQGD

BB DBEB0IDONOANIDEBONBE GBI LR N DUGEO0BAANNDODODNRRNCOBBRLRINBDIRBIBIBOBBOBEILOBODBORBHOY
& AT TIME 61673 408 7 ISSUES A PERIPHERAL 1/0 REQUEST. o
& SCHEQULER SELECTS J08 0 70 HE RUN NEXT. hd

P A e T T Y Y A LISy R -2 R LA 2 2R X Rt et L hs sy

P N L L L Lt L L L g S IR T AT R LR R T T T L R P e S e R LS S 2]
@ AT TIME 73557 JOB 3 RETURNS TQ THE RFADY STATE {(PAGE REQUEST COMPLETE}. A
¢ SCHEDULER SELECTS JU0B 3 TO BE PUN NEXT. °

AR RGO RO NI LG R RO A AR LB RO D BO LR CO L OT R DR VT L LR LRRNBOADRLDOIPROLDERRRLBOD RO RO BBGORRBOLEORDGO

P N L L L L L L O PR ey P T P PP L LR -y e L L e S R T 22
® AT TImE 74320 408 . 3 ISSUFES A PERIPHE®AL I/0 REQUEST. #
o SCHEQULER SELECTS J08B ¢ 70 BE RUN NEXT. 4

P R Y Y Y T Y i ey e YRRV I LY T R LSRR AL AR 2SRt LAt et s 2l

Qb@ﬂébﬁoa)Dbbbb%%ﬂb%&bbb#&b&babaoébo&ﬁd%ﬁ&QbﬁabcééﬂébﬂﬁﬁéabbébﬁbO§66646695456Q060506§&6§§6
e AT TIME 86274 JOB 4 RETURNS TO TRE RFADY STATE (PERIPHERAL 1/0 REQUEST COMPLETE).#
® SCHEDULLR SELECTS 408 4 TO HE RUN NEXT. &
bQoQ&GQDQt9§66§0§09#¢69§§oqbuGQQQDQGQ»&Q#&##oﬁﬁ#44#§9ﬁﬂob¢ob§#¢¢b§§ﬁ6&§ﬁ6#&0n##%ﬂ@ﬂ&######

D DB GO aE N ANOBIBRNOBBONOBBODORELINDLOBDRICOEORRBRBIBOPRRDNORDOCHOLIBIDOIRBERRBANDUDOONBOBOLS
& AT TIME 93370 JOB 4 ISSUES A PERIPHERAL I/0 REQUEST. #
¢ SCHEDULER SELECTS JOR 0 TO RE RUN NEXT, d

BN OPORRROR R B E AL R RIR RO L LR RNBELLBVCOS RO AR RLORGOBOORREpORBRSOERRRRGBORROIBRIONLY

BB R RN DL IR R BB UL e D DO R AN LR A LR EOR OO A NTOBARIDLORROOBIDDLULABTLOLARNOIRHDONNBOLRDIBNGLRDODG
& AT T IME 99240 J0O8 Q ENTERS THE SYSTEM,. ®
# SCHEDULER SELECTS JOBR 0 TO BE RUN NEXT. ®

BB C AL OB R RIRARUB AN RB DL LR LBOADCPL PRIV BRALPOCRBTINOLRBODNRRBRDR PRV RIRROTEDRICLBRGIDIHEDOY

B A A g P g g 222 XX X TR Y Yy L e e L LY oy
® AT TIME 110650 JoB 6 ENTERS THE SYSTEM. . s
¢ RUN TERMINATES. «

BEBERDRGRRRCDODENOR I RIOBOIOTTLRRABDPERDDORDBRBOLRNB AL 0ODEIRRANRRDNIQISBBROBBONNNBRROENND
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@ S MMAPY STATISTICS DESCHIBING THE BEHAVIOR CF THE SIMULATED SYSTEM »

05046é'}O5#66’20{}DOQQ@950657‘U#@O’.'rODQ&QQG9094}0699990’)4690o“#{’#@“o@(}“oﬁ#oﬁ

OVERALL STATISTICS:

AVERAGE NUMBER OF JOBS IN SYSTEM: 8,07

AVERAGE NUMBER OF JCHS IN CORE: 7.00

PAGE S1ZE USED: 1024 MEMORY UNITS.

TCTAL AMOUNT OF CORE SPACE AVAILABLE TO USER PROGRAMS: 100 PAGES.

AVERAGE AMOUNT OF CORE ASSIGNED TO JORS: 96.00 BLOCKS.
AVERAGE NUMBER OF PAGES ACTUALLY IN CORE: 43.69

CPU IDLE TIME: 55.92%
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TRE FOLLOWING FIGURES WERE COMPILED ON THE BEHAVIOR OF THESE JOBS:

THE AVERAGE PERCENTAGES OF TIME SPENT BY A JOB IN EACH OF THE THREE TRAFFIC CONTROL STATES WAS AS FOLLOWS:

RUNNING: 6.30%
READY: 18.16%
SLOCKED: 75.54%
PAGEFAULTS: TOTAL NUMBER = S
AVERAGE NUMBER PER JOB = 4.50
AVERAGE PAGE WAIT = 18.198 MILLISECONDS.
AVERAGE TIME -BETWEEN PAGE FAULTS = 12.294 MILLISECONDS.
DISK AND
TAPE REQUESTS: TOTAL NUMBER = 8
AVERAGE NUMBRER PER JOB = 4.00
AVERAGE DISK OR TAPE WAIT = 150.781 MILLISECONDS.
AVERAGE TIME BETWEEN 0ISx OR TAPE REQUESTS = 13.831 MILLISECONDS.
TIMEOQUTS: TOTAL NUMBER = 0

AVERAGE NUMBER PER J0B = 0.00
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THE FOLLOWING FIGURES DESCRIBE THE

DEACTIVATIONS: TOTAL NUMBER

ACTIVATIONS: TOTAL NUMRER

1}

BEHAVIOR OF THE SCHEDULER IN REGARD TO THESE JOBS:

0

0

AVERAGE TIMESLICE ASSIGNFD = 50.000 MILLISECONDS.



-LEC-

: !
2 JOBS WIRE MONITORED OVER A SCAN PERIOD OF 110.650 MILLISECONDSs BEGINNING AT TIME 0.000 MILLISECONDS,
THESE JOBS WERE DESCRIRED BY THE FOLLOWING AVERAGE CHARACTERISTICS:
AVERAGE WORKING SET SIZE = 17.00 PAGES.
AVERAGE TOTAL SIZE = 33.50 PAGES,
AVERAGE CPUTIME REQUIRED = 378.813 MILLISECONDS,

TYPE DISTRIBUTION:

TYPE 1 - 0.00%
TYPE 2 - 50.00%
TYPE 3 - 50.,00% .
TYPE 4 =- 0.,00%
TYPE 5 = 0.00%
TYPE 6 - 0.00%

PRIORITY LEVEL DISTRIBUTION:

) LEVEL 1 - 0.00% :

LEVEL 2 - 100.00%

LEVEL 3 - 0.00% 5
LEVEL & = 0.00% ]
LEVEL 5 = 0.00% :

LEVEL 6 - 0.00%

LEVEL 7 - 0.00%

LEVEL 8 0.00%

LEVEL 9 - 0.00%

LEVEL1O - 0.00%
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