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ABSTRACT
The ability to dynamlically redefine the
computational base of a processor is seen
as a possible approach to improving the
processor's performance. Provision of a
facility to allow dynamlc linking and
loading of microprograms is considered
as a practical means of accomplishing this
modification. The feasibility and the
desirability of this approach is eval-
uated in terms of the implementation
overhead and the performance improvement
possible with such a facility. It is
concluded that thls method provides a
viable means of increasing processor

performance and flexibility.
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Chapter 1. Introduction and Purpose

The control structure of microprogrammed digital
compuiers has evolved in the direction of increased flex-~
ibility. Early microprogram control stores consisted of
read-cnly memories; whose physical and development costs
all but prohibited custom modification. Later, devel-
opments in high-speed memory technology lowered the cost
of the control store, thereby allowing both longer micro-
programs and limited provislion of special features.

Early efforts in this area included additions to the IBM 360
instruction set% and numerous ventures asimed at developling
machinss for direct execution of higher level languages,
notatbly APL% These efforts have been extended to include
operating systems3 and combined machiné level programming
with microprogramming to provide significant performance
gains? Recently, the addition of read-write memories and
field programmable read-only memories, to the conventional
read-only memory, allowed the user limited ability'to

tallor the machine for specific applications. Dynamic
loading capability has been announced by some manufacturers?
Extensive provision for user microprogramming has, however,
been confined to small or medium scale computersé Present
trends indicate that decreasing costs of high-speed memorles
will result in increased provision, by manufacturers, of
software and system support features at the microprogram
level.,

1-1
1.



A conceptual extension of this trend would encompass
a control structure which supported dyneamic modificatlon
of the control store in response to the immedlate needs
of an active process. Such a facility would require a
dynemic loading mechanism; to £llow swapping of speclal
microprograms as they are need=d. A dynamic relocation
or linking mechanism would also be required to allow
arbitrary combinations of these programs to be simultan-
eously control store resident and allow linking among
programs in the conventional subroutine or function manners.
Combination of the linking and loading mechanlisms could be
utilized to provide a virtual control store or simply
facilitae user control of the microprogram environment.

This concept differs significantly from the traditional
(and continuing) emphasis on providing an essentially static
set of microprogram features. A dynamic facllity, however,
provides not only significant reductions 1in the execution
times of a large class of useful programs, but additionally
allows microprograms of greater length than the physlcal
control store. This avoids the otherwise cruclal issue of
which special features should be provided in a limited set,
These advantages are partially offset by the overhead
invovled in implementation of the dynamic linking and load-
ing capabilities, especially if virtualization of the
confrol store is desired. The essentlal issue therefore
becomes an evaluation of the performance increases offered

1-2
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by dynamic linking and loading, in comparison with the
overhead involved in providing this facility.

Initially, a hypothetical machine 1s considered which
is suitable for latter conversion, to allow dynamic linking
and loading, but reflects the design of conventional
microprogrammed processors. The design was constrained
to include only those features which had previously been
incorporated in processor design, or those features which
were easily derivable from previous designs. This machine
is described in Chapter 2.

Additional hardware is then added to allow the dynamic
linking and loading capabilities. Modification of the
existing control store address mechanism from absolute
addressing to relocatable addressing 1s also required. A
description of these features 1s provided in Chapter 3.

Evaluation of the completed design indicates the
probable overhead involved in utilization of the dynamic
linking and loading mechanisms. Direct user control of
the linking and loading process is discussed as a prelude
to a description of the difficulties involved in providing
a virtual control store. Removal and memory management
algorithms are considered in relation to the microprogram
environment. Additional consideration 1s given to the
effect of external factors, especially interupts, on the
linking and loading process. In concluding Chapter b, a
summary of the overhead involved in linking and loading is
provided.
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Justification of the overhead involved in providing
the mechanism results from an analysis of the potential
performance gains achlevable through use of the mechanlsm.
A reduction process 1s describcd which utilizes the
relationship between microprogramming and machine language
progremming to provide criteria for microprogramming a
section of machine language codz.

Continuing from Chapter 5, Chapter 6 provides a
discussion of other considerations posed by dynamic linking
and loading. Especlally important are the issues of
compatiblility and manufacturer support of machines with
varying instruction sets,

In concluding, it is felt that dynamic linking and
loading mechanisms, at the microprogram level, provide

a viable means of upgrading processor performance.

.



Chapter 2. The Conventional Microprogrammed Processor

Introduction

Microprogrammed digital computers may easily be
described in terms of their data and control structures.
The data structure consists of the avallable paths for
the transfer of data between the storage elements (registers,
buffers, memories, etc.) of the processor, and the comp-
utational units included in each path. These computational
units provide the basic data manipulative functions of the
machine, such as add, subtract, logical AND, etec. Various
speclial purpose subprocessors may also be provided. Most
typical is the availability of a floating-point processor
for many machines. The control structure allows definition
of the transfers and functions provided by the data structure
during each microprocessor cycle (a microprocessor cycle is
defined as the period between the execution of successive
microinstructions). For microprogrammed computers, this
control is apparent in the interpretation of wvarious fields
of the microinstructions,

Historically, a wlde variety of data structures have
been utilized by manufacturers. The IBM 360 and IBM 370
serlies computers eiemplify the use of several special-
purpose-computational units and multiple bus structure
to allow maximal parrallelism in the processing of each
machine language instruction. While supporting an almost
identical instruction set, the RCA Spectra 70 series
computers employ a much different architecture. The

2-1
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Spectra 70 series computers utilize a three bus structure
and single general purpose arithmetic and loglical unit
to provide the computational facility; and provides an
additionsl data transfer bus o:r higher bandwidth%
Variations of this basic three-bus structure are in wide-
spread use. This 1s especlally true of smaller computers
where the simplicity of the design (and lower cost) is
more important than processor speed. More radical in
design is the Nanodata QM-1 machine. This computer
utilizes multiple busing and a single computational unit,
but allows prolonged specification of bus interconnectlons
(indefinitely long) by the microprogram, and thereby allows
a limited degree of "rewireabllity".2
The variations in the data structures among computers
are reflected in thelr respective control structures. Each
microinstruction specifies some action(s) to be perfbrmed
by the data structure prior to the executlion of the next
microinstruction. Additionally, each microinstruction must
provide a means for determining the next microinstruction
to be executed (hereafter referred to as the successor
function). Agaln, wide variation may be found in both
the successor functions avallable and the control signals
which may be specified during each microprocessor cycle%’3
To provide a uniform basis for discussion of the
dynamic linking and loading concept, a selection of the
features available in the data structures and control
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structures of conventional computers has been incorporated
in the design of a hypothetical conventional proccessor.

A variation of the three-bus architecture was chosen as
typiczl of many designs, and appropriate control flelds
were provided in each micrinstruction. The successor
functions provided were chosen to reflect a varlety of the
existing strategys and additionally, to illustrate the
conceris involved in providing a dynamic linking and load-
ing facility for an arbitrary conventlonel machine,

Description of the Hypothetical Machine's Data Structure

The principle data paths of the hypothetical machine
are summarized in Figure 1. The A, B and F buses proviae
transfer of data within the processor and supply operands
to the arithmetic and logical unit (ALU). A main memory
bus a2llows transfer of data to the machine's cache memory
and to the operand registers of the floating-point processor
(not shown). Each of the internal buses (A, B, and F) is
chosen as eilght bits wide to allow flexibility in byte
manipulations, and to reflect similar cholces in the design
of other processorsl.'3 The main memory bus is chosen as
64 vpits wide, thereby reflecting typical main memory
bandwidths, floating-point operand length and the width
of the cache memory.

The arithmetic and logic unit (ALU) provides a variety
of simple functions on eight bits. These include increment-
ing or decrementing the A-operand, adding the B-operand and

2-3
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A-operand, subtracting the B-operand from the A-operand,
and sixteen logical functions of two varilables (1s, Os,

A, &K, B, B, AB, AB, AB, AB, A+B, A+B, A+B, A+B, A¢B, A¢B).
The arithmetic operations alluow specification of a carcy-in
bit and result in a carry-out hit thereby allowing multiple
precision operations. Both logical and arithmetic operations
generate status information ccncerning the nature of the
operands and result of the operation. Conditional infor-
mation, such as zero result, negative result, overflow and
underflow are provided. The result of the ALU operation

18 passed through the shifter. This unit shifts the result
either left or right and substitutes a specified S-bit for
the bit positions vacated by the shift. 1In the event of
single bit shifts (either left or right)Athe S-bit may be

used to allow extended precision shifts '

2r analogous

to that used for the ALU., The result o«

srany cycles

and shifter operations is written fro= rnito the

proper register at the end of each micro- =
The various registers are selected by special control
fields in each microinstruction to be gated to each of the
three buses, Within the context of the data structure,
each register may respond to more than one address as a
result of its length or to commands encoded as different
addresses. For example, the program counter (PC) responds
to fwo addresses; one of which simply references the PC

as data, the other additionally indicates that the PC
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should be incremented as a result of the reference. The
local store scratchpad (LSS) also responds to several
addresses, but the effect here is to utilize the encoding
to select an address within tre scratchpad, rather than
indicate an operation to perform. In thls manner, the

LSS serves to provide the numerous general registers
normally asscociated with a machine. Various other speclal
registers are provided. These include the status reglster,
the instruction register (IR),the memory address register,
the memory data buffer register and the switech register.
Additional special purpese reglisters may be connected to
any of the buses, but only 256 discrete addresses are allowed
by the control structure.

Special consideration should be given to the main
memory access port provided by the memory address reglster
(MAR), the data buffer register (DBR) and the cache., A
detailed summary of the interelation between these registers
is provided in Figure 2. The DBR recognizes several
addresses with the following possible resultss first, that
the reference is simply for data, second, that the contents
of the MAR should be incremented and that elther a read or
write operation should occur following the current micro-
processor cycle, or third that the MAR should be decremented
and_read or write operation should occur. Similar encoding
of the MAR address lines allow specification of read-write
or DBR modification operations. Note that as a result of

these operations the contents of a register would remain
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invalid for some period after the operation is initlated.
If the register 1s addressed by a subsequent microin-
struction before it contains valid information, then the
register responds by indicating, to the control structure,
that the microprocessor cycle should be delayed. Thls
allows a form of asynchronous operation by the computer,
but the overall effort is towards providing fixed-cycle-
synchronous operation.

Description of the Hyvpothetical Machine's Control Structure

Each microprocessor cyclé:consists of the execution
of a microinstruction and determination of the next micro-
instruction to be executed. In practice, these operations
are overlapped in a manner which allows continuous execu-
tion. This indicates that evaluation of the successor
function during the execution of an instruction must use
the conditional status information resultant from the
previous instruction, and cannot use (wait for) status
information generated by the current instruction. This
effect may be summarized as:

-~ A,B gating + ALU + Shift + F writing® --

*fetch =ee=-- successor evaluation + next fetch --{---
were the asterisks indicate the maximum microprocessor cycle.
Defining Tex as the time required for the upper branch, after
Tdec' the time required to initially decode control structure

signalsy and T as successor eveluation time; and T

next csac

as the time then required to fetch the next microinstructior

yields the result that the microprocessor cycle time 1s:s

2-6
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Tmpcy = max( Tgoo + Tox o Tnext + Tcsac)° i}
Assuming that a given microprocessor cycle time is desired
and that the decode and execution times of the data structure
have been specified, then it becomes possible to indicate
control structure requirements of the processor. Basically,
control signals must be generated in the form of A, B and F
bus aidress fields, and for ALU and Shifter control. The
contrel structure must also provide storage for the micro-

programs with sufficiently small access time to allow:

T

mpey = Tdec + Tex =T

g + T o

nex csac

This represents the optimal cholce of control structure

paremeters because a larger value of T +T would

next “csac

result in wastage of the avallable data structure transfer
speeds; wereas a smaller value would not improve Tmpcy and
the cost involved in providing the smaller value would not
be justified. We proceed on the assumption that proﬁer
cholces of logic elements will allow the optimum condition,
end. describe the control structure and microinstruction
format,

An overview of the control structure organization is
shown in Figure 3. The control store is chosen as L,096
words of 64 bits each; reflecting the microinstruction
format and the approximate size of control stores in medium
to large scale computers. The successor function provides

*
T for most processors is on the order of 100-300ns.

BPCY This reflects tradeoffs between desired processor
price, processor speed and avallable technology.
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Figure 3.
Control Structure Organization
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the address of the next microinstruction based on the

method, as indlicated in the successor fleld of each micro-
instruction, and conditional testing réquired. The control
fields include the A, B and F address fields, the ALU control
field, the Shifter control field and associated bit-steering
fields (bit-steering fields indicate how another field or
fields are to be interpreted if more than one interpretation
exists).

Each of the bus-asddress flelds 1is identical and consists
of ten bits. Eight constitute the address of a register on
the bus, or an eight-bit constant to be substituted as an
operand. The remaining two bits indicate the interpretation
of the field as a constant.or, 1n the case of extended
precision operations, whether the address 1s to be incremented,
decremented or remain the same in determlnlng'consequetlve
operands. This feature is a generalization of that presently
used on many word oriented machines which process bytes at
the microinstruction level (IBM 360 and RCA Spectra 70).

An additional mask (M) bit is associated with each field

and indicates whether the eight bit instruction fileld or the
logical OR of the mask register associated with that fileld
end the instruction field are to be used, The symbolic
reprsentations for these fields have the following format:

X(Y,2) or X(2)

where X is the contents of the eight bit instruction field,
Y is M if the fileld is masked, and Z is the fleld variation
in the event that the instruction 1s immediately repeated.

2-8
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The Z field is elther +, -, /, or C depending on whether
the modification 1s to be increment, decrement, remain the
same oI lnterpref as a constant, repectively. The total
of the address fields constitute 33 blts of the mlicro-
instruction.

The remainder of the control signals required to
manipulate the data structure are provided by means of the
ALU and Shifter control fields of each instruction. The
ALU fields include the E-bit waich designates an extended
precision operation, the function to be performed and the
initial value of the carry (C) bit in the event of arithme-
tic operations. The shifter field includes specification
of right or left shift, the number of bit positions to
shift, and the shift-in bit (S) to replace the bit positions
freed by the shift. Either the C or S bits may be specified
as 0, 1, X, or X. The ALU functions have been previously
described. The shifter control allows for shifting of
from zero to seven bit positlons (zero corresponds to no
shift) in the direction specified. The symbolic represent-
ation for these fields is:

X(C), Y(S) or X(C),or LX, Y(S) or IX
where C and S designate the desired carry-in and shift-in
bits, X indicates the ALU function (prefaced by L if the
operation is logical), and Y indicates the direction and
number of positions to shift (for example L3, R5 etc).
Prefacing X with E indicates an extended preéision operation.
The ALU and Shifter control fields require 12 bits total.

2-9
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The remaining nineteen bits of each microinstruction
constitute the successor function. Four forms of this
function are possible., The first results from the use
of the E-bit in specifying an ALU operation. In this
case; the first bit of the successor functlon is lgnored:
the second conditional field is interpreted as a mask-bit
and eight bit count specifying the number of repitlons;
and the first successor conditional field 1s interpreted
as "on condition do x", where x is specified as one of
the seven successor possiblilities. After its first
execution, a statement will be repeated until either the
condition is met (and x is therefore chosen) or the
instruction has been repeated the designated number of
times, in which case the default successor function is Step.
Other basic forms of the successor function are specifiled
by the first bit in the field. Either the interpretation:
“"on condition A do x, else on condition B do y, else Step",
or the interpretations "on condition do x, else M4+OFFSET",
may be specified. The latter alternative indlcates that
the X register contains an offset which should be added to
the current value of the microprogram counter, and indicates
whether or not the field is masked, An additlonal
possitility results from specification in the first cord-
1tion field of an"on any condition", in which case the
remaining bits of the instruction are interpreted as the
absolute address of the next instruction. The possible
values of "x" and field sizes are included on the Figure 3.

2-10
17.



These choices of possible successor functions provide
wider diversity than would normally be expected. This
results from the attempt to represent many of the features
provided by present machines. The extended precision
function is present in many machines in varying forms.,

The "on condition x" form 1s a modificatlon of the
Burroughs Interpretera. The +0OFFSET form is a general-
yzation of the RCA Spectra 70 end IBM 360 equivalents:

The absolute form is present in nearly all machines.

Conclusion to Chapter 2

The hypothetical machine cescribed will serve as a
basis for discussion of the arcnitectural considerations
posed by dynamic linking and loading. Thls approach 1is
considered valid in that the features present in its
design reflect a variety of those presently implemented
in various processors. In this sense, an analysis of this
machine will indicate many problems inherent in the
conversion of present processor designs to allow dynamic
1linking and loading, but not all of these considerations
will necesarily pertaein to a given design.

As an addenda to this chapter, Appendix A provides
examples of microprogramming this machine to accept a

modified subset of the IBM 360 machine-language.
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Chapter 3. Implementation of the Dynamic Linking
and Loading Environment

Introduction

Implementation of a processor which supports dynanic
linking and loading of microprograms, in addition to the
features provided by the hypothetical machine, requires
modification of the microprogram address mechanism and
hardware support for the linking and loading process. The
concept of dynamic linking and loading of microprograms
is meant to include both the mechanlism for mlcroprogran
definition and the apparent virtuallzation of the control
store., Direct user contact with the facillty is provided
by means of machine language primitives, which allow the
user to define, modify or delete segments. Thls 1s in-
tended to allow the user to dynamlcally redefine the base
provided by the microprocessor to support the expected needs
of his program. Indirect user contact with the linking
and loading facility is provided through the automatic
linking and loading of programs as they are referenced.
This allows presentation of a virtual control store to the
user.

The hardware facilities required to provide this
facllity are the subject of this chapter. The additional
facilities are discussed in Crapter 4,

Three areas are of principle concern. The first 1s
the suitability of absolute addressing, as provided by the
hypothetical machine, to a‘dynamic environment. The

second and thlfd areas involve implementation of the

3-1
19



linking and loading facilities, respectively.

Modification of the Address Mechanism

As defined, the conecept of dynamic linking and load-
ing requires both the relocatavility of microprograms
and the ability to address microprograms of total length
greater than that of the control store. Nelther of these
goals may be achleved with an absolute address mechanism,

Examination of microprogram organization indicates
that division of microprograms into discrete sections 1is
easily accomplished. This results from the traditional
construction of microprograms as special sections of code
associated with each machine instruction, and linkages
from these sections to a few common sectlons of code.
The length of the special sections of code varies widely,
but is generally very short (a few instructions). A
fixed block orgzanization would therefore seenm 1nappr6pr1ate.
A variable length segment organization, however, would
seem appropriate to both the apparent organization of
microprograms and the varying length of the "independent”
speclal sections of code. Under this scheme, each segment
will be identified with a unique label (binary numbéf)_
and addressing within each segment is provided in the form
of an offset relative to the start of the segment. Local
addressing, addressing within a segment, therefore requires
only stipulation of an offset; wereas global addressing,
addressing between segments requires both the label and

offset within the segment desired. Implementation of this

3-2
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scheme requires that these segment-offset addresses be
mapped into the absolute addresses of the physlical control
store. This effect i1s achieved through dynamic¢ linking.

Implementation of Dynamic Linring

Implementation schemes fo. the segment-offset address
mapping into the control store addresses are shown in
Figure 4. Translation of segment-offset addresses 1is
provided in two ways. The segnment table provides the
necesary linkage information: the physical location of
each segment. Addition of the reguired offset to the
location of the segment desired results in the absolute
address required. This form of mapping is used to address
control store A (Fig. 4). Note that the segment table is
implemented as a memory, where the contents of location
SEG contaln the linkage information related to the segment
SEG. Alternatively, direct hardware recognition of the
segment—offset address form may be provided through the
use of relocation registers, This scheme, however requilres
a relocation register and physical memory block for each
segment, Assuming a large number of segments (there will
be), then the cost of providing these register would be
prohibitive of the relocation register approach. Also,
the control store configuration required (control stores
B and C) is considerably more expensive than the single
bloék configuration allowed by use of the segment table.
Also, the segment table may be used to contailn information

concerning segments not currently control store resident
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when virtualization of the control store is desired.

The segment table approach will therefore be used in
conversion of the hypothetical machine to the segment-
offset addressing form and its inherent linking capability.

Modification of the Successor Function

The successor function of the hypothetical machine
was designed to accept data relevant to the calculation
of absolute addresses from absolute addresses, This must
now be modified to allow calculation of absolute addresses
from segment-offset input. Note that the local functions
Step, Repeat, Skip and +OFFSET are program counter rel-
ative. If the program counter 1is mainatained in both
absolute and segment-offset forms, then the only mod-
ification required of the successor functlion in these
cases is to update both forms. The Save&Step and Call
functions must be altered to push the segment-offset form
of the program counter onto the stack, rather than the
absolute form. This 1s required in case the segment in
which the successor function was evaluated 18 relocated
before the value 1s popped by the execution of a Return,
The unconditional branch to an absolute address form of
the successor function must be modified to a useful
segment-offset form. Prelimirary tb consideration of
this problem,we note that the Jump and Call functions
required the introduction of a twelve bit address into
the jump-vector prior to execution. Practically, however,
this required two transfers of eight bits each, despite

3-4
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the fact that only twelve were required. This leads to
the cholce of allowing up to 256 segments of maximum
length 256 words, and converting the jump-vector to a
segment-offset interpretation. Now, difficulty in
converting the absolute address form to a useful segment-
offset form is apparent: sixteen bits are required but
only t#elve are avallable. The unconditional branch
form will therefore be converted to two forms: Jseg
which causes transfer to the first word of SEG as specified
by the X register (may be masked), and Joff, which causss
transfer to the segment in the 8EG régister at the offsat
specified by the X register (again may be masked). The Call,
Jump, Return, Jseg and Joff successor functions all require
use of the segment table to determine the appropriate
address. Recalling the optimum choice of the times
required for control store access and successor evaluation,
. Tmpcy = Tegac * Thext °
indicates that linkage between segments as a result of
these global functions might result in adverse effects on
Tnext and therefore élther Tmpcy and Tcsac' If however,
introduction of a value into the SEG reglster causes that
location to be automatically fetched, then the Jump, Call
and Joff succssor functions will cause no overhead if the
segment table access time is equivalent to the local
store access time; because these functions require prior
introduction of a constant into SEG, The Return and Jseg
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functione, however, provide no prior information on the
segment referenced and will incurr overhead equal to the
segment table access time plus the address generation

time (Return only). This indicates that either the time
requirzd to evaluate thé successor function must be reduc-
ed, or the access time of the control store must be reduc-
ed, 1f continuous linkage overhead is to be eliminated
during microprogram execution. In proceeding, 1t will be
assumed that the long-run overhead involved in these
linkages has been effectively transferred to hardware
overhead through appropriate modification of the original
successor evaluation hardware, or if necesary, reducing
the access time of the control store.

The Successor Function and Segment Faults

Another consideration in conversion to the segment-
offset form is the possibllity of generating addressés
which have no control store equivalent. This will occur
when either the segment referenced is not defined or
the segment 18 defined but 1s not control store resident.
In either case, = llnkége or missing segment fault has
occurred. The successor function must detect this cond-
1tion and automatically take appropriate action. This
action 1s defined as evaluation to the address of a micro-
program specifically designed to handle this problem
(the segment fault handler). An arbitrary implementation
of this scheme is to define the missing segmenf fault
handler as segment zero, and provide a special register
to allow rapid determination of the absolute address
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of segment zero. In the event of & segment fault, the
successor functions value 1s contained in thls reglister
end transfer of program control occurs automatically.

Impleumentation of Dynamic Loading

The loading and relocation requirements of the dynamic
" 1inking and loading mechanlism are most easily satisfied
through the use of data block transfer channels. Use of
such direct memory access (DMA) channels allows such
transfers to continue without program intervention; and
therefore allows continued execution during the transfer.

Implementation of the DMA channel is stalgthforward
in that it simply represents ccnversion of an already
implemented concept to this application. Basically, a
length register (L) 1s used to contain thé number of words
to transfer starting at the location specified by CSADR1
to the starting address CSADR2, Elther address register
may specify a maln memory location,‘but not both. This
therefore allows relocation of blocks within the control
store, loading of blocks from main memory or storing
blocks into main memorj.

Transfer to (or from) main memory from the control
store‘proceeds by"stealing"” control store memory cycles
once every Tcy (maln memory cycle time) and the total
time to transfer a block of length m is therefore m'Tcy.
This.overhead may be considered considerably reduced if
useful computation can procede in parrallel with the

transfer. If the main memory cycle time is longer than
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the microproccessor cycle time by a significant amount

(at least a factor of two) then the following analysis of

the overhead involved in such transferé is true, Assune:
i. Exactly m control stcre cycles are required

for the transfer (ie block length is m)

2., The optimal choice of Tmpcy= Tnext + Tcsac holids

3.‘ The control store is organized as k equal length
- Dblocks (analysis with unequal lengths similar)
, The main memory is organized as t equal length
blocks of equal cycle times
5., Useful computation is available during the transfer
Then noting that the interim between successive refererces
to the control store by/the microprogrem 1is Tnext then
the maximum time delay resulting from conflicting references

T end these conflicts can

to the control store is Tcsac' next

be expected with frequency m/t. Therefore the expected value
for the time loss during the transfer 1is:

% (Tesae - Tnext)'

as a result of conflicts occurring in reference to the
control store. Additionally, there -is the probability of
time loss at main memory in the event that the useful
computation involves main memory references. In this case,
the time loss due to conflict 1s Tcy and the maximum
number of attempts to reference data from mailn memory
(resulting in fetches--attempts which are satlisfied by
the cache don't count) is m., Assume n references are
attempted (n less than m) then the time loss at main
memory can be expected to bej nToy / t .

Actually, the probable valﬁe of n is low, especially
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in comparison with t, and this value may probably be
jgnored, However, the expected value for the overheead

involved in actually loading or storing 1is:

d;g:‘

%(Tcsac - Tpext® + cy .
This value will be of later use in calculating the total
performance gain achievable with dynamic linking and
loading.

4 similar analysis may be used to compute the time
loss expected during relocation of a block of length m.
The total time required is simply 2mTcsac if the transfer
proceeds uninterupted within a single block, or about
(m+2)Tcsac if uninterupted within two separate physical
blocks? Note that either one or the other should apply
as references are made to consequetive addresses. If
useful computation again exists, then the overhead 1s
egaln expected to depend on the probabllity of confllicting
references, the total number of references and the time

loss involved in each conflict. The value for relocating

a block of length m would therefore be:

2m

TF(Tcsac - Thext)
Again, this value will be of later use in establishing
the performance gain acievable with dynamic linking and

loading.

* ,
This value also requires two points of access to the control
store, otherwise the first value still holds.
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Conclusion to Chépter 3

The overhead involved in the implementation of the
dynamic linking and loading hardware has been examined.,
The rz2quirements include conversion‘of the read-only
control store to read-write capability, the provision
"of a segment table and modification of the suocessor»
function to a2llow segment-offset addressing and segment
fault handling. Additionally, the overhead involved in
provision of the loading mechanism has been described,
and the overhead involved in loading computed. A summary
of the implementations of these capablilities 1s provided
in Pigure 5. Chapter 4 will provide the necesary
algorlithms to allow these facllities to be used to provide

an effective dynamic linking and loading environment,

3-10
30.



Chapter 4, Evaluation of the Dynamic Linking
and Loadling Environment

Introduction

Evaluation of the linking and loading environment,

provided in Chapter 3, requires an analysis of the use of
that environment to provide a useful linking and loading

i facillity. This evaluation involves essentially two areas

of interest., The first, the initial overhead involved

in establishing the environment, was discussed in Chapter 3.

The scecond, involves the overhead involved each time the

facility is utilized,

Direct utilization is provided by means of machine
language primitives designed to allow program manipulatioh
of the control store and linkage table. While this allows
the user the priviledge of dynamically reconfiguring the
microprogram environment, it also presents the user with
problems of memory menagement and requires a rather
definite knowledge of his programs' behavior.

Indirect utilization of the facility is provided
to free the user from these responsibilities. This requires
an automatic mechanism to cope with the problems of memory
management and segment faults. The manual "virtualization"
provided through the use of machine instructions is there-
for repleced with virtualizat’on in the conventional s:nse.,
This transition, however, requires a discussion of the
problems involved in segment fault handling. Especlally
difficult are the problems posed by memory management and
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the segment removal algorithm. The combination of the
overhead involved in implementing suitable solutions to
these problems may be combined with the estimates of the
initisl overhead to determine the minimal degree of
effectiveness required to Justify implementation of the
dynamic linking and loading facility.

Program Controlled Linking and Loading - Description

Machine language instructions, sufficient to allow
program control of the linking and loading processes, are:
define Seg,Link , which replaces the old segment
table entry for the segment Seg with the
contents of the location pointed to by Link,
move Seg,Loc , which moves the segment Seg to the
location indicated by Loc and updates the
segment table entry for Seg to indicate its
new location (the move may not be specified
as main memory to main memory),
status Seg,Loc , which storesAthe segment table
entry for the segment Seg at the location
indicated by Loc. '
The define primitive allows the initial creation of a segment
table entry, thereby defining a segment. The segment table
entry must contain the main memory location of the segment
and the length of the segment; other information concerning
the segment can also be provided, but will not be needed in
this case. Subsequent use of the move primitive allows the
segment to be loaded, relocated or stored. Relocatlion and
storage of segments may be required to allow the loading of
another segment; this determination is made on the program's
knowledge of the location and length of all control store
resident segments, and the length of the segment to be loaded.

k-2
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Concievably, the program would not have sufficlient infor-
mation to make this determination, in which case the use

of the status primitive allows examination of the location
and length of any segment. This situation 1s liable to
occur when calls to subroutines or functions are executed,
and the function or subroutine 1is not aware of the exact
microprogram environment at the time of the call. Note that
this difficulty results from the necesity of loading all
segments,before they are referenced, in the absence of an
automatic segment fault handling facility., Therefore, the
programmer must be carefﬁl to provide the expected micro-
program base when machine language program behavior 1is not
striclty sequential. As the complexity of program behavior
increases, this could pose a formidable problem for the
prograummer.,

Program Controlled Linking end ILoading - Overhead

In eddition to providing potentially difficult problems
to the programmer, program controlled linking and loading is
1esé efficient than the hypothetical optimal aléorithm. The
optimal algorithm uses advance knowledge of the program's
behavior to provide optimal decisions when the need for link-
ing or loading occirs. This therefore provides a measure of
the absolute minimum of overhead involved in dynamic linking
and loading. Program controllad linking and loading 1iv less
efficlent than the optimal algorithm because 1t may require
the linking and loading of segments to avold potential |
segment faults which do not exist., Similarly, 1t may also
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store segments unecesarily to allow the loading of other
segments. A measure of the overhead involved 1s obtained

by considering the conditional probability that a segment
will be referenced given that another segment has been
referenced, This measure 1s applicable to the case where
41t 18 known that the interpnretation of a machine instruction
will result in execution of a particular microprogram
segment, but this segment potentially links to n other
segmerts with probability p,., for the ith segment. This
should be combined with phe probability of executing the
relevant machine instruction, m, and the overhead involved
in providing the ith segment, ti, to give the expected value
of the overhead incurred by the optimal algorithm:

n

mféi Pyty o ' .
This should be compared with the overhead incurred by the
program controlled algorithm:
n
55
where it is assumed that the program does not know if the
jnstruction will be executed. In practice, the values for
the overhead involved, tl' may be calculated from the
occurrence of the primitives and the probabllity that the
relevant instruction sequence will be followed; and the
overhead involved in the execution of each primitive, For
the define and status primitives, this value is determinable
from the microcode required in their interpretation; but for
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the move primitive, the overhead is that calculated in
the previous chapter for the desired operation. As the
optimal algorithm is impossible to compute, the use of
primitives provides an effective approximation of the
maximum overhead required to support dynamic linking and
- loading in specific instances. This does not indicate
that a different algorithm carnot perform worse in some
instances and better in others, but simply indicates the
maximum overhead which need be allowed in each case.

In this sense, it provi@es a basls for measuring the
"excess" overhead involved in the implementation of the
automatically controlled linking and loading algorithms.

Virtualization of the Control Store - Automatic Linking
and Loading

Except for the original definition of segments, the
"virtualization" of the control store through direct
program control could be replaced with an automatic mech-
anism. Such a mechanism frees the programmer from the
difficulties involved in maintaining the appropriate
microprogram environment, and retains the advantages of
control store virtualization provided by the programmer.
Implementation of the automatic mechanism however, requires
that the control store bookeeping operation,provided by
the programmer,be replaced with suitable algorithms, Over-
head will then be incurred by the execution of these
algorithms. In comparison with program control, this
may or may not exceed the savings achieved through the
elimination of unecesary operations involved in the direct
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control algorithm,

An overvew of the automatic segment fault handling
algorithm is shown in Figure 6. The procedure is simple,
prov’ded sufficient free spacc alweys exists to allow
immediate loading of missing segments. In this case, the
- overhead is approximately equal to the overhead involved
in the loading process. Practically however, if the total
length of the microprograms exceeds the length of the
physical control store, then segment removal and garbage
collection must preceed the loading process. This sit-
uation is analogous to that of conventional virtual
memories; but, significant differences exist between the
considerations involved at the microprogram and machine
program levels. Consideration of appropriate segment
removal and garbage collection algorithms 1is ﬁherefore
neceSary.

Microprogram Behavior - A Basis for the Algorithms

The choice of segment removal and garbage collection
algorithms must be made on the basis of expected micro-
program behavior. The lack of data in this area,‘espeoi-
ally for processors which allow user definition of micro-
programs, requiree the choice of reasonable algorithms
without proof of their optimality. Traditional micro-
program organization and behavior will serve as the basis
for the choice of these algorithms,

Microprograms are traditionally oriented toward the
1nterpretation.of a predetermined machine language. The
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usual method of implementing this interpretation is to
code specilal sections of microcode for the interpretation
of each instruction. These sections are linked to the
machire instruction fetch and decnde section(s) of the
program, and also to the speclal segments assoclated with
"the interupt mechanism of the osrocessor. A typical

example is the interpretation of the IBM 360 machine
language in the Model 50, The first phase involves the
initial instruction fetch and program counter updating.

Two successive phases result in the decoding of the
instruction., The instruétion {8 then executed, This

phase may entall additional succesive phases, as in the
possible case of microprogrammed floating-point operations,
After execution, the microprogram branches to the interupt
checking phase and then succesive branches eventually
return to the initial instruction fetch phase? This
behavior is summarized in Figure 7a. The exact behavioral
path differs from machine instruction to machine instruction;
therefore, if the occurence of a particular type of
machine instruction is treated as a random event, then this
behavioral pattern will be reflected in the execution of
various microprograms associated with the particular
instruction. An additional characteristic of this pattern
1s thc relatively short duration of many of the phases,
especially the decode and execute phase for the more basic
machine instructions., If each phase is 1mp1emented~as a
separate segment (this 1s virtually required ﬁo allow
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Figure 7a
Conventional Microprogram Behavior
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Figure 7b
Expected Microprogram Behavior




the appropriate linkages) then the following summarizes
the behavior of conventional microprogramss

1. The use of a distinct segment for the interpretation
of each machine-leve} instructlion.

2. The random occurence of execution of these distinct
segments as a result of machine-level program
construction and execution.

3. Relatively short intervals of local execution.

4, Relatively frequent linkages between segments.

5, Microprogram overall organization as a very large
number of short segments (with exceptions).

6. The execution of certain segments regardless or
the instruction being executed.

Allowing user definition of microprograms, or the definitlon
of microprograms which compute more complex algorithms than
those typically chosen for machine-level instructions, is
expected to change the overall behavior of the micro-
program very little. The major difference 1is expected to
be the use of longer segments (with longer spans of exec-
ution time) which link to several other shared segments.,
This would result, for example, from the provision of
floating-point operations such as add and subtract which
would be used by instructions computing trigonometric
functions., Another example would be the use of common
string manipulative functions in the construction of micro-
programmed editors or parsers. Figure 7b represents the
expected behavior of microprograms when the dynamic link-
ing and loading facility is implemented.

The Homoval Algorithm - Discussion of Conventional Metnrods

" Analysis of this behavior pattern indlcates that the

*By “random occcurence" we mean that the occurence of a
particular instruction is independent of the instructions
preceeding it. The frequency of occurence of different
machine level instructions is expected to vary.
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conventional segment removal (or page removal) algorithms

may not be suitable for use at the microprogram level.
Algorichms, such as least-recently-used*(LBU), are depend-
ent unon the assumed local behrvior of machine programs.

In other words, the machine language program is expected

to proceed in a basically sequential pattern or execute

in relatively small portions of the program as a result of
looping, subroutines, functions or recursion. This type

of behavioral pattern allows the assumption that if a segment
is referenced once, then it can be expected to be refer-
enced again within a short time interval., This also allows
the assumption, that if a segment has not been referenced

for a long period of time, then it probably will not be
referenced within a short time intervel, These observations
result in the use of LRU (or modifications thereof) algorithms
at the machine-language level.

The behavioral assumptions for machine language programs
are clearly different from those established for micro-
programs. The random nature of microprogram behavior and
the execution of certain segments regardless of the previous
execution pattern are inconsistant with the intent of the
least-recently-used algorithms. Additionally, these
algorithms require the real time maintenance of segment
reference data; and the relativzly frequent occurence or
*This algorithm is interpreted as follows: assume the
available memory space is filled and a segment fault occurs,
then remove the segment which has not been referenced for
the longest period of time and place the code for the segment
requested on the top of a stack. Subsequent references to
segments cause their codes to be pushed onto the stack. The

least-recently used segment is therefore always on the

-9
b1,



linkages between segments,at the microprogram level,

creates significant overhead 1n maintaining such data,

Also, the number of segments which will probably be control
store resident greatly exceeds the number of segments

or pages normally used in the machine-language environment.
Therefore, the use of conventional segment removal
algorithms,at the microprogram level, is considered invalid;
and construction of an algorithm, sultable for use at the
microprogram level, 1s required.

The Removal Alzorithm - Least Frequently Used,
A Possible Solution

The behavioral characteristics of microprograms would
suggest the use of a least-frequently-used (LFU) algorithm
for segment removal. This algorithm stipulates that the
segment which has recieved the fewest references 1is the
segment which should be removed. Full implementation of
this algorithm would require that a data base be continually
updated to reflect the number of references to each segment,
This is not useful for two reasons: first, the overhead
involved in maintaining this data base 1s prohibitive, and
second, after a significant period of execution the rel-
ative priorities among most segments would remain essentially
constant, The second effect results from the fact that
frequently used segments would rapidly develop priorities
of such greater magnitude than other segments, that short-
bottom of the stack. Note that when the code for a segment
is pushed onto the stack, any other reference to that
segment is removed from the stack; therefore each segment 1is
referenced by at most one stack locatlon.

L-10
b2,



anomilies in the behavior of segments would not be corrected.
Further, after prolonged perliods of execution essentially
all o the segments are expected to develop relatively
constant priorities. This does not, however, preclude the
possibility of changes in the relationshlp between segments
of extremely low or extremely close priorities.,

Thlis discussion indicates that a static assignment of
priorities could be made which reflected the observed long-
run frequencles of execution of the various segments. This
method eliminates the overhead involved in maintaining a
data base, while maintaining the essential features of the
LFU algorithm.

A basic objection to the LFU algorithm is that the
occurence of nonprobablistic behavior of one segment will
also indicate nonprobablistic behavior of the'segments
assocliated with the first. This could lead to the case
of two (or more) segments which alternately reference
each other, but both are of extremely low priority and
therefore replace each other. Severe system performance
degradation could result if these segments performed a
significant number of cross-linkages, Two variations of
the LFU algorithm are now considered which attempt to
reduce or eliminate occurrences of this sort.

Least Frequently Used - Modifiod with Association Lists

A direct approach to solving this problem is the
specification of the segments associated wilth .another
segment. Included in the definition of each segment would
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be a lisﬁ of the segments to which linkages could be
expected from thét segment. The removal algorithm is
then modified to stipulate that the least-frequently-
used :egment, not on the association 'list of the segment
being loaded, should be removed., Implementation of this
algorithm would therefore involve searching the segment
table for the first segment which meets the criteria.
This 1s effective if the association list is provided as
an ordered list of the segments required; in which case
the algorithm skown in Flgure £ requires at most one
reference to each segment table entry and at most one
reference to each member of the association 1list. The
objection to this algorithm is that it never requires
significantly less overhead,rezardless of'the segment
loaded, because no look-ahead is possible. Tﬁis is
meant to indicate that despite the static definition of
relative segment priorities, it is lmpossible to accurately
predict which segment should be the next to be removed.

Least Frequently Used - Modified with Most Fregquently Removed

An alternative approach to assoclation of segments
utilizes a most-frequently-removed algorithm and special
control store search to determine which segment to be
removed. Basically, this algorithm attempts to eliminate
infrequent anomolous behavior by causing the least-recently
removed segments of a given priority to be removed first;
and attempts to adjust long-run anomolous behavior by
increasing the . priority of segments which show a high
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Figure 8.

Least-Frequently Used Algorithm Including
Use of Association Lists (LFU-AL)
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frequency of return after being removed. This algorithm

is implemented as follows. The delimiter word (see section
on garbage collection) of each segment is modified to include
a covnt of the number of times the segment has been reroved
in addition to the other data. Searching from the lower
addresses of the control store (initially higher priority)
the algorithm proceeds up the chain of delimiter words

until the lowest priority segment 1s located. This segment
1s then removed; its count of the number of times it has
been removed is incremented, and if the count overflows the
priority of the segment is incremented and the count reset
to zero; the garbage collection algorithm relocates all
segments,located at higher addresses,downward; and the new
segment 1s loaded at the top of the segment addresses. This
algorithm is flowcharted in Figure 9. The result of this
algorithm i1s to examine the most recently loaded segment
last (in some sense this reflects LRU), and if a segment is
removed several times (indicating it is used several times),
then its priority 1s increased to reuce the frequency of 1its
removal. The method of search and relocation also results
in the accumulation of the most frequently used segments 1n
the low end of the control store and thereby eventually
decreases the overhead involved in garbage collectlon,

‘e difficulties with thic algorithm are essentially
the same as those of the LFU, except that they are reduced
in overall effect. It remains possible to remove a segment
which will be immediately requested; but frequent occurences
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Figure 9,

Least-Frequently-Used Algorithm Including
Use of Removal Counts (LFU-MFR)
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of such behavior will result in feedback which would
eventually reduce the problem. Similarly, long-run
anomilies in particular programs will be adjusted to
improve performance., None-the-less, the immediate
response of the algorithm to anomilous behavior is not
as good as the use of essocilation lists.

Leagst Fregquently Used - Modified with a Combination
of Assoclastion Lists and Host Frequently Removed

A combination of the two modifications of the LFU
algorithm is a useful means of providing both long-run
and short-run adjustment of anomolous behavior. This
algorithm may be implemented as in Figure 10, The basic
procedure is to follow the procedure outlined for the
most-frequently-removed algorithm with the addition of
comparing each segment,which otherwise would have been
chosen for removal, against the association list of the
segment being loaded. Inefficiency results from the fact
that the search is no longer ordered, and therefore the
association list may be searched several times before
the algorithm completes. This problem could be reduced
by restricting the length of the association 1list, or
by providing a small associative memory to allow parrallel
comparison with all the association list entries simul-
tanecusly. Neither alternative is especially desirable:
the length restriction must be severe to allow overhead
comperable to that obtained solely with the association
1ist method (reduction to about 2 or 3 segments); and the

second requires a potentially significant hardware invest-
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Figure 10,

Least-Frequently-Used Algorithm Including
Use of Both LFU-AL and LFU-AL-MFR
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ment. Again, combination of these methods might prove
effective, especially if the original lengths of the
association lists were relatively short. Limited exper-
ience in the construction of inicrovrograms has indicatced
that association lists on the order of eight to sixteen
segments long are sufficient to eliminate first-order
effects of segment faults. Higher-order effects, resulfant
from segments which link to segments which 1link to other
segments (all linkages of low priority), may require
significantly longer lists; but these could be treated

as special cases in construction of the association 1list,
Therefore, a 1limit of about sixteen members per segment
agssoclation list will be imposed, and an associative memory
of this length will be provided (for thié size memory, the
addition constitutes negligible cost). The révised
implementation of the LFU algorithm is shown in Figure 11,

The Least-Frequently-Used Algorithms - Examples

An intuitive comparison of the variations of the least-
frequently-used algorithm may be achieved by considering
examples of the behavior of these algorithms in specilal
cases, As a prelude to this discussion, it 1s necesary
to establish the number of priorities and the length of
the allowable removal count, the number of possible segments
and similar factors. Arbitrarily establish the maximum
numﬁer of priority levels as sixteen, the maximun number
of segments as 256, the maximum length of each segment as
256, the overflow value for the removal count as 256 and
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Initialization: 1. Store needed registers <‘\\
2. Load MAR with address of segment
3. Fetch association 1list
L4, Load associative memory

5, Set LEN=U and LOC=¢
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8., Access priority of segment (P) Y
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A Modification of the Combined Algorithms
Figure 11.
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the average value of the length for each segment as 20 words,
The last assumption indicates that about four-fifths of the
avallable segments will be control store resident. Also,
establish 16 as the highest priority level for removable
segments, and establish 0 as the priority for segments which
cannot be removed (the segment fault handler for example).
Initially, let most of the segments have priority O and allow
the following configuration of high address control store
hold: g(2,0)

£(1,0) k(1,0) not control store

e(3,0) resident

a(4,0)

c(6,0)

b(7,0)

a(11,0).
The notation x(y,z) indicates"the segment x whose priority
i1s y which has been removed z times at that priority level”,
Now consider the following examples. x
Example 1. - Normal Behavior

In the absence of segment faults, all of the algorlthms
perform equivalently and create no overhead.
Example 2. - First-Order Effects
In this case we assume that segments f, ¢ and b are

linked in an iterative loop and that segment k is also part
of the loop. In the use of the unmodified LFU algorithm,
the first reference to k will create a segment fault and
segment f will be removed. The next reference to £ will
then result in a segment fault. Subsequent references to
these segments will continue to yleld segment faults,
In use of the LFU algorithm with association lists (LFU-AL),
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the first reference to k will again generate a segment fault.
However, if k's assoclation 1list is f,c,b, then segment g
will be removed and the loop will continue without creating
further segment faults. In the use of the LFU algorithm
with the most-frequently-removed variation (LFU-MFR), the
first reference to k¥ and subsequent references to f and k
will couse segment faults for the first 256 references
causing these faults. At this point, f and k will have
accumulated priority greater than g, and segment g will
then be removed. Note that the responsiveness of LFU-MFR
1s highly dependent upon the overflow value for the removal
count. Use of lower value improves responsiveness, but the
speed with which maximum priorlty is reached ‘1s increased;
at which point, the priorities must be reinitialized. The
use of the LFU algorithm with both modifications (LFU-AL-MFR)
results in behavior identical to that of LFU-AL, In
summary, LFU-AL and LFU-AL-MFR performed well in ellmlnating
first-order effects in linkages between low priority segments.
Example 3. - Higher-Order Effects

In this case, we assume that segment k references seg-
ments g or e, and that e occasionally references f as a
called function. Agaln assume looping behavior, also assume
the following association lists: for k, g,e,f; for g, k,e,f;
for e, g,f,k; and for f, g,e,k. The use of LFU will again
result in segment faults for each alternate reference to
segments k or f. The use of LFU-MFR may eventually result
in priority increases for g,f and e such that segment d will
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be removed; but this effect will require considerable time.,
If normal behavior follows this loop, then segment 4 may not
be of sufficiently high priority and further difficulty
could result from subsequent segmant faults, The use of
LFU-AL or LFU-AL-MFR results in the removal of 4 immedlately
upon the first segment fault (reference to k), and normal
behavior thereafter. For more complicated examples involving
longer assoclation lists, the behavior of LFU-AL and
LFU-AL-MFR will begin to diffe»., This results because the
specification of a long enough association list eliminates
all order effects in the LFU-AL, wereas the limited length
of the LFU-AL-MFR association 1ist will allow menifestations
of higher-order effects.

In concluding the disscussion of thevexamples, two
points are evident., The first is the superiofity of the
association list method over probablistic approaches to
segment removal. The second is the inflexibility of thils
approach in adapting to "long-range" effects of looping
at the machine instruction level, Another less obvious
point is that the uée of too long an associatlon 1list
will make segment removal impossible. This problem may
be eliminated by providing, in addition to the assoclation
list, a removal 1list which indicates which order the seg-
ments on the association list should be removed, The
problem of long-range inflexibility is more difficult.

Another Variation of Least-Freguently-Used

This situation would indicate that a slightly 4if-
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ferent form of the LFU-AL-MFR should be employed. A
possible approach is the use of the LFU-AL algorithm

to determine which segment should be removed, and the
use of a fault count (this is :ssentially equivalent

to the use of a removal count) to indicate the number

of tines a segment must be loaded. As in the case of
the MFR variant, this count would be used to adjust the
priority of the segment. Because LFU-AL 1s used, the
fault count will reflect the machlne-level behavior of
the program, while the use of association lists will
provide knowledge of the microprogram behavior in the
processing of each machine instruction. An example of
this application would be a mchine-language instruction
loop which included a seldom used instruction; in which
case, only microprogram behavior 1is important/and the
use of LFU-AL is sufficlient., If however, the use of this
instruction becomes frequent due to a large number of
programs (as would be the case in a special applications
computer facitty), then the fault count correction would
ad just the prlorltyvto a more optimal level, Hence,
this algorithm provides against short-run anomolous
behavior and eventually corrects anomolies in the long-
run application of the linking and loading facility.

The Least-Frequently-Used Algo:rithms- Execution Overhead

Besides considering the behavioral aspects of each
of the removal algorithms, the overhead involved in the
implementation of each indicates the desirablility of that
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Figure 12,

Figure 12 is iden:ical to Figure 8,
except that the initialization stage
first involves incrementing the fault
count for the segmznt. Also, the
interpretation of »nriority now

includes the fault count.
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algorithm. Basically, the overhead involved in the
implementation of the unmodified LFU and the LFU-MFR
algorithms is the lowest because these algorithms allow
look-chead to determine a list of segments to remove.
Both the LFU-AL algorithm and its variant (Figure 12)
require essentially the same overhead; although the
latter also requires a longer segment table entry. The
LFU-AL-MFR algorithm requires the most overhead in that
both more time and hardware are required to execute the
algorithm,

With reference to Figures 8 and 12, the overhead
involved in implementation 1s nearly constant. Most of
the overhead results from the need to search the entire
segment table (256 entries), and the approximate total
of microprocessor cycles required to execute this al-
gorithm is about 550 plus the length of the association
list. Note that in general 1t requlires only one micro-
processor cycle to determine that the segments priority
is unsuitable and to obtain the next entry, but that
two or three are required if this possibility exists.

An initial consideration of the searching algorithm
involved in either of the LFU varliants involving use of
the delimiter word chain indicates that about five or six
microprocessor cycles will be required to determine the
sultability of each segment. As at least half of the
256 segments are expected to be control store resident,
the overhead involved in this area alone is nearly twice
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that of the LFU-AL algorithms just discussed. In the
case of the simple LFU-MFR this overhead could be sig-
nificantly reduced by maintaining an ordered list of the
segments to be removed. The cverhead would then be
reduced to a few instructions. This however, requires
the addition of a separate table for this purpose, and
also requires that this table be updated each time a
segment is loaded. The overhead then requires slightly
less overhead than the LFU-AL algorithms while not
providing equivalent performance.

In summary, the variant of the LFU-AL algorithm
shown in Figure 12 is expected to perform reasonably
well, and also involves significantly less overhead than
the acceptable alternatives., A conservative estimate of
the expected overhead involved in the 1mp1emehtation of
this algorithm is considered to be about 600 microprocessor
cycles. This value will therefore be used in estimating
the total overhead involved in linking and loading.

The Garbage Collection Algorithm

Having determined the segment or segments to be
removed (or simply dropped) it becomes necesary to provide
sufficient consequetive free addresses within the control
store to allow loading of the needed segment. This may
be accomplished in several ways, each of which involves a
different degres or type of overhead. The principle over-
head incurred by any approach will be the relocation of
segments and the associated need to update the segment
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table entry. Basically two approaches to garbage collectlon
will be considered. The first is simply compacting the free
space,obtained through segment removal, at the high address
end o7 the control store. This invnlves relocating all the
segments located at higher control store addresses than the
segment removed. Regardless of the number of segments
removed, each segment need only be relocated once., The
second approach involves the chalning of segments and free
space such that actual zarbage collection occurs only when
a certaln proportion of the control store is free. This
reflects an attempt to tradeof: control store for less
frequent relocation of segments.

Garbage Collection Alcorithms - Immediate Compaction

The immediate compaction of free spabe after segment
removal always incurrs a significant amount of overhead in
the relocation process, but also guarantees that the maximal
usage of the control store is achieved. It also has the
advantage, if used in conjunction with the LFU-AL method,
of continually relocating the most frequently used segments
towards the low end of core. This results in lower over-
head from successive relocations because fewer segments will
be relocated. This elgorithm is implemented with the use
of a segment delimiter word chain. A segment delimiter
word 1s assoclated with each segment. This word is located
in the word immediately preceeding the segment and contains
the following information: the number of the segment, the
length of the segment, the address of the next segment's
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delimiter word, a flag (used by removal algorithm) which
indicates whether or not the segment should be removed,
end any additional infermation (such as special data for
the s:zgment in performance measurements) desired. The
algorithm (Figure 13) proceeds by following the delimiter
chain until the first flag is located. This address then
represents the starting address for relocation. The
algorithm stores this address and continues up the chain
until the first unflagged word is found. The segment
number is determined, thg sesment table %s updated to show
the new address, and the segment is relocated. The address
to which the next segment should be relocated is automatically
genereted by this process. The algorithm continues up the
chain, ignoring flagged segments, until a null pointer
indicates the last segment. This pointer is feplaced by
the address of the first word of free space and the new
segment 18 loaded at that point.

The overhead involved in this process 1s dependent
upon the total number of segments in the control store
and upon the number and length of those relocated. Assume
that the control store typically contains q segments and
that the length of each is m words. Also assume that
control store and main memory are organized as k and ¢t
equal length blocks respectively. Also assume that about
n words of control store need not be relocated, and that
the desired segment is of length m. This allows cal-
culation of the overhead involved in garbage collection

4-23
60.



Figure 13,
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and loading as:

T 2m+2 (T

a K ¢sac ~ T

next)' to relocate and relink
each segment

a 4,096 - n _

m 1 y segments to relocate
T L(1 ) y» to examine each
b mpey delimiter word
b k,096/m _ , delimiter words to
examine
Tc 4(Tmpcy) R ggﬁﬁdflagged word 1s
Td mTcy ) y 1s time to load new

segment in absence of
reference conflicts

hence total time is: aT, + BTy = Tc + Td .
For reasonable assumptions on the parameters involved this
total value is between about 500 and bOOO.Tmpcy, and can be
assumed near 2000 Tmpcy’ These values reflect an m of about
thirty, a T _/T of about four, a k of 1 and varying

cy’ “mpey

differentials of control store access and successor eval-
vation times. The major portion of the overhead results,

as expected, from the relocation overhead in aTa. The
advantage of using this method, however, can be seen in

the expected increasing value of n as appropriate priorities
and respective control store locations are established for
each segment. Nonetheless, the overhead 1nvolved 1s

substantial and an attempt to reduce it should be made.

Garbage Collection Algorithms - Delayed Compaction

An alternative to immediate compaction is the usual

approach of delaying the process untll a certain portion
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of the control store becomes effectively useless space
without compaction. The difficulty with this algorithm
at the microprogram level is that the holes created by
delaying compaction can be exprcted to become numerous
wlth great rapidity. This results from the wide disparity
in segment lengths and the fact that the agorithm does not
consider length an important factor in segment removal.
Further, thls method involves considerable bookeeping to
maintaln a 1list of the holes. Also,'the possibility exists
that a large segment will be removed but only a small
segment will be placed af 1ts location. Therefore, the
free 1list much be searched each time a segment fault occurs
to determine if the segment will "fit" in one of the éxist-
ing holes. This creates overhead in the case of a large
enough hole's existence, and adds to the overhead involvad
in the removal algorithm in any event. If this overhead
is not to‘be incurred, then a relatively large proportion
of the control store would be wasted space at a given time
or relocation would occur with greater frequency., This is
important because references to control store resident
segments wlll be much more likely than segment faults if
even slightly more segments can be made control store
resident. In general, this approach adds undue complexity
and overhead to the garbage corlection process without
quaranteeing significantly less overhead than the immediate
compaction. This method also does not have the desired
effect of eventually locating very frequently used segments
where they will be less 1likely to be relocated.
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Combination of the Algorithms

The combination of the removal and garbage collection
algorithms allows the implementation of the virtualized
control store. To the overherd involved in executing chese
algorithms should be added the overhead involved in loading
the faulted segment. The total overheed involved in this
process will therefore be on the order of 2500-3000 micro-
processor cycles. This is considerably greater than the
overhrad achleved through use of the primitives. However,
the uce of the primitives 1s designed for the loading of all
of the segments appearing on the association 1list of a segment
rather than just those segments actually referenced. Therefore,
if a large number of possible linkages exlist, but few
are expected to be used, then the overhead involved in the
program controlled control store manipulation'may be higher.

Interaction between the program controlled algorithm
and the automatic algorithm would appear desirable in cases
where the overhead involved in use of the sutomatic mechanism
was-excessive, but use of the segment was important. Provid-
ing this mechanism 1s not especlally easy. The difficulties
involve the fact that the machine program cannot know the
control store configuration at the instant of interaction;
therefore repeated use of the status primitive would be
required previous to the progrum controlled manipulation.
This approach also results in considerable overhead and an
alternative must be sought if machine language control 1is
to be effective. A possible approach is the use of the
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define primitive to vary the priority of the desired
segment. Applying a bias to the removal algorithm in

this manner can be used to prevent the removal of a glven
segmert for a fixed period of time. The program may thren
reestablish the segment's old priority, and normal bias

for the segment will result., It is therefore possible

to use the direct control primitives to reduce the other-
wise potentially serious overhead involved in some instences
of purely automatic control.

An Additional Consideration - The Time Fasctor

An additional considerastion in the linking and load-
ing process is the effect of external factors, especially
real-time interupts, on the execution of the removal,
garbage collection and loading algorithms, Usually, it
1s necesary to test for interupt conditions after the
execution of machine instructions. In the event that
the durafion of execution is indeterminably long, then
breakpolnts are provided to allow testing for interupts
at the required frequency? A similar situation exists
in the use of the linking and loading algorithms. Thus,
breakpoints must be periodically provided throuchout the
algorithms. This could be implemented as an index whose
overflow would indicate that the testing procedure should
begin, or implemented with a sgeciai counter which would
be periodically examined by any microprogram to determine
the nesecity of temporarily suspending normal execution.

A question then arlises as to the state of the control
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store when the need to interupt does exist. The algorithms
described make no modification of the control store except
during the marking (during searching procedures) of segments
to be removed, during the loacding process, or during the
relocation process. Unless the frequency with which the
interupt condition mias%t be tested is lower than the time
required to completely move and relink a given segment,

then the possibility exists that this segment will be
effectively unavailable during the interupt handling pfocess.
If this segment 1s required as part of the interupt handler,
then serious compllications result. A direct solution to
this problem is to require that interupt service routines
use only a specific subset of the machine language instruc-
tion set, and require that the appropriate microprograms
remaln control store resident. These segments would be
located in the low end of the control store address space
and would therefore not be relocated., Modification of
these segments would require specific controls to insure
that interupt handling would not be necesary until such
modification was complete. While this effectively limits
the application of dynamic linking and loading to non-
critical areas of the system, it does not 1limit its

general applications to software and system support.

Conclision to Chapter 4

The potential overhead and difficulties involved in
providing a useful dynamlicec linking and loading facility

have been discussed. While the overhead may appear
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conslderable, 1t should be noted that 3,000 microprncessor
cycles are only about 300 microseconds or about the exec-
ution time of severzl floating--point instructions. An
addltional consideration is the potential performance
increase aclevable despite thii overhead. An analysis

of this possibility 1s presentcd in the next chapter,
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Chapter 5. Justification of the Implementation
of the Dynamic Linking and Loading Environment

Introduction

When an algorithm is expressed in machine lahguage
for execution on a microprogrammed computer, several
jnefficiencies result from the interpretation of each
machine instruction by the microprocessor. Directly
microprogramming the algorithm eliminates many of these
inefficiencies and thereby reduces the execution time of
the algorithm in proportion to the number of machine
instructions executed., While this would indicate that
all programs should be microprogrammed, the cost of
sufficient control store memory is prohiblitive of such
an approach. Design of conventional microprogrammed
processors therefore involves the selection of a limited
set of general purpose algorithms which correspond to
the mschine language instructions. The general purpose
nature of these algorithms is dictated by the simultsneous
requirements for a general purpose computational facility
and for a small control store. A general computational
base may not always prove most efficient, and historically,
additional provision of highly speclalized algorithms,
for software or system support, has realized considerable
improvements in processor performance. Provislion of the
dynamic linking and loading mechanlism at the microprocessor
level, allows the specification of an extremely large
number of these specialized algorithms due to the effective

virtualization of the control store. The linking and
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loading process involves overhead which must be compared
with the expected performance increase,resultant from
microprogramming a given algorithm, to determine the
desirrbility of micropfogramming {rather than machine
language programming) a particalar algorithm. As the
overhead involved in the linkiag and loading processes
has already been considered, 1t remains to establish

a method for estimating the performance increase to be
expected from microprogramming a given algorithm,

An Introductory Example

As a basis for discussion, the following IBM 360
assembly lanvguage program (actually its machine language
equivalent) provides insight into the possibilities for
increased performance through microprogramming. The
program computes the address of the first occurrence
of a reference byte (contained in the low order byte
of BZ) in a byte string of length m (contained in R3)
pointed to by Ri. If a match occurs, then the address
of the byte is returned in R1, otherwise -1 1s returned.

(1) LOOP - IC R2,#(R1)

(2) CR R¢,R2

(Z) BE DONE

(4) A R1,ONE

(5) S R3,0NE

(6) BNE LOOP

(7) L R1,NEGONE

(8) DONE continue program

(9) ONE DC X'PPgggsr
(10) NEGONE DC X'FFFFFFFF!

Interpretation of this program requires several phases for

each instruction which are not relevant to the algorithmic

5-2



intent of the program. Specifically, each instruction
requires the following stages of interpretation:

1. Initial instruction feteh and program
counter updating to reflect first fetch
2. Opcode decoding and linkage to next phasas
3. Instructlion execution, including:
a) Operand recognition
b) Additional instruction fetch (possible)
¢) Operand location determination
d) Operation execution and result storage
e) Condition code modification
f) Linkage to next phase
4, Test for special conditions (interupts)
5. Linksge to elther step 1, or the interupt
mechanism as required by step 4.

Appendix A provides an example of an emuiator for a
modified subset of the IBM 360 machinecode which indicates
the magnitude of the overhead involved in applying these
phases to the execution of specific machine instructions.
Microprogramming the equivalent algorithm is considerably

more efficlent:

EA, R1(+), D(/), MMAR(+,RW), 4
EA, X'FF'(C)o D(/)o R1(+)9 b
EDEC(0), R3(+), D(/), R3(+), 4
SuB(0), R#(/), MDBR(/,+RW), D(/),
OnNeg Step, Else Return
NoOp, OnEq Step, =2
DEC(0), MMAR(+), D(/), R1(+),
Oncaw»y Repeat, Else Return

(
(
(
(
(
(

oA Pwhoe
Nagt” N t? s N

where this routine 1s expected to be called, and then return.
After the initial processing required to interpret the

machine instruction invoking this program, phases i1, 2, 3a, 3b,
3¢, 3z, and 5 may be eliminatel from the microprogrammed
algorithm, Further, the frequency of occurence of phases

3d and 4 may be reduced. In this example, the constants
NEGONE and ONE need not be addressed nor fetched, thereby
eliminating repetivive address calculations. The equivalent
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of the machine language branch instruction 1s either
incorporated into the successor function of another
microinstruction or is reduced to one or two micro-
instructions. The address of the character string is
retained in the memory address register, thereby elim-
inating operand address calculations and effectively
using the cache memory. Also, the superior byte mani-
pulative capabilities of the microprocessor and the use
of hardware incrementing facilities (memory address
register), and the use of decrement instead of subtract
(one) allow greater operational efficiency. In summary,
the advantages of microprogramming in this example
include: 1. Reduction of the lexical phase of
the interpretive process

2, Superior constant handling ability

3« More powerful instruction sequencing

4, Superior byte handling capability

5« Availability of special operations

6. Use of internal registers (MMAR)

7. More efficlent addressing and fetch

of operands

8. Elimination of instruction fetches
The availability of both the machine language programmed
and microprogrammed equivalents would now allow direct
calculation of the savings achieved, through microprogram-
ming, in the execution of the comparison loop, Note, that
the algorithm is dominated by the six instruction loop
1-6 ir the machine language prougram, and by the three
instruction loop 3-5 in the microprograms: The micro-
program equivalent of the machine language loop, ignoring
the effects of testing for special conditions, is nearly

100 microinstructions. This represents several hundred
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microprocessor cycles, wereas the microprogram loop
generates only six microprocessor cycles. Assuming the
overhead estimate of about 3007 microprocessor cycles to
1link 2nd load this program as the result of a segment
fault, then the loop must be executed about 10-15 times
before a performance gain is echieved. This indicates
that there is a strong correlacion between program
behavior and the desireability of mlicroprogramming the
algorithm it represents. In this case, the assumption
that the byte string is a random string of text char-
acters, and that the byge string i1s of length greater
than 10-15 characters would indicate that the program
should probably be microprogrammed. An additional
consideration is the frequency with which this program

is to be used within the machine language program. If
this algorithm recieves frequent use, or if it is assigned
an initially high priority, then it 1s more likely to

be control store resident and consequently can be effect-
ive for even adverse circumstances of program behavior.
These circumstances would, of course, result from certain
input strings and reference characters. In general,

the gain achievable from microprogramming 1is dependent
upon the reduction of inefficlencies in the interpretive
process, the behavior of the »lgorithm, and the input

to the algorithm. Proceeding on the assumption that the
range of inputs, and therefore the behavioral patterns,A
is known for the algorithm, a partial generalization of
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the criteria for microprogramming may be obtained.

A Sufficient Criteria - The Reduction Alzorithm

An initial estimate of the performance increase
available by mlcroprogramming un algorithm is obtainable
by reducing the machine language equivalent of the algcr-
ith., This may be achieved by consideration of the micro-
program generated by the machine language., The reduction
algorithm eliminates the interpretive aspects of this
microprogram while retaining the algorithmic intent.

The initilal and reduced microprograms are then compared,
the program behavior is aetermlned, and an estimate of the
performance gain is obtained, Practically, the algorithm
1s machine language dependent and may function in either
of two equivalent manners. First, it could generate the
microprogram and compare 1t with‘the initial program to
determine the savings. Or second, it could establish a
relationéhip between the type of machine instruction and
the savings achleved by microprogramming the algorithmic
equivalent of the instruction; summing these values for
the machine language program would result in a measure of
the savings. Agaln, this savings will also depend on the
program's behavior.,

The Reduction Algorithm Applied to IBM 360 Machinecode.

Malysis of the reduction algorithm requires a
specific machine language and its microprogrammed interpreter.
The modified subset of the IBM 360 machine language presented
in Appendix A will serve as the basls for discussion.
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Briefly, this language includes nearly all of the basic
IBM 360 machine language in their original form. Special
instructions, storage-to-storage instructions, decimal
featvre instructions and floating-point instructions are
omitted. Also, multiply and divide are omitted to allow
their use as examples. The remaining instructions may be
classified as rezister-to-register (RR), register-to-
storaze (RX and RS) and immediete-to-storage (SI) instruc-
tions.

T™he RR instructions allow the smallest savings, The
interpretive process involves one instruction fetch phase,
one instruction decode phase, two field isolations (Rl and
R2) and a condition code result. Removal of these phases
saves five microprocessor cycles. Alternatively, a RR
instruction may be expressed as a single instruction of
the form "operation, R1, R2, Rl, step", instead of the
interpretive code generated by Appendix A's interpreter.

The RX instructions allow slightly greater savings
in that more fields must be isolated and an additional
instruction fetch phase is required. Flve field 1solations
are required: R1, X2, B2, and two for D2, Combining with
the extra instruction fetch phase for the second halfword
glves a savings of nine microprocessor cycles. The same
savings are true of RS instruections.

The SI instructions require only four field isolations
and can use the isolation of the immediate field to allow
the equivalent of the extra 1nstrucfion fetch phase. This
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indicates a net savings of seven microprocessor cycles.
The analysis thus far has not considered that some
of these instruction forms are not fully utilized. For
example, the RS shift instructions reduce to a single
microinstruction of the form “"shift, Ri, D, Rl, n times".
The savings in these cases are therefore less than would
be indicated by the instruction format. In particular,
the shifts require the isolation of only two flelds and
therefore save only six microprocessor cycles, In
general however, the savings indicated are correct.,

Application of the Reduction Algorithm to Examples

Knowledge of the savings attributable to each
instruction now allows a conservative estimate of the
overall performance increase available, Consider the
previous example. The savings involved in the loop
1S9 +5+9 +9 +9 +9 (statements 1-6 respectively)
for a total of 50 microprocessor cycles. Again, if
the overhead involved in linking and loading this segment
is 3000 microprocessor cycles, then the loop must be
executed at least sixty times. This is a factor of ten
greater than the known achlevable savings because the
reduction algorithm does not account for many of the
potential areas for saving presented with this example
(pg 5-2 to 5-4)., Another exawple i3 afforded by the
attempt to provide a multiply instruction. The following
program provides an unsigned logical multiply of the
contents of R2 and R5 with the result in the even/odd
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register pair R2/R3,

STM R6,R8,SAVE
L  R8,THIRTWO
LR R3,R2
XR R2,R2
J. R7,0NE
LOOP SRDL R2,1
SR R8,R7
BM DONE
LR R6,R3
) NR R6,R7
) BZ LOOP
) AR R2,R5
) B LOOP
) DONE LM R6,R8,SAVE

L g

= S O 00N) NN W) N

P WX e W W o W W e Y e B W P W Y N
W N O s e s e S e

(15) SAVE DS  3F

(16) ONE DC X'00000001'

(17) THIRTWO DC X'00000010°
This program has two potential loops: statements 6-11 are
always executed 32 times for a net savings of:

32(6 + 5+ 9 + 5+ 5+ 9) = 1248,
additionally, the loop may include statements 12 and 13 for
a gain of 14, The latter is expected sixteen times for a
randon distributlon of numbers and hence the total savings
in implementing the loop (6-13) is 1472 microinstructions.
As approximately 3000 microprocessor cycles may be required
to 1link and load this segment, it should not be micro-
programmed unless 1ts frequency of use would indicate that
it will be used twice each time it is used. An attempt to
microprogram the above indicates that the situation is much
better than this for the reasons listed previously. In this
example; all of the branch instructions can be eliminated,
the bit test (instructions 9-10) can be reduced to one
micro;nstruction, etec,s, Modiflcation of the reduction
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algorithm to include these factors would allow the analysis
of machine language algorithms on an automatic basis. The
examples however, indicate the possible magnitude of error
when insufficient optimization of the microprograms occurs.
Actually microprogramming the equivalent multiply results in
the sevings of several hundreds of mlcroprocessor cycles per
loop; and is therefore effectively microprogrammed. Until
sultably precise algorithms are developed for the reduction
of machine language programs to microprograms the most
accurate estimates of performance increases will be achieved
by actual comparison of brogrammer generated microprograms
and progrems.

Variations of the Reduction Algorithm

The reduction algorithm as stated ignored several
obvious benefits of the microprogrammed expression of
algorithms. An initial variation of the algorithm would
attempt to fully utilize the sequencing power of the
successor function to eliminate machine level branching
and testing statements from the reduction process. In
general, algorithms involve one or more terminal conditions
and a set of initial conditions. The initial conditlons
may be established through the introduction of suitable
constantss thereby eliminating the time required to
address and fetch these operands. Similarly, the testing
for terminal conditions can be incorporated in micro-
instructions which also provide algorithmic computation.
Additionally, multiple branch vectoré are possible from
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the same instruction, a facility seldom provided at the
machine instruction level. In the case of the multiply
example previously presented, the double right shift
would cause the S-bit to be set if sddition were to be
required; the next instruction would perform the index on
the number of shifts and test for the necesity of ad-
dition; and the subsequent instruction could either add
or shift (depending on previous successor evaluation) and
simuitaneously test for the terminal condition. This
overlap of condition testing, branching and algorithmic
execution is an important reascn microprogramming is so
much more effective than the purely sequential operations
allowed by typical machine languages,

Another factor which should be included in the red-
uction algorithm is the elimination of a large:number of
operand fetches and operand address calculations. This
also includes the fact that instruction fetches have been
eliminated. Elimination of instruction fetches allows at
least two areas of performance gain, First, the actual
time lost in walting for the instruction to be fetched 1is
regained., Second, multiple references to the same address
or to consequetive addresses are no longer interspersed
with instruction fetches. Thls allows more effective use
of the cache memory because malin memory accesses are nov
as ffequently widespread. Note that addressing consequetive
locations within the cache allows effectively zero access
time, wereas alternately referencing instructions and their
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operands results in access times approaching those of
main memory modules. In the case of microprogrammed
parsers or similar string menipulative élgoriﬁhms,,the
time saved by elimination of iustruction fetches is
greater than the effect of reducing the algorithm to
the microprogram level., If the entirety of this type
of algorithm 1s microprogrammed, then the process of
byte by byte treatment of the string also results in
muchkdecreased operand access time. Note further that
the design of a special gystem of cache mnemories to
attempt to provide a similar effect would be extremely
difficult, except for a limited number of special cases.
Extension of the reduction algorithm by consideration
of the effects of referencing consequetive locations or
the storage of frequently used pointers and opérands
could greatly improve its accuracy.

An example of the above effect 1s provided by the
SUBSTR function which attempts to locate the first
occurence of a string within another string, all such
occurences, or the number of such occurences. Micro-
programmed, this algorithm can be expressed consicely
and efficiently by storing the substring in local store
end consequetively referencing the bytes of the string.
At the machine level, the number of references for bytes
1s the same but each 1s alternated with the fetching and
execution of several machine instructions. Therefore,
the machine language program proceeds at main memory
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speeds, while the microprogrammed algorith proceeds at
control store speeds. Additionally, the microprogram
algorithmic expression is more efficient because the data
structure is designed to enablc rapid manipulation of
byte operands. The frequency of use of functional
variants of SUBSTR in parsers, editors, compilers and
similar algorithms also indicates that the desired micro-
program will be frequently contiol store resident; in
which case no linking and loading overhead will be re-
quired and substantial performance gain will be achlieved.
The reduction algorithm may also be modified to
consider the relation between the microprocessor cycle
time, the effective main memory access time and the
resultant overlap between instruction fétch and exec-
ution. For cases in which main memory access time 1is
significantly greater than the microprocessor cycle
time the microprogram can be expected to obtain nearly
one-hundred percent overlap between main memory references
and instruction execution. In these cases, the micro-
programing of the algorithm will provide performance
increases based on the memory access time and total
number of nonsequential references, rather than on the
savings in microproccessor cycles,

Another Reason for Dynamic Linking and Loading

The preceeding analysis indicates that microprogramming
allows substantial performance increases but does not fully
indicate the savings achieved through the dynamic linking
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and loading. Conventional systems require either that
the machine program control the loading of a micro-
program or provide no facility for dynamically altering
the control store. The lack of arny such facility limits
the number of microprogrammed algorithms to either the
size allowed by the control stcre addressing mechanism

or the size of control store the user can financially
afford. A dynamlc facility of equal size control store
can perform at least as welly end additionally allows

the definition ol a large number of microprograms which
could not be incorporated in the fixed control store,
thus providing additional performance increases in these
cases. In comparison to systems which allow limited
machine language control of the loading process the dynamic
facility is superior for at least two reasons.x First,
the automatic mechanism frees the user from this require-
ment and allows both program and microprogram revision
independently. Second, conventional loading schemes are
based on absolute addressing and provide little if any
means of linking to already existing programs. This
results in severe problems when the user desires two
microprograms which happen to have been originally loc-
ated at the same location. Also, the inabllity to share
a variety of functions requires that many of these functions
be dﬁplicated for use by the special mlcrocode associated
with the interpretation of a particular machine level
instruction. An easily concieved application of the
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sharing mechanism would be the use of several elementary
arithmetic functions by a more complicated algorithm,

The number of such functions which could require duplication
would probably result in conveiitional implementations of

a few extra machine instructions, rather than micropro-
gramming the entire algorithm. In general, the dynamic
mechanism allows not only more convient modification of

the control store but also provides a more efficient

means for doing so. In this respect, it is generally

more useful than currently avallable systems.

Conclusion to Chapter 5.

The advantages provided by a dynamic linking and
loading facility are considerable. Not only are the
performance increases normally assoclated with micro-
programming possible, but also the number and‘flexibility
with which these algorithms may be microprogrammed 1is
enhanced. An attempt has been made to indicate that
these advantages generally outwelgh the overhead involved
in implementation of the dynamic linking and loading
mechanism. This 1is especially true of mlicroprograms
which are either inherently repetitive (iterative or
recursive) or are executed with great frequency. In the
latter case, the microprograms are more likely to remain
continuously control store resident, while lesser used
programs will be removed (see Chapter 4) thereby resulting
in even greater performance gains. As most commonly
used algorithms satisfy one of these alternatives, the
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implementation of a dynamic linking and loading facility

would seem fully Jjustified.
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Chapter 6., Implications of Dynamic Linking
and Loading of Microprograms

The success of dynamic modification of the comp-
utational base of the processor in improving system
performance is partially upset by the specificity of ifts
application. An essential attack has been made against
the trend towards higher-level languages and the general
compatlibility of software and systems, Microprogramming
creates a tradeoff between this general compatibility and
possible improvements in the performance of the system.

Compatibility of Systems

Provision of a specialized instruction set at each
computer facllity creates severe problems for the system
designer. Further allowing this instruction set to vary
in a dynamic fashion may cause unsurmountable problems.
Either system software must have an established base which
1s supported by all systems; in which case the system does
not fully utilize the available performance increases, Or,
the perogative for use of the dynamic linking and loading
facility must be largely restricted to the system. The
user then benefits from the system provided special functions
while he 1s restricted from provid;ng his own.

Another consideration is that the dynamic linking
and lcading facility in fact promotes compatibllity by
allowing the use of a large variety of emulators, or allowing
sharing of special instruction sets between computer
installations. Compatibility is enhanced because a large

variety of different systems can now be simultaneously
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provided, wereas previously the control store size required
would have been prohibitive.

Compilers, Interpreters, and Higher-Level lLanguages

Similar tradeoffs are aprarent in the use of the
dynamic linking and loading facility for the support of
higher level languages or even assemblers. A significent
question is posed by the availability of two levels of
programming, and the possibility that one of these levels
provides a varying instruction set. Compilers would need
some knowledge of the instruction set capabilities in
order to function, and médlflcation of this instruction
set would require the redesign of traditionally structured
compilers. Another problem is posed by the need to
establish the proper level of programming an interpreter;
which code should pass through two levels of ihterpretation
and which code should be directly executed. Development
of an algorithm, similar in ihtent to the reduction
algorithm, which could automatically establish the proper
level of programming is essential if problems of this type
are to be solved.

Conclusion to Chapter 6

In general, the implementation of a dynamic linking

and loading mechanism will give rise to many issues which

(¢]

are nct directly related to the performance of the system,
The issues of who, what and how much should be carefully

considered before extending the microprogram facility.
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Chapter ?. Conclusion

It has been shown that the implementation of a
dynamic linking and loading facillity i1s both feasible
and ucseful means of increasing processor performance.

The general usefulness of microprogramming has been
established by many authors. oxtenslon of the controly
store, in a virtual sense, has also been shown useful

for the variety of cases in which the possible perfor-
mance increase exceeds the overhead involved in use of
the facility. Specifically, the facility allows the
microprogramming of 1ongliterative or recursive functions
which otherwise could not have been incorporated in the
control store. Provision of this mechanism also creates
several new difficulties in the areas of compatibility
and support of higher level lanzuages. These difficulties
would imply the need for intelligent systems which could
aedapt to a varying environment., Another area of concern
1s the means of providing interpreters or compilers with
both the knowledge of the existence of new instructions
and the usefulness of these instructions in compilation
or interpretation. These problems are largely analogous
to those involved in providing the same software for two
different machines.

e eventual usefulness of dynamic linking and lozd-
ing will depend upon further study of the behavioral aspects
of microprograms in a dynamic environment and the validity
of the various algorithms presented. A rigorous means of

7-1
86.



establishing the expected performance increases resultant
from microprogramming a given algorithm must also be
determined. Further studles in these areas could allow
automatic computation of desir-d algorithms.

Another potentially critical area is the decreasing
cost of extremely high speed memory and the availability
of inexpensive processors on a single integrated circuit.
Future developments in these areas could make dynamic
microprogramming obsolete in the sense that no micro-
programming would be required; or that custom design of
& processor would be cheaper than microprogram development.,
In any event, dynamic microprogramming provides a degree

of efficient flexibllity in processor specification.,

7-2
87.



BIBLIOGRAPHY

List of Works Cited:

1, Husson, Samir S, Microvrogramming Principles and
Practices., Englewood Cliffs, N.J.t Prentice-
Hall, 1970.

2. Hassit, A., et al. "Implementation of a High Level
Languege Machine," Communications of the ACM,
April 1973, 199-212,

3. Liskov, B, H., "The Design of the Venus Operating
System,”" Communications of the ACHM,
March 1972, 144-149,

4, Ranamoorthy, C. V. & Tsuchiya, M. "A Study of User-
Microprogrammable Computers," AFIPS
Conference Proceedings (SJCC 1970), 165-181,

5+ Bienhoff, Milton G. editor. "New Products'| Computer
(IEEE Computer Society), May 1973, 32-33,

6. Reigel, E.W, et al, "The Interpreter-A Microprogram-
mable Building Block System," AFIPS
Conference Proceedings (SJCC 1972), 705-723.

7. Rosin, Robert F. et al. "An Environment for Research
in Microprogramming and Emulation,"
Cgmmunications of the ACM, August 1972, 748~
760,

8. Hewlett-Packsrd Co. Microvrogramming Guide for
Hewlett-Packard Model 2100 Computer. Feb, 1972,

9, IBM Systems Reference Library. IBM/360 Principles of
OEeration- Septo 19680

List of Works Consulted:

10. Chu, Yaohan. Computer Organization and Microprogramming
Englewood Cliffs, N.J.: Prentice-Hall, 1972,

11, Cook, Robert W, & Flynn, Michael J. "System Design of
a Dynamic Microprocessor," IEEE Transactions
on Computers, March 1970, 213-222,

12, SIG Micro Newsletter (ACM publication) July 1972.
{Includes extensive bibliography of field.)

88,



Appendix A. Microprogramming the Hypothetical Machine

Symbolic Notation

The binary representation of the microinstruction
format (Figure 3, pg. 14) is inconvient for expressior
of microprograms. A more readable approach 1s the cholce
of symbolic equivalents for the respective flelds of
each microinstruction. While the scheme to be used was
partially discussed in Chapter 2, a complete summary of
possible formats and abreviations for reglisters follows.
The basic format of expression is:
ALU, Shift, A-field, B-field, F-field, Successor;.,
The possible symbolic representations for the ALU field
aret INC(C), add C to A-operand on first execution of
instruction, if instruction is repeated
add resultant Carry out instead. Initial
C designation may be 0, 1, Q, C.
DEC(C), as in INC, only subtract Carry.
ADD(C), add C to sum of A and B operands on first
execution of instruction, if repeated add
resultant Carry out instead._ Initial C
designation may be 0, 1, C, C,

SUB(C), as in ADD, only function is A-operand
minus B-operand minus Carry

A, K, B, B, 0, 1, A+B, A+B, A+B, A+B, A%B, A%B,
AB, AB, AB, AB, performs specified boolean
function on the A and B operands. The
notation X means not X.
Additionally prefacing any of the above with an E indicates
an extended precision operatiosn and consequently the
interpretation of the successor function is modified. If
no ALU function is specified then the logical function A

is assumed.

89,



The possible symbolic representations for the shift
field are of the form X(S,Z)., The "X" indicates the
direction of shift: LS indicates leftéshlft, RS indicstes
right shift. The S field indicates the bit designation
to be shifted into the bit positions vacated by the shift,
If the instruction is immediately repeated, then the Shift
out bit is used for successive shifts if and only if the
Z-field indicates a shift of one position. Otherwise,
the intial shift designation is reapplied. 1Initial values
for S are 0, 1, S, S, The Z-field indicates the number of
bit positions to shift;va number between 0 and 7. Note
that shifting 0 positions is a "no-shift" and may be
indicated by elther replacing the entire shift field
representation by the code NS, or by omitting the field
entirely.

The symbolic notations for each of the A, B and F
operand'fields are equivalent., Either the form X(Y,Z)
or X(Z) are permitted. The X field specifies the contents
of the eight bit field, the Y field (either M or omitted)
indicates masking of the eight bit field, snd the Z field
specifies modification of the field in the event the
instruction is immediately repeated. Possible Z field
designations are: /, no modification (These indicate

+, increment the field interpretation
-, decrement the field as a bus address)

C, do not modify the field and interpret
i1t as an eight bit constent.

These designations are primarily established to allow
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elther extended precision or byte string manipulative
algorithms to be expressed in a single microinstruction.
The possible interpretations of the successor field
have been described in detall in Chapters 2 and 3; there-
fore, only a brief summary will be presented. The form
"on condition ¢l1, do x, else on condition c¢c2, do y, else
Step”, has several abbreviations. Any unconditional
specification is interpreted simply as that specification.
For example, if c2 were unconditional, then rather than
that "on any condition do y" simply state "do y". The
abreviations used for cﬁnditions are usually readily
interpreted, but for special cases the meaning will be
clarified. In particular however, the notation ¥ indicates
"not on condition y". The possible variations for the
"do" fields are summarized in Figure 3, page 14,
Specification of the E bit in the ALU field designation
indicates that the successor field should be expressed as
"on condition ¢1, do x, else n", The interpretation of
the condition field is as described asbove; the "n" field
is either simply a number indicating the number of times
to repeat the instruction (maximum number) before Stepping.
The "n" field may slso be expressed as Mn where the prefix
indicates masking of the elght bit field with the X-register.
The interpretation of the successor function designation
"on condition ¢1, do x, else n" without the use of the

E-bit is similar, except that the n field is now a two's
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complement integer which indicates the desired offset
from the present value of the program location counter,
The offset form is easily recognized by the symbolic
. eonvention that +n or -n are off<ets, wereas n 1s a
count (E-bit set) or an absolute address (in the use
of the linking mechanism, an absolute offset from the
indicated segment's starting address),

The absolute designation of the successor function,
"go to n", 1s specified simply as the address n. When
using the linkage mechanism, use of a number in this
fashion implies the abéblute offset form wereas use of
e symbolic label indicates the absolute segment form
(the label is the segment's designation).

To clarify the preceeding discussion, consider the
following examples.
Example 1. EINC(1), R5(+), D(/), R5(+), 4

This instruction indicates that the contents of the
4 consequetive bytes starting at location R5 are to be
incremented as a single operand. As no conditional
branch is specified, the default successor willl be to
Step after the fourth repetition of the instruction. The
mask registers are not used. Explanations for the R5
and D specifications are given in Table 1, Here, the
D indicates a dummy or null fleld {(not used) weress
the R5 indicates a general location in the local store
scratchpad. No control lines are encoded in any of the

bus sddress fields.
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Example 2. EINC(1), R5(+), D(/), R5(+), On C=0 Step, &
This instruction will be equivalent to that of the
previous example in that the same operation will be
performed on the same operand. This form howevef is much
more efficient. If the carry resultant from execution of
the instruction is zero, then the operand has been effect-
ively incremented and the instruction need not be repeated.
This feature 1s provided by use of the conditional
specification "On C=0 Step". Note that if C never becomes
zero, then the instruction will be repeated at most fcur
times as indicated by the count designation,
Example 3. AB, MDBR(/,+RW), X'45'(C), D(/), On Zero Step, Repeat
This example indicates several features of the
notation. The overall intent of the instruction is to
examine the byte string pointed to by the memory address
register until the first occurence of the byte X'45' is
located (X indicates hexidecimal representation of the
constant). Examination of the instruction indicates that
the "equals" condition will be determined by the logic
function AB on the memory data buffer register and the
constant field specified in the instruction. The code
+BW indicates that the control specification for memory
reference to the next byte location 1s encoded in the
MDBR address (see Table 1). The D specification in the
F-field indicates that no result is stored; therefore,
the only effects of this instruction will be to modify

the memory address register and the condition codes,
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Example 4., EA, PC(+,+2), D(/), MMAR(+, RW), 4

A, MDBR(/,+RW), D(/), XM(/)

AB, MDBR(/,), X'OF'{C); BM(/)

AB, RS(0,4), MDBR(/,), X'F0'(C), AM(/)

A, AM(/), MMAR(/,+RW), FM(/), +M

Az a final example, the abcve short program serves

as introduction to the programming of a machine language
processor. Briefly assume that the machine language
consists solely of IBM 360 RR-type instructions. The
first line of code moves the program counter into the
memory address reglster, starts the instruction fetch,
and encodes the program counter control field to indicate
that the program counter should be incremented by two.
The nex® instruction moves the first byte fetched into
the X-register (i.e. the instruction opcode 1s now in
the X-register). The third instruction takes the next
byte fetched, ANDs it with a constant to isolate the
R2 field of the instruction, and stores the result in
the B-register. The next instruction uses the same byte
from the data buffer register, isolates the Rl field by
ANDing with a constant and shifting the result right
four positions (zeroing the four leftmost bits of the
result), and stores the result in the A-register. The
final instruction causes the next byte to be fetched from
main memory, moves the A-register contents into the
F-register and does an offset branch masked by the
X-register. This type of branch theregore allows rapid
decoding of the opcode field. Note that for several

instructions the successor function is not specified
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and the default Step successor is chosen, Note also,
the use of the B-fleld in the last instruction despite
the fact that no B-operand is used by the operation.
In th's case, the field is used solely to specify a
particular control signal. While this same operation
could have been encoded in the prior instruction with
greater efficiency, the intent of this example is more
1llustrative than practically suggestive,

Microprogramming a Machine Ins*ruction Interpreter

Perhaps the best way to gain insight into the
relationship between microprograms and machine-level
programs 1s to construct a basic microprogram interpreter
for the machine language. To avoid the difficulties
involved in specifying a new machine 1anguage, a subset
of the IBM 360 machine language was chosen, The
interpretation of RR, RX, RS and SI instructions is
presented in a simplified fashion, but illustrates the
basic principles involved.

To provide program readability, the symbolic format
for microinstructions is used. Additionally, the machine
language instructions will be expressed in terms of their
assembly language equivalents and the segments associated
with a specific machine instruction will be labeled with
the symbolic opcode for that instruction. Other
conventions will be discussed as they arise, For a
description of the IBM 360 machine code, the reader is
referred to the IBM Systemszeference Library publication,

IBM System/360 Princivles of Operation.
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