
COMPUTER SECURITY IN AN EDUCATIONAL ENVIRONMENT

By

DONALD O'NEAL HEWITT

S.B., Massachusetts Institute of Technology
(1972)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF

SCIENCE

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

June, 1973

/(1')

Signature of Author . i - .-..-
Al red P. SSc' hno-1

Certified by -----

nf4,nanamint May 11, 1973

Thesis Supervisor

Accepted by ...
Chairman, Departmental Committee on Graduate Students

2

COMPUTER SECURITY IN AN EDUCATIONAL ENVIRONMENT

By

Donald O'Neal Hewitt

Submitted to the Alfred P. Sloan School of Management on
May 11, 1973, in partial fulfillment of the

requirements for the degree of Master of Science

ABSTRACT

The thesis begins with a qualitative description of the educational
computing environment. The environment is described as consisting of
three areas -- Administration, Research, and Classroom Support. After
discussing these three areas, their security requirements are examined
in terms of a simple framework. An attempt is made to separate physical
and operating system security requirements.

The various security requirements are compared, and it is asserted
that the solution of the problems of the Classroom Support Environment
effectively alleviates the problems of the other areas.

The MIT Class Monitor System, in conjunction with the IBM Resource
Security System (RSS), is used as an example of a trial solution to
these security requirements. In conclusion, some problems of the
adaptability of current operating systems to the Classroom Support
environment are discussed.

Thesis Advisor: David N. Ness
Title: Associate Professor of Management

ACKNOWLEDGEMENTS

I would first like to thank David Ness and Stuart Madnick for

their immense patience and expert quidance in my work on computer

systems. It is edifying to know that men so swamped with their

own work can care so much about someone elsels.

My thanks also to George Dixon and Bob Daley, who were instru-

mental in the creation of the Class Monitor. Robert Scott and Joseph

Patten provided valuable insight from their perspective as heads of

their departments at MIT. Finally, I am grateful for the assistance

of Kathy Bradley, my typist, Sandy Viglione, my secretary, and all

my personal friends who put up with me during the time this thesis

was produced.

This thesis is dedicated to Bob Rebello, who, at a time when I

did not know a System 360 from a garbage compacter (a distinction with

which I still have difficulty...), trusted me enough to give me my

first job with computers -- and subsequently the opportunity to obtain

my Bachelor's and Master's Degrees. For your trust, friendship, and

good advice, I thank you.

TABLE OF CONTENTS

Page
I. The Educational Computing Environment 6

Computers and Education 6
Administration ... 8
Research ... 14
Classroom Support .. 18

II. Computer System Security 22

Security -- Threats and Promises 22
Threats -- Their Origin and Targets 24
Security in Educational Computing 33

III. The Class Monitor System 39

Introduction ... 39
Goals of the Monitor 44
The MIT Class Monitor System 48
Security and the Monitor 59

IV. RSS and Classroom Support Security 61

Introduction ... 61
The Potential of RSS 63
Conclusions .. 65

V. References 67

5

TABLE OF FIGURES

1. Comparison of Processing at Different Educational Levels

2. Schematic of the Educational Computing Environment

3. Target Categories

4. Three - Tiered User Environment

5. Schematic of Example Threats

6. Example Threats (Key to Figure 5)

7. Administrative Security Profile

8. Research Security Profile

9. Classroom Support Security Profile

10. Design Goals for Class Monitor

11. Macro Flowchart of CMS Logon Routine

12. Class Monitor Console Session

13. Macro Flowchart of CMS Logoff Routine

CHAPTER 1 - THE EDUCATIONAL COMPUTING ENVIRONMENT

COMPUTERS AND EDUCATION

The explosive growth of the computer industry since the completion

of the ENIAC Computer in 1946 need not be described here. Virtually

every professional and institutional activity has been affected in

some way by this powerful and flexible tool. The business of education

is no exception. As more and more of the information processing

activities of modern educational institutions move to computer systems,

the -problem of security of programs and data becomes increasingly

important. This makes the educational environment a good one in which

to observe security problems and their implications.

Education comes, of course, at many different levels -- primary,

secondary, college, and graduate. If we divide the basic functions of

educational computing into administration, research, and classroom

support (this chapter discusses these areas in some detail), we can

compare the different levels of education in Figure 1. As can be seen

from this simple comparison, when the level of student ability increases

more types of processing become feasible, including individual research

and special programs for classroom support. Because the applications

found at the university level seem to include those of the lower levels,

it will be assumed here that higher education is a reasonably representative

segment of the educational environment.

For those who wish an extremely detailed and authoritative discussion

of the educational environment, there is a publication of the Rand

Corporation which gives an excellent summary. Most of this first

chapter is based upon that document, referred to here as the Rand Report.

The goal of this chapter is the presentation of the small portion of

the Rand Report which is necessary to provide the proper background

for our discussion.

ADfMT N T S TR A TT lN

P R 0 C E S S I N G
PFSFARCH Cl ASSROOM SiIPPnR T

FIGURE 1: COMPARISON OF PROCESSING AT DIFFERENT

EDUCATIONAL LEVELS

PRIMARY

SECONDARY

UNDER-
GRADUATE

GRADUATE

YES NO NO

YES VERY NO
LITTLE

YES YES YES

YES YES YES

ADMINISTRATION

Within the educational environment, administrative data processing

can be subdivided into three categories for discussion. It is important

to realize that these categories represent only one of several break-

downs of this area. The Rand Study, for example, uses a slightly

different one.' The analysis in this paper is done from an information

security point of view, and thus has a functionally different set of

criteria for subdivision.

The first category is Corporate Processing, so called because it

is virtually identical to the central administrative data processing

of large corporations. The financial and accounting applications of

the institution are found here, as well as the personnel processing

common to all employers, such as employee payroll and benefits. In

addition, programs for resource allocation are often included, among

these being programs for scheduling classrooms and physical plant

operations (analagous to production scheduling in the business world).

In many ways this is the most "standard" of the various campus appli-

cations.

The second category is Student Processing. Here we find the set

of data processing functions which are unique to students. In some-

thing of a chronological order, we can name Admissions, Registrar,

Bursar, and Alumni Offices as groups which engage in Student Processing.

Although it may seem somewhat arbitrary to separate Admissions from, say,

the processing of applicants for jobs, it is in fact done almost without

,exception in universities. Even payrolls are kept separate, with

students and staff in separate runs. Further, from a security stand-

point, the school often has more confidential information on its students

than on its employees. Therefore, we keep Corporate and Student Pro-

cessing separate.

The final category is Departmental Processing. This subset of

administrative data processing is a direct outgrowth of the decentralized

departmental organization of most universities, and it includes many

of the same functions as Corporate and Student Processing. Graduate

admissions, for example, are commonly handled both at the departmental

and central level. Resource allocation is also handled as a cooperative

effort between the master schedulers in a central office, and the

departments who staff the various courses. Payroll, on the other hand,

is an example of a function which is generally not duplicated. However,

the department for which a faculty members teaches is likely to have to

worry about which account or research fund should be tapped for salary

and expenses, so that there is still some interaction. A great deal of

aggregate planning is done at the department level, in the design of

curricula and research programs. In summary, Departmental Processing

is a decentralized subset of administration which has a more microcosmic

view, and which requires interfacing with the central programs and

data bases in order to be effective.

Having examined the components of administrative data processing,

let us review some general characteristics of this area. This kind of

processing operates mostly on fixed short-term deadlines - registration

day, budget submission day, not to mention payday. This is often in

sharp contrast to the demands of Research or Classroom Support Processing,

which, as we shall see, are quite flexible. Such a need for accurate

timing dictates a high degree of system continuity and reliability.

The manager of such an operation is likely to be quite conservative,

a fact which underscores the similarity of this type of processing to

its industrial counterpart.

Another facet of this area which resembles commercial enterprise

is the accountability of managers for funds used. Because of the

relatively standard nature of the tasks being performed, techniques

have been established for their valuation and management. Further,

since the users of administrative systems are employees rather than

students, the resources of these facilities can be more closely (and

more formally) managed. An interesting sidelight here is the absence

of the "interesting area of research" syndrome, which often allows

feasibility studies to be bypassed in research when considering the

acquisition of new hardware or software. Thus innovation is more

difficult in the administrative area.

A final note, and one which is certainly important to this analysis,

is the need for security. It is clearly necessary to protest confidential

data on both students and staff from unauthorized disclosure. Further,

as i.n most corporate applications, it is essential to protect programs

and data bases from accidental or deliberate modification or deletion,

as well as to protect historical data files on tape or other media. A

wide spectrum of physical and programming measures are needed to

insure adequate protection.

The combination of differences in programming needs (e.g. FORTRAN

versus COBOL), the need for conservative, reliable, short-term service,

and the need for system security has led almost every university to

physically separate their administrative data processing facilities

from all others. This has automatically solved the majority of their

security problems so far. There is, however, a terrific price for this

security. First, the physical separation has necessitated duplication

of hardware and programming staffs. In an era of budget throttling and

cost cutting, this tends to be very unpopular. Second, and perhaps

more subtle, is the fact that their deliberate isolation from the

facilities utilized by Research and Classroom Support systems has meant

that the administrators have been isolated from the technological

progress being made in these areas. Although one would not expect this

type of processing to keep up with the forefront of research (nor would

this be desired from the standpoint of continuity and reliability, as

mentioned earlier) the gap between the two technologies has been allowed

to widen to such an extent that even if all security problems were

solved tomorrow, it would be several years before most administrative

facilities would be able to consider a merger of any sort with existing

research facilities. The M.I.T. Office of Administrative Information

Systems is a.good example of this problem.2

One interesting exception to this general notion is Departmental

Processing. Because this processing is at the department level where

a large supply of cheap, high-quality labor exists (thesis students),

more and more work is being done on these applications. Oddly enough,

because the students who work on such projects do not have access to

the administrative facilities, the work has been forced onto the newer

research facilities, with the expected benefit of the newer technology.

Thus we see information systems for management and aggregate planning

being developed, for example, in the Sloan School of Management at M.I.T.3

which far outstrip the capacity of the'central administrative facility

in the sophistication of information handling techniques. However,

these applications are in desperate need of solutions to the security

problems which the central facility solved by physical separation. Thus

we find the departments pioneering applications for the central facility

by pushing into research facilities with innovative and complex planning

systems which will force the security problems to be faced, probably

well in advance of the needs of the central facility.

It should be note, in conclusion, that there are two possible ways

for the administrators to proceed. First, they may find it advantageous

to combine facilities with the administrative organizations of other

universities. An example of this type of venture is WICHE (the Western

Interstate Commission on Higher Education), which combines many

universities in the design of standard administrative programs.4

This would provide a stable system, and also promote innovation through

common development of systems. However, the problem of security still

exists, since many schools would be sharing common hardware if this

cooperation were carried to its logical conclusion. The other alterna-

tive seems to be merger into a central campus computing facility either

as a complete move, or as a remote "satellite" facility. This brings

13

more risks in terms of system instability, but has the advantage of

allowing a much smoother interface among the various kinds of central

and departmental programs. In any case, it seems clear that over the

next five years, security problems will come to the point where they

can no longer be avoided.

RESEARCH

Computer Science students (and faculty) tend sometimes to describe

the campus as composed of two types of people -- those who understand

computers, and those who wish they did. Although this is a distinction

which is sometimes difficult to make, it does have some relevance in

describing research on today's campus. A more reasonable way of making

the distinction for our purposes is to describe Research Processing

as composed of research on computers, and research with computers.

The former category is composed mostly of computer scientists, electrical

engineers, and a few computer-oriented information systems specialists.

The latter includes more of the campus every day, and even now, on the

MIT campus, there is not a single department (including the Music Depart-

ment) where the impact of the computer has not been felt heavily.

There are, of course, other distinctions which could be made here,

for example, thesis versus non-thesis research, and sponsored versus

non-sponsored. While we may uiake these distinctions here as examples

of different accounting methods, our primary emphasis will be upon the

differences between research on and with computers. This emphasis

allows us to focus on the security aspects of research processing.

By nature, Research Processing is highly decentralized. This is

primarily due to thesis projects, which are generally pursued individually

under the supervision of an advisor or committee. In terms of the

number of persons participating, this constitutes more than half of

the research effort of most universities. In addition to extreme

,decentralization, Research Processing can be characterized by a lack

of definite deadlines. This is quite intuitive -- one can hardly set

deadlines on pure research and development. The kinds of time constraints

generally encountered are in the form of arbitrary limits such as project

expiration dates and thesis deadlines, which are generally quite flexible.

A related facet of managing research efforts is the idea of funds allo-

cation. When examining administrative processing, we observed the

formal structure for financial accountability. A different problem is

encountered with the thesis user. Generally, the thesis user is not

spending personal funds on computing. The department will often have

a set procedure for computer resource allocation. The problem occurrs

when the user consumes the full amount, and is not finished. It

seems absurd to think that the student must quit. Somehow, more funding

must be obtained. Control of not only the allocation of funds, but

the use of funds thus becomes a problem.

A related problem is the expertise of the individual user. The

researcher who is a computer specialist is likely to have computer

expertise which permits efficient use of the computer resources, while

the person who merely wants the computer as a tool for other research

may be totally unfamiliar with the proper methodology, thus wasting

vast amounts of money. Further, it is possible that the non-computer

researcher may be unwilling to invest time in learning efficient

techniques. From this perspective, we must realize that these users

have their own priorities, and it is quite realistic to assume that

the computer should not be allowed to detract appreciably from their

'primary goals of research in their selected field.

16

The last aspect of Research Processing to be discussed here is

a mixed blessing. Certainly, the campus has been the scene of the

most significant advances in computer technology -- the computer itself,

core memory, software systems such as the MIT Compatible Time Sharing

System (CTSS) and others. In addition, the research on computers

within a given campus community often results in "tuning" improvements

within existing equipment, such as improved device management, scheduling

algorithms, etc. Sometimes, entire new systems such as the MULTICS

system at MIT, become available to the community as a direct outgrowth

of campus research. However, this technological fallout has two bad

effects. First, educational systems tend even more than others to

become "tailored" with a series of modifications which render them

incompatible with all other systems. Second, when new resources are

introduced,there ensues a great deal of contention about system stability

and documentation for general use. The classic example of this problem

is the development of the MULTICS System at MIT from 1968-1971. During

this time, the system underwent constant "tuning" changes, as well as

several major revisions. The stability of the system was very poor,

and thus many non-computer users who wanted the machine for service

were in direct contention with the systems development people, who

wanted constant improvement.

For purposes of this discussion, the Research Processing area can

be regarded as an extremely decentralized group of users, whose

expertise ranges from superlative to negligible. It is characterized

by a lack of structure both from time and budget perspectives. Finally,

17

we find the research on computer sometimes requires experimentation at

a machine level which can seriously conflict with the standard service

needs of the rest of the research community.

CLASSROOM SUPPORT

The most recent of the three areas is the emerging use of the

computer in support of classroom activity. Although this type of pro-

cessing won early attention in the form of the much heralded "interactive

teaching program", this particular use proved disappointing. Early

enthusiasm toward the replacement of the more mechanical aspects of

teaching with time-sharing systems waned in the face of severe problems

of human interface design and language processing problems both at the

syntactic and semantic levels.

In recent years, the computer has begun an important and many

faceted role in the classroom environment. It comes to the classroom

both as subject and tool. We shall divide Classroom Support Processing

along these lines, into support for computer courses and support for

non-computer courses. The reason for this breakdown is a fundamental

difference in the teaching objectives of these two areas, which is

reflected in the type of activity produced.

There exist within the curricula of most large universities a

set of courses designed to teach computer programming and other aspects

of systems design and utilization. Whether the computer is being taught

in its own right or in the context of some application such as mechanical

engineering, the orientation of such courses is toward the exploration

of the capabilities and limitations of the computer system. This focus

upon the computer results in a great deal of student use, and, as we

shall see, in a serious security problem from imaginative and mischevious

student programmers.

In contrast to the computer courses, a rapidly-growing segment

of the computer resources on campus are being consumed by students who

have no interest whatever in computers or programming. These students

are using pre-packaged programs which perform simulations, linear

programming algorithms, and other computations which aid the students

in their work. A good example of this type of program is the area of

financial management, where a student might have access to small utility

programs for present value analysis and discounting, as well as large

packages for linear programming and modeling. The important distinction

here is that the non-computer student is neither trained in nor (in

most cases) interested in the computer. Thus the kind of in-depth explor-

ation of the computer system characteristic of computer courses is not

found here. However, from the security point of view, we find a different

problem -- the control of large numbers of inexperienced and sometimes

indifferent users. As we shall see, there is an implied problem of

usage control by the instructor, who must see that the class budget is

efficiently and equitably distributed.

In summary, we have divided the educational computing environment

into three areas: Administration, Research, and Classroom Support. A

schematic diagram (Figure 2) shows the overall breakdown, along with

some rough figures on each area as a percent of total activity. One

other dimension along which computation will be viewed here is that

of batch versus interactive. All of the categories in our schematic

diagram can be regarded as existing in a continuum which has batch

monoprogramming at one end, followed by multiprogramming, limited inquiry

Corporate

Administration Student
(28%,925%)

Educational Environment/ Research .n .Lomput.... ...

(40%,38%)h Comuter rs

For Comnuter Cour,;en

Classroom Suooort
(30%,35%)

-- L' UQzCQWU SQU i-

FIGURE 2: A SCHEMATIC OF THE EDUCATIONAL ENVIRONMENT

NOTE: An estimate of the three areas as a percentage of total university data 5processing expenditure is included. (A,B) indicates the percentage in 1967 ,
and the author's estimate of the percentage in 1973, reflecting a
relative increase in Classroom Support Processing. 2% is allowed for other uses.

rs

21

systems, and finally interactive systems at the opposite end. The reason

for this view is the difference in security requirements, for example,

the problem of collection and distribution of decks in a batch environ-

ment versus terminal access control in timesharing systems.

The next chapter will discuss a framework for describing security

requirements of our three areas in terms of this framework.

CHAPTER 2 - COMPUTER SYSTEM SECURITY

SECURITY -- THREATS AND PROMISES

The notion of security, whether in computer systems or in some

other context, is one of those topics which eludes positive definition.

People tend to' describe security negatively, for example, security is

not having your house broken into, or not having your medical records

printed in the Boston Globe. It is not required here (thank goodness)

that we arrive at a definition which will be accepted with great

finality by all readers. However, it is essential that some working

definition be developed which will facilitate the comparison of the

security requirements of the different areas described in Chapter 1,

as well as permit a general discussion of computer system security.

Let S denote an "ideal" computer system, one which provides

uninterruptable and fully controlled service, and in which all data

and programs are available only to authorized users, and only in a

particular mode. Let OUT denote all of the effects which the system

has on its environment, including work performed, output generated,

and work generated for its staff (such as the modification of erroneous

programs). Now let IN be the total input of the environment to the

computer, including decks submitted, temperature of the room, etc. We

now define T, (threats) a subset of IN which will cause "undesirable

abberations" in the operations of S, and result in unacceptable results

in-OUT. Finally, we define SS as the security system, that part of S

designed specifically to screen T from IN, insuring the desired operation

of S, and thus the desired OUT.

While the notion of an "ideal" computer system is, admittedly a

vague one, it does serve us well enough to establish the nature and

function of computer security. Whatever we define as our desired system,

computer system security is the ability to prevent it from being

changed. One distinction which should be made here is the difference

between programming errors and system errors. It is perfectly consistent

with the notion of an "ideal" system to expect it to generate errors in

the output of jobs whose input is incorrect. To execute exactly the

program submitted is all we may ask (for the present) of any system.

The system deviates from its desired performance when, for example,

the accidental or intentional errors of some task are permitted to

interfere with the execution of supposedly independent tasks. Thus

we see security as the act of maintaining a set of system-wide relation-

ships among programs, data, processes, users, and other system entities

which define a computer system. A secure computer system, then is one

which promises that its security mechanism SS is capable of dealing

with every component of T without failure, insuring consistent performance

of. the system S.

24

THREATS - THEIR ORIGIN AND TARGETS

Having defined security in terms of coping with threats to the

system, we now turn to the problem of classifying those threats. The

first qualifier would logically seem to be the source, or origin of

the threat. There are several different dimensions along which the

source of a threat can be viewed. In a company, for example, threats

could be classified as originating within the firm, or outside. For

our purposes, however, we seek a dimension independent of the purpose

of the machine, and one which is relevant to the organization of the

computer system itself. Therefore, we will regard threats as originating

in one of three modes:

1) EXTERNAL MODE

2) SUPERVISOR MODE

3) USER MODE

The first mode, EXTERNAL, reflects all threats which do not involve

the execution of an instruction under control of the operating system.

This includes most of the kinds of security problems referred to in

the literature as "physical problems," such as fire, vandalism, theft

of tapes, etc. It also includes the type of programs known as "back-

ground utilities" where the accidental mounting of a wrong disk pack

can result in loss of good data through accidental initialization. In

this case the threat is not under the control of the computer system,

but is in direct control of an operator, who mounts a pack and pushes

a button. Power surges are another common type of problem which

originates outside the system frame,

instructions.

The two remaining modes, SUPER

a distinction made in the design of

as the IBM 360/370 Series ("Supervis

the GE 645 ("Master Mode - Slave Modr

author is mainly on IBM equipment, rr

be drawn from that environment. (See

of the difference between Supervisor

entire instruction set of the machine

Mode, while User Mode permits only a

Series, all i/o instructions and seve

Supervisor State). 6

It should be noted here that not

system run in Supervisor Mode. This

important control routines, such as t

Supervisor Mode as a mode of operatic

routines and User Mode as the mode of

the control of these routines, then fio

threat may be thought of as originati

Supervisor Mode (User Mode). Assuminj

User to Supervisor Mode is closely cc,

it is), we say that there is a differ

threats, since one is a threat of int

is a threat of system penetration.

A execution of

Sinr

)

and

xice ,,corrtaXC t

2 t

prog,-

is g

/0 co,

stric

prog

ny no

thir

"t th

lled

in t_

7 dis

-ER MODE, represent

uter systems, such

lem State"), and

experience of the

les herein will

st general description

M"ode is that the

from Supervisor

set (in the 360/370

structions require

in the operating

lly reserved for

ler. If we think of

o special system

which execute under

2rnal threat, the

rvisor Mode or outside

lity to switch from

,t machines (which

ture of the two

on, while the other

26

One example of a Supervisor Mode threat is the IBM Attached Support

Processor (ASP). In the current version of ASP being used at MIT in

conjunction with the IBM Resource Security System (RSS), ASP runs in

Supervisor State, with all protection disabled. In addition to being

one of the less dependable parts of the operation system, ASP is

generally modified by the local programming support staff to a large

extent. Any bugs in ASP have an excellent chance of clobbering the

operating system, since protection is disabled. Thus we see that there

can be threats from within the Supervisor Mode. Threats may also origi-

nate, of course, from the programs which run in User Mode. Common

threats of this type include the attempt to switch to Supervisor Mode

without authorization, and the issuing of invalid requests to system

service routines. (One of the classic examples of this in the System 360

is requesting the system clock to deposit the current time into the

middle of the operating system programs, which it does without checking.)

In summary, we have categorized threats according to their origins,

into those external to the computer itself, those internal to the

computer and its privileged mode of operation, and those internal to

the computer in normal operating mode. Having established where the

threats are coming from, let us turn our attention to their targets.

For our purposes, it is convenient to divide threats into two

major categories:

1) Threats against Operating System and Subsystem Integrity

2) Threats against dataset access control.

We shall not attempt the impossible task of enumerating all of the

possible threats against a computer system. We will instead mention

some of the salient types of threats, and note their places in our

framework. Hopefully, this will enable the reader to insert particular

cases which have been omitted here. The breakdown of our two major

categories is outlined in Figure 3. As can be seen, Operating System

and Subsystem Integrity includes a wide range of system functions,

including accounting and control functions, as well as system stability.

One important feature of this category is its recursive nature. All

of the kinds of features inherent in system-wide operation, such as

accounting, validation, and continuity also occur in subsystems, to an

extent which depends upon the sophistication and design objectives of

the subsystem. An example of system and subsystem integrity problems

is the design of an interactive program for use under CP/CMS (Control

Program / Cambridge Monitor System, a set of software used on the IBM 360

Model 67). The environment is shown in Figure.4. As can be seen, there

are three levels of system, each with a separate set of control and

accounting problems: first, the CP System, which provides a virtual

machine environment which must be protected and isolated, second, the

CMS System, which provides the command language and file system

and must manage requests, and finally, the interactive program, which

might have its own accounting and complete user environment to support

and protect.

OPERATING SYSTEM AND SUBSYSTEM INTEGRITY

1) Accounting Mechanisms

2) User Validation

3) Priority and Process Scheduling

4) Integrity of Actual Code

5) Memory Access Control

6) Continuity of Operation

DATASET ACCESS CONTROL

1) Read

2) Write

3) Execute

4) Append

5) Delete

6) Restrict Access to specific programs

7) Control of access to offline files
(tapes, cards, etc.)

FIGURE 3: TARGET CATEGORIES

FIGURE 4: THREE-TIERED USER ENVIRONMENT

30

The other category of target is Dataset Access Control, where we

define datasets in the most general sense as aggregations of data

(or instructions), which may be either on-line, or off-line in the

form of cards, tapes or printout. Here we find the conventional read,

write, and other access categories for online datasets, as well as

the full range of physical access controls necessary for offline files.

All control of programs and data within the computer system (with

the exception of those programs and data specifically designated as

protected parts of the operating system) are thus placed in this category.

A schematic diagram showing the relationship between the origins

and targets of several sample threats appears in Figures 5 and 6.

Having outlined our security framework, we will now turn to a brief

comparison of the security requirements of the educational environment.

FIGURE 5: SCHEMATIC OF EXAMPLE THREATS

(SYSTEM AND SUBSYSTEM INTEGRITY SHOWN SEPARATELY)

(SEE FIGURE 6 FOR KEY)

EXAMPLES OF SECURITY THREATS

1 A power surge.

2 A tape is stolen from the library.

3 A user shuts off a dedicated terminal in a retrieval system.

4 A bug in the operating system causes a core lockup.

5 When no more space is available in the OS-360 job queue, new jobs
are entered on top of jobs already in the queue, thus destroying
spooled input before they can be processed.

6 The teleprocessing access method interprets a line error as an
"attention" interrupt, and discontinues the program in progress.

7 User gives the time of day command a bad address, causing it to
overwrite part of the OS.

8 In OS-360, users have almost unlimited access to delete datasets,
even those belonging to others.

9 A user enters a character in a numeric input line and causes the
program to end.

FIGURE 6: EXAMPLE THREATS

SECURITY IN EDUCATIONAL COMPUTING

Given our simple framework for classifying threats, the most

convenient way of surveying the security requirements of the educational

computing environment seems to be the use of the simple charts shown

in Figures 7, 8, and 9. These charts outline the most important

aspects of the three areas defined in Chapter 1. They will be supple-

mented by brief individual discussions here, followed by some general

observations on the environment as a whole.

The Administrative area, as expected, has minimized many of the

threat categories by its use of standard hardware and software, and

its restriction of users (almost all are members of the programming

staff). However, two areas are important here. First, External Dataset

Access threats are extremely important, due to the large number of

confidential and historical datasets, and the large amount of physical

handling of these files. Also, threats from User Mode to Dataset Access

come from the possibility of programming errors within the staff, as

well as large scale possibilities if facilities were shared with other

areas.

As we move into the Research area, we find the security requirements

increasing, for two major reasons: first, the use of non-standard hard-

ware and software vastly increases the potential threat from External

and Supervisor Mode respectively, and second, the great increase in the

number of users, and the corresponding decrease in control, makes User

'Mode Security much more important. While it is true that for most

,VCT ,, Q . ,,,VCT M TMT T , _,_,_

Relatively standard set of

operator and environmental

problems.

v

Minimal problems here due

to use of very standard

software designed to

minimize operating system

problems.

EXTERNAL

SUPERVISOR

USER

Restricted user community

and standard software

minimize these problems.

Relatively important stan-

dard set of problems con-

cerning storage of confi-

dential data and program

files on cards and tape,

as well as operator error.

Minimal problems due to
extremely standard and

reliable software.

Considerable problem of
accidental modification
since most users have full
system access. Restricted
user community mitigates
these problems, but if
facilities are shared,
nutsidp users are a oroblem.

___ I -~ - --

FIGURE 7: ADMINISTRATIVE SECURITY PROFILE

4.

DATASET ACCESS'

CV(TM 2 ZI~cZZTFMTN~mPTY fATACSFT AflCFcN..JI. ILI .X .J~JLJI.1 ________________.___.._____._

Standard set of ooerator and
environmental problems, plus
research problems if experi-
mental equipment is inter-
faced with the system. Also
problems of remote terminal
control.

v

Experimental operating
systems (and modifications
to existing operating system
softwate) may cause the
system to be less reliable,
increasing the problems in
Supervisor Mode.

EXTERNAL

SUPERVISOR

USER

Most users are not inter-
ested in challenging the
system. Experimental oper-
ating systems may allow
accidental penetration.
Computer science users may
need to experiment at this
level, and may cause prob-
lems if not isolated.

For classified research,
input/output handling
problems will occur.

Also, standard risk of
operator error.

Operating system modifi-
cations increase the risk
of dataset access problems
while in supervisor mode.

In an environment like OS,
considerable problems with
many inexperienced users
having access to one anoth-
er's files.
Also, there is a problem of
protecting users from their
own errors, which is not
possible under OS-360.

FIGURE 8: RESEARCH SECURITY PROFILE

mI

SYSIM & SIIR SY 17N S T N1F T

_DATASET ACCESS

Full set of standard prob-
lems, plus problems of
experimental equipment if
facilities are shared with
research users. Also,
control problems with remote
system and subsystem ter-
minals.

SUPERVISOR I Same as research area.

*

Extremely large scale prob-
lem of student exploration
and challenge to system &
subsystem control in almost
every area from accounting,
to validation, and contin-
uity of service. This is
particularly true of those
students who are taking
computer-oriented courses.

Large scale problems in the
collection and distribution
of student decks and print-
outs, especially when these
contain solutions to
problem sets or examinations.

Same as research area.

Equally large scale problem
of students both deliber-
ately and accidentally
damaging or copying data-
sets to which they should
not have access, or mis-
using datasets to which
they should have limited
access.

FIGURE 9: CLASSROOM SUPPORT SECURITY PROFILE

EXTERNAL

USER

SYSIE & SUBSXSI'UFl IHFU

researchers, their preoccupation with their research makes tampering

with the system unlikely, it is also true that for those who are

researching computers at the most basic level, some simulation or

virtual machine support is necessary if they are to use common facilities.

This implies a great deal of subsystem support. Overall, we find our

security problems expanding.

The last area, Classroom Support, carries the research problems

one step further -- even greater numbers of students, some of whom

are "hackers", and all of the problems inherited from attempting to

gain from Research technology in the form of hardware or software mod-

ifications. We find here the full range of educational security problems.

External, Supervisor, and User Modes seem very well filled out with

standard and experimental equipment, and cooperative and malicious users.

There are clearly discrepancies in importance between compromising

the solutions to a problem set and the medical records of students. If,

however, one sets aside the intrinsic value of the information, and

observes the security profile, it can be asserted that all of the

security problems of the educational environment show up within the

Classroom Support enviornment. it follows, then, that a computer system

which satisfactorally solved those problems for the Classroom environment

would be a satisfactory system for general use.

The remainder of this thesis deals with a specific aspect of the

Classroom Support environment, namely, the creation of a monitor subsystem

to allow controlled timesharing in a secure student environment.

38

External and Supervisor Mode threats will be left for other research,

and we will concentrate here on the implementation of a subsystem which

must deal directly with User Mode threats in a timesharing environment.

CHAPTER 3 - THE CLASS MONITOR SYSTEM

INTRODUCTION

This chapter discusses one attempt to satisfy the need for controlled

timesharing for Classroom Support Processing, The Class Monitor System

for OS-360/TSO (Time Sharing Option) was implemented during the Summer

of 1972 at MIT. In order to explain its design features and implementa-

tion strategy, it is first necessary to briefly describe the TSO

environment at MIT.

The MIT Computation Center runs OS Release 21 with TSO on a System

370 Model 165 with 1.5 megabytes of core storage. Several 3330 Disk

Drives are available, as well as two 2301 Drums for swapping and system

datasets. A hybrid of ASP (Attached Support Processor) and LASP (Local

Attached Support Processor) is used in support of the Main 165. Although

several MIT modifications have been made to the system, the basic struc-

ture and user interface of TSO remain standard (see [8,9]). It should

be noted here that MIT has a standard dataset naming convention for

user datasets, which reflects the account number and programmer to be

billed for the online starage. A standard MIT/TSO dataset might have

the following name:

U.M1 34.9999.HEWITT.FORT

11CZFT F PROGRAMMER NUMBER FORTRAN SOURCE

ARBITRARY NAMEACCOUNT NUMBER

Each programmer on the system has a unique programmer number, and each

project is assigned a unique account (or problem) number. Thus, only

valid problem-programmer combinations are accepted within the system.

Under TSO, a unique problem programmer number is associated with each

USERID-PASSWORD combination, and the prefix "U.PROB.PROG" is automati-

cally added to all dataset references (see [8] for details of TSO

dataset conventions).

Under standard TSO, as might be expected, "all users are created

equal." That is, each entry in the User Attribute Data Set (UADS) is

assumed to be a "full" user, with all of the priviledges available to

users of the system. The only exceptions to the notion of the standard

user are users whose UADS entry contains either an administrative or

operator flag. Thus all standard users have the same command repertoire

and dataset access rights. Under OS-360, these dataset access rights

are quite extensive, since they include all datasets in the system.

In fact, there are currently anly two ways to remove access to datasets

in the system -- first, they may be password protected (a clumsy and not

often used facility), and second, the physical device containing the

dataset may be placed in read-only mode (this is done at MIT with the

system residence volume). Note that the second method cannot protect

against read access, while even the first cannot hide the existence

and location (volume serial number) of the dataset in question. Thus

we see that the standard TSO user has a quite potent facility at his

command, which includes the ability to modify or delete more than 90%

of the datasets on the system, either accidentally or deliberately.

Rounding out our discussion of standard users, consider the administration

of USERID's within the system. The central user accounting office must

handle both batch and TSO accounting. At any given time, there are

several thousand active combinations of problem-programmer numbers,

as well as hundreds of valid TSO USERID's. As classroom use of computers

increases, the-potential load on this office is obvious -- several

thousand students, each involved in several courses, combine to produce

many thousands of USERID-PASSWORD combinations. If we assume that the

instructor in any given course would probably exercise fairly tight

control over the course budget, the workload of the central office in

closely overseeing all users becomes immense.

The Classroom Support Environment lends itself naturally to decentral-

ized control of computer resources. Since the student users are already

organized into classes, it seems logical to allow the person in charge

of a particular class to allocate computer resources in any desired

manner. Further, some controls should be provided for the class

adminstrator to insure that the class budget is spent equitably. For

example, in the current MIT accounting system (which, although primitive,

is not unlike many university centers), if a class of ten students were

each assigned standard TSO USERID's, all ten users would be billed

against the class budget for the course. Now since they are "full"

users, there is absolutely nothing to prevent a student from logging

onto the system, and using it to create, compile, and run FORTRAN decks

instead of executing the desired tutorial program. Moreover, since all

users in the class are being billed against the master budget (a separate

account for each user is unthinkable) a single enthusiastic student

can play until the entire budget is consumed, preventing the other none

students from ever logging on at all. This rather disturbing scenario

at least had the advantage of assuming non-hostile intentions on the

part of the student. If a student who wished to cause trouble was

released on the system, almost every user dataset on the system could

be deleted without fear of discovery.

It is clear that there is a need for a subsystem which can achieve

the dual purpose of relieving the central accounting office and providing

control of student users. Figure 10 indicates an expanded set of design

goals, which will be discussed individually. Following that discussion,

the implementation of the MIT Class Monitor will be described.

DESIGN GOALS FOR CLASS MONITOR

1) Get immediate and uninterruptable control at logon.

2) Validate users and log invalid users completely

off the system.

3) Give the valid user a pre-designated "subset" of

full TSO.

4) Protect itself and its files.

5) Handle user file maintenance.

6) Get uninterruptable control at logoff or console

shutoff.

7) Handle on-line accounting.

8) Provide a mechanism for maintenance of the master

accounting file.
9) Have low operating overhead.

10) Be easy to use for inexperienced students.

11) Be easy to maintain for center personnel.

FIGURE 10: DESIGN GOALS FOR CLASS MONITOR

GOALS OF THE MONITOR

No matter how we implement our system, it is still necessary to

use the concept of the TSO USERID. Now, however, we assign several

"open" USERID's to our class, and install the Class Monitor in each

one. The first goal of our system, then, is that the Class Monitor

must intercept the standard logon in some manner, and gain control of

the logon session, thus encapsulating the user in a new environment

immediately, and without failure.

Since we have given out "open" USERID's, the process of validation

and account balance checking must be undertaken by the Class Monitor

logon processor, so that only valid users are admitted. If students

fail to give the proper identification, they must be logged off the

computer system. Note that the USERID had to have been logged completely

onto the TSO system before the execution of the CMS processor could

begin. Therefore it is necessary for CMS to fire a direct call to the

system logoff routine to prevent the user from taking any action prior

to being logged off the system.

Having admitted the student to CMS, we now face the problem of

control. The Monitor must be able to allocate to the user only those

commands which are necessary to do the assigned work, and in a manner

which will make it difficult to perform any but the intended tasks. As

will be seen later, extreme care must be taken to avoid giving the

user commands with which he may bootstrap into a more powerful environ-

ment. For example, if we give the user a restricted command library,

and also the ability to copy command processors, the user will simply

copy more powerful commands into the library and then execute them.

This is a difficult area in the design of subsystems which attempt to

contain student users.

If the Monitor is to have online accounting, as well as a command

library of some sort, it is clear that these datasets must be protected

from user tampering. Further, it is desirable that the existence of

such files be hidden from the user, to eliminate the temptation of

such tampering.

Perhaps the most difficult area for the monitor system is the

handling of user file maintenance. First, we encounter the problem

of giving the user the ability to create and delete datasets. This

entails releasing commands which constitute a direct threat to other

datasets on the system. Second, many interactive teaching programs

use online datasets to save intermediate results between logon sessions.

Thus we should like to provide some means of creating and deleting

datasets from within a higher level language such as FORTRAN or PL1.

Finally, we encounter the problem of billing the individual student

for dataset space, since the entire file maintenance system of IPC TSO

is built around the notion that all of the files under one USERID

should be treated as a single group. Ideally, the Monitor should allow

for program control of dataset allocation, automatic distinction

between different students' files under the same USERID, and billing

procedures for these files.

It is essential that the Monitor get uninterruptable control at

logoff time, to insure a clean CMS termination, and proper billing

at the student level. Further, it is essential that control be

received in the event of an abnormal termination such as console shutoff

or telephone disconnect, since these events could easily bypass the

subsystem accounting mechanism.

The notion of online accounting is important for class use. This

is primarily true due to the scarcity of computer resources at this

level. The MIT TSO system does not, at this time, have online account-

ing, primarily for reasons of security. That system produces punched

card records of each logon session, and performs a daily update Monday

through Friday. With the limited resources available to classroom users,

a student could easily log on several times during a weekend, and

consume much more than the parcel of time alloted, knowing that the

billing would not catch up until Monday. This is quite unsatisfactory

for the classroom environment. In fact, there is some reason to believe

that the accounting should be done periodically during the logon

session, so that the session could be terminated when the balance reached

zero instead of waiting for LOGOFF processing to update the balance.

At the very least, the Monitor must compute a reasonably accurate cost

figure for the session, update an online accounting file, and display

both the session cost and balance to the user, so that the students may

budget their time properly.

Closely related to the notion of online accounting is the ability

to maintain this file by adding or deleting users, allocating funds,

changing passwords, printing reports, etc. All of these standard

maintenance functions must be provided in conversational form so that

the class administrator can maintain the file without assistance from

the central accounting office.

The final three design goals are common to all types of subsystems.

Obviously, the Monitor must not consume large amounts of computer time

in providing the student environment, or the benefits of this environment

will be outweighed by its consumption of resources. Since the Monitor

is to be used by students of all disciplines, it must provide a set of

interactions which are extremely straightforward, so that there is

little chance of confusing inexperienced students (who tend to be

somewhat frightened of the computer). Finally, the Monitor must be

easily maintained, since the programming support staffs of the university

generally have a fairly high turnover rate.

We have now outlineda set of design goals for a Classroom Support

subsystem. In the second half of this chapter, we will discuss the

implementation of the MIT Class Monitor System, which attempts to

achieve these goals.

48

THE MIT CLASS MONITOR SYSTEM

The Class Monitor System consists of three major components:

LOGON PROCESSING

SESSION CONTROL

LOGOFF PROCESSING

We will examine each of these components and the implementation

strategy used, concluding with a summary of the strengths and weaknesses

of the system as currently available.

When a TSO user logs onto the system, the Terminal Monitor Program

(TMP) is invoked. This is the standard IBM control program, which

supervises the console session. It is the TMP which accepts and executes

all user commands. The TMP also has a very important feature which

we use to get control. At the beginning of the console session, the TMP

looks at the PARM field of the EXEC statement which invokes it. (see

[10] for details on the operation of the invocation process and catalogued

procedure used). If any non-blank characters are present in this field,

they are placed into the Command Buffer, and taken as the first command

line to be executed. Further, no information is accepted from the

terminal until this first command is processed to completion. This

includes processing of "attention" interruptions, which are suspended

until the first command terminates normally, and until the TMP issues

the first READY message to the console.

The availibility of the "first command" option means that the

Monitor can specify a single load module which will be executed before

any user intervention is permitted. This load module must, of course,

contain the CMS user validation scheme, as well as some ability to

assure that invalid users are logged off the system. As a matter of

convenience, the Master File Update Routine is included as a subroutine

in the LOGON module, thus allowing us to implement this version of the

Monitor using only two load modules, one at logon, and one at logoff.

The modules are both written in PL1. Figures 11, 12, and 13 give the

basic flowcharts of the system, and each one will now be explained.

Figure 11 depicts the operation of the LOGON processor. A

standard TSO "nopass" option is used for all TSO CMS USERID's which

allows the invocation of the TMP without a TSO password, that is, TSO

logon is accomplished by merely typing "LOGON USERID." At this time,

when finished with initialization, the TMP passes control to the CMS

LOGON routine. The first function performed is the basic user valida-

tion. CMS uses group numbers for user identification. This was done

so that the class administrator would not have to cope with both

USERID's and passwords. Under this scheme, the administrator may

assign group numbers based on a signup list or class roll sheet, and

either assign or collect unique passwords. This scheme also tends to

assist students by giving them a number instead of a character

string as their identifier. If they forget their password, they can

always identify themselves to the administrator by group number and get

their memory refreshed. The user is given two tries to enter a valid

MO

MACRO FLOWCHART OF CMS LOGON ROUTINEFIGURE 11:

51

SYS TE M T

A
-L

7M P PASSE rs

COA'7XO 70 0

PoROcESSOR T
0
9

P

R

I?
N)V /T VAqLD G

cot~wr

C
0

WiAM E USR

.//,4S SES.T/ON -

. PRocesso A

Gers coWrW0o.

0

F 0CSESSIO
FIGUE 1: CLSS ONITR CNSOL SESIO

FIGURE 13: MACRO FLOWCHART OF CMS LOGOFF ROUTINE

group number/password combination. If unsuccessful, the user is logged

off the system completely. This is made possible by the mechanism of

the system logoff routine. It is called directly from within the LOGON

processor, and simply turns on a bit in one of the system control blocks

for the process. Whenever control is returned to the TMP, this bit

is automatically checked, and if on, causes the logon session to be

cancelled. Since control is returned directly from the LOGON processor

to the TMP, this screening method cannot be subverted. The next task

is to determine the account balance. If there is any money left in

the account, the user continues processing. If not, an appropriate

message is printed, and the user is logged off. At this time, we are

certain that the user is a valid one, either a student user or an

administrator. We must now solve an important problem caused by the

modular nature of TSO.

Although we now know the valid user's group number, as soon as

the LOGON processor is finished executing, all of the current information

disappears as a new program is fetched into the TSO region for execution.

How, then, does the LOGOFF processor know which group number to charge

for the session? It is clearly undesirable to have the group number

and password reentered at the end of the session. The problem is solved

using the User Profile Table, one of the control tables which remain

in use throughout the session, and in which, for example, the characters

for character and line deletion are recorded. Several bytes of installa-

tion-usable space are reserved in this table, and one halfword is used

to record the group number. Each time the TMP invokes a command, the

54

address of this table is passed in the argument list. This allows our

LOGON and LOGOFF commands to communicate.

Having recorded the identity of the user, we check an administrative

flag in the accounting record. If the user has administrative privileges,

we give him an opportunity to access the Master File for maintenance.

Otherwise, we simply return to the TMP, our work completed. If the

user accesses the Master File, we return to the TMP when finished.

The Master File Access Routine is a PLl procedure callable from

the LOGON processor. It is simply a conversational file maintenance

routine, which provides the obviously necessary functions of adminis-

tration, such as adding and removing group numbers, changing passwords,

allocating money, printing reports, etc. Most of the programming and

design involved are relatively mundane, and available to the interested

reader in the CMS Programmer's Guide.1 One feature which is relevant

here, however, is the hierarchical scheme currently employed for

administration. Users are classified either as non-administrative (no

access to Master File), administrators (access to the records of all

student users in the file), and super-users (access to all records in

the file). Without judging the merits of the scheme, it is interesting

to note that almost all subsystems of this nature possess the "deity

syndrome", that is, there is always one particular user (in this system

called a 'super-user'), who has absolute accessing rights to all infor-

mation within the system. This usually starts as a protective measure

during the debugging stages of the development, when it is clearly

advantageous to have an override mechanism for emergencies. But somehow,

as time goes on, this facility is never removed, so that the creator

of the system always has "the power". It is likewise true of CMS that

the current CMS administrator has absolute access to all Master Files

for all classes. Since the class administrator is often an inexperienced

student assistant, it has been found that the override facility has

been very useful so far.

LOGON processing, then, includes user validation and screening,

account checking, posting of group numbers, and Master File access for

administrators. Control is then returned to the TMP.

When the TMP regains control from the CMS LOGON processor, the

system logoff bit is immediately checked. If this bit is set, the

session is terminated. If not, the user is presumed to be valid, and

a READY message is issued to the terminal. (For a description of

the CMS LOGON and LOGOFF user interface, see [12].) At this point,

we are at the TSO READY State. This is often referred to in other

timesharing systems as the Supervisor Level, or Command Level. When

a user is in READY state, the TMP is ready to process commands from

the terminal.

Having performed the necessary functions at LOGON, we are now

faced with the problem of controlling the user console session, as

depicted in Figure 12. As noted earlier, we would like to give the

user the absolute minimum number of commands necessary to perform the

assigned task. In doing so, we would like to use standard TSO commands

as much as possible, so that when a user has a question about a command,

all of the existant TSO documentation (such as the Command Language

56

Reference Manual) will still be relevant. The procedure then, is to

start with the standard set of TSO commands, and simply remove those

that are not needed. This turns out to be an extremely easy task,

because of the straightforward way in which TSO processes commands.

When a command line is sent to the Command Buffer for processing, the

TMP has a standard search path for locating the proper program to

fetch. The part that concerns us here is the location of the commands

themselves. They all reside in a partitioned dataset called SYS1.CMDLIB.

Each command is a separate member of the dataset, with its command name

and abbreviations corresponding to a member name and aliai. In order

to restrict the commands available to the user, we simply copy the

desired subset of the TSO commands into a new partitioned dataset, and

substitute that dataset into the search path in place of the standard

command library. The DDNAME of this new dataset is LIMITLIB, and the

TMP is modified to make the substitution. Thus we tailor the command

set of a given class by varying the members of the LIMITLIB used for

that class. When commands are requested which are not included in

LIMITLIB, the standard TSO error message "COMMAND XXXX NOT FOUND" is

.received.

For some applications, the LIMITLIB alone is a satisfactory solution

to our control problems. However, in many cases it is necessary to

allocate and delete datasets in order to run instructional programs. If

we release the ALLOCATE and DELETE commands to users for this purpose,

then they will be able to allocate any datasets they wish (or accidentally

allocate large datasets by incorrectly specifying the allocation para-

meters) as well as delete any dataset on the system, Therefore we use

the TSO EXEC feature, which allows us to store commands in a dataset

for execution., Then we rename the commands we need, placing the re-

named members in LIMITLIB, and using the new commands in our EXEC file.

Finally, we remove the option of the EXEC command which allows the

command dataset to be listed, so that the user cannot learn the new

command names (otherwise, the user could simply invoke them from LIMITLIB

by their new names). This procedure allows us to include commands in

LIMITLIB which are too powerful to give to the user, providing that we

are careful to avoid giving out the ability to discover the new command

names. The LIMITLIB dataset and the EXEC command, then, provide user

control during the console session.

At the end of the console session, CMS must get control to perform

accounting functions and print charges. This is accomplished by in-

serting a CMS module into LIMITLIB as LOGOFF. The flowchart for LOGOFF

is shown in Figure 13. When the user types the command LOGOFF, the

CMS module is fetched instead of the standard system program. After

CMS performs its accounting functions, it calls the system logoff routine,

assuring that when control is returned to the TMP, a normal session

termination will occur.

Referring back to Figure 10, let us evaluate the current version

of the Monitor in light of our design goals. Following that, we will

discuss some of the security aspects of the Monitor.

We have seen that CMS LOGON gets the desired control at logon time,

and properly validates all users. The combination of LIMITLIB and EXEC

58

provides the ability to tailor the TSO command language. Protection

is accomplished mainly by hiding essential commands and datasets from

the user. At the present time, no file maintenance is performed by

CMS, due to the lack of an interface between higher level languages

and DAIR (Dynamic Allocation Interface Routine). Several schemes are

being studied to implement a file subsystem. The LOGOFF routine gets

control when the user issues a logoff request. In Version 2 of the

Monitor, abnormal termination such as console shutoff will also be

handled. Online accounting and Master File maintenance are provided.

The system has proven to be extremely easy to use and maintain, due to

its modular design and close resemblance to normal TSO. Finally, the

overhead has been measured at approximately one dollar per student

session, and this figure will be reduced in the next version.

SECURITY AND THE MONITOR

Although the Class Monitor has proved a useful tool in non-computer

courses at MIT, it is of limited value in the control of computer-

oriented courses due to its vulnerability. It lacks protection in two

major areas.

First, since the datasets used to implement the monitor are simply

normal user datasets, they may be edited, listed, or deleted by other

"full" TSO users. A specific example of this occurred last fall, when

a staff member at the Computation Center, in an effort to assist a

Class Monitor user, listed his EXEC files using a command not available

within LIMITLIB. Thus the code names (and access) to all commands

were given to this user. Further, students who are given full TSO

access for thesis projects are free to alter or destroy all of the

essential datasets for the Monitor. Therefore, the Monitor is open

to sabotage from non-Monitor users.

A second area of vulnerability arises from the fact that all of

the programs within the Monitor are written in PL1, and run in User

Mode. If we give a PL1 programming class access to a version of the

Monitor which includes the ability to edit, compile, run and delete

PLl .programs, we face two problems: first, anything that the Monitor

does, they can do (for example, gain access to the User Profile Table,

and change the group nember to be billed for the session), and second,

the logical structure of TSO provides no method of keeping different

user's datasets apart in a single USERID, and releasing file maintenance

60

commands gives unlimited access to all system datasets. Therefore, we

have relied upon the good nature of our students when using the Monitor

for more sophisticated applications.

The final chapter discusses the IBM Resource Security System, and

what additional security it will bring to the Class Monitor in the

OS/TSO environment.

61

CHAPTER 4 - RSS AND CLASSROOM SUPPORT SECURITY

INTRODUCTION

In May of 1973, the IBM Resource Security System (RSS) was

installed at the MIT Computation Center as part of a study on operating

system security. RSS is designed as an addition to OS Release 21

which, when fully implemented (and debugged), provides the additional

software necessary to "secure" the operating system. Since extremely

detailed documentation is available for RSS [13, 14, 15], only a very

brief description will be given here.

RSS is a system primarily concerned with data security, and one

which clearly reflects its military ancestry (it was originally designed

for use in the World-Wide Military Command and Control System). System

resources (programs, datasets, and terminals) are accessed by users

on the basis of security levels, access categories, and need-to-know.

Security levels reflect the sensitivity of data, in a manner directly

analagous to the military "confidential, secret, and top secret" classi-

fication. Datasets are assigned one of eight security levels, and each

user has an attribute which sets a maximum permissable level of data

access. Access categories provide a means of implementing a group

need-to-know strategy by associating groups of users with groups of

system resources. For example, all of the administrative users in

a given department might be authorized to the set of confidential files

for that department. Finally, in the extreme case, individual users

can be authorized to specific datasets on a specific need-to-know basis.

Perhaps the most important reflection of the military design

strategy in RSS is the notion of the Security Officer. The control

of all security procedures within the system rests with the person (or

persons) designated as Security Officer. This control includes the

definition of access categories, maintenance of the security profiles

of all users, and the control of the authorization procedure for all

controlled datasets.

Through the authorization procedure described in [13], users are

given rights to datasets on the basis of their codewords, which specify

access categories, levels, and need-to-know. The RSS System then

monitors the use of all controlled datasets, and attempts to prevent

any access to the system which might subvert the control mechanism.

Since the MIT community has had little opportunity to observe

the system, we will not critique its effectiveness here. For interested

readers, some information on performance is available from Cornell

University [16]. We will, however, take a brief look at the potential

effectiveness of RSS in allieviating the security problems of the Class

Monitor. The chapter will conclude with some comments on the design

of operation systems for use in the Classroom Support Environment.

THE POTENTIAL OF RSS

When OS-360 was originally introduced, the designers were very

proud of the ease with which data in the system was accessed. It

was a very "open" system, and the most flexible available in terms of

file system organization. As the need for data protection became clear,

and TSO was added to the environment, RSS was developed to gain control

of the system. For the Class Monitor, this means the ability to protect

its control datasets from outside disturbances, and further, to authorize

the contents of those datasets to specific programs. For example, the

accounting file could be authorized only to LOGON, LOGOFF, and the

Master File Access Routine, thus preventing access by student programs.

However, it sould be noted here that even though this is a major improve-

ment in OS-TSO, the result is no advance in the state-of-the-art. Indeed,

there is some reason to believe that the design of a timesharing system

in which one user can access another user's files (or even know that

they exist) was a terrible mistake at best, and that dataset protection

in TSO in fact brings the design of the system up to a level just

below that of systems such as CP/CMS, since the user in TSO can still

find out that controlled datasets exist from the system catalog.

In the Classroom Support Environment, as noted in Chapter 3, a

very decentralized user community exists. Unfortunately, in RSS, only

the Security Officer can protect datasets and assign privileges. This

military notion of security centralization is in direct conflict with

the needs of our environment. This and other problems of RSS in a

64

"service bureau" environment are discussed by Daley.

RSS provides no assistance in the other major area of difficulty,

that of preventing the user from accessing the User Profile Table and

other sensitive control tables during execution. Although RSS in most

cases can catch a user before the OS environment is affected, it offers

no assistance in maintaining the subsystem environment needed in our

application.

In summary, the addition of RSS to OS-360 provides some useful

control of sensitive datasets, but fails to provide the mechanisms

necessary for subsystem control, such as automatic user exits from

various sections of the TMP, and authorization mechanisms which operate

without the Security Officer. Much modification of TSO is needed

before the Class Monitor can be secured, and RSS must be extended to

include more specific authorizations, such as the execute-only access

and program-program-file permission discussed by Daley. RSS, while

solving many dataset access problems, falls short of the requirements

of the Classroom Environment.

65

CONCLUSIONS

Experience in the Classroom Environment at MIT has shown that a

decentralized approach such as the Class Monitor System provides the

necessary simplicity and computing power for students, as well as the

control required for administrators. Severe problems occur, however,

in attempting to provide adequate subsystem integrity. It seems clear

that any operating system which intends to service this environment

must include mechanisms for subsystem implementation which include

access (either by user exits or open entry points) to most major

modules of the system. File systems, accounting systems, command

processors, and many other areas must beavailable to provide adequate

subsystem security.

In conclusion, we should note that there are some viable alternatives

to the OS environment for Classroom Support. Madnick and Donovan18

make a strong case for the use of virtual machine systems in areas

where security is a problem. -Certainly this idea is appealing in attempt-

ing to isolate computer research, for example, from other campus activities.

Even with a class virtual machine, however, some mechanism will be required

to protect members of that class from one another, making some subsystem

necessary. The Multics design19 is one which makes the implementation

of subsystems somewhat easier.

The needs of the Classroom Support environment, then, are mainly

in the area of subsystem security. Hopefully, the work of the RSS Study

66

Group at the Sloan School of Management will provide a framework for

analyzing these needs which will assist designers in meeting them more

completely.

REFERENCES

1. Levien, R.E., Blackwell, F.W., Comstock, G.A., Hawkins, M.L.,
Holland, W.B., Mosmann, C. The Emerging Technology: Instructional
Uses of the Computer in Higher Education, Preliminary Edition,
The Rand Corporation, Santa Monica, California, 1970.

2. Interview with Joseph Patten, Director, Office of Administrative
Information Systems, MIT on April 26, 1973.

3. Lavigne, Jean C., Porges, Denis, S.M. Thesis, MIT Sloan School,
A Management Information and Control System for a School and its
Applications to the Sloan School of Management, 1971.

4. Chaney, John F., "Data Management and Interrelated Data Systems for
Higher Education", Management Information Systems: Their Development
and Use in the Administration of Higher Education, Western Interstate
Commission for Higher Education, Boulder, Colorado., October 1969,
pp. 17-27.

5. Rand Corporation (op. cit.) p. 168.

6. IBM System/360 Principles of Operation, IBM Corporation,
Form GA22 - 6821.

7. IBM System/360 Operating System, Introduction, IBM Corporation,
Form GC28 - 6534.

8. IBM System/360 Operating System, Time-Sharing Option - Command
Language Reference, IBM Corporation, Form - GC28 - 6732.

9. IBM System/360 Operating System, Time-Sharing Option - Terminal
User's Guide, IBM Corporation, Form GC28 - 6763.

10. IBM System/360 Operating System, Time-Sharing Option - Guide to
Writing a Terminal Monitor Program or a Command Processor, IBM
Corporation, Form GC28 - 6764.

11. Hewitt, D. "Class Monitor System Programmer's Guide", Multilithed
Manual, East Campus Computer Facility, MIT, 1973.

12. Hewitt, D. "Class Monitor System User's Guide", Multilithed Manual
East Campus Computer Facility, MIT, 1972.

13. IBM OS/MVT With Resource Security: General Information and Planning
Manual, IBM Corporation, Form GH20 - 1058.

14. IBM OS/MVT with Resource Security: Installation and System Programmer
Guide, IBM Corporation, Form GH20 - 1021.

15. IBM OS/MVT with Resource Security: Security Officer's Guide, IBM
Corporation, Form GH20 - 1057.

16. Weiner, Herb. "An Analysis of Computer Software Security at Cornell,"
Working Paper, Cornell University, Ithaca, New York, February, 1973.

17. Daley, Robert C., "Authorization and Disseminated Control in a
Resource Security System," Paper Presented at the IBM Quarterly
Security Conference, MIT, Cambridge, Massachusetts, April, 1973.

18. Madnick, S.E., and Donovan, J.J. "Application and Analysis of the
Virtual Machine Approach to Information System Security and Isola-
tion", Paper Presented at the ACM Workshop on Virtual Computer
Systems, Harvard University, Cambridge, Massachusetts, March, 1973.

19. Bensoussan, A., Clingen, C.T., Daley, R.C. "The Multics Virtual
Memory: Concepts and Design", Communication of the ACM, Volume 15,
Number 5, May, 1972.

