
EVALUATING DATABASE MANAGEMENT SYSTEMS:

A FRAMEWORK AND APPLICATION TO THE

VETERAN'S ADMINISTRATION HOSPITAL

by

MOHAMMAD DADASHZADEH

S.B., Massachusetts Institute of Technology

(1975)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February, 1978

Signature of Author: - v*.........

Department of Electric Engineering and
Computer Science, December 30, 1977

Certified by:-------- ----....-

Thesis Superviso -

Accepted by: 0........... *.*

Chairman, Departmental Committee on Graduate Students

I J',

EVALUATING DATABASE MANAGEMENT SYSTEMS:

A FRAMEWORK AND APPLICATION TO THE

VETERAN'S ADMINISTRATION HOSPITAL

by

MOHAMMAD DADASHZADEH

Submitted to the Department of Electrical Engineering and
Computer Science on December 30, 1977, in partial fulfillment
of the requirements for the degree of Master of Science.

ABSTRACT

The primary purpose of this thesis is to aid the database manage-
ment system (DBMS) evaluation process by providing an example in a
real-life setting - the design and implementation of a DBMS-based
hospital information system.

A guideline is presented in whose context the capabilities of a
specific package, Generalized Information Management (GIM-II), are
examined in detail. These capabilities are then evaluated in light of the
requirements of a hospital information system. The design and
implementation of a medical database and such hospital applications as
patient scheduling and pharmacy are investigated.

It is concluded that the GIM-II system can support a hospital
information system.

Thesis Supervisor: Stuart E. Madnick

Title: Associate Professor of Management

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor Stuart Madnick

for his guidance and extreme patience in supervising this thesis. I am

indebted to my parents for their continued support, both financial and

spiritual, throughout my academic years.

TABLE OF CONTENTS

Page

ABSTRACT

ACKNOWLEDGEMENTS

TABLEOF CONTENTS

LISTOF FIGURES

1. INTRODUCTION

1.1 The Selection and Evaluation Process.. 8
1.2 Thesis Objective 11

1.3 Thesis Approach 12

1.4 Thesis Organization 13

2. MINICOMPUTER OPERATING SYSTEMS 14

2. 1 What is an Operating System? 14

2.2 Components and Functions 15

2.3 System Types 16

2.4 Real-Time Multiprogramming System (RSX-1 1D)
2. 4. 1 System Summary

3. THE MEANING AND ORGANIZATION OF DBMS . .

3.1 Historical Evolution

3.2 The DBMS Concept

3. 3 Requirements of a DBMS

3.4 DBMS Organization

3. 5 Minicomputer DBMS -

3. 5. 1 Systems Provided by a Software House
3.5.2 Systems Provided by the Hardware Vendor
3. 5. 3 The Limiting Factors

4. DATABASE MANAGEMENT SYSTEM FEATURE
DESCRIPTIONS

4. 1 General Description

. 20

. 23

26

26

28

29

31

35

. 37

. 37

. 38

42

44

. . . .

.

TABLE OF CONTENTS (continued)

Page

4. 1. 1 History of Software 44

4.1.2 Availability and Cost of Software 45

4.1.3 Type of System 46

4. 1. 4 Modes of Operation 48

4.2 Computer Environment 49

4.2.1 Main Frame, Operating System, Core Require-
ments and Source Language 49

4.2.2 Teleprocessing and Concurrent Usage

4.2. 3 Mass Storage

4.3 Database Structure

4. 3. 1 Logical File Organization .

4. 3. 2 Physical File Organization .

4. 4 Data Definition

4. 5 Updating and Data Integrity . . .

4. 5. 1 Update Language

4.5.2 Batch Update

4.5.3 Bulk Update

4. 5. 4 System Triggered Update and Retrieval

4. 5. 5 Data Integrity

4. 5. 5. 1 Data Validation . .

4. 5. 5. 2 Concurrent Update .

4. 6 Query Capabilities

4.6.1 Query Language

4.6.2 Selection Criteria

4. 6. 3 Qualifications on Searches .

4. 6. 4 Multi-File Searching . . .

4. 6. 5 Predefined Queries . . .

4.6.6 Aids on Search Formulation .

4.7 Output Presentation and Report Generation

4.7.1 Default Formatting of Reports .

4.7.2 Report Format Specification .

4. 7. 3 Output Media Flexibility . .

4. 7. 4 Arithmetic Capability . . .

4.7.5 Sorting

51

53

54

. . . 54

. . . 58

60

. . . 64

64

68

69

71

74

. . . 74

75

. . . 77

. . . 77

80

. . . 83

. 85

. 86

. . . 87

. . . 88

. . . 88

90

. . . 92

. . . 93

. 96

TABLE OF CONTENTS (continued)

Page

4. 7. 6 Data Extraction 97

4.8 Security and Error Recovery 98

4.8.1 Database Level Security 99

4. 8.2 File and Field Level Security 101

4.8.3 Record Level Security 103

4.8.4 Hardware Security 104

4. 8. 5 Protection Against Direct Access to the
Database 105

4.8.6 Backup and Recovery 106

4.9 Database Restructuring - - . - - - . . . 109

4.10 Application Programming 111

4.11 System Generation115

5. HOSPITAL INFORMATION SYSTEM: AN APPLICATION FOR
THE DATABASE APPROACH 119

5. 1 Hospital Activities and Hospital Information System

5.2 Background: Hospital Computer Systems . .
5. 3 The Objectives and Requirements of a Hospital

Information System . .

5.4 The Architecture of a Hospital Information System

5.4.1 Approach

5.4.2 Architecture

5.5 Designing the Hospital Information System

5. 5. 1 Medical Records

5. 5. 2 Patient Scheduling and Booking

5.5.3 Bed Census

5.5.4 Pharmacy

5.6 Assessing the Results -

119

. 120

124

127

127

128

131

131

136

152

. 154

. 160

6. SUMMARY

REFERENCES AND BIBLIOGRAPHY1

. . 163

. .a 166

LIST OF FIGURES

Figure No.

1

2

3

5.1

5.2

5.3

5. 4

5. 5

5.6

5.7

5.8

5. 9

5.10

5.11

Page

Coupling between two files. . .

Coupling between three files. .

GIM-II Architecture .

Hospital Information System Architecture

Master Patient Record Structure

Inpatient Record Structure . .

Unbooked Time Slots File Structure

Medical Procedure File Structure

Appointment-File Record Structure

Bed Census File

Drug File Record Structure . .

Drug Profile Record Structure .

Inpatient Drug Profile Record Structure

Coupling of various files.

.. . 56

. . . 57

117

. . . 129

. . . 134

. . . 135

. . 140

. . . 141

. . . 142

. . . 153

. . . 156

157

. . 158

. . . 159

CHAPTER 1

INTRODUCTION

The rationale and qualification for a database approach to provide

effective management of data in an organization has been given elsewhere

in the literature. In this study we are concerned with the problems of

selection, evaluation, and installation of a commercially available data-

base management system (DBMS). Any study, such as this, is highly

situation-dependent. For this reason, a real-life application will be

considered. The approach used will then show how to get started.

1.1 The Selection and Evaluation Process

The selection of a database management system is a major undertaking

which can have prolonged effects on the organization. Not all implement-

ations of DBMS have been successful, and some systems being marketed

today may not be considered successful in several years.

An important step in the selection process is a thorough understanding of

user requirements. The inability of a DBMS to satisfy even a relatively

minor user need may create a severe data processing problem. At the

same time, one must be careful not to confuse a need with convenience.

For example, a prospective user may assert a need for online response

to his query, but in fact his need is for response within two hours, or

even overnight. On the other hand, user needs frequently will be in

conflict with each other. For example, the need for a simple user

language is in direct opposition to the need for complex data structures.

9

The more powerful the data structures being manipulated, the greater

the complexities of user language. Similarly, a powerful online update

capability may oppose data security and data integrity requirements, or

even an economical checkpoint/restart facility. Therefore, tradeoff

and refinement of user requirements is needed to insure that all

significant conflicts have been taken into account.

Once the issues confronting the potential users of the DBMS have been

thoroughly understood, an analysis of these organizational requirements

in light of the capabilities provided by database management systems

must be undertaken. Such an analysis would map user requirements into

DBMS capabilities - typically in the form of one-to-many or many-to-one

mappings - and would establish a set of system capabilities that can be

weighted and used to evaluate various vendors' systems.

An important aspect of the evaluation process is the consideration that

must be given to the operating environment into which the database

management system will fit. The current or proposed environment for

the DBMS exists through the interaction of the hardware, system software,

and packaged software. An evaluation of the hardware must answer

questions concerning its suitability as a vehicle for database management.

For example, does the hardware have the required speed as well as

sufficient capacity of both main memory and secondary storage? Can the

hardware support disk storage, and online terminals? How many?

Some database management systems have been tailored to operate on

certain computer systems, in order to take advantage of particular hard-

ware features available on these systems. On the other hand certain

hardware capabilities are essential. For example, memory protection

hardware.

The most difficult step in the evaluation process, however, is the

implications of the interface between DBMS and the operating system

software. For example, is it necessary to modify the operating system

in order to make it compatible with the DBMS? What modifications are

advantageous to the DBMS? Which functions are handled by the DBMS

and which will be passed on to the operating system?

Here, again, there is the problem of a DBMS which has been designed to

run under a particular operating system. If there is less capability in

the organization's computer system than the hardware/software system

which was assumed in the design, there may be serious degradation in

the performance of the DBMS. On the other hand, a more powerful

system than the one assumed in the design may cause waste of resources.

For example, if a DBMS is constructed using overlays, assuming a non-

virtual machine, and then installed on a virtual machine, both the opera-

ting system and the DBMS would employ swapping between main memory

and secondary storage resulting in twice the amount of work needed, if

the size of the physical page is not the same as the size of the overlay.

One crucial problem in the database management system evaluation

process is to answer the question: given a query on the database, what

resources will the query demand?

The operating system functions called upon by the DBMS, in particular

for the execution and control of I/O operations, have a major impact on

the system's response time. Identification of the CPU, memory, I/O,

and other resource allocation demands of a query, in a real-time multi-

programmed computer system, is perhaps the most difficult process in

the evaluation of the performance of a DBMS.

1.2 Thesis Objective

As we have said, when an organization considers the implementation of a

particular DBMS, it is bound to find the need for compromising some of

the user requirements. This situation arises for the following reasons:

A. User needs are often in conflict with one another.

B. The general purpose capability of the package may not meet

the special purpose requirements of all applications.

C. Consequences of restrictions from technical feasibility or

from lack of imagination on the part of the DBMS designers.

The refinement of conflicts and conformation to the generalized nature of

the package, while significant, are relatively easy to attain. However,

appreciating the ramifications of the last point, which are directly

responsible for the successful implementation and acceptability of the

system, does need a detailed technical study.

The objective of this thesis is to aid in the DBMS selection and evaluation

process by:

1. Providing a framework for evaluating DBMS capabilities.

2. Providing detailed evaluation of the capabilities of a

specific DBMS in light of the guideline presented.

3. Providing the management with sufficient detail to

appreciate the fact that some difficult technical problems

underlie the features of a DBMS.

4. Providing an example of the DBMS application to a hospital

information system.

1.3 Thesis Approach

The selection and evaluation of database management systems has

received much attention in the literature. There have been numerous

surveys of database packages, covering from six to as many as 154

systems.1-8 However, we feel that most studies in their treatment

have been analyses of systems isolated from any real-world application.

Our thrust here is to evaluate a certain package in light of a real-life

application - a hospital information system. Our approach is to concen-

trate on examining the capabilities of the DBMS and employ the results

in order to determine how a hospital information system can be designed

and implemented using this DBMS. As such, we will not be concerned

with the selection process. However, we shall address the issues

involved and will present a guideline of DBMS capabilities that can be used

in a selection process.

We have chosen as the vehicle for this study a specific package - TRW's

Generalized Information Management (GIM-II)9-12 and ASSIST communica-

tion software operating on a PDP 11/70 under the operating system

RSX-11D. The choice coincides with that of the Veteran's Administration

Hospital. The V.A. is contemplating the implementation of a mini-

computer-based information system that employs copies of GIM-I as

the common DBMS. The initial efforts are envisioned to be directed

towards the establishment of a medical database and the automation of

such functions as patient scheduling and pharmacy. In this thesis we

present the issues regarding the suitability of the package, based on the

installation's ultimate needs.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents a

brief comparative study of minicomputer operating systems and

summarizes the specific operating system environment which shall be

utilized. In Chapter 3, we describe the overall DBMS organization and

some of the implementation decisions involved. In addition, we present

a discussion of minicomputer database software, and the limitations

imposed due to the architecture of minis. Then in Chapter 4, we present

our guideline for evaluating DBMS capabilities: the questions that need

to be asked, the extent to which current technology supports each feature,

and the influence of design decisions on the performance of the system.

In light of the guideline presented, GIM-II's capabilities are examined in

detail. Chapter 5 considers the design and implementation of a DBMS-

based hospital information system. The chapter concludes with recom-

mendations as to the appropriateness of the GIM-II system in view of the

installation's ultimate needs. Finally, Chapter 6 summarizes the

general issues.

CHAPTER 2

MINICOMPUTER OPERATING SYSTEMS

A database management system is intended to be utilized in an operating

system (OS) environment that performs scheduling of jobs, processes

input/output operations, manages auxiliary storage, and provides conven-

tional data management facilities. The DBMS exists as a set of opera-

tional programs analogous to the control programs of an operating system.

The overall operation of the DBMS, its scheduling and relation to other

jobs running on the system, is usually under the supervision of the operat-

ting system. Many of the operations that need to be carried out for the

functioning of a DBMS (scheduling of application programs working with

the database, database access) could be done either by the OS, or by the

DBMS itself. There are several methods by which a division of responsi-

bility can be accomplished. 3, 8 In the GIM-II system, only the operation

of the overall DBMS is under the control of the OS; it runs as a normal

application program under the host OS, it translates user requests and

decides which application program should process it, it controls programs

without any involvement of the OS, and it uses only the lower level

facilities of the OS to access the contents of the database. This chapter

is intended to provide the necessary background on operating systems,

especially those available on minicomputers. Digital Equipment Corpora-

tion's RSX-11D is presented in more detail. The objective is to establish

a point of reference for subsequent chapters.

2.1 What is an Operating System?

An operating system refers to a comprehensive group of routines that

control the operation of a computer installation. Its principal objectives

are to enable a number of users to share the computer system efficiently

ane reliably; to facilitate convenient and efficient running of programs

on the computer; to minimize operator intervention and CPU delays and

maximize throughput. To do so, the operating system is given a

hierarchy of components which provide the level of management necessary

to handle each task assigned.

2.2 Components and Functions

The software constituting an operating system consists of an executive

(or monitor) routine and a number of system utilities that are run under

the control of the executive. The executive acts as the primary inter-

face between the hardware and a program running on the computer, and

between the hardware and the people who use the system. When an

executive is loaded into memory and started, its first duty is to interface

with the operator running the system. The executive waits for the

operator to request some service, and then performs that service.

These services typically comprise loading and starting programs,

controlling program execution, and system maintenance.

Most minicomputer executives perform job scheduling and monitoring;

storage allocation and memory management; control over the activities

of I/O devices; interrupt handling and error processing; and handling

communication between users and operating system as well as that

between the system and the operator.

Because of the complexity of tasks involved, the coding for an executive

program can occupy a significant portion of the computer's memory.

With the concern for space in small systems, minicomputer executives

are usually divided into two distinct parts: a permanently resident

portion and a transient one. The transient portion includes the loader,

the dump routines, and the operator communication routines. Once the

executive initiates another program's execution, the transient portion can

be over-written or swapped out, while the resident portion remains

available to act on requests from the program.

System utilities enhance the capabilities of an operating system by

providing processing support services in the following areas: program

development, file management, and system management. Program

development utilities include text editors, assemblers and compilers,

linkers, program libraries, timing services, and testing and debugging

aids. File management utilities provide support for system files as

entities rather than for the individual records within the files, and

include file copy, transfer, and deletion programs. System management

is concerned with system generation, updating the operating system in

response to the changing needs of the installation, system status

interrogation routines, and logging and accounting programs.

2.3 System Types

This section surveys the range of minicomputer operating systems from

the viewpoint of resource management.13-15

1. Single-user operating systems manage their resources based on the

demands from a single individual. Such cases are found in the

application of minicomputers to scientific or process control

program development. The operating system is primarily designed

to run on a minimum configuration system, providing only the

essentials for controlling the operation of a minicomputer. The

advantage of using such a system over no operating system lies

mainly in the fact that once the executive is in memory, all further

interaction with the system can be performed from the operator's

console instead of having to work with the minicomputer front panel

switches.

2. Single-job operating systems execute a program until either it is

completed or it is interrupted by the operator. Only one program

is active at any time, and as such it has exclusive use of all the

system's resources.

3. Foreground/background operating systems provide the sharing of the

system's resources between two independent programs that are

co-resident in memory. One of these programs (foreground program)

is serviced with a higher priority than the other (background program).

Foreground program operation is usually bound by the speed of a

terminal device (e. g., a card reader) or the activity of a device

through which data is only available sporadically (e. g., a communi-

cations terminal). When the foreground program becomes limited

by the unavailability of its limiting device, it relinquishes control to

the background program. The background program is allowed to

execute until the foreground program again requests services.

4. Multiprogramming operating systems are an extension of the

foreground/background concept in which many jobs, instead of only

two, compete for the system's resources. While one job has been

temporarily interrupted (generally to service an I/O request),

another task can have control of the CPU. There are basically two

approaches to multiprogramming: priority processing and parallel

processing. In the former approach, the processing and I/O

demands of a hierarchy of several programs are being serviced

strictly on a priority basis. Within each program two or more

levels of processing priority may be defined (e.g., real-time I/O,

non-real-time I/O, processing). All peripheral devices in the

system issue interrupt signals that are intercepted by the interrupt-

handler routine which determines, on the basis of a priority-ordered

queue of programs, which I/O or processing demand is to be

fulfilled next. The executive also assumes control when a proces-

sing task is unable to proceed; in this case, the job is momentarily

suspended and control is transferred to the next higher priority task.

Furthermore, a high-priority task can interrupt a lower-priority

task if it requires immediate service.

In the parallel processing approach, the I/O and processing demands

of a collection of programs are being serviced strictly on an equal

opportunity basis. Peripheral interrupt signals are controlled in

the same fashion as in the priority processing approach; however,

the algorithm for fulfillment of demands is completely different.

Input/output requests are serviced in a manner to optimize the

utilization of various hardware facilities (e. g., minimize arm move-

ment on disk), and to dquate service distribution between concurrent

programs. CPU demands are likewise fulfilled bo insure optimal

balancing between programs. This approach is especially suited

for larger installations in which many system facilities can be

utilized simultaneously.

5. Time-sharing operating systems allow multiprogramming with the

parallel processing approach in an interactive environment. The

objectives are the optimization of both hardware and user

productivity. Each job is given a certain amount of CPU time

(called a time slice), at the conclusion of which it is interrupted and

control is given to the next waiting job. Because of its high internal

speed, the processor can service a number of programs on a time

scale which seems instantaneous to each user. The system may

assign priority levels to jobs, depending on whether they are

computer-bound or I/O bound. Furthermore, the user may be

allowed to specify the minimum guaranteed time for his job, as well

as modifying its priority. When the aggregate user requests are not

sufficient to saturate system capacity, the excess time can be devoted

to the processing of a batch operation in the background mode.

6. Real-time operating systems are found in applications where the

response of the system must keep step with external events; for

example, laboratory automation or process control. Typically,

various peripherals (such as paper-tape readers, teletypewriters,

remote terminals, analog to digital converters, touch-wires)

sporadically enter data pertinent to some supervisory control program.

The interrupt servicing mechanism interprets the interrupts,

bringing into memory the appropriate program for execution. When

two interrupts occur virtually concomitantly, some priority structure

is needed to decide which is to be executed first. This interrupt

priority is not necessarily related to program priority which refers

to the sharing of CPU time between a number of programs according

to some scheduling algorithm. Program priority in real-time

systems is usually established by associating a next activation time

with each program; when a program is found that is due to run, it is

brought into memory for execution. The real-time executives also

allow the user to develop application software (in a background mode)

concurrent with the real-time operation. Overall, such systems

often resemble a minimal time-sharing system.

2.4 Real-Time Multiprogramming System (RSX-11D)1 5 , 16

RSX-11D is a multipurpose operating system designed to support multiple

requests for services while maintaining real-time response to each

demand.

To the user and to computer operations personnel, a unit of work is the

job. To the executive, the basic unit of work is called a task. More

specifically, a task consists of one or more programs written in a source

language (such as MACRO or FORTRAN), assembled or compiled into an

object format, and then built into a task image by a control program

called the Task Builder. In addition to the normal linkage functions of

combining object modules or creating overlays, the Task Builder sets up

the task control information that determines the task's resource require-

ments and relation to other tasks in the system. The significant task

attributes are:

* Partition - the contiguous area of memory where the task will

reside when it executes.

* Priority - the task's relationship to other tasks, used to resolve

contention for system's resources.

* Checkpointability - the task's ability to be swapped out of

memory when a higher priority task requests the partition in

which it is active.

Once a task is built, it can be installed in the system and executed.

Task installation refers to registering its control information with the

system; the task is neither in memory nor in competition for system's

resources. A task is activated by the operator or another active task

in the system.

When an installed task is activated, the system allocates the necessary

resources, brings it into memory for execution, and places it in

competition with other active tasks. In this manner, when a task is

needed to service a real-time activity, it can be introduced into the

system quickly since its basic parameters are already known.

RSX-11D uses the variable-sized partition concept for storage allocation.

Each task is assigned a partition in which it is constrained to operate,

and all partitions can operate in parallel. There are two types of

partitions: user controlled and system controlled. A user controlled

partition is allocated to only one task and the user assumes memory

management in this type of partition. The Task Builder makes it

possiblie for the user to build overlaid tasks and call these overlays from

disk.

A system controlled partition is intended for the execution of tasks where

the user wishes the system to handle the allocation of memory. The

executive controls and allocates the partition dynamically to contain as

many tasks as possibly will fit. Tasks are brought in from the disk on

a priority basis and are loaded into the first available contiguous memory

area in the partition. At the termination of a task, the memory space it

occupied becomes available again. Core fragmentation is handled by

automatic memory compaction; tasks are moved to obtain a large enough

area in the partition to load another task. Dynamic expansion of a

particular task beyond its originally specified region can also be accom-

plished upon specific request.

Central processor control is assigned to active tasks (a task is considered

active from the time it execution starts until the time it has exited)

according to their priorities. A task's default priority (ranging from a

low of 1 to a high of 250) is set when the task is built. Once a task is

activated, it runs to completion or until a significant event occurs;

typical events might be input/output completion or an external interrupt.

When a significant event is declared, the executive interrupts the

executing task and searches for a task capable of executing. The highest

23

priority active task that has all the resources it needs, and can make

use of them, gains control of the CPU.

2.4.1 System Summary 1 5

System type

CPU's supported

Memory ranges

Additional CPU

hardware

supported

Minimum

peripherals

Large, multi-user, general-purpose system for

concurrent real-time applications, program

development and general data processing.

PDP-11/40 with Extended Instruction Set and

Memory Management

PDP-11/45 with Memory Management

PDP-11/70

Minimums:

48K words for little or no program development

56K words for simultaneous applications

execution and program development

Maximum:

124K words on PDP-11/40 and PDP-11/45

1024K words on a PDP-11/70

PDP-11/40 Floating Point Unit

PDP-11/45 Floating Point Processor

PDP-11/70 Floating Point Processor

Console terminal with two disk drives

Additional

peripherals

Fixed-head disk system

DECtape system

Cassette system

Line printer

Card reader

Paper tape reader/punch

Laboratory Peripheral System

Industrial Control System

Analog/Digital Converter

Terminal/Line Interfaces

Programmable Clock

System utilities Line Text Editor

Source Language Input Editor

Task Builder with Global Cross Reference

Library Management Utility

User and Executive On-line Debugger

Program Patch Utility

Core Dump Analyzer

Peripheral Interchange Utility

Media Backup Utility

File Exchange Utility

File Dump Utility

File Verification Utility

File and Index Sort Utility (option)

User and Executive Trace Utility

Task Accounting and Reporting Package

24

25

On-Line Device Error Logging and Analysis

Package

Multiplexed I/O Spooling Package

Languages MACRO

FORTRAN IV

FORTRANIV-PLUS

COBOL

Single-stream batch processorBatch facilities

CHAPTER 3

THE MEANING AND ORGANIZATION OF DBMS

The number of software packages on the market that are advertised as

database management systems is well over one hundred; and the choice

continues to increase. Nevertheless, the number of software packages

that deserve to be called generalized database management systems is

much less.

In this chapter, we describe the meaning and organization of database

management systems. The emphasis is placed on the overall DBMS

organization, so that some topics are covered lightly. A case in point

is that of database system capabilities. It is an important area and has

become a subject in its own right. For this reason, we have left the

detailed discussion of DBMS capabilities for the next chapter.

As it is pertinent to our study to understand the inherent difficulties in

putting a database management system on a minicomputer, we have

included, in this chapter, a discussion of minicomputer database software.

3.1 Historical Evolution

In the early days of business data processing, the responsibility for

organizing and maintaining a collection of data rested entirely with the

programmers who wished to make use of them. They had to be aware

of its physical structure, and in order to access data items of interest to

them, they had to write programs that explicitly manipulated these

physical structures. As organizations grew and the number of files and

programs increased, this responsibility proved to be an enormous burden

on the programmers.

Generalized file management systems were introduced in an attempt to

alleviate the programming burden for their users in the processing of

standard files. Typical of these systems is the following philosophy:

data is accessed on an application basis. Therefore, given the nature

of the data associated with an application, and the retrieval operations

required of the system, the internal data structures of the files are

designed so as to achieve optimal program performance. These,

however, tend to embody pre-defined, static relations between the data.

Application programs also become frozen to the data structures chosen,

and a small change in the organization of one file may create major

upheavals in the whole system. Furthermore, the data in one file and

for one set of application programs is generally not available to other

programs. This, of course, does not mean that data which exists,

perhaps in distributed form, on other files is not usable, but that it is

usually necessary to process such data into another form or format for

use in another application. For convenience, or perhaps the lack of

knowledge needed to use a file created by another programmer, each

application often started from its own data. Consequently, a high degree

of data redundancy resulted in traditional file management systems.

The need for sharing of common data and convenient access to it by its

ultimate end-users, compounded with the increasing information require-

ments of management, marked a radical departure from the existing file

systems and gave rise to the notion of integrated databases with retrieval

28

programs or managers.

3.2 The DBMS Concept

An integrated database may be defined as the repository of all information

among which an organization wants to maintain relationships. The

DBMS is the software system responsible for organizing, maintaining,

and accessing databases. It acts as an intermediary between the

application programs or end-users that wish access to a database, and

the actual physical data.

Using a DBMS, the data would be stored once for all the applications that

need the information. This helps solve the problems of file proliferation

and data redundancy. The profits to be gained from the elimination of

unnecessary redundancy are reduced storage and updating costs. In

addition, it improves the consistency of the database, since the possibility

of having different copies of data in different stages of updating is

removed.

Effective utilization of integrated databases depends upon two important

concepts: data independence and non-procedural access. Data

independence means that a DBMS must shield the user from the mundane

details of the internal physical representation of the data, instead allowing

him to concentrate on his conceptual logical view of the data. This

means that application programs interacting with the database need not be

concerned with the physical organization of the data, and the database

structure can be reorganized as needs dictate without rewriting the

applications.

Non-procedural access enables a user to identify and select the desired

data in terms of the properties it possesses, rather than by means of an

explicit search through the database. Such an access language reduces

the complexity and cost of writing application programs, and makes the

database easy to use by non-expert programmers. In addition, it makes

it much easier to respond to ad hoc and unanticipated information

retrieval requests from top management for planning purposes.

3.3 Requirements of a DBMS

One of the perennial problems that arises when discussing DBMS soft-

ware is that the term has come to represent a variety of concepts. As

a result of marketing strategies, a DBMS can mean anything from an

enhanced searching facility to a complete full-blown system. On the

other hand, a system which goes all the way to a sophisticated report

formatting capability may actually have very crude underlying database

concepts. It is therefore desirable to define a database management

system in terms of the general objective it could be expected to provide.

Palmer 7 lists the following as the requirements of a database management

system:

1. The controlled integration of data, so as to avoid the

inefficiency and inconsistency of duplicated data.

30

2. The separation of physical data storage from the logic of

the applications using the data, to aid flexibility and ease

of change in a dynamic environment.

3. A single control of all data, permitting controlled concurrent

use by a number of independent on-line users.

4. Provision for complex file structures and access paths, such

that relevant relationships between data units can be readily

expressed and data can be retrieved most efficiently for a

variety of applications.

5. Generalized facilities for the rapid storage, modification,

reorganization, analysis and retrieval of data, so that the

use of a database system imposes no restrictions upon the

user.

6. Privacy controls to prevent unauthorized access to specific

units of data, types of data or combinations of data.

7. Integrity controls to prevent misuse or corruption of stored

data, and facilities to provide complete reconstruction in the

event of hardware or software failure.

8. Performance, both in a batch mode and on-line, that is

consistent, measurable, and capable of being optimized.

9. Compatibility with major programming language, existing

source programs, a variety of hardware systems and opera-

ting systems, and data external to the database.

Contemporary database management systems provide only limited

versions of some of these desirable objectives. Furthermore, the

implementation methods can be significantly different, resulting in

differences in features and performance characteristics.

3.4 DBMS Organization

In its totality, a database management system may be regarded as a com-

bination of staff, software and hardware functions responsible for the

tasks associated with maintaining and accessing databases. The

following major organizational units, aimed at facilitating the sharing of

data among users in addition to lessening the programming burden, can

be recognized in any database management system:

1. The Data Description Language (DDL) is used by the individual

responsible for establishing the database (called the database

administrator, DBA) to provide a centralized definition of the logical

data structure and physical storage structure of the database. This

definition of the database is called its schema.

The logical data structure, the user's conceptual view of the data,

provides the user with the facility to perceive data in terms suitable

for his processing needs. The data structures are the composition

of the data items in a record (the records in a file, and so on) as it

is viewed by the user without regard to the way they are actually

stored within the computer. The DBMS translates from the user's

abstract view of data to the detailed physical level.

The most important contemporary data structures are: the
17

hierarchical model, in which the data takes on a tree-structured

form bearing relation to its presumed logical structure and/or
7, 18

access pattern; the network model, where records are connected

in an arbitrarily complicated list structure; and the relational
18,19

model, in which information is arranged in a collection of named

two-dimensional tables (with a fixed number of named columns and

a variable number of unnamed rows called tubles) called "relations".

The storage structure is the physical representation of a particular

data structure on some storage medium. It is the system's physical

view of data and, as such, determines the method of placement and

access to data. (Storage Structure and Access techniques are

discussed in 3, 7, and 8.)

The DDL is thus used to define the structure and format of data in the

database, the logical view of the database, and the methods of access

to the data. The schema definition serves as a template for all data

records that will be entered in the database, and describes both their

individual structure and possible relationships among them.

The DBMS processes the schema definition in order to produce data

dictionaries which are then available for processing of transactions

against the database. The data dictionary is a table consisting of an

entry for each data element (item, record, etc.) in the schema

definition. The entry contains, generally in both source and coded

form, the name, type, length and other attributes of the element,

including in particular whatever information is necessary to physic-

ally locate instances of that element.

It is important to note that the schema definition is itself data, and it

is quite possible, in fact, to store the definition in exactly the same

way that user data is stored, and to use system facilities to access it.

This implies that there are data dictionaries for the dictionaries

themselves. To avoid an infinite recursion, of course, an initial

definition has to be built into the system. (This dictionary driven

structure is the mechanism employed in GIM-II.)

Finally, the DDL can also be used by the programmers to describe

the data and structures with which they are concerned and to further-

more describe it in the form they wish. This individual or applica-

tion view of the database (called subschema) is intended to provide

for multiple views of the database. In the current systems the

extent of differences allowed between the user's view and that of the

schema is nominal, and the schema to subschema relationship is

more or less a mapping process.

2. The Data Manipulation Language (DML) is the interface used by

programmers to access or modify the database. DML capabilities

include the operations of selection and retrieval of data from the data-

base, its modification, its storage and its deletion. It can also be

used to establish and remove relationships among data. The DML

may be a language in its own right (self-contained) or it may be used

in conjunction with a programming language such as COBOL (host-

language systems). In host-language systems, communication from

the program may be in the form of subroutine CALL statements, or

it may be in the form of verbs added to the language. The verb

form requires some modification to the host-language compiler, or

the addition of a precompiler phase to process the DML statements

before compiling the program. The most common approaches to

implementing the DML interface in self-contained systems are inter-

pretation, where each DML command is examined and executed by

the DBMS at run time; and compilation, where either the DML

programs are compiled directly into object code, or they are first

translated into a high or low-level computer language and then

compiled using the conventional compiler,

3. In addition to the facilities for data definition and data manipulation,

a DBMS provides a number of capabilities to help control the

physical and logical integrity of data. They include: semantic

integrity, which is concerned with the validation and conformity of

data elements to their definitions and applies to all data entering,

stored in, or leaving the system; access control, which limits the

extent of access allowed to a database by a particular user or

application; concurrency control, which provides protection against

undesirable interactions or lost updates in a shared database

environment; physical integrity, which provides for the restoration

of the database after a system failure.

3.5 Minicomputer DBMS

Producing software for a minicomputer is a very expensive process,

compared to the cost of the hardware, and since the marketing cycle of

a minicomputer is shorter than that of a large computer, these heavy

costs are recurrent. It is not surprising, then, that there is much less

software available for minis compared to what is available for larger

mainframes. The increasing competitiveness in the minicomputer

market has driven out many of the original manufacturers, leaving only

those whose production in general can be measured in thousands of

computers per year. This has allowed, in recent years, the production

of more sophisticated software as standard by the manufacturer, without

losing the cost advantage of the hardware.

Today, many minicomputer makers are turning development away from

scientific and process control fields that were traditionally their
20

mainstay, and concentrating earnestly on business applications. There

are a number of reasons for this apparent trend:

1. Megalyte main directly accessible storage, virtual memory,

and overlapped core which were once reserved for large-

scale machines are now being profitably supported by mini-

computers.

2. Peripheral manufacturers have now made available large-

scale mass storage (such as 300 Mb disk drives) for minis,

and virtually every other high-speed, high-volume peripheral

typically found on central computer installations can be

obtained for a mini.

3. Commercial application languages such as COBOL are being

supported by vendors. (Actually, the COBOL on a mini is

a subset of the language as it is understood on a large

mainframe.)

4. Database management systems have begun to appear through

independent software houses and original equipment

manufacturers.

It is inevitable that a large minicomputer, with hardware and software

like that, would be able to compete for office and business processing

jobs along with the traditional large-scale computer. 21,22

The importance of database software is well appreciated by minicomputer

manufacturers; some are releasing software of their own, while others

have linked up with independent vendors. VARIAN, for example, is

formally aligned with TOTAL, and it is probable that other manufacturers,
23

particularly smaller ones, will make arrangements with other suppliers.

3. 5. 1 Systems Provided by a Software House

The systems built for sale or rental by software houses have a lot to

recommend them. They are reasonably mature products that have

solved many different kinds of database problems. They are frequently

designed to be machine independent, able to move to a different computer,

even to a different computer vendor. Furthermore, independent vendors

know that they have to provide a better, more cost-effective system in

order to stay in competition. Support and maintenance, however,

represent the usual drawbacks of dealing with an independent supplier.

3. 5.2 Systems Provided by the Hardware Vendor

Theoretically, at least, there are several advantages to using

manufacturer-supplied software. First, the DBMS should "fit" with

other system software (operating system, compilers, input/output

routines) better than a system developed by another organization.

Secondly, any problem with the system can be directed to a single source,

without argument as to whether the DBMS, the operating system, or the

hardware caused it.

The major disadvantage of using a manufacturer-supplied system is that

it may commit the buyer to large investments in nonstandard hardware

and software. In most cases, the new system is available only on the

latest, largest, and most expensive machine a manufacturer makes.

This is a consequence of the high cost of software - only on large system

sales there is enough profit to pay for software development. Another

problem is that vendor software, being relatively new, is unstable,

causing crashes and inexplicable bugs which are extremely costly.

Furthermore, the pace of business in the minicomputer field is so

hectic that there is often no time to tailor complete, fully operational

software systems to go with each new hardware announcement. As a

result, even if a new DBMS really should have a better operating system,

it is often released before the operating system is completed. And

when the operating system is finally announced, the user finds out that

while speeding up the DBMS as promised, it also takes 128K more core

than they have, or only runs on an updated or upgraded hardware

configuration. Unfortunately for the user this implies still more invest-

ment.

3.5.3 The Limiting Factors

While it is definitely true that database packages are available for mini-

computers, it is also true that none of them is as powerful as functionally
24

similar ones found on a typical large-scale system. This disparity

arises because of several minicomputer characteristics that make the
25task of installing a DBMS on a mini more difficult.

1. Minicomputers are of course small, while DBMS tend to make use

of large amounts of memory. IBM's IMS, for example, takes about

128K bytes, and that is often all the space available on a mini. In

addition to the DBMS, space is required for operating system and

program development. Hence, the need to avoid making software

larger than absolutely necessary becomes critical on a minicomputer.

One solution to this problem is to divide the DBMS into overlays.

During execution the overlay segments are fetched from secondary

storage on demand, i. e., when they are called and are not already

in primary storage. With this approach the disk access time

becomes a bottleneck. To alleviate the problem, the code generated

should be reentrant, so that the overlay segments need not be

written back to the overlay file, and the sharing of code by several

processes becomes possible.

Of course, with each new approach the amount of code grows quickly

and the result can be a system where the programs themselves are

a significant percentage of the total system storage. Unfortunately,

the problem is not simply storage space; it is that better systems

mean more user facilities, and user facilities mean greater user

utilization which implies system loading leading to poor response

times.

2. Another characteristic of the minis is their small word size - 16 bits.

This means that their memories, memory buses, and I/O buses are

all 16 bits wide. To perform a 32-bit operation or the equivalent

amount of work, they must do two loads, two stores, and use two

CPU registers. This clearly drags down their effective throughput.

Multi-user environments, as is the case with database systems,

dictate extensive use of indirect addressing, and this creates double

work instructions for most 16-bit minis. The next difficulty for

16-bit minis is their small address space within a program, i. e.,

their absolute core addressing capability. If one has 16 bits for

addressing, one can only address 64K bytes of memory. This does

not affect how large the total memory can be, but it does affect how

large any one program can be. Problems come up well after the

system is installed and has proved successful. As more work is

put into the system certain internal tables have to expand, but chances

are that some of the programs are already close to the maximum

program size, and as a result something is bound to go wrong. To

go above 64K bytes, manufacturers have had to introduce "memory

management" type devices.

3. The next area showing itself to limitation when DBMS's are installed

on minis is that of the single bus architecture. While elegant in

concept and primarily responsible for keeping down the cost of new

device interfacing, these single bus machines are being limited by

data traffic saturation on the bus itself. New faster disks are the

prime cause of this. Yet, another limitation is the load on CPU

caused by interrupt servicing of a large number of terminals.

4. Probably the most important characteristic of minis is that they

tend to be found far removed from computer centers and trained

staffs. If anything goes wrong, the first people who will try to set

things right are likely not to know very much about computers.

Recovery procedures have to be overdesigned and the on-site

documentation has to be written to a higher standard. Minicomputer

DBMS's should, to as large an extent as possible, keep everything

that could involve an operator, especially exceptional things like

restart procedures, fallback procedures, and reorganizing the system,

as simple as possible.

It is clear that minicomputer technology can support comprehensive data-

base management systems. Almost every manufacturer is heading in

that direction. It is also clear, however, that there are limits to system

capabilities that would probably not be encountered with larger computer

systems. Many of these limitations will undoubtedly disappear in the

next few years. Others will persist simply because of inherent limit-

ations with minicomputers. Problems notwithstanding, minis have

performed well on database problems in many situations and continue to

attract small businesses. Moreover, the changing economics of hard-

ware manufacturing, the surprising flexibility of minicomputers, the out-

look for low cost data transmission, and the continuous developments in

the field of database management systems combine to suggest that mini-

computer-based database systems, at least for some users, may be the
26, 27

way of the future,

CHAPTER 4

DATABASE MANAGEMENT SYSTEM FEATURE DESCRIPTIONS

In this chapter, we examine the more significant features of DBMS's:

the reasons why each should be considered, the problems associated with

their implementation, and the extent to which they are provided by

current systems.

From a reasonably comprehensive menu of DBMS capabilities, a user

can select those which best satisfy his data processing requirements.

With an understanding of the importance of various features to his

requirements, he can then evaluate candidate systems.

There is no implication that any one DBMS should, or could, or does

offer all the capabilities covered. All the off-the-shelf DBMS packages

do not provide the same set of functions, and the implementation of

functions differs widely in depth and strength of effectiveness. A careful

evaluation process is crucial. But without all the facts about each

package and the considerable variety of features offered by modern

DBMS's, an organization has difficulty in making a choice.

The features of database management systems are discussed under the

following headings:3,5,8, 12

" General Description

" Computer Environment

" Data Structures

e Data Definition

" Data Manipulation

" Query Capabilities

" Output Presentation and Report Generation

" Security and Error Recovery

" Database Restructuring

" Application Programming

* System Installation

Each section is further subdivided, as necessary, to describe functions

appropriate to each heading. It is important to recognize that, in

discussing features of a database management system, the problem is

multi-dimensional: a major database system capability, such as update,

may appear many times in a feature list. There has been an effort to

discuss those issues which affect more than one function as they arise.

We have chosen a particular database package, TRW's GIM-II operating

on a PDP 11/70 under RSX-11D, to be evaluated in view of the capa-

bilities presented. In the following chapter, GIM-II's capabilities are

examined in the context of a hospital information system, and the

advantages and disadvantages of the package are considered in light of

the installation's ultimate needs.

4. 1 General Description

4. 1. 1 History of Software

Historical information on the implementation of the database package

indicates the maturity of the product in terms of extent of development

and actual usage.

GIM-II

History The software is being developed solely under

contract to the U.S. Army.

Significant

Installations

Federal Aviation Administration

Department of Defense

The FBI

The CIA

4.1.2 Availability and Cost of Software

The database package to be installed at customer's site may be available

by purchase or lease. Some of the more "popular" systems are also

available through time-sharing service bureaus. In certain cases,

systems may be available simply because they are already owned by the

user's organization (particularly the government).

GIM-II

Availability

Cost

Maintenance

Costs

GIM-II software is government owned and should

be available to the federal agencies from TRW at

any time. Presumably, a support contract with

TRW would be required. The GIM-II system is

non-proprietary to the federal government; that

is, any enhancement or modification developed by

any one of the agencies would be available to all

at no cost.

The Non-recurring cost for each copy of the

system including application development (see

1. 3) is about $250, 000.

4. 1. 3 Type of System

A common characterization of database management systems is self-

contained versus host-language. Self-contained DBMS's were primarily

developed to minimize the overall need for programmers by providing

facilities for the non-expert user. The non-expert user is so called

because he does not write a program in some conventional programming

language to access the database management capabilities. The system

provides a self-contained query-update language which in addition to

being non-procedural can provide powerful data manipulation facilities.

Of course, there is a certain pre-defined processing structure within

which the user must operate; certain functions, e. g., File Structuring,

Updating and Retrieving, have had their logical flow pre-programmed.

In this sense, specialized manipulation of data is not attainable.

On the other hand, host-language DBMS's capabilities are accessible

only to programs written in a conventional programming language

(e.g., COBOL, FORTRAN, PL/ 1). The capabilities, in effect, extend

the programming language, making it easier for the programmer to

access and manipulate the database in ways which were difficult or

impossible using the host programming language by itself. In a sense,

the system is essentially a sophisticated collection of input/output

routines.

The current trend is towards systems that offer both self-contained and

host-language facilities.

GIM-II

System Type The GIM-II system is a self-contained, on-line

database management system that provides a

complete set of data management facilities for

both the non-expert user and the more sophisticated

user.

GIM-II contains a basic English type language, the

User Language, that makes it possible for the user

to query a database in a precise and timely manner.

The User Language (UL) is used to initiate all

transactions - updating and interrogating the data-

base, defining and structuring the files and

managing the GIM-II system.

GIM-II also contains a self-contained programming

language, the Procedural Oriented Language, that

permits the user to design, code, debug and execute

routines called Procedure Lists. The Procedural

Oriented Language (POL) makes use of the same

software elements of the GIM-II User Language;

however, it allows the user to exercise control over

the program flow. The Procedure Lists may be

used to produce reports, perform repetitive

functions, update groups of files automatically or

perform menu processing.

4.1.4 Modes of Operation

Batch processing implies that the user is not expecting an immediate

response, whereas on-line processing implies that the user is waiting for

results. DBMS's are designed to operate in batch mode as well as

on-line with interactive capabilities. Use of interrogation and update

functions can be provided in either batch or on-line mode. It is also

possible in the batch mode to run several inquiries concurrently against

one or more databases to increase throughput. The Data Base

Administrator (DBA) might be able to restrict the available mode in order

to use system resources efficiently.

GIM-II

Mode for

Data Definition

Mode for Update

Files may be created in batch or on-line.

Database update can be performed by the on-line

user through query language. The User Language

verbs ADD, CHANGE and DELETE are used to

update the database. GIM-II's on-line update

language syntax is oriented toward infrequent,

non-repetitive file updates. There is no single

command for batch updates and it must be accom-

plished through user written programs.

4.2 Computer Environment

4.2.1 Main Frame, Operating System, Core Requirements and

Source Language

The main frame refers to the particular computer on which the system

(or a version of it) can operate. The overall operation of the database

management system itself (its scheduling and its relation to other jobs

running on the computer) is usually under the supervision of the operating

system. The core memory requirements of a database package may

vary depending on the number of users supported, and the amount of

input-output buffer space in the system. Space may also be required to

store pages of tables used internally, or for transient functions of the

database package. These imply a minimum core requirement for opera-

tion of the system at a reasonable level. The source language is the

programming language in which the system itself is written.

GIM-II

Main Frame and IBM 360/370 under DOS and OS.

Operating System PDP 11/45, 11/70 under RSX. 11D.

Minimum Core On the IBM 360/370, GIM-II operates as a single

Requirement service channel program in an 80K bytes partition,

or as a multi-service program in up to 500K bytes.

Under RSX-11D, GIM-II operates within a fixed

32K bytes partition.

Source

Language

GIM-II is written in Program Word Structure - a

TRW macro programming language. It is an

open-end program and can be modified or extended

to meet specific requirements.

4.2.2 Teleprocessing and Concurrent Usage

A teleprocessing capability provides the mechanisms for establishing

links between the remote terminal users and the system. While certain

software packages are available which combine both DBMS and tele-

processing, it is unnecessarily complicated to consider both functions

simultaneously. Generally, database software designed for on-line use

does not include facilities for controlling terminals and lines. This is

the function of the teleprocessing monitor. Teleprocessing monitors are

concerned with the control and scheduling of transactions in an on-line

environment. The data communication systems operate in single-thread

or multi-thread mode. A single-thread communication system processes

a single transaction to completion. That is, a single transaction intro-

duced via the data communication system is transmitted to application

programs which then carry out their functions until all requirements of

the transaction have been satisfied and the end result delivered to the

user via the data communication system. A multi-thread capability

allows concurrent execution of application programs.

If the database is to be accessed by a number of terminal users, the soft-

ware is likely to be re-entrant (code does not modify itself). In this

manner, multiple users can concurrently be executing the one copy of the

system.

GIM-II

Communication GIM-II has its own teleprocessing monitor, ASSIST

Software Monitor Software (AMS), operating under RSX-11D

Terminal Type

in a fixed 32K bytes partition. AMS operates in a

multi-thread mode and can support up to 6 active

terminals.

Any terminal compatible with teleprocessing soft-

ware is supported. Modems are required for

terminals located more than 1000 feet from the

computer facility.

4.2. 3 Mass Storage

The database system requires large amounts of peripheral storage

space. Storage space is required not only for the database of interest

to the community of users, but also for the database system as well.

GIM-II

Mass Storage

Device

All PDP-11 storage devices are supported.

Databases, stored on removable disk packs, must

be mounted before the system is brought up.

4. 3 Database Structure

4. 3. 1 Logical File Organization

The GIM-II databases are organized more or less on a network basis.

The system accomplishes its networks by allowing the coupling of

individual data fields in one file with data fields in a second file. This

provides the user with a means for describing logical groupings of

records.

The GIM-II data files are, in a logical sense, structurally quite simple.

Traditional file and record layouts are used. A file (data

list in GIM-II terminology) is a collection of related logical records.

The relationship exists in the usual sense, i. e., that the records need to

be maintained under the same file. Each logical record (item in GIM-II

terminology) consists of a number of data fields which are defined in the

dictionary for the file. A data field (attribute in GIM-II terminology) is

the lowest level of definition in the logical file organization.

The construction of logical file organization is accomplished by dictionary

definition (see 4. 4). The dictionary contains a description of each

attribute field in a data list and describes the relationship of the data list

to other data lists in the database. Attribute fields may be defined as

having a single value, multiple values or no values. In addition, an

attribute field may have a parent-child relationship to another attribute

field(s) in the same logical item.

The approach to logical database structuring in GIM-II is based on the

premise that a user has a number of files that he wishes to maintain as

a shared resource. The amount of redundant information content that

can be contained within the database is a reflection of the user's skill in

defining his files. There are two techniques which may be used in

GIM-II to consolidate data. The first of these is to make a "super"

file containing all the types of attribute fields which may possibly occur.

The second and more general approach is to couple files.

Consider, for example, a database which contains a file of automobiles

8
registered in a state; and another file of car owners. Figure 1 shows

some possible attribute fields in such a pair of files. In this example,

the social security number may be used to couple the two files. Then,

for example, a query may retrieve the names and addresses of all

residents of Suffolk County who own a brown Chevrolet Nova built since

1967.

Database restructuring (see 4. 9) is easily accommodated in the GIM-II

system. New attribute fields may be added without reloading the data-

base, or without changing any existing application programs. In our

example, new attributes regarding the licensed driver can be added to

the car-owner file. Then a file of traffic violations may be structured

and coupled to the existing files (see Fig. 2). Now a GIM-II query can

retrieve the names of all offenders who were convicted of speeding in

1977, were residents of Cambridge, and drove a red Chevrolet.

CAR OWNER FILE

Figure 1

CAR FILE

CAR OWNER AND DRIVER

Figure 2

CAR FILE

4. 3. 2 Physical File Organization

In the GIM-II system, the user has few obligations and responsibilities

with respect to the physical organization of records for files of the

database. In effect, the user's responsibilities for record design ends,

once the set of fields for the records of a particular file is defined.

From this point on, the required record organization is developed by the

system itself.

All physical records in GIM-II are fixed length records, with their size

determined by the particular device type. These records usually

contain a number of variable length logical records. A single logical

record, however, may span several physical records. Each field within

a logical record is also of variable length, preceded by a length code.

All the fields of a single logical record occupy physically adjacent

storage positions within the same physical record or within adjacent

physical records. The fields are identified by their position in the

logical record. New logical records may be created by a single

command, but each field in the record must be assigned a value

individually, using the field name to identify it. If the value for a field

is not specified then the field is not present in the record and takes up

no storage.

There are no physical limits to GIM-II databases. The maximum number

of files in a database is constrained only by disk storage. There is no

practical limit to the size of a logical record or a field within a record.

And any number of fields can be defined for a logical record.

The physical records allocated to a file (data list) are described to the

system, at dictionary definition time, via three parameters: base,

modulo and separation. The base is the address or starting location of

the first physical record assigned for storage of the data list (if not

specified, the base will be assigned by the dictionary compiler). The

modulo is the number of directly addressable groups of physical records

allocated to a data list. The separation is the number of sequentially

linked physical records that form a directly addressable group or

modulo. For example, an assignment of 2 and 3 for modulo and

separation, respectively, allocates two groups of three physical records

each to a data list, i. e., a total data space of six physical records.

The logical records of a file are randomly distributed in the data space,

and therefore a randomizing function must be used. The system

attempts to place a synonym record as close as possible to its home'

address. However, if a logical record is addressed to a modulo with

insufficient space to accommodate it, the group is dynamically linked to

the physical records in the overflow area. All of this is automatically

accomplished by the system and is transparent to the user. Nonetheless,

modulo and separation assignments affect system processing time and

disk space utilization and should be carefully selected (e. g., the higher

the separation the more update will be favored).

4. 4 Data Definition

The construction of the data list (file) dictionary is the GIM-II method

for defining data lists. The data list dictionaries provide the detailed

definitions of the user's application files and all procedures processing

a specific data list will be controlled by its dictionary. Each data list

dictionary comprises the description of every attribute field in the data

list and describes the relationship of the data list to other data lists in

the database (all the files in a database can be bidirectionally inter-

related).

Dictionaries are treated as data lists that describe data, i. eo, the

user's application files. This permits the user to structure and main-

tain dictionaries as any other GIM-II data list Since they are data

lists themselves, they must have a dictionary that describes their

contents. The dictionary that describes all other dictionaries is a

system-file (SYSFILE) called the Master Dictionary, or M/DICT, that is

supplied with the system and is established in the database at the time

of database initialization (see 4. 11). The Master Dictionary contains

dictionary names, attribute field definitions of dictionary records, and

pointers to all system and user dictionaries contained in the database.

The pointer for the Master data list, M, is also contained in M/DICT.

M contains all system verbs, user-defined functions and file names.

As data lists are structured by the user, the names of the data lists are

automatically entered into M and M/DICT.

User dictionaries are structured by the user. The ID of each dictionary

record is the name of the attribute field being defined. In the case of

the dictionary record which describes the key of data records to be

stored in the user application file, the ID is always the data list name.

The data list Item ID in the dictionary contains the location of the user

data list, security locks and data list relationships.

Each attribute field of a dictionary record describes a characteristic of

a data field value. These include retrieval and update security codes

(IR/SC, UPD/SC), type of value (numeric, alphanumeric), the maximum

character size of an output value, the number of data values, value

storage method (e. g., each unique value will be stored only once under

the attribute, or the value will be algebraically added to the existing

attribute value), record- to-record and/or attribute- to- attribute relation-

ship (see 4. 5. 4), and various editing specifications (see 4. 5. 5).

All entries, changes, modifications or manipulations to any GIM-II data

list, whether it is a user application file, a dictionary or a specialized

data list (e.g., Procedure List) are made via the GIM-II User Language.

Data list dictionaries exist in both source language and compiled versions.

Before entering data into the data list, the source dictionary must be

validated for correct structural definition, and compiled into GIM-II

executable form. The compiled versions are interpreted and used at

run time. The user makes changes to the source dictionaries. These

changes become effective only after the revised source dictionaries are

again validated and compiled.

To structure a new data list, the user assigns a name to it and assigns

a portion of the physical storage to the data list and to its dictionary.

STRUCTURE-FILE "EMPLOYEE" "EMP" DICT/BMS ", 1, 2" DATA/BMS

"t, 3, 2' #

The Structure-File Processor verifies that the data list name

(EMPLOYEE) and synonym (EMP) do not previously exist in M; assigns

and initializes the data list dictionary (2 physical records) and the data

list (6 physical records); creates a record in M for each data list name;

creates a record in M/DICT for each data list name with /DICT appended

to the name; and creates a record in the data list dictionary for each

data list name.

The dictionary is activated with the command: COMPILE-DICT M #

Attribute fields may now be defined:

ADD EMP/DICT "EMP" "EMPLOYEE" V/TYPE "RN9" V/COR "YNRS"

S/EDIT "V/MAX '9' V/MIN '9' TYPE 'N'" #

The record identifier (Item 1D) is defined to be right-justified (for output

or sorting purposes), numeric and of 9 character length. Each unique

value is to be stored only once under the attribute (YNRS), and the size

and type of values on input are to be verified (S/EDIT specification).

ADD EMP/DICT "NAME" V/TYPE "LA30" V/COR "YSVX" S/EDIT

"V/MAX '30'" #

The attribute field, NAME, is defined to be alphanumeric with a maxi-

mum character size of 30. The first value entered will be stored under

the attribute; additional values will cause the input statement to reject

(YSVX).

ADD EMP/DICT "SALARY" V/TYPE "RN6" V/COR "YSVX" S/EDIT

"V/MAX '6' TYPE 'N' #

This statement defines the SALARY attribute field in a similar manner.

The data area is activated by the command: COMPILE-DICT EMP #

Data may now be added to the file:

ADD EMP "165480001" NAME "JONES, JACK" SALARY "1200" #

There is now one logical record in the file.

New fields may be added to the existing file:

ADD EMP/DICT "AGE" #

and activated by:

COMPILE-DICT EMP #

The new field may be used for existing records:

FOR EMP "165480001" ADD AGE "30" #

64

4. 5 Updating and Data Integrity

Updating is the process of retrieving a record, modifying the data within

it, and returning the record to the database. Normally, the update

function utilizes the basic interrogation capabilities of the package for

selection and qualification (see 4. 6). Provision may be made for

updating to be performed as a transaction-oriented or batch-oriented

feature.

4. 5. 1 Update Language

Since the approach to update processing in a host-language system is for

the user to supply a transaction program for each type of transaction

entering the system, the update language is primarily discussed in

relation to self-contained systems. Typically, there is a common

language for both interrogation and update. During update processing,

initially a part of the database is selected and then it is updated rather

than displayed.

GIM-II

The database can be updated in both query and procedural languages.

The User Language verbs ADD, CHANGE, DELETE and RECREATE are

used to update the database; these commands can be invoked within the

POL. Syntactically, the update commands may be used at the beginning

of a statement or after a FOR clause, with full selection and linkage

capability (see 4. 6). For each logical record selected, the Update

Processor passes control to the function within the processor that

performs the appropriate updating task.

ADD The ADD command is used to place all values and

names into the GIM-II data lists and data list

dictionaries. The following sample sentences

exhibit the usage of the ADD verb.

ADD EMPLOYEE/DICT "NAME" "AGE"

"SALARY" "ADDRESS" #

ADD NEW EMPLOYEE "123" #

The modifier NEW appears before the data-list-

name to insure that the update is to occur only if

the item value - record ID in this case - does not

already exist.

FOR EMPLOYEE "123" ADD NAME "JONES,

JACK" SALARY "12000" AGE "42" #

Only the fields being updated are referenced and

their order of referencing is independent of their

order in the record.

CHANGE The CHANGE command is used to change any

value and/or name in a GIM-II data list and/or

data list dictionary. The specified values or

names will be deleted from the file and the

replacement values specified in the CHANGE

statement will be added to the file.

CHANGE EMPLOYEE "123" TO "345" #

When an item ID value is changed all secondary

references to that item ID are also changed.

To protect against updating an incorrect record,

the user should identify the "delete" value(s).

FOR EMPLOYEE "345" CHANGE SALARY

"12000" to "(12000 * 1. 05)" #

Note also that the update value may be specified

as the result of a computation.

If no specific value is mentioned in the statement

(CHANGE attribute-name TO ...) all values for

the attribute will be deleted and the TO value

will be added.

FOR EMPLOYEE "345" CHANGE EXTENSION

TO "7350" ROOM-NUMBER TO "652" #

The DELETE command is used to remove any

value or name in the GIM-II data list and data

list dictionary. A child value may be deleted

without affecting the parent attribute. A

deletion of a parent attribute, however, auto-

matically deletes the child.

DELETE

DELETE EMPLOYEE "123" #

When an item ID value is deleted, the record and

all the associated attributes and all secondary

references (correlatives) are also deleted.

FOR EMPLOYEE "345" DELETE SALARY

"12250" #

FOR EMPLOYEE "123" DELETE SKILLS

"CLERK" AND CODE "03" SKILLS "ADMIN"

AND CODE "07" "08" #

RECREATE This command is used to create an identical

record in the same file with another item ID.

For example,

RECREATE EMPLOYEE "123" AS "345" #

will cause a copy of the primary record "123"

and all its associated attributes to be created in

the EMPLOYEE file with an item ID "123345".

4. 5.2 Batch Update

Batch update refers to the capacity for updating the database by reading

sequentially stored update transactions from a batch medium such as

tape, disk or cards. Most database systems require the user to program

such an update.

GIM-II

Compiled procedure lists (see 4. 10) are used to perform batch updates.

The Procedural Oriented Language contains verbs which can read

sequentially stored input transactions, parse them into strings and

convert the strings to the symbolic parameters which can be used to

direct the execution of the User Language update commands. The

process can be repeated until an end-of-file is detected.

4. 5. 3 Bulk Update

Updating a few records (normal on-line update) differs in practice from

bulk data loading in terms of volume, mode and input medium. In order

to bulk load a database, most DBMS's require the user to format a bulk

data tape as input to a restore utility (normally used to restore a data-

base or a file that has been previously dumped as a database protection

measure). As such, an entire file/database must be written. Some

systems, on the other hand, allow for selective, incremental creation of

the database.

GIM-II

A User Language command, SYSLOAD, evokes a program that has the

ability to directly update a database (e. g., adding several records) with

bulk inputs from a magnetic tape. The selection capability to specify

qualifying criteria that must be met before the update takes place and the

validation features (see 4. 5. 5. 1) are available with either the basic

update commands (ADD, CHANGE, etc.) or the SYSLOAD command.

The BULK-UPDATE verb provides a facility for updating the database

with information from a file prepared outside of the GIM-II system. It

is faster than handling individual updating statements or a SYSLOAD, but

does not have the selection capability option. Therefore, very little

validation can occur with the BULK-UPDATE command. It is designed

for the transfer of large, already validated data. Speed improvements

are obtained by:

1. A single user statement to be parsed.

2. A single set of accesses to the dictionary for a data list even though

many changes are made to that data list.

3. No dictionary edits will be activated by the BULK-UPDATE

processor.

4. Ignoring bridges to secondary data lists.

4. 5. 4 System Triggered Update and Retrieval

Some database management systems can upon updating (retrieving) one

field in one record indirectly update (retrieve) another field in the same

record, or in other records in the same or other files.

GIM-II

The GIM-II correlatives are the mechanism through which data elements

are associated within the GIM-II database. They are stored in dictionary

attribute field definitions and carry out their defined function automatic-

ally whenever the referenced attribute field is accessed.

Indirect The I-Correlative is used to cause the value

Update applied to a directly updated field to indirectly and

simultaneously update the value of another field in

the same data list record. For example,

whenever a "budget salary" value is ADDed to a

department record, the "total budget" for that

department could be updated indirectly via an

I-Correlative.

The B-Correlative (BRIDGE) permits values being

updated in one record of a data list to be simultan-

eously stored in fields of another record of another

data list (joint store). The following example

exhibits the typical specification of the bridge

correlative:

ADD PURCHASE-ORDER/DICT DL/SECONDARY

"BINV, V, PART-NO, QTY-ORD, INVQTY-SUB,

QTY-RET, INVQTY-SUM" #

Here, the inventory data list is to be updated as a

result of an updating of the purchase order data

list. The "V" specifies that part number must be

verified in the secondary data list. The quantity

ordered is used to update an inventory quantity by

subtracting the number ordered. Quantity

returned is to update the inventory quantity by

adding the number returned.

Indirect

Retrieval

The D-Correlative (DEPENDENT) is used to

establish a parent-child relationship. This

specification is accomplished by defining one of

the attribute fields (e. g., Schools-Attended) as

primary, i. e., as a D1, and those attributes which

are related to it (e.g., Degree and Year) as

secondary, or D2. Upon retrieval of the parent,

the children will also be listed. An attribute field

defined as a D2 can independently be retrieved as

well.

The M-Correlative is used to retrieve the values of

a selected number of attribute fields upon the

specification of one special field ID. For example,

a special attribute called "employee information"

may be established in an employee data list which

will retrieve name, organization and title

whenever the employee ID is specified.

The S-Correlative (SPAN) is used to allow

attribute fields of a secondary data list to be

simultaneously retrieved along with the directly

accessed fields of the first data list. The

secondary attributes must be named in the

statement. When automatic retrieval is desired,

the R-Correlative must also be specified on the

attribute. The following sequence of specifica-

tions establishes automatic retrieval of the

attribute "description" from skills-file upon

request of the attribute "skill-code" for an

employee.

ADD EMP/DICT DL/SECONDARY "SSKILLS,

SKILL-CODE" #

ADD EMP/DICT "SKILL-CODE" V/COR

"RSKILLS, DESCRIPTION" #

4. 5. 5 Data Integrity

Data integrity is concerned with maintaining the quality of the database

through:

1. Data validation, to insure that the data always conforms to

its definition (a definition which includes validation criteria

on the stored data), and

2. Controlling concurrent processes which update the database.

4. 5. 5. 1 Data Validation

Data validation applies to all data entering, stored in, or leaving the

system. In other words, the validation and conformity of data elements

to their definitions covers creation input, update data, and data when

retrieved by the system. Basically, the validation process may cover

item type, size and pattern verification, value validation (e. g., magni-

tude ranges), and relational validation (e. g., different data item value

relations).

GIM-II

An extensive facility for predefined field edits is supported. The

editing feature of GIM-II permits the user to define one or more

directives to validate, convert or calculate a value on entry, during

selection, for update or on output. Editing rules are defined in the

dictionary and, once established, are evoked automatically whenever the

corresponding attribute field is mentioned in a processing statement.

The S/EDIT field of the dictionary for a data list is used to define

specifications to control values on input. It is the purpose of the

S/EDIT expression to verify the type size, pattern and magnitude range

of values on input. For example,

ADD EMP/DICT "SALARY" S/EDIT "TYPE 'N' PAT '/5000; 34000'" #

specifies that the value which may be validly input to the salary field of

an employee-file must be numeric and in the range 5000 to 34000.

Several other edition specifications may be placed on an attribute. The

Q/EDIT specification is evoked on retrieval and can calculate a value for

output and/or to print-limit a value on output. The I/EDIT is evoked

whenever the name of the associated attribute appears in an ADD state-

ment. It is used - prior to the actual update - to test the validity of

input values, to compare an input value to other input values, stored

values or literals, or to derive a replacement value for an input value.

4. 5. 5.2 Concurrent Update

The problem of concurrent update can be illustrated by the following

scenario. Suppose that two processes (or users), P and Q, desire to

update the same record, A, at the same time. Since all requests to

access the database are originated from a single process (the database

manager), such requests are ultimately handled in a sequential fashion.

Suppose further that the following sequence of events takes place:

1. Process P requests and receives a copy of record A in

its buffer.

2. Process Q requests and receives a copy of record A in

its buffer.

3. Process P modifies record A (e. g., subtract quantity

ordered) and requests that it be written back into the

database.

4. Process Q then modifies its copy of record A (e.g., add

quantity returned) and requests that it be written back into

the database.

As a result of Q's action, the update of A performed by P is lost and the

integrity of the database is breached.

Lockout provides a solution to the above loss of integrity by giving an

updating process exclusive control over a part of the database - no other

process is allowed to look at it or change it. Such a mechanism,

however, leads to the more complex problem of deadlock: process P

holds resource A and asks for B, while process Q holds B and asks for A.

Now neither can continue. Adequate mechanisms are therefore needed

to prevent, or at least detect the problem of deadlock.

GIM-II

In the Procedural Oriented Language, the system automatically locks

each record but requires the user to specifically release previously

updated records.

4. 6 Query Capabilities

The query capabilities of a database system may be described as the

capacity for examining the database and extracting from it data records

that meet certain search criteria.

4. 6. 1 Query Language

When formulating queries in a host-language system, the user writes a

program that implements the query. As such, host-language systems

do not offer a query language.

Self-contained systems, on the other hand, provide a user with a non-

procedural language for on-line interrogation. Typically, there is a

common language for both query and update. This, of course, does not

preclude the separation and control of these functions in the actual

structure of the system. It is also possible to have multiple interroga-

tion and update languages with different syntaxes and semantics in order

to meet the requirements of specific classes of users.

Implementing a query language requires a query translator, the function

of which may be thought of as the selection and loading of one or more

query programs written in a host or source language. These programs

then determine the query parameters needed to produce the required

formal references to the database through the database package.

GIM-II

The User Language (UL) is the on-line facility for non-procedural query

and update.

Statement

Syntax

Each transaction may be composed of one or more

phrases. A phrase is a simple unit consisting of

one or more words that may be qualified or

unqualified by a modifier. FOR EACH EMPLOYEE

or FOR EMPLOYEE are examples of a simple FOR

phrase unit, with and without a qualifier. The

different types of phrases are:

" LINK Phrase - dynamically associates one data

list (file) to another.

" FOR Phrase - addresses or identifies the target

data list to be accessed for the transaction.

* SELECTION Phrase - describes the criteria or

conditions for selecting items (records) within

the data list that has been addressed.

* VERB Phrase - identifies the action or command

to be performed. This phase is mandatory in

each statement.

* LIMITER Phrase - specifies what fields or

values are to be stored, changed, deleted (input),

or printed (output).

Since the verb is the primary directive of each

transaction, all other statement units may be

referenced syntactically by their position relative

to the verb. Some phrases, therefore, must

appear preceding the verb phrase in a statement

(e.g., LINK phrases, FOR phrases, and Selection

phrases); and some are only permissible after

the verb (e.g., Limiter phrases).

Statement 1. Each statement must contain one verb and

Rules only one verb.

2. All values (record keys, data values) must be

enclosed in double quotation marks.

3. Each statement must end with a pound sign (#).

4. Each conditional statement must contain a FOR

clause. A clause is a group of one or more

phrases joined or nested within one statement.

For example, the FOR phrase that has a WITH-

phrase nested within it becomes a FOR clause

(FOR EMPLOYEE WITH SKILL-CODE "3892").

5. Maximum number of characters for each

statement:

IBM = 691

PDP = 509

80

4. 6. 2 Selection Criteria

The data selection criteria and qualification (which is discussed next)

provide the means by which the user identifies specific instances of data

which he wishes to access or update. The selection criteria are usually

in the form of a Boolean combination (AND, OR, NOT) of simple

relational expressions. These expressions are composed of subject

(an attribute name, e. g., SALARY), relational operator (e.g., EQ),

and object (usually a literal - either numeric or alphabetic - such as

"18000").

GIM-II

The typical format of a conditional statement is:

r data-list -name ID AND
FOR data-list-name WITH attribute-relation L O [NOT]

[data-list-name item-ID IIOR

WHERE attribute-relation

Each WITH phrase applies to the FOR phrase. Conjuncted WITH-phrases

form a WITH clause and independently share the preceding FOR criteria.

A WHERE phrase applies to the criterion portion of the previous WITH

phrase.

The normal relational operators provided are equals (EQ), not equals

(NE), greater than (GT), less than LT), and combinations of these (GE,

LE).

The object of a relational operator in a selection clause can be a literal,

an attribute name or an arithmetical expression. The arithmetical

expression can consist of attribute names, operators (+, -, *, /, **, =),

literals and functions that can be assembled in such a way that they

represent a meaningful and solvable mathematical entity. Elements of

the expression may be grouped by standard algebraic parenthetical

notation.

GIM-II provides limited text string scanning expressions for record

selection criteria. The functions $SCAN and $SCANX can be used to

scan for an argument within an attribute.

The following query statements help to illustrate the diversity of

selection criteria:

FOR EMPLOYEE WITH MAJOR EQ "MATH" LIST SCHOOL#

FOR EMPLOYEE WITH MAJOR EQ "MATH" AND DEGREE EQ "BS"

LIST SCHOOL DEGREE MAJOR#

This query may be paraphrased: "Find those employees who majored in

and received a B.S. degree in math. List the school(s) attended, the

degree(s) received, and the major(s).

FOR EMPLOYEE WITH MAJOR EQ "MATH" AND WITH DEGREE EQ

"BS" LIST SCHOOL DEGREE MAJOR#

In contrast to the previous query for which the resulting output is

confined to those employees who majored in and received a B.S. degree

in math; this query, in addition, will result in the listing of those who

majored in math but did not receive a degree, and those who obtained a

B. S. degree in a subject area other than mathematics.

FOR EMPLOYEE (WITH MAJOR EQ "MATH" (WITH DEGREE EQ "BS"

(WITH START-DATE LT "01/01/70"))) LIST . . .

This is an example of nested criteria which allows the user to specify

the order of evaluation.

FOR EMPLOYEE WITH MAJOR EQ "MATH" AND WHERE DEGREE EQ

"BS" AND WHERE START-DATE LT "01/01/70" LIST . . .

This query produces the same output as the previous one. In the

processing, however, the two separate WHERE clauses are satisfied

independently.

FOR EMPLOYEE EQ "165480001" WITH . . .

In this query the data-list-name is followed by a limiter phrase (the item

(record) ID).

FOR EMPLOYEE WITH (SALARY GT "12000" AND AGE GT "50") OR

WITH (SALARY LE "12000" AND AGE LT "40") LIST#

FOR EMPLOYEE WITH $SCAN (NAME, "ADASH") LIST NAME #

This query is used to list an employee's name that contains the string

ADASH. $SCANX differs from $SCAN since the argument supplied with

$SCANX assumes a preceding blank.

4. 6. 3 Qualifications on Searches

Besides the logically connected conditions within the search criteria,

various qualifications may be imposed to further narrow the search.

For example, the user may retrieve records based on the presence or

absence of a specified field, or he may declare upper and lower values

and retrieve data whose value falls within the range.

GIM-II

Attribute-relationals can be qualified with NEAREST, FIRST, LAST,

PRESENT, NULL, GREATEST, SMALLEST, ABSOLUTE, EVERY,

ONLY, JUST, and NEW.

Examples:

FOR EMPLOYEE WITH NULL ADDRESS DELETE #

FOR EMPLOYEE WITH LAST DEGREE EQ "MS" LIST SCHOOL #

FOR EMPLOYEE WITH GREATEST SALARY AND SMALLEST AGE

CHANGE SALARY TO "SALARY * .07" #

FOR ACCOUNT EQ "1075" LIST TRANS-DATE TRANS-CODE WHEN

EVERY TRANS-DATE LT "03/18/72" #

In this query, a WHEN phrase is used with the LIST verb to limit the

printing of a multi-valued attribute.

84

The qualifiers ONLY and JUST may be used with LIST (LIST - VERTICAL)

commadds whenever a listing of the primary attributes or the primary

item IDs is required.

4. 6. 4 Multi- File Searching

Multi-file searching refers to the capacity for dynamically (at run time)

establishing links between files so that for a single transaction data

elements within a set of files may be examined and retrieved.

GIM-II

A LINK phrase may be used at the beginning of a transaction statement to

specify a secondary data list (file) name, and link two data lists together

regardless of any predefined (dictionary) links. The target data list

(primary) will contain the link to a secondary data list through an

attribute whose values are the item (record) ID of the secondary data list.

The link is temporary and operational only during the execution of the

statement. Multiple links are permitted on a statement.

Example:

LINK EMPLOYEE TO SKILLS FOR EMPLOYEE WITH SALARY LT

"12000" AND SKILLS-DESCRIPTION EQ "ANALYST" LIST NAME #

In this query, two data lists are involved in the selection phrase. As

each primary item (employee record) is considered for selection, the

link established through SKILL-CODE (a primary attribute and a

secondary ID) will also be exercised.

4. 6. 5 Predefined Queries

Database systems may allow the user to store frequently used queries.

These queries may then be invoked by calling them by name. Such a

facility reduces the amount of input typing necessary, and makes data

available to authorized personnel without a need for them to know the

language rules. Explicit modification capability through the use of

parameter list substitution may also be available in some systems.

GIM-II

This capability is supported through user-written application programs.

Procedure Lists may be used to cause processing of a series of GIM-II

User Language statements as an entity. By storing these statements in

a Procedure List, they may be executed by entering a few words.

4. 6. 6 Aids on Search Formulation

During on-line interrogation, most database management systems

require the user to conform to the precise format of query statements.

In addition the user must be aware of the exact name of attributes

defined within a file, as well as which fields are keyed elements.

However, some "forgiving" features may be built in to provide flexibility

for the non-expert user. For example, the system may support a list

of same sounding but differently spelled attribute names, or it may

display the relevant information from the file dictionary upon request.

The system may also permit reserved words or noise words for making

the statements easier to read. A particularly useful feature in the

interactive interrogation environment is to provide the user with on-line

documentation, so that information about the commands including

function, format, or required parameters may be displayed.

GIM-II

None of the above features is supported. On-line documentation,

however, can be implemented as a predefined query.

4. 7 Output Presentation and Report Generation

The output is usually the display of some parts of the database as a

result of query. System output can vary from a standard format to a

full report-writing capability. Most systems have both standard output

for use during interactive sessions, and bulk quantity report generation

facilities to be run as needed.

4. 7. 1 Default Formatting of Reports

Automatic standard output is

It may include a heading line

usually in either columnar or tubular form.

displaying the data, time and page number.

GIM-II

Automatic formatting of LIST'ed retrievals is in columnar or non-

columnar format. Output will be printed horizontally across the page if

all the attributes can be accommodated in one line. Otherwise, the out-

put format will automatically be vertical. Column width is the larger of

the attribute name or the maximum size length of the values to be output.

Examples of both columnar and non-columnar automatically formatted

output follow:

FOR EMPLOYEE WITH SEX "M" LIST NAME SALARY#

N A M E

0 . 0 .

P A Y N

B E L L

S A L A R Y

.

E , W . P

, L. C.

E M P

. . . 0

10 0 0

4 5 0

. . .0

89

LIST EMP#

EMP: 19014

NAME: PAYNE, W. P.

ST-ADDRESS: 1227 SOUTHWOOD DRIVE

CITY: MORGANTOWN

STATE: VIRGINIA

ZIP: 22900

SEX: M

SALARY: 10000

EMP: 84011

NAME: BELL, L. C.

ST-ADDRESS: 1512 WOODBERRY LANE

CITY: COLUMBUS

STATE: GEORGIA

ZIP: 65432

SEX: M

SALARY: 4500

4.7.2 Report Format Specification

The actual formatting of reports includes the following capabilities with

varying degrees of user control.

" Report titles

* Headings and page footings

" Automatic page numbering

* Report body formatting - vertical or horizontal

data placement specification

* Matrix or two-dimensional presentation

* Line spacing

" Complete editing and formatting of data item

values - the specification of template forms to

allow insertion of decimal points, commas, etc.

" Control breaks based on data item value changes or

other predefined criteria

" Report summary line

GIM - II

A Generalized Report Writer is included in the GIM-II package. GRW

provides the capability to prepare short, formatted reports. Its basic

capabilities are pagination, positioning on the print line, sorting and

summarization. These capabilities are provided through the User

Language (REPORT/FORMAT) with the same syntax as other retrieval

oriented verbs of the GIM-Il system.

GRW does not compete with any of the commercially available report

generators. Its primary benefits are the simplicity of use in either a

batch or interactive mode and the elimination of support requirements

from operating personnel, e. g., tape handling.

The GIM-II system can be interfaced with a generalized report generator

through the EXTRACT and EXTRACT-TO-FORMAT capabilities (see

4.7.6). Complete interactive report formatting can be provided with the

aid of the Procedural Oriented Language.

4. 7. 3 Output Media Flexibility

Database systems may furnish the user with control over the types of

output devices. If the user is using a teletypewriter, the system

usually responds on the same teletypewriter. However, for a lengthy

report, the user may direct output to a system printer, to another

terminal, or suppress listing, save report (on disk or tape), and later

reinitiate listing.

GIM-II

GIM-II supports all of the above capabilities.

4. 7. 4 Arithmetic Capability

The arithmetical capability of a database package is the ability to evaluate

expressions containing arithmetical operators and/or functions. These

computations are usually built-in support routines working in conjunction

with retrieval and update services of the database system. The range of

arithmetic and statistical functions supported, and the ability to include

user-defined functions are important elements of consideration.

GIM-II

The basic drivers for the arithmetic capability of GIM-II are editing and

the User Language. The editing capability is a dictionary driven

function, i. e., editing instructions (including arithmetical processes)

are defined in the dictionary and, once established, are evoked auto-

matically whenever the appropriate attribute field is mentioned in a

processing statement.

The user Language provides for two distinct uses of the arithmetical

capability: selection and calculated output. An arithmetic expression

can appear as the object of a relational operator in a selection clause

(see 4. 6.2), or it may be used to perform certain computations on

retrieved numeric data values prior to output.

In general, all expressions are evaluated for a target item (a logical

record). They may be evaluated for every logical record of a target data

list, but will not combine information from more than one logical record

of the target data list.

consider a given set of data at the same structural level:

A. NAME

8

6

16

10

B. NAME

4

10

2

1

FOR . . . WITH A. NAME LT (A. NAME + B. NAME)/"2"

In this query an arithmetic expression is used in the selection clause and

will result in the second item to be chosen.

LIST "LABEL" = A. NAME* B.

This would yield the following value results:

LABEL = 32; 60; 32; 10

Several functions are provided as part of the basic GIM-I arithmetic

capability.

NEAREST

To illustrate the range we will only mention two:

- The purpose of the NEAREST function is to acquire the

value of an attribute "nearest to" a specified value.

Example:

FOR EMPLOYEE WITH NEAREST SALARY GT "10000"

$DISTM - This is an example of a system function ($Function).

FOR NAME #

As an example,

. . .

. . .

It can

95

be used as a verbal command or within the selection and LIST clauses.

It is intended to allow a user to get answers to such questions as "How

many points are within X miles of this particular point?".

There is also a capability to define and incorporate new, general or

tailored, functions into the GIM-II system. Once properly integrated

into the system, these new functions can be used as a direct extension of

the User Language.

4. 7. 5 Sorting

Sorting on the selected, retrieved data is usually provided by database

systems. Some packages accommodate the sort function as part of

their DML commands (on-line), while in others the sort function is

performed by a utility program external to the system, but operating

under the operating system as a library routine.

GIM-II

GIM-II can only sort items that are to be REPORTed. However, there

is a way to circumvent this problem. The COPY function can be used

to take selected logical records in one data list and place them in

another data list. The ORDER command will then cause the newly

formed data list to be sorted in ascending or descending order, right or

left justified, using the item ID as the sort key.

4.7. 6 Data Extraction

The data, satisfying the selection criteria and qualification process, may

be extracted for intermediate processing or may be output in another

machine readable form for use outside of the system.

GIM-II

The retrieval commands, EXTRACT and EXTRACT-TO-FORMAT, may

be used for data extraction. EXTRACT may be used to produce a tape

file that can be read by a user application program, for example, for

off-line report generation. EXTRACT -TO- FORMAT is used to produce

a tape with selected data values from GIM-II files in another machine

readable form. For example, the data contained in a file and defined

to be numeric, may be written to tape as floating point, packed decimal

or fixed point binary to ease processing by a higher-level language

program (such as FORTRAN).

4.8 Security and Error Recovery

As we have said in Chapter 3, a fundamental concept behind the

integrated database approach to information management is to view all of

the organization's data as a common, nonredundant resource available

to all applications. However, not every user in an organization or

department should have free access to all available data. Therefore, it

becomes mandatory to control and restrict data access in a database

system.

Security in a database management system refers to the protection of

data against the unauthorized user, and it involves access control with

respect to data (including system data such as data definitions), data

manipulation commands, and even hardware. It is important to

recognize that in a multi-user environment, applications software such

as DBMS can not be any more secure than the hardware, operating

system or communications software.

Error recovery refers to the protection of data from system failure due

to physical equipment or software error, and depends on two basic steps.

The first is reconstitution of the data and the second reestablishing the

relationship between the various records of the database so as to include

all mocifications up to the failure point.

4. 8. 1 Database Level Security

Typically, users are identifiable as individuals or groups via a

mechanism such as account number/password combination. The system

retains a profile of users involving identification information and their

level of authorization. If an invalid account number/password combina-

tion is presented at SIGNON time, the user is denied access to the data-

base.

GIM-II

GIM-II provides an extensive system of security checking that is intended

to protect the user of databases, functions or verbs, programs, files,

attributes and devices. This responsibility is ascribed to the Security

Processor which interfaces with the other processors of the GIM-II

system and provides:

" Protection when accessing the database, and

" Protection while processing transactions.

SIGNON Access to the database is restricted by a valid

Security SIGNON statement. It is the function of the SIGNON

statement to identify the user to the system, to allow

the selection of the user's database, to activate a

series of security locks and keys which are applied

during transaction processing, and to assign any

default priorities for processing.

The SIGNON verb is followed by a series of specified

100

parameters (e. g., department name, operator

name, and the name of the database) which have

been established by the DBA. The processing of

the SIGNON statement will use a security file (a

system supplied data list) to verify that the

organization name is correct and, for that organiz-

ation, the operator, database and device names

specified are acceptable. The input device name is

not supplied by the terminal operator in his SIGNON

statement but it is available to AMS (GIM-II

executive) when he first logs on to ASSIST. If all

items are verified, the operator will be requested

to enter the password. When the password is

evaluated (via the security file) the SIGNON will be

processed.

If any of the required SIGNON checks fail, the

SIGNON is considered invalid and the user is so

notified. If the user exceeds the system threshold

for the number of SIGNON statements that can be

attempted without a valid SIGNON, the Master

Terminal will be notified of a Possible Security

Violation and the device "disconnected" from the

system.

101

4. 8. 2 File and Field Level Security

Most systems provide protection on the file level and on the field level

(e. g., the salary attribute in an employee file) based on independent

authorities for retrieval and update.

GIM-II

The entry of the user to the system through the valid SIGNON statement

activates a series of locks and keys which are applied during his

processing of transactions.

File Level

Security

The data dictionary of a data list (file) defines

separate retrieval and update locks (IR/SC, UPD/SC)

for the file. If the user has not been assigned the

keys, he can not access the data list for retrieval or

update

Field Level

Security

GIM-Il provides field level security on the basis of

LOCK. and KEY. Locks are character codes,

defined in the dictionary, that may be associated

with any attribute in the data list. The user must

have the associated keys in order to be allowed

access. In addition, LOCKS may be placed on any

verb command and thus a user may not be able to

perform certain functions. During the transaction

cycle, all the verbs and attributes, referenced in

either the primary or secondary data lists, will be

102

security checked. It should be noted that any

attribute used in a selection clause must also pass

its retrieval locks.

103

4. 8. 3 Record Level Security

A reasonably secure access control capability should provide for

protection on the basis of the value of an attribute. For example, a

manager may be authorized to access all records in a file except for his

own, or he might be permitted to access "salary" unless the "employee-

number" equals his own.

GIM-II

This capability is not supported. However, by defining a file to be

segmented, different access authorities can be established for records in

different segments.

104

4. 8. 4 Hardware Security

Access control may also exist relative to hardware. The system

retains a profile for terminals or other output devices and controls

messages and the output generated from the user's transaction that may

be allowed to be sent to a given device.

GIM-II

Device LOCKS may be specified on any verb or attribute. These locks

are evaluated using keys associated with the user's input or output device.

Salary information, for example, may be restricted to certain terminals

within the organization. Security checking will also be performed on

message routing (output queued messages) before actual transmission

and on directed output (output generated from the user's transaction).

If any of the security checks fail, processing of the statement is rejected

and a Possible Security Violation is logged.

105

4. 8. 5 Protection Against Direct Access to the Database

A database management system should provide a built-in mechanism

which precludes any attempt by a programmer to directly access the

database. This facility may simply trap all direct input/output calls

which do not originate from the database management software.

GIM-II

This capability is supported.

106

4. 8. 6 Backup and Recovery

In an environment of sharing of data and on-line update, database backup

and recovery takes on added importance. Backup is the generation of

a copy of the database at some point in time established by the user or

the system (a checkpoint). It may be retained on-line or off-line, and

furthermore, it may be segmented to allow for selective reloading upon

loss of a portion of the database.

Recovery means restoring the data to a previous state. The time of this

state may coincide with the time of a backup dump or some later time

during which the database has undergone changes. Transaction logging

is a recovery feature that involves recording of actual changes to the

database as updating occurs. After a system failure, the most recent

backup copy of the database in conjunction with the input transactions

logged subsequent to the dump allow for database recovery. A log file

may contain either before or after images of a portion of the database

each time it changes. Most systems, however, provide for both the

before and after image of the original data on the log file. Loading a

backup copy and reprocessing after image changes is referred to as roll

forward. Taking the present database and applying before image

changes allows the user to roll back his database to an earlier point in

time (e. g., before the unsuccessful completion or erroneous action of an

update process).

Some systems provide audit trails that keep records of transactions

tagged with information sufficient to identify the source, cause, and

107

location of the change (user, program, date, transaction, database

record, etc.). In some cases (e.g., two or more processes were

updating the database concurrently when one of them failed), audit trails

provide additional information for recovery or selective reprocessing of

events and the data related to those events.

Finally, in order to provide continuous on-line availability of the data-

bases it may be necessary, though not sufficient, to maintain two

separate copies of each database on-line and synchronously updated by

the database management system.

GIM-II

The operator is provided with commands in order to periodically dump

and restore the databases of interest. As such, the database can not be

restored to the point of system crash. However, a History Tape facility

is optional in GIM-II. If implemented, the operator can issue a

REPROCESS NEW command to update the RESTOREd database from the

History Tape up to the last completely processed transaction. In

addition, a HISTORY-ANALYSIS verb can be used to note which databases

were active at the time of system failure or other error conditions.

Each time during the course of processing that a record is written to the

History Tape the following information will be recorded:

" Transaction number, date and time.

" User and database number.

" A replica of the original statement.

108

" Various output messages and directed

output information.

" Record images of any database records

which are updated or changed.

Consequently, through the History Tape, the database administration has

access to both old and new records, either of which may be

REPROCESSed to return all or a portion of the database to a specified

state at a given point in time.

109

4. 9 Database Restructuring

The capability of a database system to grow, in terms of its applications

and the data to which they refer, is fundamental to the database concept.

Given an established database it is usually necessary over time to

modify either the physical or logical structure organization of the data

for such needs as efficiency or new applications.

Logical reorganization is the process of modifying data definition; such

as changing validation information, modifying a data type, adding a new

attribute field to a file, creating or removing a level in a tree structure,

or adding a new relationship to a network. One way of doing this is to

unload the database, redefine, and load again. However, some systems

permit modification or incremental redefinition of an existing database,

on-line.

The purpose of physical structure reorganization in a database system is

usually to achieve efficiency in either space or time utilized in the

storage and access of the logical records. In some database packages,

the physical file organization used is of a specific type. No options or

variations exist and the user's reference to all the logical records in any

context is via this one physical file organization, established and operated

by the system. As such, physical reorganization is not available as a

direct function of the system. Other packages may make several

physical organizations potentially available and leave it to the user to

specify which of these should be used.

110

While physical structure reorganization normally will not require the

rewriting of a user's application program (unless the program was

written to take advantage or be dependent upon aspects of the storage

structure), logical restructuring always carries the potential need to

rewrite the programs accessing the database. Normally, however,

modification of a program is in order if the program is to utilize the

changed view of data.

GIM-II

There is relatively little difficulty in the logical reorganization of GIM-Il

files. This is true because of GIM-II's dictionary driven structure and

the fact that GIM-II data files are, in a logical sense, structurally quite

simple. Dictionaries may be changed at any time by ADDing,

CHANGing or DELETing enti-ies, and almost anything done when files

are initially defined may be changed at a later date without reloading.

In terms of the effect of structural modifications on the application

programs, GIM-II users are relatively unaffected. It goes without

saying that any application program requires adjustment if the data

fields it is accessing have been modified.

111

4.10 Application Programming

The GIM-II User Language provides extensive facilities for the natural

expression of data retrieval and update operations, and is particularly

well suited to arbitrarily complex queries. However, a UL statement

at a time in the only way the user can communicate with the system. In

this sense, the user is unable to do much in the way of programmed

manipulation of data.

The GIM-II Procedural Oriented Language (POL), which includes the UL

as a subset, allows the user to control the action taken on data and to

combine it for various purposes in precise detail. It permits the user

to construct programs called Procedure Lists in which the program flow

can be controlled by using conditionals, loops, etc.

Procedure lists can be used to:

1. Execute a series of GIM-II User Language statements as an

entity. By storing these statements in a procedure list, they

may be invoked from a terminal by entering a couple of words.

This reduces the amount of typing necessary, and makes data

available to authorized personnel without requiring them to

know the GIM-II User Language rules.

2. Interact with the on-line user. Procedures can be written

that allow prompting, printing and reading terminal replies.

This allows "menus" to be a standard way of getting data into

and out of the database.

3. Generate reports. Procedure lists can be written to select

112

data from anywhere in the database (as opposed to a single data

list and its associated records) and combine it into a single

report in any format desired.

4. Update several files from a single input. Procedure lists allow

for passing a number of UL update statements to GIM-II. This

provides for updating beyond the scope of Spans, Bridges, etc.

5. Perform batch updates. The POL contains verbs which can

read sequentially stored input transactions, parse them into

strings and convert the strings to the symbolic parameters which

can be used to direct the execution of the UL update commands.

6. Get data produced outside the system and incorporate it into the

database. Procedure lists can be written to get data from a

non-GIM file into the database.

7. Create a non-GIM file. Procedure lists can be written that

select data from the database and write a file that can be passed

to other software systems.

8. Perform specialized processing that is not part of the generalized

capabilities built into the GIM-II system.

Procedure lists are in the form of data lists and can be created on-line

by using the standard UL update verb ADD. The Procedure List

Dictionary defines the fields in a procedure list logical record, i.e., one

program statement. These fields are:

Item ID - the label of the statement. The first statement that

is compiled for every POL routine has the Item ID

"START".

Operation Code (OP) - indicates what activity is to be accom-

113

plished at exectuion time.

Parameters (PARM) - specify data that is to enter into the

execution of the Operation Code.

PL-Next-True (N/T) - the label of the next POL statement to be

executed under normal program flow.

PL-Next-False (N/F) - the label of an alternate statement that

can be given control.

PL-Next-Error (N/E) - specifies the statement to be executed

after the detection of an error. This field is optional.

Consider, as a simple example, an interactive program called WHY that

determines the area of a circle. STRUCTURE-PROCEDURE-LIST

"WHY" #

ADD WHY "START" OP "VOPREAD" PARM " 'WHAT RADIUS', RADIUS"

N/T "2" #

ADD WHY "2" OP "EXPR" PARM "R = $NUM (RADIUS)" N/T "3" #

ADD WHY "3" OP "EXPR" PARM "A = 3.1416 *R * R" N/T "411 #

ADD WHY "4" OP "VOPRINT" PARM "'THAT GIVES AREA OF' /

$ALF (A)" N/T "5" #

ADD WHY "5" OP "EXIT" #

The VOPREAD command is used to pass a message (WHAT RADIUS) to

the user and to read the user's reply (radius). The first EXPR command

is used to assign a value to a variable (R). The second EXPR command

evaluates the area of the circle. The VOPRINT command is used to

display the calculated area. The procedure list must be compiled

(COMPILE WHY #) before it can be executed (EXECUTE WHY #).

114

The Procedure list will be executed using paging techniques that require

only one page of the compiled procedure to be in core at any time. The

same Procedure list user - written software will operate efficiently in

any GIM-II environment. Procedure lists can contain subroutine calls

to other procedure lists. In addition, new verbs or functions can be

defined for an installation which upon being invoked will transfer control

to a user written routine outside the GIM-II system.

115

4. 11 System Generation

System generation refers to the installation of the database package soft-

ware in the host computing system environment. As with operating

systems, the software represented by a database package may allow

several major to minor options that can be incorporated into the system

at the time of installation. The degrees of control made available by

the system are important elements of consideration.

A major area of concern is the ability to include or exclude a module of

the database management system. For example, a database package

may permit the user to remove a function such as on-line update upon

system generation. This usually implies that the system has separate

code modules for its interrogation and update facilities. Such capabili-

ties therefore depend on the underlying design philosophy of the

implementor.

During system generation the user specifies the start-up parameters for

the system such as disk requirements, core allocation, and maximum

number of concurrent transactions. Such items as number of files,

limits on file sizes, and types of accessing methods might also require

specification. Some DBMS's support an interactive dialog with the user

at the time of installation.

GIM-II

Architectural A basic design criterion of the GIM-II system was

Choices extendibility. As such the system is totally

116

modular. A simplified block diagram of the various

processors within a GIM-II system is presented in

Figure 3. Different functions are ascribed to

different processors. In principle, any of the

modules or a given function within a module could

be excluded from the system. However, such a

capability is extraneous to system generation.

System A GIM-II system consists of a minimum of four

Initialization "databases". All databases are stored on direct

access storage devices. The databases which com-

prise a GIM-II system are:

* Page Database - where the executable GIM-II

software is stored.

" Two Extended-Storage Databases (ESDB) -

which are used for buffering and message queuing.

There must be one ESDB of page-size records

and one of record-size records.

" System Database - where the SYSTEM FILES

(SYSFILES) are stored.

" Any number of User Databases.

Only the User Database is utilized for permanent

storage of user data. The other four databases are

required for the execution of the GIM-II system.

The initialization of a GIM-II system is accomplished

*I GliMil EXECUTIVE SERVICES

WRAP-UP AND ERROR PROCESSING

DMS ARCHITECTURE

118

by the following steps:

1. Using the appropriate system utility of the host

operating system, allocate contiguous space for

each of the four databases. It is not necessary

that all the databases reside on the same

volume.

2. Using a load utility write the GIM-II's executable

software on the page database.

3. Using a GIM-II supplied library program,

format the ESDB's and the system database into

GIM-II record format. This process includes

the establishment of the GIM-II physical record

links, and the establishment of the BOOTSTRAP

record containing the database parameters.

4. Using a normal GIM-II batch set-up, perform an

initial data load (ZLOAD) to cause GIM-II system

dictionaries (SYSFILES) to be written on the

system database.

119

CHAPTER 5

HOSPITAL INFORMATION SYSTEM: AN APPLICATION FOR

THE DATABASE APPROA CH

Hospitals are very complex organizations of specialized resources,

problems, and motivation. A modern hospital, perhaps more than any

other social institution, is dependent upon rapid and accurate information

flow. American hospitals spend between $7 and $10 billion annually to

acquire and communicate patient information, a sum that represents
28between 24% and 33% of the total hospital budget. It has been generally

estimated that over half of this spending is for functions that can be auto-
29

mated. Hospital information systems are seen by many leaders of the

medical data processing field and health professionals as a solution to at

least some of the major information handling problems in today's health

care delivery systems. In this chapter, we consider the design and

implementation of a hospital information system in a database environ-

ment.

5. 1 Hospital Activities and Hospital Information System

There are four principal functional areas within a hospital: hospital

management, patient management, medical services and medical

research, and public health. Hospital management is concerned with the

diverse tasks necessary for the operation of the hospital. Patient man-

agement deals with the individual patient before, during, and after his

stay in the hospital. Medical services and medical research are the

specific medical activities in dealing with the patient as an individual and

120

in general. Of increasing concern is the area of public health, implying

both the introduction of tasks related to regional health care delivery

systems and problems of preventive medicine,

All these areas are linked together by the tasks of communication and

integration. It is in this area that the hospital information system

renders specific services.

5.2 Background: Hospital Computer Systems

Historically, computers first entered hospitals in the administrative

area. They were applied to the problems of patient billing/accounts

receivable, payroll, accounts payable, general ledger, and inventory

control. Computers are still being used in this way in the overwhelming

majority of hospitals employing data processing facilities.

There are two types of hospital business systems, the stand-alone

system, requiring the hospital to have its own computer, and the shared

system in which several hospitals utilize the same equipment on a batch

or partially on-line basis. The stand-alone systems are supplied by

virtually all computer hardware vendors. Shared systems are avail-

able from various service bureaus that have risen to serve this market.

Some of the systems in common use are IBM's Shared Hospital Accounting
30 31 30

System, Honeywell's Hospital Computer Sharing System, and MEDINET.

The system supplied by Honeywell, for example, consists of nine related

subsystems designed to perform most of the routine tasks usually

121

assigned to the hospital business office. These are: patient accounting

(including insurance apportionment, billing, and complete accounts

receivable aging and control), general ledger/responsibility reporting,

cost allocation, inventory reporting, property ledger, accounts payable,

personnel records, payroll, and preventive maintenance.

The hospital business system solved only a small portion of the informa-

tion processing needs of a hospital. The fact remained that while the

practice of medicine had required more sophisticated information in

greater quantities, the professional medical personnel had less time to

process it. Thus, the need for computerized medical information

processing was both present and urgent.

The initial efforts directly related to patient care activity were the bed

census, admission scheduling, and outpatient appointment scheduling

subsystems. These, consequently, led to the development of computer

applications in the areas of pharmacy, dietary, and clinical laboratory.

Meanwhile, several institutions undertook projects for developing

medical information systems, in which computerized patient medical

records are maintained and the system is programmed to handle the

information flow in the hospital. The various systems of Massachusetts
30 30

General Hospital and the project at Kaiser Foundation Hospital are prime

examples. While conceptually in the right direction, the software

development effort for building and maintaining a medical database proved

to be prodigious.

122

Commercial vendors entering the market focused upon computer-based

automation to support, supplement, or replace the all-manual methods in

communicating patient care information. Systems of this variety have

been quite successful. Examples include: Total Hospital Information

30
System by Medelco Inc., the REACH system by National Data Communi-

30-32 30 30
cations Inc., Technicon Medical Information System, MediData, and

McDonnell Douglas Automation Company's shared hospital data proces-

sing service. 3 2

The REACH (Real-time Electronic Access Communications for Hospitals)

system, for instance, is essentially a hospital communications and data

collection system. The only instrument used by hospital personnel in the

operation of the system is a special terminal designed and built to NDC

specifications by Raytheon. The terminal consists of a standard CRT

display and keyboard with two unique features: a badge reader for opera-

tor identification, and a series of twenty-line selector buttons along the

left margin. Each hospital data input and output function has a set of

special displays and an associated logical tree structure of options

designed to capture all orders, convey all messages, and store all

relevant information within the scope of the system.

In a typical medication ordering sequence,

1. The physician inserts his badge in the badge reader. The card

coupled with the terminal identifier code establishes authorized

access to the REACH system and those system programs avail-

able to that user.

2. The system responds with a list of patients being cared for by

123

this doctor (in the case of a nurse, the list would consist of

patients on her ward). The doctor selects the desired patient

by depressing the button next to his name.

3. The system displays to the physician a list of options that

include X-ray, laboratory, dietary, and pharmacy. The

physician selects pharmacy.

4. Subsequent displays allow the physician to select generic or

trade names for drugs or to order them alphabetically; to

specify the dosage and frequency of administration; and to view

the finished prescription before transmission to the pharmacy.

Printer units supply a hard copy of the order where required;

for example, in pharmacy, a printed gummed label is produced

for use in dispensing the medication. The above medication

order would normally be entered in 15 to 20 seconds.

5. The physician may now return to the list of options on his

patient roster, or sign off, removing his badge and thus

disabling the terminal.

A similar operating procedure is followed by the nursing staff, admission

clerks, technicians and all other hospital personnel interacting with the

system.

The REACH system maintains a complete computer patient chart reflect-

ing all orders and services applicable to the patient during his hospitaliza-

tion. The system captures the order of a chargeable item and thereby

records the charge connected to the delivery of the item automatically.

Upon discharge, the patient chart is unloaded to magnetic tape for subse-

quent reference.

124

One of the most interesting features of the REACH system is its dedi-

cation to extreme reliability. This is accomplished by duplicating

virtually every piece of hardware. The system is completely proprietary

and never sold in source form. While the system supports a broad

range of application programs, the user can not modify anything, and

hence from this viewpoint flexibility is extremely low.

30,32
5.3 The Objectives and Requirements of a Hospital Information System '

It is not possible to state accurately all long-term goals and objectives of

a hospital information system. As medical science modifies medical

practice the goals and objectives change. Nevertheless, the principal

function of a hospital information system remains in the area of

communication and integration of patient medical data.

The usual objectives are to:

1. Streamline hospital administrative procedure, thereby

freeing professional personnel for direct patient contact.

2. Improve the quality, quantity and utility of patient data, as

well as providing a more rapid means of communicating this

information.

3. Communicate patient data from the professionals providing

care (doctors, nurses, technicians, etc.) to the patient's

computer medical record, and then to other professionals

(e. g., dietitian) or other departments in the hospital

(e. g., radiology or pharmacy).

4. Communicate patient data from various subsystems

125

(e.g., automated multiphasic health testing) into patient's

computer medical record.

5. Establish communication between clinical services

(i. e., nursing stations) and ancillary services (e. g., labora-

tory, pharmacy).

6. Increase the efficiency, economy and safety of the logistics

of patient care; for example, in the ordering and adminis-

tration of medication, menu planning, patient scheduling and

utilization of medical care facilities.

7. Establish a database for administrative and business functions.

8. Establish a medical database that maintains clinically and

administratively relevant, readily accessible medical data

for each patient served in the hospital (including the out-

patient department), and that provides a source for the

systematic retrieval of medical data across large numbers of

patients.

9. Provide data necessary for projection of health care needs for

the hospital and also the community.

10. Permit growth and development without major reorganization

effort.

In order to achieve the above objectives, the hospital information system

must meet the following broad requirements.

A. All data should be entered directly into the computer from

source. For example, the physicians should enter their

medical orders and diagnoses directly into the system,

ideally using a free text approach.

126

B. Extensive automatic validation of data at the input level

should be supported.

C. To maintain an integrated computer record for all data for

each individual patient for every hospitalization and out-

patient visit.

D. The system should readily make available any part or all of

the data in the patient's computer medical record.

E. The system should support message switching functions.

That is, the process by which the computer receives a

message from an input device at point A (e. g., a nursing

station) and routes the message to an output device at point B

(e. g., laboratory).

F. The system should have the capacity to support administrative

functions, such as:

1. Patient scheduling, including outpatient appointments;

admissions; bed census; and scheduling of medical

care facilities.

2. Scheduling and control functions for personnel,

supplies and equipment.

3. Business functions, including posting of charges,

billing, payroll, etc.

G. To provide database interrogation capabilities for the purpose

of (1) health service research, (2) hospital service evaluation

and planning, and (3) medical education.

H. To satisfy stringent security requirements.

127

5. 4 The Architecture of a Hospital Information System

5.4.1 Approach

There are two different approaches to the development of a hospital

information system: the "total" systems approach, and the "modular"

approach. In the "total" approach extensive effort is made to identify

all of the information handling tasks of the hospital, and to prepare a

comprehensive picture of the total data flow. A universal system is

then developed that attempts to (1) do everything for everyone in the

hospital, and (2) prohibit tasks that do not go through the system. This

approach presupposes the availability of a large computer facility, a

great number of input/output devices, an extraordinarily powerful data-

base management system and communications software that can handle

simultaneously many specialized and diverse applications, and total

acceptance by medical personnel. The sheer enormity of this approach

has not yet found anyone with the vast resources needed for successfully

implementing a total hospital information system.

In the "modular" approach the hospital is considered to be a set of nodes

in a data flow diagram. The nodes are chosen in a way that will clarify

the procedures involved and still preserve some relationship to the usual

global view of hospital operations. The functional information proces-

sing needs of each node are identified and installed in a modular fashion.

To insure the success of modular implementation, however, it is

absolutely essential to plan from the beginning to integrate the various

operational modules into the eventual total hospital information system.

128

Many hospital information system projects failed because when they

tried to integrate already successfully implemented subsystems (e. g.,

patient scheduling, admission, bed census, medical records, pharmacy,

clinical laboratory, etc.), they discovered serious incompatibilities

between the various modules that required major reprogramming at

prohibitive costs. The solution to this problem is to develop a common

central database containing an integrated, continuing computer record

for all data from each -individual patient for every hospitalization and

outpatient visit, and to require the different modules (with or without

small dedicated computer) interacting with the database only through the

database management system.

5. 4. 2 Architecture

The architecture to be considered here for the V.A. health care delivery

system is shown in functional block form in Figure 5. 1. At the heart of

the system are the medical database, the DBMS, and the teleprocessing

monitor system. The medical database serves as the central register

of continuous, integrated patient records. The DBMS permits building

and maintaining the integrated database, and functions as the single

source for retrieval and storage of data in the database. The telepro-

cessing monitor system handles transactions with the DBMS, and

provides communication between the various periphery modules.

Each of the outlying application subsystems would be responsible for its

special area of interest, and for assuring proper input of patient data to

the central record. For example, the admission subsystem is an

129

Figure 5.1

130

application program that maintains a dialogue with the admitting clerk.

The admission dialogue would consist of questions about the patient's

identification, next of kin, insurance type, referring physicians and so

on. If a previous record does not already exist, a record is created;

otherwise the existing record is updated and checked for formal errors.

A second type of application area (clinical laboratory, patient monitoring)

would require the application program. to interact with an automated

system for acquisition of patient data. Finally, those application areas

that do not require real-time response can be served by programs that

interact with the database in a batch mode.

It should be noted that many of the application subsystems will maintain

their own special files for solving information problems internal to the

area; however, extreme prudence must be observed in assuring that

these files will also serve the overall clinical service, research, and

administrative needs of the total health care delivery system.

131

5. 5 Designing the Hospital Information System

Having decided to utilize the database approach to solve the communica-

tion and integration problems inherent in the medical environment, we

must now examine how the various application modules can be imple-

mented using the capabilities of the candidate database management

system. In contrast to Chapter 4, where the capabilities of the DBMS

were evaluated in isolation from any specific application, our discussion

here will bring to focus those capabilities in light of the specific require-

ments of the hospital information system. This will eventuate in the

determination of the extent of suitability of the package.

5. 5. 1 Medical Records

Statement of Problem

The medical record is the fundamental repository and basic source of

patient information in the medical environment. It would be necessary

for each patient's computer record to have the capability of being a

continuous lifetime record containing all essential past, present, and

future inpatient and outpatient data. The record would also contain

patient's data from any facility within the health care delivery system.

This continuous integrating record concept is clearly a major under-

taking; however, once the continuous integrating medical record is

available, adding application subsystems becomes a much easier task.

Even with the need for this flexibility, it is evident that the resultant

amount of essential medical data will surpass acceptable storage costs

132

on currently available direct access devices in a system with a large
33

number of patients. This problem notwithstanding, the computer

processing of large records may be undesirable. Consequently, it is

questionable whether it will be feasible to maintain indefinitely an inte-

grated comprehensive file of medical records in a dynamic direct access

system.

A revised strategy is to maintain for all patients condensed relevant

information on-line. A record in this master file would contain

identification information (hospital number, name, address, sex, date of

birth, occupation, etc.); critical medical information (blood type,

allergies, etc.); information from previous inpatient visits (date,

admitting diagnosis, treatment, status at time of discharge); and

information from previous outpatient visits (date, diagnosis, treatment).

The information flow from daily hospital work can be handled by an

inpatient file. The prime purpose of an inpatient computer record is to

serve the functions of both the medical record and the medical chart

during the patient's hospitalization. As a result, the record would

contain selected history, physical examination, and progress report data;

all diagnoses; all physician-reported examinations; doctors' orders;

all clinical laboratory test results; all drugs administered; and essential

summarized patient monitoring data from intensive care areas.

When the patient is discharged, the master file is updated with summary

information, and remaining data are then unloaded on tape so that they

may be subject to reloading or statistical searches.

133

Implementation

The medical field lends itself nicely to strictly defined file structures in

the sense that complex data structures are usually not required. For

example, while the capacity for defining the various files to be inter-

related is required, data structures within a record beyond the simple
34

parent-child relationships are typically not required. This is the case

for the medical record files discussed above.

A typical GIM-II master patient record would have the structure shown

in Figure 5.2. Note that most of the fields are multi-valued. In other

words, each time the patient visits the hospital for some type of clinical

examination or surgical procedure over the year(s), pertinent data is

recorded in the appropriate field.

The inpatient file would be structured as a segmented GIM-II datalist in

which the logical records are directed to different segments of the same

file, based on some specified criteria, e.g., the appropriate ward.

This will allow the concentration of information for each nursing station,

and will thereby reduce the security requirements. The structure of an

inpatient record is shown in Figure 5. 3.

Restrictions and Limitations

GIM-II does not place any restrictions upon the size of a field, logical

record, or file. The only limitation is that the file structure does not

extend beyond the subfield level, i. e., root plus two levels.

134

Key = hospital record number

Name

Address

Sex

Birth date

Blood type

Allergies

Drug profile record number

Admission dates

Physician

Diagnosis (coded)

Operation date

Status at discharge (text)

Outpatient - Visits

Clinic

Physician

Diagnosis

Treatment (text)

Figure 5.2

135

Key = inpatient record number

Hospital record number

Next of kin

Phone number

Bed

Referring physician

Admission date

Appointment file record number

Admitting doctor

Medical history (text)

Diagnoses

Physical monitoring data - Date

Time

Pulse rate

Blood pressure

Temperature

Laboratory tests - Type

Result

X-ray (text)

Pathology (text)

Doctors' orders (text)

Drug profile record number

Progress report (text)

Figure 5. 3

136

5. 5. 2 Patient Scheduling and Booking

Statement of Problem

Patient care involves qualified personnel and expensive equipment

distributed over several clinical specialities and service units within the

hospital. For purely economic reasons, it becomes necessary to use

the hospital facilities to the maximum extent. An application program

for scheduling patient admissions and outpatient visits is instrumental in

achieving efficient utilization of existing hospital facilities and stabilizing

staff workloads. Greater efficiency in handling a large number of

patients not only would reduce the cost per patient to the hospital, but

would shorten the waiting times of patients and the idle time of health

personnel.

The primary functions of a patient scheduling and booking system are:

1. To schedule patient admissions and surgical procedures.

2. To schedule appointments in the outpatient clinics.

The two functions, though dissimilar in details, are analogous in a

significant, basic way - the scheduling program must coordinate the

resources required for the patient's course through the health care

delivery system.

A typical admission scheduling cycle begins with a request by a physician

for a patient booking. The request is made for admission on a particular

date, usually with pre-operation examinations (such as EKG, X-ray,

etc.) on the same date and the surgery to follow on the next day. If the

facilities and bed space are available the booking is confirmed; otherwise

137

another date must be negotiated. Keeping track of the available times

in various facilities is relatively straightforward; however, forecasting

the availability of bed space proves to be a more challenging problem.

A bed costs a considerable amount of money to maintain per day, whether

there is a patient in it or not. Nevertheless, a hospital should have a

certain number of empty beds to provide for the day-to-day variation in

the number of patients. Once a decision is made as to how many extra

beds the hospital needs, data may be stored on estimated lengths of stay

according to diagnosis, surgical procedure, age of patient, and other

relevant information. Then, any time a booking is made, the program

would adjust the projection of the total number of available beds
35

according to the estimated length of stay.

Outpatients' clinic scheduling involves several possible levels of
36, 37

complexity. If a sufficiently higher priority is given to personnel time

than to patient time, then several patients may be scheduled for the same

time (block scheduling). If patient convenience with respect to waiting

is given a sufficiently high priority, then each patient is scheduled for

his own appointment. The basic scheduling function must simply keep

track of the current time available for appointments at each clinic and for

each physician (so that the patient would be seen by the same doctor in

multiple visits).

Implementation

The patient admission scheduling and booking program would be written

in POL (see 4.10), and would be parameterized. The program is invoked

from a terminal, which results in the display of a scheduling form (the

138

list of parameters). The parameters are used to guide the scheduling

process and include:

1. Patient Hospital Number - This is the patient's master file

record number.

2. Medical Procedure Groups - A medical procedure group is a

number of medical activities to be scheduled on the same

day (e. g., pre-operation examinations). Usually two

medical procedure groups are separated by a number of

days (e.g., surgery to follow pre-operation examination).

3. Facility Selection - There are several units within a hospital

capable of performing a medical procedure (e. g., operating

rooms). As such, the program would select a facility from

the group. If, however, a specific facility is desired, this

parameter would indicate the special consideration.

4. Date Specification - The first available date is always sought.

But, if a specific date is requested, only that date would be

checked. A variation is to request admission after (or

before) a specified date.

5. Priority Specification - Emergency time is reserved for each

facility. A priority specification would allow the program

to schedule the patient as soon as possible by using the

reserved time.

Several files are required by the admission scheduling program.

A. Unbooked Time Slots File - This file contains information

about the currently available time slots at each facility in

the hospital for which a schedule is to be maintained.

139

The file encompasses a period of two or three months.

Included in the file are the projection of available bed space.

(See Figure 5. 4.)

B. Medical Procedure File - This file contains information

about each medical procedure (operations, examinations,

etc.), the facility that can provide the service, the expected

duration of the procedure, pre-examination and post-

examination time, and the estimated length of hospital-

ization. (See Figure 5. 5.)

C. Facilities File - This file contains information about the

various facilities, such as name and location of each unit,

reserved time for priority cases, etc.

The above files are defined and initially loaded using the GIM-II User

Language. The scheduling program uses them to update the appointment

file. (See Figure 5. 6.)

Scheduling Logic

After the scheduling form is completed, the program retrieves informa-

tion (facility and duration) for each appointment requested. The

expected length of hospitalization for the surgical procedure is used to

determine the first date nearest to the specified date for which a bed is

available and this availability continues for the duration of stay. This

date is the target date for scheduling the first medical procedure group.

The available time for each unit within a facility can be broken up into

consecutive 15 minute slots. Such a representation is then encoded as a

bit string. For example, an 8 hour day (9 to 5) is initially represented

140

Key = date

Facility 1 (e. g., Operating-Room)

Unit (coded)

Unbooked time slots (bit string)

Facility 2

Unit

Unbooked time slots

e

0

Facility n

Unit

Unbooked time slots

Number of private beds available

Number of semi-private beds available

Figure 5.4

141

Key = medical procedure code

Procedure name

Facility

Duration

Pre-examination time

Post-examination time

Estimated length of hospitalization

Figure 5.5

142

Key = date

Facility 1

Unit

Appointment time

Hospital record number

0

0

Facility n

Unit

Appointment time

Hospital record number

Figure 5.6

143

as 32 one's, each byte denoting 2 hours. Then, if an appointment for

10 - 11:15 is made, the unbooked time slots attribute of the unit would

be changed to 11110000011- - - 1. Now, if another appointment is to be

made that requires 115 minutes (8 time slots), the attribute is examined

for the pattern ---11111111---. This would result in the following

alternatives: 11:15 - 1:15, 11:30 - 1:30, --- , 3 - 5.

The target date is thus examined for possible appointment times for each

procedure in the group.

In order to determine a compatible schedule, the available appointment

times for procedures must be checked against one another. The appoint-

ment times are compatible if and only if the time slots do not overlap.

An AND operation can be used for testing,.

Once a compatible schedule is found, the program retrieves the record

corresponding to the date on which the next medical procedure group is

to be scheduled. (Note that this date is implied by the interval specifi-

cation in the scheduling form.) A similar process of determining a

compatible schedule is performed for this date. Failure would result

in revising the target date.

Projected appointment schedules are displayed on the terminal for final

selection. Selected schedule is used to update both the appointment file

and the unbooked time slots file.

Program

This section is intended to be only representative of the coding of the

144

scheduling program in POL.

Scheduling parameters can be received through prompting, i. e., passing

a message to the user and reading the user's reply.

Stmt. Label

Start

Operation- Code

VOPREAD

VOPREAD

EXPR

VOPREAD

VOPREAD

EXPR

VOPREAD

EXPR

VOPREAD

Parameters

Medical Procedure Group 1,

$As, 1, ', ', E

Interval 1, F Days

I1 = F Days

Medical Procedure Group 2,

$B, 1, ', ' E

Interval 2, S Days

12 = S Days

Surgical Procedure,

Operation

SP = Operation

Date Specification, Day

EXPR Start-Date = $I DATE (day)

The first statement would cause the input character string (procedure

codes separated by comma) to be scanned and each procedure code to be

stored in the global array $A.

145

For each appointment requested, pertinent information must be retrieved

from the medical procedure file.

Stmt. Label Operation- Code

EXPR

Parameters

I = 1

FOR MP '$A(I)' ACQUIRE

Facility Duration

Facility

Duration

$D = $INT ($W/15)

I EQ $AM NF = No

Values from the database are always made available, one at a time, in an

area to be addressed as $W. The DO/ACQUIRE statement places the

Item ID in $W. The GFAV statement places the value stored in the

attribute field Facility in $W. Since this value is to be used later in the

procedure it must be stored. $AM is the maximum current entry of the

array.

The target date must now be found.

Stmt. Label Operation- Code

DO

Parameters

FOR UTS Nearest to 'start-

date' WITH Bed GT '0'

ACQUIRE Date

NO DO

GFAV

EXPR

GFAV

EXPR

TEST

EXPR

EXPR

EXPR

B GT 'O'

I EQ ELOS

I = I + 1

NF = Fail

NF = Done

NT = Loop

Start-Date = Next + 1

For the target date possible appointment times for each procedure must

be determined. The program branches to this part according to the

number of procedures in the group.

Stmt. Label Operation- Code Parameters

FOR UTS '& Target-Date'

Acquire & A &B

Unbooked-Time = $W

146

Target-Date = $W

I = 1

Next = Target-Date + I

FOR UTS '& Next'

ACQUIRE Bed

Bed

B = $W

Loop

DO

GFAV

EXPR

TEST

TEST

EXPR

EXPRFail

TWO DO

GFAV

EXPRLoop 1

147

EXPR

EXPR

I EQ 32

TEST

EXPR

EXPR

TEST

GNAV

TEST

EXPR

NF = Loop 2

NF = Loop 1

NF = Done

Start-Date = Target-Date + 1

The GNAV statement places the next value stored in the attribute A

(i. e., unbooked time slots of various units within the facility) in $W.

The function $MATCH performs an AND operation on test-string and

unbooked-time, and compares the result with test-string.

Once possible appointment times for each procedure in the group is found

(e.g., the entries in the global array $D), a compatible schedule must be

determined.

Stmt. Label Operation- Code

EXPR

Parameters

I= 1

Loop 2

I = 1

Test-String = $BS (32, I,

Duration)

$MATCH (Test-string,

Unbooked- Time)

EQ '1' NF = No

$D = Test-String

I = I+ 1NO

$DM EQ '0'

148

J = 1

NO T ($A NY (D(I) A ND E(J)))
NF = Next

$F = D(I) $G = E(J)

Loop 1

Loop 2

EXPR

TEST

EXPR

TEST

TEST

TEST

EXPR

EXPR

The function $ANY gives a

argument are one bits.

numeric 1 (true) if any one or more bits in the

Once scheduling is completed and final selection is made by the terminal

operator (e. g., the 5 th alternative), the appointment file is updated:

DO FOR APP '& target-date' ADD & A 'F(5)' & B 'G(5)'

As it can be seen from the above description, the coding of the scheduling

program is quite involved. Query capabilities by themselves are not

sufficient. However, the POL as a programming language is equipped

with the facilities needed to implement the scheduling logic.

Scheduling Response Time

The scheduling response time is defined as the elapsed time between the

end-user's final specification for a scheduling transaction and the appear-

NF = N02

NF= NO1

NF = Fail

NT = Loop 2

NT = Loop 1

Next

N02

NO1

J EQ $EM

I EQ $DM

$FM GT '0'

J= J + 1

I I + 1

149

ance of the first output character on the terminal. Almost by definition

database applications are input/output intensive. Every query will

involve at least one target datum, and many target references will

involve access to secondary storage. As such, it can be expected that

the significant portion of response time is due to the cost of interacting

with secondary storage. In the scheduling program, the CPU is used

considerably for non-database computations. However, these costs can

be considered small since the computations are done in main memory

and any processing time spent here is small compared with the cost of

interacting with secondary storage. Thus, we will consider here the

number of database accesses made to retrieve the required information.

In the GIM-II system, logical records are grouped into fixed length

physical records (pages). The physical record is the unit of data trans-

mission between secondary storage and memory. The physical record

size for user data is 1024 bytes. A request for a target logical record

proceeds as follows:

1. Determine the index entry for the record.

2. Search the buffer area (kept in main memory) for the page

containing the target record. If the page is missing, then

fetch the physical record (and if necessary remove a page

to make room).

3. Find the target record within the page. Acquire target

attributes and perform desired operations.

When a file is randomly stored in secondary storage and is not clustered

according to any criteria, the number of database accesses required to

150

resolve a query on the same attribute of n records will be n. On the

other hand, if the file is organized sequentially, one database access

often will satisfy several target requests, especially when the logical

record size is small compared with the page size.

There are two types of queries involved in the scheduling program:

1. Direct access to the medical procedure file.

2. Sequential search of the unbooked time slots file.

The medical procedure file is distributed randomly. However, because

of its static nature it can be considerably clustered. This means that

if there are k appointments to be scheduled, the number of database

accesses is significantly less than k and closer to the number of

procedure groups (the average record size is hardly greater than

30 bytes).

The unbooked time slots file is organized sequentially. Assuming that

there are 25 facilities for which a schedule is to be maintained, the

record size would be approximately 130 bytes. As a result the entire

file (90 records) would occupy 10 contiguous physical records. And in

the worst case 10 database accesses will be required.

Remarks

The outpatient clinic scheduling program differs from the admission

scheduling system in that only the clinic and physician availability need

to be examined and that a shorter period (e. g., one month) of unbooked

time slots needs to be maintained.

The byproducts of the patient scheduling and booking system are:

151

1. On-line schedules of each facility, clinic, and physician.

2. On-line cancellation of appointments.

3. Preparation of admission lists and schedules for the

following day.

4. Gathering data for evaluating and adjusting estimated

length of stays, broken appointments, etc.

152

5.5.3 Bed Census

There is no specific application programming required for a bed census

subsystem. A segmented file of all available beds (see Figure 5. 7) is

maintained, and when a patient is admitted the patient hospital number

is joint-stored in the inpatient file (see 5. 5. 1) and the assigned bed

record. Inquiries and transfers are directed to the bed file using the

normal GIM-II User Language.

Patient
Private

Semi-Private Phone
-I t 1

Data for all beds in the hospital

Figure 5. 7

153

Bed
Number

Ward 1

W

0

0

Ward k

'
'

154

5. 5.4 Pharmacy

Statement of Problem

Pharmacy is an integral component of the health care delivery system for

both the inpatient and the outpatient. Input to the pharmacy consists of

medication orders or prescriptions and patient medical record

summaries. The latter allow the pharmacist to examine the kind and

amount of drugs being taken by the patient. This is important for two

reasons. First, drugs have effects in combination with other drugs or

treatments not always known to the average physician. Second, a patient

may be seeing several doctors who may prescribe the same drug

independently, the total of which would be an overdose. It is the pharma-

cist's responsibility to notice such incompatibilities.

The screening of drug orders for allergies, possible drug interactions,

contraindications, and overdose is a task of almost impossible magnitude

in a hospital pharmacy without some kind of automation aids. Hundreds

of orders are processed each day by the pharmacy of a medium-sized

hospital. There is no time to examine manually the medical record of

each patient receiving a drug.

Implementation

Two kinds of data are required for the operation of the pharmacy sub-

system:

1. Data on each drug in the formulary with usual or maximum

doses, potential drug interactions, interference with certain

155

foods, contraindications, and interference with certain

laboratory or diagnostic tests. (See Figure 5. 8.)

2. Patient drug profile information. (See Figure 5. 9.)

It has been estimated that every hospital patient receives between two

and three prescriptions on the average each day he is in the hospital.

For this reason, it would be reasonable to maintain independently an

inpatient drug profile file to accommodate the temporary increase in

activity. (See Figure 5. 10.)

Note that patient identification information need not be stored in the drug

profile record, as it would automatically be retrieved from the patient's

master record by the GIM-II system. Furthermore, once a drug

inventory file is established, the dispensing of drugs would result in

simultaneous updating of inventory status. Also, on the addition of an

entry in the inpatient drug profile record the system can trigger the

calculation of the charge connected to the delivery of that item in the

patient's billing record (see 4. 5. 4). The interrelationships that exist

between the various files are depicted in Figure 5. 11.

156

Key = drug code

Generic name

Trade name

Usual dosage

Maximum dosage

Drug interactions

Food interactions

Contraindications

Remarks (text)

Figure 5.8

157

Key = drug profile record number

Hospital record number

Date of dispension

Drug code

Amount dispensed

Instructions for administration

Number of refills permissible

Doctor ordering

Prescription number

Pharmacist identification

Figure 5. 9

158

Key = inpatient drug profile record number

Inpatient record number

Date of medication order

Drug code

Dosage

Route of administration

Frequency of administration

Instructions for administration

Amount dispensed

Doctor ordering

Pharmacist identification

Time of drug administration

Individual administering the drug

Patient reaction

Figure 5. 10

159

Patient
Master Drug Drug

File Profile Inventory

Figure 5. 11

160

5.6 Assessing the Results

Does the GIM-II system have the capabilities to function as the heart of

an automated health care delivery system? Does it satisfy the require-

ments of the Veteran's Administration Hospital? The answers, based

on the evaluation of system capabilities presented in Chapter 4 and the

examination of user requirements in this chapter, are yes. Some

qualifications, however, are necessary.

Strong Points

1. Non-procedural User Language for on-line query and update.

2. Procedural Oriented Language capability (see 4. 10).

3. The capacity to support transaction-oriented functions such as

patient scheduling through pre-defined POL routines with parameter

substitution capability.

4. The ASSIST teleprocessing system has the ability to communicate

with other computers with a minimal amount of programming. This

compounded with the fact that procedure lists can be written to read

non-GIM files, analyze the data fields and cause them to be used for

updating the database, permits the integration of stand-alone

computer systems (such as Laboratory) with the GIM-II based

hospital information system.

5. Applications are transportable to and from the V.A. Is GIM-II

systems.

6. GIM-II will quite easily accommodate growth of the database. New

fields can be added to records without any modification of the

programs which use the database. In addition, the ability to

161

structure new files at any time, then couple the new file to an

existing file through a common attribute adds a great deal of flexi-

bility to the growth potential of the GIM-II system.

7. GIM-II file sizes are limited only by PDP-11 disk storage capacity.

For the PDP-11/70, this is 88 million bytes/disk x 8 disks, or 704

million bytes. GIM-II handles all space management, i. e., auto-

matically reallocates released and deleted storage areas.

8. All data going to or coming from the database is handled by the

GIM-II system. All security locks and editing specifications are

active. This maintains the security of the database, while making

the database available to user written application programs both for

retrieval and update.

9. GIM-II imposes little formal structure on the logical records. The

user's view of the record is quite natural. The basic problem is

one of organizing the database into a structure that reflects the

needs and requirements of the user. For the user who will use the

User Language only for retrieval and update (this covers almost all

medical personnel), the skill requirements are indeed minimal.

Weak Points

1. Even though GIM-II supports textual data, its textual processing

capabilities are limited.

2. The GIM-II system uses a pseudo-random method of addressing

logical records. Consequently, one record is as easy or as hard

to access as any other record, and the efficiency with which it is

accessed is somewhat independent of what preceded the access.

162

This hashing capability to any record within a file is well suited for

applications that are oriented toward individual record retrieval.

However, it does not facilitate an efficient method for resolving

queries. Even though the GIM-II system permits the user to

create cross-reference files, the normal method for resolving

queries is by examining each logical record.

Fortunately the problem is not as bad as it seems. There are two

reasons for this. First, most patient care retrieval applications

are individual record oriented. And secondly, the user will

usually tolerate a long response time to his query.

3. There are some questions regarding the number of active terminals

and concurrent queries the GIM-II/ASSIST system can support.

The capabilities, however, are expected to be significantly increased

with the later versions of the system.

163

CHAPTER 6

SUMMARY

The process of selecting a database management system consists of the

following steps:

1. Define the organization's requirements.

2. Develop a compatible set of user needs as they relate

to DBMS concepts.

3. Map the user requirements into the features of data-

base management systems which can satisfy them.

Assign weights to each capability.

4. Identify candidate systems that satisfy the prerequisite

or mandatory requirements.

5. Evaluate each candidate system against the desired

features, and make final selection.

It is almost impossible to find an off-the-shelf DBMS which does every-

thing and is exactly tailored for an intended application. This is

especially true with a complex application such as a hospital information

system.

Generally speaking, the following capabilities which are closely associ-

ated with DBMS design decisions will be required for the successful

implementation of a DBMS-based hospital information system.

A. Non-procedural user language for on-line query and update. The

ability for the user to directly interrogate or access a specified

file without programmer intervention, and even without program-

164

ming knowledge is crucial to the acceptance of the system by the

medical personnel.

B. Procedural language interface. Allowing the user to interface

with a higher level programming language gives him a powerful

tool for tailoring his applications while taking advantage of the

data management functions provided by the system.

C. Transaction-oriented processing. The queries of the database

can be either unanticipated or pre-determined. Transactions

are normally pre-defined functions such as daily reports with

known set of parameters (e. g., bed census). The ability to

store procedures which can later be invoked from a terminal

accommodates transaction-oriented processing.

D. Data structure. Most files encountered in the medical field are

structurally quite simple. They are patient-oriented files,

i. e., they are set up by patient name. Most fields are multi-

valued. Data structures beyond the simple parent-child

relationships (e. g., associating each admission date with the

corresponding treatment) are usually not required.

An important characteristic of the medical field is that patient

information is required for diverse applications. In order to

eliminate redundancy and to consolidate data, the DBMS should

provide the capacity for coupling files.

E. Access method. Most hospital applications demand fast retrieval

and constant changes to the database. The random method of

accessing records is well suited for individual patient record-

oriented applications. However, unanticipated queries would

have to pay the penalty of a sequential scan if the needed attributes

165

are not inverted.

F. The capacity to support large databases. The database approach

to the hospital information system is based on the concept of a

continuous, lifetime, integrated patient medical record. As

such, the volume of data that needs to be maintained and the

number of users interacting with the system are quite significant.

In addition, the DBMS should easily accommodate growth.

Not all DBMS's are built with large databases in mind.

Projected performance criteria can truly be evaluated only when

the database management system has been subject to benchmark

tests.

166

REFERENCES AND BIBLIOGRAPHY

1. CODASYL Systems Committee, "A Survey of Generalized Data
Management Systems", ACM, New York, 1969.

2. CODASYL Systems Committee, "Feature Analysis of Generalized
Data Base Management Systems", ACM, New York, 1971.

3. CODASYL Systems Committee, "Selection and Acquisition of
Data Base Management Systems", ACM, New York, 1976.

4. Anderson, R. K., "Index of Data Management Software Packages",
National Bureau of Standards, Report 10-932, 1972.

5. Fong, E., et al., "Six Data Base Management Systems:
Feature Analysis and User Experiences", National Bureau
of Standards, Technical Note 887, 1975.

6. Datapro Research Corporation, "A Buyer's Guide to Data Base
Management Systems", 1974.

7. Palmer, I. R., "Data Base Systems: A Practical Reference",
Q. E. D. Information Sciences, Wellesley, Massachusetts,
1975.

8. Cohen, L. J., "Data Base Management Systems: A Critical and
Comparative Analysis", Q. E. D. Information Sciences,
Wellesley, Massachusetts, Fourth Edition, 1975.

9. TRW Systems Group, "GIM-II User Reference Manual", July 1975.

10. TRW Systems Group, "ASSIST DMS Elementary User's Guide
With Sample Application", June 1976.

11. TRW Systems Group, "GIM-II Procedural Oriented Language"
August 1976.

12. AUERBACH Associates, "Minicomputer DMS Study",
AUER-2324-FR, October 1975.

13. Weitzman, C., "Minicomputer Systems", Prentice-Hall, 1974.

14. Zack, B. A., "Selecting A Minicomputer: A Framework and
Application to the Sloan School of Management", M. S. Thesis,
Sloan School of Management, M. I. T., June 1977.

15. Digital Equipment Corporation, "PDP 11 Software Handbook",
1975.

16. Digital Equipment Corporation, "RSX-11D User's Guide", 1975.

167

17. Katzan, H., Information Management System, "Computer Data
Management and Data Base Technology", Van Nostrand
Reinhold, 197b.

18. Date, C. J., "An Introduction to Database Systems", Addison-
Wesley, 1975.

19. Stonebraker, M. R., et al., "The Design and Implementation of
INGRES", ACM Transactions on Database Systems, Vol. 1,
No.3, September 1976.

20. Yasaki, E. K., "The Mini: A Growing Alternative", Datamation,
May 1976.

21. Stein, P., "The Adolescent Minicomputer", Computer Decisions,
November 1976.

22. Theis, D. J., "The Midicomputer", Datamation, February 1977.

23. Boylan, D. T., "DBMS for Minis", Computer Decisions,
January 1976.

24. Boylan, D. T., "Minicomputer DBMS: less than meets the eye",

Computer Decisions, January 1977.

25. Floam, G., "Putting a Database on a Mini", Datamation,
June 1976.

26. Foster, J. D., "Distributive Processing for Banking", Datamation,

July 1976.

27. Lynch, A., "Distributed Processing Solves Mainframe Problems",
Data Communications, November/December 1976.

28. Ball, M. J., "Computers: Prescription for Hospital Ills",
Datamation, September 1975.

29. Jackson, G. G., "Information Handling Costs in Hospitals",
Datamation, May 1969.

30. Collen, M. F. (editor), "Hospital Computer Systems", John Wiley
& Sons, 1974.

31. Garrett, R. D., "Hospitals - a systems approach", Auerbach, 1973.

32. -Bekey, G. A., Schwartz, M. D. (editors), "Hospital Information
Systems", Dekker, 1972.

33. Mills, C. A., "Architecture of a Community Medical History Data
Base", M.S. Thesis, University of Illinois, 1973.

34. Ludwig, H. R., "Computer Applications and Techniques in Clinical
Medicine", John Wiley & Sons, 1974.

168

35. Wood, C. T., Lamontagne, A., "Computer Assists Advanced Bed
Booking", Hospitals, March 1, 1969.

36. Jessiman, A., Erat, K., "Automated Appointment System to
Facilitate Medical Care Management ', Medical Care 8, 1970.

37. Shonick, W., Klein, B. W., "An Approach to Reducing the
Adverse Effects of Broken Appointments in Primary Care
Systems", Medical Care 5, 1977.

