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ABSTRACT

The concept of virtualness is extended to information.
Virtual information is, informally speaking, information that
is derived from other information. The term virtual
information was proposed in 1973 in a paper by Folinus,
Madnick, and Schutzman{R7}. We extend that paper by defining
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Introduction

The concept of virtualness plays a prominent role in

the world of computers. For example, the VM/CMS operating

system contains virtual memory, virtual machines, virtual

disks, virtual card readers, virtual card punches, and

virtual printers{R26}. In this paper, we extend the

concept to information. The term virtual information was

proposed in 1973 in a paper by Folinus, Madnick, and

Schutzman{R7}. We extend that paper by defining virtual

information in a precise manner. Database concepts related

to virtual information (although typically not called

virtual information in the literature) are reviewed.

Finally, the function of virtual information in the

INFOPLEX database computer is discussed{R15}.

In chapter 1, the concept of virtualness is described

by example. Then a model of information is presented and

virtual information is defined in terms of that model. An

analogy is drawn between virtual information and the

concepts of data type abstraction and data independence.

Chapter 2 describes one application of virtual information

in a non-DBMS context, and several applications in a DBMS

context. Chapter 3 relates the ideas presented in the

first and second chapters to the INFOPLEX data base

computer.



Chapter 1. Virtual Information

The Concept of Virtualness

Bruce sells watches with leather and metal bands. A

customer asks Bruce for a brand X watch with a metal band.

Bruce has a brand X watch with a leather band, but he has a

spare metal band in a drawer. What is Bruce's reply?

Mary-Louise is invited to John's party on the

condition that she brings dessert. She has flour, sugar,

eggs, vanilla, baking soda, salt, chocolate chips, and her

mother's recipe for chocolate chip cookies. Can she attend

the party?

David is also invited to John's party. He has no

ingredients and no recipe (although his mother is a great

cook), but he does have $10. The bakery is a two minute

walk from David's front door. Can he attend the party?

In each of the above stories the answer to the posed

question is effectively yes, conditional on there being

sufficient time -to complete the obvious transformation. We

say that Bruce has a virtual brand X watch with a metal

band. Mary-Louise and David have virtual cookies. For



example, as far as the customer is concerned, Bruce has a

brand X watch with a metal strap. The customer is

concerned only with results, not implementation.

The advantages of utilizing the concept of virtualness

are obvious. For example, Bruce would have to keep a

larger inventory if he kept "actual" watches only. David

would be stuck with chocolate chip cookies if he had

stocked actual cookies and if John had requested raisin

cookies instead of just dessert. On the other hand, the

major disadvantage is the speed at which each person can

respond to a request.

What makes Mary-Louise's cookies virtual and when do

they become edible? This question implies that cookies are

more desireable in one form than another. We will refer to

the more desireable, edible, concrete, useable form of the

cookie as the materialization. The less tasty form of the

cookie is the basis. Specifically, the cookie's basis

comprises the ingredients. The recipe is the prescription

for materializing the cookies from the ingredients. Of

course, the ingredients themselves might be virtual, in

which case they would be composed of even more basic

ingredients. The most basic set of ingredients is referred

to as the cookie's primary basis, everything else is



derived.

Cookies become edible when they are materialized, but

what made them virtual in the first place? Suppose we kept

an edible cookie in a drawer, and no longer kept

ingredients around. The cookie is not in a usable form

(not yet materialized) until the drawer is opened.

However, there is a materialized cookie from the point of

view of the ant in the drawer. The cookie outside the

drawer is derived from the cookie inside the drawer, but

the cookie outside the drawer is not a virtual cookie

because the respective materializations are identical.

As another example, suppose that cookies are made from

ingredients, but are temporarily stored in the drawer

before being consumed. Let CI and.CO denote cookies inside

and outside of the drawer respectively. The ingredients,

I, compose the primary basis for CO and CI, and the basis

for CI. From previous examples, CO is not virtual with

respect to its basis, CI, while CI is virtual with respect

to its basis, I. It seems unreasonable, however, to say

that CO is not virtual when its basis is. Therefore CO is

virtual as well.



A Model of Information

We postulate the existence of bit strings called

atomics. Atomics may be created, destroyed, and tested.

An object t, denoted by at, is simply the name used to

refer to an atomic. The association, or binding, of an

object to an atomic gives a semantic meaning to the atomic

and therefore contains information., For example, "Mike's

age" is an object and 24 is an atomic. (We will use more

descriptive representations than bit strings to describe

atomics.) Binding "Mike's age" to 24 produces the

information that Mike is 24. An atomic that is bound to an

object t is called the materialization of Ot and is denoted

by tOt. The binding process is called the materialization

process.

The database is the set of all objects. Suppose the

database comprises q objects, {O 1,.., 0 }. We say that tOi

is independent of tOj iff for every set of materializations

(TO1 ,..., 0t}, no change in TO3 results in a change in tO'.

If TOi is not independent of TO then toi is said to be

derived from TOn. If Toi is independent of all other

materializations of objects in the database then TOi is

said to be a ba'sic object. The materialization of a basic

object is the binding of the object to an atomic. The

materialization of a derived object is the process of



mapping the materializations of other objects onto a new

atomic and binding that atomic to the object. For example,

consider the objects "Mike's birth year", "Mike's age", and

"current year". The materialization of the object "Mike's

birth year" is the process of mapping the materialization

of Mike's age and the current year onto an atomic and

binding that atomic to "Mike's birth year".

The materialization of a derived object is defined in

terms of other objects, called the object's basis. The

t t tbasis of 0 is denoted by Bt. More precisely, B is an

ordered set of objects, Bt={ 0 ,..., 0P} where p>0. The size

of the basis is p=St. The ith member of Bt is called a

component of Ot and is denoted by rt i. For example,

"Mike's age" is the first component of "Mike's birth year".

The materialization of Bt, tBt, is defined to be

{T01,...,top}. The materialization of two bases, TBu and

tBV, are identical iff Su=Sv and truli=Tr V' for i in

[1,Su]. The rule for materializing to from tBt is called

the materialization mapping, Mt

i tFor 0 to be a component of Ot, we require that to be

i
derived from TO . The rationale is that it doesn't make

sense to define tot in terms of objects whose

t
materializations are completely unrelated to to. Another

requirement imposed on the components of Ot is that the



components must form a ccmplete basis for 0 . A basis, B ,

is complete if the following is true. If 0t is

materialized at two different instances to produce t0tl and

0t2 then 10t1=ot2 iff tBt =TBt2 . Hence h0t is said to be

t
completely determined by tBt. A necessary conditibn for

completeness is that all objects that tot is derived from

t
are either in tB or are objects that tBt is derived from.

An object graph is used to show the relationships

between objects. An object graph comprises nodes and

directed edges. Each node, Nt, corresponds to an object,

O A directed edge, Eu,v, leads from Nu to N iff 0  is a

component of Ou. When drawing object graphs, we will use

the convention that the leftmost child of a node Nt

corresponds to the first component of Nt and that

components two through St follow from left to right.

Therefore, Bt corresponds to the children of N. Cycles in

the graph are not permitted. A leaf is a node with no

edges leading from it. A node, N t, is a leaf iff Nt is

basic, otherwise Nt is derived. The primary basis of t

the set of all basic objects whose nodes are descendents

Nt in the graph.

is

of



We define a cell in terms of its materialization. The

materialization of a cell is a substring of an atomic. If

we can decompose to into a set of cells {Ctl ,...,CtPl

where p=S t, such that each tCtri is completely determined

(in the sense used earlier) by trt, then we say that t

is cellular. An example of a cellular object and a

non-cellular object is shown in figure 1. The

materialization of a cellular object, Ot, is defined to be

identical to its basis, tBt (tOt=TBt), iff tC ti-Trtri for

t teach i in [1,St]. If an object, 0t, is not cellular then

by definition, tOt/tBt

Figure 2 shows an instance of two tables (relations),

the corresponding object graph, and the materialization of

each object. Objects are connected to their

materializations by dashed lines. The tables are the

PERSON and YEAR tables. Some nodes are labelled with

example materializations, instead of names, to avoid the

tedious process of naming each object. The

(materialization of the) person's age is derived from (the

materialization of) her birth year and the current year.

If the current year were to change to 1981, then Joanne's

age would materialize as 16. Note that all objects are

cellular, except for '15' and '14'.
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We are now in a position to define virtual information.

Object Ot is virtual iff one of the following two

statements is true.

(i) TOtfTBt

(ii) Trt8i is virtual for some i in [1 ,St

Thus, Ot is virtual if its materialization is not

identical to the materialization of its basis or if an

object in its basis is virtual. If statement (i) is true

then t is said to be virtual with respect to Bt. In

figure 2, the objects '15' and '14' are virtual with

respect to their bases. Objects tl, t2, and PERSON are

virtual, but not with respect to their bases.

As a corollary to the definition of virtual

information, we show that Ot is virtual if it is derived

ufrom a virtual object, 0u (although not necessarily

completely described by 0u). If Ot is derived from Ou then

a path must exist between N and N in the object graph. A

path from Nt to Nu Ptu, is an ordered set of directed

edges leading from N to Nu, where Pt=-Et rl,..Eik u

From the definition of virtual information, 0 ik is virtual

because O Uis virtual. Also, Ot is virtual if 0il is

virtual. Therefore, by induction, Ot must be virtual.
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For another example of virtual information, consider

the relations PAY and VPAY in figure 3. Each tuple

(Otl,0t2 ,etc.) of PAY comprises a basic name object and a

basic salary object. Suppose we want to study salary

distributions within an organization. Since salary

information is confidential, and executive salaries

themselves are top secret, we define a new relation

consisting only of the salaries under $50,000. In System R

{R6} VPAY could be defined as follows.

DEFINE VIEW VPAY AS:

SELECT SALARY

FROM PAY

WHERE SALARY < 50000

The corresponding object graph and example materialization

are also in figure 3. The System R statements define BVPAY

as 0PAY and M in terms of the salary cell of tO .

The only virtual object in figure 3 is 0 . The reason

that 0VPAY is virtual is that, although it is cellular,

VPAY34 PAY.t0 TO . We can generalize this observation by noting

that if the information embodied in the materialization of

an object, to , is a subset of the information embodied in

tBt, then 0t is a virtual object.
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Virtual Information: A Functional Perspective

Virtual information enables construction of new

objects from existing objects, to make the new objects

appear as real as the existing objects. This is analagous

to data type abstraction in programming languages{R18,R20}.

Data type abstraction enables construction of new data

types from existing data types, to make the new data types

appear as real as the existing data types. We proceed to

devlop this analogy further.

Liskov and Zilles define an abstract data type to be

"a class of abstract objects which is completely

characterized by the operations available on those

objects"{R18}. In other words, to define an abstract data

type one simply defines

(i) the operations that can manipulate the data type,

(ii) the internal representation of the data type, and

(iii) the implementation of each operation.



A programming language with an abstract data type capacity

(such as CLU{R20} and, to a lesser extent, PASCALfR25})

provides a set of primitive data types (for example, real,

integer, boolean, etc.) to enable definition of new data

types. Abstract data types can also be used to define new

abstract data types. As an example, consider the

definition of an integer stack{R18}. First, the relevant

operations are enumerated: push, pop, looktop, erasetop,

empty(the stack). Second, the internal representation is

specified to be an array of integers with a pointer to the

top of the stack. Third, each operation is defined in

terms of manipulation of the stack and the pointer to the

top of the stack.

Implementation details are very important when

defining an abstract data type. However, when using the

data type only the behavior -- the functionality -- of the

data type is of importance. The programmer needs only to

know how to manipulate the data type. His task is

simplified by not being complicated by implementation

details. The result should be that programs will be easier

to write and maintain{Rl8}.



19

Virtual information is analagous to data type

abstraction both in terms of implementation and in terms of

benefits. The only difference is that there is no data

type abstraction concept analagous to non-virtual

information. A virtual object is completely characterized

by operations on that object (as defined by the

materialization mapping). We therefore take a functional

perspective of virtual information. To investigate this

perspective, it is useful to view information along a

spectrum from pure data to pure algorithm{R7}. According

to {R7}, "recorded facts which are independent of other

information in the data base may be considered as pure

data." In terms of our definition, basic objects are pure

objects. An example of pure algorithm is the trigonometric

sine function. In between pure data and pure algorithm

lies derived information. A derived object is a

combination of pure data and pure algorithm. A virtual

object is a derived object with the additional quality that

the materialization of the object's basis not be identical

to the materialization of the object itself. Suppose

employee salary information is represented by a table

comprising tuples that comprise three fields: the employee

name (EMPN), the employee's weekly salary in dollars

(WSAL), and theemployee's annual salary in dollars (ASAL).

Although a functional dependency exists between tOWSAL and

to ASAL, the materializations are independent. The table is
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The functional dependency is undesirable because a change

in tOWSAL will not automatically be reflected by a

corresponding change in to .SAL Figure 5 shows how the

concept of virtual information can be applied to the tables

in figure 4 to solve the dependency problem. In figure 5

the basis of table A' (B A) is different than BA in figure

4, while tOA is identical to tO . The pure data (WSAL) is

combined with a pure algorithm (multiply by 52), via the

materialization mapping, to give virtual information

(ASAL). Note that the functionality of 0A is identical to

0 ; standard database operations such as insert, delete,

update, and retrieve still apply assuming that M and

A' -1
(M ) are suitably defined (for example, assuming that

the update operation divides ASAL by 52 before updating

WSAL). Of course, MA' may not always be invertible.

Several example of this are given in {R16}.

Table A' in figure 5 is virtual with respect to table

A'
B, and table A' can be manipulated exactly as if TO were

B A' A'
identical to tO . Once 0 is defined in terms of M and

B A', 0 A can be manipulated without regard to its

implementation. The insulation of implementation and

function is extremely important to database and database

system design -- just as it is important to programming

languages. In fact, this insulation is crucial to the

support of data independence.
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Data independence has been defined in various

fashions, both precisely {R24} and imprecisely {R7,R15} in

the literature. For our purposes it is sufficient to say

that data independence exists if a change in rBt does not

t
necessarily imply a change in to, assuming that Mt is

allowed to change. For example, data independence exists

in the relations of figure 5 if a new field, EMPAGE, can

be added to 0 without changing to (note that BA' is

contained in B ). As another example, data independence

exists at the applications programming level if changes to

the physical storage structure do not force changes to the

applications programs. We refer the reader to the

literature for discussions of the many virtues of data

independence {R13,R24}.

A virtual information capability facilitates data

independence in the following way. Suppose the database

A.
comprises the 0 in figure 4. Noting that the ASAL can be

derived from WASL, the database administrator decides to

save storage space by eliminating the ASAL field. He

creates 0B shown in figure 5. Without a virtual

information capability, since tBA has changed to tB A', toA

would have to change to tO. Therefore, applications

programs, for example, using toA would have to be modified.

However, with a virtual information capability, a new table

A' (shown in figure 5) can be defined in terms of to . We



must find an M such that toA (in figure 4) is identical

to* to (in figure 5). Indeed, they are identical in

figures 4 and 5.

In practice, it is impossible to guarantee that we can

find a suitable materialization mapping, because it is

always possible to change a basis in such a way as to lose

information. More importantly, however, a change in basis

Bt to B and a corresponding change in Mt to M t, such

that tot is identical to tot, may give us a non-invertible

Mt. Data independence will exist for retrieval operations,

but not for store operations. We say that an object 0 is

storable at level k if Mt- is invertible. This problemk-i

has been addressed in the computer literature {R16} and in

implemented DBMS systems. In implemented systems there are

two possible reasons for non-storable virtual information:

(i) The system doesn't support some forms of storable

virtual information.

(ii) The materialization mapping is not invertible-.
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Chapter 2. Applications of the Virtual Information Concept

A Non-DBMS Application of the Virtual Information Concept

Data Reorganization/Translation

The process of data translation is one of changing the

organization of the data in a database so that it can be

processed on a new hardware/software system, or possibly

more effectively on the same system {Rl,R2}. Reasons for

wanting to reorganize a database range from efficiency to

necessity (e.g. new hardware/software). Figure 6 shows a

simplification of the approach to the problem taken by

members of the Data Translation Project at the University

of Michigan {Rl,R2,R3}. First, the source and target data

are defined, with respect to structure, by a data

definition language (DDL). Second, a mapping between the

source and target is defined by a translation definition

language (TDL). The Reader then reads the source database

using the source DDL and translates the data into a common

data form. The Translator uses the source data in the

common form and the TDL mapping to produce target data in

common form. Finally, the Writer uses the target data

definition to convert the target data to the correct target

format.
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The data translation problE

terms of virtual information.

figure 6 is redrawn in the conte

problem is to find M such

structure at the target level.

mapping that will give us our

source data.

!m is easily restated in

Consider figure 7, where

DDxt of a DBMS, 0D The

that tOD has the desired

Thus, we are looking for a

desired virtual view of the

DBMS Applications of the Virtual Information Concept

Multiple Views of Data

A view of an object is simply the materialization of

the object. Objects Ot and Ou are said to be different

views of 0 iff 0 is a descendent of both objects in the

object representation graph. We discuss multiple views of

data because much of the work on views -- especially in

implemented DBMS systems -- has focussed on multiple views.

Multiple views serve two major functions:

(i) The support of multiple data models, specifically

the hierarchical, network and relational models.

(ii) The support of multiple users' views, each with

its own requirements/authorization for a subset

of the total database.



INFOPLEX, System R, the DBTG system, and the

ANSI/X3/SPARC architecture all have been discussed in terms

of multiple data model support {R15,R6,R13,and R5

respectively}. The difficulty in providing multiple data

model support is that the database representation at the

level below the models should be flexible enough to

efficiently support not only the three standard models

(hierarchical, network, and relational) but new models as

well. Our purpose is to express the problem in terms of

virtual information. Assume that 0D is the database

implemented with a database model to be used to support

hierarchical, network, and relational databases (0h 0n ,and

Or respectively). In other words, the basis of 0 h, 0 , and

0 must, in each case, be 0 If the model were not

virtual then TOh, ton, to r, and toD would all be identical

(since they have a common basis). Without proof, we claim

that if the materialization of different model views were

always identical then little would be gained by supporting

multiple models.

The support of multiple users' views is handled to

some extent by most, if not all, DBMSs -- although the

terminology differs. In IMS, the program communication

block (PCB) specifies the mapping between "logical" and

"physical" databases {R13}. In the DBTG system, the

sub-schema definition specifies the mapping between the
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"sub-schema" and the schema (R13}. In the System R, the

view definition facility enables selection of a subset of

one or more relations to be presented to the user as one

view .R6}. The view support provided by IMS, DBTG, and

System R is important for two reasons:

a. The user can view the part of the database he

wants. This frees him from worrying about

irrelevant fields, sets, tuples, etc. Since he

only sees part of the database, other parts can

be changed without affecting him -- thereby

introducing data independence.

b. Views can be defined and permission to perform

particular operations on data can be selectively

granted to users. Thus views can be used for

security purposes.

To see the connection between virtual information and

the support of multiple users' views, we can look at a

user's view as a view of a database with only a subset of

the potential information. Obviously, the materialization

of the user's view is not identical to the materialization

of the user's basis, since the user's basis is identical to

the basis of the database -- while the view is only a

subset of the database.



Prevention of Errors

The prevention of errors comprises four areas:

securi-ty, integrity, consistency, and reliability. These

areas are defined as follows {R21}.

Security: prevent users from accessing and modifying

data in unauthorized ways.

Integrity: prevent semantic errors made by users due

to carelessness or lack of knowledge.

Consistency: prevent semantic errors due to

interaction of multiple processes operating

concurrently on shared data.

Reliability: prevent errors due to malfunctioning of

hardware/software.

Virtual information is important to two of the above

areas: security and integrity.

Security

Security is related to virtual information because it

necessarily implies different information content available

to different users. In fact, System R, DBTG, and IMS all

provide security facilities in conjunction with their

multiple view facilities. For example, in System R,



permission is granted to specified users to perform certain

operations on specified views (in System R a user's overall

database view is a combination of views of smaller

objects). Another way that virtual information can be used

to provide security is through encryption techniques. For

example, a view of an object could be defined as a function

of the view of the secure object and an encryption key.

Without insertion of the correct key, the object would be

garbled upon materialization.

Integrity

Virtual information supports integrity in two ways:

data type conversion and elimination of redundancy. Data

type conversion comprises three related concepts: type

conversion (for example, real to integer), unit conversion

(for example, kilograms to tons), and scaling (for example,

thousands to millions). Unit conversion and scaling can be

thought of as a subset of type conversion. Type conversion

aids integrity two ways. First, it insures that comparison

and other operations are done between like objects by

performing meaningful conversions. Second, it rejects

operations between unlike objects where no meaningful

conversion can- be made. A discussion of the relationship

of data conversions to integrity can be found in {R21}.

Conversion is a virtual information function in the
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following sense. Assume that object at, whose

materialization represents a real number, is the sole

0u Ifucomponent of 0 if u can be manipulated as an integer

(that is, if conversion is defined between types integer

and real) then t0u is a virtual view of t

For an example of a data conversion facility, we

consider the MIMS system {R23}. Using MIMS terminology,

each field in a record can have an associated unit of

measure (u/m). The user's view of that field is then

always in that u/m. To enable u/m conversions, MIMS allows

the user to create a file called the UM file. Each record

in the UM file comprises a u/m code (feet, seconds, kg), a

u/m type (distance, time, mass), a u/m definition, and a

standard indicator. The u/m definition expression enables

determination of relative magnitudes. The standard

indicator specifies the internal units in which all

measures of a given u/m type are to be stored. Figure 8

shows an example UM file. Thus, referring to figure 8, if

a field is defined with a u/m of feet the internal

representation (the materialization of its sole component)

would be yards.



MIMS U/M File

u/m code

inch

feet

yard

sec

min

hour

feet/sec

inch/sec

u/m type

distance

distance

distance

time

time

time

velocity

velocity

u/m definition

1

12

36

1

60

60*min

feet/sec

inch/sec

u/m standard

yes

no

no

yes

no

no

no

yes

Figure 8



A data conversion facility requires some sort of data

typing facility. One proposal for such a facility is

contained in {R22}. That proposal is couched in terms of

domain' definitions for relational attributes. The domain

definition comprises a description of the objects in the

domain, an ordering, and an action to be taken in case of

attempted violation of the integrity of the domain. A

better approach might be to use the concept of abstract

data types (this is pointed out in {R22}) , in order to hide

representation details. These issues will be discussed

later in reference to INFOPLEX.

Redundancy of data means that multiple updates

(inserts, deletes) must be done when one object is to be

updated (inserted, deleted). Database integrity is then

susceptible to processes that either neglect to modify all

occurences of the object or that are terminated (for

example, due to a system crash) before all modifications

can be completed. On the other hand, redundancy

facilitates processes that only retrieve the redundant data

- since it tends to reduce inter-relation (record, set, etc.)

references. For example, consider the network pictured in

figure 9. Suppose we want to determine Kathy's school. We

find her Person-School record via the P-PS set, since her

school name (sname) is located in the Person-School record.

We would have had to search in the P-PS set, were it not
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for the redundancy in sname. To eliminate the redundancy

while maintaining the benefits of redundancy, we could make

pname and sname virtual within the Person-School record.

In fact, DBTG provides this facility with its VIRTUAL

SOURCE clause {R13}.

Data Encoding

Data encoding is typically used to reduce the storage

space required by objects. For example, fixed length lines

of the text might be compressed via the substitution of a

special end-of-the-line character for trailing blanks.

Data encoding clearly falls under the hat of virtual

information, since the materialization of a decoded object

would be different from the materialization of an encoded

object.



Chapter 3. Virtual Information Functions in INFOPLEX

INFOPLEX {Rl5} is a database computer, currently in

the design phase. The motivation for INFOPLEX is the

desire for and extremely high speed, high reliability,

DBMS. INFOPLEX comprises a storage hierarchy for data

storage and retrieval, and a functional hierarchy for

performing information management functions. Our objective

is to discuss the relevance of virtual information to

INFOPLEX's functional hierarchy.

Three functions in the INFOPLEX computer are

essentially virtual information functions. These are data

typing (including conversion, unit of measure, scaling and

encoding), virtual view definition (including virtual views

of relations and attributes) , and security. Although- these

functions are related, their placement in the INFOPLEX

functional hierarchy cannot be at the same level. For

example, data encoding must be done at a low level so that

levels with data comparison functions can do the

comparisons on decoded data. Our proposal for placement of

virtual information functions in the INFOPLEX functional

hierarchy is depicted in fi.gure 10. Intuitively, the

security, integrity, and data typing (except data encoding)

levels belong above the view definition level because
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security, integrity, and data typing may be expressed in

terms of virtual views (and objects). Placement will be

discussed later in slightly greater detail. A complete

discussion of the INFOPLEX functional hierarchy is beyond

the scope of this paper. The, reader is referred to {R15}

and {R28}.

The Security Function

The security function, as stated previously, is to

prevent users from accessing and modifying data in

unauthorized ways. Although data access can be effectively

controlled through encryption, a more general method is

necessary to prevent data modification. We assume that the

mechanism to assert the true identity of a user (the

userid) already exists. We are then left with two major

design issues:

(i) Location Strategies

1. Keep access permission information for

objects in a user profile.

2. Keep access permission information for

objects with the object itself.
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(ii) Basis Strategies (not to be confused with an

object's basis)

1. Control access on a views basis.

2. Control access on a query modification. basis.

Logically, the user that creates an object should be

solely responsible for granting access permission to other

users. This is the strategy used in System R {R6}. If a

user A wishes to grant permission to user's B and C, and

location strategy 1 is used then A must access B's and C's

user profiles--which may be located in a slow retrieval

level of the INFOPLEX storage hierarchy (e.g. on tape).

If location strategy 2 is used then only the object profile

must be retrieved (which is likely to be readily accessible

because the object is likely to have been recently

accessed). Furthermore, location strategy 2 facilitates

the granting of access to all users (System R uses a

special keyword of PUBLIC for this purpose). Finally, the

question "what users have access to this object" is easier

to answer with location strategy 2. The only advantage of

location strategy 1 is that access rights can be determined

before an object is accessed. Overall, the better location

strategy for INFOPLEX is 2.



Query modification is really a form of view definition

in the sense that the modified query corresponds to a new-

view that only lasts for the duration of the query. The

INGRES {R13} DBMS uses query modification as a basis for

security. We prefer to seperate the view definitions

functions from the security function, and therefore favor

the use of view definitions as a basis for security (rather

than something the security level does) in INFOPLEX. This

is the approach taken, for example, by System R, IMS, and

DBTG.

The Virtual View Definition Function (VVDF)

The VVD function is to enable the construction of new

objects from objects already in the database. This means

specifying, for object 0t, Bt and Mt. As was mentioned

earlier, most existing DBMSs have some (perhaps limited)

VVDF.

One of the most comprehensive VVDF facility is

provided by System R {R6}. The System R user defines a

view preceeding a query with the header "DEFINE VIEW" (see

the example on page ?). The query itself is the view

definition. A catalog holds all the view definitions.

When an object is referred to, System R checks the catalog.

If the name of the object is present in the'catalog, the

corresponding definition is substituted for the object



referenced.

A System R view definition of object Ot defines Bt

simply by referencing other objects. The retrieval

operation (i.e., the materialization mapping, Mt) is

defined explicitly by the query itself. A view-defined

object cannot be updated unless there is a one-to-one

correspondence between the object and an object defined in

a base relation (System R's terminology for basic objects).

We propose a similar view facility for INFOPLEX,

located below the data typing and security levels. If it

were above the data typing level, then the data typing

level would not be able to do type conversion for objects

defined by the VVD level. Security cannot be below VVD;

if it were then the security function could not be handled

via virtual views.

Suppose that a user wishes to define a hierarchical

view of a collection of objects already defined at

INFOPLEX's n-ary level. The user writes a query to define

the virtual (hierarchical) object in terms of the existing

n-ary objects. That query effectively defines all

operations that can take place on the new object. We

assume that the hierarchical external view level provides a

mechanism for mapping hierarchical operations into n-ary
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operations (although the mechanism would be non-trivial).

Since the query explicitly defines the materialization

mapping (for retrieval of atomics), but not (M) (for

modification operations such as insert, delete, and

update), the problem of inferring the latter exists. In

general we can permit modification operations in a virtual

n-ary relation (object) if the materializations of the

attributes of the virtual relation are invertible functions

of the materializations of the attributes of exactly one

relation. We can delete or insert a tuple only if we meet

the constraint that the attributes of the virtual relation

include at least one candidate attribute from each of the

relations in the basis of the virtual relation, and if we

meet the invertibility requirement mentioned above. In

addition, modification is possible when deletes and inserts

are possible.

The Data Typing Function

Each object has its own materialization mapping that

- determines the behavior of the object by defining the

operations that can manipulate the object. It is

reasonable to expect that many objects would have similar

materialization mappings. If the materialization mappings

were identical, they could be catalogued, and each object

could refer to the catalog for its materialization mapping.



We could ref3r to a catalog entry as an object type

definition. Thus, instead of defining a new

materialization mapping for each new object, we could

associate each object with an object type. Types would

include the usual types (real, integer, etc.) as well as

complex types (array, relation, hierarchy, network, etc.).

Such a data typing facility would require extensive type

parameterization facilities to enable parameterization of,

for example, range constraints, size constraints, and

composite data types (e.g. array of integers).

In INFOPLEX data typing can be divided into two

distinct levels, the data typing (DT) level and the data

encoding (DE) level. The DE level is responsible for

encoding techniques for minimizing storage use. Its

inplementation would comprise a catalog of

encoding/decoding techniques. Further details can be found

in {R28}. The DT level is responsible for:

(i) insuring that operations between objects of

differing data types are rejected or that one or

both objects are properly converted
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(ii) enforcing (i) with respect to different units of

measure and scale factors

(iii) allowing user definition of the materialization

of objects at the next higher level

(iv) providing whatever suport deemed necessary

towards an abstract data typing facility.

The advantage of typing all objects is that the

operation materialization mapping would be explicit and

well-defined. The disadvantage is that it would be

impossible to pre-specify all object types -- since the

number of possible object types is infinite. A data type

abstraction facility, similar to those used in programming

languages, would have to be built{R19,R29}. The design of

such a facility is non-trivial. No abstract data type

facility for data bases has been developed in the

literature. We prefer restricting INFOPLEX data typing to

objects whose materializations have a relatively simple

structure (e.g., real, integer, string, etc.). In

addition, a limited data abstraction facility, along the

lines of {R22},.would be quite useful.
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To perform (i) to (iv) the DT level must parse all

requests from higher levels in order to identify each of

the objects references and each of the operations involved.

Suppose the following request were issued:

SELECT EMP.NAME,EMP.VACATION TIME

WHERE EMP.VACATION TIME<EMP.SICK TIME

The EMP relation and an example DT catalog is shown in

figure 11. The DT level would convert the request to:

SELECT EMP.NAMEEMP.VACATION TIME

WHERE REAL GREATER THAN(CONVERT INT TO REAL(

EMP.VACATIONTIME),EMP.VACATION TIME)

When the response is returned by the lower levels, DT must

modify the objects EMP.NAME and EMP.VACATION TIME so that

they are materialized in the prescribed format.

The above example illustrates two implementation

considerations:

(i) Lower levels must be capable of handling the

complex arithmetic and comparison operations

generated by the DT level.

(ii) Virtual view definitions must be modified by the

DT level before going to the virtual view

definition (VVD) level. Note that if the VVD

level were above the DT level then. vir~tual

objects could not be typed.
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Conclusion

Virtual information is a collection of many related

database concepts. We have attempted to provide an

information model and a corresponding notation with which

virtual information concepts can be communicated. The

major fault of the notation is that while the concept of

retrieving information from the database in fairly well

defined in terms of the materialization mapping, the

concept of changing the information content of the database

is poorly defined. A more desirable information model

would completely characterize the behavior of objects in

terms of the operations that can be performed on them.

The implementation of virtual information in INFOPLEX

was discussed in terms of general issues. Further details

could be given only if assumptions were made as to details

of the interface between the virtual information levels and

other levels. Hopefully, this paper will help in the

determination of those details.
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