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1. Introduction

In the past the control section of a computer is

implemented by an interconnection of logic elements.

This interconnection of logic elements is hardwired, and

little or no change can be incorporated easily into the

design later on. Recently a new trend in control logic

design, known as microprogramming, gradually replaces the

conventional method of designing the control section.

More and more computers nowadays are microprogram-

controlled.

With these thoughts in mind this thesis is written

to analyze and classify or represent micro-programmed

computers. The analysis focuses on some important trade-

off issues in the design of a microprogrammed control.

The representation attempts to represent any general

microprogrammed computer. The organization of the thesis

is outlined as follow:

First the concept of microprogramming is introduced

in chapter 2. Then a representation scheme for micro-

programmed computer is proposed in chapter 3. In Chapter

4 three trade-off issues in the design of microprogrammed

control are analyzed. Finally in chapter 5, summaries of

some major micro-programmed computers are presented in

terms of the representation scheme developed previously.
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2. MICROPROGRAMMING

2.1 Why Microprogramming

In recent years microprogramming has replaced the

conventional logic design for the control section of a

digital computer. For one reason, microprogrammed imple-

mentation of a computer provides desirable flexibility in

modifying or changing machine operations. Not only does

it facilitate the design of the control section, but it

also makes the maintenance and service of the machine a

lot easier than the non-microprogrammed machine. All

these have become a reality as a result of current tech-

nology even though microprogramming was known in the

early fifties. But what is microprogramming?

2.2 What is Microprogramming?

Microprogramming is a systematic method to implement

the control section of a modern digital computer system.

Functionally a computer system may be divided into four

units: the control unit, the arithmetic and logic unit,

the main memory unit, and the input and output unit. This

is shown in Figure 2.2.1.

Traditionally the control unit is realized by the

interconnection of logic gates, flipflops, counters, rings,

clocks, etc., all of which are hardwired together to
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generate a sequence of control signals. Should the opera.

tion call for changes, a different sequence of control

signals has to be generated, involving a considerable

reconfiguration of the hardwares. This is inflexible

and ad hoc. In order to provide a more flexible and more

systematic design method than the traditional one, Wilkes

(2) advocated the idea of microprogramming. Here we con-

sider all the sub-machine level operations that are per-

formed to carry out (interpret) the machine operations.

For example a register-to-register addition instructioni

a machine instruction, may be interpreted by the following

sequence of sub-machine level operations:

#1. ADDRESS OF REG 1 TO LOCAL MEMORY ADDRESS REGISTER
(LMAR)

#2. TRANSFER CONTENT OF REG 1 TO ADDER INPUT 1

#3. ADDRESS OF REG 2 TO LMAR

#. TRANSFER CONTENT OF REG 2 TO ADDER INPUT 2

#5. SET THE ADDER TO ADD

#6. TRANSFER THE SUM FROM THE ADDER OUTPUT TO THE
LOCAL MEMORY REGISTER (LMR)

#7. ADDRESS OF REG 1 TO LMAR

#8. WRITE THE CONTENT OF THE LMR INTO THE LOCAL
MEMORY

Here all the registers are in a fast local memory, see

Figure 2.2.2, which shows a section of a microprocessor

(i.e. a processor that is microprogrammed).
1For example a 360 AR instruction
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#3

42?

OUTPUT

ADDER MODE : ADD, SUBTRACT, ETC.

Figure 2.2.2 A Section of Microprocessor
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Each of the above basic sub-machine level operation

is known as a micro-operation. Some other examples of

micro-operation are other arithmetic or logical operations

shifting, counting, decrement, increment, register to

register, register to bus transferand main memory request.

Now the designer will gather all the necessary micro-ope-

rations for the machine he is designing. Analogous to a

programmer's preparation of a program, he will formulate

a microprogram to execute all the required machine opera-

tions. The microprogram is a sequence of micro-

instructions each of which may have one or more micro-

operations. Most of the micro-instructions are executed

in one small time period. This is called the processor

cycle time (pc). Some, like a main memory request, may

require two pc's, or three pc's, or more, as present day

main memory speed is still behind the central processor

processing speed. This accounts for the main memory cycle

time (me) of usually two pc's or more. In order to avoid

any waiting for the required data, a fast but costly main

memory may be used. An alternative is to employ a rela-

tively smaller but faster buffer memory in addition to

the slow main memory storage.

Generally the microprogram is stored in some form of

read-only memory (ROM) as a sequence of ROM words, see
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Figure 2.2.3. A ROM word format is in Figure 2.2.4 The

ROMAF contains the address of the ROM word to be read out

in ROMDR. The control levels from ROMDR go to the rest

of the CPU to initiate various micro-operations. While

some portion of ROMDR goes to the branch and decision to

set up the next ROM word address, with the help from the

CPU conditions. The ROM and its associated access me-

chanisms is also called the control store unit. Its

cycle time is the control store cycle time (cc). Notice

that there is a high level of parallelism existing in the

microprocessor. If necessary, the adder, the shifter,

the counter, the fast local memory and/or main memory

requests can all be activated at the same time. An illus-

tration is the example 4.1 given in section 4.1.

Also the micro-operations are of very basic primitive

operations. Therefore microprogramming is on a much lower

level than even machine instruction programming. As a

result we can perform a variety of tasks with unusual

speed and efficiency: semaphore manipulation, hardware

special algorithm (like a square root algorithm),emulation,

microdiagnastics, etc. These are some advantages of micro-

programming, others are listed next.

2.3 Advantages of Microprogramming

The advantages of microprogramming are discussed with
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A General Microprocessor ConfigurationFigure 2.2.- 3
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respect to four view points. First, from a system

architectural view point, the system architecture can be

changed completely, for example by emulation, or extended,

where variable instruction set is allowed. If the machine

instructions were microprogrammed, a large set of instruc-

tions can be implemented for a small system at a low cost.

Second, microprogrammed control makes logic designs sys-

tematic, uniform, and with ease. It is more tractable

to check out the system than the conventional design,

which is hardwired control.

Third, microprogrammed controls takes up very small

space, and it is easy for maintenance. Microdiagnostics

is superior to software diagnostics because of faster

speed and closer resolution. Fourth, microprogramming

is also economical viable after certain point in increa-

sing logic complexity. An economic model for microprogram-

med logic has set up by Bersner and Mills of IBM (15), and

the conclusion is as follow,

In summary, a crude economic model has been used
to compare the cost of conventional circuits with
the cost of stored logic to perform the same data
processing functions. The results indicate that
there is a point at which, with increasing complex-
ity, the cost of stored logic becomes less than the
cost of conventional circuits. This cross-over
point may occur at a relatively low degree of com-
plexity. This model can be explored further but
the validity of many of the assumptions and appro-
ximations does not warrant anyfurther analysis of it.
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An intuitive illustration of this model is shown in

Figure 2.3.1.

Disadvantages of Microprogramming

From the architectural and economical views, micro-

grammed control is too expensive to justify for a small

system in which basic repetitive tasks are performed.

As far as performance is concerned, microprogrammed

control may be slow if appropriate overlap between the

control store cycle and the processor cycle is not

established. This overlap issue will be discussed

quantitatively in section 4.2. Finally there is a

hardware cost increase due to ROM and access mechanisms.

2.4. Other meaning of Microprogramming

Microprogramming is also used to denote programming

using machine instructions whose bits are used directly

to control logic gates in the computer. In a sense the

programmer and the logic designer are combined into one.

This term has been used in the Lincoln Laboratory, and

in the work done by Van der Poel (9). Also refer to (10)

for comments on the two types of microprogramming. This

secondary meaning of microprogramming is not oftenly

used. In general the primary meaning of microprogramming

is that of Wilkes, who introduced microprogramming in

the 1950's.
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2.5 Present Status of Microprogramming

In deed technology played a big role in recognizing

the importance of microprogramming, which was first

noted back in the early 1950's (1), largely credited to

Wilkes (2). For a period of time it remained an idea

and received little attention in both the academic and

industrial worlds. Recently in the 60's, a new interest

has shown (3). This can be seen in the increased number

of articles and technical reports on microprogramming

and on issues closely related to it (3). Text books

begin to mention microprogramming (4,6); some universities

even offer courses on this subject area.

In 1964, IBM announced its System/360, a family of

architecturally compatible computers, that is a program-

mer can write one program for all these computers, because

they are functionally the same to him, even though the

internal hardware configuration of each computer may be

quite different (13). All of the then announced computers

except the largest (model 70) are microprogrammed. This

is followed by the appearance of a number of other systems

that employs this same design philosophy. For example,

the RCA Spectra/70, the Honeywell H 4200/H8200, and

Burroughs 2500 and 3600, Some small microprogrammed com-

puters are Standard Computer Corporation (SCC) IC-model 9,
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Micro 800, and Meta 4 Series 16 (5). Some of the current

machines with writable control stores are Interdata

Model 3, SCC/C-model 9, and IC-9000, IBM 2025, and IBM

2085.
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3. A REPRESENTATION SCHEME FOR MICROPROCESSOR

The present trend in computer logic design is that

more and more computers are microprogrammed. Facing

with any two microprocessors, how does one compare them?

This question is not trival unless one is content with

digesting the computer manuals for both microprocessors.

Before going into the microprocessor system, it is pro-

fitable to examine the representation schemes used in

other systems and to see how comparisons are made.

3.1 Review of representation schemes

In this section several system representation schemes

are reviewed. First the system of electrical networks is

examined. In elementary circuit analysis basic building

blocks are resistors, capacitors, inductors, sources, and

some nonlinear devices. A network is then synthesized by

the interconnection of appropriate basic building blocks.

The circuit may be described by differential equations

containing the voltage and current as variables. Given

any two circuits one may examine their topologies and

their differential equation descriptions. Therefore com-

parison may be made between two circuits. In the same

manner it is possible to describe a microprocessor in

terms of circuits. The description, however, may be too
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detailed for understanding and hence not useful to des-

cribe a microprocessor.

A second possible representation is that of logic

design. Its components are AND, OR, NOT gates. The

system is governed by the properties of the components

and by the laws of boolean algebra. To compare two

logic designs, one merely compares the circuits consisting

of the logic components, or one may compare the boolean

equations. A microprocessor can be represented by this

network of logic components. But even at this level the

description may be still too minute to allow easy compar-

ison of two microprocessors.

A higher level description than logic design is that

of register transfer language (RTL). Currently RTL is

used as a primitive microprogramming language (12). In

this respect RTL is closer to the description of a micro-

processor than the previous two schemes of representation.

Another related scheme of representation is a com-

putational model called the program graphs (16). It can

represent precise description of parallel computations

of arbitrary complexity on nonstructured data. The prog-

ram graph is a directed graph consisted of nodes and

links. While the modes represent computation steps, the

links represent storage and transmission of data and/or

control information. The focus here is on computation,
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but the hardware structures are relegated to secondary

position of importance. This is rather on contrary to

microprogramming, in which knowledge of the hardware is

essential. Improvement in this respect is included in

another computational model called a computation schema

(11).

A basic computation schema consists of two parts:

the data flow graph, and the precedence graph. The

former represents the data paths in terms of directed

links joining deciders, operators, and cells. Being a

directed graph, the latter prescribes the order of com-

putation in the data flow graph in term of operator,

instance nodes, conditional nodes, and iteration nodes.

The schemata described emphasize the notions of concur-

rency and parallelism. It is powerful in that it can

represent processors of arbitrary complexity. To repre-

sent a computation, one gives its corresponding data flow

graph and precedence graph. In order to represent compu-

tations within a microprocessor, the precedence graph

will be very elaborate and may- challenge the ease of

understanding.

On the other hand there exist macroscopic descrip-

tions of computer systems. The processor-memory switch

(PMS) and the instruction-set processor (ISP) are two new

language developed by Bell and Newell to describe
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computer systems (6). The PMS represents major hardware

units in a processor. Its basic components are the pro-

cessor, memory, switch, and control unit. At the ISP level

a processor is described completely by giving the instruc-

tion set and the interpreter of the processor. The inter-

preter is in terms of its operations, data-types, and mem-

ories. As the-name as well as the language indicates,

both PMS and ISP are too macroscopic to describe the mi-

croprocessor. For example, the processor, and control

units are basic components in the PMS description. How-

ever, the interest here is to know more about the processor

and the control units themselves, not as unit components,

but as systems themselves.

3.2 A representation scheme for microprocessor

The previous representation schemes are adequate in

their own domain of description. As far as representing

microprocessor is concerned they are inadequate. Either

the representation scheme is too detailed and thus becomes

too complicated; or too restricted, as in the program

graphs and computation schemata; or too macroscopic, as

in the PMS and ISP. In the case of microprocessor the

focus is on its general characteristics which involves

issues like the following: flexibility of data path, how

many buses it has, how many working register it has, what
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are the data transfer restrictions, what are the timing

relationships, etc.

With the needs mentioned above, a representation

scheme is proposed here to represent a microprocessor.

The scheme has three components: the structure represen-

tation, the transfer constraint, and the cycle time.

First the structure representation component is presented.

It conveys the general hardware structure of the micro-

processor. The general hardware structure refers to the

conventional central processor hardwares, which includes

the arithmetic and logic unit, with the working registers,

the high speed local memory, and the control unit - ROM

and associated hardware mechanisms. Also, buffer (or

cache) memory unit, main memory unit, and input output un-

it are represented. Besides representing the general

hardware structure, the structure representation also

indicates the general data flows within the microprocessor.

This realization is to be done with the minimum amount of

complexity shown in the representation.

The general hardware structure of a microprocessor

is abstractly represented by a set of passive and active

elements. Active elements represent hardware units that

performs transformations on data, and in general are

denoted by , or Q . While the former represents
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any active element, the latter represents an active ele-

ment whose data transformation is f. In other word,

the output of this element is f(A) if the input is A,

where A is usually a one-dimension or two-dimension

vector input. Examples of active elements are shown in

Figure 3.2.1. Passive elements, on the other hand,

represent hardwares which perform no transformation on

data but merely act as storage places for data. They

are denoted by capital letters, or capital letters with

subscripts which further denote the names- or other pro-

perties of the hardware represented by this passive

element. An example of passive elements is R, which

represents a register. Another example is RA, which re-

presents register A. Other examples are given in Figure

3.2.2. Notice that the elements may represent a whole

hardware unit or a portion of it. This provides flexi-

bility in representing hardware components: from that

of a simple increment operator to that of a whole arith-

metic and logic unit, for example. Also notice in Figure

3.2.1 that a whole input output unit and interface together

with some data transformation capability may be consider

as an active element and is denoted by

Other information concerning the elements may be given

separately to supplement this part of the structure

representation. This is shown in the example given in
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An active element

Arithmetic ind logic operator

Simple binary adder

Shifter

Increment and decrement

Register with shifting capability

General input output unit and interface, with some

data transformation capability

True or complement

Sirple arithnetic and logic operator

Single error correct and multiple error detect

Printer keybard

Figure 3.?.1 Active elements
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RA Register A
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M :

ML:RCON: Console register

RcB : Channel buffer register M U:

MB:

M BCON

ML

MB :

Memory

Main or primary memory
storage

Fast local memory

Rom or control store

Buffer or cache memory

Console buffer

Input output local storage

Input output buffer

L : Latch

S : Staticizer

Figure 3.2.2 Passive elements
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section 3.3.

To indicate the general data flows within the

microprocessor, a set of links is used to connect

graphically all the passive and active elements which

represent the hardware structure of the microprocessor.

This set includes the following three links:

2.

3.

The first link, a dotted link, is used to represent ad-

dressing an element by another element. For example a

memory M addressed by an address register R, see Figure

3.2.3a. The second link is any data transmission path.

The third link is common transmission path called a bus.

Figure 3.2.3b and c illustrate the use of the second and

the third links. Notice that the abstract links do

not necessarily contain a width dimension, which may be

given as in Figure 3.2.3c. This is consistent with the

hardware representation elements which denote no width

dimension. The interconnection of passive and active

elements by the connecting links constitutes the structure

representation, the first component of the microprocessor

representation scheme proposed here.
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R. ........ M

RA RB

4BYTE BUS

Figure 3.2.3 Connecting links
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The transfer constraint

The second component of the microprocessor represen-

ration scheme is called the transfer constraint. This

component can reveal all the detailed data flows and

hardware structures within the microprocessor. It exhi-

bits the nature of the micro-operations defined in conjunc-

tion with this microprocessor. If the micro-operations

are simple and basic, microprogramming is easy and may

have flexible implementation of machine instructions.

If they are highly specialized, microprogramming may be

difficult. Also what matters most in a microprocessor is

the micro-operations that are allowed. All these informa-

tion is contained in the ROM word format. Therefore the

transfer constraint is denoted by the format of a ROM

word together with explanation of all the fields of the

ROM word. Consequently the transfer constraint conveys

more information than that mentioned before.

In addition, the transfer constraint tells the

sequencing of ROM words. It shows the emit field, that

is the constant field, and its size. As far as the micro-

operations are concerned, the transfer constraint lists

the mutually exclusive micro-operations defined by the

hardwares and by the designers of the microprocessor.

An example of the transfer constraint is shown in section

3.3. The transfer constraint, together with the structure,
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is still not complete. It requires the third component

as well to complete the representation scheme.

The cycle time

Even though the transfer constraint conveys a vast

amount of information, it has no notion of any timing

relationship whatsoever. For example, a certain combin-

ation of bits in a field of the ROM word is for making

main memory read operation. This does not tell how long

it will take to get the data from the main memory.

It is true in a microprocessor that most hardware

operations are of time durations equal or less than the

processor cycle time. In these cases, knowledge of the

timings may not be necessary. In a main memory request,

it is necessary to know how long it takes to get the data

so that other operations may be performed on it. Usually

the main memory is slower than the CPU processing speed.

Similarly is the case for the local memory store. Its

cycle time is critical for application of some micro-

operations. The main memory and local memory cycle times

are not the determining factors for the system performance.

Partly the performance depends on the processor cycle time.

It is obvious that if two processors are identical except

for the processor cycle time then their relative perform-

ance is determined by their relative processor cycle time.
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Finally the control store cycle time also determine the

performance.

Therefore we must know the cycle times for the

processor, the control store, the main memory, and the

local memory. This is the third component of the micro-

processor representation scheme, the cycle time CT. CT

is a set of cycle times including the above four times

and any related cycle times. An example of the related

cycle time is the cycle time of a buffer or cache

memory.

CT = {pc,ccmclmc, buffer memory cycle, others)

Finally a representation scheme for microprocessor

has been proposed here. How adequate is this scheme with

its three components, the structure representation, the

transfer constraint, and the cycle time? This represen-

tation is adequate in the following manners:

First, the interconnection of elements by links provides

the basic hardware structure of the microprocessor. Also

it indicates the general data flows within the micropro-

cessor. Second, any detailed interconnection can be

found in the transfer constraint component, which contains

much information which any block diagrams lack. Third and

last, the major timing relationships in the processor are

given in terms of four or more cycle times. Other timings,

on that of a circuit level, are not crucial to understand
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the system structures and the general data flows.

To illustrate the representation scheme, an example

is given next.

3.3. An example

This example is from a hypothetical microprocessor

represented in Figure 2.2.3. It is represented here by

the scheme just mentioned. The three components are as

follow:

Structure representation, see Figure 3.3.1.

Transfer constraint, see Figure 3.3.2.

Cycle time, see Figure 3.3.3.

Notice in the example given in Figure 2.3.1., EM is

introduced as main memory data register. Similarly, RF

and RCTR are introduced. It should be realized that new

elements in the structure representation may be introduced

as shown in the example. Another piece of information is

given in the structure representation to supplement the

elements. Specifically the memory storages, MLMU, Np,

are given together with their storage size. ML:32x32

points to a 32 - word local memory where each word has 32

bits. In the cycle time, 180 ns is the cycle time of the

processor; 200 ns, that of the control store; 1ps,that of

the main memory; and 150 ns, that of the local memory

storage.



Structure representation:

RC

MU
RCTR BA

RB

A&
CONTROL
LINES

2 BYTE

: Main memory data register

: Local memory data register

: 32 x 32

: 2k x 32

: 256k x 8

R : Counter register

Figure 3.3.1

ML

BUS

RMP

ML

MU

RCT



Transfer constraint:

4 MUTUALLY
EXCLUSIVE
FIELD

2 TEST SECTIO

EMIT FIELD,
I.E. CONSTANT

SEQUENC ING
OF NEXT ROM W

A & L TO BUS,
F TO BUS,...

ROM OUTPUT TO
REGISTER R,

BUS TO
BUS TO
BUS TO

R p TO I

RA
RA & RB
...... *

ORD

Figure 3.3.2

Cycle time :

CT = i180 n sec ; 200 n sec ; I p sec ; 150 n sec 1

Figure 3.3.3

H

0

NS
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4. SOME TRADE-OFF ISSUES

In the example given in section 2.2, which is portion

of a microprogram, we have eight micro-operations. It is

possible then to have eight micro-instructions, each one

containing a single micro-operation, taking 8 pc's of

time to execute the register-to-register add instruction.

An alternative approach, using parallelism, can accomplish

the same result in five micro-instructions, taking 5 pc's.

In this case the first micro-instruction has one micro-

operation (#1); the second, two (#2,#3); the third, two

(14,#5); the fourth, two (#6,#7); the fifth, one (#8).

If we implement each micro-instruction by a word, we may

have eight words, or five words for our register-to-

register add instruction. Clearly the widths of the

words (bit dimension, or horizontal dimension) are differ-

ent in both cases, since the latter approach requires the

ability to specify two micro-operations in one micro-

instruction. Hence the bit dimension is also a consider-

ation in the design other than the word dimension (or

vertical dimension) which is the number of words used.

There are more words in the first implementation than in

the second one, but the second one uses more bits per

word than the first, see figure 4.0.1. This issue has

been mentioned qualitatively in (4). In the next section,
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add instruction
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a quantitative analysis of this trade-off is given. Two

other trade-off issues are covered in sections 4.2 and

4.3.

4.1 Horizontal and vertical dimensions of ROM words

As the above example has shown,one of the design

issues is to determine the width of the ROM word and

the number of ROM words. If the horizontal dimension

is increased, the performance is improved because fewer

words are needed to implement a particular instruction.

However, increase in width invokes high cost as a result

of memory increase,ROM data register bits increase, access

mechanisms increase. On the other hand a decrease in

width implies an increase in the number of ROM words used.

Cost is reduced because more ROM words only calls for

cost in memory; no access mechanisms are involved. Now

the performance is degraded as more words are needed to

implement the instruction. The trade-off problem here

is to choose the optimum horizontal and vertical dimensions

for lowest cost and at the same time meets the performance

requirement.

To formulate this trade-off problem in precise terms,

the following assumptions and definitions are taken:

A set of micro-operations, (... mi...) is established

as the most primitive hardware operations in the micro-

processor. Each machine instruction i is to be implemented
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by choosing micro-operations from the set. A particular

machine instruction may consist of following sequence:

ml, m2, m3;
*

m6, m9, m1 0 , m13

m7, m 8, m1, mi15 , m16, m4, m5 , mig, m20;

m 3 0, m3l, m32, m 3 7 , m50-

The above sequence may be executed in at least four con-

secutive instances of times (steps). Each step performs

different number of micro-operations; three in the first

step, four in second step, nine in the third, and five

in the fourth. This sequence of steps is abbreviated as

(3, 4*, 9, 5)

or in general,
*

tnij, ni2, ng,., nig,...}

for a particular machine instruction i which can perform

as many as nil micro-operations simultaneously in the first

step, as many as ni2 in the second step, and so on. The

execution order of the steps as given must be kept, as

results in a previous step may be needed by micro-operations

in the current step. nij indicates branching is to be per-

formed.

The total cost of the ROM and its associated access

mechanisms is no more than C, the cost constraint.

There is a speed requirement, Si, for each machine

instruction. Machine instructions include basic machine
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instructions like binary, decimal, floating point, logical

instructions, and system instructions like V operation,

or P operation. Also there is no sharing of ROM words

among machine instructions.

Let T be the processor cycle time. As the width of

the ROM increases, T has a slight increase because word

drive pulse has to propagate a longer path. For this

analysis T is assumed to be constant over the range of

x that is of interest.

Let a be the cost per bit for ROM word access

mechanism and its associated hardware and design cost.

Hardwares here include ROM data register, ROM field deco-

des and drivers, and sense amplifiers.

Let g(k) be the cost per word for a word of k bits.

Here g(k) involves just memory cost and therefore is

much smaller than a k. Then g(k) = k b, where b is the

cost of memory per bit.

Finally let

x be the number of bits per word

yi be the number of words for machine instruction i.

y be the total number of words for all machine instruc-

tions.

Then the first trade-off issue can be formulated as

Minimize f = xa + y x b
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Subject to the following constraints:

f C

y.T Si

x 5 max max niji j

x min min ni
i j

Yi IInii]
x

where2lis an integer such that v _ u - v

Notice also y = y.

There are at least three methods to solve this

minimization problem. It may be solved as a non-linear

programming problem. Or it can be first linearized and

then solved as a linear programming problem. Lastly it

may be solved by a tabulation method. Since x is bounded

from both ends as shown in the constraints, f may be found

by computing all yi's for every x within the bounds.

Example 4.1 below will illustrate this tabulation method.

Example 4.1. Given four machine instructions 1,2,3,4,

and their njj sequences,

{3, 4*,9,5 , { 3, 5, 8*, 6,2 ,

{3, 11*, 2*, 1 ) ,( 3, 4, 13*, 4 )

Also, a=50 units of cost



g(k) = 2k units of cost

S1 = S2 S S3 = S4 = 5

C = 80

Solution by tabulation method:

f = 50x + 2xy

x = 8, see Figure 4.1.1.

It can be seen from the example above that not all

x's between the maximum x and the minimum x need to be

tested. Only those that are included in the Nij's need

to be tested.

The assumption that there is no sharing of ROM

words among machine instruction may be reconsidered now.

If indeed there is sharing e.g. a common subroutine, the

analysis may be carried out in two parts. The first part

optimizes the common subroutine; the second part, the non-

sharing portions of the instructions.

This then constitutes a formal treatment on the ROM

word dimensions trade-off. The next issue concerns the

timings for a microprocessor.

4.2. Timings for a microprocessor

In a microprocessor, there are at least three timing

cycles: the main memory cycle time (mc), the processor

cycle time (pe) and the control store cycle time (cc).



x y1 1 2 Y3  Y4  yy 2xy 50x f

13 4 5 4 4 17 442 650 1092

11 4 5 4 5 18 396 550 946

9 4 5 5 5 19 342 450 792

8 5 5 5 5 20 320o 400 720

6 5 6 5 5.. 21 252 300 55

5 5 7-6 6 34 240 250 490

8 6

9-

28 224 200 424

204 150 354
, , .- , I______

Figure 4.1.1. Example 4.1

4

3



Here the issue is how are the three cycle times chosen

and what relationships are there between them, if any.

Ideally the pc is given below,

pc' = max t (m )
i

where t(mi) is the time required by micro-operation

mie {-m.-) as defined in 4.1, excluding main memory

request. This means that any micro-operation can be

executed in one pc'.

The cc on the other hand is

cc = ta + to + t 1 + pc' + t1 + tb

Where tais the access time to the control store (CS).

tc is the CS decode time.

t is the transmission time from the decoder to the

rest of the cpu.

tb is the branch and address decision delay,

as shown in Figure 4.2.1. The branch and address decision

reflects the current opu conditions and cny test results

before accessing the next ROM word.

Since c - pc' = ta + t + 2t + tb ' 0, the processor

is idle during this portion of the control store. The

objective is to reduce the difference between cc and pc'.

One way to do it is to use fast circuits and fast transmis-

sion cables so that ta' IC t 1, and tb are made as small

as possible. This is a rather brute force method.
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Another methods are given below.

Overlap method

This method is to overlap the cc with the pc'. The

analysis following will show how much overlap should be

taken so that the performance requirement Si for each

machine instruction is still met.

Assume the overlap is S, as shown in Figure 4.2.2.

For no branching in the microprogram, the effective cc is

cc' = cc- S = ta+ tc+ 2ti+ pc' + tb - S

For branching in microprogramming the effective cc is

cc" [ cc cc' a kcc'
cc - S]

where [ajm eansraJ b a e b([ 1 ,since the status

of the cpu is only known in the latter microprogrammed word

after approximately a cc. As far as branching is concerned,

S should be as small as possible. Also an increase in S

implies the system has to keep track of conditions for

more and more processor cycles simultaneously. This will

increase the complexity of the system.

Therefore we want to minimize S

subject to the following constraints:

y2c' + yi cc" g Si for every machine
instruction i

S w=i0

where yl = Ui + Vi



I t t
Oij

rnC

tb

A Control storage configuration

Figure 4.2.1 A control storage configuration

i ta tc tipc' i t1 i tbI
I I

,ta t I_ tilpO' Iti I-tbl

|- S -ba

Figure 4.2.2 Overlap of S for cc.

ta i tcl tl1 pPC' I t1-ilth.



Ui = number of nj* in Yj

Vi = 1,if last n is n , or if last nij is not

the k th item in the last k grouping of nj 's.
(See Multiple access for groupings of ni .)

,0,otherwise

y = number of n 's not included in yI ii
and there must be no overlap between same t,' s from

different ROM cycles, tie ( ta, tc' tl, pc', tb )

This can be solved as a linear programming problem to get

the optimum value of S. Or it may be solved by taking

value of k from 1 to n, for some n, and list the cons-

traints for each k to get the optimum S.

Now the effective pc = cc' = cc - S, while-the

control store cycle time still is cc.

Example 4.2 Use example 4.1 with x = 8, performance

requirement: S, = 3.8; S2 = ' S3 = 3.7, S4 = 3. Since

x = 8, possible micro-instruction sequence for the four

machine instructions are:

{3, 4*, 5, 4, 5,) , 3, 5*, 4, 4*, 2 ,

{3, 7, 4*, 2*, 1 ) , {3, 4, 8, 5*, 4 )

See Figure 4.2.3.

Multiple access

Another approach to design the pc and cc is to assume

that multiple TOM access mechanisms can be implemented to

access more than one ROM words. The trade-off here is the

minimum number of ROM words accessed versus the cost in



5cc

u1

vi

Yj' 2

yi 2 3

y 2cc'+y 'cc'' 7

U 1

v 0

y ' 1

3.5cc

7.2 4
1

y 2cc'+y 'ec'' 7

. u 1

v 1

71'

yi2

y. cc'+y 'cc''

cc' 11cc' 11cc'
2 1/3cc =3 2/3cc =3 2/3cc

9cc'
=2 1/4cc 3 1/2cc

2

1

3

2

3 1/2cc

Figure 4.2.3 Example 4.2

k=1

k=2

48

Y2

Sc-

2

1

3

2

y 3

5cc

2

1

3

8cc'
=4cc

y4

5cc

1

1

2

3

7cc'
=3.5cc

8cc'
=4cc

9cc'
=3cc

2 3/4cc

k=3



k=5

'Ii

y 2

j 2ce'+yi'ce

1

2

1

2 1/5cc

Y4

2

3

3 2/5cc 3 2/5cc 2 3/5cc

. . k3 is optimum

PC = cc' = cc - S = . =.cc

k 3

Figure 4.2.3 Example 4.2 (cont.)
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the number of access mechanisms used.

let w be the number of ROM words accessed at one

time. It is desired to

Minimize w

Subject to the following constraints:

g cc1 (w) <_ Si Vmachine instruction i

w Ca <CA

where cc1 (w) = cc + (w -1) pC'

Ca is the approximate cost of the access mechanisms

for a single ROM word.

CA is the total cost allowed for access mechanisms

Given a sequence of micro-instructions nij ferig

machine instruction i, grouping of nij is by k

starting with lowest j. Each grouping either

has k or less n13 's. For the latter case the

last nij must be a nij or it is not the k th

item in the last k grouping of nij's. Let

gk be the number of such groupings. g = k=w

Therefore the optimum w will give the optimum cc1 (w)

= cc + (w-1) PC'.

Now the speed gain is clear because w pc"s are sharing

one (cc - pc') instead of 1 pc' sharing one (cc - pc') in

a single ROM access strategy.

Example 4.3 Given 4 machine instructions with n 's

as follow:



(3,4*,9,5) {3,5* ,8*,2 ) ,(3,11*,2*,1 },

(3,4,13*,4)

x = 8, performance requirement: S1 = 3.8, 32 = 4,

S3 = 5, S4 = 6;

CA = 3Ca. Finally, pc' = 1/3(cc - pC'), or pc' = cc.

Solution by tabulation method : See Figure 4.2.4.

The underlines indicate the grouping of multiple access.

In the above example the optimum solution is w=2.

It is important to realize that the performance Si

may be relaxed so that only certain desired machine

instructions have the performance constraints Si's, as

long as the total performance is under certain limit,

that is ygT -<Si for ie { desired machine ins-
truction i )

y, T !Si
i i

are used instead of the stricter constraints of

y T I Si machine instruction i.

So far the discussion involves only pc and cc. Now

me will be considered. There is really no basic depen-

dence between me and pc, or between mc and cc. However,

it is desirable to have mc = pc so that there is no waiting

when data is required. If mc = 2pc's or more, there is a

performance loss of 1 pc or more everywhere there is a

main memory request and that this can not be moved earlier

by 1 pc or more ( or equivalently by 1 ROM word or more).



Since x=8, possible Nij sequences are as follow:

3,4*, 5,4,5 3,5 *,4,4 *,2 3,7,4* ,2*,1 3,4,8,5*,4

w=1 5cc1 (1)

w=2 1,4t*,._4,5-

3cci(2)

=3 3/4 cc,(I)
3cct(2)
= 3 3/4 cc(1)

4cc1 (2)
=5cc1 (1)

3ccj(2)
=3 3/4ccl(1)

w=3 , 5.4.5

2CC0(3)

=4 1/4cc(1) =4 1/4ccl(1) =4 1/4cci(1)

Figure 4.2.4 Example 4.3

5cc (1) 5cc(I) 5cci(1)

3cc (3 )

j3cc1 (1)

3cci(3) 3ccl(3)

O,4$*,t 3.7.49 *, less 3.4.8,6e 4..
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Hence there is strong dependence between pc and cc

but little or no dependence of either one with mc. The

next issue on trade-offs is on how much encoding.

4.3 Encoding of ROM bits

Finally we will deal with the encoding problem for

the ROM fields. Encoding saves bits and hence cost,

but it increases control line delay time because it

requires time to decode.

The assumptions are the following:

. A group of mutually exclusive lines are to be encoded

(n).

. If a line is not encoded, its cost is Cw.

If a line is one of j encoded lines, its cost is

(log2j) Cw.

The cost of decoding is offset by the saving resulting

from the reduction of ROM bits.

A cost limit Co is imposed, and (log2n) Cw/n f Co <nCw

. Decoding delay is approximately linear with the number

of lines encoded, i.e.

Atj jT0

where tj is the j - out put decoder delay; T0 is a

very small number.

. Associated with each line is ti and Ti, where ti is

the delay time of line i without encoding. Ti is the



maximum delay for line i whether it is encoded or not.

The problem of encoding M lines out of n lines is to

maximize M

subject to the following constraints:

ti + 4tM e Ti V line i that is encoded

(n - M) Cw + (log2 M) Cw/M<Co

M = , where k is an nonnegative integer.

Example 4.4 Encoding problem for group of 8

mutually exclusive control lines. The following infor-

mation is given:

Cw = 10; Co = 60; t1 = 7, t2 = 6, t3 = 8, t4 = 9,t5 = 4,

t6 = 6, t7 = 7, t8 = 6; T1= 10, T2 = 9, T3 = 10, T4 = 15,

T5 = 10, T6 = 9, T7 = 14, T8 = 13

Maximize M

subject to ti + tM = ti + M < Ti

(8 - M) 10 + (log2M) 10/M < 60

M =2k

Solution by tabulation: See figure 4.3.1.

For M = 2, 60 + }-10 = 65 $ 60

4, 40 + -10 = 45 < 60

8, 80 $60

M = 4 on lines 4, 5, 7, 8

X marks indicates that a line may be encoded

for a particular M.
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1 7

2 6

3 8

4 9

5 4

6 6

7 7

8 6

Figure 4.3.1 Example 4.4

M=8M=2

x
x

x

x

x

x

X

x

T i

10

8

9

15

10

9

11

12



5. SUMMARIES OF MICEOPROCESSORS

The summaries of microprocessors are given here in

term of the representation scheme developed in chapter 3.

Each microprocessor is summarized in three components:

1) the structure representation, 2) the transfer cons-

traint, and 3) the cycle time. This serves to illustrate

the representation scheme as used on some major micro-

programmed computers. Another purpose is for ready com-

parison of microprocessors. The machines given below

include the ones from Honeywell, IBM, RCA, and Univac:

H4200 : Medium-to-large business data processing.

Figure 5.0.1.

IBM 360/40 : Medium-to-small general purpose process-

ing. Figure 5.0.2.
IBM 370/155 : Medium high performance general purpose

processing. Figure 5.0.3.

RCA SPECTRA/70: Medium general purpose processing.

Figure 5.0.4.

UNIVAC C/SP: Medium communication processing.

Figure 5.0.5.



FIGURE 5.0.1
H4200

mN1 1

-'I
S

RAp RBP
I I

R~ RBH

Rjj -RKQU

SYSTEM CONDITIONS

RQA

RQB

RQC

"QD
- RQE

M

R M

SYSTEM COMMANDS (CONTROL SIGNALS)

M:

L:

:

16(32)Kx32

32X19

2Kx1?0 NDRO

0-



2) bit
1 ~ NEXT f PARITY FOR BRANCH ADDRESS FIELD
2 ~ DROM ' BRANCH ADDRESS FIELD FOR RQA -RQF

ADDRESS

12
13 ~ C BRANCH ON STORED TEST
14 ~ SELECT ONE OF FOUR GROUPS OF SEVEN
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FIGURE 50,3
IBM 327155
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6. Conclusion

A background in microprogramming has been presented

to introduce a representation scheme and the trade-off

issues. An understanding of a microprocessor is persued

in two aspects: internal and external. First the internal

aspects of a microprocessor are taken up in the three trade

off issues analyzed. The three issues are the ROM word

dimensions, the timing relationships within the micropro-

cessor, and the encoding of ROM bits. Second the external

aspects of a microprocessor are taken up in the represen-

tation scheme, which is consisted of three components:

the structure representation, the transfer constraint,

and the cycle time. The representation scheme attempts

to represent a microprocessor in concise terms for easy

comparison with other microprocessors.

The analysis done in chapter 4 may be reconsidered

now. Many assumptions are idealized to bring out the

prominent deciding factors in the trade-offs. No attempts

have been made to cover all the factors. It can be seen

from the formulation of the trade-off problems that other

factors contributing to the design may be easily incor-

porated. This only lengthens the process of analysis.

As for the representation scheme, it is onlya scheme to

represent the microprocessor. This may serve as an
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introduction to a more superior scheme.

It is hoped that the analysis of the trade-off issues

may provide concrete guidelines and directions in some

practical design problems in microprogramming. Though

other trade-off issues have not been covered, the ap-

proach presented here may be applied to them as well.

Finally it is hoped that the thesis can stimulate interest

in microprogramming and its related areas.



69

BIBLIOGRAPHY

(1). Mussell, H. A. and Frizzell, C. E. " Stored Program"

IBM - TR - 00.05.015.037, December, 1949.

(2). Wilkes, M.V. "The Best Way to Design an Automatic

Calculating Machine." Report of Manchester University

Computer Inaugural Conference, July, 1951, p16-2 1 .

(3). Wilkes, M.V. "The Growth of Interest in Microprogram-

ming: A Literature Survey." Computing Surveys Vol.1,

No. 3, p139-14 5, Sept., 1969.

(4). Husson, S. S. Microprogramming: Principles and

Practices Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1970.

(5). Madnick, S. E. and Toong, H. D. "Design and

Construction of a Pedagogical Microprogrammable

Computer." Third Annual Workshop on Microprogramming,

October 12-13, 1970, Buffalo, New York.

(6). Bell, C. G. and Newell, A. Computer Structures:

Readings and Examples. New York McGraw - Hill, 1971.

(7). Rosin, R. F. "Contemporary Concepts of Microprogram-

ming and Emulation." Computing Survey Vol.1, No.4,

December, 1969.

(8). Hoff, G. " Design of Microprogrammed Control for

General Purpose Processors." IEEE Computer Conference,

September, 1971.



70

(9). Van der Poel, W. L. "Zebra, A Simple Binary Computer."

Information Processing, Proc. Int. Conf. on Informa-

tion Processing, UNESCO, 1959, Butterwirths, London,

p361.

(10).Beckman, F. S., Brooks, F. P., and Lawless, W. J.,

"Developments in the Logical Organization of Computer

Arithmetic and Control Units." Proc. IRE 49 (1961),53.

(11).Dennis, J. B. and Patil, S. S. Computation Structure

Notes for subject 6.232, Department of Electrical

Engineering, M.I.T., Cambridge, Massachusetts, 1971.

(12).Tucker, S. G. "Microprogram Control for System/360."

IBM System Journal, Vol. 6, No. 4, p222 -24 1 , 1967.

(13).Flagg, P., et al. "IBM System/360 Engineering"

Proceeding Fall Joint Computer Conference, 1964.

(14).Redfield, S. R. " A Study in Microprogrammed

Processors: A Medium sized Microprogrammed Processor"

IEEE Transactions on Computers, Vol.c-20, No. 7,

July, 1971.

(15).Beisner, A. M., "Microprogramming Study Report."

Department of Computer Mathematics, Center for

Exploratory studies, IBM - Federal Systems Division

Rockville, Naryland (September 1, 1966)

(16).Rodriguez, J. E., A graph Model for Parallel

Computations, ESL-R-398 MAC-TR-64 September, 1969

M. I. T.



(17).System/370 Model 155 Theory of Operation/Diagram

Manual, IBM Maintenance Library. Form SY 22-6860-0

(18).Wilkes, M. V. "Microprogramming." Proc. Eastern

Joint Comput. Conf., Dec. 1958. Spartan Books,

New York, p.18 .

(19).Kleir, R. L. & Ramamoorthy, C. V. "Optimization

Strategies for Microprograms." IEEE Transactions

on Computers, July, 1972. Volume c-20, Number 7

IEEE Inc. New York.

(20).Tucker, S. G. Emulation of large systems. Comm.

ACM 8, 12 (Dec.1965), p.753-76 1 .

(21).Glantz, H. T. "A note on microprogramming." J.ACM 3,

1(Jan. 1956), p.77-84.

(22).Mercer, R. J. "Micro-Programming." J. ACM 4, 2

(April, 1957), p. 157-171.

(23).Weher, H. "A Microprogrammed implementation of

EULER on IBM System /360 Model 30. Comm. ACM 10,

9 (Sept., 1967), p. 549-558.


