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ABSTRACT

The ability to dynamically redefine the

computational base of a processor is seen

as a possible approach to improving the

processor's performance. Provision of a

facility to allow dynamic linking and

loading of microprograms is considered

as a practical means of accomplishing this

modification. The feasibility and the

desirability of this approach is eval-

uated in terms of the implementation

overhead and the performance improvement

possible with such a facility. It is

concluded that this method provides a

viable means of increasing processor

performance and flexibility.
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Chapter 1. Introduction and Purpose

The control structure of microprogrammed digital

computers has evolved in the direction of increased flex-

ibility. Early microprogram centrol stores consisted of

read-only memories; whose physical and development costs

all but prohibited custom modification. Later, devel-

opments in high-speed memory technology lowered the cost

of the control store, thereby allowing both longer micro-

programs and limited provision of special features.

Early efforts in this area included additions to the IBM 360

instruction set, and numerous ventures aimed at developing

machines for direct execution of higher level languages,

notatbly APL These efforts have been extended to include

operating systems3 and combined machine level programming

with microprogramming to provide significant performance

4
gains. Recently, the addition of read-write memories and

field programmable read-only memories, to the conventional

read-only memory, allowed the user limited ability to

tailor the machine for specific applications. Dynamic
5

loading capability has been announced by some manufacturers.

Extensive provision for user microprogramming has, however,
6

been confined to small or medium scale computers. Present

trends indicate that decreasing costs of high-speed memories

will result in increased provision, by manufacturers, of

software and system support features at the microprogram

level.

1.



A conceptual extension of this trend would encompass

a control structure which supported dynamic modification

of the control store in response to the immediate needs

of an active process. Such a facility would require a

dynamic loading mechanism; to allow swapping of special

microprograms as they are needed. A dynamic relocation

or linking mechanism would alEo be required to allow

arbitrary combinations of these programs to be simultan-

eously control store resident and allow linking among

programs in the conventional subroutine or function manners.

Combination of the linking and loading mechanisms could be

utilized to provide a virtual control store or simply

facilitae user control of the microprogram environment.

This concept differs significantly from the traditional

(and continuing) emphasis on providing an essentially static

set of microprogram features. A dynamic facility, however,

provides not only significant reductions in the execution

times of a large class of useful programs, but additionally

allows microprograms of greater length than the physical

control store. This avoids the otherwise crucial issue of

which special features should be provided in a limited set.

These advantages are partially offset by the overhead

invovled in implementation of the dynamic linking and load-

ing capabilities, especially if virtualization of the

control store is desired. The essential issue therefore

becomes an evaluation of the performance increases offered

1-2
2.



by dynamic linking and loading, in comparison with the

overhead involved in providing this facility.

Initially, a hypothetical machine is considered which

is suitable for latter conversion, to allow dynamic linking

and loading, but reflects the design of conventional

microprogrammed processors. The design was constrained

to include only those features which had previously been

incorporated in processor design, or those features which

were easily derivable from previous designs. This machine

is described in Chapter 2.

Additional hardware is then added to allow the dynamic

linking and loading capabilities. Modification of the

existing control store address mechanism from absolute

addressing to relocatable addressing is also required. A

description of these features is provided in Chapter 3.

Evaluation of the completed design indicates the

probable overhead involved in utilization of the dynamic

linking and loading mechanisms. Direct user control of

the linking and loading process is discussed as a prelude

to a description of the difficulties involved in providing

a virtual control store. Removal and memory management

algorithms are considered in relation to the microprogram

environment. Additional consideration is given to the

effect of external factors, especially interupts, on the

linking and loading process. In concluding Chapter 4, a

summary of the overhead involved in linking and loading is

provided.
1-3
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Justification of the overhead involved in providing

the mechanism results from an analysis of the potential

performance gains achievable through use of the mechanism.

A reduction process is describe-d which utilizes the

relationship between microprogramming and machine language

programming to provide criteria for microprogramming a

section of machine language code.

Continuing from Chapter 5, Chapter 6 provides a

discuEssion of other considerations posed by dynamic linking

and loading. Especially important are the issues of

compatibility and manufacturer support of machines with

varying instruction sets.

In concluding, it is felt that dynamic linking and

loading mechanisms, at the microprogram level, provide

a viable means of upgrading processor performance.

1-4
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Chapter 2. The Conventional Microprogrammed Processor

Introduction

Microprogrammed digital computers may easily be

described in terms of their data and control structures.

The data structure consists of the available paths for

the transfer of data between the storage elements (registers,

buffers, memories, etc.) of the processor, and the comp-

utational units included in each path. These computational

units provide the basic data manipulative functions of the

machine, such as add, subtract, logical AND, etc. Various

special purpose subprocessors may also be provided. Most

typical is the availability of a floating-point processor

for many machines. The control structure allows definition

of the transfers and functions provided by the data structure

during each microprocessor cycle (a microprocessor cycle is

defined as the period between the execution of successive

microinstructions). For microprogrammed computers, this

control is apparent in the interpretation of various fields

of the microinstructions.

Historically, a wide variety of data structures have

been utilized by manufacturers. The IBM 360 and IBM 370

series computers exemplify the use of several special-

purpose-computational units and multiple bus structure

to allow maximal parrallelism in the processing of each

machine language instruction. While supporting an almost

identical instruction set, the RCA Spectra 70 series

computers employ a much different architecture. The

2-1
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Spectra 70 series computers utilize a three bus structure

and single general purpose arithmetic and logical unit

to provide the computational facility; and provides an

1
additional data transfer bus of higher bandwidth.

Variations of this basic three-bus structure are in wide-

spread use. This is especially true of smaller computers

where the simplicity of the design (and lower cost) is

more important than processor speed. More radical in

design is the Nanodata QM-1 machine. This computer

utilizes multiple busing and a single computational unit,

but allows prolonged specification of bus interconnections

(indefinitely long) by the microprogram, and thereby allows

a limited degree of "rewireability".2

The variations in the data structures among computers

are reflected in their respective control structures. Each

microinstruction specifies some action(s) to be performed

by the data structure prior to the execution of the next

microinstruction. Additionally, each microinstruction must

provide a means for determining the next microinstruction

to be executed (hereafter referred to as the successor

function). Again, wide variation may be found in both

the successor functions available and the control signals

1,3
which may be specified during each microprocessor cycle.

To provide a uniform basis for discussion of the

dynamic linking and loading concept, a selection of the

features available in the data structures and control

2-2
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structures of conventional computers has been incorporated

in the design of a hypothetical conventional proccessor.

A variation of the three-bus architecture was chosen as

typieal of many designs, and appropriate control fields

were provided in each micrinstruction. The successor

functions provided were chosen to reflect a variety of the

existing strategys and additionally, to illustrate the

concerns involved in providing a dynamic linking and load-

ing facility for an arbitrary conventional machine.

Description of the Hypothetical Machine's Data Structure

The principle data paths of the hypothetical machine

are summarized in Figure 1. The A, B and F buses provie

transfer of data within the processor and supply operands

to the arithmetic and logical unit (ALU). A main memory

bus allows transfer of data to the machine's cache memory

and to the operand registers of the floating-point processor

(not shown). Each of the internal buses (A. B, and F) is

chosen as eight bits wide to allow flexibility in byte

manipulations, and to reflect similar choices in the design

of other processors.'3 The main memory bus is chosen as

64 bits wide, thereby reflecting typical main memory

bandwidths, floating-point operand length and the width

of the cache memory.

The arithmetic and logic unit (ALU) provides a variety

of simple functions on eight bits. These include increment-

ing or decrementing the A-operand, adding the B-operand and

2-3
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A-operand, subtracting the B-operand from the A-operand,

and sixteen logical functions of two variables ( 1s, Os,

A, A, B, B, AB, AB, AB, AB, A4B, I+B, A+B, A+B, AmB, AB).

The arithmetic operations allow specification of a carry-in

bit and result in a carry-out hit thereby allowing multiple

precision operations. Both logical and arithmetic operations

generate status information concerning the nature of tho

operands and result of the operation. Conditional infor-

mation, such as zero result, negative result, overflow and

underflow are provided. ,The result of the ALU operation

is passed through the shifter. This unit shifts the result

either left or right and substitutes a specified S-bit for

the bit positions vacated by the shift. In the event of

single bit shifts (either left or right) the S-bit may be

used to allow extended precision shifts 1 er analogous

to that used for the ALU. The result e ined ALU

and shifter operations is written fr' to the

proper register at the end of each micre r cycle.

The various registers are selected by special control

fields in each microinstruction to be gated to each of the

three buses. Within the context of the data structure,

each register may respond to more than one address as a

result of its length or to commands encoded as different

addresses. For example, the program counter (PC) responds

to two addresses; one of which simply references the PC

as data, the other additionally indicates that the PC

2-4
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should be incremented as a result of the reference. The

local store scratchpad (LSS) also responds to several

addresses, but the effect here is to utilize the encoding

to select an address within the scratchpad, rather than

indicate an operation to perform. In this manner, the

LSS serves to provide the numerous general registers

normally asscociated with a machine. Various other special

registers are provided. These include the status register,

the instruction register (IR),the memory address register,

the memory data buffer register' and the switch register.

Additional special purpose registers may be connected to

any of the buses, but only 256 discrete addresses are allowed

by the control structure.

Special consideration should be given to the main

memory access port provided by the memory address register

(MAR), the data buffer register (DBR) and the cache. A

detailed summary of the interelation between these registers

is provided in Figure 2. The DBR recognizes several

addresses with the following possible results: first, that

the reference is simply for data, second, that the contents

of the MAR should be incremented and that either a read or

write operation should occur following the current micro-

processor cycle, or third that the MAR should be decremented

and read or write operation should occur. Similar encoding

of the MAR address lines allow specification of read-write

or DBR modification operations. Note that as a result of

these operations the contents of a register would remain

2-5
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invalid for some period after the operation is initiated.

If the register is addressed by a subsequent microin-

struction before it contains valid information, then the

register responds by indicating, to the control structure,

that the microprocessor cycle should be delayed. This

allows a form of asynchronous operation by the computer,

but the overall effort is towards providing fixed-cycle-

synchronous operation.

Description of the Hypothetical Machine's Control Structure

Each microprocessor cycle1consists of the execution

of a microinstruction and determination of the next micro-

instruction to be executed. In practice, these operations

are overlapped in a manner which allows continuous execu-

tion. This indicates that evaluation of the successor

function during the execution of an instruction must use

the conditional status information resultant from the

previous instruction, and cannot use (wait for) status

information generated by the current instruction. This

effect may be summarized as:

-- A,B gating + ALU + Shift + F writing* --

*fetch ------ successor evaluation + next fetch ------

were the asterisks indicate the maximum microprocessor cycle.

Defining Tex as the time required for the upper branch, after

Tdec, the time required to initially decode control structure

signals; and Tnext as successor evaluation time; and Tesac

as the time then required to fetch the next microinstruction

yields the result that the microprocessor cycle time is:

2-6
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Tmpcy = max( Tdec + T , T + Tosac *

Assuming that a given microprocessor cycle time is desired

and that the decode and execution times of the data structure

have been specified, then it becomes possible to indicate

control structure requirements of the processor. Basically,

control signals must be generated in the form of A, B and F

bus address fields, and for ALU and Shifter control. The

control structure must also provide storage for the micro-

programs with sufficiently small access time to allow:

Tmpcy = Tdec + Tex = Tnext + Tosac *

This represents the optimal choice of control structure

parameters because a larger value of Tnext+Tcsac would

result in wastage of the available data structure transfer

speeds; wereas a smaller value would not improve Tpy and

the cost involved in providing the smaller value would not

be justified. We proceed on the assumption that proper

choices of logic elements will allow the optimum condition,

and describe the control structure and microinstruction

format.

An overview of the control structure organization is

shown in Figure 3. The control store is chosen as 4,096

words of 64 bits each; reflecting the microinstruction

format and the approximate si7 of control stores in medium

to large scale computers. The successor function provides

T for most processors is on the order of 100-300ns.
mpcy This reflects tradeoffs between desired processor

price, processor speed and available technology.

2-7
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Figure 3.
Control Structure Organization

Microinstruction Format (64 bits)
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the address of the next microinstruction based on the

method, as indicated in the successor field of each micro-

instruction, and conditional testing required. The control

fields include the A, B and F address fields, the ALU control

field, the Shifter control field and associated bit-steering

fields (bit-steering fields indicate how another field or

fields are to be interpreted if more than one interpretation

exists).

Each of the bus-address fields is identical and consists

of ten bits. Eight constitute the address of a register on

the bus, or an eight-bit constant to be substituted as an

operand. The remaining two bits indicate the interpretation

of the field as a constantor, in the case of extended

precision operations, whether the address is to be incremented,

decremented or remain the same in determining consequetive

operands. This feature is a generalization of that presently

used on many word oriented machines which process bytes at

the microinstruction level (IBM 360 and RCA Spectra 70).

An additional mask (M) bit is associated with each field

and indicates whether the eight bit instruction field or the

logical OR of the mask register associated with that field

and the instruction field are to be used. The symbolic

reprsentations for these fields have the following format:

X(Y,Z) or X(Z)

where X is the contents of the eight bit instruction field,

Y is M if the field is masked, and Z is the field variation

in the event that the instruction is immediately repeated.

2-8
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The Z field is either +, -, /, or C depending on whether

the modification is to be increment, decrement, remain the

same or interpret as a constant, repectively. The total

of the address fields constitute 33 bits of the micro-

instruction.

The remainder of the control signals required to

manipulate the data structure are provided by means of the

ALU and Shifter control fields of each instruction. The

ALU fields include the E-bit which designates an extended

precision operation, the function to be performed and the

initial value of the carry (C) bit in the event of arithme-

tic operations. The shifter field includes specification

of right or left shift, the number of bit positions to

shift, and the shift-in bit (S) to replace the bit positions

freed by the shift. Either the C or S bits may be specified

as 0, 1, X, or X. The ALU functions have been previously

described. The shifter control allows for shifting of

from zero to seven bit positions (zero corresponds to no

shift) in the direction specified. The symbolic represent-

ation for these fields is:

X(C), Y(S) or X(C),or LX, Y(S) or LX

where C and S designate the desired carry-in and shift-in

bits, X indicates the ALU function (prefaced by L if the

operation is logical), and Y indicates the direction and

number of positions to shift (for example L3, R5 etc).

Prefacing X with E indicates an extended precision operation.

The ALU and Shifter control fields require 12 bits total.

2-9
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The remaining nineteen bits of each microinstruction

constitute the successor function. Four forms of this

function are possible. The first results from the use

of the E-bit in specifying an ALU operation. In this

case; the first bit of the successor function is ignored;

the second conditional field is interpreted as a mask-bit

and eight bit count specifying the number of repitionsi

and the first successor conditional field is interpreted

as "on condition do x", where x is specified as one of

the seven successor possibilities. After its first

execution, a statement will be repeated until either the

condition is met (and x is therefore chosen) or the

instruction has been repeated the designated number of

times, in which case the default successor function is Step.

Other basic forms of the successor function are specified

by the first bit in the field. Either the interpretation:

"on condition A do x, else on condition B do y, else Step",

or the interpretation: "on condition do x, else M+OFFSET",

may be specified. The latter alternative indicates that,

the X register contains an offset which should be added to

the current value of the microprogram counter, and indicates

whether or not the field is masked. An additional

possibility results from specification in the first cord-

Ition field of an"on any condition", in which case the

remaining bits of the instruction are interpreted as the

absolute address of the next instruction. The possible

values of "x" and field sizes are included on the Figure 3.

2-10
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These choices of possible successor functions provide

wider diversity than would normally be expected. This

results from the attempt to represent many of the features

provided by present machines. The extended precision

function is present in many machines in varying forms.

The "on condition x" form is a modification of the

Burroughs Interpreter3 . The 4OFFSET form is a general-

ization of the RCA Spectra 70 and IBM 360 equivalents.

The absolute form is present in nearly all machines.

Conclusion to Chapter- 2

The hypothetical machine Cescribed will serve as a

basis for discussion of the architectural considerations

posed by dynamic linking and loading. This approach is

considered valid in that the features present in its

design reflect a variety of those presently implemented

in various processors. In this sense, an analysis of this

machine will indicate many problems inherent in the

conversion of present processor designs to allow dynamic

linking and loading, but not all of these considerations

will necesarily pertain to a given design.

As an addenda to this chapter, Appendix A provides

examples of microprogramming this machine to accept a

modified subset of the IBM 360 machine ; language.

2-11
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Chapter 3. Implementation of the Dynamic Linking
and Loading Environment

Introduction

Implementation of a processor which supports dynamic

linking and loading of microprograms, in addition to the

features provided by the hypothetical machine, requires

modification of the microprogram address mechanism and

hardware support for the linking and loading process. The

concept of dynamic linking and loading of microprograms

is meant to include both the mechanism for microprogran

definition and the apparent virtualization of the contiol

store. Direct user contact with the facility is provided

by means of machine language primitives, which allow the

user to define, modify or delete segments. This is in-

tended to allow the user to dynamically redefine the base

provided by the microprocessor to support the expected needs

of his program. Indirect user contact with the linking

and loading facility is provided through the automatic

linking and loading of programs as they are referenced.

This allows presentation of a virtual control store to the

user.

The hardware facilities required to provide this

facility are the subject of this chapter. The additional

facilities are discussed in Chapter 4.

Three areas are of principle concern. The first is

the suitability of absolute addressing, as provided by the

hypothetical machine, to a dynamic environment. The

second and third areas involve implementation of the

3-1
19.



linking and loading facilities, respectively.

Modification of the Address Mechanism

As defined, the concept of dynamic linking and load-

ing requires both the relocatability of microprograms

and the ability to address microprograms of total length

greater than that of the control store. Neither of these

goals may be achieved with an absolute address mechanism.

Examination of microprogram organization indicates

that division of microprograms into discrete sections is

easily accomplished. This results from the traditional

construction of microprograms as special sections of code

associated with each machine instruction, and linkages

from these sections to a few common sections of code.

The length of the special sections of code varies widely,

but is generally very short (a few instructions). A

fixed block organization would therefore seem inappropriate.

A variable length segment organization, however, would

seem appropriate to both the apparent organization of

microprograms and the varying length of the "independent"

special sections of code. Under this scheme, each segment

will be identified with a unique label (binary number)

and addressing within each segment is provided in the form

of an offset relative to the start of the segment. Local

addressing, addressing within a segment, therefore requires

only stipulation of an offset; wereas global addressing,

addressing between segments requires both the label and

offset within the segment desired. Implementation of this

3-2
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scheme requires that these segment-offset addresses be

mapped into the absolute addresses of the physical control

store. This effect is achieved through dynamic linking.

Implementation of Dynamic Linjing

Implementation schemes for the segment-offset address

mapping into the control store addresses are shown in

Figure 4. Translation of segnent-offset addresses is

provided in two ways. The segment table provides the

necesary linkage information: the physical location of

each segment. Addition of the required offset to the

location of the segment desired. results in the absolute

address required. This form of mapping is used to address

control store A (Fig. 4). Note that the segment table is

implemented as a memory, where the contents of location

SEG contain the linkage information related to the segment

SEG. Alternatively, direct hardware recognition of the

segment-offset address form may be provided through the

use of relocation registers. This scheme, however requires

a relocation register and physical memory block for each

segment. Assuming a large number of segments (there will

be), then the cost of providing these register would be

prohibitive of the relocation register approach. Also,

the control store configuration required (control stores

B and C) is considerably more expensive than the single

block configuration allowed by use of the segment table.

Also, the segment table may be used to contain information

concerning segments not currently control store resident

3-3
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when virtualization of the control store is desired.

The segment table approach will therefore be used in

conversion of the hypothetical machine to the segment-

offset addressing form and its inherent linking capability.

Modification of the Successor -unctLon

The successor function of the hypothetical machine

was designed to accept data relevant to the calculation

of absolute addresses from absolute addresses. This must

now be modified to allow calculation of absolute addresses

from segment-offset input. Note that the local functions

Step, Repeat, Skip and +OFFSET are program counter rel-

ative. If the program counter is mainatained in both

absolute and segment-offset forms, then the only mod-

ification required of the successor function in these

cases is to update both forms. The Save&Step and Call

functions must be altered to push the segment-offset form

of the program counter onto the stack, rather than the

absolute form. This is required in case the segment in

which the successor function was evaluated is relocated

before the value is popped by the execution of a Return.

The unconditional branch to an absolute address form of

the successor function must be modified to a useful

segment-offset form. Prelimirary to consideration of

this problem,we note that the Jump and Call functions

required the introduction of a twelve bit address into

the jump-vector prior to execution. Practically, however,

this required two transfers of eight bits each, despite

3.4
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the fact that only twelve were required. This leads to

the choice of allowing up to 256 segments of maximum

length 256 words, and converting the jump-vector to a

segmerit-offset interpretation. Now, difficulty in

converting the absolute address form to a useful segment-

offset form is apparent: sixteen bits are required but

only twelve are available. The unconditional branch

form will therefore be converted to two forms: Jseg

which causes transfer to the first word of SEG as specified

by the X register (may be masked), and Joff, which causes

transfer to the segment in the SEG register at the offset

specified by the X register (again may be masked). The Call,

Jump, Return, Jseg and Joff successor functions all require

use of the segment table to determine the appropriate

address. Recalling the optimum choice of the times

required for control store access and successor evaluation,

Tmpey = Tcsac + Tnext '

indicates that linkage between segments as a result of

these global functions might result in adverse effects on

Tnext and therefore either Tmpcy and T esac If however,

introduction of a value into the SEG register causes that

location to be automatically fetched, then the Jump, Call

and Joff sucessor functions will cause no overhead if the

segment table access time is equivalent to the local

store access time; because these functions require prior

introduction of a constant into SEG. The Return and Jseg

3-5
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functions, however, provide no prior information on the

segment referenced and will incurr overhead equal to the

segment table access time plus the address generation

time (Return only). This indiates that either the time

required to evaluate the successor function must be reduc-

ed, or the access time of the control store must be reduc-

ed, if continuous linkage overhead is to be eliminated

during microprogram execution. In proceeding, it will be

assumed that the long-run overhead involved in these

linkages has been effectively transferred to hardware

overhead through appropriate modification of the original

successor evaluation hardware, or if necesary, reducing

the access time of the control store.

The Successor Function and Segment Faults

Another consideration in conversion to the segment-

offset form is the possibility of generating addresses

which have no control store equivalent. This will occur

when either the segment referenced is not defined or

the segment is defined but is not control store resident.

In either case, a linkage or missing segment fault has

occurred. The successor function must detect this cond-

ition and automatically take appropriate action. This

action is defined as evaluation to the address of a micro-

program specifically designed to handle this problem

(the segment fault handler). An arbitrary implementation

of this scheme is to define the missing segment fault

handler as segment zero, and provide a special register

to allow rapid determination of the absolute address
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of segment zero. In the event of a segment fault, the

successor functions value is contained in this register

and transfer of program control occurs automatically.

Implementation of Dynamic Loading

The loading and relocation requirements of the dynamic

linking and loading mechanism are most easily satisfied

through the use of data block transfer channels. Use of

such direct memory access (DMA) channels allows such

transfers to continue without program intervention; and

therefore allows continued execution during the transfer.

Implementation of the DMA channel is staigthforward

in that it simply represents ccnversion of an already

implemented concept to this application. Basically, a

length register (L) is used to contain the number of words

to transfer starting at the location specified by CSADR1

to the starting address CSADR2. Either address register

may specify a main memory location, but not both. This

therefore allows relocation of blocks within the control

store, loading of blocks from main memory or storing

blocks into main memory.

Transfer to (or from) main memory from the control

store proceeds by"stealing" control store memory cycles

once every Tcy (main memory cycle time) and the total

time to transfer a block of length m is therefore mTy*

This overhead may be considered considerably reduced if

useful computation can procede in parrallel with the

transfer. If the mat memory cycle time is longer than
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the microproccessor cycle time by a significant amount

(at least a factor of two) then the following analysis of

the overhead involved in such transfers is true. Assurie:

1. Exactly m control stcre cycles are required
for the transfer (ie block length is m)

2. The optimal choice of Tmpcy- Tnext + T sac holds

3. The control store is organized as k equal length
blocks (analysis with unequal lengths similar)

4. The main memory is organized as t equal length
blocks of equal cycle times

5. Useful computation is available during the transfer

Then noting that the interim between successive references

to the control store by the microprogram is Tnext then

the maximum time delay resulting from conflicting references

to the control store is Tcsac-Tnext and these conflicts can

be expected with frequency m/t. Therefore the expected value

for the time loss during the transfer is:

(Tesac - Tnext),

as a result of conflicts occurring in reference to the

control store. Additionally, there -is the probability of

time loss at main memory in the event that the useful

computation involves main memory references. In this case,

the time loss due to conflict is Tcy and the maximum

number of attempts to reference data from main memory

(resulting in fetches--attempts which are satisfied by

the cache don't count) is m. Assume n references are

attempted (n less than m) then the time loss at main

memory can be expected to be; nT y / t .

Actually, the probable value of n is low, especially
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in comparison with t, and this value may probably be

ignored. However, the expected value for the overhead

involved in actually loading or storing is:

Tsac Tnext) + tOy

This value will be of later use in calculating the total

performance gain achievable with dynamic linking and

loading.

A similar analysis may be used to compute the time

loss eaxpected during relocation of a block of length m.

The total time required 'is simply 2mTcsac if the transfer

proceeds uninterupted within a single block, or about

(m+2)Tcsac if uninterupted within two separate physical

blocks: Note that either one or the other should apply

as references are made to consequetive addresses. If

useful computation again exists, then the overhead is

again expected to depend on the probability of conflicting

references, the total number of references and the time

loss involved in each conflict. The value for relocating

a block of length m would therefore be:

k Tsac - Tnext)

Again, this value will be of later use in establishing

the performance gain acievable with dynamic linking and

loadirg.

This value also requires two points of access to the control
store, otherwise the first value still holds.
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Conclusion to Chapter 3

The overhead involved in the implementation of the

dynamic linking and loading hardware has been examined.

The requirements include conversion of the read-only

control store to read-write capability, the provision

of a segment table and modification of the successor

function to allow segment-offset addressing and segment

fault handling. Additionally, the overhead involved in

provision of the loading mechanism has been described,

and the overhead involved in loading computed. A summary

of the implementations of these capabilities is providei

in Figure 5. Chapter 4 will provide the necesary

algorithms to allow these facilities to be used to provide

an effective dynamic linking and loading environment.
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Chapter 4. Evaluation of the Dynamic Linking
and Loading Environment

Introduction

Evaluation of the linking and loading environment,

provided in Chapter 3, requires an analysis of the use of

that environment to provide a useful linking and loading

facility. This evaluation involves essentially two areas

of interest. The first, the initial overhead involved

in establishing the environment, was discussed in Chapter 3.

The second, involves the overhead involved each time the

facility is utilized.

Direct utilization is provided by means of machine

language primitives designed to allow program manipulation

of the control store and linkage table. While this allows

the user the priviledge of dynamically reconfiguring the

microprogram environment, it also presents the user with

problems of memory management and requires a rather

definite knowledge of his programs' behavior.

Indirect utilization of the facility is provided

to free the user from these responsibilities. This requires

an automatic mechanism to cope with the problems of memory

management and segment faults. The manual "virtualization"

provided through the use of machine instructions is there-

for rieplaced with virtualizat*.on in the conventional sense.

This transition, however, requires a discussion of the

problems involved in segment fault handling. Especially

difficult are the problems posed by memory management and
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the segment removal algorithm. The combination of the

overhead involved in implementing suitable solutions to

these problems may be combined with the estimates of the

initil overhead to determine the minimal degree of

effectiveness required to justify implementation of the

dynamic linking and loading facility.

Program Controlled Linking and Loading - Description

Machine language instructions, sufficient to allow

program control of the linking and loading processes, are:

define Seg,Link , which replaces the old segment
table entry for the segment Seg with the
contents of the location pointed to by Link,

move Seg,Loc , which moves the segment Seg to the
location indicated by Loc and updates the
segment table entry for Seg to indicate its
new location (the move may not be specified
as main memory to main memory),

status Seg,Loc , which stores the segment table
entry for the segment Seg at the location
indicated by Loc.

The define primitive allows the initial creation of a segment

table entry, thereby defining a segment. The segment table

entry must contain the main memory location of the segment

and the length of the segment; other information concerning

the segment can also be provided, but will not be needed in

this case. Subsequent use of the move primitive allows the

segment to be loaded, relocated or stored. Relocation and

storage of segments may be required to allow the loadin~g of

another segment; this determination is made on the program's

knowledge of the location and length of all control store

resident segments, and the length of the segment to be loaded.
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Concievably, the program would not have sufficient infor-

mation to make this determination, in which case the use

of the status primitive allows examination of the location

and length of any segment. This situation is liable to

occur when calls to subroutines or functions are executed,

and the function or subroutine is not aware of the exact

microprogram environment at the time of the call. Note that

this difficulty results from the necesity of loading all

segments,before they are referenced, in the absence of an

automatic segment fault handling facility. Therefore, the

programmer must be careful to provide the expected micro-

program base when machine language program behavior is not

striclty sequential. As the complexity of program behavior

increases, this could pose a formidable problem for the

programmer.

Program Controlled Linking and Loading - Overhead

In addition to providing potentially difficult problems

to the programmer, program controlled linking and loading is

less efficient than the hypothetical optimal algorithm. The

optimal algorithm uses advance knowledge of the program's

behavior to provide optimal decisions when the need for link-

ing or loading occirs. This therefore provides a measure of

the absolute minimum of overhead involved in dynamic linking

and loading. Program controllaed linking and loading i less

efficient than the optimal algorithm because it may require

the linking and loading of segments to avoid potential

segment faults which do not exist. Similarly, it may also
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store segments unecesarily to allow the loading of other

segments. A measure of the overhead involved is obtained

by considering the conditional probability that a segment

will be referenced given that another segment has been

referenced. This measure is applicable to the case where

it is known that the interpretation of a machine instruction

will result in execution of a particular microprogram

segment, but this segment potentially links to n other

segmerts with probability pi, for the ith segment. This

should be combined with the probability of executing the

relevant machine instruction, m, and the overhead involved

in providing the ith segment, ti, to give the expected value

of the overhead incurred by the optimal algorithm:

n
mi pit .
i=1

This should be compared with the overhead incurred by the

program controlled algorithms

n

where it is assumed that the program does not know if the

instruction will be executed. In practice, the values for

the overhead involved, t,, may be calculated from the

occurrence of the primitives and the probability that the

relevant instruction sequence will be followed# and the

overhead involved in the execution of each primitive. For

the define and status primitives, this value is determinable

from the microcode required in their interpretation; but for



the move primitive, the overhead is that calculated in

the previous chapter for the desired operation. As the

optimal algorithm is impossible to compute, the use of

primitives provides an effective approximation of the

maximum overhead required to Eupport dynamic linking and

loading in specific instances. This does not indicate

that a different algorithm cannot perform worse in some

instances and better in others, but simply indicates the

maximum overhead which need be allowed in each case.

In this sense, It provides a basis for measuring the

"excess" overhead involved in the implementation of the

automatically controlled linking and loading algorithms.

Virtualization of the Control Store - Automatic Linking
and Loading

Except for the original definition of segments, the

"virtualization" of the control store through direct

program control could be replaced with an automatic mech-

anism. Such a mechanism frees the programmer from the

difficulties involved in maintaining the appropriate

microprogram environment, and retains the advantages of

control store virtualization provided by the programmer.

Implementation of the automatic mechanism however, requires

that the control store bookeeping operationprovided by

the programmer,be replaced with suitable algorithms. Over-

head will then be incurred by the execution of these

algorithms. In comparison with program control, this

may or may not exceed the savings achieved through the

elimination of unecesary operations involved in the direct
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control algorithm.

An overvew of the automatic segment fault handling

algorithm is shown in Figure 6. The procedure is simple,

prov4ded sufficient free space always exists to allow

immediate loading of missing segments. In this case, the

overhead is approximately equal to the overhead involved

in the loading process. Practically however, if the total

length of the microprograms exceeds the length of the

physical control store, then segment removal and garbage

collection must preceed the loading process. This sit-

uation is analogous to that of conventional virtual

memories; but, significant differences exist between the

considerations involved at the microprogram and machine

program levels. Consideration of appropriate segment

removal and garbage collection algorithms is therefore

necesary.

Microprogram Behavior - A Basis for the Algorithms

The choice of segment removal and garbage collection

algorithms must be made on the basis of expected micro-

program behavior. The lack of data in this area, especi-

ally for processors which allow user definition of micro-

programs, requires the choice of reasonable algorithms

without proof of their optimality. Traditional micro-

program organization and behavior will serve as the basis

for the choice of these algorithms.

Microprograms are traditionally oriented toward the

interpretation of a predetermined machine language. The
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Figure 6.
Missing Segment Fault Algorithm
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usual method of Implementing this interpretation is to

code special sections of microcode for the interpretation

of each instruction. These seutions are linked to the

machine instruction fetch and decode section(s) of the

program, and also to the special segments associated with

the interupt mechanism of the processor. A typical

example is the interpretation of the IBM 360 machine

language in the Model 50. The first phase involves the

initial instruction fetch and program counter updating.

Two successive phases result in the decoding of the

instruction. The instruction i.s then executed. This

phase may entail additional succesive phases, as in the

possible case of microprogrammed floating-point operations.

After execution, the microprogram branches to the interupt

checking phase and then succesive branches eventually
4

return to the initial instruction fetch phase. This

behavior is summarized in Figure 7a. The exact behavioral

path differs from machine instruction to machine instruction;

therefore, if the occurence of a particular type of

machine instruction is treated as a random event, then this

behavioral pattern will be reflected in the execution of

various microprograms associated with the particular

instruction. An additional characteristic of this pattern

is the relatively short duration of many of the phases,

especially the decode and execute phase for the more basic

machine instructions. If each phase is implemented as a

separate segment (this is virtually required to allow
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Figure 7a
Conventional Microprogram Bhior

Figure 7b
Expected Microprogram Behavior



the appropriate linkages) then the following summarizes

the behavior of conventional microprograms:

1. The use of a distinct segment for the interpretation
of each machine-level instruction.

2. The random occurence of execution of these distinct
segments as a result of machine-level program
construction and execution.

3. Relatively short intervals of local execution.
4. Relatively frequent linkages between segments.
5. Microprogram overall organization as a very large

number of short segments (with exceptions).
6. The execution of certain segments regardless of

the instruction being executed.

Allowing user definition of microprograms, or the definition

of microprograms which compute more complex algorithms than

those typically chosen for machine-level instructions, is

expected to change the overall behavior of the micro-

program very little. The major difference is expected to

be the use of longer segments (with longer spans of exec-

ution time) which link to several other shared segments.

This would result, for example, from the provision of

floating-point operations such as add and subtract which

would be used by instructions computing trigonometric

functions. Another example would be the use of common

string manipulative functions in the construction of micro-

programmed editors or parsers. Figure 7b represents the

expected behavior of microprograms when the dynamic link-

ing and loading facility is implemented.

The RWmoval Algorithm - Discussion of Conventional Methods

Analysis of this behavior pattern indicates that the

By "random occurence" we mean that the occurence of a
particular instruction is independent of the instructions
preceeding it. The frequency of occurence of different
machine level instructions is expected to vary.
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conventional segment removal (or page removal) algorithms

may not be suitable for use at the microprogram level.

Algorithms, such as least-recently-used *(LRU), are depend-

ent upon the assumed local behnivior of machine programsz

In other words, the machine language program is expected

to proceed in a basically sequential pattern or execute

in relatively small portions of the program as a result of

looping, subroutines, functions or recursion. This type

of behavioral pattern allows the assumption that if a segment

is referenced once, then it can be expected to be refer-

enced again within a short time interval. This also allows

the assumption, that.if a segment has not been referenced

for a long period of time, then it probably will not be

referenced within a short time interval. These observations

result in the use of LRU (or modifications thereof) algorithms

at the machine-language level.

The behavioral assumptions for machine language programs

are clearly different from those established for micro-

programs. The random nature of microprogram behavior and

the execution of certain segments regardless of the previous

execution pattern are inconsistant with the intent of the

least-recently-used algorithms. Additionally, these

algorithms require the real time maintenance of segment

referece data; and the relatively frequent occurence of
*This algorithm is interpreted as follows: assume the
available memory space is filled and a segment fault occurs,
then remove the segment which has not been referenced for
the longest period of time and place the code for the segment
requested on the top of a stack. Subsequent references to
segments cause their codes to be pushed onto the stack. The
least-recently used segment is therefore always on the
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linkages between segmentsat the microprogram level,

creates significant overhead in maintaining such data.

Also, the number of segments which will probably be control

store resident greatly exceeds the number of segments

or pages normally used in the machine-language environment.

Therefore, the use of conventional segment removal

algorithms,at the microprogram level, is considered invalid;

and construction of an algorithm, suitable for use at the

microprogram level, is required.

The RemovalAlgorithm - Least Frequently Used
A Possible Solution

The behavioral characteristics of microprograms would

suggest the use of a least-frequently-used (LFU) algorithm

for segment removal. This algorithm stipulates that the

segment which has recieved the fewest references is the

segment which should be removed. Full implementation of

this algorithm would require that a data base be continually

updated to reflect the number of references to each segment.

This is not useful for two reasons: first, the overhead

involved in maintaining this data base is prohibitive, and

second, after a significant period of execution the rel-

ative priorities among most segments would remain essentially

constant. The second effect results from the fact that

freqently used segments woulV rapidly develop prioriti.es

of such greater magnitude than other segments, that short-

bottom of the stack. Note that when the code for a segment
is pushed onto the stack, any other reference to that
segment is removed from the stack; therefore each segment is
referenced by at most one stack location.
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anomilies in the behavior of segments would not be corrected.

Further, after prolonged periods of execution essentially

all oC the segments are expected to develop relatively

constant priorities. This does not, however, preclude the

possibility of changes in the relationship between segments

of extremely low or extremely close priorities.

This discussion indicates that a static assignment of

priorities could be made which reflected the observed long-

run frequencies of execution of the various segments. This

method eliminates the overhead involved in maintaining a

data base, while maintaining the essential features of the

LFU algorithm.

A basic objection to the LFU algorithm is that the

occurence of nonprobablistic behavior of one segment will

also indicate nonprobablistic behavior of the segments

associated with the first. This could lead to the case

of two (or more) segments which alternately reference

each other, but both are of extremely low priority and

therefore replace each other. Severe system performance

degradation could result if these segments performed a

significant number of cross-linkages. Two variations of

the LFU algorithm are now considered which attempt to

reduce or eliminate occurrences of this sort.

Least Frequently Used - Modified with Association Lists

A direct approach to solving this problem is the

specification of the segments associated with.another

segment. Included in the definition of each segment would

4-11
43.



be a list of the segments to which linkages could be

expected from that segment. The removal algorithm is

then modified to stipulate that the least-frequently-

used segment, not on the associatLon'list of the segment

being loaded, should be removed. Implementation of this

algorithm would therefore involve searching the segment

table for the first segment which meets the criteria.

This is effective if the association list is provided as

an ordered list of the segments required; in which case

the algorithm shown in Figure 8 requires at most one

reference to each segment table entry and at most one

reference to each member of the association list. The

objection to this algorithm is that it never requires

significantly less overhead,regardless of the segment

loaded, because no look-ahead is possible. This is

meant to indicate that despite the static definition of

relative segment priorities, it is impossible to accurately

predict which segment should be the next to be removed.

Least Frequently Used - Modified with Most Frequently Removed

An alternative approach to association of segments

utilizes a most-frequently-removed algorithm and special

control store search to determine which segment to be

removed. Basically, this algorithm attempts to eliminate

infrequent anomolous behavior by causing the least-recently

removed segments of a given priority to be removed first:

and attempts to adjust long-run anomolous behavior by

increasing the-priority of segments which show a high
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Figure 8.
Least-Frequently Used Algorithm Including

Use of Association Lists (LFU-AL)

45.
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Set SEG=O, LOC=0, PRIORITY=O
Fetch first association list (A
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frequency of return after being removed. This algorithm

is implemented as follows. The delimiter word (see section

on garbage collection) of each segment is modified to include

a covnt of the number of times the segment has been reroved

in addition to the other data. Searching from the lower

addresses of the control store (initially higher priority)

the algorithm proceeds up the chain of delimiter words

until the lowest priority segment is located. This segment

is then removed; its count of the number of times it has

been removed is incremented, and if the count overflows the

priority of the segment is incremented and the count reset

to zero; the garbage'collection algorithm relocates all

segments,located at higher addresses,downward; and the new

segment is loaded at the top of the segment addresses. This

algorithm is flowcharted in Figure 9. The result of this

algorithm is to examine the most recently loaded segment

last (in some sense this reflects LRU), and if a segment is

removed several times (indicating it is used several times),

then its priority is increased to reuce the frequency of its

removal. The method of search and relocation also results

in the accumulation of the most frequently used segments in

the low end of the control store and thereby eventually

decreases the overhead involved in garbage collection.

The difficulties with this algorithm are essentially

the same as those of the LFU, except that they are reduced

in overall effect. It remains possible to remove a segment

which will be immediately requested, but frequent occurences
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Figure 9.
Least-Frequently-Used Algorithm Including

Use of Removal Counts (LFU-MFR)

Initialize: Garbage col';ection FLAG = 0
Address del!miter word into CSADR
Fetch first delimiter word
PRIORITY = 0
Examine prierity field PF of

delimiter word

PF

pointer
to next delimiter':

word null

examine
priority
field

L -i t

Garbage
Collection
(notes)

: Garbage collector uses last value
of flag, proceeds up delimiter
words clearing flags until value
found. Increments removal count
and-themremoves.
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of such behavior will resu lt in feedback which would

eventually reduce the problem. Similarly, long-run

anomilies in particular programs will be adjusted to

impro"e performance. None-the-less, the immediate

response of the algorithm to anomilous behavior is not

as good as the use of association lists.

Least Frequently Used - Modified with a Combination
of Association Lists and M"ost Frequently Removed

A combination of the two modifications of the LFU

algorithm is a useful means of providing both long-run

and short-run adjustment of anomolous behavior. This

algorithm may be implemented as in Figure 10. The basic

procedure is to follow the procedure outlined for the

most-frequently-removed algorithm with the addition of

comparing each segment,which otherwise would have been

chosen for removal, against the association list of the

segment being loaded. Inefficiency results from the fact

that the search is no longer ordered, and therefore the

association list may be searched several times before

the algorithm completes. This problem could be reduced

by restricting the length of the association list, or

by providing a small associative memory to allow parrallel

comparison with all the association list entries simul-

tanecasly. Neither alternatlie is especially desirabl:

the length restriction must be severe to allow overhead

comperable to that obtained solely with the association

list method (reduction to about 2 or 3 segments); and the

second requires a potentially significant hardware invest-
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Figure 10.
Least-Frequently-Used Algorithm Including

Use of Both LFU-AL and LFU-AL-MFR

Initialize: Garbage collection FLAG = 0
Load MAR with segment address
Fetch association list entry
Load CSADR with delimiter word adr.
Fetch first delimiter word
PRIORITY= 0
Examine priority field of delimiter

Garbage As per figure 9, proceed up delimite
Collections chain.until highest flag value is

found--remove that segment.
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ment. Again, combination of these methods might prove

effective, especially if the original lengths of the

association lists were relatively short. Limited exper-

ience in the construction of ,icroprograms has indicated

that -association lists on the order of eight to sixteen

segments long are sufficient ti eliminate first-order

effects of segment faults. Higher-order effects, resultant

from segments which link to segments which link to other

segments (all linkages of low priority), may require

significantly longer lists; but these could be treated

as special cases in construction of the association list.

Therefore, a limit of about sixteen members per segment

association list will be imposed, and an associative memory

of this length will be provided (for this size memory, the

addition constitutes negligible cost). The revised

implementation of the LFU algorithm is shown in Figure 11.

The Least-Frequently-Used Algorithms - Examples

An intuitive comparison of the variations of the least-

frequently-used algorithm may be achieved by considering

examples of the behavior of these algorithms in special

cases. As a prelude to this discussion, it is necesary

to establish the number of priorities and the length of

the allowable removal count, the number of possible segments

and similar factors. Arbitrarily establish the maximum

number of priority levels as sixteen, the maximun number

of segments as 256, the maximum length of each segment as

256, the overflow value for the removal count as 256 and
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Initialization: 1. Store needed registers
Load MAR with address of segment
Fetch association list
Load associative memory
Set LEN=i, and LOC=$
Initialize reference priority (RP)
Address first delimiter word
Access priority of segment (P)

No

Sufficient
Free Space

S ? /-,

A Modification of the Combined Algorithms
Figure 11.
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the average value of the length for each segment as 20 words.

The last assumption indicates that about four-fifths of the

available segments will be control store resident. Also,

establish 16 as the highest priority level for removable

segments, and establish 0 as the priority for segments which

cannot be removed (the segment fault handler for example).

Initially, let most of the segments have priority 0 and allow

the following configuration of high address control store

hold: g(2,0)
(1,0) k(1,0) not control store

e(3,0) resident
d(4,0)
c(6,0)
b(7,0)
a(11,0).

The notation x(y,z) indicates"the segment x whose priority

is y which has been removed z times at that priority level".

Now consider the following examples.

Example 1. - Normal Behavior

In the absence of segment faults, all of the algorithms

perform equivalently and create no overhead.

Example 2. - First-Order Effects

In this case we assume that segments f, c and b are

linked in an iterative loop and that segment k is also part

of the loop. In the use of the unmodified LFU algorithm,

the first reference to k will create a segment fault and

segment f will be removed. The next reference to f will

then result in a segment fault. Subsequent references to

these segments will continue to yield segment-faults.

In use of the LFU algorithm with association lists (LFU-AL),
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the first reference to k will again generate a segment fault.

However, if k's association list is f,c,b, then segment g

will be removed and the loop will continue without creating

furthcr segment faults. In the use of the LFU algorithm

with the most-frequently-removed variation (LFU-MFR), the

first reference to k and subsequent references to f and k

will cause segment faults for the first 256 references

causing these faults. At this point, f and k will have

accumulated priority greater than g, and segment g will

then be removed. Note that the responsiveness of LFU-MFR

is highly dependent upon the overflow value for the removal

count. Use of lower value improves responsiveness, but the

speed with which maximum priority is reached -is increased;

at which point, the priorities must be reinitialized. The

use of the LFU algorithm with both modifications (LFU-AL-MFR)

results in behavior identical to that of LFU-AL. In

summary, LFU-AL and LFU-AL-MFR performed well in eliminating

first-order effects in linkages between low priority segments.

Example 3. - Higher-Order Effects

In this case, we assume that segment k references seg-

ments g or e, and that e occasionally references f as a

called function. Again assume looping behavior, also assume

the following association lists: for k, ge,f; for g, k,e,f;

for e, g,f,k; and for f, g,e,k. The use of LFU will again

result in segment faults for each alternate reference to

segments k or f. The use of LFU-MFR may eventually result

in priority increases for g,f and e such that segment d will
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be removed; but this effect will require considerable time.

If normal behavior follows this loop, then segment d may not

be of sufficiently high priority and further difficulty

could result from subsequent segmnnt faults. The use of

LFU-AL or LFU-AL-MFR results in the removal of d immediately

upon the first segment fault (reference to k), and normal

behavior thereafter. For more complicated examples involving

longer association lists, the behavior of LFU-AL and

LFU-AL-MFR will begin to diffe:. This results because the

specification of a long enough association list eliminates

all order effects in the LFU-AL",, wereas the limited length

of the LFU-AL-MFR association list will allow manifestations

of higher-order effects.

In concluding the disscussion of the examples, two

points are evident. The first is the superiority of the

association list method over probablistic approaches to

segment removal. The second is the inflexibility of this

approach in adapting to "long-range" effects of looping

at the machine instruction level. Another less obvious

point is that the use of too long an association list

will make segment removal impossible. This problem may

be eliminated by providing, in addition to the association

list, a removal list which indicates which order the seg-

ments on the association list should be removed. The

problem of long-range inflexibility is more difficult.

Another Variation of Least-Frequently-Used

This situation would indicate that a slightly dif-
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ferent form of the LFU-AL-MFR should be employed. A

possible approach is the use of the LFU-AL algorithm

to determine which segment should be removed, and the

use of a fault count (this is essentially equivalent

to the use of a removal count) to indicate the number

of times a segment must be loaded. As in the case of

the MFR variant, this count would be used to adjust the

priority of the segment. Because LFU-AL is used, the

fault count will reflect the machine-level behavior of

the program, while the use of association lists will

provide knowledge of the microprogram behavior in the

processing of each machine instruction. An example of

this application would be a mchine-language instruction

loop which included a seldom used instruction; in which

case, only microprogram behavior is important and the

use of LFU-AL is sufficient. If however, the use of this

instruction becomes frequent due to a large number of

programs (as would be the case in a special applications

computer facitty), then the fault count correction would

adjust the priority to a more optimal level. Hence,

this algorithm provides against short-run anomolous

behavior and eventually corrects anomolies in the long-

run application of the linking and loading facility.

The Least-Frequently-Used Algoilthms- Execution Overhead

Besides considering the behavioral aspects of each

of the removal algorithms, the overhead involved in the

implementation of each indicates the desirability of that
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Figure 12.

Figure 12 is identical to Figure 8,

except that the initialization stage

first involves incrementing the fault

count for the segment. Also, the

interpretation of priority now

includes the fault count.
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algorithm. Basically, the overhead involved in the

implementation of the unmodified LFU and the LFU-MFR

algorithms is the lowest because these algorithms allow

look-a.head to determine a list of segments to remove.

Both the LFU-AL algorithm and its variant (Figure 12)

require essentially the same overhead; although the

latter also requires a longer segment table entry. The

LFU-AL-MFR algorithm requires the most overhead in that

both more time and hardware are required to execute thet

algorithm.

With reference to Figures 8 and 12, the overhead

involved in implementation is nearly constant. Most of

the overhead results from the need to search the entire

segment table (256 entries), and the approximate total

of microprocessor cycles required to execute this al-

gorithm is about 550 plus the length of the association

list. Note that in general it requires only one micro-

processor cycle to determine that the segments priority

is unsuitable and to obtain the next entry, but that

two or three are required if this possibility exists.

An initial consideration of the searching algorithm

involved in either of the LFU variants involving use of

the delimiter word chain indicates that about five or six

microprocessor cycles will be required to determine the

suitability of each segment. As at least half of the

256 segments are expected to be control store resident,

the overhead involved in this area alone is nearly twice
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that of the LFU-AL algorithms just discussed. In the

case of the simple LFU-MFR this overhead could be sig-

nificantly reduced by maintaining an ordered list of the

segmEnts to be removed. The cverhead would then be

reduced to a few instructions. This however, requires

the addition of a separate table for this purpose, and

also requires that this table be updated each time a

segment is loaded. The overhead then requires slightly

less overhead than the LFU-AL algorithms while not

providing equivalent performance.

In summary, the variant of the LFU-AL algorithm

shown in Figure 12 is expected to perform reasonably

well, and also involves significantly less overhead than

the acceptable alternatives. A conservative estimate of

the expected overhead involved in the implementation of

this algorithm is considered to be about 600 microprocessor

cycles. This value will therefore be used in estimating

the total overhead involved in linking and loading.

The Garbage Collection Algorithm

Having determined the segment or segments to be

removed (or simply dropped) it becomes necesary to provide

sufficient consequetive free addresses within the control

store to allow loading of the needed segment. This may

be accomplished in several ways, each of which involves a

different degree or type of overhead. The principle over-

head incurred by any approach will be the relocation of

segments and the associated need to update the segment
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table entry. Basically two approaches to garbage collection

will be considered. The first is simply compacting the free

space,obtained through segment removal, at the high address

end o' the control store. This involves relocating al' the

segments located at higher conrrol store addresses than the

segment removed. Regardless of the number of segments

removed, each segment need only be relocated once. The

second approach involves the chaining of segments and free

space such that actual garbage collection occurs only when

a certain proportion of the control store is free. This

reflects an attempt to tradeoff' control store for less

frequent relocation of segments.

Garbage Collection Algorithms - Immediate Compaction

The immediate compaction of free space after segment

removal always incurrs a significant amount of overhead in

the relocation process, but also guarantees that the maximal

usage of the control store is achieved. It also has the

advantage, if used in conjunction with the LFU-AL method,

of continually relocating the most frequently used segments

towards the low end of core. This results in lower over-

head from successive relocations because fewer segments will

be relocated. This algorithm is implemented with the use

of a segment delimiter word chain. A segment delimiter

word is associated with each segment. This word is located

in the word immediately preceeding the segment and contains

the following information: the number of the segment, the

length of the segment, the address of the next segment's
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delimiter word, a flag (used by removal algorithm) which

indicates whether or not the segment should be removed,

and any additional information (such as special data for

the s-egment in performance mea-urements) desired. The

algorithm (Figure 13) proceeds by following the delimiter

chain until the first flag is located. This address then

represents the starting address for relocation. The

algorithm stores this address and continues up the chain

until the first unflagged word is found. The segment

number is determined, the segment table is updated to show

the new address, and the segment is relocated. The address

to which the next segment should be relocated is automatically

genereted by this process. The algorithm continues up the

chain, ignoring flagged segments, until a null pointer

indicates the last segment. This pointer is replaced by

the address of the first word of free space and the new

segment is loaded at that point.

The overhead involved in this process is dependent

upon the total number of segments in the control store

and upon the number and length of those relocated. Assume

that the control store typically contains q segments and

that the length of each is m words. Also assume that

control store and main memory are organized as k and t

equal length blocks respectively. Also assume that about

n words of control store need not be relocated, and that

the desired segment is of length m. This allows cal-

culation of the overhead involved in garbage collection
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Figure 13.
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and loading as:

T 2m+2 (T - T )
a k csac nex , to relocate and relink

each segment

a 4,096- n
m , segments to relocate

T 4(T ) , to examine eachb mpCy delimiter word

b 4,o96/m , delimiter words to
examine

T 4 (T mpy) , when flagged word is
found

T mT , is time to load new
d cy segment in absence of

reference conflicts

hence total time is: aTa + bTb T + Td *

For reasonable assumptions on the parameters involved this

total value is between about 500 and 4000 T mpcy, and can be

assumed near 2000 T mpcy. These values reflect an m of about

thirty, a T y/Tmpey of about four, a k of 1 and varying

differentials of control store access and successor eval-

uation times. The major portion of the overhead results,

as expected, from the relocation overhead in aTa . The

advantage of using this method, however, can be seen in

the expected increasing value of n as appropriate priorities

and respective control store locations are established for

each segment. Nonetheless, the overhead involved is

substantial and an attempt to reduce it should be made.

Garbage Collection Algorithms - Delayed Compaction

An alternative to immediate compaction is the usual

approach of delaying the process until a certain portion
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of the control store becomes effectively useless space

without compaction. The difficulty with this algorithm

at the microprogram level is that the holes created by

delaying compaction can be expected to become numerous

with great rapidity. This results from the wide disparity

in segment lengths and the fact that the agorithm does not

consider length an important factor in segment removal.

Further, this method involves considerable bookeeping to

maintain a list of the holes. Also, the possibility exists

that a large segment will be removed but only a small

segment will be placed at its location. Therefore, the

free list much be searched each time a segment fault occurs

to determine if the segment will "fit" in one of the exist-

ing holes. This creates overhead in the case of a large

enough hole's existence, and adds to the overhead involved

in the removal algorithm in any event. If this overhead

is not to be incurred, then a relatively large proportion

of the control store would be wasted space at a given time

or relocation would occur with greater frequency. This is

important because references to control store resident

segments will be much more likely than segment faults if

even slightly more segments can be made control store

resident. In general, this approach adds undue complexity

and overhead to the garbage collection process without

quaranteeing significantly less overhead than the immediate

compaction. This method also does not have the desired

effect of eventually locating very frequently used segments

where they will be less likely to be relocated.
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Combination of the Algorithms

The combination of the removal and garbage collection

algorithms allows the implementation of the virtualized

control store. To the overheud involved in executing Lhese

algorithms should be added the overhead involved in loading

the faulted segment. The total overhead involved in this

process will therefore be on the order of 2500-3000 micro-

processor cycles. This is considerably greater than the

overhead achieved through use of the primitives. However,

the use of the primitives is designed for the loading of all

of the segments appearing on the association list of a segment

rather than just those segments actually referenced. Therefore,

if a large number of possible linkages exist, but few

are expected to be used, then the overhead involved in the

program controlled control store manipulation may be higher.

Interaction between the program controlled algorithm

and the automatic algorithm would appear desirable in cases

where the overhead involved in use of the automatic mechanism

was.excessive, but use of the segment was important. Provid-

ing this mechanism is not especially easy. The difficulties

involve the fact that the machine program cannot know the

control store configuration at the instant of interaction;

therefore repeated use of the status primitive would be

required previous to the program controlled manipulation.

This approach also results in considerable overhead and an

alternative must be sought if machine language control is

to be effective. A possible approach is the use of the
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define primitive to vary the priority of the desired

segment. Applying a bias to the removal algorithm in

this manner can be used to prevent the removal of a given

segmert for a fixed period of time. The program may then

reestablish the segment's old priority, and normal bias

for the segment will result. It is therefore possible

to use the direct control primitives to reduce the other-

wise potentially serious overhead involved in some instances

of purely automatic control.

An Additional Consideration - The Time Factor

An additional consideration in the linking and load-

ing process is the effect of external factors, especially

real-time interupts, on the execution of the removal,

garbage collection and loading algorithms. Usually, it

is necesary to test for interupt conditions after the

execution of machine instructions. In the event that

the duration of execution is indeterminably long, then

breakpoints are provided to allow testing for interupts

7at the required frequency. A similar situation exists

in the use of the linking and loading algorithms. Thus,

breakpoints must be periodically provided throuzhout the

algorithms. This could be implemented as an index whose

overflow would indicate that the testing procedure should

begin, or implemented with a special counter which woul1

be periodically examined by any microprogram to determine

the nesecity of temporarily suspending normal execution.

A question then arises as to the state of the control
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store when the need to interupt does exist. The algorithms

described make no modification of the control store excePt

during the marking (during searching procedures) of segments

to be removed, during the loading process, or during the

relocation process. Unless the frequency with which the

interupt condition must be tested is lower than the time

required to completely move and relink a given segment,

then the possibility exists that this segment will be

effectively unavailable during the interupt handling process.

If this segment is required as part of the interupt handler,

then serious complications result. A direct solution to

this problem is to require that interupt service routines

use only a specific subset of the machine language instruc-

tion set, and require that the appropriate microprograms

remain control store resident. These segments would be

located in the low end of the control store address space

and would therefore not be relocated. Modification of

these segments would require specific controls to insure

that interupt handling would not be necesary until such

modification was compl-ete. While this effectively limits

the application of dynamic linking and loading to non-

critical areas of the system, it does not limit its

general applications to software and system support.

Conclosion to Chapter 4

The potential overhead and difficulties involved in

providing a useful dynamic linking and loading facility

have been discussed. While the overhead may appear
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considerable, it should be noted that 3,000 microprocessor

cycles are only about 300 microseconds or about the exec-

ution time of several floating-point instructions. An

additlonal consideration is the potential performance

increase acievable despite thi:; overhead. An analysis

of this possibility is presented in the next chapter.
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Chapter 5. Justification of the Implementation
of the Dynamic Linking and Loading Environment

Introduction

When an algorithm is expressed in machine language

for execution on a microprogrammed computer, several

inefficiencies result from the interpretation of each

machine instruction by the microprocessor. Directly

microprogramming the algorithm eliminates many of these

inefficiencies and thereby reduces the execution time of

the algorithm in proportion to the number of machine

instructions executed. While this would indicate that

all programs should be microprogrammed, the cost of

sufficient control store memory is prohibitive of such

an approach. Design of conventional microprogrammed

processors therefore involves the selection of a limited

set of general purpose algorithms which correspond to

the machine language instructions. The general purpose

nature of these algorithms is dictated by the simultaneous

requirements for a general purpose computational facility

and for a small control store. A general computational

base may not always prove most efficient, and historically,

additional provision of highly specialized algorithms,

for software or system support, has realized considerable

improvements in processor performance. Provision of the

dynamic linking and loading mechanism at the microprocessor

level, allows the specification of an extremely large

number of these specialized algorithms due to the effective

virtualization of the control store. The linking and
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loading process involves overhead which must be compared

with the expected performance increaseresultant from

microprogramming a given algorithm, to determine the

desirrbility of microprogramming (rather than machine

language programming) a particular algorithm. As the

overhead involved in the linkiig and loading processes

has already been considered, it remains to establish

a method for estimating the performance increase to be

expected from microprogramming a given algorithm,

An Introductory Examle

As a basis for discussion, the following IBM 360

assembly language program (actually its machine language

equivalent) provides insight into the possibilities for

increased performance through microprogramming. The

program computes the address of the first occurrence

of a reference byte (contained in the low order byte

of R$) in a byte string of length m (contained in R3)

pointed to by R1. If a match occurs, then the address

of the byte is returned in R1, otherwise -1 is returned.

(1) LOOP IC R2,$(R1)
(2) CR R0,R2
(3) BE DONE

A R1,ONE
(5) S R3,ONE
(6) BNE LOOP
(7) L R1,NEGONE
(8) DONE continue program

(9) ONE DC X'00$$0$01'
(10) NEGONE DC X'FFFFFFFF'

Interpretation of this program requires several phases for

each instruction which are not relevant to the algorithmic
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intent of the program. Specifically, each instruction

requires the following stages of interpretation:

1. Initial instruction fetch and program
counter updating to reflect first fetch

2. Opcode decoding a-nd linkage to next phase
3. Instruction execution, including:

a) Operand recognition
b) Additional instruction fetch (possible)
c) Operand locatior determination
d) Operation execution and result storage
e) Condition code modification
f) Linkage to next phase

4. Test for special conditions (interupts)
5. Linkage to either step 1, or the interupt

mechanism as required by step 4.

Appendix A provides an example of an emulator for a

modified subset of the IBM 360 machinecode which indicates

the magnitude of the overhead involved in applying thesc

phases to the execution of specific machine instructions.

Microprogramming the equivalent algorithm is considerably

more efficient:

(1) EA, R1(+), D(/), MMAR(+,RW), 4
(2) EA, X'FF'(C), D(/), R1(+), 4
(3) EDEC(O), R3(+), D(/), R3(+), 4
(4) SUB(o), R$(/), MDBR(/,+RW), D(/),

OnNeg Step, Else Return
(5) NoOp, OnEq Step, -2
(6) DEC(0), MMAR(+), D(/), R1(+),

OnGappy Repeat, Else Return

where this routine is expected to be called, and then return.

After the initial processing required to interpret the

machine instruction invoking this program, phases 1, 2, 3a, 3b,

30, 3-, and 5 may be eliminated from the microprogrammed

algorithm. Further, the frequency of occurence of phases

3d and 4 may be reduced. In this example, the constants

NEGONE and ONE need not be addressed nor fetched, thereby

eliminating repetivive address calculations. The equivalent
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of the machine language branch instruction is either

incorporated into the successor function of another

microinstruction or is reduced to one or two micro-

instructions. The address of the character string is

retained in the memory address register, thereby elim-

inating operand address calculations and effectively

using the cache memory. Also, the superior byte mani-

pulative capabilities of the microprocessor and the use

of hardware incrementing facilities (memory address

register), and the use of decrement instead of subtract

(one) allow greater operational efficiency. In summary,

the advantages of microprogramming in this example

include: 1. Reduction of the lexical phase of
the Interpretive process

2. Superior constant handling ability
3. More powerful instruction sequencing
4. Superior byte handling capability
5. Availability of special operations
6. Use of internal registers (MMAR)
7. More efficient addressing and fetch

of operands
8. Elimination of instruction fetches

The availability of both the machine language programmed

and microprogrammed equivalents would now allow direct

calculation of the savings achieved, through microprogram-

ming, in the execution of the comparison loop, Note, that

the algorithm is dominated by the six Instruction loop

T-6 ir the machine language program, and by the three

instruction ooP 3-5 in the microprogram- The micro-

program equivalent of the machine language loop, ignoring

the effects of testing for special conditions, is nearly

100 microinstructions. This represents several hundred
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microprocessor cycles, wereas the microprogram loop

generates only six microprocessor cycles. Assuming the

overhead estimate of about 3003 microprocessor cycles to

link and load this program as the result of a segment

fault, then the loop must be executed about 10-15 times

before a performance gain is achieved. This indicates

that there is a strong correleion between program

behavior and the desireability of microprogramming the

algorithm it represents. In this case, the assumption

that the byte string is a random string of text char-

acters, and that the byte string is of length greater

than 10-15 characters would indicate that the program

should probably be microprogrammed. An additional

consideration is the frequency with which this program

is to be used within the machine language program. If

this algorithm recieves frequent use, or if it is assigned

an initially high priority, then it is more likely to

be control store resident and consequently can be effect-

ive for even adverse circumstances of program behavior.

These circumstances would, of course, result from certain

input strings and reference characters. In general,

the gain achievable from microprogramming is dependent

upon the reduction of inefficiencies in the interpretive

process, the behavior of the elgorithm, and the input

to the algorithm. Proceeding on the assumption that the

range of inputs, and therefore the behavioral patterns,

is known for the algorithm, a partial generalization of
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the criteria for microprogramming may be obtained.

A Sufficient Criteria - The Reduction Algorithm

An initial estimate of the performance increase

available by microprogramming an algorithm is obtainable

by reducing the machine language equivalent of the algor-

ith. This may be achieved by consideration of the micro-

program generated by the machine language. The reduction

algorithm eliminates the interpretive aspects of this

microprogram while retaining the algorithmic intent.

The initial and reduced microprograms are then compared,

the program behavior is determined, and an estimate of the

performance gain is obtained. Practically, the algorithm

is machine language dependent and may function in either

of two equivalent manners. First, it could generate the

microprogram and compare it with the initial program to

determine the savings. Or second, it could establish a

relationship between the type of machine instruction and

the savings achieved by microprogramming the algorithmic

equivalent of the instruction; summing these values for

the machine language program would result in a measure of

the savings. Again, this savings will also depend on the

program's behavior.

The Reduction Algorithm Applied to IBM 360 Machinecode:

.Analysis of the reduction algorithm requires a

specific machine language and its microprogrammed interpreter.

The modified subset of the IBM 360 machine language presented

in Appendix A will serve as the basis for discussion.
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Briefly, this language includes nearly all of the basic

IBM 360 machine language in their original form. Special

instructions, storage-to-storage instructions, decimal

feature instructions and floating-point instructions are

omitted. Also, multiply and divide are omitted to allow

their use as examples. The remaining instructions may be

classified as register-to-register (RR), register-to-

storage (RX and RS) and immediate-to-storage (SI) instruc-

tions,

The RR instructions allow the smallest savings, The

interpretive process involves one instruction fetch phase,

one instruction decode phase, two field isolations (R1 and

R2) and a condition code result. Removal of these phases

saves five microprocessor cycles. Alternatively, a RR

instruction may be expressed as a single instruction of

the form "operation, R1, R2, R1, step", instead of the

interbretive code generated by Appendix A's interpreter.

The RX instructions allow slightly greater savings

in that more fields must be isolated and an additional

instruction fetch phase is required. Five field isolations

are required: R1, X2, B2, and two for D2. Combining with

the extra instruction fetch phase for the second halfword

gives a savings of nine microprocessor cycles. The same

savings are true of RS instructions.

The SI instructions require only four field isolations

and can use the isolation of the immediate field to allow

the equivalent of the extra instruction fetch phase. This
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indicates a net savings of seven microprocessor cycles.

The analysis thus far has not considered that some

of these instruction forms are not fully utilized. For

example, the RS shift instructions reduce to a single

microinstruction of the form "shift, R1, D, R1, n times".

The savings in these cases are therefore less than would

be indicated by the instruction format. In particular,

the shifts require the isolation of only two fields and

therefore save only six microprocessor cycles. In

general however, the savings indicated are correct.

Application of the Reduction Algorithm to Examiples

Knowledge of the savings attributable to each

instruction now allows a conservative estimate of the

overall performance increase available. Consider the

previous example. The savings involved in the loop

is 9 + 5 + 9 + 9 + 9 + 9 (statements 1-6 respectively)

for a total of 50 microprocessor cycles. Again, if

the overhead involved in linking and loading this segment

is 3000 microprocessor cycles, then the loop must be

executed at least sixty times. This is a factor of ten

greater than the known achievable savings because the

reduction algorithm does not account for many of the

potential areas for saving presented with this example

(pg 5-2 to 5-4). Another exaieple is afforded by the

attempt to provide a multiply instruction. The following

program provides an unsigned logical multiply of the

contents of R2 and R5 with the result in the even/odd
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register pair R2/R3.

(1) STM R6,R8,SAVE
(2) L R8,THIRTWO

LR R3,R2
XR R2,R2

(5) L R7,ONE
(6) LOOP SRDL R2,1
(7) SR R8,R7
(8) BM DONE
(9) LR R6,R3
(10) NR R6,R7
(11) BZ LOOP
(12) AR R2,R5
(13) B LOOP
(14) DONE LM R6,R8,SAVE

(15) SAVE DS 3F
(16) ONE DC X'00000001'
(17) THIRTWO DC X'00000010'

This program has two potential loops: statements 6-11 are

always executed 32 times for a net savings of:

32(6 + 5 + 9 + 5 + 5 + 9) = 1248,

additionally, the loop may include statements 12 and 13 for

a gain of 14. The latter is expected sixteen times for a

random distribution of numbers and hence the total savings

in implementing the loop (6-13) is 1472 microinstructions.

As approximately 3000 microprocessor cycles may be required

to link and load this segment, it should not be micro-

programmed unless its frequency of use would indicate that

it will be used twice each time it is used. An attempt to

microprogram the above indicates that the situation is much

better than this for the reasons listed previously. In this

example; all of the branch instructions can be eliminated,

the bit test (instructions 9-10) can be reduced to one

microinstruction, etc. Modification of the reduction
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algorithm to include these factors would allow the analysis

of machine language algorithms on an automatic basis. The

examples however, indicate the possible magnitude of error

when insufficient optimization of the microprograms occurs.

Actually microprogramming the equivalent multiply results in

the sevings of several hundreds of microprocessor cycles per

loop; and is therefore effectively microprogrammed. Until

suitably precise algorithms are developed for the reduction

of machine language programs to microprograms the most

accurate estimates of performance increases will be achieved

by actual comparison of programmer generated microprograms

and programs.

Variations of the Reduction Algorithm

The reduction algorithm as stated ignored several

obvious benefits of the microprogrammed expression of

algorithms. An initial variation of the algorithm would

attempt to fully utilize the sequencing power of the

successor function to eliminate machine level branching

and testing statements from the reduction process. In

general, algorithms involve one or more terminal conditions

and a set of initial conditions. The initial conditions

may be established through the introduction of suitable

constants; thereby eliminating the time required to

address and fetch these operands. Similarly, the testing

for terminal conditions can be incorporated in micro-

instructions which also provide algorithmic computation.

Additionally, multiple branch vectors are possible from
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the same instruction, a facility seldom provided at the

machine instruction level. In the case of the multiply

example previously presented, the double right shift

would cause the S-bit to be set if addition were to be

required; the next instruction would perform the index on

the number of shifts and test for the necesity of ad-

dition; and the subsequent instruction could either add

or shift (depending on previous successor evaluation) and

simultaneously test for the terminal condition. This

overlap of condition testing, branching and algorithmic

execution is an important reason microprogramming is so

much more effective than the purely sequential operations

allowed by typical machine languages.

Another factor which should be included in the red-

uction algorithm is the elimination of a large number of

operand fetches and operand address calculations. This

also includes the fact that instruction fetches have been

eliminated. Elimination of instruction fetches allows at

least two areas of performance gain. First, the actual

time lost in waiting for the instruction to be fetched is

regained. Second, multiple references to the same address

or to consequetive addresses are no longer interspersed

with instruction fetches. This allows more effective use

of the cache memory because main memory accesses are not

as frequently widespread. Note that addressing consequetive

locations within the cache allows effectively zero access

time, wereas alternately referencing instructions and their
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operands results in access times approaching those of

main memory modules. In the case of microprogrammed

parsers or similar string manipulative algorithms, the

time ,saved by elimination of instruction fetches is

greater than the effect of reducing the algorithm to

the microprogram level. If the entirety of this type

of algorithm is microprogrammed, then the process of

byte by byte treatment of the string also results in

much decreased operand access time. Note further that

the design of a special system of cache memories to

attempt to provide a similar effect would be extremely

difficult, except for a limited number of special cases.

Extension of the reduction algorithm by consideration

of the effects of referencing consequetive locations or

the storage of frequently used pointers and operands

could greatly improve its accuracy.

An example of the above effect is provided by the

SUBSTR function which attempts to locate the first

occurence of a string within another string, all such

occurences, or the number of such occurences. Micro-

programmed, this algorithm can be expressed consicely

and efficiently by storing the substring in local store

and consequetively referencing the bytes of the string.

At the machine level, the number of references for bytes

is the same but each is alternated with the fetching and

execution of several machine instructions. Therefore,

the machine language program proceeds at main memory
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speeds, while the microprogrammed algorith proceeds at

control store speeds. Additionally, the microprogram

algorithmic expression is more efficient because the data

structure is designed to enable rapid manipulation of

byte operands. The frequency of use of functional

variants of SUBSTR in parsers, editors, compilers and

similar algorithms also indicates that the desired micro-

program will be frequently control store resident; in

which case no linking and loading overhead will be re-

quired and substantial performance gain will be achieved.

The reduction algorithm may also be modified to

consider the relation between the microprocessor cycle

time, the effective main memory access time and the

resultant overlap between instruction fetch and exec-

ution. For cases in which main memory access time is

significantly greater than the microprocessor cycle

time the microprogram can be expected to obtain nearly

one-hundred percent overlap between main memory references

and instruction execution. In these cases, the micro-

programing of the algorithm will provide performance

increases based on the memory access time and total

number of nonsequential references, rather than on the

savings in microproccessor cycles.

Another Reason for Dynamic Linking and Loading

The preceeding analysis indicates that microprogramming

allows substantial performance increases but does not fully

indicate the savings achieved through the dynamic linking

5-13
80.



and loading. Conventional systems require either that

the machine program control the loading of a micro-

program or provide no facility for dynamically altering

the control store. The lack of any such facility limits

the number of microprogrammed algorithms to either the

size allowed by the control stcre addressing mechanism

or the size of control store the user can financially

afford. A dynamic facility of equal size control store

can perform at least as well; end additionally allows

the definition olf a large number of microprograms which

could not be incorporated in the fixed control store,

thus providing additional performance increases in these

cases. In comparison to systems which allow limited

machine language control of the loading process the dynamic

facility is superior for at least two reasons. First,

the automatic mechanism frees the user from this require-

ment and allows both program and microprogram revision

independently. Second, conventional loading schemes are

based on absolute addressing and provide little if any

means of linking to already existing programs. This

results in severe problems when the user desires two

microprograms which happen to have been originally loc-

ated at the same location. Also, the inability to share

a variety of functions requires that many of these functions

be duplicated for use by the special microcode associated

with the interpretation of a particular machine level

instruction. An easily concieved application of the
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sharing mechanism would be the use of several elementary

arithmetic functions by a more complicated algorithm.

The number of such functions which could require duplication

would probably result in conventional implementations of

a few extra machine instructions, rather than micropro-

gramming the entire algorithm. In general, the dynamic

mechanism allows not only more convient modification of

the control store but also provides a more efficient

means for doing so. In this respect, it is generally

more useful than currently available systems.

Conclusion to Chapter 5.

The advantages provided by a dynamic linking and

loading facility are considerable. Not only are the

performance increases normally associated with micro-

programming possible, but also the number and flexibility

with which these algorithms may be micraprogrammed is

enhanced. An attempt has been made to indicate that

these advantages generally outweigh the overhead involved

in implementation of the dynamic linking and loading

mechanism. This is especially true of microprograms

which are either inherently repetitive (iterative or

recursive) or are executed with great frequency. In the

latter case, the microprograms are more likely to remain

contindously control store resident, while lesser used

programs will be removed (see Chapter 4) thereby resulting

in even greater performance gains. As most commonly

used algorithms satisfy one of these alternatives, the
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implementation of a dynamic linking and loading facility

would seem fully justified.
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Chapter 6. Implications of Dynamic Linking
and Loading of Micro rams

The success of dynamic modification of the comp-

utational base of the processor in improving system

performance is partially upset by the specificity of its

application. An essential attack has been made against

the trend towards higher-level languages and the general

compatibility of software and systems. Microprogramming

creates a tradeoff between this general compatibility and

possible improvements in the performance of the system.

Compatibility of Systems

Provision of a specialized instruction set at each

computer facility creates severe problems for the system

designer. Further allowing this instruction set to vary

in a dynamic fashion may cause unsurmountable problems.

Either system software must have an established base which

is supported by all systems; in which case the system does

not fully utilize the available performance increases. Or,

the perogative for use of the dynamic linking and loading

facility must be largely restricted to -the system. The

user then benefits from the system provided special functions

while he is restricted from providing his own.

Another consideration is that the dynamic linking

and loading facility in fact promotes compatibility by

allowing the use of a large variety of emulators, or allowing

sharing of special instruction sets between computer

installations. Compatibility is enhanced because a large

variety of different systems can now be simultaneously

6-1
84.



provided, wereas previously the control store size required

would have been prohibitive.

Compilers, Interpreters, and Higher-Level Languages

Similar tradeoffs are app-arent in the use of the

dynamic linking and loading facility for the support of

higher level languages or even assemblers. A significant

question is posed by the availability of two levels of

programming, and the possibility that one of these levels

provides a varying instruction set. Compilers would need

some knowledge of the instruction set capabilities in

order to function, and modification of this instruction

set would require the redesign of traditionally structured

compilers. Another problem is posed by the need to

establish the proper level of programming an interpreter;

which code should pass through two levels of interpretation

and which code should be directly executed. Development

of an algorithm, similar in intent to the reduction

algorithm, which could automatically establish the proper

level of programming is essential if problems of this type

are to be solved.

Conclusion to Chapter 6

In general, the implementation of a dynamic linking

and loading mechanism will give rise to many issues which

are nGt directly related to the performance of the system.

The issues of who, what and how much should be carefully

considered before extending the microprogram facility.
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Chapter 7. Conclusion

It has been shown that the implementation of a

dynamic linking and loading fatility is both feasible

and useful means of increasing processor performance.

The general usefulness of microprogramming has been

established by many authors. Extension of the control

store, in a virtual sense, has also been shown useful

for the variety of cases in which the possible perfor-

mance increase exceeds the overhead involved in use of

the facility. Specifically, the facility allows the

microprogramming of long iterative or recursive functions

which otherwise could not have been incorporated in the

control store. Provision of this mechanism also creates

several new difficulties in the areas of compatibility

and support of higher level languages. These difficulties

would imply the need for intelligent systems which could

adapt to a varying environment. Another area of concern

is the means of providing interpreters or compilers with

both the knowledge of the existence of new instructions

and the usefulness of these instructions in compilation

or interpretation. These problems are largely analogous

to those involved in providing the same software for two

different machines.

The eventual usefulness of dynamic linking and load-

ing will depend upon further study of the behavioral aspects

of microprograms in a dynamic environment and the validity

of the various algorithms presented. A rigorous means of
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establishing the expected performance increases resultant

from microprogramming a given algorithm must also be

determined. Further studies in these areas could allow

automRtic computation of desir'd algorithms.

Another potentially critical area is the decreasing

cost of extremely high speed memory and the availability

of inexpensive processors on a single integrated circuit.

Future developments in these areas could make dynamic

microprogramming obsolete in the sense that no micro-

programming would be required; or that custom design of

a processor would be cheaper than microprogram development.

In any event, dynamic microprogramming provides a degree

of efficient flexibility in processor specification.
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Appendix A. Microprogramming the Hypothetical Machine

Symbolic Notation

The binary representation of the microinstruction

format (Figure 3, pg. 14) is inconvient for expression

of microprograms. A more readable approach is the choice

of symbolic equivalents for tie respective fields of

each microinstruction. While the scheme to be used was

partially discussed in Chapter 2, a complete summary of

possible formats and abreviations for registers follows.

The basic format of expression is:

ALU, Shift, A-field, B-field, F-field, Successor;.

The possible symbolic representations for the ALU field

are: INC(C), add C to A-operand on first execution of
instruction, if instruction is repeated
add resultant Carry out instead. Initial
C designation may be 0, 1, C, C.

DEC(C), as in INC, only subtract Carry.

ADD(C), add C to sum of A and B operands on first
execution of instruction, if repeated add
resultant Carry out instead._ Initial C
designation may be 0, 1, C, C.

SUB(C), as in ADD, only function is A-operand
minus B-operand minus Carry

A, IA B, B, 09 1, A+B, A+B, A+B, A+B, AGB, Aa,
AB, AB, AB, AB, performs specified boolean

function on the A and B operands. The
notation X means not X.

Additionally prefacing any of the above with an E indicates

an extended precision operation and consequently the

interpretation of the successor function is modified. If

no ALU function is specified then the logical function A

is assumed.
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The possible symbolic representations for the shift

field are of the form X(SZ), The "X" indicates the

direction of shift: LS indicates left-shift, RS indicates

right shift. The S field indicates the bit designation

to be shifted into the bit positions vacated by the shift.

If the instruction is immediately repeated, then the Shift

out bit is used for successive shifts if and only if the

Z-field indicates a shift of one position. Otherwise,

the intial shift designation is reapplied. Initial values

for S are 0, 1, S, S. The Z-field indicates the number of

bit positions to shift; a number between 0 and 7. Note

that shifting 0 positions is a "no-shift" and may be

indicated by either replacing the entire shift field

representation by the code NS, or by omitting the field

entirely.

The symbolic notations for each of the A, B and F

operand fields are equivalent. Either the form X(Y,Z)

or X(Z) are permitted. The X field specifies the contents

of the eight bit field, the Y field (either M or omitted)

indicates masking of the eight bit field, and the Z field

specifies modification of the field in the event the

instruction is immediately repeated. Possible Z field

designations are: /, no modification (These indicate
+, increment the field interpretation
-, decrement the field as a bus adress)

C, do not modify the field and interpret
it as an eight bit constant.

These designations are primarily established to allow

90.



either extended precision or byte string manipulative

algorithms to be expressed in a single microinstruction.

The possible interpretations of the successor field

have been described in detail in Chapters 2 and 3; there-

fore, only a brief summary will be presented. The form

"on condition c1, do x, else on condition c2, do y, else

Step", has several abbreviations. Any unconditional

specification is interpreted simply as that specification.

For example, if c2 were unconditional, then rather than

that "on any condition do y" simply state "do y". The

abreviations used for conditions are usually readily

interpreted, but for special cases the meaning will be

clarified. In particular however, the notation y indicates

"not on condition y". The possible variations for the

"do" fields are summarized in Figure 3, page 14.

Specification of the E bit in the ALU field designation

indicates that the successor field should be expressed as

"on condition c1, do x, else n". The interpretation of

the condition field is as described above; the "n" field

is either simply a number indicating the number of times

to repeat the instruction (maximum number) before Stepping.

The "n" field may also be expressed as Mn where the prefix

indicates masking of the eight bit field with the X-register.

The interpretation of the successor function designat.Lon

"on condition ci, do x, else n" without the use of the

E-bit is similar, except that the n field is now a two's
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complement integer which indicates the desired offset

from the present value of the program location counter.

The offset form is easily recognized by the symbolic

convention that +n or -n are offsets, wereas n is a

count (E-bit set) or an absoluite address (in the use

of the linking mechanism, an a3Lbsolute offset from the

indicated segment's starting address).

The absolute designation of the successor function,

"go to n", is specified simply as the address n. When

using the linkage mechanism, use of a number in this

fashion implies the absolute offset form wereas use of

a symbolic label indicates the absolute segment form

(the label is the segment's designation).

To clarify the preceeding discussion, consider the

following examples.

Example 1. EINC(1), R5(+), D(/), R5(+), 4

This instruction indicates that the contents of the

4 consequetive bytes starting at location R5 are to be

incremented as a single operand. As no conditional

branch is specified, the default successor will be to

Step after the fourth repetition of the instruction. The

mask registers are not used. Explanations for the R5

and D specifications are given in Table 1. Here, the

D indicates a dummy or null field (not used) wereas

the R5 indicates a general location in the local store

scratchpad. No control lines are encoded in any of the

bus address fields.
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Example 2. EINC(1), R5(+), D(/), R5(+), On C=O Step, 4

This instruction will be equivalent to that of the

previous example in that the same operation will be

performed on the same operand. This form however is much

more efficient. If the carry resultant from execution of

the instruction is zero, then the operand has been effect-

ively incremented and the instruction need not be repeated.

This feature is provided by use of the conditional

specification "On C=O Step". Note that if C never becomes

zero, then the instruction will be repeated at most fcur

times as indicated by the count designation.

Example 3. AB, MDBR(/,+RW), X'45'(C), D(/), On Zero Step, Repeat

This example indicates several features of the

notation. The overall intent of the instruction is to

examine the byte string pointed to by the memory address

register until the first occurence of the byte X'45' is

located (X indicates hexidecimal representation of the

constant). Examination of the instruction indicates that

the "equals" condition will be determined by the logic

function AB on the memory data buffer register and the

constant field specified in the instruction. The code

+RW indicates that the control specification for memory

reference to the next byte location is encoded in the

MDBR address (see Table 1). The D specification in the

F-field indicates that no result is stored; therefore,

the only effects of this instruction will be to modify

the memory address register and the condition codes.
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Example 4. EA, PC(+,+2), D(/), MMAR(+, RW), 4
A, MDBR(/,+RW), D(/), XM(/)
AB, MDBR(/,), X'OF'(C), BM(/)
AB, RS(0,4), MDBR(/,), X'FO'(C), AM(/)
A, AM(/), MMAR(/,+RW), FM(/), +M

As a final example, the above short program serves

as introduction to the programming of a machine language

processor. Briefly assume that the machine language

consists solely of IBM 360 RR-type instructions. The

first line of code moves the program counter into the

memory address register, starts the instruction fetch,

and encodes the program counter control field to indicate

that the program counter should be incremented by two.

The next instruction moves the first byte fetched into

the X-register (i.e. the instruction opcode is now in

the X-register). The third instruction takes the next

byte fetched, ANDs it with a constant to isolate the

R2 field of the instruction, and stores the result in

the B-register. The next instruction uses the same byte

from the data buffer register, isolates the R1 field by

ANDing with a constant and shifting the result right

four positions (zeroing the four leftmost bits of the

result), and stores the result in the A-register. The

final instruction causes the next byte to be fetched from

main memory, moves the A-register contents into the

F-register and does an offset branch masked by the

X-register. This type of branch theregore allows rapid

decoding of the opcode field. Note that for several

instructions the successor function is not specified



and the default Step successor is chosen. Note also,

the use of the B-field in the last instruction despite

the fact that no B-operand is used by the operation.

In th's case, the field is used solely to specify a

particular control signal. While this same operation

could have been encoded in the prior instruction with

greater efficiency, the intent of this example is more

illustrative than practically suggestive.

Microprogramming a Machine Instruction Interpreter

Perhaps the best way to gain insight into the

relationship between microprograms and machine-level

programs is to construct a basic microprogram interpreter

for the machine language. To avoid the difficulties

involved in specifying a new machine language, a subset

of the IBM 360 machine language was chosen. The

interpretation of RR, RX, RS and SI instructions is

presented in a simplified fashion, but illustrates the

basic principles involved.

To provide program readability, the symbolic format

for microinstructions is used. Additionally, the machine

language instructions will be expressed in terms of their

assembly language equivalents and the segments associated

with a specific machine instruction will be labeled with

the symbolic opcode for that instruction. Other

conventions will be discussed as they arise. For a

description of the IBM 360 machine code, the reader is

referred to the IBM Systems Reference Library publication,

IBM System/360 Principles of Operation.
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