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ABSTRACT

A PARAMETERIZED MODEL FOR SELECTING

THE OPTIMUM FILE ORGANIZATION

IN MULTI-ATTRIBUTE RETRIEVAL SYSTEMS

by

IRVING JACOB SHACHAT

Submitted to the Alfred P. Sloan School of Management on
May 10, 1974, in partial fulfillment of the requirement for
the degree of Master of Science in Management.

This thesis develops a general parameterized model that
facilitates the comparison of different file organization
techniques for a given multiple key information retrieval
system. The model is based on minimizing the expected pro-
cessing time of the data base in performing on-line retrieval
and updating operations. The decision rules are a function
of the relevant characteristics of the data base, the on-line
queries, the storage devices, and the file organization tech-
niques, as well as the relative breakdown of the processing
requests between retrievals and various types of updating
operations.

To demonstrate the use of the model, detailed timing
formulas are developed for the retrieval and updating opera-
tions for three different file organizations: the Multilist
system, the Inverted Index system, and the Cellular Serial
system. Several examples are presented illustrating the
application of the model to choosing among these three sys-
tems in a wide variety of specific situations. In the
majority of these examples the model shows that the Inverted
Index system would prove to be substantially more efficient
than the other two systems.

Given these results an entire chapter is devoted to a
discussion of a number of specific implementation alterna-
tives available under the Inverted Index system and the
relevant trade-offs between them. Several radical new file
organization schemes that claim significant improvements in
retrieval efficiency by clustering together records that are
frequently retrieved together are also discussed.



A comprehensive review of the literature on file organi-
zations for multiple key retrieval is included as part of the
thesis, along with a complete bibliography on much of the
theoretical material concerning both single and multiple key
retrieval techniques.
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CHAPTER I

INTRODUCTION

By far the vast majority of all data files and data bases

in use at the present time are organized for retrieval based on

a single "key". A key may be defined as a data item which par-

tially characterizes one or more records in the file, and by

which these records can be accessed. For example, a personnel

data file organizedi by the key "Employee-Last-Name" could be

readily used to locate the record of "HIGGENBOTTOM, TIMOTHY H.".

Similarly, another data file containing the same information as

the first, but organized by the key "Employee-Home-City", could

be used to access the records of all employees who live in

"BELMONT". In both cases, retrieval of records according to the

primary key (the key on which the file was organized) is reason-

ably efficient, while retrieval on any other key generally re-

quires a full serial search of the file to locate all qualified

records.

Among the many file organizations that facilitate single

key retrieval are the indexed sequential; the random access

(including hash coding); the dense key-ordered files that permit

binary searching and/or supplementary directories; the various

1To understand what is meant by "organized", picture the file as
being sorted in order according to the specified key, with the
retrieval of desired records being accomplished speedily by a
binary search or by an associated directory. However, there are
other single-key techniques, such as hash coding, that do not
involve the ordering of the records in an intuitive manner.
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types of chained (linked list), or ring structures; and the many

variations of the hierarchical and tree-structured file organi-

zations. These single key techniques largely form the basis for

the more complex multiple key file organizations which are the

subject of this thesis. However, the single key techniques per

se and the relevant trade-offs between them have been well docu-

mented elsewhere and, except for a short review of the relevant

literature in Chapter III, they will not be discussed further

here.

An area of greater research interest and of tremendous

practical interest is that of designing efficient systems for

retrieving records using any of several different keys. A case

in point might be a personnel data file from which it was desired

to retrieve records by employee name, or department, or occupa-

tion, or salary level. Such multiple key file organizations can

perform a retrieval operation on any desired key, and generally

on a logical combination of keys, without necessitating a full

file search. The most frequently used logic functions for com-

bining keys are the Boolean operators AND, OR, and NOT. For

example, a company with 50,000 employees that is staffing its new

plant in Germany may wish to query its multi-key data base as

follows: Retrieve the records of all employees who are either

chemists or mechanical engineers, who have been with the company

at least three years, who do not have a Ph.D, and who are willing

to relocate.

A number of sophisticated file organization lcchniques have

been implemented (or proposed) in the last few years to satisfy

12



queries such as the above for generalized data bases. Each of

these techniques has its own special characteristics in terms

of the speed of retrieval operations, the speed of various types

of on-line updating operations (if permitted), the cost of the

initial loading of the data base, the extent and complexity of

the programming involved, the disk and core storage requirements,

and the cost and frequency of reorganizations needed to maintain

efficiency. Not surprisingly, there are several reasons why the

selection of the best technique to use in a given situation is

not generally obvious:

(1) Many of the relevant file organization characteristics

are non-qualitative or are expressed in difficult-to-compare

dimensions. For instance, how should one decide between a sys-

tem that provides very quick retrieval and one that is slower,

but that is easier to program, quicker in updating, and that

consumes less disk storage?

(2) Even those characteristics that are potentially quan-

tifiable may be quite difficult to estimate in a given situation.

For example, the average retrieval and updating speeds of most

complex file organizations depend on so many factors that even

experienced data base designers find it difficult to provide

accurate pre-implementation predictions of retrieval times.

(3) Users' requirements change over time. A data base that

was designed to be efficient in answering various single key queries

(which the users said would predominate) may turn out to be used

for complex, multi-key queries. A data base that was originally

planned for 100,000 records and 5 keys per record may expand with



its initial success to 1,000,000 records and 25 keys per record.

Often, the data base is not as efficient in handling the new,

unplanned requirements as another technique that was originally

passed over.

(4) Many of the proposed techniques have never been imple-

mented in actual data bases. The basic reason for this is the

prohibitive cost involved in doing research with "real-world"

data bases. In fact, a number of the more promising new tech-

niques have never been implemented even on artificially con-

structed data bases.

The principal objective of this paper is to develop a com-

prehensive, parameterized model that facilitates the direct

comparison of various file organization techniques. The model

is based on minimizing the average on-line response time of the

data base in performing both retrieval and updating operations

(including record insertions, deletions, and modifications).

The model incorporates such factors as the length and complexity

of the queries, the size and key dispersion of the data base,

the characteristics of the direct access storage device, and the

percentage breakdown of the on-line operations between retrievals

and the various types of updating operations.

The obvious benefit of such a model is its ability to pre-

dict prior to implementation the expected performance of the

different file organization techniques, and to allow the selec-

tion of the optimum storage structure for any given data base.

Another possible use of the model would be as a critical module

within a truly generalized information retrieval system.



Recognizing that no one file organization is best in all

cases, 2 Professors S. Madnick of M.I.T. and A. Cardenas of

U.C L.A. (13) have independently proposed such a generalized

information retrieval system that, among its many advanced

features, would contain a library of all undominated file organi-

zation techniques. Using a model such as the one developed in

this paper, the system would choose the most appropriate file

structure and automatically organize the data base according to

that structure. Moreover, the system would continually monitor

the performance of the data base it had created; if the perfor-

mance differed significantly from the predicted performance -

either because of misestimated parameter values or because of an

actual change in the data base characteristics - the system

would restructure the data base according to a more efficient

file organization (taking into account, of course, the cost of

restructuring). As new file organizations and hybrids of existing

techniques were developed and perfected, they could be added to

the system library and incorporated into the decision-making model.

The development of this paper has been designed to parallel

the way one would remove the successive layers of an onion: each

chapter builds on the previous chapters, covering in more detail

points or problem areas that were glossed over earlier. The prin-

cipal aim of this approach is gradually to introduce the unso-

phisticated reader to increasingly more complex examinations of

21n fact, it is generally true that file organizations that
perform the best under retrieval are often the worst under
update (Lefkovitz (49)).



the multi-key problem; and in some ways the progression paral-

lels the developing sophistication of the multi-key techniques.

Chapter II of the thesis introduces several file organiza-

tion schemes and discusses how each handles various multi-key

retrieval problems, commenting on their respective advantages

and limitations. Chapter III begins with a brief, but fairly

complete, summary of the relevant literature on single key

techniques. It then attempts to provide an overview of most

of the accepted theoretical, and a good deal of the practical,

literature on multi-key retrieval, leaving for discussion in

Chapter VII some of the more interesting but as yet untested

techniques.

Chapter IV develops the basic retrieval timing formulas

used in the model for the implementations discussed in

Chapter II, and presents some basic hypotheses concerning re-

trieval efficiency. Chapter V develops the basic timing formu-

las for the various types of on-line updating operations, and

synthesizes the results into a general parameterized model.

The model is then applied to several concrete situations,

allowing further generalizations concerning preferred file

organizations.

Chapter VI covers a lot of the micro-level implementation

problems that were bypassed earlier, including alternative

methods for decoding individual keys within the directory, tech-

niques for maintaining hierarchical associations within the

data base records, and methods for performing list intersections

in core. Chapter VII examines some of the proposed ideas for



improving efficiency by clustering together records that are

commonly retrieved together. Techniques that attempt to pro-

mote clustering have been developed as extensions to existing

techniques and also as radically new techniques. Chapter VIII

summarizes the results and provides suggestions for future

research.

17



CHAPTER II

FILE ORGANIZATION TECHNIQUES

This section discusses several of the better documented

multiple key file organization techniques that have been re-

ported on by practitioners in the field. Two of the techniques

- the Multilist and the Inverted Index file organizations -

have achieved widespread usage. The other three techniques

are off-shoots of the first two, and although they have less

"real world" experience, they appear to have been fairly well

analyzed in the literature. In all cases it is assumed that

the data is stored on disk (or other direct access mass storage

device) and is transferred to core memory for processing.

Much of the discussion of specific retrieval techniques

in this chapter is derived from papers by Lefkovitz (49), Martin

(57), and Siler (83). In particular, five of the six figures

in this chapter (all except Figure 3) are taken directly from

Lefkovitz's book. Although this chapter goes below the macro-

scopic level in discussing retrieval methodology and specific

advantages and limitations, it attempts to stay away from very

detailed considerations that might obscure the main points.

Chapter VI reconsiders some of these same file organizations

to delineate some specific problem areas and to discuss some

of the alternative solutions that have been proposed.

2.1 The Multilist File Organization

The Multilist File organization, which has also been called

18



the Multi-linked List organization and the Multiple Threaded

List organization, has been popping up in the literature for

almost a dozen years. An outgrowth of the standard linked-list

or chained data structures, the Multilist data base has two

basic components: a key directory and a list-structured file.

Each unique key by which the file is to be accessed has a

three-part entry in the key directory: the key itself, a point-

er to the first record on the linked list for that key, and a

number telling how many records are on that list. Within the

first record on the list is a pointer to the second record, and

so on. Thus, a data base record having twenty keys would also

have twenty pointers to the next record on each of the respec-

tive key lists.

Multilist performs a typical key search by first accessing

all the relevant keys from the key directory. If an "AND"

operation is to be performed it chooses the shortest of the key

lists and moves from record to record on that list identifying

which records on that list also contain the other required keys.

If an "OR" operation is to be performed, each list associated

with a key in the query product must be processed. 3 Query con-

junction involving the "NOT" operation (e.g., A AND B AND NOT C)

are handled by following the shortest list of the nonnegated

3The Boolean queries are assumed to have been translated into

disjunctive normal form, i.e., a sequence of query products
or conjunctions connected by OR's where each product is com-
posed of operands connected by AND's.



keys. A query conjunction that does not contain any nonnegated

keys is impractical because it requires that an excessive number

of lists be processed.

An example might be a query involving keys W AND X (W A X)

in Figure 1. Since the list for key X is shorter than the list

for key W, the search progresses down the list for key X. The

first record accessed is stored at address A3. The address of

the next record to be accessed is contained in record A3. The

search progresses to the end of the list for key X. Two records

are found on the list for key X which are also on the list for

key W. These two records are retrieved as responses to the query.

Key/Head of List Address/List LengtI]

W /A6/ 7 X /A3 /6 Y /A9/4 Z /A15/6 Key Directoryj (Output Level)

A3

Cell 0

A9

Celll I
List Structured

e- -- FieinRondom

Access Memory

Cell 2

Cell 3

20

Figure 1: The Multilist File Organization



The greatest disadvantage of the Multilist organization

is that in order to respond to a conjunction of terms (such as

W AX), it must access and transfer to core all records on the

shortest list, even though it is only the intersection of these

lists (which may be much smaller) that satisfies the query. In

the case of W AX, the ratio of the number of records satisfying

the query to the number of records retrieved was 1 to 6. In

practice, if list lengths are several hundred (or thousand)

long and conjunctions contain many keys, this ratio may be on

the order of a few hundredths (or thousandths), which is highly

inefficient.

A reflection of this inefficiency is also found in the low

quality presearch retrieval statistics. The shortest list

length in a query conjunction, or the sum of such list lengths

for a logical sum of products, is the closest upper bound on

the number of retrievals that a Multilist organization can pro-

vide prior to the file search. The other structures to be

described yield considerably better presearch statistics.

The principal advantages of the Multilist file organiza-

tion are programming simplicity and updating speed and flexi-

bility. On-line record deletions are handled by setting a

Record Delete Bit to 1. The actual purging of deleted records

can take place during periodic batch-mode file regenerations.

Record addition is also easily accomplished by putting the

record at the head of each of its key lists, thus leaving the

remainder of the key lists undisturbed.



2.2 The Inverted Index File Organization

In the Inverted Index (or Inverted List) file organization,

each unique key is associated with a list of the addresses of

the records which are indexed under that key. For complicated

queries this organization performs the logical operations di-

rectly on the inverted lists, and thus it needs to retrieve

only those records that satisfy all conditions specified in the

query.

For example, a query for W AX in Figure 2 begins by acces-

sing the inverted lists of addresses for key W and for key X.

These lists are intersected and it is found that the only

addresses in common are A7 and A19. These two records are then

retrieved as responses to the query. Since only those records

that satisfy the query requirements are retrieved, the total

number of record retrievals is usually significantly lower than

for the Multilist organization. Note that even before it acces-

sed the desired records, the inverted index can inform the user

of the exact number of records that satisfy his query. A more

complete view of the handling of files of the Inverted Index

system and the way it handles queries is shown in Figure 3.

In the Inverted Index file organization, the logical con-

junction of nonnegated terms (e.g., AA B A C) is accomplished by

list intersection in core; the disjunction of nonnegated terms

(e.g., AuB uC) is accomplished by list merging, and the con-

junction of a nonnegated key with a negated key is accomplished

by removing from the nonnegated key's list of addresses, all

those that appear on the negated key's list. The retrieval of

22



an isolated negated key term list is usually tantamount to a

serial search of the entire file and, hence, would be performed

as such if ever required, since key list lengths are normally

less than a few percent of the entire file size. Most real-

time list structured systems would disallow such a query, al-

though it could be relegated to the batched mode of retrieval.

w
A6 A19
A7 A23
A9 A35
A12

CellO

Cell I

Cell 2

Cell 3

x
A3 Al9
A7 A20
Al4
AIS

Y
A9
Al4
A16
A21

AIS
Al7
A22
A25

A27
A37

*A 3

A6*

*A9

OAl2

A 140 A15

A16 0 *Al7 A19

A21 A20*
* A22

'0 A230
*A25

A27

A 35,

*A37

Figure 2: The Inverted Index File Organization

The inverted key lists are variable length records that

must either be sorted prior to each use or be maintained in an

ordered sequence for efficient logical manipulation. Both the

maintenance of the lists as variable length records, which can

23



Figure 3: Example of the Handling of a Query by

the Inverted Index System

QUERY - PRINT NAME WHERE DEGREE EQ MBA AND AGE LE 29

Key Definition
Table

22

13

Key Value Tables

List
Keys Length Pointer

10-19 3 43
20-29 6 91
30-39 . . . .
40-49 - -
50-59 - - - -
60-69 - - - -
70- -- .. _

BA
BS
MA
MBA 4 68
MS
PHD

43

91

68

Inverted
Index Files

102
481
520

220
261
475
479
603
740

261
280
314
479

Note that the Key Value Tables can break down certain key fields

into ranges of key values as well as into individual key values.

After performing the appropriate list merging and intersections

in core, the system identified two records that satisfy the

query; they are located at addresses 261 and 479.

479 K1 JONES, L.
K2 29
K4 7144
K5 MBA
K8 13400

K1 NAME - -
K2 AGE 22
K3 ADDRESS --
K4 DEPT --
K5 DEGREE 13
K6 JOB TITLE --
K7 SUPERVISOR --
K8 SALARY --

261 Ki SMITH, J.
K2 25
K3 BOSTON, MASS.
K5 MBA
K5 PHD
K8 15000
K7 RAMSEY, S.



be quite diverse in size, and their maintenance in sequence,

contribute to certain programming complexities that are absent

from the Multilist organization, although they buy much in

performance.

Note that whereas the Multilist organization distributes

the link addresses throughout the file, the Inverted Index

collects and compacts the address pointers into a single area

(the key directory) outside of the file. Thus, although the

directory of the Inverted Index organization is considerably

larger than that of the Multilist system, the total memory usage

is no greater since these same address pointers no longer appear

within the record. In fact, the Inverted Index system may re-

quire less storage than the Multilist system if the key names

or codes are not individually cited within the record itself.

This can be done if it is not necessary to print the keys as

output; however, in so doing, there is no easy method of chain-

ing a single record back to others associated with it.

As mentioned previously, the principal advantages of the

Inverted Index organization are its general efficiency in re-

trieval operations (since it accesses only those records it

needs) and its accurate pre-retrieval statistic that allows the

user to modify his request based on the knowledge of the size

of the response. Disadvantages of the Inverted Index system

include the following:

(1) It is more complex to program than the

Multilist system.

(2) It generally is less efficient than Multilist

25



in adding and deleting records; both

cases require the modification of each

inverted index that corresponds to a

key in the newly added or deleted record.

(3) It requires a working area in order to

perform the logic processing (list inter-

section, merging, etc.).

(4) Since the list records are variable length,

some reserve is needed in them if real-time

update is to be allowed.

2.3 The Controlled List Length Multilist

Lefkovitz has proposed a file organization that is a com-

promise between Multilist and Inverted Index. Under this file

organization scheme, the Multilist system is modified by re-

stricting each list to a predetermined maximum length. When a

list would otherwise exceed the maximum length, a new list is

started and the address of the first record on this new list

is also put in the key directory. This system not only prevents

lists from becoming too long to process efficiently, but also

permits the data base to make use of the operating system's

capability of overlapping I/o requests so as to reduce the over-

all list accession time.

For example, in Figure 4 the maximum list length is set to4.

Thus, list W, which contains seven records, is broken into a

list of length four and a list of length three. The first list

begins in Cell 0 at record six and is identified as AO.6; the

26



second list begins in Cell 1 at record nine (A1.9). Schemati-

cally, the same thread that appeared in Figure 1 is shown in

Figure 4; however, the break in the single list is indicated

by the broken line since, in fact, the seven items on the W

list are now contained on two separate lists.

The search for records containing keys W AND X in Figure 4

begins by accessing the list of lists associated with key W and

key X. It is found that there are two lists under each key;

however, those under key X are shorter. Therefore, the lists

beginning with records AO.3 in CellO and A1.9 in Cell 1 are

searched. Two records are found on these lists which are also

on the lists for key W, and these are the responses to the query.

Moreover, it is possible to overlap disk accessions if two

or more list records that are the "next to be accessed" are

contained in different disk modules. If the cells in Figure 3

are defined as individual disk modules, then since the two sub-

lists for key X begin in two different modules, the head posi-

tioning for records AO.3 and A1.9 could begin simultaneously.

Hence, the two lists would effectively be searched in parallel,

thus reducing the number of random accessions needed from 6 to4.

A query of the type "X OR Y" necessitates the retrieval of

both the X and Y lists. This allows record accessions from

three sublists to be overlapped, with accessions in modules 0,

1, and 2 which in turn permits a high degree of parallel acces-

sion without any special programming, since the stacking of I/O

commands is performed automatically by most manufacturer-

27



provided operating systems. Of course, the overlapping of disk

accessions could be performed in the Inverted Index system too.

Maximum List Length=4

W X Y Z
A 0.6/4 A 0.3/4 0.9/4 A 1.7/4
A 1.9/3 A 1.9/2 A 2.5/ 2

A 0.3

Cell 0
A 0.6

A 0.9

Cell I Al7

Cell 2

Cell 3

Figure 4: The Controlled List Length Multilist

The Multilist system with controlled list lengths can be

viewed as being in the middle of a list structuring spectrum,

the two extremes of which are the pure Multilist and pure

Inverted Index: the Multilist has a list control of infinity7

the Inverted Index has a list control of one. Moreover, the

list control should be parameterized so that the file can be

regenerated at any time with a new list length control, and

hence a different degree of inversion. An alternative to the
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single parameter is a table that provides differential control

over the various keys. Frequently used keys should have

shorter lists (i.e., more inversion) than infrequently used

keys. Furthermore, this table could automatically be modified

by a program that maintains key usage statistics, and the file

reorganized periodically in accordance with the new state of

the table. Such a procedure would have a self-adaptive quality.

Unfortunately, the presearch statistic in this file struc-

ture is still the same as that of the Multilist organization

because an entire list (the shortest in the conjunction) must

still be searched, and thus no intersections are possible at

the directory stage of the search. Moreover, this organization

is substantially more difficult to program than either Multilist

or Inverted Index, and it generally needs more time to update.

The search time will always be less than with Multilist and

greater than that achievable with a pure Inverted Index, but it

can be improved over time by means of the adaptive procedure

described above.

2.4 The Cellular Multilist File Organization

The next step is to partition the data file and restrict

list lengths on the basis of partition boundaries rather than

length. A file organization of this type is called a Cellular

Multilist File (Figure 5). The file partitions are usually

based on some direct access device module such as a disk track

or cylinder. The entries in the key directory contain a head

of list address, the list length for each list, and a code

indicating which cell the list is in. In searching this type
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of a file structure, often it is not necessary to search all

lists associated with a key. Some presearch processing can be

done to determine which of the search keys involve lists in the

same cell, and only those cells need be processed. There is

also an advantage of being able to read a whole list from a

direct access-storage device without any physical movement on

the part of the access mechanism if the partitions are defined

correctly.

Consider the query XA Z. An examination of the directory

shows that list X contains sublists that are wholly contained

within Cells 0, 1, and 2. Similarly, list Z has sublists that

are entirely contained within Cells 1, 2, and 3. Since list X

contains a head of list address in Cell 0 but list Z does not,

no intersection of X and Z exists in Cell 0. Similar reasoning

applies to Cell 3. Therefore, the search on the conjunction

XA Z would be limited to those sublists of X and/or Z contained

only in Cells 1 and 2; furthermore, in Cell 1 list Z is preferred

because it has a list length of 2 versus 3 for list X, and in

Cell 2 list X is preferred with a list length of 1. The total

list search for the XA Z conjunction, is then 3, instead of 6, as

it would be if the shorter of the two lists X versus Z were

searched, as in the Multilist file organization. A similar

approach can also be applied to the Inverted Index method, where-

by the inverted lists for a given cell would appear at the

beginning of the cell.
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Figure 5: The Cellular Multilist File Organization

In comparison with Multilist, the Cellular Multilist re-

duces the total number of list searches and reduces head posi-

tioning time by keeping most of its list searches intracell.

Although extra retrieval time is needed to access the cellular

sublists, the overall retrieval time of this organization should

still be lower than that of the standard Multilist. However,

Cellular Multilist's updating time will be worse and its pro-

gramming complexity is considerably greater. On the other hand,

the retrieval speed of the Cellular Multilist will generally not



be as good as with the Inverted Index organization because it

is still retrieving some records that do not satisfy the query.

One strategy for implementing the Cellular Multilist file

organization calls for each cell to be on separate disk modules,

thus allowing for a controlled overlap in the searching of dif-

ferent modules. Another alternative that is particularly appro-

priate for movable head disks is to equate the cells to disk

cylinders, so that once the heads have been positioned to a given

cylinder, the sublist search can be effected without any further

head motion.

The assignment of cells to cylinders facilitates an effec-

tive strategy in multi-terminal, real-time systems: the indi-

vidual cell accession lists from different user queries are

merged together and the access heads are moved sequentially

across the cylinders intermixing the list searches of several

queries. When the head reaches the highest cylinder, the process

is reversed. Mean access time is reduced both because the list

searching is within a cylinder and because the cylinder head

motion is more localized. The system could also be constructed

to allow high priority queries to force the heads to jump to the

appropriate cylinders.

2.5 The Cellular Serial File Organization

The next step along the progression is to eliminate the

list structures and process the partitions serially. This organi-

zation is called a Cellular Serial File (Figure 6). The entries

in a key directory are associated with lists of the cells which



contain records indexed under that key. When a search is to be

performed, presearch processing can be done to determine which

cells need to be examined. These cells are then examined seri-

ally. Again, the device dependent partitioning of a data set

plays an important role in the efficiency of this method.

The query on keys X AND Z in Figure 6 begins by accessing

the lists of cells associated with those keys. It is found

that records associated with key X are contained in Cells 0, 1,

and 2. Records associated with key Z are contained in Cells 1,

2, and 3. Therefore, Cells 1 and 2 are read serially and

records which are associated with key X and key Z are retrieved

as responses to the query.

w x Y Z
0 O 0 I
1 F 1 2
2 2 2 3
3

Call 0 - , 0
0 .

0

0

Cell I
0

* 0

Cell 2
e

Cell 3
0

Figure 6: The Cellular Serial File Organization



The Cellular Serial approach has the advantage of program-

ming simplicity and ease of update if reserve space is left at

the end of the cell. It is applied with particular advantage

to storage devices in which the average random accession time

is high but the serial data transmission rate is also high.

Unfortunately (for this method) at present, most of the bulk

storage devices such as the IBM Data Cell that have a high

access time of several hundred seconds also have relatively low

serial data transmission rates of around 50 to 70 kilo-

characters/second.

It is obvious that the fewer cells in which a given key is

represented, the more efficient is the retrieval process for

that key in the various cellular file organizations. In fact,

for any of the multi-key retrieval organizations the average

retrieval time is decreased whenever records having similar keys

can be grouped together. The task of forming clusters of

records that are frequently retrieved together is not a trivial

one because any given record may have several keys in common

with thousands of different records (although the specific keys

they have in common may differ). Moreover, the exact statis-

tical profile of the queries (e.g., which keys are often

requested together) is usually not known before construction of

the data base; and even when it is known, the best way of using

the information is not immediately obvious. The entire topic

of record clustering under multi-key retrieval is thus at the

forefront of today's research; it will be taken up again in
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Chapter VII. As for this paper, the retrieval analyses will be

performed pessimistically, assuming that all records required to

satisfy a given query are distributed randomly throughout the

file.



CHAPTER III

AN OVERVIEW OF THE LITERATURE

It would be desirable to be able to make a clear distinc-

tion between the file organization techniques that can solely

be used for single key retrieval and those that may be used for

multi-key retrieval. This would allow a paper such as this that

purports to treat only the latter, to ignore the former. Unfor-

tunately, a clean break is not possible. Each of the individual

files of the multi-key organizations can itself be organized in

dozens of different ways (including hybrids and minor variations)

- and each one of these ways is generally based on one or more

of the single key structures.

For example, the data base files themselves under the

Inverted Index organization can be organized either as a direct

access file based on hash coding a unique Record Identity Number

(RIN), as an indexed sequential file using the RIN as the primary

key, as some form of hierarchical file, or as a simple sequential

file with new records being added on at the end and with a sepa-

rate inverted index organized on RIN used to locate each record.

A similar file organization problem exists within each record of

the direct file - particularly if hierarchical relationships

are to be maintained - and for virtually every other type of

file used in multi-key retrieval. It turns out that any multi-

key file organization one can think of is usually just an inte-

gration of several single key methods, or can be viewed as such.
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This paper assumes that the reader is familiar with all of

the standard single key retrieval techniques; it does not re-

quire that he know all the possible variations in intimate detail.

However, for those readers who do not have the necessary back-

ground, or for those who wish to delve more deeply into some of

the single key techniques, the following section is provided. Its

intent is to provide a brief, but fairly complete review of the

literature, thus allowing a reader at virtually any level to aug-

ment the state of his knowledge.

3.1 The Single Key Retrieval Techniques

As is typical in the information retrieval area, there is

a relative paucity of good overview articles that introduce the

reader to several single key retrieval techniques and that

suggest when each one might be appropriate. Price (70) in a 1971

article in the ACM Computing Surveys provides one such article;

Dodd (27) in a 1969 article in the same journal another. Both

articles are quite readable and have good bibliographies. The

Dodd article is particularly good in that it shows how the basic

single key techniques may be integrated to provide retrieval on

multiple keys. A 1969 paper by Chapin (15) does not appear to be

as useful for the novice because of its non-standard terminology

and its lack of good diagrams and illustrative examples; however,

he too provides a fairly good bibliography.

An almost-must is IBM's Introduction to IBM System/360

Direct Access Storage Devices and Organization Methods (41). It

is well written, covers both direct access hardware and IBM-

supported single key retrieval techniques, and contains a number
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of useful student exercises with supplied answers. Perhaps

the best introductory book in the field has been written by

Ivan Flores (28). His coverage is complete and readable, but

he gives no bibliography. Finally, extensive annotated bibli-

ographies on all types of information retrieval techniques can

be found in several volumes of the Annual Review of Information

Science and Technology (18,61,82,80,59). The relevant chapters

are highlighted under the multi-key section of this chapter.

The straightforward sequential file is not covered here

because its properties have been reviewed numerous time else-

where. The binary search technique is discussed in the Price

article (70) and the Flores book (28). Flores and Madpis (29)

devised a formula for the average number of "looks" to find a

given record in an arbitrary-sized table. Collmeyer and

Shemer (22) compared the performance of sequential searching

vs. binary searching for files stored on disk. Rothnie (76)

as part of a recent Ph.D. thesis examined the benefits of binary

searching in a paged environment, and concluded that it performs

poorly relative to such techniques as directories or hash coding

because it scatters its memory accesses over many pages.

The area of direct access techniques (also called random

access or hash coding) is blessed with several excellent arti-

cles. Peterson's 1957 article (69) is still a classic in the

field. He simulated the results of the open addressing systems

using buckets of various sizes, compared the simulated perfor-

mance with the performance of four actual business record files,

and then derived theoretical results for the single bucket case.
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Buchholz (12) in 1963 and Morris (6 ) in 1968 wrote excellent

review articles summarizing the existing key-to-address trans-

formation methods as well as the techniques for handling key

collisions.

Maurer (58) in 1968 proposed a division hash code with

quadratic residues used to handle collisions. Several articles

have extended Maurer's technique, notably Radke (74), Bell (5),

Lamport (47), and Day (25). In 1971, Lum et alii (56) under-

took a fairly exhaustive experimental evaluation of several of

the existing key-to-address transform techniques, varying both

the load factor and the bucket size over a wide range: their

results showed the division technique to give the best overall

performance. Since that time, Bell and Kaman (6), Luccio (52),

and Brent (11) have proposed new methods for which they claim

even better results. Recently Lum (53) has developed an ana-

lytic approach to the analysis of key-to-address transformations.

It is based on the behavior of the transformation in the key

space and on an abstractly defined set of sample files. This

work has substantiated Lum's earlier result that the division

method performs best, and has explained this result analytically.

Bays (4) and Knott (45) have considered the problem of

expanding or reallocating hash-coded tables, and Nijssen (65)

has demonstrated how, contrary to previous opinion, updates to

random access files can be efficiently.performed in the batch

mode.

Because they are so much a part of the popular indexed

sequential access method, hierarchical directories are not often
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treated as a separate issue. Collmeyer and Shemer (22), who

term them "tabular indices", found that they performed favor-

ably in a disk file environment, and Rothnie (76) demonstrated

that they do well in a paging environment. Landauer (48) im-

plicitly considered them within the context of balanced trees,

and Lefkovitz (49) analyzed them as one of several alternate

techniques available for directory decoding.

The indexed sequential organization itself has been well

studied in several different papers. The IBM Student Text (41)

and the Flores book (29) both provide good introductions to it.

Lum, Ling, and Senko (55) reported on the results of a complex

simulation study they performed on the indexed sequential ac-

cess method (ISAM) using their FOREM program. This program

allowed them to simulate thousands of different ISAM data bases

and study retrieval times as a function of such parameters as

number and placement of index levels, overflow configurations,

types of transactions, and percent of records overflowing.

Several other papers - notably those by Ghosh and Ganguly

(34), by Coyle (23), and by Mullin (63) - have suggested

changes in indexed sequential to improve its overall perfor-

mance. An alternative indexed sequential system has been

developed called "AMIGOS" (89) that is not quite as flexible

as ISAM but that claims to be nearly ten times more efficient.

Chained or linked list structures are covered in many

places. Dodd (27), Flores (28), and Stone (86) all provide

good introductions. Perhaps the most imporLant single refer-

ence in this area is Volume 1 of Knuth's The Art of Computer
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Programming (46). Knuth's presentation of single and doubly-

linked lists, circular lists, garbage collection, and dynamic

storage allocation is not only thorough, but it contains

numerous exercises at various levels of difficulty that can

be performed by the student. Gray's 1967 paper (35) summa-

rized several documented varieties of ring-structured files

(i.e., circular lists), and D'Imperio (26) provided a detailed

review in 1969 of the principal list structuring and string

manipulation systems that had been developed. In a paper more

closely related to information retrieval, Jones (43) reported

on an actual implementation of a large data base using the IDS

list-structed system.

Tree structures are closely related to lists because of

their heavy usage of pointers. One of the key articles on

tree structures was written by Sussenguth (87) in 1963. He

demonstrated that a doubly-chained tree structure would permit

an efficient compromise between the fast search/slow update

characteristics of binary search and slow search/fast update

characteristics of linked list structures. Patt (67) relaxed

the limitation by Sussenguth that all terminal nodes had to

lie at the same tree level, and developed a procedure for con-

structing trees with minimum average search times. Other

authors who have studied the properties of various types of

trees include Hibbard (38), Clampett (17), Arora and Dent (2),

Knott (44), Foster (30,31), Knuth (46), Landauer (48), Rotwitt

and deMaine (78), Skidmore and Weinberg (84), and Coffman and

Eve (21). Casey (14) has written a recent paper describing
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an approach for minimizing the number of nodes tested in a

tree-structured file used for multi-key retrieval. The pro-

cedure he describes consists of organizing the tree nodes

based on ORing records such that records that satisfy a sam-

pled set of typical queries are grouped together within the

tree.

3.2 The Multiple Key Retrieval Techniques - Descriptions

Once again a basic problem is the relative lack of good

tutorial papers on the subject. There seems to be only three:

the previously mentioned papers by Dodd (27) and Chapin (15),

and a 1973 paper by Cardenas (13). Dodd's paper is useful

because of his clear diagrams and descriptions of how the

complex multi-key file organizations are implemented by com-

bining the basic.single key data structures. The Cardenas

paper is a must for any potential file designer, because in a

few short pages he discusses a great many of the factors that

affect file performance and cogently summarizes most of the

relevant considerations in selecting a file organization.

Moreover, he performs a valuable service by specifically pro-

posing that the best file structure in a given situation is

one that minimizes a cost function that includes retrieval,

update, storage, programming, maintenance, and other unquan-

tifiable costs, while satisfying given design constraints

(e.g., query response time must be less than three seconds

for 90% of queries). Cardenas and Dodd both provide good

bibliographies.
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Another source of papers in the multi-key area is the

Annual Review of Information Science and Technology. Each

of the first five volumes of this excellent series contains

an entire chapter devoted to reviewing many of the articles

and books that appeared during the previous year on the

subject of file organization. The relevant chapters are

located in the 1966 through 1970 volumes and were written by

Climenson (18), Minker and Sable (61), Shoffner (82), Senko

(80), and Meadow and Meadow (59) . The articles by Senko and

by Minker and Sable are to be particularly recommended.

The two CODASYL Systems Committee reports on generalized

data base management systems - the 1969 Survey and the 1971

Feature Analysis - shed some light on the file organization

approaches of these generalized systems. However, the pri-

mary thrust of the two reports is in analyzing the user-

oriented features available in these systems, not their on-

line performance or their internal file organizations.

With respect to the two basic file organizations discussed

earlier in the paper, it is a moot point which of them is older.

The Multilist technique dates back to the late 1950's and early

1960's. Perlis and Thornton (68) and Weizenbaum (93) fore-

shadowed it with their "threaded lists" and "knotted lists"

respectively, and in 1962 Prywes and Gray (72,73) described a

more general formulation called multiple threaded lists or

Multilist. Since that time, several interesLing applications

using Multilist have appeared in the literature including

implementations by Prywes (71), Hsiao and Prywes (40),
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Wexelblat and Freedman (94), and Lefkovitz and Powers (50) -

the last of which describes an application involving the

Cellular Multilist system.

The Inverted Index systems seem to have been adapted from

the indexing techniques used in libraries. An early article

by Johnson (42) delineated the basic methodology, and applica-

tions involving the Inverted Index organization have been

described in papers by Bloom (9), Weinberg (92), O'Connell (66),

and Davis and Lin (24). The O'Connell and the Davis and Lin

systems are both simple in that they operate on smaller data

bases and do not allow an internal hierarchical structure;

however, both are interesting. O'Connell's system was imple-

mented at a cost of under $10,000 by using only the IBM-

supported Indexed Sequential and Direct Access Methods. Davis

and Lin made use of a clever and efficient bit-mapping scheme

to achieve the logical intersection of attribute lists. They

also included both theoretical and actual figures on the time

needed to perform various types of retrieval requests using

their system.

One of the most sophisticated Inverted Index systems ever

implemented was the Time Shared Data Management System (TDMS)

developed by the Systems Development Corporation and described

in published papers by Franks (32), Williams and Bartram (95),

Bleier (7), and Bleier and Vorhaus (8). A TDMS data base was

almost fully inverted, with each attribute being indexed unless

the user specifically requested that it not be. The Bleier

and Vorhaus paper describes the overall TDMS file structure;
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the earlier paper by Bleier shows how TDMS handled hierarchi-

cal data associations within the data base records. Siler (83)

has stated that TDMS and its follow-on CDMS (Commercial Data

Management System) were most likely too machine dependent and

too inverted. Because of its total inversion of the data base

and its complex hierarchical structure, CDMS exploded the size

of original data bases by a factor of from two to five. The

Systems Development Corporation now offers an alternative sys-

tem called DS-1 (88) which allows the user to specify which

attributes he desires to have inverted.

3.3 The Multiple Key Retrieval Techniques -Comparative Analyses

Several papers have appeared in the literature, and at

least a couple of Ph.D. theses have been written comparing the

Multilist and Inverted Index (and occasionally other systems)

along various dimensions. A 1963 paper by F. T. Baker (3) that

is part of a series of information retrieval reports origina-

ting at Harvard contains one of the earliest comparison studies.

Baker compared Multilist, Inverted Index, and sequential files

with chaining on secondary keys. Although his formulas were

not totally correct, his results clearly showed several facts:

(1) that Inverted Index performs better the higher

the proportion of retrievals to total system

operations, while Multilist performs worse;

(2) that Multilist does worse the greater the num-

ber of records that contain a given key value;

(3) that Multilist performs at. its best ihe simpler



the queries, while Inverted Index performs

the same regardless of the complexity of

the queries. (This latter statement is

probably not true.)

Overall, the various file organizations exhibited mixed suc-

cesses with no one technique being best in all cases.

T. C. Lowe (51) attempted to derive an analytical model

of memory utilization and retrieval time for the Inverted

Index and Multilist file organizations. Lowe's work is par-

ticularly interesting in that he included two important

distributions in his analysis: f(j), the number of times

the jth unique index term is referred to within the data base;

and p(j), the probability that the j~li unique index item is

used in a query. Lowe performed three analyses for each file

organization, assuming that f(j) and p(j) were both uniformly

distributed; that p(j) was uniform and f(j) was distributed

according to Zipf's law; 4 and that both had Zipf distributions.

Unfortunately, Lowe's work is difficult to apply to actual

data bases principally because he does not distinguish between

simple and complex queries. This penalizes the Inverted Index

technique since its strength lies in its ability to access only

those records that are "fully" qualified (depending on the

4The Zipf distribution for p(j) is p(j) = C/j for j=1 to N
N

where C is a constant such that .) p(j)= 1
j=l



hybrid of the Inverted Index system) for the query. In addi-

tion, in real world situations the distributions of f(j) and

p(j) may be unknown or difficult to determine. Siler (83) in

one of his footnotes points out other limitations of Lowe's

analysis.

In 1969, David Lefkovitz (49) wrote File Structure for

On-Line Systems, which even today is the most comprehensive,

design-oriented reference on multi-key retrieval systems.

This highly readable book covers several important facets of

the problem:

(1) It summarizes the major software components

required in a real-time information retrieval

system.

(2) It presents an outside-in view of the system

by means of a prototype query language (data

manipulation language).

(3) It discusses various techniques for the

design of directories and their decoders.

(4) It describes in detail several multi-key file

organization techniques and the procedures

they employ for data retrieval and updating.

(5) It presents accurate timing formulations for

both the retrieval and updating operations

(on which the timing formulas of this paper

are largely based).

Lefkovitz's clear discussion of the techniques for performing

the various kinds of file updating on Multilist and Inverted
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Index data bases appears to be almost unique in the literature.

Unfortunately, Lefkovitz seems to have made a few errors in

his timing analyses and in calculating some of his examples.

Another important paper in the area of comparing system

performance was written by L. D. Martin (59). Martin's paper

leans heavily on the work of Lefkovitz (as we all do), but

using a more approximate timing analysis, he suggests a com-

parison model based on minimizing the average on-line pro-

cessing time, defined as being= (p) (retrieval time)+ (1-p)

(update time). However, once he derives his approximations

for processing time, he then spends three full pages contor-

ting the formulas so that they can be compared bilaterally.

Martin's resulting model is not only non-intuitive, but it

produces output numbers that are totally divorced from a

physical interpretation, and in certain circumstances it can-

not even identify the "best" organization.

Furthermore, Martin appears to have made two critical

errors in his test cases of the model that negate much of his

sample results. These suspected errors, along with those of

Lefkovitz, are delineated in Appendix B of this thesis, pre-

cisely because these two papers are otherwise so critical to

the development of the field.

Hsiao and Harary (39) have written a paper that describes

a generalized file structure and shows how some frequently

used file organizations are special cases of their general

structure. They show, for example, that whereas the Multilist

organization has only one list per keyword stringing together
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all N records containing that keyword, the Inverted Index

organization has N lists per keyword each of which contains

just one record. The General Retrieval Algorithm they de-

velop proves useful with the Multilist organization in avoid-

ing multiple retrievals of the same record when answering

queries involving an OR operation.

The 1973 paper by Cardenas (13) described earlier

discusses a number of factors that affect file organization

performance, and then describes a simulation model developed

at U.C.L.A. that compares three file structures -the Inverted

Index, the Multilist, and the doubly-chained tree. Six dif-

ferent data bases were structured within the simulation

according to each of the three file, techniques, and then

results were collected on total storage requirements and on

average retrieval times for queries of various complexity. The

storage requirements of the Multilist and the Inverted Index

organizations were usually very close, while the requirements

of the doubly-chained tree were generally somewhat less. The

results of the retrieval timing simulation showed specific

instances where each file organization did significantly worse

than the other two.

Cardenas' results are less useful than they might other-

wise have been because the six data bases he used appear -to

have been overly similar in terms of structural characteristics

(e.g., number of records, number of keys, etc.), and thus noL

truly representative of the wide spectrum of. pos:;ibl1e data ba;e;.

Moreover, Cardenas did not model record updating within his
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simulation, present the retrieval timing formulas he usednor

try to assess what were the characteristics of each of the data

bases that made it perform better or worse under the given file

organization techniques. However, these limitations do not de-

tract from the modelling methodology he presented nor from his

excellent discussion of the relevant factors that affect data

base performance.

Cardenas seems to have based some of his work on two theses

done at U.C.L.A. -a 1971 Masters thesis by J. P. Sagamang (79)

and a 1972 Ph.Db thesis by K. F. Siler (83). Siler developed

a generalized simulation model to study the efficiency of three

different file organizations - the Multilist system, the In-

verted Index system, and the Cellular Multilist system - and

found that Multilist was quickest for very simple queries,

while Inverted Index was most efficient for more complex queries.

Siler also proposed and simulated an "Integrated List" system,

in which each key could be organized under any of the three

above file organizations. He described how complex queries

involving keys organized under different schemes could be han-

dled by the integrated system, and concluded that given the

varying effectiveness of the three studied organizations under

different query schemes, a data retrieval scheme involving

mixed file organizations could be effective enough to offset

the increased programming problems. Finally, Siler performed

a number of simulation runs which showed that key aggregation

(i.e., 30 <AGE <39) becomes increasingly effective as the query

range increases so long as the level of key aggregation is no
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greater than the range of the queries.

Siler himself readily conceded the limitations of his

work and the need for additional research. Record updating

was not considered at all, nor was any attempt made to study

the effects of record clustering. Siler also recommended

development of a dynamic time simulation, as opposed to a

static one, to answer the time-related problems of handling

multiple on-line users simultaneously. Hopefully, additional

work will also be done in the fertile area of static simula-

tion to draw other general conclusions concerning retrieval

and updating efficiency, and to study further Siler's pro-

posed Integrated List system.

Another approach to the problem was taken by A. J.Winkler

(96) in his 1970 Ph.D. thesis at the University of Texas, and

in a follow-on paper he wrote with A. G. Dale (97). Following

the direction taken by Martin (57), Winkler developed de-

tailed timing formulas for four different file organizations,

which could then be used to choose the organization that would

minimize the expected processing time. The four structures

chosen were the doubly-chained tree, the triply-chained tree,

and two Inverted Index systems involving hierarchically-

organized data records. In the first Inverted Index system

the pointers linked directly to the node within the hierar-

chical record, while in the second they linked to the start

of the record (and thus if the same key appeared more than

once in any record, there was only one pointer).

51



Because of the complexity of the four file organizations,

Winkler's processing algorithms are exceedingly detailed and

complex. Moreover, his timing formulas include in-core

processing as well as disk accesses and thus they too are quite

involved. His results for overall processing under various

parameter values showed that the two Inverted Index systems

dominated the two tree structures, although the choice between

the two Inverted Index systems was not conclusive. The two

Inverted Index variations will be treated in more detail in

Chapter VI, along with other options available in structuring

such a system; the two tree-structured systems will not be

discussed further since Winkler showed that for typical re-

trieval requests they required approximately six disk acces-

sions (at .2 seconds each) for each file record, leading to

lower bound of 120 seconds even for the case when not one

record out of a 1000-record data base satisfied the query.



CHAPTER IV

DEVELOPMENT OF RETRIEVAL TIMING FORMULAS

This chapter is concerned with developing a parameterized

model for estimating the retrieval times of three of the file

organizations discussed in Chapter II given inputted values

for the data base, query, and storage device characteristics.

The three organizations selected for this analysis are the

Multilist, the Inverted Index, and the Cellular Serial. The

principal reasons for selecting these three organizations were

that they represent three clearly different approaches to the

data retrieval problem and the fact that some analytical work

on retrieval timing has already been done for these organiza-

tions, largely due to the work of Baker (3), Martin (57),

Lefkovitz (50), Siler (83), and Winkler (96,97). No specific

formulas are developed for the retrieval or updating time of

the other two organizations (Controlled List Length Multilist

and Cellular Multilist), since such formulas would ultimately

depend on making special assumptions for characteristics

(particularly the amount of I/O overlapping that can be done

for a typical query) that have no direct parallels in the three

analyzed file organizations.

Once the basic retrieval timing models have been developed,

a number of "reasonable" examples will be presented illustrating

the use of the model in typical data base situations. The

device-related characteristics for these examples will be based



on two representative (and popular) direct access storage

devices: the IBM 3330 movable head disk and the IBM 2321 Data

Cell. The 3330 is fast but expensive; it can retrieve a 1000-

byte record in about 35 milliseconds. The data cell is a fore-

runner of a number of slow, cheap, bulk storage devices just

now coming on the market; it can retrieve a 1000-byte record in

around 500 to 600 milliseconds.

4.1 Description of Representative Storage Devices

Each IBM 3330 Disk Pack consists of ten disks with nine-

teen surfaces used for recording (the top surface of the top

disk is not used for recording). The disks are accessed by a

comb-type mechanism having nineteen read/write heads - one for

each recording surface. On each disk surface there are 404

tracks and seven alternates. The overall disk pack can hold

one hundred million characters (bytes); a disk control unit with

eight disk packs can thus hold up to 800 million characters.

The time required to access and transfer data on the 3330

consists of three parts: head positioning time, rotational

delay (latency), and data transfer. The head positioning time

is the radial motion of the heads across the disk to the appro-

priate track. Since the access heads all move to the same track

together, the 3330 disk is often viewed conceptually as being

comprised of 404 vertical cylinders, each containing 19 tracks.

Thus, if the mechanism is already in the correct cylinder there

is no need to move it, so the positioning time is zero. The

rotational delay is the time required for the correct data to
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rotate to the read/write head so that data transfer can begin.

Since this latency time can range from zero to a full revolu-

tion, half a rotation (average rotational delay) is generally

used for timing purposes.

The IBM 2321 Data Cell Drive consists of 10 data cells,

each of which can hold 200 magnetic strips. Each strip holds

100 tracks, allowing a maximum capacity of 200,000 bytes per

strip. The array of 10 data cells is rotated in either direc-

tion until the strip to be processed is under a drum that is

fixed in position above the array. The drum then rotates to

pick up the strip and move it past a bar of 20 read/write heads.

The heads are positioned at each fifth track of the strip. The

bar of heads can move horizontally to five different positions,

thus providing access to all 100 tracks of a strip. Since there

are 20 heads and 100 tracks per strip, each magnetic strip can

be conceptually viewed as containing five cylinders of 20 tracks

each.

The access or positioning time may include restoring the

strip on the drum and/or picking up a new one. It takes 200 ms

to restore a strip, from 75 to 225 ms to rotate the array, and

175 ms to pick a strip. The movement of the bar of read/write

heads takes 95 ms; this is overlapped with the restore of pick

if either occurs. The minimum access time is 95 ms if the cor-

rect strip is already on the drum and only head bar motion is

required; if the same cylinder within the strip is being accessed,

the positioning time is zero. The maximum is 600 ms: 200 ms to

restore, 225 ms to rotate, and 175 ms to pick. The rotation of



the drum takes 50 ms and thus the latency delay is approximately

25 ms.

Table 1: Device Storage Summary

Usable
Cylinders

404/pack
3232/unit

5/strip
10,000/unit

Tracks
per

Cylinder

Bytes per
Unit

Track Cylinder (Million)

13,030 247,570 Pack: 100
Unit: 800

2,000 40,000* Unit: 400

*200, 000 Bytes/Strip since there are 5 Cylinders/Strip

Table 2: Device Timing Summary

Positioning Latency Rotation
Device (ms) (ms) (ms)

27

350/550*

8.4

25

16.7

50

Data Transmission
Rate (Kilo-Bytes/Sec)

806

*350
550

assuming that the previous strip already restored;
otherwise

4.2 Key Directory Decoding Time

One of the most important files in any information

retrieval system is the key directory. For each key specified

in a query the key directory locates the proper directory record,

which in turn either points to the inverted list for that key

(in the case of the Inverted Index organization) or the first

record in the data base containing that key (in the case of the

Device

3330

2321

3330

2321



Multilist organization). Locating the proper directory record

efficiently in a directory containing thousands or even millions

of unique keys is not a trivial task, and several different

techniques for decoding directories have been developed. A few

of these will be discussed briefly in Chapter VI. However, for

our current purposes we have to assume some specific structure

for the key directory in order to develop the overall timing

analyses. In the case of retrieval operations, it does not

matter too much which directory decoding technique is assumed,

since the directory decoding time affects all three file organi-

zations about equally, and moreover, it is usually dominated by

the time required to access the data base records. Directory

decoding time is generally more critical for on-line updating

operations, particularly record insertions and deletions in

systems where the key lists for all keys in the record are imme-

diately updated.

In this chapter and the succeeding one we shall assume that

the directory decoder has been implemented using a three-level

hierarchical index. This is probably the most popular directory

decoding technique in use today. We shall assume that the first

level of the hierarchical index is located in core and the second

and third levels on a movable head disk, such as the IBM 3330.

Furthermore, it will be assumed that each set of third-level

nodes emanating from a given second-level node is stored in the

same cylinder as the second-level node, so that there is no head

positioning required between the second and third levels. The

decoding time under these assumptions is as follows:



Table 3: Decoding Time for Three-Level Tree

Time Time for IBM 3330
Decoder Process Tree Level (Symbolic) Movable Head Disk

Process Record 1 0 0 ms
in Core

Head Position P 27
Latency R 8.4
Track Read R 8.4
Process Record 2 0 0
Lost Revolution R 16.7
Track Head R 8.4
Process Record 3 0 0

Total 69 ms

The above formulation assumes that the specific key directory

record desired is located halfway through a given track thus

requiring 8.4 milliseconds = x 16.7ms (~ x 13KB/806KB/sec).

4.3 Retrieval Timing Formulas

The purpose of this section is to derive approximations

for the average access time to satisfy a typical query for each

of the three file organizations being considered. Timing for-

mulas are generally a function of three different types of

parameters:

(1) The relevant characteristics of the data base

(e.g., average number of keys per record,

total number of unique keys in the file, total

number of records)

(2) The relevant characteristics of the query

(e.g., the number of nonnegated keys in the

query, the total number of records retrieved



in response to the query)

(3) The characteristics of the direct access

storage device (e.g., its transfer rate,

positioning time, storage space per track

and per cylinder)

Table 4 contains a full listing of the relevant parameters

and their definitions. Some of them are readily obtainable

from manufacturers' specifications or file generation statis-

tics; others can only be estimated to the best of the file

designer's or the eventual users' abilities.

One approximation that is made consistently throughout

this analysis is to ignore the time needed to perform in-core

processing, such as table lookups, calculations, and bitmap

processing. This seems reasonable since currently the time to

access core memory is on the order of 10,000 to 1,000,000 times

faster than the time to access external (disk or data cell)

memory. In essence, the data retrieval systems are assumed to

be totally input-output bound.

Mendelson (60) explains how all queries can be represented

by either of two canonical forms: disjunctive normal form and

conjunctive normal form. Disjunctive normal form consists of

one or more disjuncts (OR's) each of which is a conjunction or

product of one or more keys (e.g., (AA B) u (AA C) u E). Conjunc-

tive normal form is the reverse of this. As previously mentioned,

this paper assumes that all queries are transformed into dis-

junctive normal form. All of the query-related parameters in



the timing formulas are based upon a single query product (i.e.,

there are no OR's in the query). If the query is a sum of pro-

ducts, then the individual retrieval time for an average query

product must be multiplied by the number of sums.

Table 4: Parameters Used in Retrieval Time Models

Symbol

V
Nk
Nr
L
Cf
Rc

Ck

Definition

Number of distinct keys in the file
Number of keys/record (ave.)
Number of records in the file

Average list length (~ NrNk/V)
Characters/record (ave.)
Records/cell (ave.)
Cells/key (ave.)

Parameter
Type

File Related
1I

It

if

it

"I

"I

Qt Number of terms (i.e., keys) in a Query Related
single query product (ave.)

Qn Number of nonnegated terms in a
single query product (ave.)

LS Shortest list length in query (ave.) "

Qr Number of responses to the query
(ave.) (0<Qr<Ls)

A Number of file record addresses per Device Related
DASD track

P Positioning time of DASD (ave.)
R Rotation time of DASD (latency R)
Rt Transfer rate of DASD

(kilo-chars/sec)
Td Time required to decode the direc-

tory (also a function of decoding
technique)

Ta Time required to access a record;
Ta = P +.5R + Cf/Rt

The record access time (Ta) is the time to position the

disk head (P) plus latency (.5R) plus the data transfer time
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(Cf/Rt). The formulas for the retrieval time for the Multilist,

Inverted Index, and Cellular Serial file structures are shown

in Table 5.

The Multilist system decodes only the nonnegated keys of

the query, and then, for the query key having the shortest list,

it accesses every record on that list. The Multilist system

performs no intersections of address prior to file search, and

can start printing out answers as soon as it locates the first

record on the list that satisfies all keys.

The Inverted Index system first decodes all keys in the

query, and then accesses the address lists for each key, where

each address list averages [L/A] tracks in length. ( [XI denotes

the integer rounding of X up to the next highest integer.) It

is assumed here that all the inverted list tracks for a given

key value are located on the same cylinder, so that only one

head positioning movement is required. Inverted Index then per-

forms the list intersections in core and retrieves only those

records that satisfy all query conditions. 5 Thus, at the end

of its list processing, and before accessing the records, the

Inverted List system can tell the user how many records actually

satisfy the query.

5For the IBM 3330 disk only [L/A] -1 tracks will need to be
read in full; the last track of record addresses will
generally be only partly filled. For a device like the
IBM 2314 disk, which performs full track reads, the approxi-
mation is slightly more accurate.
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Knowing this statistic, the user may change his mind about

wanting to see them all.

The Cellular Serial system decodes only the nonnegated

keys of the query, and accesses the list of cells containing

each of the nonnegated keys, where each list of cells averages

[Ck/A] physical records in length. It then intersects the

lists of cells, retrieving all cells having at least one

record that satisfies the query conditions, and reads each

intersected cell serially (where each cell contain RcCf bytes).

Our present analysis assumes that the data base has not been

specially constructed so as to group together records having

similar keys. Under this assumption for a typically large

data base "No. of Cells">>"No. of Records Desired", and the

average cell would contain only one desired record. For this

reason, the number of cells retrieved can be approximated by

the number of records that satisfy the query.

Table 5: Retrieval Time Approximations

Process Multilist Inverted Index Cellular Serial

Directory QnTd QtTd QnTd
Decoding

Retrieval of -t(P+1.5R[L/A]) On(P+1.5R[Ck/Al)
Address Lists

Retrieval of L T OrT r RcCf
Data Records s a a Rt

Assuming that there are no negated terms in the average

query (i.e., Qn=Qt), the directory decoding times for all three
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file organizations are the same. Excluding the directory

decoding time (which is usually relatively small anyway), the

retrieval times for the three systems are as follows:

Tml = LsTa

Tii = Qt(P + 1.5R[L/A]) + QrTa

RcCf
Tcs = Qn(P + 1.5R[Ck/A]) + Qr(P + Rt

We can use these formulas to do some interesting comparisons.

Assume that Ta = P + 1.5R, meaning that a full track is read

each access, either because the records are large or a disk

like the 2314 which reads full tracks is used, and that

[L/Al = 1, meaning that all addresses for a given key are con-

tained on one physical track. For the two most popular sys-

tems, Multilist and Inverted Index:

Tml < Tii

if, and only if Ls < Qt + Qr

Taking some typical values, assume

Qt = 3 terms

Ls = 20

Thus, for the Multilist organization to be at least as effi-

cient in this case as the Inverted Index, then QrN 17,

implying that at least 85% (=17/20=Qr/Ls) of the records on

the shortest list would have to satisfy a three-term query.
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This is highly unlikely since the typical range for Qr/Ls

would be in the range of .05 to .25.

4.4 Examples Using the Retrieval Model

A FORTRAN program has been written to calculate approxi-

mate record retrieval times based on the formulas developed in

the previous section. The same program is used in Chapter V

to run tests based on the fully developed model. A listing of

the program is given in Appendix A.

Although the program allows the user to set all of the

parameter values for the model, some experimentation has shown

that given the basic size of the data base, the speed of the

DASD, and the types of queries that are usually asked, three

parameters turn out to be of particular importance:

L = Average list length for keys in query

Ls = Shortest list length in query (ave.)

Or = Number of responses to the query (ave.)

Thus, the program has been designed to run through a set of

"test cases" in which these three parameters are varied while

the remaining parameters are held constant. As can be seen

in Table 4, the average list length L (the value of which is

generally not known by most users) is closely related to three

parameters that users may have a fairly accurate estimate of:

Nr the total number of records, Nk the number of keys/record,

and V the total number of unique keys. Because L~ NrNk/V, L

can be increased by a factor of 10 by increasing either Nr or

Nk or their product by a factor of 10 or by decreasing V by a



factor of 10. For the sake of simplicity, Nk alone was chosen

as the control variable, although it is L, which depends on Nk,

that is the relevant variable. It turns out that in updating

files Nk is the only one of the four variables that is relevant.

Two sets of thirteen test cases were run through the pro-

gram. In the first set of cases the directories used by the

three systems and the smaller inverted indexes for the Cellular

Serial organization were assumed to reside on a fast random

access storage medium (such as the IBM 3330 disk) and the data

files and the larger inverted lists for the Inverted Index

organization were assumed to reside on a cheap bulk storage

device (such as the IBM 2321 Data Cell). In the second set of

cases, all files - directories, inverted lists, and data base

records - were assumed to reside on a fast disk. For both

sets of test cases the fixed parameters were set at values that

reflect typical large data base requirements; the assigned

values are shown in Table 6.

A fairly typical large data base was defined for the test

cases. It contains 500,000 records, each of which consists of

2000 characters, and it has 10,000 unique keys. The queries

are assumed to consist of one query product (no OR's) having

four terms, only one of which is negated.

On the 3330 disk a cell for the Cellular Serial organiza-

tion was defined to be equal to a disk cylinder. Since each

track can hold six records (13030/2000) and there are nineteen

tracks/cylinder, a disk cell holds 114 records. On the 2321,

a cell was defined to be one of the magnetic strips.
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Table 6: Values of the Fixed Parameters

Td = Time to decode the directory on 3330 disk = 69 ms

Nr = 500,000 records in the data base

V = 10,000 distinct keys

Cf = 2000 characters per logical file record

Ck = Minimum of (L , Nr/Rc)

Ob = 4 terms per query

Qn = 3 nonnegated terms per query

Positioning Time - P

Rotation Time - R

Transfer Rate - Rt

Record Addresses per Track - A

Record/Cell - Rc

Time to Access a Record - Ta
(P + .5R + Cf/Rt)

Time to Read a Full Track
(P + 1.5R)

Time to Read a Cell
(P + RcCf/Rt)

3330 Disk

27 ms

16.7 ms

806 KB/sec

1600

114

38 ms

52 ms

310 ms

2321
Data Cell

500 ms

50 ms

55 KB/sec

250

100

561 ms

575 ms

4136 ms

Each track on the strip thus holds one record, and a cell con-

tains 100 records. Since the records are assumed to be dis-

persed randomly throughout the cells, the number of cells/keys
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is assumed to be equal to the smaller of the average list

length and the total number of cells (Nr/Rc). Because of some

clustering, particularly as L approaches the total number of

cells, this figure will always be slightly too large.6

Three values for Nk (the number of keys per record) were

selected: 5, 20, and 80.

Note that

NrNk 50000ONk 
-L = U = = 50Nk

The other two variable parameters were set to several different

values subject to the common sense restriction that for a query

product

0 Qr< Ls< L

The results of the first set of cases in which the data

files and inverted lists (under the Inverted Index system) are

stored on the data cell are shown in Table 7. Table 7 clearly

demonstrates the superior retrieval efficiency of the Inverted

Index system - at least for this basic set of data base

characteristics.

6Rothnie (76, pp. 103-110) develops a Markov model that can be
used to find a better estimate of the number of cells that
need be retrieved given the number of records per cell, the
total number of cells, and the average list length. For example,
in a file containing 64 cells with 100 records/cell the expected
number of cells retrieved to get 20 records is only 17.3.
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All Times are in Seconds.

The results of the test cases also make clear several

things that were buried within the timing formulas. First of

all, the Multilist retrieval times are almost solely a function

of the length of the shortest list, and the Cellular Serial

retrieval times are almost solely a function of the number of

responses to the query.

The Inverted Index retrieval times are influenced by both

the number of keys per record and by the number of responses to

the query; however, the latter effect appears to be the domi-

nant one.

Note that in every case except the one in which the number

of query responses was a high percentage of the shortest list

length (Qr/Ls = 45/50 = 90%), the Inverted Index system proved

to be far more efficient than the Multilist system. Similarly
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the Inverted Index system dominated the Cellular Serial system

in all cases except when the number of query responses was very

low.

Note also that in all of the cases the Inverted Index

organization could print out the total number of records that

satisfy the request within 2.5 seconds

(= QtTd + Qt(P + 1.5R[L/A]))

The question arises as to whether the Cellular Serial

organization received a fair test in the above examples. Was

not Cellular Serial penalized by the slow serial data trans-

mission rate of the 2321 Data Cell, that made it take 4.136

seconds to read an entire cell (magnetic strip), while only

.561 seconds to access one record? Table 8 presents the same

set of test cases as in Table 7, except that it assumes that

all files related to the data base are stored on the 3330 Disk

(whose serial data transmission rate is 806 KB/sec vs. 55 KB/sec

for the 2321).

The results in Table 8 show that replacing the 2321 Data

Cells with the more expensive 3330 Disks cuts the average re-

trieval times for all three organizations by a factor of about

fifteen, with the Inverted Index system still coming out best.

This is as expected since both the serial data transmission

rate (806 KB/sec for the 3330 vs. 55 KB/sec for the 2321) and

also the record accessing time (38ms vs. 561ms) are 15 times

better in the 3330. However, all of the organizations become

more feasible: using the Data Cell in Case#13 with 80 keys
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per record and 600 responses to the query, Cellular Serial

would have taken 41 minutes to respond; using the 3330 Disk,

Cellular Serial could answer the query in 3 minutes.

Table 8

Approximate Retrieval Times with all Files on 3330 Disk

NUM LIST S-LIST QUERY INVRTD MULTI- CELL.
KEYS LENGTH LENGTH RESP. INDEX LIST SERIAL

1. 5 250 50 0 .5 2.1 .4
2. 5 250 50 1 .5 2.1 .7
3. 5 250 50 5 .7 2.1 1.9
4. 5 250 50 25 1.4 2.1 8.1
5. 5 250 50 45 2.2 2.1 14.3
6. 5 250 200 25 1.4 7.8 8.1
7. 20 1000 200 25 1.4 7.8 8.1
8. 20 1000 200 100 4.3 7.8 31.4
9. 20 1000 800 25 1.4 30.5 8.1

10. 20 1000 800 100 4.3 30.5 31.4
11. 80 4000 800 100 4.5 30.5 31.5
12. 80 4000 800 600 23.4 30.5 186.4
13. 80 4000 3500 600 23.4 132.6 186.4

The results thus far have been for fairly complicated

queries involving four keys. What about simpler queries? The

simplest types of queries - and in some situations these pre-

dominate - involve requests for only a single key (e.g., all

employees who are programmers). Note that for a typical single

key request Qr = Ls = L. Thus, our thirteen cases presented

earlier collapse into just three cases. The results, assuming

first the use of the 2321 Data Cell and secondly just the 3330

Disk, are presented in Table 9.

In the case of simple queries there is little to choose

from between Inverted Index and Multilist - both give almost



equivalent response times, irrespective of the speed of the

direct access storage device. In fact, Multilist does better

than Inverted Index, since when the 2321 is used, for every 250

keys in the list, Inverted Index has to retrieve another track

of inverted lists at a cost of .075 seconds per track.

Table 9

Approximate Retrieval Times for Simple Queries (Qt = 1)

A. With Data

NUM
KEYS

1. 5
2. 20
3. 80

B. With all

NUM
KEYS

1. 5
2. 20
3. 80

Fi

LE

les and Inverted Index Lists on

LIST S-LIST QUERY INVRTD
NGTH LENGTH RESP. INDEX

250 250 250 141.0
1000 1000 1000 562.2
4000 4000 4000 2247.2

Files on

LIST
LENGTH

250
1000
4000

the 3330

S-LIST
LENGTH

250
1000
4000

Disk

QUERY
RESP.

250
1000
4000

INVRTD
INDEX

9.6
38.0

151.5

2321 Data Cell

MULTI- CELL.
LIST SERIAL

140.4 1034.2
561.4 4136.5

2245.5 16545.7

MULTI-
LIST

9.5
37.9

151.4

CELL.
SERIAL

77.6
310.0

1239.7

the average list length is 4000

500 + (4000/250)(.075) = 1.7 se

this small difference is virtua

keys, Inverted Index will

conds more than Multilist.

lly wiped out when the 3330

Disk is used, since it can hold 1600 addresses per track and

since its time to access another track is only .038 seconds.

The surprisingly small overhead of the Inverted Index organiza-

tion can be attributed to our (hopefully realistic) assumption

that the entire inverted list for a given key is stored on one

When

take

Even



disk cylinder, and thus only one head movement is required.

On the basis of the above results, we now state the fol-

lowing inductively-reasoned hypotheses:

(1) When the queries are complex, the Inverted Index File

organization performs retrieval operations far more efficiently

than either Multilist or Cellular Serial.

(2) When the queries are simple, the Inverted Index and

the Multilist file organizations both perform retrieval opera-

tions equally well, and both are more efficient than Cellular

Serial.

Several caveats are in order at this point. Contrary to

what was just done above, the reader is generally cautioned

from making categoric generalizations based on a limited set

of results, since such results are often tied to a specific set

of "fixed parameter" values. Secondly, retrieval speed is only

one factor in selecting a file organization; other important

factors that need to be considered are discussed in the next

chapter.

Thirdly, the effects of parallel record accessions were

not included in the analysis. In the case of a large data base

such as in the given example, where ten to twelve IBM 3330 Disk

Packs would be needed just to hold the data records, the capa-

bility of overlapping disk accessions in satisfying a single

user request could imply a substantial decrease in his overall

waiting time. In the case of multiple simultaneous users it

could imply that their total waiting time would be far less
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than the sum of the individual processing times.

Finally, the above results explicitly assumed that records

were scattered randomly throughout the data base; an effective

method of clustering records according to the key combinations

appearing in the most frequently asked queries could make a

file organization such as Cellular Serial (where all desired

records could be placed contiguously in one or two cell.s) very

attractive. The problem of record clustering will be taken up

in more detail in Chapter VII.
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CHAPTER V

THE OVERALL FILE ORGANIZATION SELECTION MODEL

5.1 On-line File Updating

In general, the decision to allow on-line updating of

a data base should be based on a requirement that update

transactions be posted to the files within a short time

after they become known. Quantitative cost comparisons

between on-line and batch updating are often misleading

because of the difficulties in apportioning the fixed costs

of storage devices and interactive terminals (which are both

needed in any case), and the problem of measuring the hidden

costs of decreased response time for on-line users and

worsened turnaround for batch users.

On-line updating, once it has been decided upon, can

be classified into five categories:

(1) Whole Record Addition

(2) Whole Record Deletion

(3) Deletion of Keys

(4) Addition/Deletion/Modification

of Non-key Data

(5) Addition of Keys

The designer of a file organization that allows update

must give attention to two problems. The first is the up-

dating of the inverted lists or the internal list pointers



whenever a key is involved. This may occur in all of the

above categories except (4). The second is the relocation

of a record when an update expands its size, and the sub-

sequent utilization of its former space. This may occur in

Categories (4) and (5). The procedures for effecting these

updates and handling these two major problems are somewhat

different for threaded and inverted lists.

David Lefkovitz in his book File Structures for On-line

Systems (49) has an excellent chapter in which he describes

the updating procedures for the Multilist and Inverted Index

file systems. His descriptions are extremely clear, and they

have the advantage of being written in a consistent style.

For this reason, only the principal actions that need be taken

for each category of file updating are summarized here. For

a more detailed description, the reader is encouraged to go

directly to Chapter VIII of Lefkovitz. However, Lefkovitz's

discussion of the on-line updating of the Cellular Serial

system is quite limited, and a more comprehensive description

of the updating techniques for that system is presented here.

5.2 Updating Multilist Files

At the beginning of the record is a single bit called

the Record Delete Bit. If this bit is set to 0 it means that

the record is in the file; if it is set to 1, the record has

been logically, though not physically, deleted from the file.

In addition, associated with each Key/Link Address field is

a Key Delete Bit (similarly used). The Key/Link Address pair
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cannot actually be removed from the record because the list

linkage would then be broken, and the alternative of trans-

ferring the pointer to the link address of the previous

record would require a bi-directional list, which is very

costly in terms of space consumption.

(1) Multilist Files - Whole Record Deletion

Access the record and set the Record Delete Bit to 1. Since

it is preferable that the key list lengths within the direc-

tory be viewed as being the physical length of the lists,

(i.e., the actual number of random accessions needed to tra-

verse the list), nothing further need be done. Maintaining

a physical interpretation of the list lengths is useful for

determining which list in a query product should be searched.

(2) Multilist Files - Deletion of Individual

Keys Within a Record

Set the Key Delete Bit to 1 for the key(s) to be deleted.

The actual purging of deleted keys and deleted records and

the reclaiming of the space is performed during off-line file

maintenance.

(3) Multilist Files - Whole Record Addition

Assign a storage device address AD to the new record. For

each key in the record, transfer the current head-of-list

address from the directory to the link address of that key

76



in the new record, make AD the new head-of-list address for

that key, and increment the list length of that key in the

directory by one.

(4) Multilist Files - Addition/Deletion/

Modification of Non-key Data

Read the record from disk into core and modify the record. If

the record is shortened, repack the track and write it onto

the disk. If the record is increased in size and the repacked

track does not overflow, then write it back onto the disk. If

the record is increased and the repacked track overflows, then

delete the whole record and insert the modified record onto

the disk according to the procedure for Whole Record Addition.

(5) Multilist Files - Addition of Individual

Keys to a Record

Read the record from disk into core and add new key(s). Follow

the same procedure for adding each key as is used in Whole

Record Addition. Restore the modified record according to the

procedure used for Modifying Non-key Data.

5.3 Updating Inverted Index Files

(1) Inverted Index Files - Whole Record Deletion

Access the record and set the Record Delete Bit to 1. Decode

every key of the record and remove the record address from

every inverted list on which it appears, repacking the
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shortened key lists and restoring them to disk. Decrement the

key list lengths by one.

(2) Inverted Index Files - Deletion of Individual

Keys Within a Record

Decode each key to be deleted from the record and remove the

record address from the key list. Repack the shortened key

lists, restore them to disk, and decrement the list lengths by

one. Note that Key Delete Bits are not used with Inverted

Index because the key links do not exist on the file area it-

self, and hence deletion of a key from a record does not destroy

the continuity of the list.

(3) Inverted Index Files - Whole Record Addition

Assign a storage device address AD to the new record. Decode

each key in the directory to its proper inverted list and in-

sert the address AD in sequence into the list. If the inser-

tion of this address causes the list to overflow the allocated

block on mass storage, attach another block and chain it to

the previous one. Update the first record of the inverted list

by incrementing the list length by one. This is done for each

key in the record.

(4) Inverted Index Files - Addition/Deletion/

Modification of Non-key Data

The updating of non-key data is basically identical to that in

the Multilist system since no key lists are involved. The only



exception to this occurs when the record is increased in size

and the repacked track overflows, then the process of deleting

the old record and inserting the modified record onto a new

track (using Whole Record Addition) involves the updating of

all the lists associated with the record.

(5) Inverted Index Files - Addition of

Individual Keys to a Record

Read the record from disk into core and add new key(s). Follow

the same procedure for adding each key as is used in Whole

Record Addition. Restore the modified record according to the

procedure used for Modifying Non-key Data.

5.4 Updating Cellular Serial Files

In the Cellular Serial System the inverted list for a

given key consists of a list of those cells that have one or

more records containing that key. The process of adding a new

key to a record in the cell requires that the inverted list be

examined to see whether the given key is already contained in

the cell. If so, the inverted lists need not be changed; if

not, the cell that will be getting the new key must be added

to the inverted list for that key.

(1) Cellular Serial Files - Whole Record Deletion

Access the record and set the Record Delete Bit to 1. However,

this is all that is usually done on-line. The updating of the

inverted lists is performed during file maintenance, since the
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entire cell must be read and the keys of all the records in

the cell analyzed to determine whether the cell address should

be dropped from the list of any key. If the only occurrence

of a given key value in the cell was in the deleted record,

then the cell is removed from the inverted list.

(2) Cellular Serial Files - Deletion of

Individual Keys Within a Record

The process of key deletion in Cellular Serial systems is simi-

lar to that of whole record deletion; only the setting of the

Key Delete Bit is performed on-line. The reading of the entire

cell to determine whether the specified key has been retired

from the cell is again performed off-line during file maintenance.

(3) Cellular Serial Files - Whole Record Addition

The process of Whole Record Addition requires that the inverted

list of each key of the new record be examined to see whether

the parent cell of the new record already has that key. In many

cases only a small fraction of the keys in a new record will

have to have their inverted lists modified to include a new cell.

In general, the smaller the ratio of the number of keys per cell

to the total number of unique keys in the system, the greater

the probability that some of the key lists will have to be updated.

(4) Cellular Serial Files - Addition/Deletion/

Modification of Non-key Data

Since it is such a time-consuming process when the first key of a
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given type is added to a cell, an effort is made to keep record

relocations caused by cell overflow to a minimum. This is

usually accomplished by leaving sufficient reserve space at the

end of the cell, or distributed throughout the cell, that the

great majority of record relocations due to expansion are kept

within the same cell. For this reason, the Addition/Deletion/

Modification of Non-key Data is usually a straightforward pro-

cess. If cell overflow does occur, the old record is deleted

according to the Whole Record Deletion process, and then

inserted in another cell by way of Whole Record Addition.

(5) Cellular Serial Files - Addition of Individual

Keys Within a Record

Access the record and add the new key(s). Follow the same pro-

cedure for adding each key as is used in Whole Record Addition.

As was the case with Modifying Non-key Data, any expansion of

the record can usually be accommodated within the same cell.

5.5 File Update Timing Formulas

The development of accurate update timing formulas is a

difficult problem - particularly so when it is done in the ab-

stract without a real data base to fall back on for substantia-

tion. Siler (83) in his timing simulations specifically avoided

simulating any updating procedures. Cardenas (13) also avoided

updating factors, specifically mentioning that significant ana-

lytic work is needed in order to properly account for such fac-

tors. He stated that the update formulas derived by others
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(specifically Lefkovitz and Martin) were oversimplified in that

they did not take into account the various possible side effects

which depend on the characteristics of the data management

routines of the specific operating system (e.g., the overflow

effects of the indexed sequential methods).

Such problems aside, an attempt is made here to develop

various update timing formulas under the assumption that approxi-

mate or even imperfect formulas are better than no formulas at

all. The rationale behind many of the timing formulas will

usually be evident after a close reading of Sections 5.1-5.4.

Most of the update timing formulas presented here are based on

the work of Lefkovitz; however, they differ in at least six key

areas from those proposed by Lefkovitz:

(1) Lefkovitz assumed that the time needed to update the

directory was equal to the time to decode the directory. This

is generally not true. When adding or deleting an address to a

key list in the Inverted Index system, or when adding a record

to a key list in the Multilist system, the lowest level of the

directory is updated so that the list length for that key can

be incremented or decremented by one. Thus, the time to update

the directory Tu = Td + 1.5R. In the rare case when an

entirely new key is added to the system, every level of the

directory must be updated, thus Tu = 2Td. For the Cellular

Serial system, the directory does not keep track of how many

records containing a key are in each cell, so it does not need

to be updated except when a brand new key is added to the system.
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(2) When the Multilist and Inverted Index systems modify

non-key data such that record relocation is required, Lefkovitz

allowed only one disk access to store the updated record. Two

accesses appear to be needed: one to purge the old version of

the record from its current track, and one to store the updated

record on its new track.

(3) For whole record or single key addition in the Cellu-

lar Serial system, Lefkovitz seems to have ignored the fact that

the directory and the inverted lists need to be searched, and

that occasionally (the first time a given key is brought into

the cell) the inverted lists need to be updated. The timing

formulas presented here allow for such processing.

(4) When adding or deleting a record address to an in-

verted list, the list must be read up to the point at which the

address should be located, the new address must be inserted,

and the one track of the revised list must be rewritten. This

requires that an average of one half of the inverted list be

read for each key. Since he allowed for only one head movement,

Lefkovitz implicitly assumed that the entire inverted list for

a given key was located on the same cylinder. However, this

contradicts the assumption he made in his retrieval timing

analysis, where he allowed a full head positioning movement for

each track that contained part of the Inverted List. The

update and the retrieval timing formulas presented in this

paper are consistent in that both assume that all the inverted

list tracks for a given key are located within the same cylinder.
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(5) When modifying non-key data in the Multilist

system and the record expands enough to cause the track to

overflow, the update is handled by setting the Record Delete

Bit in the old record and by inserting the expanded record

into a new track. This requires the lowest level of the

directory to be updated with the list length incremented by

one, since purged records physically remain in the list and

must be included in the count to ascertain the shortest list

in conjunctions.

(6) The modifying of non-key data in the Inverted Index

system such that record relocation is required is a tricky

case. The list length in the directory need not be updated

since one record is being purged while an expanded version of

the record is being added. The directory and the inverted

lists need be read only once for each key since the old ad-

dress can be purged and the new address of the record can be

inserted in one pass. But how many tracks of the inverted

list must be read to find one key address and delete it, and

to add another in sequence? To simplify matters, it will be

assumed that the address of the new record is located on the

same track as the address of the old record. In the case of

the 3330 Disk, which can have 1600 link addresses on one

track, this is a reasonable assumption any time the list length

is less than 3000.

The following notation is used in conjunction with the

update timing analysis. It is basically the same as that
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used for the retrieval timing analysis:

Nk = Number of keys/record (average)

Td = Time required to decode the directory

Tu = Time required to update the directory = Td+1.5R

Ta = Time required to access a record = P+.5R+Cf/Rt

Ti = Time required to read halfway through Inverted

Index's inverted list and update the appro-

priate track

= P + 1.5R + 1.5R if [L/A] = 1

= P + .5 [L/A] 1.5R + 1.5R if [L/Al > 1

Tc = Time required to read halfway through Cellular

Serial's inverted list and update the appro-

priate track

= P + 1.5R + 1.5R(f) if [Ck/Al = 1

= P + .5 [Ck/A] 1.5R + 1.5R(f) if [Ck/A] > 1

f = The percentage of time that a key is to be added

to a cell in which it is not already repre-

sented (only relevant for Cellular Serial)

Table 10 breaks down the timing for each type of update into

its basic steps; Table 11 summarizes the overall update

timing formulas for each type of organization. These tables

are constructed assuming that all updates (e.g., addition of

n keys) are made against a single record. In the case of

generic updates, appropriate multipliers are required to

account for multiple key decoding, record accession, direc-

tory updating, and record updating. For example, a generic



TABLE 10: UPDATE TIMING

WHOLE
RECORD
ADDITION

WHOLE
RECORD
DELETION

DELETION
OF NON-KEY NON-KEY

n KEYS MODIFIC. MODIFIC.
CASE A CASE B

ADDITION
OF

n KEYS
CASE A

Multilist
Organization

Inverted Index
Organization

Cellular Serial
Organization

CASE A = WITHOUT RECORD RELOCATION CASE B = WITH RELOCATION
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PROCESS

Decode Directory Td Td Td Td Td

Access Record Ta Ta Ta Ta Ta

Update Directory NkTu NkTu nTu

Store Updated Record Ta Ta Ta Ta 2Ta Ta

Decode Directory Td Td Td Td Td

Access Record Ta Ta Ta Ta Ta

Update Directory NkTu NkTu nTu NkTd nTu

Update Inverted List NkTi NkTi nTi NkTi nTi

Store Updated Record Ta Ta Ta Ta 2Ta Ta

Decode Directory Td Td Td Td Td

Access Record Ta Ta Ta Ta Ta

Update Directory NkTd nTd

Update Inverted List NkTc nTc

Store Updated Record Ta Ta Ta Ta Ta Ta



TABLE 11

UPDATE TIMING COMPARISONS AMONG THE THREE FILE STRUCTURES

UPDATE TYPE

Whole Record Addition

Whole Record Deletion

Deletion of n Keys

Non-Key Modification
(w/o Relocation)

Non-Key Modification
(with Relocation)

Addition of n Keys

MULTILIST

Ta+NkTu

Td+2Ta

Td+2Ta

Td+2Ta

Td+3 Ta+NkTu

Td+2Ta+nTu

INVERTED INDEX

Ta+Nk (Tu+Ti)

Td+2Ta+Nk(Tu+Ti)

Td+2Ta+n(Tu+Ti)

Td+ 2 Ta

Td+3Ta+Nk(Td+Ti)

Td+2Ta+n(Tu+Ti)

CELLULAR SERIAL

Ta+Nk (Td+Tc)

Td+2 Ta

Td+2Ta

Td+2Ta

Td+2 Ta*

Td+ 2 Ta+n(Td+Tc)

*It is assumed that sufficient space is
is very rare.

left within the cell such that relocation

Td = Time required to decode the Directory

Tu = Td + 1.5R

Ta = P + .5R + Cf/Rt

Ti = P + .5[L/A]1.5R + 1.5R

Tc = P + .5[Ck/All.5R + 1.5R(f)
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update might be something like: "For all employees with

TITLE = CHEMIST, change SUPERVISOR to SMYTHE J."

5.6 Examples Using the Updating Formulas

The FORTRAN program used earlier in this report for

calculating retrieval times has also been designed to calcu-

late the various update times for the same test cases. How-

ever, note from the update formulas that of the three critical

parameters isolated for retrieval time - Nk, Ls, and Or -

only Nk (the average number of keys per record) has an effect

on updating time. In fact, once the characteristics of the

data base and the specifications of the DASD have been set,

only Nk and f (the fraction of keys to be added that are not

already contained in the cell) have an effect on update times,

and f is relevant only for the Cellular Serial organization.

Tables 12 and 13 show the output of the program for the

parameter values specified in Table 6, with f set at the rea-

sonable value of .2 and Nk set at the three different values

used earlier for retrieval timing (5, 20, and 80). Table 12

is based on the same assumptions as Table 8: all directories

and the inverted indexes of the Cellular Serial organization

are assumed to reside on the 3330 disk, while all data base

files and the inverted lists of the Inverted Index system are

assumed to beon the 2321 data cell. Table 13 is based on the

same assumptions as Table 9: all files are assumed to be

located on a 3330 disk.
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Table 12: Update Times with Data Files on 2321 Data Cell

NUM
KEYS

LIST INVRTD
LENGTH INDEX

5 250

20 1000

- 80 4000

4.3
4.9
1.2
5.3
2.7
2.7

16.9
17.6

1.2
17.6

2.8
2.8

102.1
102.7

1.2
101.3

3.7
3.7

MULTI-
LIST

1.0
1.2
1.2
2.2
1.2
1.4

2.4
1.2
1.2
3.6
1.2
1.4

8.1
1.2
1.2
9.3
1.2
1.4

CELL.
SERIAL

1.2
1.2
1.2
1.2
1.2
1.4

3.1
1.2
1.2
1.2
1.2
1.4

11.6
1.2
1.2
1.2
1.2
1.5

UPDATE
OPERATION

REC.ADDITION
REC.DELETION
MOD W/O RELOC.
MOD WITH RELOC.
DELETE 2 KEYS
ADD 2 KEYS

REC.ADDITION
REC. DELETION
MOD W/O RELOC.
MOD WITH RELOC.
DELETE 2 KEYS
ADD 2 KEYS

REC.ADDITION
REC.DELETION
MOD W/O RELOC.
MOD WITH RELOC.
DELETE 2 KEYS
ADD 2 KEYS

It is obvious from Table 12 that whereas Inverted Index

is by far the most efficient organization for record retrieval,

it is by far the least efficient organization for on-line

updating. The principal reason why Inverted Index performed

so poorly was that its long inverted lists were located on the

slow 2321 Data Cell. In the 80-key case, of the 102.1 seconds

needed to perform a record addition 94 seconds was consumed in

updating the inverted lists alone (excluding the directory up-

dating): 40 seconds (80 keys x 500 ms/key) was needed to

position the mechanism at the start of the inverted lists; 48

seconds (80 keys x x 16 tracks x 75 ms/track) was needed to

read halfway through each key list, which averaged 4000/250 =

16 tracks in length; and 6 seconds (80 keys x 75 ms/key) was



needed to update the appropriate track on each key list.

The assumptions used in generating Table 12 can be modi-

fied in a couple of different ways to provide additional in-

sights. For example, Table 12 was based on the optimistic

assumption that the entire inverted list for a given key was

placed on the same cylinder (or at least on the same magnetic

strip). In a highly volatile environment with numerous key

changes and heavy record additions this might prove to be

almost impossible to maintain. Moreover, in a situation where

no concern whatsoever was given to initially placingt-e inverted

lists on the same cylinder, the time to add one 80-key record

would be over 370 seconds.

On the other hand, if the eventual users were willing to

pay more money for mass storage, the inverted lists could be

put on the IBM 3330 disk along with the directories, leaving

only the data base records themselves on the data cell. In

this situation it would take only 7.0 seconds to update all

the inverted lists of an 80-key record (versus 94.0 seconds

before), and only 15.1 seconds overall to add an entire 80-key

record. Part of this dramatic decrease in time is accomplished

by the faster positioning and rotation speeds of the 3330, and

part by the fact that it can hold more record addresses per

track than the 2321.

The results shown in Table 13 were generated assuming

that all files connected with the data base are placed on 3330

disks. Note that although all of the file organizations perform
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updating more efficiently when only the 3330 disks are used,

it is the Inverted Index organization that exhibits the most

drastic improvement. As discussed previously, much of this

gain is due to moving the inverted lists to the disk; for

example, in deleting an entire record, 87 seconds are gained

by transferring the inverted lists to disk and slightly less

than one second is gained by transferring the data records

to disk too.

Table 13: Update Times with all Files on 3330 Disk

INVRTD,
KEYS LENGTH INDEX

250

20 1000

80 4000

.9
1.0
.1
.9
.5
.5

3.5
3.6
.1

3.1
.5
.5

14.7
14.8

.1
12.9

.5

.5

MULTI-
LIST

.5

.1

.1

.7

.1

.3

1.9
.1
.1

2.1
.1
.3

7.5
.1
.1

7.7
.1
.3

CELL.
SERIAL

.7

.1

.1

.1

.1

.4

UPDATE
OPERATION

REC.ADDITION
REC.DELETION
MOD W/O RELOC.
MOD WITH RELOC.
DELETE 2 KEYS
ADD 2 KEYS

2.6 REC.ADDITION
.1 REC.DELETION
.1 MOD W/O RELOC.
.1 MOD WITH RELOC.
.1 DELETE 2 KEYS
.4 ADD 2 KEYS

11.1 REC.ADDITION
.1 REC.DELETION
.1 MOD W/O RELOC.
.1 MOD WITH RELOC.
.1 DELETE 2 KEYS
.4 ADD 2 KEYS

The updating times presented here cannot be directly com-

pared with the retrieval times shown earlier, because the

latter depend on factors, such as the number of terms; in the



query and the number of responses to the query, that have no

direct parallel in file updating. However, a rough compari-

son shows that except for the Inverted Index system the

retrieval operations generally take substantially longer than

the updating operations. This is true whether comparing

Tables 7 and 12 or Tables 8 and 13 (for parallel assumptions).

Again the reader is cautioned against making generali-

zations without going back to the basic timing formulas. For

example, Tables 12 and 13 might lead one to believe that adding

or deleting keys to a record is inherently a more efficient

operation than the addition or deletion of an entire record.

However, this appears to be true only because the chosen example

illustrates the time needed to add 2 keys to a given record. It

turns out that for all three file organizations the time needed

to add 20 keys to an existing record is greater than the time

needed to add an entire 20-key record.

5.7 Selecting the "Best" File Organization

One of the main purposes of this paper is to formulate

some general decision rules for choosing the optimum file organi-

zation for any given case. It would appear that after the pre-

ceding detailed analysis of retrieval and update times, we are

well prepared to do just that. Unfortunately, the answer to the

"what is best" question still appears to be very complex and

qualitative. As mentioned earlier, Cardenas (13) suggested in

a recent paper that the best data base system is one that mini-

mizes a cost function that includes -
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(a) On-line retrieval costs

(b) On-line updating costs

(c) Storage costs

(d) Off-line file maintenance and file

updating costs

(e) Costs for loading the data base initially

and for performing file re-organization at

appropriate intervals to improve the per-

formance of the system

(f) Other highly unquantifiable costs including

the costs of initial programming, re-

programming, documentation, data base

administration, etc.

- while satisfying given design constraints (such as the query

response time must be less than 3 seconds for 80% of the queries).

We can make some general observations as to what will happen

to each of the individual cost functions in future years. The

on-line operating costs include not only the computer charges,

telephone line costs, and interactive terminal costs, but also

the costs of having people sitting on-line waiting for answers.

People costs have risen sharply over the past few years and will

continue to do so. With data bases growing larger, more all-

encompassing, and capable of handling more simultaneous users,

more and more people will be sitting on-line and waiting.

Computer costs, on the other hand, have fallen sharply over

time, while computer capacities have risen dramdtically; these

trends should both continue. Thus, the fixed costs of the direct
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access storage devices, of the interactive and remote batch

terminals, and of the computer time needed to load the data

base initially and to perform periodic file reorganizations

and regular batch-mode file maintenance and updating should

be declining in the future.

The software development and maintenance costs for

major data bases have historically been both large and grossly

underestimated. However, two trends are operating to reduce

that problem. First, with so much now known and documented

about designing data bases, most in-house development projects

in this area will no longer be pioneering. The success of

some very inexpensive data bases - O'Connell (66) - is

testimony to the validity of this argument. Secondly, the

generalized data base management systems are getting more

sophisticated, more user-oriented, and more prolific all the

time; and relative to the general rate of inflation, the cost

of these generalized systems is declining.

With software development costs and computer-related

costs going down relative to the costs of keeping people

waiting, we propose as a useful first cut decision rule the

minimization of the average on-line processing time per opera-

tion. This is defined as follows:
n

Average on-line processing time = Pi(RET) + E Pi(UPDATi)
i=2

where P
i=1-
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RET = estimated average retrieval time

UPDATi = estimated average processing time for update

operation type i

P± = percentage of all on-line operations that

consists of type i processing

Martin (57) developed a similar, although simpler, model

that was based on less exact timing formulas. However, as

mentioned in Chapter III, he contorted the resulting equa-

tions in such a way as to derive an ultimate model that was

less useful than the original one.

Examples are presented in Tables 14 and 15 illustrating

the use of the above decision rules. To simplify the examples

only three of the several possible updating operations have

been included:

P2 = percentage of whole record additions

P3 = percentage of whole record deletions

P4 = percentage of non-key data modifications

(without record relocation)
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Table 14: Some Results Using the Decision Rules

with the Data Files on the 2321 Data Cell

Nk = 5 Ls = 50 Qr =

INVRTD INDEX MULTILIST
P1 P2 P3 P4 RETRVL OVRALL RETRVL OVRALL

.90

.60

.50

.10

.10

.03

.05

.20

.10

.50

.03

.05

.20
.10
.30

.04

.30
.10
.70
.10

5.4
5.4
5.4
5.4
5.4

5.2
4.0
4.6
2.3
4.3

28.3
28.3
28.3
28.3
28.3

25.6
17.4
14.7

3.9
3.8

CELL. SERIAL
RETRVL OVRALL

21.0
21.0
21.0
21.0
21.0

19.0
12.7
11.0

2.3
3.1

Nk = 20 Ls = 200 Qr = 25

INVRTD INDEX MULTILIST
P1 P2 P3 P4 RETRVL OVRALL RETRVL OVRALL

.90

.60

.50

.10

.10

.03
.05
.20
.10
.50

.03
.05
.20
.10
.30

.04

.30

.10

.70

.10

17.5
17.5
17.5
17.5
17.5

16.8
12.6
15.8

6.0
15.6

112.5
112.5
112.5
112.5
112.5

101.4
68.0
57.1
12.4
12.9

CASE 3 Nk = 80 Ls = 3500

INVRTD
P1 P2 P3 P4 RETRVL

.90

.60

.50

.10

.10

.03

.05

.20

.10

.50

.03

.05

.20

.10

.30

.04

.30

.10

.70

.10

343.9
343.9
343.9
343.9
343.9

Qr = 600

INDEX
OVRALL

315.7
216.9
213.0

55.7
116.3

MULTILIST
RETRVL OVRALL

1965.0
1965.0
1965.0
1965.0
1965.0

1768.8
1179.8

984.5
198.3
201.0

The FORTRAN program used earlier for calculating the

retrieval and updating examples includes a section illustra-

ting the use of the overall model for five very different

situations. For example, in the first situation 90% of the

on-line operations are retrievals, with the other 10% being

divided between additions, deletions, and modifications; in
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CASE 1

CASE 2

CELL.
RETRVL

103.8
103.8
103.8
103.8
103.8

SERIAL
OVRALL

93.5
62.5
52.7
10.8
12.3

CELL.
RETRVL

2482.3
2482.3
2482.3
2482.3
2482.3

SERIAL
OVRALL

2234.5
1490.0
1243.7

249.5
254.4



the fifth, only 10% of the operations are retrievals, while

50% are record additions and 30% are record deletions.

Table 14 is based on the results shown in Tables 7 and 12;

it assumes the use of IBM 3330 disks and IBM 2321 data cells

as earlier described. Table 15 is based on the results shown

in Tables 8 and 13; it assumes that only the 3330 disks are

used. Both tables use three of the more representative cases

selected from the thirteen presented in Tables 7 and 8.

Table 15: Some Results Using the Decision Rule

with All Files on the 3330 Disks

Nk = 5 Ls = 50 Qr =

INVRTD
Pl P2 P3 P4 RETRVL

INDEX
OVRALL

MULTILIST
RETRVL OVRALL

CELL. SERIAL
RETRVL OVRALL

1.9 1.9
1.3 1.9
1.2 1.9

.4 1.9

.5 1.9

Nk = 20 Ls = 200 Qr = 25

P4

.04

.30

.10

.70

.10
80

INVRTD INDEX
RETRVL OVRALL

1.4
1.4
1.4
1.4
1.4

1.5
1.3
2.1
.9

3.0

Ls = 3500

INVRTD INDEX
P3 P4 RETRVL OVRALL

.04

.30

.10

.70

.10

23.4
23.4
23.4
23.4
23.4

MULTILIST
RETRVL OVRALL

7.8 7.1
7.8 4.8
7.8 4.3
7.8 1.1
7.8 1.8

Or 600

MULTILIST
RETRVL OVRALL

21.9 132.6
15.5 132.6
17.6 132.6

5.4 132.6
14.2 132.6

CELL.
RETRVL

8.1
8.1
8.1
8.1
8.1

CELL.
RETRVL

119.6 186.4
80.0 186.4
67.9 186.4
14.1 186.4
17.1 186.4
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CASE 1

.90

.60
.50
.10
.10

.03

.05

.20

.10

.50

.03

.05

.20

.10

.30

.04

.30

.10

.70

.10

CASE 2

2.1
2.1
2.1
2.1
2.1

1.7
1.2
1.1
.3
.6

P1

.90

.60

.50

.10

.10

P2

.03

.05

.20

.10

.50

P3

.03

.05

.20

.10

.30

Nk=CASE 3

P1

.90

.60

.50

.10

.10

P2

.03

.05

.20

.10

.50

.03

.05

.20

.10

.30

SERIAL
OVRALL

7.4
5.0
4.6
1.1
2.1

SERIAL
OVRALL

168.1
112.4
95.5
19.8
24.2



Tables 14 and 15 demonstrate that the retrieval effi-

ciency of the Inverted Index file is significant enough in

most cases to keep its average on-line processing time well

below that of the other file organization strategies. The

Inverted Index system was by far the most efficient when

retrieval operations made up 90%, or even 50% of the on-

line operations. In the cases where non-key modifications

predominated, Inverted Index still proved to be best, al-

though Cellular Serial performed as well when the average

list length (which is directly related to the number of keys/

record in these cases) was low. Only in the case where the

relative percentage of retrieval operations (10%) was over-

shadowed by the percentage of record additions (50%) and

deletions (30%) did the other systems prove to be more effi-

cient, and then only where the average list lengths were low

or medium.

Once again the reader is cautioned against overgeneral-

izing from the above results. The results are indicative,

rather than definitive. Although a number of realistic test

cases were examined, it must be remembered that all of them

utilized the same basic set of "fixed" parameter values

(e.g., number of records, number of terms/query, transfer

rate of the DASD, etc.). A new situation in which any of

the parameter values are different should be run through the

decision rules. For example, it should be noted that in all
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cases presented in Tables 14 and 15 the percentage of

record relocations caused by adding keys or non-key data

was assumed to be zero. Such record relocations are far

more time-consuming to perform under Inverted Index than

under either of the other two organizations.
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CHAPTER VI

DETAILED IMPLEMENTATION TECHNIQUES AND TRADE-OFFS

The first five chapters of this thesis were designed to

emphasize the macroscopic problem of selecting the best file

organization in a given situation. The purpose of this chap-

ter is to get closer to the "nitty-gritty" problems of ac-

tually implementing a multi-key retrieval system. The intent

is not to reproduce a minute detail of all the specific tech-

niques that have been proposed in the literature, but rather

to organize the techniques according to a useful framework,

to discuss the primary trade-offs that exist between alterna-

tives, and to provide the interested reader with "link pointers"

by which he can pursue specific techniques in greater detail.

In general, most of the implementation alternatives will

be discussed within the framework of the Inverted Index file

structure. This is because the Inverted Index system has

proven to be both complicated, thus allowing many possible

design alternatives, and popular, implying that many of the

alternatives have been proposed in the literature. Moreover,

the test results described in Chapters IV and V of this

thesis strongly indicate that in a wide variety of situations

Inverted Index provides both the fastest retrieval times and

the fastest average on-line processing times. The first

general area to be treated - the organization of the key

directory - is equally applicable to any of the organizations
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discussed thus far.

6.1 Techniques for Directory Decoding

The purpose of a directory is to translate a key taken

from a query to an address that points to an inverted or

threaded list of record addresses containing that key. One

of the most complete discussions of directory decoding tech-

niques is presented by Lefkovitz (49). He discusses four

types of decoders: one based on fixed length key fragments

obtained by truncation; one based on full (variable) length

keys; one based on truncating keys to unique variable length

fragments; and one based on hash coding the keys onto address

locations. The first three decoders all utilize a balanced

tree to decode the key values.

6.1.1 The Balanced Tree

The balanced tree has the property that if the lowest

level of the tree is N, then all keys can be decoded in either

(N-1) or N levels, thus giving rise to a nearly constant

decoding time. Assuming that the number of key/address pairs

that can fit on a track (tree node) is M, then the maximum

number of unique keys that can be decoded in an N-level tree

is MN. M is often referred to as the tree branching factor.

For example, a 3-level tree having 200 keys per track could

decode up to (200)3 = 8 million keys. This means that a

unique key value out of 8 million could be decoded in three

random accessions, and in two accessions if the top level of

the tree were maintained in core. Landauer (48) wrote one of
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the earliest papers describing the use of balanced trees in

the decoding of keys.

6.1.2 Fixed Length Key Fragments

The most popular type of decoder is the balanced tree

using fixed length key fragments obtained by truncating the

full length keys. The principal advantages of this technique

are its programming simplicity, its decoding speed, and its

ability to perform range searches on keys (e.g., AGE/21 THRU

AGE/30). Its main disadvantage is the fact that it allows

ambiguous decoding of keys. The ambiguity can be resolved

either by examining the file records, thus resulting in exces-

sive retrievals, or by including the full key somewhere in the

directory, thus leading to a higher storage overhead. SDC's

sophisticated Time-Shared Data Management System (TDMS) uti-

lized fixed length truncated keywords, and set an indicator

any time there were duplicate key values on either side of a

particular key fragment (Bleier and Vorhaus (8)).

6.1.3 Full Variable Length Keys

The second technique involves the use of the full,

variable length keys and thus assures completely unambiguous

decoding, but at the cost of increased storage consumption.

In particular, decoding full keys using a balanced tree is

simple to program, but wasteful of disk storage. Decoding

full keys with a standard parsing tree (see Sussenguth (86))

is more economical in storage, but more complex to program.
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6.1.4 Variable Length Key Fragments

The third technique is based on truncating the keywords

to variable length unique fragments. For example, if BABBET,

BABSON, and BAILEY are the first three keys, the first would be

encoded to the key fragment B, the second to the key fragment

BABS (since BABBET and BABSON differ at the fourth letter), and

the third to the fragment BAI. This technique is substantially

more difficult to program than the fixed length truncated key-

words, but it decodes all keys unambiguously. However, its core

and disk storage requirements are equal to that of the fixed

length truncated keywords when the latter's special storage re-

quirements for resolving ambiguity are taken into account, and

substantially greater when the ambiguous decoding of the fixed

tree is resolved by extra file accessions.

Wagner (90) has reported on a related, but more compli-

cated, technique involving both front and rear compression. For

example, the distinction between BABBET and BABSON would be the

B and the S respectively in the fourth position. Wagner has

also suggested the use of pointer compression based on relative

addressing in the case where tree nodes are fixed-size tracks.

Thus, if only 200 nodes can be addressed from a given node, then

only 8 bits need be used for addressing (since 28 = 256>200).

6.1.5 Hash Coding Techniques

The fourth technique discussed by Lefkovitz involves the

use of hash coding (or randomizing) the key words to specific

memory locations, with chaining being used to take care of
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multiple key hits on the same location. The randomizer de-

coders generally require less core and disk storage than the

various truncation techniques (particularly when the overhead

needed to resolve ambiguity is considered) and often decode

in less time. However, they can become inefficient when the

chains grow long, and they are not capable of automatically

performing range searches (e.g., 10,000 <SALARY <25,000).

Section 3.1 of this thesis includes a fairly good bibliog-

raphy on hash coding techniques, many of which involve open

addressing methods within the hash coding area, a technique

that should prove more effective in a disk environment than

Lefkovitz's proposed chaining techniques. The use of hash

coding to locate the inverted lists for a given key has also

been described by Bloom (9).

6.2 Techniques for Organizing the Data Base Files

6.2.1 Using Record Identity Numbers

Several authors - notably Lefkovitz (49), Prywes (71),

and Bloom (9) - have discussed the interval structuring of

the data base records. Most of them agree on the appropriate-

ness of assigning each record a unique "Record Identity Number"

(RIN) or record accession number. These RINs may have a

physical connotation (e.g., social security numbers, invoice

numbers) or may be assigned sequentially as records are added

to the data base. Bloom suggests that in certain applications

it may be possible to store the records on the disk more or

less serially so that there is a simple relation between the
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RIN and the disk location of the record. In other cases the

data files may be organized as direct access files based on

hash coding the RIN, or as indexed sequential files using the

RIN as the primary key.

If the RIN is an actual data base key, retrievals and

updates involving that key are made more efficient because

of the juxtaposition of all records having a given key value.

However, whether the RIN is a natural key or not, it is use-

ful to batch off-line file updates by RIN (or by the hash code

of the RIN if direct access is used), thus keeping the head

positioning movements between data records to a minimum. The

disadvantages of the RIN approach are its extra storage re-

quirements when the RIN is not a natural key, and the loss of

efficiency in sequentially processing the data base when the

optimum key for sequential ordering is not unique.

6.2.2 Intra-record Organization of Data Base Records

Within each variable length data record are the RIN,

the individual key names and associated key values, and the

non-key data of the record. A table of contents is included

within the record to indicate the starting addresses for each

key name/key value combination and the starting point of each

non-key data component. Often the key names are identified

by short codes, which can then be converted back to the full

key names for printing by means of a small core resident

table. In the various threaded list organizations each key

will also have associated with it a pointer to the next record
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on its chain. In addition, the record may contain usage sta-

tistics relating to the entire record, or even to detailed

keys, or may have access control keys that allow the system to

restrict query access to a given record via a code presented

in the query.

6.2.3 Using a Separate Table for Literal Strings

Apart from these basic specifications for the internal

record structure, there are several areas in which the file

designer can make a choice between alternatives that have

different implications in terms of retrieval and updating

efficiency, storage costs, and programming complexity. For

example, long alphanumeric strings can either be stored within

the record or removed to a separate table and referenced by

pointers. For large data bases in which the alphanumeric

strings have many duplicates (e.g., CITY = "LOS ANGELES,

CALIFORNIA"), considerable storage space can be saved by list-

ing these literals only once in the separate table instead of

many times within the data base records. This is the approach

used by TDMS (8) and by Bloom (9). The disadvantage of this

approach is that the retrieval of the literal data requires

additional file accessions beyond the retrieval of the basic

data records.

6.2.4 Removing the Keys from the Data Records

Another decision area that was mentioned both by

Cardenas (13) and Lefkovitz (49) is the problem of whether

or not the keys themselves should be stored in the data records.
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If the keys are not needed for query output, then they can be

omitted from the data records entirely. Thus, each key will

be listed only once in the entire data base (at the level of

the directory output that points to the inverted lists). This

option can save' considerable storage with the Inverted Index

system, bringing its disk memory requirement below that of any

of the other file organizations discussed. However, if the

entire records have to be reconstructed to answer certain

queries, then a whole series of links would have to be provided.

This would entail some sophisticated programming and also the

degradation of the query response time.

6.2.5 Alternatives for Handling Record Overflow

A third decision area is that of handling the problem

of a record that expands and causes the track to overflow.

Lefkovitz (49) handles this problem by deleting the original

record and placing the expanded version on a new track. This

necessitates changing the record address of that record in the

inverted lists of all keys contained in the record. The space

occupied by the deleted record is reclaimed during off-line

file maintenance. Another alternative when a record expands

too much is simply to add a trailer record on another track.

This eliminates the need to modify the key lists, but requires

that each future retrieval of that record access two or more

tracks.

Assuming that the trailer record can be located on the

same disk cylinder as the original record, then the use of
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trailer records will be more efficient than Lefkovitz's

approach whenever

Ae(1.5R) < Nk(Td+Ti)

where Ae is the expected number of accesses of this record

before the next file reorganization (at which time the record

would be pulled together again), and Nk(Td+Ti) is the one-

shot time needed to update the inverted lists when a record

is relocated.

For example, in the case of the 20-key records on the 2321

Data Cell, Ti = P + .5[L/A]l.5R + 1.5R = 0.725 sec., Td = .069

sec., Nk = 20, and R = .050 sec., leading to the result that

trailer records will be more efficient whenever the expected

number of accesses of that record before the next reorganization

is less than 212. When the data base is stored on the 3330 disk

trailer records are more efficient whenever Ae< 6 2 . Moreover,

even when record trailers are more efficient, it might be

desirable to avoid a time-consuming one-time record relocation

operation in favor of spending a little extra time on each

individual retrieval of that record.

6.2.6 Techniques for Avoiding the Updating of the Inverted
List Addresses

In cases where numerous updates cause substantial record

expansion and relocation, it might prove effective to have the

inverted lists point to positions in an intermediate table

rather than directly to the data records. This would tend to

enhance the efficiency of Lefkovitz's recommended delete-and-

add method of record relocation, since only the single record
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address in the intermediate table would have to be updated

when a record changed its location; none of the keys would

have to have their inverted lists modified. The disadvantage

of this approach is that every record retrieval would neces-

sitate one more extra disk accession. Lefkovitz (49) and

Bloom (9) have proposed variations on this idea, mostly cen-

tering on replacing the record addresses in the inverted lists

with the RINs. The actual record address could be determined

from each RIN by table look-up or hash coding as appropriate.

If the record addresses in the inverted lists were re-

placed by RINs, then each access of a record would require an

extra disk access (P + 1.5R) to get the record address, and

each time the record was relocated the record's address in

the RIN table would have to be updated (P + 1.5R + 1.5R) On

the other hand, using record addresses in the inverted lists

necessitates that when the record is relocated Nk(Td + Ti)

seconds are spent updating the inverted lists of all keys in

the record. In general, the RIN approach will be better when-

ever

Pl(P+1.5R) + P2(P+3.OR) < P2Nk(Td+Ti)

where P1 is the probability of a record retrieval and P2 is

the probability of a record relocation. Assuming 20-key

records on the 2321 Data Cell, then the RIN approach is supe-

rior whenever P1 is less than 29 times P2 -

6.2.7 Allowing Hierarchical Intra-record Data Relationships

One of the most interesting problems is that of
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incorporating hierarchical data associations within the data

base records. Lefkovitz (49) has indicated how the system

designer can indicate subordinate relationships by creating

subrecords within the master record. However, his approach

is not practical for a generalized system since any applica-

tions programs that operated on the data base would be data

dependent in that they would have to have some assumptions

concerning record structure built into them.

The Time-Shared Data Management System (TDMS) was de-

signed to handle hierarchical data structures for generalized

data bases such that the unsophisticated user need not be

aware of the intra-record structure or the overall file organi-

zation. The basic approach was described by Bleier (7), and

to a lesser degree by Bleier and Vorhaus (8). It consisted

of a separate CFIND table for each record that in essence

created a doubly-chained hierarchical tree for that record.

The CFIND table was described as containing a three-item entry

for each node of the tree - (1) a repeating group identifier

(RGID); (2) a down-pointer; and (3) an up-pointer. Bleier's

description is somewhat confusing until one realizes that he

used a slightly non-standard terminology: the CFIND table's

so-called up-pointer is really the right pointer of the

hierarchical tree; its down-pointer is really an up-pointer

of the tree. To better illustrate this mapping, the example

that Bleier worked through in table form is shown in tree-

structured form in Figure 7.

Winkler (96) and Winkler and Dale (97) described two
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Figure 7: Tree Structured Representation of Bleier's TDMS Example

P = Mumps

M = Measles

C = Chicken Pox

W = Whooping Cough
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different Inverted Index systems that allow hierarchically

structured records. Both involved the use of a triply-chained

tree structure with pointers up, down, and to the right for

each node. Winkler's thesis (96) also showed how the hierar-

chical structure of the record necessitates that the inter-

relationships between tree nodes governs the scope of the

retrieval and maintenance operations. He demonstrated that

three general cases covered all possible relationships between

the tree node(s) involved in qualifying the scope of the re-

trieval and the tree node(s) involved in the action to be taken.

Typical query examples illustrating this "level of qualifica-

tion" concept were given by Bleier (7) in his description of

the TDMS hierarchical data structures.

6.3 Techniques for Organizing the Inverted Lists

Cardenas (13) has stated that in highly inverted files

with many different key values, the managing of the inverted

lists is a file problem in itself, possibly of the same magni-

tude as the organizing of the data base itself. Most authors

recommend that the lists themselves be maintained in ordered

sequence for efficient logical manipulation.

Lefkovitz (49) has suggested that the inverted lists

should be variable length records with reserve space left at

the end of each list so that record addresses can be inserted

in sequence without overflowing. If the reserved area is

exhausted, then the last location of the record contains a

link address to another variable length record where the list
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continues. When the file is reconstructed, the key lists can

be pulled together again into single variable length records.

Lefkovitz has also suggested that instead of intersecting an

extremely long list with a very short one, it might be more

efficient to search the short one directly.

6.3.1 Keeping the Inverted Lists in Order vs. Sorting Them
as Needed

Keeping the inverted lists ordered by record address

not only speeds up the intersection and merging of lists, but

it also keeps the head positioning motions to a minimum in

retrieving the records that satisfy single key query. How-

ever, to my knowledge no one has quantitatively investigated

the trade-off between maintaining the lists in ordered sequence

versus sorting them each time a given key appears in a query.

In the case of a fast growing data base, where record additions

outnumber other on-line operations, it might improve the over-

all average processing time to reduce the time to add record

addresses to the key lists (by inserting them at any convenient

location) at the cost of slowing down the retrieval operations.

Once the volume of on-line record additions to the data base

subsided, the inverted lists would be "permanently" sorted and

the system could return to standard operating procedures. Re-

ferring back to the example used in Chapter V where the 80-key

records and their inverted lists were located on the 2321 data

cell, it took 48 seconds (=80 keys x x (4000/250 tracks)x 75

ms/track) to read halfway through each inverted list. If the

new key could be added to the last track of the inverted list,
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it would have taken only 6 seconds (80 keys x 75 ms/track) to

access just the last track of the inverted list. The savings

of 42 seconds for each record addition in this case compares

very favorably with the time needed to sort in-core each of

three lists of 4000 record addresses, a process that would now

be required in order to answer a typical three-key query.

In the general case, sorting the inverted lists before

each query will be less than the costs of maintaining ordered

lists whenever

P1QtSL + P2Nk(P + 3.OR) < P2NkTi

where Pi is the percentage of on-line operations that are

retrievals, P2 is the percentage that are additions or dele-

tions, and SL is the time needed to sort a list of length L.

Since Ti = P + .5(L/A]1.5R + 1.5R, then sorting each time will

be most efficient when

SL < P2Nk (. 5 [L/A] -1) 1. 5R/PlQt

6.3.2 Other Possibilities for Organizing the Inverted Lists

O'Connell (66) has described a small Inverted Index sys-

tem where the directory and inverted lists are essentially

combined into one indexed sequential file. In this system the

key directory includes every reference to a given key, not just

every unique key; thus, if a given key appeared in 1000 dif-

ferent data records there would be 1000 directory records for

it. The advantage of such an implementation is that it is very
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easy to implement and maintain using only the manufacturer-

provided indexed sequential access method.

Bloom (9) has proposed allowing the inverted lists to

be internally organized in one of two different ways. Both

are offshoots of his hash coding scheme for decoding the keys.

The first has the tracks of the inverted file organized into

three components: an "Attribute-Value pair hash area", a

ring-structured list of record addresses, and a serially-

ordered list of alphanumeric strings. The hash area consists

of (1) an attribute code, (2) a pointer to an alphanumeric

string for that value, (3) a pointer to the last record address

in the ring-structured list, and (4) a pointer to another track

if needed. The large number of pointers (each record address

in the ring-structured list requires a pointer) involved in

this organization implies that it might be overly wasteful of

disk storage. Bloom's second approach is to organize in bit-

pattern form keys having very long inverted lists. In bit-

pattern representation of the inverted lists, each bit position

corresponds to a data record, with a 1-bit indicating the

presence of the given key in that record, and a 0-bit indica-

ting its absence.

6.3.3 Using Bit-pattern Representation for List Intersection
and Merging

Other authors - notably Davis and Lin (24), Spitzer (85),

and Siler (83) - have suggested the use of bit-pattern repre-

sentations, not in the storage of the inverted lists, but in

performing the intersecting and merging of the lists to respond
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to queries. The Davis and Lin article described a particularly

efficient approach to bitmap processing that made use of some

of the unique characteristics of their system. Since their

data base consisted entirely of fixed length records stored on

an IBM 1301 disk at 31 records per track, they used 31 bits of

their 36-bit IBM 7090 computer word to designate which records

in a given track contained a desired key. To intersect two

key lists required only that two arrays containing the bitmap

representation of the two keys be logically ANDed word by word.

Then if the 19th bit in the 235th word in the resulting array

possessed a 1, it meant that the 19th record of the 235th track

contained both keys.

6.3.4 Bypassing the Inverted Lists for Unique Key Values

Bleier and Vorhaus (8) reported that when the key value

occurred in only one record, TDMS was designed to dispense with

the inverted list entirely. In other words, when the list

length was one in the output level of the directory, the in-

verted list pointer pointed directly to the data base record.

6.3.5 Inverted List Alternatives When the Records are
Hierarchically Structured

Two papers by Winkler (96) and Winkler and Dale (97)

have provided analytical timing comparisons of two Inverted

Index systems that differ primarily in the level of detail of

the inverted lists. In the first system each inverted list

had a pointer to every node in the hierarchical tree (of a

record) in which the given key value occurred. Relating this

to Figure 7, since the key value "Measles" occurs twice in the
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record, there would be two pointers, one to each node. In the

second system the inverted list had only one pointer to the

start of the record which contained the node, rather than to

the node itself. In this case, for the key value "Measles"

there would be only one pointer to the beginning of the record.

The Winkler and Dale paper which was based on more recent work,

gave results which indicated that the first system would gener-

ally provide better retrieval times, although the choice between

the two systems was not conclusive.

6.3.6 Whether or Not to Provide Inversion on all Queried Keys

One of the most important papers in the Inverted Index

area is a 1971 paper by Wang and Lum (91). Among other points

they raised, Wang and Lum clearly demonstrated that it is not

always most efficient to provide an inverted index on all data

fields that appear regularly in queries. By the use of the

FOREM file simulation program they showed that for a hypothet-

ical file under consideration, and for one key field that had

only four distinct values with relatively even list lengths,

it would be more efficient to provide no index on the key

field, than to provide one. Under the no index situation,

records would be retrieved after they had satisfied the selec-

tion criteria of all other key fields, and then would be

reviewed in core to see if they also satisfied the conditions

on the unindexed key field. They also performed another simu-

lation in which the only thing they changed was the distribu-

tion of the key values of this field, skewing it so that one

key value was represented in 70% of the records. This time
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the FOREM simulation indicated that an implementation with

indexes on all key fields would give the best performance.

These two results clearly demonstrated the dependence of sys-

tem performance on data base characteristics and also the

need for quantitative evaluation.
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CHAPTER VII

TECHNIQUES FOR IMPROVING RETRIEVAL EFFICIENCY BASED
ON RECORD CLUSTERING OR MODIFICATION OF

THE INVERTED INDEXES

7.1 Explanation of the Problem

The Inverted Index system, even though it generally per-

forms the most efficient retrieval operations of any of the

systems described in this paper, still has two principal

efficiency limitations: (1) the often substantial overhead

it must pay to access and intersect (or merge) the long in-

verted lists of file addresses; and (2) the fact that the

records to be retrieved are often scattered throughout the

data base. This latter problem arises chiefly because of the

"lumpy" nature of direct access storage devices. The time to

access a record on the same track (or cylinder) as the pre-

vious record is generally a small fraction of the access time

if the records are not located nearby. In fact, the aggrega-

tion or clumping together of records that are frequently

retrieved together is a desirable enhancement for any of the

file organizations discussed so far, as well as for any new

data base system that is proposed.

To provide quantitative examples of these two problem

areas, consider again the large personnel data base of the

company having 50,000 employees. Assume that in order to mea-

sure the company's progress in providing equal opportunities

for minorities the company wishes to know the names of all
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women in the company who are earning $20,000 a year or more.

Assume further that the company has 25,000 women employees

(mostly secretaries, clerks, and production line workers),

around 10,000 people who make over $20,000 a year (engineers,

salesmen, managers, etc.), but only 200 women who earn that

much (those male chauvinists!). The Multilist organization

would first find out that the key list for INCOME>20000 was

shorter than that for SEX=FEMALE, and then would proceed

merrily through the data base accessing 10,000 records to find

the 200 that finally qualified.

The Inverted Index system would be more efficient, but it

would nevertheless have to arrive at a medium-sized list of 200

records to be retrieved. Since the number of records to be

ultimately retrieved is considerably smaller than the number of

records in the data base, few records would be in the same

storage buckets, thus leading to a separate disk access for

almost every one of the 200 records.

To develop a more accurate statistic on the expected num-

ber of disk seeks that would be needed to access a given number

or records, a method similar to the one developed by Rothnie (76)

in his Ph.D. thesis could be used. Rothnie showed how a Markov

State model could be employed to derive the expected number of

pages to be retrieved in response to queries, as a function of

the file size and the number of records desired. For example,

he showed that in a file of 6400 records distributed randomly

on 64 pages, the expected number of pages to be retrieved to

access 20 records would be 17.3. Although developed for a

120



paging environment, Rothnie's methodology can be readily trans-

ferred to a standard disk environment.

This chapter will report on several methods that have been

proposed to deal with the problem of reducing the overhead

involved in retrieving and intersecting long key lists (only to

wind up with relatively short accession lists), and/or the

problem of grouping together records that have similar keys so

that disk accesses can be minimized. Neither of these problems

is elementary, as witnessed by the fact that many generalized

data management systems have avoided tackling either one. The

latter problem is particularly imprecise, because a given

record may have several keys in common (although different keys)

with hundreds of other records, and thus any decision rules

for aggregation should define a measure of closeness between

records that is based at least partly on the frequency by which

given keys appear together in the actual queries and on-line

updates.

Some of the pages to be covered here have proposed special

procedures to be used as adjuncts and improvements on the stan-

dard Inverted Index system. Others have proposed radically new

techniques that bring to bear entirely new approaches to record

storage and retrieval. Unfortunately, the papers generally

share a common limitation in that after reading them, the in-

terested system designer still feels unsatisfied, and uncertain

as to their ability to handle the myriad of implementation prob-

lems that are part of real-world situations. Questions concern-

ing updating methodology (particularly the question as to what
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happens when you modify a given key), concerning the problem

of maintaining unequal size clusters on equal-sized tracks,

or concerning what happens when some of the restrictive assump-

tions made to allow mathematically manipulatable equations are

relaxed in practice, are often ignored.

Their believability is further restricted by the fact that

not one of the papers reports that its system has been fully

implemented for a "real world" data base; in fact, few of them

have even been tried out on small artificial data bases. And

perhaps the most discouraging thing from the point of view of

the potential user who would like to compare systems is that

each one is described and justified within its own (generally

mathematical) framework. Thus, comparing the theoretical per-

formances of the proposed systems is difficult at best, and

virtually impossible when the assumptions made contradict one

another. With these caveats having been made, let us proceed

to discuss the various approaches.

To simplify matters a consistent terminology is used

throughout this chapter. The terms "attribute" and "key field",

and the terms "attribute value" and "key value" are used inter-

changeably, and it is assumed, unless otherwise specified, that

there are M key fields and N total unique key values. In

general, N>>M.

7.2 Techniques for Improving the Inverted Indexing Operations

One obvious technique for reducing the time to generate

the fully qualified list of record addresses in multi-key queries
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is to provide supplementary inverted indexes that involve two

or more key fields (i.e., attributes). Using the example of

the previous section, a combined index relating the attributes

SEX and SALARY would immediately provide the list of 200

records that satisfy the conjunction of the two key values

SEX=FEMALE and SALARY>20000. However, in general, supplemen-

tary indexes should be added selectively only for those key

fields that occur together frequently in query conjunctions or

for which there are only a few key values (e.g., SEX, COLOR OF

EYES); otherwise, the storage requirements of the supplemen-

tary index files will soon exceed those of the simple inverted

indexes.

Lum (54) has proposed doing away with the simple inverted

indexes entirely and using only combined index files. Each of

his combined index files consists of an ordered M-tuple involv-

ing all possible key values of each of the M key fields.

Table 16 shows a combined index file for the simple case when

there are four key fields (A, B, C, and D) and three key values

for each field:

Table 16: A Sample Combined Index File

M-Tuples Pointers or RIN's

1. A1B1C1D1  P22, P141
2. AlB1ClD2
3. AiBlC1 D3 P76
4. A1B1C2D1  P8, P37, P6 18

11. A3B3C3D2 P9 6, P212
12. A3B3C3D3
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This combined index in Table 16 could immediately point to all

records relating to a query involving key field A, key fields

AAB, key fields AABAC, or key fields AABACAD. Moreover, all

pointers relevant to a particular query are located successively

within the index. But what about queries involving key field

BAC or AAD? Lum showed that in the case of four key fields,

only six combined index files are needed to handle all possible

cases: ABCD, BCDA, CDAB, DABC, ACBD, BDAC. In the general case
M

[M/2] index files are needed for queries involving M key

fields.

Since the number of combined index files (and the needed

storage) rises rapidly with M, Lum suggested several compromise

methods for reducing redundancy at the cost of occasional extra

disk access. The principal method involved organizing the com-

bined secondary index files on subgroups of the M key fields.

Lum also showed how his system could handle ranges of key values.

The main advantages he promoted for the combined index system

were its reduced list access time, its elimination of the need

to perform key intersections or to search long inverted lists

when a given key field had only a few possible values, and its

elimination of false drops in cases where the records had com-

plicated internal hierarchical structures.

Mullen (64) followed up on Lum's suggestion to separate

the M key fields into subgroups for organizing combined index

files to save on file space. Using a simplified analysis,

Mullen derived the optimum number of subqroups to con:; ruct Lo

as Lo minimize the average co.3t. of an on-line opeilr ion, bde(d
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on the weighted sum of retrieval and update operations.

7.3 Systems Involving the Clustering of Similar Records

Ghosh and Abraham (33) proposed in 1967 what they called

a Balanced Filing System (BFS), whereby all records having a

given set of K unique key values are stored in the same sub-

bucket. Retrieval was based on a complicated system involv-

ing deleted finite geometries; to find the subbucket that

contained the desired records necessitated that a system of

linear algebraic equations be solved. Overall, the authors

claimed very low search times for the BFS in comparison with

other existing methods.

One of the principal disadvantages of the Balanced Filing

System was that it was designed for queries involving exactly

K attributes. If fewer than K attributes were specified,

additional redundant files were needed. If a range of key

values was specified, several accesses were required, generally

scattered throughout the file. Moreover, because of the finite

geometry approach, the system was difficult to understand, had

restricted parameter values, and required the solution of a set

of simultaneous algebraic equations in order to obtain the

bucket address.

In 1969 Chow (16) proposed a New Balanced File System

(NBFS) that he claimed required less storage, provided more

useful parameters, and gave even lower retrieval times than BFS.

Chow's system computed the bucket address by explicit formula

rather than by a set of simultaneous equations and thus was
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easier to use, too. However, as was the case with BFS, NBFS

was oriented toward retrievals in which the number of attri-

butes in a query was a fixed integer K. Response times for a

query involving g attributes (g<K) were much slower, because

several (or many) individual subbuckets had to be accessed.

In the general case, if there were N total possible key values,

then (-) subbuckets had to be accessed for a query involving

g attributes.

Gustafson (36) in his Ph.D. thesis at the University of

South Carolina, and also in a later paper (37), described a

randomized combinatorial file structure that bears some basic

similarity to the method of Chow. Gustafson assumed that there

were N unique key values, and that each record was described

by exactly M of them. Thus, there would be exactly( M )pos-

sible attribute value combinations, and all records corres-

ponding to a given combination of attribute values would be

stored in the same bucket. In general, the number of buckets

that had to be accessed in response to a query that specified

L attribute values (1L<M) was M-L)- Thus, if L=M only one

bucket had to be retrieved to get all appropriate recores; if

L=l then a large percentage of the buckets usually had to be

accessed. A small example showing the number of buckets that

must be retrieved when N=14 and M=5 is shown in Table 17.

Note that as the number of unique key values (N) increases,

the total number of potential buckets grows astronomically.

For example, when N=100 and M=5 the number of possible unique

combinations is 7.5 x 107. Because only a small fraction of all
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possible bucket combinations would occur in practice, Gustafson

suggested the use of a randomizing scheme that would use hash

coding to map the many possible attribute value combinations

down to a much smaller bucket address space. He also discussed

the problem of handling multiple attribute combinations that

mapped to the same bucket address. Overall, Gustafson's

approach seems to provide high retrieval and updating speed,

while requiring minimum storage overhead. However, his assump-

tion that all records be described by exactly M attribute values

seems to be overly restrictive for general-purpose applications.

Table 17: Example Showing the Number of Buckets
Retrieved Using Gustafson's Approach

N=14 M=5 (M)=2002

Number of Number of Percentage
Attributes Buckets Of Buckets

Specified (L) Retrieved Retrieved

1 715 out of 2002 .35714

2 202 out of 2002 .10984

3 55 our of 2002 .02747

4 10 our of 2002 .004995

5 1 out of 2002 .004995

Wong and Chiang (98) have reported on a system that gets

around the limitations imposed by others on the number of key

values that a given record can have. Under their approach,

assuming that there were N unique key values in the system, a
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given record could have anywhere from 0 to N keys. Thus, since

each key value could either be present or absent in a given

record, there are 2N possible clusters of records. Wong and

Chiang termed these clusters "atoms", because they correspond

to the irreducible units of a Boolean algebra. Since each

record belongs in only one atom, and since the atoms are pari-

wise disjoint, intersection of lists need never be performed;

since the atoms are totally exhaustive, every retrievable set

corresponds to a union of lists of atoms; and finally, since

set manipulations are not necessary, neither are inverted lists,

and thus all records belonging to a single atom can be stored

and retrieved together.

In actual practice only a small percentage of all the 2N

possible atoms would actually exist for a given data base, thus

bringing the storage problem down to manageable proportions.

However, many other questions remain that were not discussed by

Wong and Chiang: How do you quickly find out which of the 2N

possible atoms are specified by a query? How do you go from an

atom identification to a bucket address? How do you handle

overflow problems since the atoms will vary widely in size?

What are the specific procedures for handling key updates -

i.e., moving a record from one atom to another? And what hap-

pens to an atom when the last record on it must be moved to

another atom? Although the new atom-based system looks very

promising, substantial work has to be done before it can be

readily applied to real world data bases,

J. B. Rothnie (76) in his 1972 Ph.D. thesis at M.I.T.'s
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Civil Engineering Department, and in a later paper with

T. Lozano (77), has proposed one of the most useful approaches

to record clustering - a method he calls multiple key hashing

(mkh). Rothnie assumed that each of the M key fields could

take on only one of several distinct key values. The first

step in mkh was for the file designer to assign a hashing func-

tion hi to each key field, so as to map the individual key

values into (generally) a smaller number of codes. Each record

is thus mapped into a characteristic M-tuple based on its M

hash code values, and is assigned to a record cluster with all

other records that have the same characteristic tuple. If the

number of hash codes for key field i is (nfilei), then the

m
total number of clusters (nc)= E nfilei.

i=1

Rothnie then showed that for any given combination of key

values the appropriate clusters could be retrieved by calculat-

ing all characteristic tuples that satisfy the query. For

example, a request of the form (KEYi=VALUE) would require that

nc/nfilei record clusters to be retrieved; a request in which

all key fields were assigned values would require the retrieval

of just one record cluster.

Rothnie pointed out that for certain key fields (particu-

larly those with small values of nfilei) the number of clusters

to be retrieved using mkh could be large, and thus an inverted

file approach might be preferred for those attributes. In

order to partition the attributes into those that are most

efficiently handled by mkh and those that are best handled by
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inversion, Rothnie formulated a mathematical program based on

minimizing the expected number of disk accesses. He then

demonstrated the successful application of a heuristic approxi-

mation to the solution on several example files. For these

attributes to be organized under mkh, the optimal solution also

specified what their individual values of nfilei should be.

Rothnie's multiple key hashing technique appears to have

considerable potential in many real world situations. It

appears to be very efficient, easy to use, and to require mini-

mal extra storage. Further documentation is needed concerning

file updating and the handling of complex queries in the com-

bined systems where some of the attributes are organized by mkh

and some by inversion. The only noticeable restriction of

Rothnie's formulation is his assumption that each key field has

a single key value. In more complex data bases such key fields

as LANGUAGES SPOKEN or CHILDHOOD DISEASES must be able to accept

anywhere from zero to a fairly large number of key values for

any given record.
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CHAPTER VIII

SUMMARY AND RECOMMENDATIONS FOR FUTURE RESEARCH

The principal objective of this thesis has been to demon-

strate the feasibility of using a general parameterized model

to select the optimum file organization in a given situation.

Such a model is designed to predict the expected on-line pro-

cessing time for different file organizations as a function of

the average retrieval time, the average times for various up-

dating operations, and the relative percentage of each type of

operation. The average retrieval time and the average updating

times are in turn a function of the relevant characteristics

of the data base, the queries and requests made by on-line

users, and the direct access storage devices used to hold the

data base.

A FORTRAN program was developed to demonstrate the useful-

ness of the model in quasi-"real world" situations. The

retrieval and updating characteristics of three well known file

organizations - the Multilist, the Inverted Index, and the

Cellular Serial - were simulated within the program, and a

number of typical cases were run to demonstrate the application

of the model to various situations. From these cases several

inductively reasoned hypotheses were presented:

(1) When the queries are complex, the Inverted Index file

organization performs retrieval operations far more efficiently

than either Multilist or Cellular Serial.
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(2) When the queries are simple, the Inverted Index and

the Multilist file organizations both perform retrieval opera-

tions equally well, and both are more efficient than Cellular

Serial.

(3) For on-line updating operations, particularly record

additions and deletions, the Multilist and Cellular Serial or-

ganizations are both more efficient than Inverted Index.

(4) Overall, unless record additions and deletions make

up a very high percentage of all on-line operations, the

Inverted Index system generally provides lower on-line proces-

sing times than either of the other two organizations.

Since the Inverted Index organization proved to be gener-

ally superior to the other organizations, a number of specific

design alternatives were presented with a view toward optimizing

the performance of the Inverted Index system. In each case the

strengths and limitations of each alternative were described in

order to indicate the appropriate trade-offs between them.

Finally, several techniques that have been recently proposed

for organizing data bases so as to cluster together similar

records were critically reviewed and compared.

Several areas appear to hold considerable promise for

future research into the questions of designing superior file

organizations and choosing the best one for a given situation:

(1) The use of general parameterized models based on for-

mulas for expected on-line processing time should be pursued.

Analytical timing formulas for the retrieval and updating

operations of various file organizations should be developed
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and incorporated into a general model.

(2) The use of static and dynamic simulation models

(such as Senko's FOREM model (91) and Siler's model (83) should

be encouraged for comparing the performance of file organiza-

tions. Although much more complex than the analytical models,

they can provide far more detailed output measures, and their

use of probability distributions allows tham to indicate the

degree of sensitivity of the system to extreme cases - some-

thing that average values usually hide.

(3) Several of the more promising record clustering tech-

niques should be studied further and applied to real data bases.

In particular, the methods proposed by Wong and Chiang (98),

based on grouping records into the atoms that correspond to

Boolean queries, and Rothnie's multiple key hashing system

(76,77) are definitely worthy of further research.

(4) The proposals for integrated systems, where different

keys are organized according to different file organizations

depending on the distribution of their key values and the types

of queries in which they are involved, should be pursued.

Techniques involving integrated file systems have been proposed

by Siler (83) and by Rothnie (76).

(5) Finally, the idea of a generalized information re-

trieval system, of which only a small part would be the library

of undominated file organizations and the file selection model,

should be carried further. Another key part of such a system

would be a statistical monitoring subsystem that would keep

track of the performance of the data base and trigger the file
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selection model "to do its thing" at the appropriate times.

This monitoring subsystem would have to be sophisticated enough

to recognize when deteriorating performance necessitated that

the entire data base be restructured using a new file organiza-

tion, and when it should merely be reorganized under the exis-

ting organization to overcome structural inefficiencies caused

by numerous record additions and changes. The subsystem would

have to operate on both a macroscopic and a microscopic level

to keep track of shifts in the types of on-line operations and

also to monitor accesses of specific records, keys, and joint

combinations of keys to assure optimum performance. Finally,

the subsystem will have to be efficient enough so as not to

burden the operation of the ongoing information retrieval system.
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00570 IF(MM.EQ.1)ASLOW=250
00580 IF(MM.EQ.2) ASLOW=1600
00590 PFAST = 27
00600 IF(MM.EQ.1) PSLOW=500
00610 IF(MM.EQ.2) PSLOW=27
00620 IF(MM.EQ.1) RTSLOW=55
00630 IF(MM.EQ.2) RTSLOW=806
00640 RFAST = 16.7
00650 IF(MM.EQ.1) RSLOW=50
00660 IF(MM.EQ.2) RSLOW=16.7
00670 TDIR = PFAST + 2.5*RFAST
00680 TTFAST = PFAST + 1.5*RFAST
00690 TTSLOW = PSLOW + 1.5*RSLOW
00700 TACCES = PSLOW + .5*RSLOW + CF/RTSLOW
00710C
00720C CALCULATE THE RETRIEVAL TIMES
00730C
00740 TCELL = PSLOW + RC*CF/RTSLOW
00750 WRITE(6,21) TDIR,TTFAST,TTSLOW
00752 21 FORMAT(//*TIME TO READ THE DIRECTORY*,-3
00753+ *TIME TO READ A TRACK(FAST)*,-3PF9
00754+ *TIME TO READ A TRACK(SLOW)*,-3PF9
00756 WRITE(6,22) TACCES,TCELL
00757 22 FORMAT(*TIME TO ACCESS A DATA RECORD*,-3
00758+ *TIME TO READ A FULL CELL*,-3PF11.
00760 WRITE(6,25)
00770 25 FORMAT(*SUMMARY OF RETRIEVAL TIMES UNDER
00780+ *CONDITIONS*)
00790 WRITE(6,30)
00800 30 FORMAT(/6X,*NUM LIST S-LIST QUERY
00810+ *LTI- CELL.* /5X,*KEYS LENGTH LENGTH
00820+ * LIST SERIAL*)
00830C
00840 DO
00850 NK
00860 LS
00870 RQ
00880 L =
00890 CK

INU
INU

100 I=1,NTESTS
= Il(I)
= 12(1)
= 13(1)
NR*NK/V

= MINO(L,NR/RC)
Ml = INT(L/ASLOW+.9999)
M2 = INT(CK/AFAST+.9999)

IL1(I) = QT*TDIR +
ML1(I) = QN*TDIR +
CS1(I) = QN*TDIR +

RQ*(PSLOW +
WRITE(6,51) INK,L
51 FORMAT(I3,*.*,I5
100 CONTINUE

CALCULATE

N= 2
F = .2

QT*(PSLOW+1.
LS*TACCES
QN*(PFAST+1.
RC*CF/RTSLOW
,LS,RQ,IL1(I
,318,-3P3F9.

5*INUM1*RSLOW

5*INUM2*RFAST
)
),ML1(I),CS1(
1)

PF9.3
.3 /
.3 )

PF7.3
3//)

VARIOUS *,

INVRTD MU*,
RESP. INDEX*,

) + RQ*TACCES

I)

THE UPDATE TIMES

144

00900
00910
00920
00930
00940
00950+
00960
00970
00980
00990C
0 100C C
01010C
01020
01030



040
050
060
070
080
090+
100
110
120
130
140
150

= PSLOW
M1 .EQ.
FAST +
M2.EQ.

= TDIR
= TDIR
= TDIR

= TDIR
= TDIR

= TDIR

= TDIR
= TDIR
= TDIR
= TDIR

= TDIR
= TDIR
= TDIR
= TDIR
= TDIR

,302)
I) ,IL4
I) ,ML6

FORMAT(I5
13X,-3P3F9
MOD W/O

13X,-3P3F9
* ADD*,12
CONTINUE

+ .75*RSLOW*INUM1
TINV = PSLOW

5*RFAST*INUM2 +
PFAST
+ NK*
+ NK*

TCS =
TACCES

2*TACCES
2*TACCES
3*TACCES
2*TACCES
2*TACCES

TACCES
2*TACCES
2*TACCES
3*TACCES
2*TACCES
2*TACCES

1

1

F =*,F3.1)

LTI-
IAL*)

+ 1.5*RSLOW
3. 0*RSLOW

.5*RFAST*F
+ 1.5*RFAST +
(TUPDIR+TINV)
(TUPDIR+TINV)

TUPDIR = TDIR + 1.5*RFAST
WRITE(6,200) F
200 FORMAT(/////*SUMMARY OF UPDATE TIMES
WRITE(6,220)
220 FORMAT(/* NUM LIST INVRTD MU

* KEYS LENGTH INDEX LIST SER
DO 300 I=1,3
NK = 5*(4**(I-1))
L =NR*NK/V
CK = MINO(L,NR/RC)
INUM1 = INT(L/ASLOW+.9999)
INUM2 = INT(CK/AFAST+.9999)

NK*(TDIR+TINV)
N*(TUPDIR+TINV)
N*(TUPDIR+TINV)

+ NK*TUPDIR

+ NK*TUPDIR

+ N*TUPDIR

01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260C
01270
01280
01290
01300
01310
01320
0 1330C
01340
01350
01360
01370
01380
01390
01400
01410+
01420+

DIR+TCS)

IR+TCS)
,CS2(I),IL3(I),ML3(I),
L5(I),ML5(I),CS5(I),
,ML7(I),CS7(I),N
.ADDITION*/
/ 13X,-3P3F9.1,

1,* MOD WITH RELOC.*/
KEYS* / 13X,-3P3F9.1,

RUN THROUGH THE DECISION RULES FOR SEVERAL TEST CASES

WRITE(6,502)
502 FORMAT(/////*SOME EXAMPLES USING THE BASIC *

*DECISION RULES*)
DO 500 I=1,3
IF (I.EQ.1) K=3
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V
(INU

= P
(INU
(I)
(I)
(I)
(I)

(I)
(I)

TIN
IF
TCS
IF
IL2
IL3
IL4
IL5
IL6
IL7

ML2
ML3
ML4
ML5
ML6
ML7

CELL.*/

1.5*RFAST*F

TACCES + NK*(T
+ 2*TACCES
+ 2*TACCES
+ 2*TACCES
+ 2*TACCES
+ 2*TACCES + N*(TD
NK,L,IL2(I),ML2(I)
(I),ML4(I),CS4(I),I
(I),CS6(I),N,IL7(I)
,I8,-3P3F9.1,* REC
.1,* REC.DELETION*
RELOC.*/13X,-3P3F9.
.1,* DELETE*,12,*

,* KEYS* /)

01430
01440+
01450+
01460+
01470+
01480
01490C
01500C
01510C
01520
01530
0 1540+
01550
01560

CS2(I)
CS3(I)
CS4(I)
CS5(I)
CS6(I)
CS7(I)
WRITE(6

CS3(
IL6(

302

*

300



01570 IF (I.EQ.2) K=7
01580 IF (I.EQ.3) K=13
01590 WRITE(6,504) I,Il(K),I2(.
01600 504 FORMAT(// *CASE*,12,
01610+ * QR =*,14 // 23X,
01620+ 5X,*CELL. SERIAL*/ *
01630s 3(* RETRVL OVRALL*)
01640 DO 500 J=1,5
01650 Xl = P1(J)*IL1(K) + P2(J
01660+ + P4(J)*IL4(I)
01670 X2 = P1(J)*ML1(K) + P2(J
01680+ + P4(J)*ML4(I)
01690 X3 = P1(J)*CS1(K) + P2(J
01700 X4 = + P4(J)*CS4(I)
01710 WRITE(6,506) P1(J),P2(J)
01720+ X2,CS1(K),X3
01730 506 FORMAT(4F5.2,-3P6F8.

740
750
760
770

,13(K)
NK =*,I4,*

INVRTD INDEX*
P1 P2 P3

)*IL2(I)

)*ML2(I)

)*CS2(I)

LS =* ,14,
,5X,*MULTI-LIST*,

P4*,

+ P3(J)*IL3(I)

+ P3(J)*ML3(I)

+ P3(J)*CS3(I)

,P3(J),P4(J),IL1(K),X1,ML1(K),

500 CONTINUE
PRINT,* *////
CALL EXIT
END
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APPENDIX B

SUSPECTED NUMERICAL ERRORS IN THE PAPERS BY

LEFKOVITZ(49) AND MARTIN(57)

Two of the primary sources for this paper - the book,

File Structures for On-Line Systems by D. Lefkovitz and a

paper by L. D. Martin on the FILE 68 International Seminar on

File Organization - both seem to contain several errors in

analysis and calculation. This is unfortunate since these

are among the only sources that present side-by-side timing

analyses.

First of all, it should be mentioned that their two sets

of timing formulas differ from each other (and from mine)

particularly in the area of update timing. Some of these dif-

ferences can be traced back to differing assumptions, and some

to the fact that Lefkovitz computes overall processing times,

whereas Martin works with processing time differences. How-

ever, a residual set of formulas remain that appear to be

irreconcilable. My own conclusions as to appropriate update

timing estimates and their justifications are presented in

Chapter V.

This Appendix deals with some of the suspected errors in

Martin's and Lefkovitz's numerical examples. These examples

are important in that they give the reader an intuitive feeling

for the efficiency of the various techniques; errors in the

numerical results can thus have a particularly confusing effect
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on the unsuspecting reader.

Martin tried out his model on a total of 625 (=54) test

cases, with five different values for each of four different

parameters (Nk, Ls, Qr, and P ) being used in all possible

permatations. He published the results of seventeen of these

test cases; in five of them Inverted Index was best; in seven,

Multilist was best; in five, Cellular Serial was best. How-

ever, he made two critical errors that negate much of his

sample results.

First of all, in all seven cases in which Multilist

proved to be best, Ls (the shortest list length) was less than

Qr (the query response). This is physically impossible, since

by definition for a conjunction of terms Qr Ls in all cases.

Secondly, Martin incorrectly gave the transfer rate of

strip memory for the IBM 2321 Data Cell as 312,000 char/sec

(it is actually 55,000). Since the transfers of entire cells

to core is by far the dominant part of retrieval operations

for the Cellular Serial organization, the overall timing for

this system may have been seriously underestimated. This casts

doubts on the five published cases where Cellular Serial turned

out best. Because of Martin's choice of inaccurate and in-

feasible parameter values, much of his test results are

incorrect and confusing.

Lefkovitz's analysis seems to be more thorough; however,

he too made some numerical mistakes that led to misleading

results. On Page 176 of his book, he presented a sample case
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in which the retrieval time for the Cellular Serial system was

calculated at 3.6 seconds. Based on his timing formulas and

his particular parameter values, I compute the retrieval time

for Cellular Serial as being .9 + Qr(4.5) seconds. Thus, even

if only one query response is being retrieved, Cellular Serial

should take at least 5.4 seconds; if 15 queries are being re-

trieved, it takes 68.4 seconds.

Moreover, on the very same page he stated that the update

time for non-key modification with relocation for the Inverted

Index system is 25.8 seconds. I calculate it at 15.8 seconds.

Lefkovitz appears to be in error, because he calculated the

time for Inverted Index whole record deletion as being 15.8

seconds, and two pages earlier derived that for Inverted Index.

the modification of non-key data with relocation and the dele-

tion of entire records have the same timing formulas.

Other differences between my numerical results and those

of Lefkovitz can be attributed to different assumptions and to

my revisions to his timing formulas as described in Chapter V.
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