
A SYSTEMATIC METHODOLOGY FOR DESIGNING

THE ARCHITECTURE OF COMPLEX SOFTWARE SYSTEMS

by

Sidney Laurence Huff

B.Sc. Queen's University
(1968)

M.Sc. Queen's University
(1970)

M.B.A. Queen's University
(1972)

(Kingston)

(Kingston)

(Kingston)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(June, 1979)

Sidney Laurence Huff 1979

Signature of

Certified by

Author

-... 01".

....

Sloan School f Management, May 7, 1979

Thesis Supervisor

A ccepted by

Chairman, Department Committee

A SYSTEMATIC METHODOLOGY FOR DESIGNING

THE ARCHITECTURE OF COMPLEX SOFTIARE SYSTEMS

Submitted to the Alfred P. Sloan School of management

on June 1979 in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

ABSTRACT

Complex design problems of all types are characterized
by a multitude of competing requirements. Designers of
large software systems in particular often find the scope of
the problem beyond their cognitive abilities to grasp all at
once, and attempt to cope with this difficulty by decompos-
ing the original design problem into smaller, more managea-
ble sub-problems. In software design, this decomposition is
usually carried out in an ad hoc, intuitive fashion by the
system architect, based largely on past experience and his
own best judgment. Software research has shown that poor
decisions during this, the preliminary design stage, can
lead to serious problems, much more difficult to correct,
during the later stages of the system development cycle.

The purpose of this research is to contribute to the
development of a new software design methodology--the Syste-
matic Design Methodology, or SDM. This methodology is
intended to aid the software architect in carrying out prel-
iminary design activities, and in synthesizing a design
problem structure for the system under consideration.

Using SDA involves developing a graph model of a sys-
tem's functional requirements and their implementation
interdependencies, then decomposing the graph using various
heuristic techniques such as cluster analysis or graph par-
titioning algorithms. A quantified objective function, der-
ived from the concept of design subproblems possessing high
strength, with low coupling between subproblems, is used to
locate the best graph decomposition.

As a result of widely varying interpretations of the

- 2 -

notion of functional requirement, special guidelines and
techniques were developed to aid the user of SDM in creating
requirement statements suitable for use in the methodology.
In particular, a set of seven statement "templates" was syn-
thesized and tested. The templates were shown to be effec-
tive in mapping the information content of typical func-
tional requirement documents into SDM statement form.

A new algorithm for performing hierarchical partition-
ing of a weighted graph was developed. Tests on a number of
graphs showed this algorithm to produce superior decomposi-
tions compared to other previously used techniques (princi-
pally, clustering algorithms).

A case study applying SDM to a real design problem--the
design of a new Institute-wide Budgeting System for
M.I.T.--was carried out. This application was conducted
jointly with the Budgeting System designers. Anecdotal and
other evidence gathered through monitoring their use of, and
reactions to, SDM attests to the effectiveness of the metho-
dology in assisting software designers in mastering the com-
plexity of real, full-scale architectural design problems.

In order to better understand the methodology*s effi-
cacy, the key areas of its potential impact were identified,
and some simple models of these impacts upon system develop-
ment costs were constructed. Finally, an interactive soft-
ware package was built, using the PL/I programming language,
to implement the analytical tools (primarily the graph
decomposition algorithms) that were developed in the course
of this research.

Thesis supervisor: Prof. Stuart E. Madnick,
Associate Professor of Management,
M.I.T. Sloan School of Management.

- 3 -

ACKNOWLEDGNRTS

I would like to sincerely thank the individuals who
especially helped and encouraged me in carrying out this
work.

At M.I.T., my thesis advisor, Prof. Stuart Eadnick, was
all things an advisor should be, and more. He contributed
many important insights and ideas, while allowing me to work
out many others on my own, all the while offering needed
encouragement and very -effective general guidance. The role
he played will serve as a model for me in the future.

The other members of my thesis committee--Prof. John
Little, Prof. Jeff Meldman, and Prof. Mike Zisman--have been
very helpful in their suggestions and constructive criti-
cisms. Prof. Meldman provided especially careful and valua-
ble scrutiny of my analysis of SDM efficacy issues. I
greatly appreciate the assistance of them all.

I would also like to express my thanks to Prof. Andrew
Grindlay and my other colleagues-to-be at the University of
Western Ontario for their forbearance concerning my delayed
arrival there.

My wife Cairn, and children Erica and Andrew, have man-
aged to survive the past year with amazing good cheer.
Hopefully our lives together will be a bit more normal in
the future. Erica, however, doesn't seem to understand the
situation: after helping me with some cutting and pasteing
recently, she now asks every day whether she can help with
something else, and has told me that she "really likes it
when daddy is working on his thesis."

I would like to gratefully acknowledge my main sources
of financial support.. These include Fellowship support from
the Canada Council and the Canadian Bronfman Foundation,
research funding from the U. S. Navy (DoD), and other sup-
port from the Center for Information Systems Research at
.I.T. and from the University of Western Ontario.

This thesis was produced using the Waterloo Script text
editing system on M.I.T.'s IBM/370 computer. VSCRIPT, and
in particular Waterloo's SYSPUB facility, proved to be a
highly effective tool in this regard. As a software system,
WSCRIPT seems to be very well designed--a subject to which I
have become quite sensitive of late.

- 4 -

LIST OF FIGURES

1.1 Increase of software as a proportion of
total system cost

1.2 The System Development Cycle

2.1 A schematic view of the Systematic Design
Methodology

3.1 PSL object classes and types

3.2 PSL relationships and complementary relationships

3.3 PSL object types and relationship types
classified according to system aspect

3.4(a) Diagram for a simple medical monitoring
system

3.4(b) First-level PSL description for the MMS

3.5 A more detailed description of the MMS 0

3.6 Second-level PSL description of the MMS

3.7 Examples of process-oriented requirement
statements

3.8 A framework for requirement statements

3.9 Requirement statement templates

- 5 -

3.10 Examples of requirement statement templates

4.1 Graph representation of the 22-node design
problem

4.2 Logical combinations of link weight inter-
pretations

4.3 Example of implementation similarity relationship

4.4 Requirement nodes and interdependency similarities

4.5(a) A multi-requirement interdependency

4.5(b) A trio of similar pairwise interdependencies ..

4.6 Representation of logical implication between
requirement nodes

4.7 Representation of hierarchical implication
relationships

4.8 Representation of implication relationships
between implementation nodes

4.9 Graph diagram of DBMS design problem using
extended model.........

4.10 Basic requirements graph model

4.11 Interdependency weights added to model of
Figure 4.10

4.12 Interdependency similarity information added to
model of Figure 4.11..........................

4.13 Implication information added to model of
Figure 4.12

5.1 A simple decomposition

5.2(a) Decomposition of weighted graph

- 6 -

5.2(b) Same decomposition as for Figure 5.2 (a), with
different weights

5.3 Graph decomposition via cluster analysis -
the process * 4 *

5.4 (a) An inter-node similarity illustration

5.4(b) A second inter-node similarity illustration

5.5 The core set concept ,........

5.6 Core sets - the "gravitational" interpretation

5.7 Core sets of an weighted graph

5.8 Examples illustrating behavior of the similarity
measure ,..,......

5.9 More examples illustrating behavior of the simil-
arity measure *....*..............,,...,

5.10 Three subsets, ready for next "merge" decision

5.11 Single-linkage clustering anomaly

5.12 The 22-node DBMS requirements graph

5.13 Best decomposition of the unweighted 22-node
graph..................

5.14 Best decomposition of the weighted 22-node graph

5.15 A simple interdependency similarity relationship

5.16 Representation of the ISR of Figure 5.15

5.17(a) Modification of a three-node subgraph to
include an ISE node

5.17(b) Modification of a 4-node subgraph to include
an ISR node

5.18 The 22-node requirements graph including ISR's

- 7 -

5.19 Best cluster decomposition of 22-node graph with
ISF's not included

5.20 Best cluster decomposition of the 22-node
graph using the similarity modification approach
for treating ISR*s

5.21 Best decomposition of the 22-node graph using
ISR-node approach to treating the ISR data

6.1 A simple weighted graph

6.2 (Arbitrary) initial partitioning of graph of
Figure 6.1

6.3 Depiction of interchange sequence in which early
interchanges have negative effect, but a net
positive effect eventually accrues

6.4(a) Effect of first pair of interchanges on the
graph of Figure 6.2

6.4(b) Resulting situation after interchanges imple-
mented

6.5 Result after second interchange completed

6.6 Best obtained partition during first pass

6.7 Depiction of interchange sequence wherein no
improvement can be made in the starting partition ..

6.8 Graph for second example, showing initial par-
tition.

6.9 Best final partition for second example

6.10 Graph for example of Section 6.3, showing dummy
nodes and initial partition

6.11 Final decomposition of example graph of Section 6.3
after one pass of the interchange algorithm

6.12 Initial graph for verification exercise

- 8 -

6.13 Graph of Figure 6.12 after nodes x and y have
been interchanged

6.14 Partitions of the graph from Section 6.2 after one
pass of the interchange algorithm, showing
subgraph strengths

6.15 Decomposition "tree" showing complete decomposition
of graph from Section 6.2

7.1(a) Normal pattern for interdependency assessment

7.1 (b) Inverted pattern for interdependency assessment

7.2 Best located decomposition produced by the inter-
change method on the Budgeting System requirements
graph ,.. .

7.3 Relationships among the eleven design subgraphs

7.4 Distribution of link total weights

7.5 Complete description of the SDM architecture
for the new Budgeting System

8.1 Graph sketches of relationships for the requirements
specification impact model

8.2 Graph sketches of relationships for the coordin-
ation/communication impact model

D.1 Control structure for modules of the SDM analysis
package

- 9 -

LIST OF TABLES

5.1 Specifications for random and non-random graphs

5.2 Relative performance of the four hierarchical
clustering techniques

5.3 Relative performance summary for the clustering
routines ..

5.4 aankinq for clustering routines

6.1 Gain matrix for deciding on initial interchange for
graph shown in Figure 6.2

6.2 Execution trace for interchange example (first
pass)

6.3 Execution trace for interchange example (second
pass, starting with best identified partition from
the first pass)

6.4 Interchange execution trace for second example

6.5 Number of dummy nodes to be added to a graph of n
nodes to insure a minimum subgraph size of n
nodes ..

6.6 Interchange trace for example of Section 3.3

6.7 Initial and final partitions, and interchange
trace, for example graph of Section 3.3, with
n = 1

6.8(a) Interchange trace for example of Section 6.4,
without simplifications ...

- 10 -

6.8(b) Interchange trace for example of Section 6.4,
with simplifications

6.9 Comparison of interchange and best result obtained
using hierarchical clustering

6.10 Comparison of the weighted performance of inter-
change and the four hierarchical clustering
routines

7.1 Comparison of results of five decomposition algor-
ithms on the Budgeting System requirements graph

7.2 Subproblem summary description

7.3 Summary description of the subproblem interrelation-
ships

8.1 Typical passes for the requirements analysis and
assessments activities

- 11 -

TABLE OF CONTENTS

page

ABSTRACT 2

ACKNOWLEDGMENTS . 4

LIST OF FIGURES 5

LIST OF TABLES 10

Chapter

I. BACKGROUND AND MOTIVATION. 18

Clarification of the problem. 22
Recognition of the Problem By Other Authors. . 28
Summary.. 30
outline of the Thesis. 32

II. THE SYSTEMATIC DESIGN METHODOLOGY - PREVIOUS WORK AND
ASSOCIATED RESEARCH. 37

Design Theory. 38

Alexander's Research. 40

Software Design Research. 44

Software Architecture Design Research. 48
The SDS Approach. 49

Applications of SDM To Date. 55
Software Architecture Research at Martin

Marietta. 58

Specific Research objectives. 60
Philosophy and Concepts. 60

The SDM Modelling Framework. 62
SDM Decomposition Analysis Techniques. . . . 64
SDM Linkages Within the System Development

Cycle. 67

SDM Efficacy. 69

SDM Analysis Package. 70

Testing the SDM. 71

III. REQUIREMENTS STATEMENT CONSTRUCTION - THE SEMANTICS
OF REQUIREMENTS. 75

Introduction. 75

- 12 -

Requirements Statement Languages - The Case of
PSL. .0 .0 . . . a. 0. . a .4.0.4 .0. .6.0. 77

The Structure of PSL. 77

Using Objects and Relationships to Create
PSL Statements. 82

An Illustration of PSL - Part A. 83
An Illustration of PSL - Part B. 86
PSL As a Design Tool. .. *00.0. ... 92

Terminology and Concepts: Some
Clarifications. a 95

Levels of Procedurality. 95
Types of Requirements. 99

Processes and Capabilities. 100
A Framework for Requirements Statements. . 103

Expressing Functional Requirements. 111
The Format of Typical Functional

Specifications. 112

Requirement Statement Templates. 115
Side Effects of Expressing Requirements in

Template Form. t # 9&. 122

Summary. 128

IV. EXTENSIONS AND IMPROVEMENTS TO THE SDM
REPRESENTATIONAL MCDEL. 129

Introduction. a . . 129

overview of the Basic Model. 131
Generation of Nodes in the Basic Model. . 131
Generation of Links in the Basic Model. . 132
An Example. *a134

Extensions to the Basic Model. 137
Interdependency Weights.. 138

Scalinq Problems. 141

Information Linking Implementation Issues. 144
Similarity Links Arong Irplementation

Issues. 146
Graph Representation of iplementation

Issue Commonality. 148
Representation of Implication Information. 151

Logical Implications Between
Requirements.0151

Logical Implications Between
Implementation Issues. 158

Logical Implications between R-nodes and
I-nodes. . . . a a0159

Application of Extended Model to the 22-node
DBMS Requirements Set. . a . a a a . .162

Sample Set of 22 DBMS beguirements. . . . 165
Requirements Interdependencies and

Weiqhts. . . a a . a a . . 167

Interdependency Similarity Assessment. . . 171

- 13 -

Implication Relationships Betveen
Requirements. 172

Implication Relationships Between
Implementation Issues. 173

Comments on Assessments.. 175
Weight Assessments. 176

Implication Relationship Assessments. . 177
Summary. 179

V. GRAPH DECOMPOSITION ANALYSIS TECHNIQUES FOR USE WITH
THE EITENDED SDM MODEL. 183

Introduction. 183

SDM Analysis and Interdependency Weights. . . 186
Extension to Decomposition Goodness Index. 186

Strength and Coupling Unweighted
Graphs. 187

An Improvement to the Strength Index. . 190
Link Weight Information and Similarity. 194
An Example. 198

Extensions to the Basic Similarity
Measure. * 200

Basic Concepts of Inter-node
Similarity. 200

The Core Set Approach. 204
Link Weights and the Core Set

Definition.... 207

A Further Adjustment. 211
Some Test Cases Using P 213

Clustering Analysis Techniques Using the
Extended Model. 217

Four Hierarchical Clustering Techniques. . 218
Single Linkage Clustering (HIER1). . . 221
Complete Linkage Clustering (HIER2). . 222
Largest Pre-merge Centroid (HIER3). . . 223
Largest Post-Merge Centroid (HIER4). . 224

Comparative Analysis of Clustering
Methods. 225

A "Greedy" Clustering Algorithm. 231
Other Approaches to Graph Decomposition. . 234

A Leader Technigue. . . 9 235

The Bond Energy Approach. 237
Node Tearing Techniques. 240
The Interchange Algorithm. 241

A Case Study Using Interdependency Weight
Extensions. 242

Results from the Case Study. 0 243
SDM Analysis Using Other Model Extensions. . 249

Interdependency Similarity Relationships. 251

- 14 -

Modification of Similarity
Coefficients. 252

Modification of the Graph Structure. . 255
An Example of the Use of ISR Data. 256

Summary. 266

VI. SIM DECOMPOSITION ANALYSIS USING THE INTERCHANGE
ALGORITHM. 269

Introduction. 269

Graph Decomposition in the SDM Context. . 270
Shortcomings of Previous SDM Partitioning

Techniques. 273

The Basic Interchange Algorithm. 278
The Basic Interchange Technique. 279
An Example. 285

A Second Example. 295

Algorithm Extensions - Partition Size Bounding
and Unequal-sized Subsets. 299

Dummy Nodes. 299

Choice of Dummy Nodes. 301

An Example Using the Dummy Node Technique. 302
Choosing the Number of Dummy Nodes. . . 309

A Simplified Interchange Algorithm. 311
The Approximate Measure Gain Criterion. . 312

Simplifying S 314

Simplifying C 315

Further Simplification of M(xy). . . 315
A Verification Exercise. 319
Summary of the Simplified Interchange

Algorithm. 321

Further Efficiency Improvements. 323
Comparison of the Basic and Simplified

Interchange Algorithms. 324
Comparative Analysis - Interchange versus

Hierarchical Clustering. 327
Hierarchical Partitioning Using the Interchange

Technique. 331

The Subgraph Selection Rule. 331

A Stopping hule for the Master Algorithm. 334
The Master Algorithm. 335
An Example Using the Master Algorithm. . . 336

Summary.. 338

VII. THE USE OF THE SYSTEMATIC DESIGN METHODOLOGY IN THE
DESIGN OF AN APPLICATION SOFTWARE SYSTEM. 341

Introduction - The Need for SDM Evaluation. . 341
Application System Background - The M.I.T.

Budgeting System 344
Current M.I.T. Budgeting Environment. . . 344

- 15 -

The Existing Budgeting System... 348
Top Management..... 348
Senior Management. 350
Administrative Management. 352

General Requirements for a New Budgeting
System. 354

Preliminary Technical Issues. 355
Support for Top Management. 356
Support for Senior Management. 358
Support for Administrative Management. 360
Support for the Fiscal Planning and

Budgeting Office. 362
SDM Analysis of the New Budgeting System. . . 365

Requirements Preparation. 365
Interdependency Analysis. 370
Some Lessons Learned. 374
Summary. 382

An Architecture for M.I.T.'s New Budgeting
System. 383

Decomposition Analysis Results. 384
Analysis of Design Subproblems. 388
Analysis of Subproblem Interrelationships. 407

Summary. 421

VIII. SDM EFFICACY. 428

Introduction. 428

Related Research. 429

The Efficacy Problem. 431
The Case of the New York Times Information

Bank. 432

Approaches to the Efficacy Problem. . . . 434
A Predictive Viewpoint of Efficacy. . . . 436

System Specification Impact. 439
System Procedural Development Impact. 448
System Maintenance/Modification Impact. . . . 454
Summary. a a a * 0 a a . . . 464

IX. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH. 466

Directions for Further Research. 473

REFERENCES 482

Appendix page

A. COMPLETE LISTING OF PSL STATEMENT TYPES. 492

- 16 -

THE FULL SET OF DBMS REQUIREMENTS USED BY ANDREU.

C. EDITED DBMS REQUIREMENTS TRANSFORMED TO TEMPLATE
FORM.* 502

D. SDM ANALYSIS PACKAGE DOCUMENTATION. 510

More on the MASTER Commands. 512
INCHCTL (Interchange Control) Commands. . . . 518
Routines Included in the Analysis Package. . 522

Programs. 524

Files. 526

E. TERMINAL EXECUTION TRACE. 527

F. EXECUTION TRACE OF INTERCHANGE ALGORITHM. . . . 539

G. EXAMPLE OUTPUT FROM THE IBM 3800 PRINTER. . . . 552

H. INITIAL BUDGETING SYSTEM FUNCTIONAL REQUIREMENTS AS
PREPARED BY THE SYSTEM DESIGNERS. 554

I. FINAL BUDGETING SYSTEM FUNCTIONAL REQUIREMENTS AS
USED IN THE SDM ANALYSIS. 565

J. FOFM USED IN GATHERING INTERDEPENDENCY DATA. . . 577

K. BUDGETING SYSTEM BEQUIREMENT INTERDEPENDENCIES* 579

L. REQUIREMENT SUBSETS DERIVED FROM THE BESI SYSTEM
DECOMPOSITION. 595

M. INTERDEPENDENCIES BETWEEN REQUIREMENT SUBSETS IN BEST
DECOMPOSITION. 601

BIOGRAPHICAL NOTE 604

- 17 -

497

Chapter I

BACKGROUND AND MOTIVATION.

Recent estimates indicate that the design, development,

operation, and maintenance, of modern computer-based systems

is a twenty billion dollar industry in the United States

alone (Dolotta 76), and is growing rapidly. Furthermore, as

little as thirty years ago this industry did not exist. The

industry's present size, and future growth potential - the

substantial amount of resources at stake - has generated

much interest in improving both the efficiency and effec-

tiveness with which the save various classes of activities

within it are pursued. However, the industry's extremely

rapid development to date has often occurred at the expense

of carefully planned and rationalized activities. Only very

recently, for instance, have system developers generally

begun to recognize the wisdom of spending more time and

effort planning and designing their systems prior to writing

computer proqrams. (1)

(1)1n fairness, the fault is often shared with other organi-
zational managers, who frequently equate code production
with progress on a development project.

- 18 -

As well as growth throughout the computer industry, a

second important trend is also evident: broadly speaking,

the cost of the hardware component of new computer systems

has been, and continues to decrease at at a rather rapid

pace, on the order of 20 percent per year, whereas the soft-

ware component continues to increase at nearly as rapid a

pace. Viewed over the longer term, the relative importance

of the software component of systems today has become pre-

eminent, as shown in Figure 1.1.

These circumstances have led to a number of recent stu-

dies aimed at identifying problem areas in system develop-

ment. Certain of these studies have examined the types of

desiqn errors typically found in large software systems, and

have attempted to trace them back to the design stage in

which they were made. The results of these studies indicate

that the majority of system errors are made, or have their

roots, in the early stages of the system development cycle

(Endres 75, Fagan 74, Thayer 75). One particular investiga-

tion found that of 54 error types identified during system

implementation and maintenance, only 9, or less than 18%,

could be attributed to mistakes made during later stages

such as coding ot testing.

These studies point to the need for improved methods

for planning and carrying out the activities that make up

the early stages of system development. This thesis is pri-

- 19 -

Percent of
Total Costs

Hardware

Software

1955 1970 1985

Year

Figure 1.1

Increase of software as a proportion of total system
costs

- 20 -

100

75

50

25

marily concerned with one aspect of this general need.

Specifically, it is concerned with the problem of systemati-

cally partitioning the overall problem saace faced by a sys-

tem's designer or design team into an effective set of

design sub-problems. A more exact interpretation of the

underlined terms above will be given in the next chapter.

- 21 -

1.1 CLARIFICATION _F TB PRCBLEM.

one way of making clearer the nature of the problem

being addressed is to consider the following scenario. A

major system development project has been under way for,

say, two years. The team of system analysts has carefully

and thoroughly studied the needs of various classes of

"users-to-be," and have documented these needs in a system

"functional requirements" document. The chief system ana-

lyst (often called the system architect) guiding the study

of the problem to date now believes he and his staff are

ready to begin designing the target system.(2) Noreover, he

has organized a number of other small, closely-knit design

teams to begin working on various aspects of the system's

detailed design. The problem at this point is, how should

the overall desiqn problem be partitioned so that it may be

"parceled out" to the design teams in the most effective

pieces? What, in fact, is meant by an effective partition-

ing? These questions lie at the heart of this thesis.

The problem may be viewed from a slightly different

perspective by considering the well-known system development

gl. While practically every author seems to have his own

individual version of the system development cycle, Fig-

ure 1.2 is representative. There, the life cycle is shown

(2)Of course in practice there usually does not exist such a
clear dividinq line between analysis and design. This is
an ideal scenario only.

- 22 -

1

I. Functional 2
Development
Phase

3

- -

II. Procedural
Development

Phase

III. Operation
Phase

-00 - -00
al - -

al

Figure 1.2

The System Development Cycle

- 23 -

to consist of three broad phases, each phase being broken

down into more narrowly defined stages. The first,-or func-

tional, phase is concerned with:

1. determining what the computer system is intended
to do, in the eyes of the user (stage 1);

2. translating the user's functional requirements
into system requirements (stage 2);

3. drawing up a high-level preliminary design for the
target system (stage 3).

The second, or procedural, phase involves:

1. generating a detailed design for the target sys-
tem, usually including program module definitions,
interface specifications, etc. (stage 4);

2. writing the computer programs, in a suitable pro-
gramming language, to accomplish the function of
each module (stage 5);

3. making sure that the various modules, and the sys-
tem as a whole, function properly - i.e., the
software executes, and executes correctly, as far
as can be determined under test conditions (stages
6 and 7).

Finally, the third, or operational, phase involves:

1. putting the system "on the air" - running it under
real, as opposed to test, conditions in the user's
environment, and monitoring its operation;

2. making modifications, either to fix errors or make
requested changes (stage 9).

The activities within the functional development phase

are generally less well structured, the objectives and qual-

ity measures less well understood, than those in the proce-

- 24 -

dural development or operational phases. Nor have the dif-

ficulties associated with the functional development phase

gone unnoticed. A few studies have been undertaken to det-

ermine how well these tasks are usually executed. For exam-

ple, Bell and Thayer (Bell and Thayer 76) studied the soft-

ware requirements specification problem in the context of

both a large and a small system. They found a surprisingly

large number of errors in this stage of the sample projects

they examined - well over one error per page of requirements

documentation (the small project gave rise to over 40 pages

of such documentation, the larger project over 2500 pages).

Often, the difficulties within the functional develop-

ment phase begin even earlier, in the user requirements ana-

lysis (sometimes referred to as "management information

requirements analysis," or "MIRA") stage. In a recent sur-

vey, Carter (Carter 75) asked a sample of professional sys-

tems analysts, and users, what they felt were the most cri-

tical factors contributing to successful development of

information systems. Over 120 of these respondents claimed

that "the correct identification of management information

needs" was the most critical such factor.

What makes system functional development so difficult?

One key reason concerns the limited cognitive capabilities

of the human brain. It has been observed that most people

are able to deal conceptually with only a relatively small

number of distinct items of information at a time

- 25 -

(Miller 56). During functional development, the target sys-

tem must be dealt with as a whole, and typically involves

hundreds or thousands of variables, which effectively swamp-

ing any single designer's ability to keep mental track of

all the pieces.(3)

Within the functional development phase, the task

labelled "architectural design" in Figure 1.1 is the central

focus of our attention. It is essentially the task of par-

titioning the problem space so as to be able (conceptually

at least) to parcel out sub-problems to design teams, as

described above.

A third perspective on the problem being addressed may

be obtained by recognizing that the architectural design

task is basically the discovey _o polm structure. The

concept of problem structure may be made clearer by con-

trasting it with the more familiar notion of system struc-

ture. The former is concerned with how different parts of

the system interact from a design standpoint, e.g., what

parts can be designed independently of others, what parts

must be designed at the same time, what tradeoffs should be

taken into account when designing somewhat related parts,

etc. The latter, in contrast, is concerned with how system

(3)During later stages of the development cycle, the com-
plexity problem is less severe, as any one person is
required to deal with a relatively small "chunk" of the
total system (e.g., program modules, or subroutines).

- 26 -

parts interact once the system has been designed and put

into operation. This involves questions such as what parts

communicate with what others, how they do so, etc. Although

the design problem structure should, in theory, determine

the eventual system structure, the two don't necessarily

need to coincide. For instance, it may make good sense to

organize several well-defined system functions as separate

parts in the final implementation, but if these functions

are such that they need to share certain system resources it

may be best to organize their design in a common design

sub-problem.

Andreu has pointed out (Andreu 78, page 25) that

"traditionally, the 'design problem structure' has
been determined by the 'system structure,' rather
than the other way around. For instance, it is
very common to organize the design of a new system
around 'standard' system structures, conceptual-
ized from similar systems designed previously.
Altouhq the designer's knowledge of systems simi-
lar to the one under design is a valuable input to
the design organization actigity, it should not be
the only one."

With these perspectives of the architectural design

problem in mind, we may ask how other researchers view this

problem, and whether other effective approaches to solving

it have been suggested or studied.

- 27 -

1.2 agcOGNITION OF _T PROBLEM BY TH AUTHORS.

The importance of the development of a good system

architecture as a blueprint for the following stages in the

development cycle is only very recently becoming clearly

recognized. White and Booth (White & Booth 76) have

expressed concern over "hidden interactions" among system

components that might result from overlooking design inter-

dependencies; such interactions are often responsible for

difficulties in system maintenance, frequently necessitating

major re-design efforts. Belford (Belford et. al. 76) sees

the software engineer as "isolated" from the original set of

requirements as design implications that stem from original

requirements are often overlooked by organizing the target

system in ineffective ways that tend to be derived more from

previous experience with similar designs than from a syste-

matic investigation of what makes best sense in the present

case.

Also, some of the leading authors and researchers in

the software design field, while recognizing the importance

of the architectural design task, tend to view it as some-

thing that "somehow" must take place before various software

design methodologies and techniques which they have devel-

oped may be applied. Byers, in discussing his Compo-

site/Structured Design Methodology, for instance, writes,

"If the product being developed is a system,
rather than a single program, there is another

- 28 -

design process that must occur between the
external design process and the use of composite
design. This process, called system design, is
the decomposition of the system into a set of
individual subsystems or individual programs.
Although some of the ideas of composite design are
appropriate here, and some people have claimed to
have used composite design for this process, com-
posite design does not appear to be directly
applicable to system design. Therefore, when
designing a system, as opposed to an individual
program, the designer must first partition the
system into distinct subsystems or programs. Then
the methodology of composite design can be used to
produce the structure of these individual pieces."

Myers also writes (Myers 77, page 158):

"If one is faced with the problem of designing a
manyfacturing control system, say, one must first
determine how thirs system is to be partitioned
into individual programs; then composite design
can be applied to design each program. Although
some of the ideas can be applied to system parti-
tioning (e.g., maximizing module strangth and min-
imizing inter-module coupling), the decomposition
techniques discussed earlier do not seem to be
amenable to system partitioning."

In a similar vein, DeWolf (DeWolf 77) has written,

"At the outset, the designer must make some tenta-
tive decisions as to the representation of the
system and its environment ... Essentially this
is a creative activity ... "

These and other authors, therefore, recognize the need to

perform the preliminary problem partitioning task, but give

no real guidance as to how this activity ought to be carried

out. To do that is the cornerstone of this thesis.

- 29 -

1.3 SUMHARY.

The foregoing arguments may be summarized by saying

1. The design and development of computer software
systems is an important and challenging problem in
modern industrialized societies.

2. There is reasonably wide agreement that many of
the difficulties encountered in later stages of
the system development cycle stem from poor design
decisions made early on.

3. While the need for better managing and structuring
of the early (architectural) design phase of sys-
tem development is becoming more widely recog-
nized, authors and researchers in the software
engineering field tend to view this as an unstruc-
tured problem for which none of the various soft-
ware design methodologies in use today are suita-
ble.

This thesis addresses the development and application

of a new methodology, the purpose of which is to meet the

challenge posed by the third point above. As it is fre-

quently mis-used, the term "methodology" in the above state-

ment bears elaboration. In our view, a methodology has

three main components:

1. a philosophy, or guiding set of concepts relating
to the purpose and objectives of the methodology;

2. a body of techniques, including such items as
mathematical algorithms for solving particular
problem types, and guidlines for a step-by-step
approach that may be followed in approaching some
task; and

3. a set of tools that can help a user of the metho-
dology actually make use of the techniques (for
instance, an on-line software package for applying
the algorithms to specific problem contexts).

- 30 -

Some other authors sometimes use the term "methodology" when

they more properly mean "method," or "technique."

Following early work by Alexander (Alexander 64) in a

totally different field, (4) Andreu laid the groundwork for

the present research in his doctoral thesis (Andreu 78).

These works will be reviewed in the next chapter. The pre-

sent thesis aims to extend Andreu's earlier work in a number

of areas, and to carry out other related studies pertaining

to software architecture in general and specifically to the

methodology addressed herein: the Systematic Design Metho-

doloqy ("SDM")

(4)Alexander's work was in the field of conventional archi-
tecture, i.e., design of physical structures.

- 31 -

1.4 OUTLINE OF TH THESIS.

In the next chapter, we examine more closely literature

in this and related fields. In fact, as intimated earlier,

there has been very little prior research, with the excep-

tion of Andreues study, on the software architecture problem

per se. However, some useful information may be obtained

from other allied fields, such as conventional design

theory, software detailed design investigations, etc.; rele-

vant concepts from these areas will be examined. Next, the

work of Alexander is examined in some depth, as it forms

one of the conceptual cornerstones of the present study.

Finally, Andreu's important contributions to the present

problem are identified and discussed.

In Chapter 3, we examine a number of issues surrounding

the problem of eliciting and expressing the functional

requirements for a target software system. Certain impor-

tant terms, which are frequently used loosely and in ambigu-

ous ways by authors in software engineering are identified,

and an attempt is made to clarify them. A simple conceptual

model of the role of functional development activities

including architectural design, within the overall system

development cycle is presented. The role of "requirement

statement languages" is discussed, and one specific such

lanquaqe, PSL, is examined in depth. The usefulness of

requirement statement languages as software design tools is

- 32 -

addressed. Finally, an approach to generating functional

requirement statements in a form suitable for use within

this architectural design methodology is given, and examples

discussed.

In Chapter 4 we turn our attention to the requirements

graph model used by Andreu to represent the key elements of

software architecture information: the system's functional

requirements, and their interdependencies. The basic ques-

tion posed in this chapter is, what other kinds of design-

relevant information might be knowable and expressable by a

system designer, but that are not representable in the ori-

qinal model? For instance, it might be appropriate for

designers to be able to express the fact that certain

requirements imply the existance of others. A number of

such new classes of design information are identified, and

representational techniques developed. An example assess-

ment is carried out to illustrate the applicability of the

new information types.

In Chapters 5 and 6 we address various aspects of SDM

graph decomposition analytics. Chapter 5 includes a number

of different, related topics, with its main focus being the

extension of the earlier analytical tools to include the

most valuable of the model extensions presented in Chap-

ter 4. Most of the attention in Chapter 5 is directed

toward factoring the interdependency weight assessment

- 33 -

values into the decomposiiton analysis activities.

Techniques for including interdependency similarity -informa-

tion are also presented and analyzed. New hierarchical

clustering alqorithms for effecting a graph decomposition

are presented, and a comparative analysis among the old and

new clustering methods is conducted. Finally, documentation

and an example execution trace of the interactive analysis

package that has been developed to perform the decomposition

analysis is given in the appendices.

A new type of decomposiiton algorithm, the "inter-

change" technique, was developed with the SDM decomposition

problem specifically in mind. This algorithm is presented

in Chapter 6. Also included there is an analysis of ways of

simplifying the algorithm's calculations so as to substan-

tially improve its efficiency, together with a comparison of

the decomposition effectiveness of this algorithm vis-a-vis

the clustering techniques discussed in Chapter 5. The net

result is that the interchange algorithm dominates the clus-

tering techniques in all but one case. Finally, a detailed

execution trace of the interchange 'algorithm is given in

Appendix F.

Chapter 7 contains a description of the application of

the SDR to a real, medium-sized system architectural design

problem. The system under design is a new MIT Institute-

wide, computer-based budgeting and planning systems. This

- 34 -

is the first application of SDM to the design of an

"application" software system,(5) and is also the first time

that the key SDM design data has been obtained from the sys-

tem designers themselves. In previous methodology applica-

tions, the role of system designer was "simulated" by the

SDM researcher. One of many questions this latter approach

left unanswered was how easily a real system designer, ini-

tially unfamiliar with the SDM concepts and methods, would

be able to "adapt" to the methodology, and what benefits

they would see accruing from its use. These and other

issues are addressed in Chapter 7. Appendices G through 8

contain supplementary documentation related to the SO

application exercise.

Chapter 8 focusses on the issue of SDM efficacy. The

problem of proving that a methodology such as this one

works, that it necessarily, or even probably, leads to a

better system design, or that it even generates a net bene-

fit at all, is not a simple one to answer. These guestions

are addressed, albeit in a preliminary way, in Chapter 8.

Specific classes of cost and benefit that are believed to

follow from the use of SDM are identified, and approaches to

modelling them are explored. While excessive quantification

of the suggested relationships would be inappropriate due to

(5)as apposed to a "systems" software system - e.g., an
operating system, or a database management system.

- 35 -

the many unproven assumptions that would have to be made,

functional-form or graph sketches will be used to illus-

trate the main ideas.

Finally, Chapter 9 contains conclusions for this the-

sis, and a discussion of potential fruitful future research

directions that could be pursued.

- 36 -

Chapter II

THE SYSTEMATIC DESIGN METHODOLOGY - PREVIOUS WORK AND
ASSOCIATED RESEARCH.

The purpose of this chapter is to discuss the specific

research upon which this thesis builds. This includes two

major pieces of work - Alexander's research, and Andreu's

thesis - as well as other miscellaneous work. A number of

areas for extension and improvement in Andreu's original

study will be identified. These form certain of the objec-

tives of the present work.

As noted in the previous section, the field of software

architectural design is almost entirely unresearched.

Nevertheless, there are a few allied bodies of research that

shed some light on the present problem, and provide direc-

tions for pursuit. Eelated research may be classified into

three groups, in increasing order of relevance:

1. research in the general area of design theory;

2. other research in the software engineering field
pertaining to software design;

3. research in the software architectural design theory
field per se.

We will briefly address each ot these three areas, in

order.

- 37 -

2.1 DESIGN THEORY.

While software design may be a rather recent object of

concerted study, the same cannot be said of design in gen-

eral. Clearly, practical design problems were being

addressed and solved effectively in antiquity (consider the

Roman aqueducts, or the Egyptian pyramids). Theoretical

tracts on the nature of design go back nearly as far. Most

of the early design theorists limited themselves to the

enunciation of general principles, formulation of broad con-

cepts, etc. In the past twenty years or so, however, a few

design theorists including Archer, Spillers, Jones, Alexan-

der, and Himmelblau have approached the design theory prob-

lem from the point of view of constructing useful methodolo-

qies (in the sense defined earlier). Their approaches vary

widely. Spillers, Archer, and Jones are both "popularizers"

and integrators, attempting to construct more or less uni-

fied frameworks out of the disparate basic concepts of oth-

ers. Himmelblau has concentrated on heuristic methods, in

an attempt to formulate a general search process for per-

turbing given designs in order to produce new, better ones.

Alexander and others have attempted to represent design

problems using various types of graph or network structures,

then have defined ways to manipulate these structures to

achieve certain objectives such as breaking up complex

design problems into more manageable pieces in an intelli-

- 38 -

gent fashion. More will be said about Alexander's work in

particular shortly, as it forms part of the foundation for

the present study.

The design theory literature is broad and diffuse, and

consequently rather difficult to deal with. most of it is

oriented towards classical architecture (the design of

structures) or engineering (designing devices).* Nor is it a

static field. Spillers states in a recent paper, "It is

clear that there does not yet exist a unified, coherent

theory of design" (Spillers 77). Nevertheless, it contains

a rich set of concepts, as well as some methodologies of

rather broad scope. To the best of our knowledge, these

concepts and methodoloqies have never been investigated to

any significant extent in order to determine what light they

may shed on the software design problem.

There is also another, somewhat smaller, literature

related to the analysis of structure, as opposed to its

design. Representative of this work is Simon's essay on

"The Architecture of Complexity" (Simon 70)., In this study,

Simon addresses the search for common properties among

diverse kinds of complex systems. He analyzes four differ-

ent aspects of complexity, nanely,

1. qeneral issues regarding hierarchical form;

2. the evolution of hierarchical and non-hierarchical
systems;

- 39 -

3. the concept of nearly decomposable systems;

4. the relationships between complex systems and
their descriptions.

A number of Simon's arguments have interesting implications

for the software architecture designer.

2.1.1 Alexander's Research.

While the work of Christopher Alexander would properly

fall in the previous section, because of its importance and

centrality to the present study, it warrants special atten-

tion.

Alexander, a design theorist whose main focus has been

city design, published the monograph Notes on the Synthesis

2 form (Alexander 64) detailing both the philosophy and

techniques he had developed in this field. In the book,

Alexander recognises the central role of a system's (e.g., a

city's) requirements, and their possible interactions,

"A typical design problem ... has requirements which
have to be met and there are interactions between the
requirements, which makes the requirements hard to
meet";

the need for controlling complexity,

"To match the growing complexity of problems, there is
a qrowing body of information and specialist experi-
ence. This information is hard to handle; it is wid-
espread, diffuse, unorganized";

- 40 -

and he concludes, as does the software engineering litera-

ture, that the intuition of designers is not sufficient to

cope with such complexity:

"If we look at the lack of organization and the lack of
clarity in the forms around us, it is plain that their
design has often taxed their designers' cognitive
capacity well beyond its limits ... In this atmo-
sphere, the designer's greatest gift, his intuitive
ability to organize physical form, is reduced to noth-
ing by the size of the tasks in front of him."

Alexander then argues that a more systematic approach

is required, and that it is not necessary (as some other

design theorists contend) to rely entirely on human judgment

and intuition in the design activity. Searching for a more

systematic approach leads Alexander to think of the design

problem as an activity directed to achieve "goodness of fit"

between two entities: the form to be designed, and its con-

text. However, he argues, trying to achieve this goodness

of fit in a complex environment without the aid of a syste-

matic strategy is futile, because "the number of factors

which must fall simultaneously into place in so enormous."

Faced with this problem, the designer "tries to break the

problem down, and so invents concepts to help himself define

which subsets of requirements to deal with independently."

Alexander then points out that typical ways of breaking

the problem down, based either on intuition or on standard

classifications stemming from traditional disciplines (e.g.,

economics) tend to fail unless they happen to coincide with

the intrinsic structure ot the problem at hand. He then

- 41 -

proposes a way to systematize the search for those "subsets

of requirements to deal with independently." This'is, in

effect, a searc for problem strueture.

Interactions among requirements are at the heart of the

methodology proposed by Alexander, and these interactions

are defined by him in a way that leaves room for the desig-

ner' s interpretation:

"We shall say that two requirements interact if and
only if the designer can find some reason (or concep-
tual model) which makes sense to him and tells him why
they do so."

Thus, in Alexander's framework, the designer defines the

interactions among requirements and attempts to use the

information conveyed by them in order to locate subsets of

requirements which are as independent as possible of one

another. Alexander proposes an approach to formally analyze

the structure defined by the requirements and their interac-

tions so as to obtain subsets of strongly interacting

requirements which at the same time are as independent of

one another as possible. Alexander (and later, Andreu) makes

the simplifyinq assumption that all reguirement interactions

have the same "strength" or importance. He also distin-

quishes between "positive" and "negative" requirements, but

then proceeds to treat them in exactly the same way for ana-

lysis purposes (i.e., simply as "interactions").

- 42 -

With such assumptions, the requirements set may be

viewed as an unweighted graph structure, where requirements

are qraph nodes, and interdependencies are arcs, or links,

between the nodes. The problem of identifying subsets of

requirements becomes one of graph decomposition. Alexander

proposed a simple hill-climbing strategy, attempting to min-

imize the interactions among subgraphs, to solve the decom-

position problem. The resulting subgraphs can be inter-

preted as "design subproblems" (defined in terms of the

associated requirements), that permit a better overall con-

ceptualization of the overall design problem.

- 43 -

2.2 SOFTWARE DESIGN RESEARCH.

A second area of related research is that of software

design. Now, programmers and system analysts have been

doing software design for over 25 years. However, only dur-

ing the last few years has significant research interest

developed in this field. Wasserman (Wasserman et, al. 78)

for instance, observes the following pattern of recent

research attention in software engineering:

Years

pre- 1969

1969-1971

1972-1973

1974-1975

1976-1977

1978-1980

Focus

Recognition of a "software problem."

First principles; development of broad
general concepts.

Structured programming; programming style.

Reliability issues; formal correctness.

Requirements, specification, design; phases
prior to coding.

Dispersion, assimilation.

These authors also point out that there is a signifi-

cant technology transfer delay (sometimes referred to as the

"seven year rule") between the development and verification

of new ideas in the research community, and their eventual

adoption by the software development inductry. A recent

review (Holton 77), for example, indicated that the basic

concepts of structured programming, while enjoying broad

- 44 -

support in the academic and theoretical computer science

communities, are being used in a surprisingly small minority

of software development organizations.

A major component of the recent wave of software engi-

neering research has been directed at the development of

"software design methodologies," (6) including such well-

publicized approaches as ISDOS (Teichroew & Hershey 77),

SADT (Ross & Schomann 77), HOS (Hamilton & Zeldin 77), SEEN

(Alford 77; Davis & Vick 77), HIPO (Stay 76), and HDM

(Robinson 78). While they vary in details, it is generally

the case that these methodologies are targeted toward the

task of detailed software design. In fact, this is true

(with a few exceptions to be discussed in the next section)

of essentially all software design research. Unfortunately,

this fact is not necessarily clear from a cursory look at

the software engineering literature. The field is still

very new, and a standard terminology has not yet settled

into place. The same words are frequently used to mean very

different things. For exarple, a recent paper by DeWolf

(DeWolf 77) is titled "Eeguirements Specification and Prel-

iminary Desiqn for Real-time Systems," and describes a tech-

nique that employs abstract processes and a data flow scheme

to represent the various functional components and

(6) Many of these "methodologies" are more properly termed
"methods" or "techniques" according to our earlier defin-
ition.

- 45 -

interactions of a proposed system. The point is that DeVolf

(in common with most other writers in this field) presumes

that the fundamental structure of the problem, and of the

proposed solution - that is, the architecture - is given.

Judging from the paper's title, however, one would expect it

to be about the identification of the need for

("requirements specification"), and the creation of

("preliminary design") this architecture.

The issues of terminology variation and prelimi-

nary/detailed design differentiation mentioned above, as

well as other important considerations pertaining to the

software design literature, are analyzed in greater detail

in the next chapter.

A key reason for the importance of the detailed design

literature concerns the generality of certain concepts con-

tained therein. A few ideas, pertaining initially to the

detailed design problem, have been developed that possess

sufficient generality as to have some relevance to prelimi-

nary design also. Examples of such general concepts include

"information hiding" (Parnas 71), "structured design" (Stev-

ens 75) and "hierarchical decomposition" (Madnick 69;

Pyle 72). These concepts are discussed in greater detail in

later chapters.

Another important sub-area of related software design

research involves requirements specification. Recent

- 46 -

requirement specifications research has centered on the

development of techniques, such as formal languages, for

capturing the specifications for a target system in a form

which meets certain objectives: for instance, functional

orientation, completeness, consistency, machine analyzabil-

ity, etc. Requirement specification research is important

for architectural design mainly because the architectural

design activity itself begins with statements of system

requirements. Therefore, improvements in our ability to

express requirements and manage the process of fine tuning a

requirements specification should impact the effectiveness

with which the software architecture may be created. Unfor-

tunately, it is generally the case that the kind of specifi-

cations that researchers have concerned themselves with -

their level of detail, degree of procedurality, etc. - are

inappropriate for the architectural design task (see Chap-

ter 3). Nevertheless, as in the case of research in

detailed software design, some overlap of principles and

practices exists. Also, the results of this research may

prove useful in the task of building the methodological

"bridge" between preliminary and detailed design practice.

- 47 -

2.3 SOFTWARE ARCHITEQTURE DESIGN RESEARCH.

The present work stems from the assumption that it is

possible (and most desirable) to provide an assisting metho-

dology - a decision support system - to aid the system

designer in the task of constructing a system architecture.

We call our approach for doing this the Systematic Design

Methodology, or "SDM."

The SDM research was initiated by Andrea, who in the

course of his doctoral thesis (Andreu 78) formulated some

key principles, and developed a first-order implementation,

of the methodology. The basic framework developed by

Andreu, and the results of some testing of the SDM carried

out by Andreu, and by Holden, are reported below.

The present research has as its central objective the

extension, strengthing, and further testing of the SDM

approach.

One other effort in the software architectural design

field with which we are familiar (although it has not been

reported in the generally available literature yet) is the

work presently ongoing at Martin Marietta Aerospace Corp. A

sketch of this study is also given below.

- 48 -

2.3.1 The SDM Approach.

The ultimate objective of the SDM is the identification

and description of the macro structure of a target system

under design. In practical terms, this may be viewed as the

delineation of the major modules, or "sub-problems," into

which the target system "ought" to be partitioned (in a

sense to be discussed); definition of the function of each

identified module; and the identification and functional

definition of the interconnections between the modules.

By way of clarification, when we use the term "module"

in discussing the SDM, we think of a module as a "subset of

system requirements," or "design sub-problem" - not (neces-

sarily) as a program subroutine or collection of such

subroutines. of course, eventually in the design process

such subprograms are generated, but the task of laying out

pieces of code, subprogram interface conventions, etc., we

view as the task of detailed design, not architectural

design.

The SDM is driven by the functional requirement speci-

ficatioris for the target system. The initial statement of

requirements must be converted into a set of individual,

Enqlish lanquage statements. For the purposes of the metho-

doloqy, it is important that the statements exhibit certain

characteristics, such as ifrplementation independence, uni-

functionality, and design relevance. An approach to the

- 49 -

derivation of appropriate functional requirement statements,

based on a set of statement "templates," forms one part of

this thesis, and is discussed in the next chapter.

Once the requirement statements have been generated,

the system designer must examine each pair of statements in

turn, and make a decision as to whether a significant degree

of interdependence between the two requirements exists.

This he determines by considering how each of the require-

ments might be implemented in the target system, then asking

himself whether he envisions substantial interaction (either

interference, or support) between them in the course of per-

forming the implementation. Thus, while the requirement

statements themselves are intended to be free of "implemen-

tation bias," the assessment of interdependencies demands

consideration of alternative modes of implementation. Con-

siderable designer intuition and judgment is required in

performing the interdependency assessment. It should be

noted that this activity must be performed, in some way, by

the designer whether using the SDR or not. Generally this

assessment would be carried out in the system architect's

head, usually subconciously, and in a piecemeal, unstruc-

tured fashion. The advantage of the SDM approach is that

requirements may be treated a pair at a time, thus greatly

reducinq the complexity of the overall task at the price of

additional analysis time.

- 50 -

The resulting information is then represented as a

non-directed graph: requirement statements are graph nodes,

interdependencies are (unweighted) links. The next step of

the methodology is to partition the graph, and by so doing

identify the design sub-problems and hence the architectural

design.

The graph partitioning phase of the methodology is

probably the most "mechanical" step. There are, however, a

number of interesting research issues involved here. There

are two key aspects to the partitioning task:

1. how to measure the goodness of a given graph parti-
tioning;

2. how to actually locate candidate partitions to be
measured.

The first problem centers on exactly what software

designers mean by a "good" partitioning for a software sys-

tem. There is, unfortunately, no broad concensus on this

question among software design theoreticians. Different

concepts of structure goodness have been proposed, each of

which possesses its own positive and negative features.

Major drawbacks common to all the proposed criteria, to var-

ying degrees, include

1. the difficulty of guantification;

2. the problem of specifying how to achieve the cri-
terion.

- 51 -

It is common wisdom, for example, that large programs should

be constructed in a "modular" fashion, although the writers

of those words generally do not specify how to measure how

well modularized a given program is, nor do they indicate

concrete steps that programmers can follow to ensure their

prog rams meet the criterion of modularity.

In attempting to overcome these drawbacks, SDM incorpo-

rates a quantified measure of structure goodness. This mea-

sure is based upon the concepts of module strength and

inter-module coupling. Alexander (Alexander 64), Stevens

(Stevens 75), Myers (Myers 73) and other authors have argued

convincingly that a good software design is one that con-

sists of modules that possess high strength, or internal

binding, and which simultaneously are weakly interconnected.

In SDM, this "strength/coupling" criterion is quantified in

the following way. Suppose the graph representation of the

target design problem has been decomposed into a set of

non-overlapping subgraphs

G 1, G2 ... , G

Then if S. = the strength of subgraph G , and C = the
1i i

coupling between subgraphs G. and G, we define
31 J

n n-1 n

M =i S Ci

i=1 i=1 j=i+1

- 52 -

and use M as a figure of merit for the decomposition. The

problem of defining Si and Ci. still remains, and-will be

discussed in detail in Chapter 5.

The second problem, that of locating the best decompo-

sition of a given graph, is an interesting mathematical

problem in its own right. There are basically two strate-

gies that may be used. First, a partitioning strategy seeks

to break up the graph into subgraphs until the best decompo-

sition (according to the value of M) is located. Second, a

clustering strategy may be followed, wherein a similarity

measure between all pairs of graph nodes is defined, then

clusters of nodes created by applying one of many possible

clustering algorithms to the similarity matrix. Andreu

developed particular heuristics using both approaches.

Additional work on both partitioning and clustering techni-

ques is presented in this research (Chapters 5 and 6),

Once an agreeable partition has been determined, the

resulting sets of requirements are studied and interpreted

by the designer as design subproblems. In essence, these

design subproblems, together with their interconnections

(also derived directly from the graph partition) constitute

the preliminary design. The overall SDM procedure is illus-

trated schematically in Figure 2.1.

Andreu found, in applying SDM to a real set of require-

ments (for the design of a database management system), that

iteration on the overall procedure was of value. The first

- 53 -

Statements of
Requirements

Representation
as a Graph

Decomposition

Formalization
of Design Sub-
problems and
Linkages

ARCHITECTURAL

DESIGN

Figure 2.1

A Schematic View of the Systematic Design Methodology

- 54 -

pass through the SDM process produced a reasonable design,

but this design was improved considerably in terms of clar-

ity and completeness by studying it for weaknesses (typi-

cally, looking for subproblems with an unclear or unneces-

sarily complex functional interpretation, or for cases of

omitted or ambiguous specifications), then "completing" the

set of requirements to fill gaps and remove ambiguities.

2.3.2 Applications of SDM To Date.

The Phase-1 SDM has been tested in two non-trivial

design problems to date. Andreu applied the methodology to

the design of a database management system (DBMS). Require-

ment statements were derived from a specification issued by

a U. S. Government agency. The basic statements were

adopted, with a slight amount of modification, directly as

they appeared in the government document. Andreu himself

performed the analysis of interdependencies. The resulting

graph representation contained 89 nodes (requirements) and

an average of 5.6 links per node. The decomposition analy-

sis produced an optimal goodness measure of M=0.806, yield-

ing four subgraphs. Andreu applied the decomposition analy-

sis a second time to each subgraph in turn, and in two of

the four cases derived a second-level decomposition. Andreu

was able, without difficulty, to interpret the subqraphs and

their interconnections as design subproblens and interac-

tions, hence giving shape to the architecture of the DBMS.

- 55 -

In a separate application test, Holden (Holden 78)

applied SDM to the design of a small software operating sys-

tem. This test differed from the DBMS example in that the

target system already existed (as a pedagogical case study

in the textbook peratinq Systems by Madnick and Donovan)

together with substantial descriptive material including the

assembly code for the system implementation. Furthermore, a

rather carefully thought out design for the system had

already been developed and documented (Madnick & Dono-

van 75).

Holden worked backward to develop the system require-

ment statements using the written description and code for

the operating system, together with informal information

qained from discussions with various knowledgable individu-

als. A number of iterations were required to build a reason-

ably clear, consistent, and complete requirement set.

Somewhat surprisingly, even though the target system had

already been built and documented, the requirement defini-

tion task was found to be the most challenging and time-con-

suming aspect of the SDM test.(7)

(7)Other software engineering researchers have also discov-
ered this, e.g.: "Writing down the requirements turned
out to be surprisingly difficult in spite of the availa-
bility of a working program and experienced maintenance
personnel" (Heninger 79).

- 56 -

Upon application of the decomposition techniques, a

decomposition into six subgraphs resulted, with a corres-

ponding goodness measure of N=1.1. In two of the six sub-

problems, a second application of the decomposition analysis

resulted in additional partitioning. The subgraphs and

their interconnections were again interpreted by the inves-

tigator in a straightforward manner to produce the architec-

tural design.

In the case of the operating system, the design pro-

duced by SDM resembled the original design in most respects.

While this is perhaps not surprising, given the manner in

which the requirements were generated, it was encouraging to

see that, at least in this case, the SDN appeared to be

"stable." A few interesting differences between the origi-

nal and SD designs were noted, and were analyzed by Holden.

While it was impossible to prove the case conclusively, Hol-

den felt that, in most cases where design differences arose,

SDM had produced an alternative that appeared to be as good,

or possibly better, a design as the (carefully crafted) ori-

qinal.

It is fair to conclude that the two tests of SDM have

been reasonably successful. Much has been learned on the

basis of these tests to suggest directions for further

research and improvement of SDM (see the sections on "Areas

for Further Research" in both (Andreu 78) and (Holden 78))

- 57 -

The present study is a pursuit of the most promising of

these objectives. In Section 3 of this chapter we delineate

the specific tasks we plan to address.

2.3.3 Software Architecture Research at Martin Marietta.

A small software research group at Martin Marietta

Aerospace Corp., headed by Paul Scheffer, has recently been

investigating the software architecture problem from a

direction somewhat different from that of the SDM. Schef-

fer's group has focussed primarily on measurement of the

quality of an architecture after it has been created and

documented.

The major approach these researchers have pursued to

date involves three main activities (Velez & Scheffer 78):

1. documentation of a given software design in the
PSL specification language (Teichroew and Her-
shey 77);

2. translation of the PSI version of the design into
a graph framework (PSI "objects" are taken to be
graph nodes; PSL "relationships" become graph
links);

3. application of alternative decomposition algor-
ithms to the graph so as to determine the quality
of the design structure.

In developing the graph analysis techniques and decom-

position quality measures, the Martin Marietta group bor-

rowed a number of ideas from the Phase-I SDM, including some

of Andreu's clustering heuristics and the basic Phase-I

decomposition goodness measure (Andreu 78).

- 58 -

While there is some overlap between the SDM and the

Martin Marietta work, it is important to note that the basic

orientdtions of these efforts are quite different. The SDM

is fundamentally a designer decision support methodology,

and is supposed to play an active role in the development of

the architecture for a target software system. The Martin

Marietta approach, in contrast, is primarily passive, in

that its thrust is simply to quantify "how good" a given

architecture is (on an ordinal scale). Before such a mea-

surement can be made, the architecture itself must have been

fully constructed and documented in PSL.

- 59 -

2.4 QPECIFIC RESEARCH OBJECTIVES.

In this section we outline the specific directions we

intend to pursue in the present research, and the objectives

we hope to achieve.

Our overall goal is to make significant extensions and

improvements to the Systematic Design Methodology. In pur-

suing this goal, seven major areas will be investigated,

namely,

1. Basic philosophy and concepts;

2. The SDM modelling framework;

3. SDR decomposition analysis techniques;

4. The linkage of the SDM to preceding and following
activities within the system development cycle;

5. Efficacy of the SDM;

6. Development of the computer-based analysis package
for application of the SDR;

7. Testing the SDM.

Each area is addressed in more depth below.

2.4.1 h And Concets.

As mentioned earlier, there is very little literature

directly relevant to the software architecture design prob-

lem, other than previous work on the SDM. On the other

hand, there is a substantial amount of potentially related

literature, in areas ranging from general design theory to

- 60 -

software detailed design. Only a relatively small portion

of this literature was reviewed by Andreu in his disserta-

tion. It would be worthwhile, therefore, to further explore

these related fields to determine whether they contain bod-

ies of concepts, models, frameworks, etc. that might prove

of use in better understanding the software architecture

problem. The objective of this effort, then, would be sim-

ply to discover what, if anything, these related literatures

have to offer in defining, clarifying, and solving the prob-

lem of software architectural design.

Additional development of the philosophy and concepts

relating to software architecture may also derive directly

from additional thinking about the nature of the problem,

especially when such thinking is carried out in light of

experience with the SDM. We pointed out the fact that very

basic terminology in the software design area is often used

carelessly and ambiguously, for reasons arising primarily

from a lack of broadly accepted definitions of key terms,

and delineations of central concepts. Some careful classi-

fication is definitely required, and would be accomplished

by first identifying a core set of terms and concepts upon

which the software design field in general, and the SDM in

particular, is based; second, discovering and reporting

explicit and implicit definitions and meanings for them

based on relevant literature; and finally, by suggesting

- 61 -

normative definitions, which would follow from whatever

literature concensus may exist, from rational argument, and

from the present (SDM) context.

Such a study would also benefit the software design

field generally, through additional rationalization and

clarification of these key concepts. Put differently, while

our objective is to build a good architectural design frame-

work out of concepts in the related fields, our efforts in

this direction should "feed back" on these related fields -

particularly the software design field - and bring addi-

tional structure to them.

2.4.2 Te SDM Modelling Framework.

Andreu's initial development of the SDM employed a very

simple scheme to model the design problem in terms of an

undirected network, or graph. The simplicity of the basic

graph model was quite appropriate at that stage, since the

entire methodology was new, and parsimony was necessary.

However, the main purpose of the graph model is to allow the

software architect to express as much information pertaining

to the target design problem as possible, within some

cost/effectiveness constraint. There is considerable addi-

tional design-relevant information, which an average soft-

ware architect would possess, that is not expressable in the

basic graph framework.

The objective of this portion of the research is to

- 62 -

1. identify the additional key classes of
design-relevant information that software designers
would draw upon (usually intuitively) in construct-
ing a practical architectural design;

2. develop useful extensions to the basic graph model
that would serve to effectively represent these
additional kinds of information, and

3. to determine which of the extensions identified in
point 2 ought to be adopted for the purpose of
extending the SDM.

Examples of the kind of model extensions that would be

considered include:

1. the expression of the "strength" of interdependen-
cies, which could be modelled as weights on
inter-node links corresponding to the associated
interdependencies;

2. the relationships that may exist between interde-
pendencies themselves, which could be modelled
through the introduction of additional "dummy"
nodes in the design graph;

3. additional types of requirement interrelation-
ships, including

- implication

- hierarchical

- concordant vs. discordant.

These and other possible model extensions are analyzed

in Chapter 4.

- 63 -

2.4.3 SDHDecomposition Analy§ Techniques.

The graph decomposition problem is central to the

actual execution of the SDl. From the viewpoint of the SDH

itself, the graph decomposition is basically a mechanical

task that mush be accomplished "somehow." Unfortunately,

although graph decomposition has received a fair amount of

attention from researchers in other fields, the problem is

strongly context dependent, and earlier reported treatments

do not exactly "fit" the present context. Of course, there

are certain common principles, but implementation details

are generally context specific. Andreu, drawing on the com-

mon principles, formulated and implemented three main tech-

nigues (similarity clustering, "leader group" clustering,

and iterative partitioning) for solving the decomposition

problem for the basic graph model and basic goodness mea-

sure.

Additional study of the decomposition problem, to be

pursued in this work, falls into three categories:

1. extension and validation of previously developed
algorithms to encompass the extensions to the model
and measure (as discussed in the previous section);

2. development of better, or more general-purpose,
algorithms;

3. evaluation of competing algorithms.

Each of these points is discussed further below.

- 64 -

As noted, the particular decomposition algorithms

required for the SDM are context dependent. Extending the

graph representation used within the SDM represents a con-

text alteration, hence impacts the earlier algorithms.

These algorithms, if they are to be of use, must be them-

selves adapted to the new context (if possible), and their

effectiveness in that new context tested.

Certain of the algorithms developed by Andreu for the

basic model tend to be more useful than others, either for

reasons of efficiency (e.g., computer execution time), or

effectiveness (e.g., the ability to locate "good" decomposi-

tions with regularity). Andreu found the most successful

decomposition techniques to be basic clustering algorithms,

techniques which group together successively larger "clumps"

of nodes in a hierarchical fashion, seeking the particular

grouping that gives the largest value of M. The only parti-

tioninq technique reported by Andreu, while interesting,

proved to be too inefficient in its iuplementation to be

useable for problems of significant size (e.g., over 50

nodes).

One of the technical contributions of the present study

is to be the development and testing of a new top-down hier-

archical partitioning algorithm, whicb is well suited to

decomposinq the particular type of graph being dealt with in

this research. This new technique is also applicable to a

- 65 -

fairly broad range of decomposition problems. This

algorithm is based on a technique of pairwise interchanging

of nodes between two subgraphs so as to continuously improve

an objective function (in this case, the extended measure

M). Additional details regarding the algorithm and tests

that have been carried out with it are given in Chapter 6.

The necessity for having more than one decomposition

algorithm centers on the heuristic nature of the algorithms.

While the graph decomposition problem can be formulated

rather easily as a nonlinear integer program, it is far too

large a formulation to be solvable for even relatively small

cases (e.g., 30 nodes) in a reasonable amount of time.

Hence heuristic approaches - ruch faster, but not (necessar-

ily) optimal - are required. The confidence that can be

placed in the result produced by such heuristics increases

if we have a variety of different approaches that can be

applied to a given problem. The analysis package being

developed (see Section Appendix D) includes a selection of

bottom-up clustering techniques together with the new top-

down partitioning technique - two fundamentally different

approaches to the decomposition problem, which provide the

capability for performing a multi-pronged attack on the

problem.

While it is useful to have such a selection of techni-

ques available, it may in fact be the case that one of them

- 66 -

consistently dominates the others, or that certain of the

techniques consistently produce better results in certain

kinds of contexts. It would therefore be beneficial to per-

form a set of tests of all the decomposition techniques

being considered, to determine whether such dominance or

contingency situations do in fact exist for the type of

graphs typical of the software architecture problem. Such a

set of tests has been carried out using the analysis pack-

age, and the results are presented in Chapters 5 and 6.

2.4.4 SQ linkages _thin jthe yseom Develpment Cycle.

The SDM is a methodology for developing the architec-

ture of complex software systems. As such, it "fits" within

the overall system development cycle between the require-

ments specification stage and the detailed design stage -

see Fiqure 1.2. In order to further improve the overall

effectiveness of the SDM, consideration should be given to

ways in which the architectural design stage may be linked

together with the preceding (reguirements specification)

stage and the followinq (detailed design) stage.

The question of linking stages 2 and 3 is addressed in

Chapter 3. The focus of the work reported there is a pro-

posed method for guiding the formulation of functional

requirement statements that may be used in constructing the

requirements graph in the architectural design stage. A set

- 67 -

of requirement statement "templates" has been developed to

assist a systems architect in mapping functional requirement

descriptions into a set of requirement statements suitable

for use within the Systematic Design Methodology. The temp-

late approach is not intended as a way to automate, or even

mechanize, the creation of SDM requirements (a task which is

surely impossible at this stage in the development cycle).

Rather, it is intended simply to structure and guide the

thought processes involved in carrying out part of the

architectural design activity.

In moving from stage 3 to stage 4, the system designer

crosses the boundary from functional development to proce-

dural development (see again Figure 1.2). Essentially, he

moves from thinking about what functions are to be provided

and which groups of functions are closely related from a

design standpoint, to thinking about how he is going to go

about providing those functions in the target system. In

other words, he shifts from a functional view of development

to a procedural, or process-oriented, view. Beyond suggest-

ing a best way to partition the system requirements for fol-

low-on design purposes, SDM itself does not have anything

directly to say about how the various functions contained in

the requirement statements are to be embodied in the system.

It does, however, impact procedural development indirectly.

First, conceptual implementation models (discussed more tho-

- 68 -

roughly in Chapter 7) must be created by the system

architect in the course of carrying out SDM's interdepen-

dency analysis. These models, which are recorded in the

interdependency statement descriptions, represent an initial

thinking-through of the implementation implications of each

requirement statement. Second, interdependency analysis

also generates certain "spin-off" effects, essentially help-

ing the designers see more clearly relationships among vari-

ous implementation schemes, which in turn may lead to better

system design concepts (examples of this phenomenon are

given in Chapter 7).

While these indirect effects do serve to better link

stages 3 and 4 than would be the case without SDM, more work

remains to be done on this aspect of the methodology.

2.4.5 SDI Efficacy.

Oie of the difficulties associated with methodology

development research such as this work is the question of

ultimate potential and actual value. In the present case,

there is an underlying assumption that good software archi-

tecture has a favorable impact on the life cycle costs of

the system development project. Furthermore, it is assumed

that the improvement in lifetime benefits would more than

outweigh the additional costs of actually using the SDM in

the first place (including costs such as training, addi-

tional project duration, staff time, etc.).

- 69 -

The objective of this phase of the present research is

to provide a basic analysis of the categories of costs and

benefits that will help answer the above questions. Certain

relationships underlying the analysis are obtained from the

system development cost-modelling literature. The results

of this study are given in Chapter 8.

2.4.6 SP Analysis Packag

In order to carry out tests on various parts of the

SDM, an on-line software package has been developed. Using

an earlier packaqe developed by Andreu on the PRIME-300 com-

puter (in FORTRAN) as a model, an updated and enhanced ver-

sion has been developed on the IBM/370 computer in the PL/I

programming language. The earlier FORTRAN package was

developed to help perform the decomposition analysis of

graph structures from the basic model (i.e., undirected

graphs with unweighted links). Major extensions to the ori-

ginal package include:

1. the capability to enter, store, manipulate, and
alter requirement statements and interdependency
information;

2. the capability to derive a weighted graph struc-
ture for an extended model representation automat-
ically, from the stored requirements and interde-
pendency information;

3. decomposition analysis tools to deal with graphs
in the extended format;

- 70 -

4. decomposition tools to realize new algorithms
developed in this research;

5. output facilities to simplify the task of relating
graph decompositions to the original formulations
in terms of requirements and interdependencies.

PL/I is a significantly better vehicle for development

of such a package than is FORTBAN, as its character and

based variable data types are especially well suited to han-

dling textual information and graph representations, respec-

tively. Also, the VM/370 CMS file system and executive

procedures are powerful tools for the development of such

software. Finally, the very large virtual memory available

through CMS effectively removes storage constraints that

would otherwise hamper the development of this kind of pack-

age. Applications of the analysis package are reported in

Chapters 5, 6, and 7. Various documentation and example

traces are included in Appendices D, E, F, L, and M.

2.4.7 Testinq the SDM.

An important part of methodology development is testing

within real application situations. In the case of the SDM,

testing presents some particularly difficult issues, the

main one being the magnitude of time and effort required to

effect a realistic test. The difficulty lies in the fact

that the SDM is specifically oriented towards large-scale,

complex system development efforts (for example, the devel-

- 71 -

opment of a new operating system, an electronic switching

system, or a large hospital patient mcnitoring system).

Systems such as these typically require many man-years of

effort to design, build, test, and install, and are orders

of magnitude too large for one person to address in SD

testing. Even if sheer size was not a problem, the detailed

knowledge required concerning the specific application area

necessary to fully comprehend the system's requirements and

their possible implementation alternatives presents a second

major difficulty.

There are, however, ways to proceed with SD testing.

One approach would be to test the methodology against a

requirements set that is small enough to be dealt with by

one investigator (possibly with the assistance of other

interested parties - e.g., master's students). In this

case, some assumptions must be made regarding the appropri-

ateness of scaling up the test results to realistic case

sizes.

A second approach is the "back-to-front" technique

similar to that employed by Holden (Holden 78). With this

approach, the investigator would first locate a well-docu-

mented, completely developed medium-size system, then work

backwards using the system's documentation to develop func-

tional requirement statements for it. The SDM would then be

applied to develop a system architecture, which could be

- 72 -

compared to the actual system architecture as per the

documentation. Differences would be analyzed, possibly with

the aid of the original designers of the system, to attempt

to determine the SDN's effectiveness, shortcomings, etc.

This approach would be even more effective if the documenta-

tion for the system being studies included the original

requirements, since this would allow the investigators to

avoid having to generate artificial requirements, and would

also save testinq time.

A third alternative is a real-world test. This

approach would require an agreement with an organization

currently facing a medium- or large-scale design and devel-

opment task. The researchers would act as train-

ers/advisors/observers, with the firm's systems staff actu-

ally applying the methodology to their own particular

problem. This kind of test would appear to be most promis-

ing in terms of identifying the real strengths and weak-

nesses of the SDM, but also has the most associated diffi-

culties, including the necessity of locating an organization

willing to participate and risk the expenditure of some

resources on such a test, the difficulty of adequately moni-

toring and controlling the test, etc.

Following discussions with a number of organizations

(primarily Center for Information Systems Research corporate

sponsors), it was decided that MIT's own Business Systems

- 73 -

Development group, would be the most suitable organization

within which to carry out a test evaluation of this type.

The reasons behind this decision, the nature of the arrange-

ments made, the work actually carried out with this group,

and the lessons learned are all reported in Chapter 7.

The following six chapters report the results obtained

in our investigations of each of the foregoing research

objectives.

- 74 -

Chapter III

REQUIREMENTS STATEMENT CONSTRUCTION - THE SEMANTICS OF
REQUIREMENTS.

3.1 INTRODUCTION.

In this chapter we address the transition from Stage 1,

through Stage 2, to Stage 3 in the System Development Cycle

(Figure 1.2). Specifically, we examine the need to capture

user-level functional requirements in a form appropriate for

follow-on SDM analysis (interdependency assessment, design

structure interpretation, etc. - see Figure 2.1). A number

of approaches to requirements expression have emerged over

the past few years, and our first thought in the area was

that one of the well-documented "requirement statement lan-

quages" ("RSL's") might prove suitable, perhaps with some

modifications, to our needs. In the course of studying

this possibility we were led to examine some of these lan-

quages, and to assess their nature and functioning with res-

pect to SDM. We were further led to make some general

observations regarding ambiguous terminolojy that has grown

up around these RSL's, and around system requirements speci-

fication in general, and regarding the appropriate role of

RSL's in the System Development Cycle.

- 75 -

We begin this chapter by taking a fairly close look at

a particular ESL, one which has served as a cornerstone for

much of the research in the requirements statement area.

This is the Problem Statement Language, PSL.

We then turn to a brief exploration of the important

ambiguities and mis-uses that are frequently encountered in

the literature in this area, and attempt to provide some

clarifications for them. This leads us to put forth a sim-

ple conceptual framework that we have found useful in think-

ing about requirements, requirement specifications, and

requirements languages within the System Development Cycle.

Finally, having concluded that PSL and other similar

RSL's are not appropriate for expressing SDM requirement

statements, we present a new approach. We term this

approach the template technique, as it is based on a set of

seven basic "requirement statement templates." Each temp-

late corresponds to a general category of statement type.

Use of the templates leads the user toward expression of

functional reguirements in the form of statements that meet

certain key criteria for SDM, as discussed in Section 5 of

the chapter.

The template technique is illustrated by applying it to

the set of DBMS requirements used by Andreu in his SDM

application study (Andreu 78). Appendices B and C of the

thesis contain the original and edited requirement state-

ments.

- 76 -

3.2 REQUIPEMENTS STATEMiENT LANGUAGES - THE CASE OF PS.

Recent years have witnessed a number of attempts to

apply computers to the problems inherent in designing and

building software systems. One relatively well-known

approach is the ISDOS (Information System Design Optimiza-

tion System) project, which was begun at the University of

Michigan in 1969, and is ongoing (Teichroew 71). Out of

this project has come the PSL/PSA system, consisting of a

formal language - PSL, or "Problem Statement Language" - for

specifying a system's functional requirements, and a soft-

ware support package - PSA, or "Problem Statement Analyzer"

- for performing certain kinds of analysis on a set of

machine-readable PSL statements, generating various reports

from a set of such statements, etc. Our discussion here

will focus almost entirely on PSL. For further information

regarding the nature and capabilities of both PSL and PSA,

see (Teichroew and Bastarache 77).

3.2.1 The Structure of PSL.

The basic model underlying PSL is quite simple. PSL

recoqnizes two kinds of things: objects, and relationships.

Objects are "things," such as data elements, logical collec-

tions of data, processes, etc. Each PSL object is given a

unique name, and is classitied as one of 22 possible object

types (see Fiqure 3.1). These 22 object types way be

- 77 -

Object TY iithin Class

Interface

Target System

Collections of Information

Collections of Instances

Relationships among col-
lections of Information

Data Definition

Data Derivation

Size and Volume

Dynamic Behavior

Project Management

Properties

INTERFACE

INPUTOUTPUTENTITY

SET

RELATION

GROUP

PROCESS

INTERV AL,SYSTEM- PARAMETER

EVENT ,CONDITION

PROBL EM-DEFINER,MAILBOX

SYNONYMKEYWORDATTRIBUTE,

ATTRI BUTE-VALUE, MEMO, SOURCE,

SECURITY

Figure 3.1

PSL Object Classes and Types

qrouped into four object classes: interface objects, target

system objects, project management objects, and property

objects. Interface objects (encompassing one object type)

are used to describe the interface between the target system

- 78 -

Class~es _of Obiect TI~es

and its environment. Target system objects (12 object

types) together with property objects (7 object types) are

used to describe the target system. Project management

objects (2 object types) are used to help document the

organizational and project control aspects of the system

development process.

The other top-level concept in PSL is that of relation-

ship. Relationships are used to state ways in which PSL

objects are related to each other. PSL relationships may be

likened to "verbs" which, together with PSL objects, serve

to generate "sentences," or PSL statements. There are 58

different relationship types included in PSL, although many

of these are "inverse pairs" (e.g., the pair RECEIVES, and

RECEIVED BY). If we count each such pair as a single "dis-

tinct" relationship, the total number is reduced to 31. The

various PSL relationships and complementary relationships

are listed in Figure 3.2.

PSL semantics requires that only specific types of

relationships may be used to interconnect any given pair of

objects. For example, the object types ENTITY and PROCESS

may legally be interconnected by certain relationships

(e.g., process USES entity, or process UPDATES entity), but

there are no legal PSL relationships that may interconnect

object types ENTITY and 1NPUT. For a full discussion of PSL

semantics, see (Teichroew and Bastarache 77).

- 79 -

Relationship Associated Complementary
Relationship

ASSOCIATED
ATTRIBUTES
BECOMING
CARDINALITY
CONNECTIVITY
CONTAINED
DERIVED
GENERATED
HAPPENS
IDENTIFIED
INCEPTION
KEYWORD
MAILBOX
MAINTAINED
PART
RECEIVED
RELATED
RESPONSIBLE-INTERFACE
RESPONSI BLE-PROBLEM-DEFINER
SECURITY
SEE-MEMO
SOURCE
SUBSET
SUBSETTING-CRITERIA
SYNONYM
TEEMINATION
TRIGGERED
UPDATED
USED
UTILIZED
VALUES

ASSOCIATED-DATA

WHEN

CONSISTS
DERIVES
GENERATES

IDENTIFIES
INCEPTION-CAUSES
APPLIES
APPLIES
MAINTAINS
SUBPARTS
RECEIVES
BETNEEN
RESPONSIBLE
RESPONSIBLE
APPLIES
APPLIES
APPLIES
SUBSETS
SUBSETTING-CRITERION
DESIGNATE
TERMINATION-CAUSES
TRIGGERS
UPDATES
USES
UTILIZES

Figure 3.2

PSL Relationships and Complementary Relationships.

- 80 -

As PSL object types are grouped into object classes, so

are relationship types grouped into classes of relation-

ships. Eight relationship classes are defined in PSL, as a

function of system "aspect." These eight classes are:

1. system flow

2. system structure

3. data structure

4. data derivation

5. system size

6. system dynamics

7. project management

8. system properties.

PSL objects may also be re-classified according to this

scheme. Figure 3.3 shows the classification of both objects

and relationships according to system aspect. In cases of

complementary relationship pairs, only one is shown.

Information which is needed to describe an object, and

which cannot be specified using one or more relationships,

can be included in a narrative description called a "comment

entry." A number of different types of comment entries may

be defined, depending on the type of object to which they

pertain. These comment entries are shown starred Ln Fig-

ure 3.3. There are also certain other comment entries that

- 81 -

may be used in every category; these entries are not shown

in the figure.

3.2.2 Using Objects and Relationships to Create PSL
Statements.

PSL statements have the general form

(object name> <relationship> <object name(s)>.

Typical examples are:

1. payroll-process RECEIVES employee-work-data.

Here, payroll-process would be the name of a PRO-
CESS object, and employee-work-data an INTERFACE
object. RECEIVES is a system flow relationship.
Note that an equivalent statement would be

employee-work-data IS RECEIVED BY payroll-process.

These two statements express complementary rela-
tionships, and are equivalent, both logically and
semantically, within PSL.

2. payroll-process SUEPARTS ARE payroll-data-read,
pay-calculation, check-print.

This statement describes a hierarchical structure
of processes. The right-hand side of the relation-
ship consists of a list of three PROCESS objects.
SUBPARTS ARE is a system structure relationship.
Note that PSL can only describe hierarchically
organized structures of data or objects.

3. net-pay VALUES ARE 0 THRU 2000.

This example illustrates a somewhat different type
of statement. Here, net-pay is an ELEMENT object
(elementary data type), and the "relationship" is
an expression of a range of values that net-pay
may legally assume.

- 82 -

If we avoid double-counting statement types such as

RECEIVES and IS RECEIVED BY as in the first example above,

and omit system property and project management statements

(these provide additional detail in a problem statement, but

are in the nature of comment entries, as they are not ana-

lyzed by PSA), then there are 39 different PSL statement

types. These are given in Appendix A in full detail,

grouped according to system aspect, and are summarized in

Figure 3.3. The system property and project management

statement types (see Appendix A) add another 11 to the list

of statement types given in Pigure 3.3. However, as these

types serve only to add peripheral commentary to a PSL des-

cription, they are not strictly necessary in stating the

logic of a processing problem.

3.2.3 An illustration of PSL - Part A.

Using PSL involves four main activities:

(a) identifying and naming objects, and assigning a unique

type to each; (b) determining the relationships among the

objects; (c) writing PSL statements to describe the target

system; (d) writing comment entries to express any neces-

sary information which cannot be expressed in the formal

syntax.

In order to illustrate both the general idea of PSL,

and some of the detailed syntax, we consider here a specific

- 83 -

.SL OBJECT TPES AND RELATIONSHIP TYPES
CLASSIFIED ACCORDING TO SYSTEM ASPECT.

System Aspect

System Flow

System
Structure

Data
Structure

Data
Derivation

Distinct Statement
2Ies

PROCESS
INTERFACE
INPUT
OUTPUT

PROCESS
INTERFACE
INPUTOUTPUT
SETENTITY
ELEMENT, GROUP
INTERVAL

INPUTOUTPUT
SETENTITY
GROUPELEEENT
RELATION

PROCESS
INPUTOUTEUT
SETENTITY
ELEMENT, GROUP
RELATION

No. State-
ment Ty2es

RECEIVES, GENERATES
RESPONSIBLE FOR

PART OF
CONTAINED IN
SUBSET OF
UTILIZED BY
CONSISTS OF
SUBSETTING-CRITERIA ARE

IDENTIFILD BY
RELATED TO...VIA
CONSISTS OF
CONTAINED IN
BETWEEN...AND
ASSOCIATED WITH

USED BY
USED BY...TO DERIVE
USED BY...TO UPDATE
DERIVED BY
DERIVED BY...USING
UPDATED BY
UPDATED BY...USING
HAINTAINSPROCEDURE
DERIVATION

PROCESSEVENT V
SETENTITY C
ELEM.ENT V
RELATION V
INTERVAL H
SYSTEK- PARAMETER

OLATILITY
ONNECTIVITY IS...TO
ALUE IS
ALUES ARE...THROUGH
APPENS. * .TIMES-PER

- 84 -

System
Size

System PROCESSEVENT VOLATILITY 9
Dynamics SETENTITY VOLATILITY-SET

INTERVAL HAPPENS... TIMES-PER
CONDITION VOLATILITY-MEMBER
SYSTEM-PARA- TRIGGERED BY

METER INCEPTION CAUSES
TERMINATION CAUSES
TRUE/FALSE WHILE
BECOMING TRUE/FALSE CALLED

Figure 3.3

example. The following brief description, slightly

modified, of a Medical Monitoring System (MMS) was taken

from Stevens (Stevens 74):

A patient medical-monitoring system is required
for a hospital. Each patient is monitored by an
analog device which measures factors such as temp-
erature, blood pressure, pulse rate, and so on.
The program reads these factors on a periodic
basis. For each patient, safe ranges for each
factor are specified (e.g., patient X's valid
temperature range might be 98 to 99.5 degrees F.).
If a factor falls outside a patient's safe range,
the nurses' station is notified.

Clearly, the above is incomplete as a specification for such

a system, but it is adequate for illustration purposes.

First of all, note that the MMS is a real-time system -

when it is running, it interacts on a continuous basis with

the patients being monitored. Also, the system presumably

maintains a database of "safe" values, one set of values for

- 85 -

each patient. We will assume a maximum of 10 patients, and

round-robin monitoring, one patientes readings being taken

every second.

The MMS structure may be sketched in a simple diagram

as shown in Figure 3.4(a). The first-level PSL description

of the MMS is given in Figure 3.4(b). The key elements of

this description include: (a) the identification of the

INTERFACES that connect the MKS to the external environment;

(b) the identification of the types of INPUT and OUTPUT data

used or generated by MRS, and where obtained or used;

(c) identification of a data SET, or collection of instances

of data elements - the set of safe values; and, (d) the

description of the PROCESS itself - the MKS analysis rout-

ines - and the inputs and outputs associated with it.

3.2.4 An Illustration of PL - Part B.

We can expand and improve upon our earlier PSL descrip-

tion of the medical monitoring system by adding detail, des-

cribing more structure, etc. A more detailed depiction of

the RMS might be as shown in figure 3.5.

The MMS is shown there as consisting of three modules:

one to monitor patient vital signs and compare to safe

values, one to send an emergency message to the nurses' sta-

tion in the event of monitored values exceeding the safe

levels, and one to allow the nurses to modify the database

of safe values.

- 86 -

Nurses'
Station

Patients Medical
Monitoring ,* ,.
System

Safe data
values

(a)

Diagram for a Simple Medical Monitoring System

FIRST-LEVEL PSL DESCRIPTION FOR THE MMS

INTEEFACE patients;
GENERATES patient-data;

INTERFACE nurses;
RECEIVES help-signal;

INPUT patient-data;
GENERATED BY patients;
RECEIVED BY monitor;
HAPPENS read-freq TIMES-PER minute;
USED BY monitor TO DERIVE help-signal;

OUTPUT help-signal;
GENERATED BY monitor;
RECEIVED BY nurses;
DEiIVED BY monitor USING patient-data, safe-values;

- 87 -

SET safe-values;
RESPONSIBLE-INTERFACE nurses;
USED BY monitor TO DERIVE help-signal;

PROCESS monitor;
RECEIVES patient-data;
GENERATED help-signal;
USES safe-values;

INTERVAL minute;

DEFINE
read-freg SYSTEM-PARAMETER;

(b)

Figure 3.4

A new PSL description of the MMS, containing more

detail than the first description, is given in Figure 3.6.

The changes from the first description include: (a) the

addition of the EVENT object types named alarm and noalarm,

and the CONDITION object type named safe-values-exceeded;

(b) the hierarchical decomposition of the NMS into three

sub-processes; (c) the hierarchical decomposition of the

INPUT, OUTPUT, and ENTITY data into components (GROUPS and

ELEMENTS); and (d) the representation of the maintenance of

the SET of safe values.

- 88 -

ycle through, one line
per second minimum rate

Figure 3.5

A More Detailed Description of the MMS

89 -

SECOND-LEVEL PSL DESCRIPTION OF THE MMS

INTERFACE patients;
GENERATES patient-data;
DESCRIPTION; between one and ten patients are
are to be monitored in real time.
Max. delay between readings on any patient
is to be ten seconds;

INTERFACE nurses;
GENERATES new-safe-values;

INPUT patient-data;
GENERATED BY patients;
RECEIVED BY analyze-vital-signs;
CONSISTS OF patient-id-number, patient-vital-signs;
HAPPENS read-freg TIMES-PER minute;

INPUT new-safe-values-info;
GENERATED BY nurses;
RECEIVED BY change-safe-values;
CONSISTS OF patient-id-info, new-safe-values;
USED BY change-safe-values TO UPDATE safe-values;

OUTPUT help-signal;
GENERATED BY send-alarm-to-nurses;
RECEIVED BY nurses;
CONSISTS OF patient-id-info, patient-vital-signs;

SET safe-values;
RESPONSIBLE-INTERFACE IS nurses;
USED BY analyze-vital-signs TO DERIVE help-signal;
UPDATED BY change-safe-values USING
new-safe-values-info;
CONSISTS OF safe-value-records;
CARDINALITY IS 10;
SECURITY IS authorized-nurses;

ENTITY safe-value-records;
CONTAINED IN safe-values;
CONSISTS OF patient-id-info, safe-values-info;
IDENTIFIED BY patient-id-number;
USED BY analyze-vital-signs;
UPDATED BY change-safe-values;
CARDINALITY IS 10;
VOLATILITY;

Any safe-value-records entity may be modi-
fied, deleted, or added to the data base
by authorized nurses at any time. This
will most commonly occur when the patient
list changes;

- 90 -

GROUP patient-id-info;
CONSISTS OF patient-name, patient-id-number;

GROUP safe-values-info;
CONSISTS OF safe-temp, safe-bloodp;

GROUP patient-name;
CONSISTS OF patient-first-name, patient-last-name;

GROUP safe-temp;
CONSISTS OF safe-temp-low,safe-temp-high;

GROUP safe-bloodp;
CONSISTS OF safe-bloodp-disatolic-low,
sate-bloodp-diastolic-high,safe-bloodp-systolic-low,
safe-bloodp-systol ic-high;

ELEMENT patient-first-name, patient-last-name;
ELEMENT patient-id-number;

IDENTIFIES safe-value-records;
ELEMENT safe-temp-low, safe-temp-high;
ELEMENT safe-bloodp-diastolic-low,

saie-bloodp-diastolic-high,safe-bloodp-systolic-low,
safe-bloodp-systolic-high;

PROCESS monitor;
SUBPARTS ARE analyze-vital-signs,
send-alarm-to-nurses, change-safe-values;

PROCESS analyze-vital-signs;
RECEIVLS patient-data;
USES safe-values;

PROCESS send-alarm-to-nurses;
USES patient-data, safe-values;
GENERATES help-signal;
TRIGGERED BY alarm;

PROCESS change-safe-values;
RECEIVES new-safe-values-info;
USES new-safe-values-info TO UPDATE safe-values;
PROCEDURE;

An authorized nurse updates the data base
of safe values whenever an old patient is
disconnected from the system, or a new
patient connected. Also, current safe
values may be altered as patients' condi-
tions require;

EVENT alarm;
WHEN safe-range-exceeded BECOMES TRUE;
TRIGGERS send-alarm-to-nurses;

EVENT noalarm;
WHEN safe-range-exceeded BECOME S FALSE;

- 91 -

CONDITION safe-range-exceeded;
BECOMING TRUE CALLED alarm;
BECOMING FALSE CALLED noalarm;
TRUE WHILE;

Any vital sign for any patient connected
to the BMS falls outside the defined safe
range;

FALSE VHILE;
Vital signs within safe range;

INTERVAL minute;

DEFINE read-freq SYSTEM-PARAMETER;

Figure 3.6

3.2.5 PSL As a Design Tool.

An important issue which we address at this point is,

to what extent does PSL serve as a designer's decision sue-

port system, i.e., play the role of a design aid? An impor-

tant early motivation for the development of PSL/PSA was to

help automate the task of system desiqn, as opposed to fgjg-

mentation (Teichroew and Sayari 71). However, experience

with PSL and other similar tools has seen them used primar-

ily as documentation techniques, not design techniques (Tei-

chroew and Hershey 77).

For example, in the NMIS design illustrated in Fig-

ure 3.5 above, the designer (the author) decided, intui-

tively, that a three-module decomposition of the monitoring

routine would be appropriate. The only justification for

picking these three modules, with these functional charac-

- 92 -

teristics, was that they "seemed reasonable," based largely

on previous general software design experience. Once the

function of each module, and the data acted upon or inter-

changed among them, had been mentally worked out, PSL was

then employed effectively to formally describe the scheme.

However, PSL itself did not directly aid the designer in

deciding on the systemls structure, or on the functions of

the components.

It is reasonable to infer, then, that specification (or

"problem statement") languages like PSL, while they may be

effective tools for gathering together and documenting

information important to system design, in general do not

fulfill the role of a methodology for guiding or assisting

desiqners in conceiving system architectures. In contrast,

the SDM approach is specifically oriented toward design

assistance, and only secondarily towards documentation.

This observation raises the question whether there might be

a fortuitous combination of SDM and a scheme such as PSL/PSA

that would effectively address both design support and docu-

mentation. Such a possibility is a subject for additional

research, but is not addressed further in this thesis.

* * * * *

Research and practice in the field of requirements spe-

cification and preliminary system design has given rise to a

number of important new concepts. However, it has also gen-

- 93 -

erated considerable confusion over interpretation of these

concepts, much of which is due simply to a confusion over

terminology. The purpose of the next section is to attempt

to clarify some of the issues and problems in the require-

ment specification and system design fields. Ve will

attempt to shed some light on certain heavily-used, but

vaguely-defined terms, and to relate this present research -

its objectives, methods, and concepts - to other work in the

area, including application of PSL/PSA, in the context of a

simple framework to be presented there.

- 94 -

3.3 TEFMINOLOGY AND CONCEPTS: SOME CLARIFICATIONS.

The literature that focuses on the functional develop-

ment phase of computer system design and development efforts

exhibits much variation in content. There seem to be few

unambiguous reference points - researchers, authors, and

system designers have not yet agreed on precise terminology

to describe what they do. This lack of agreement, under-

standably, adds confusion to both research and practice in

this area.

In this section, we examine certain key terminological

and conceptual topics, attempt to remove some of the ambigu-

ity surrounding them, then consolidate them in a simple

framework. This framework will prove useful in thinking

about requirements specification and system development

activities in general, and for relating the present research

activity with other projects in this area.

3.3.1 Levels of Procedurality.

A widely used, but frequently misunderstood concept is

that of procedurality. Programming languages are frequently

described as being either "procedural" or "non-procedural"

in nature. The usual definition centers on the distinction

between stating or describing what is to be done (non-proce-

dural) as opposed to how it is to be accomplished (i.e., the

"procedure" to be followed, hence procedural). The main

- 95 -

problem with this distinction is that it is put forth as a

black-versus-white characterization. In practice, no clear

dividing line exists between the two alternatives; rather,

they should be viewed as the ends of a continuum, thus:

procedural <-------------------> non-procedural

There are, then, different levels of procedurality -

different degrees to which a statement (in particular, a

requirement statement) exhibits either a "what to" or a "how

to" nature. Furthermore, whether a particular statement,

command, etc., is viewed as procedural or non-procedural

depends on the viewpoint of the person involved. The fol-

lowing example should help clarify this distinction.

Consider an assembly language programmer, involved in

writing the code for a calculation module which is to become

the DCF (Discounted Cash Flow) subroutine for a financial

analysis package. Faced with the task, say, of adding

together two values, he would think in terms of instructions

such as the following:

L 1,A (Load "A" into register 1)

A 1,B (Add "B" to contents of register 1)

ST 1,C (Store results of addition in "C")

- 96 -

Now, conventionally, this set of instructions would be

described as procedural in nature. The programmer has to

know, for example, that the "procedure" for adding two num-

bers together involves loading a register with the first

number, adding the second into the register, then storing

the sum. Such considerations as loading and storing the

registers, not to mention the use of assembler mnemonic

codes and instruction format, are viewed as "how to," or

procedural, aspects of performing this task.

In contrast, suppose the programmer were to make use of

some high-level language, such as Fortran or PL/1. The

addition operation might then be coded as (using PL/1)

C = A + B;

Now, fom the assembli lljngga9 EogramMers point of view,

such an encoding of the task is non-procedural: he no lon-

qer needs to be concerned about loading or storing regis-

ters, or about the other procedural aspects of the task. He

can express the "what" aspect directly. (8)

This is the point at which the standard characteriza-

tion of the distinction between procedural and non-proce-

dural would end. However, suppose we go one step further,

(8)Of course, someone or something must worry about register
loadinq, etc. In this case, the burden is shifted to the
PL/1 compiler, or, if you prefer, the compiler designer.

- 97 -

and examine the same task from the point of view of, say, an

eventual user of the financial analysis package (a non-pro-

qrammer). As far as he is concerned, a typical non-proce-

dural command might simply be

DCF PROJECT_X

which would execute the DCF module upon a given set of data,

PROJECTX. This command states, at his level of concern,

what is to be done. The fact that, at some point within the

DCF module, two values had to be added together using the

PL/1 statement C=A+B;, is a procedural issue concerned with

how the DCF calculation is to be carried out. So that which

was viewed as non-procedural by the assembly language pro-

qrammer, is clearly a procedural issue as far as the end

user is concerned.

To summarize, then, the procedurality level of a formal

language, command, etc., is not absolute, but rather must be

related to the viewpoint of the user of that language, and

the nature of the decision problem upon which he is working.

An important reason for presenting this detail here is

that problem statement languages (e.g., PSL) are often char-

acterized as being "non-procedural." The appropriateness of

such a characterization depends very much on the user's

point of view. If the user is a system documentor, such a

- 98 -

characterization may be appropriate; for a user who is

tryinq to design a system, the characterization may be quite

inappropriate. We will elaborate this distinction further

at the end of this section.

3.3.2 Types of Requirements.

The literature in the systems design field also exhi-

bits considerable ambiguity about what is meant by the

"requirements" for a software system. Part of the reason

for this is that the notion of requirements is very general.

The term itself is used in many different contexts, and as a

result these different contexts start becoming blurred in

the mind of the reader, as well as designer. For example,

systems analysts refer to "information requirements analy-

sis" as well as "system requirements specification"; to

"functional requirements" as well as "design requirements";

and to "user requirements" as well as "software requirements

specification." There is a growing number of methodologies

(discussed in more detail shortly) that purport to address

the problem of "requirements specification," whatever that

may be defined to be in any particular case. Examination of

some of these methodologies indicates that, not infre-

quiently, one person's "reguirements" turn out to be another

person's "detailed system design."

- 99 -

Now, at a high enough level, the concept of a system's

requirements seems quite clear: these are statements 22

what ja systeism to g fo. Unfortunately, this definition is

too general to be of much use. For example, "the system

should help me control my inventory" is a requirement state-

ment, as is "the file selection module must verify that file

names are no longer than six characters." Clearly, these

statements (a) are at different levels of abstraction, and

(b) exhibit different degrees of procedurality.

In fact, it is insightful to classify requirements

statements along each of these dimensions. This idea is

pursued further in Section 3.4.4, in the context of the

framework described there. One objective of that framework

is to more precisely clarify the meaning of "requirements"

especially with respect to the system development cycle.

3.3.3 Processes and Capabilities.

As system requirements move toward (a) lover levels of

abstraction, and (b) higher degrees of procedurality, they

are also altered along another key dimension: they are

transformed from statements of capabilities (which the tar-

qet system is to possess) into statements regarding pre-

gesses.

The difference between capability-type requirement

statements (CS's) and process-type statements (PS's) may be

highlighted with some examples. Typical CS's (taken from a

- 100 -

set of requirements for a data base management system, dis-

cussed in greater detail in the next section) might be:

"Inter-file relationships can be described at run

time";

"The maximum size of a field is at least 100 charac-

ters";

"The system will have a report break control feature."

In contrast to these are process-oriented statements.

A relatively detailed example of a PS is a common program

flowchart, for example, Figure 3.7(a). Many other forms, at

varying levels of detail, may also be found. Another exam-

ple would be I.3..'s HIPC diagrams, and SofTech's SADT

charts; both are graphical approaches to specifying PS's.

The Requirements Statement Language (RSL), developed by the

Ballistic Missle Defense Advanced Technology Group

(Alford 77) and the Problem Statement Language (PSL) dis-

cussed earlier, are typical formal language mechanisms for

stating process-oriented requirements. For comparison pur-

poses, an example of the latter, duplicated from an earlier

example, is shown in Figure 3.7(b).

- 101 -

(a)

INPUT patient-data;
GENERATED BY patients;
RECEIVED BY monitor;
HAPPENS read-freq TIMES-PER minute;
USED BY monitor TO DERIVE help-signal;

OUTPUT help-signal;
GENERATED BY monitor;
RECEIVED BY nurses;
DERIVED BY monitor USING patient-data,
safe-values;

PROCESS monitor;
RECEIVES patient-data;
GENERATES help-signal;
USES safe-values;

(b)

Figure 3.7

Examples ot Process-oriented Requirement Statements

- 102 -

3,3.4 A Framework for Requirements Statements.

We have examined three important aspects of tequire-

ments statements: degree of procedurality, level of

abstraction, and capability-versus-process. These charac-

teristics may be viewed together to form a simple framework

for thinking about and describing requirements in the con-

text _f _he _sgtem development life cycle. The suggested

framework is portrayed schematically in Figure 3.8, below.

In the figure, requirements statements have been classified

along two dimensions: level of abstraction, and degree of

procedurality. The activities often referred to as "man-

aqement information requirements analysis" (Taggart 77) fall

into the upper left quadrant of the diagram. Of course, not

all systems development efforts are aimed at providing

information to managers, but usually some user clientele is

identifiable, and activities to elicit their needs, at a

relatively high logical level, generally initiate the system

development process.

As the process progresses, requirements are made more

specific, often through some sort of hierarchical decomposi-

tion. Attempts are made to identify errors, omissions, con-

flicts, and other such problems with the requirements.

Iterations are common. Often, problems encountered with

"lower level" requirements necessitate alterations at

"higher" (closer to the user) levels. In fact, it has been

- 103 -

Vague
User

Needs

Information
Requirements
Analysis

Functional
Specifications

LEVEL OF
ABSTRACTION

High (general)

4 ko)c

DESIGN

0/0

High
(close to computer)

Programming
and
Testing

Functioning
Computer
Software

(specific)

Figure 3. 8

A Framework for Requiremerits Statements

- 104

argued that additional time spent in the early stages of

system development is usually well invested. Boehm, for

example, contends that each additional unit of resource

(principally user and system analyst time) expended during

the early stages returns between 1.5 and 3 units later on

(during coding, testing, and modification stages)

(Boehm 74).

As the development process enters the detailed design

stage, requirements are usually translated into statements

of what activities or data transformations will take place

within specific elementary program modules, or subroutines.

Control flow descriptions and interface specifications

become important at this stage. While these statements are

still usually termed "requirements," it is clear that their

nature is significantly different from those requirements

hammered out between users and analysts at the beginning of

the design process. The transformation that the original

requirements undergo in the course of completing the

detailed design is precisely the embodiment of the software

design and development process itself.

Eventually (if all goes well), requirements end up as

computer programs. of course, in traversing the path from

user needs to EL/1 statements, considerable iteration is

usually required, most often to clarify ambiguous or incon-

sistent requirements, or to fill in missing ones. it has

- 105 -

been observed (Bell 76) that, even under the most stringent

conditions (e.g., designing the systems to support the

Apollo moon launchings), it is effectively impossible to

make an original set of requirements specifications com-

plete. The necessity for iterations should not be viewed as

an aberration of what ideally ought to be a linear activity;

rather, it is an inherent, important part of the overall

system design process.

A somewhat different way of characterizing the system

development activities is in terms of capability statements

and process statements. Initial conceptual work, groping by

users and analysts as to the nature of the decisions requir-

ing support, information needs, and so forth, usually lead

to capability-type requirement statements ("the system must

j2 gapable og supportinq up to five users simultaneously,

"the system must support both on-line and batch access,"

etc.). As the design activity proceeds, process-type

requirement statements usually emerge. These PS's serve to

guide and document detailed design and programming activi-

ties to follow.

The transition from CS's to PS's to coded software is

not (necessarily) very "neat," however. In many system

development cases, the CS's are never formally stated at

all; they occur by default, by designer "assumption" (which

are frequently at odds with users' "assumptions"), or by

- 106 -

necessity (because other requirements constrain the design

in various ways, often without explicit recognition). Also,

it is not always all that clear whether a particular

requirement statement is a CS or a PS. For example, the

requirement that "the system should be able to print the

output records in both sorted and unsorted form" specifies

both a capability (being able to sort a file) and a process

(sorting).

The distinction between CS's and PS's is important for

the following reason: essentially all the currently availa-

blg tools and tehnigjes for aidinq And _giding the system

develiopre nt activities are process-type techniques.

Included in this group are:

- HIIPO (IBM)

- IAG (IBM)

- SOP (IBM)

- ADS (Honeywell, and ISDOS)

- SADT (SofTech Inc.)

- PSL/PSA (ISDOS)

- SREM and RSL (TRW Inc. and DMDATC)

- HOS (Draper Labs)

- 11DM (SRI).

- 107 -

Consider again, for instance, the case of PSL. PSL is

usually referred to as a non-procedural language for defin-

ing and describing a software system. However, keeping in

mind that procedurality is really a continuum, a descriptive

scheme such as PSL appears quite non-procedural as compared,

say, to the assembly code eventually used to implement the

system, but at the same time appears rather procedural as

compared to the original English description of what the

system was supposed to do. In particular, the PSL state-

ments serve to structure an initial functional description

of a system into (1) a set of data descriptions, (2) a set

of processing descriptions, and (3) a set of other, miscel-

laneous items (EVENTS, CONDITIONS, INTERVALS, and the like).

PSL, then, presents a relatively process-oriented descrip-

tion, consequently falls somewhere in the lower right gua-

drant of the diagram in Figure 3.8.

This is an important point, and warrants further elabo-

ration. Conventionally, PSL is referred to as a language

for stating software functional specifications. However,

the point being made here, by way of example, is that

"if a factor falls outside the patient's safe range,

the nurses' station is to be notified"

is a good example of a true "functional" specification (one

that is rather general in scope). However, the PSL state-

ments

- 108 -

PROCESS send-alarm-to-nurses;
USES patient-data, safe-values;
GENERATES help-signal;
TRIGGEEED BY alarm;

form part of the description as to how the previous function

is to be carried out: a procedure (subroutine?) named

"send-alarm-to-nurses" will be executed under certain condi-

tions ("alarm"), will read the current data from the moni-

toring lines, will read the corresponding safe values from

the patient's data file, and will send an appropriately for-

matted message to the terminal at the nurses' station. The

PSL description is much more procedural and process-oriented

than the earlier functional specification from which it was

derived.

We can generalize the foregoing argument to essentially

all well-known "functional specification stating" tools,

languages, media, etc. References to these schemes, includ-

ing the ones listed above, may be had through various

reviews, such as (Cougar 73),(Teichroew 72), and (Burns 74)).

While the various techniques differ substantially in detail,

the above comments regarding PSL apply in all the cases we

have examined: that these schemes generally are positioned

toward the process-oriented, procedural end of the spectrum

presented in Figure 3.6; that they tend to be design docu-

mentation (or program documentation) techniques as opposed

to design decision support systems; that they come into play

- 109 -

after the architectural design of the system has been

created, not before or during and (this is the really con-

fusing part) that they are frequently referred to, both by

their creators, and sometimes even their users, as methodol-

ogies for functional specification, or L2rgelg statement, or

system design.

The argument at this point is not that there is any-

thing wrong with these PS methodologies per se, but that

there are important steps in the system design process that

must be taken - either planned or not, either supported or

not - before process-oriented tools such as these can be

brought into play. Central among these precedent activities

is architectural design. Designers who seek to employ the

process-oriented design aiding tools too soon in the devel-

opment life cycle are, in effect, institutionalizing the

tendancy to underplay, skip over, or at the worst totally

ignore that part of the functional development phase which

addresses capability-type requirement specifications. Our

research in requirements definition and software architec-

tural design is centrally concerned with this problem.

- 110 -

3.4 EXPEESSING FUNCTIONAL BEQUIREMENTS.

It would be useful to pause for a moment at this point

to review some of the issues that have been raised, and

points that have been made so far.

The focus of the SDR research is the problem of archi-

tectural design of software systems. The general approach

developed by Andreu involves the application of partitioning

algorithms to a graph representation of a design problem,

and the interpretation of the resulting clusters and link-

ages as design sub-problems. Since in this chapter we are

concerned especially with the problem of expressing func-

tional requirements for a target system (to be used as

"input" to the SDM procedures), and since there is a number

of well-known "requirements specification" systems currently

available, in Section 3.3 we examined a representative sys-

tem: PSL/PSA, developed out of the ISDOS project. We then

turned to an examination of certain terminological and phi-

losophical issues that tend to cloud discussions of system

desiqn and software engineering. In the light of this exa-

mination, we argued that PSL, while possessing its own

strenqths and weaknesses, was in fact more oriented towards

documentation than design, was more process-oriented than

capability-oriented, and was more procedural than would be

appropriate at the architectural design stage.

- 111 -

We concluded, then, that PSL, and by extension other

methodologies exhibiting similar characteristics, Are not

very appropriate mechanisms for expressing functional

requirements as a lead-in to system architectural design.

An alternative approach for addressing this problem, which

we call the "template approach," is described in this sec-

tion.

3.4.1 The Format of Typical Functional Specifications.

The SDM methodology takes as input a set of functional

requirement specifications for the target system, and as

such is dependent on both the existence and the appropriate-

ness of the specifications.

First of all, it is clearly necessary that a system's

requirements be formally stated - i.e., written down -

before SDM may be applied. Unfortunately, it is not at all

uncommon for the requirements for proposed systems to never

be committed to paper, especially in the case of smaller

systems or systems being developed "in-house" (as opposed to

contracted development). Nevertheless, for our purposes we

will assume that this first step has been taken, that

requirements have been generated in some written form.

Then, given that specifications have been formalized

and written down, the second problem concerns the appropri-

ateness of the format in which they have been stated. Three

- 112 -

important characteristics of requirement statements to be

used in the SDM methodology include:

1. unifunctionality - each statement describes a sin-
gle function (not multiple functions) to be fea-
tured in the target system;

2. implementation independence - each statement
should be implementation free, i.e., ought to spe-
cify what is required of the target system but not
how that requirement is to be met;

3. common conceptual level - all requirement state-
ments should be, to the extent possible, at the
same level of generality, or abstraction.(9)

In order to test out some of the earlier SDM concepts,

Andreu managed to locate a set of requirement statements(10)

for a database management system, that came "pre-packaged"

in a format reasonably suitable for the analytical approach

he had developed. As examples of these requirements, the

following three are typical:

"Inter-file relationships can be described at run time;"

"The maximum number of interrelated files is at least ten;"

"User can cancel active request without loss of data."

(9)See (Andreu 78) for a more complete discussion of the
characteristics of "good" requirement statements, in the
SDM context.

(10)The requirements used by Andreu were issued by a U. S.
Government aqency as pdrt of a procurement procedure.

- 113 -

The full list of Andreu's DBMS requirements is given in

Appendix B.

Even though these requirements were in a roughly appro-

priate format from the outset, Andreu found that they had to

be examined rather closely, and a number of them had to be

edited somewhat, in order that they possess the three char-

acteristics outlined above.

Unfortunately, functional requirements, when they for-

mally exist at all, generally are not expressed in this

fashion. More typical is the paragraph describing the

requirements for the Medical Monitoring System, discussed

earlier (see page 85). As another example of "typical"

requirement statements, consider the following specification

for the file system portion of an operating system specified

by Honeywell for the U. S. Navy's All Application Digital

Computer (AADC).

"The definitions of logical files are carried out
by a collection of tasks directed towards file
creation, file retention, file destruction, and
file access actions. These tasks are accessible
to other OS tasks and to application tasks. File
definition tasks utilize the input/output tasks to
manipulate and create various directory records
(not PF, permanent file, directories) of- files.
Requests must be sent to the basic executive to
initiate file definitions and to confirm access
privledges to protected information. File defini-
tion tasks provide a user (system or application)
with a mechanism for establishing logical files.
The mapping function between logical and physical
descriptors are established and the protection
machinery invoked. Files will physically exist on
devices such as drums or tapes. Since different
physical devices usually exhibit differing physi-

- 114 -

cal capabilities, the logical file description
will establish the logical capabilities of the
file relative to the supplied device (Honey-
well 72)."

The problem is, then, that if the SD1 methodology for

architectural design is to be widely applicable, it will be

necessary to have a means of "translating" such typical

functional specification statements into an appropriate form

- i.e., a form exhibiting the three characteristics dis-

cussed earlier. An initial step towards defining such a

mapping is proposed here.

3.4.2 eguirement Statement Templates.

We would like to have a simple procedure by which we

could map general English-prose style requirement statements

to a format suitable for input into the SDK procedure. As a

first step in this direction, it would be useful to be able

to identify a set of requirement statement types, or "temp-

lates." that might be used as a skeleton upon which specific

sets of requirements could be constructed. Such a set of

templates would

1. help to guide the thinking of the analyst in set-
ting up the syster specification for SDM analysis;

2. help to insure that the resulting statements met
the appropriateness criteria outlined earlier; and

3. form the basis for further study and research of
the requirements specification process generally.

- 115 -

To determine such a set of specification templates, the DBMS

requirement set employed by Andreu was studied in detail.

While the set included over 100 original requirements, close

examination indicated that many of the statements exhibited

similar patterns. For example, the three statements

"Variable-sized fields can be defined";

"Record-level lockout capability";

"Report break control feature supported"

all basically state specific features the target system is

to possess.

Similarly, certain other patterns are discernible in

the DBMS requirements. Specifically, upon thorough analy-

sis, seven templates were distilled from the 100 different

statements. These seven templates are given in Figure 3.9.

Specific terms used in the template descriptions in

Figure 3.9 are defined below.

Qbjggts. Objects are defined to be of two types: items,

and activities. Examples of item objects are:

- (file) size

- (interactive query) facility

- (user) request.

Examples of activity objects include:

- (system) setup

- 116 -

E.g]IREMLENT S TATEMENT TEMPLATES

A. Existence.

There (can/will) be

B. Property.

<Mod> <object>

C. Treatment.

<Mod> <object>

<modifier>

(can/will) be

(can/will) be

<object>

<mod> <property>

<mod> <treatment>

D. Timinq.

<Mod>

E. Volume.

(Mod >

(object> (can/will) (timing relationship>

<mod> (object>

<object> (can/will) be <order statement>

<index> <count>

F. Relationship (Subsetting)

<od> Cobject> (can/will) contain <mod> <object>

G. Relationship (Independence).

<Mod> (object> (can/will) be independent of

<object>

<mod>

Figure 3.9

- 117 -

- (database) maintenance.

Modifiers. Modifiers are strings of English adjectives that

serve to further describe the associated object. Examples

of modifier strings are shown above, in parenthesis.

Properties. A property is a word that describes some parti-

cular feature of the associated object. Examples include

- self-documenting

- queryable

- distributed.

Treatments. Treatments are words that describe something

that can be done to the associated object. Examples include

- saved

- sorted

- locked.

1jmiag Reltjonship. Pairs of activity objects may be tem-

porally related via timing relationships. For example,

- occurs before

- triggers

- occurs during.

- 118 -

Ordgr Statements. An order statement specifies an order

relation (< , <=, = , >= >) between an object and a mea-

sure (defined below). Typical order statements are

- less than

- no more than (i.e., less than or equal to)

- at least (i.e., greater than or equal to).

Measure. A measure consists of a parameter and a unit. The

parameter may be either a constant or a variable, and the

unit may be either a simple unit (e.g., hours, dollars) or a

compound unit (e.g., man-months, UL dollars per month).

Examples of measures include

- 2 hours

- 95 percent

- 11 man-mionths

- 120 characters per second.

Imperatives. Each template may occur in either of two

imperative forms, distinguished by the use of either "can"

or "will." The use of "can" indicates that the target sys-

tem is to be cagpble of supporting the reguirement being

described, but that in any particular isplementation that

feature may or may not be so utilized. In contrast, the use

of "will" indicates that the feature described in that

requirement aust be included as an imbedded part of the tar-

qet system. Generally speaking, only one form ("can," or

- 119 -

"will") makes sense in any given requirement statement. For

examples illustrating the differences between the two forms,

consider the following property statements:

"data fields can be null," and

"null fields will be identifiable."

The first statement indicates that it is possible (although

not necessary) for data fields to be set to a null value,

whereas the second statement requires that null fields be

identifiable (i.e., distinguishable from zero or any other

valid value).

An example of each type of template is given in Fig-

ure 3.10. The full set of statements obtained by transform-

ing Andreu's original DBMS requirements into template form

is given in Appendix C.

- 120 -

EXAMPLES OF VEUIREMENT STATEMENT TEMPLATES

A. Existence.

There will be database-level security facilities.

modifiers object

B. Property.

System status will be queryable.

mod object property

C. Treatment.

Database can be initialized using system utility.

object treatment mod

D. Timing.

Schema validation will Qccur before database usage

object timing
relationship

mod object

E. Volume.

Maximum recover time will be no more than 24 hours.

mod object order
statemen t

measure

- 121 -

mod

F. Relationship (Subsetting).

Record selectn criteria can contain boolean

mod object rlnship mod

conditional xpressions.

mod (cont.) object

G. Relationship (Independence).

wefinitiqn vill b f database usage.

mod object reinship mod object

Figure 3.10

3.4.3 Side Effects of Ex2ressing Reguirements in
Template Form.

one of the interesting, and potentially important,

results stemming from translating the DBMS requirements into

template form is the fact that certain kinds of modifica-

tions had to be made to the original statements in order to

perform the statement mapping. As a result, the "normal-

ized" statements better met the appropriateness criteria for

the SDM methodology, and the activity of normalizing the

statements proved beneficial in reducing ambiguity and

bringinq about their clarification.

- 122 -

Four different effects were observed during the normal-

ization process. First, and probably most important, by

working the requirements statements into template form, one

is forced to consider exactly what each statement means, and

how it ouqht to be expressed in terms of the templates.

With a little practice, statements or parts of statements

that are ambiguous or unclear tend to stand out, as they

tend to obstruct the transformation of the statement into a

template form. As an exafrple, statement 70 asserts that

"Application is transportable to/from Agency's

existing systems."

In assessing which form this statement ought to be mapped

into, a first step is to ask what the left-object is. In

this case, "application" is the clear choice. However, the

meaning of "application" is unclear: does it refer to appli-

cation programs to be run on the target database system, or

to some other application? Additional investigation showed

that the reference was to application programs previously

developed by the agency on an earlier DBMS, which they

wished to be able to transfer later on, if necessary, to the

new system for which the requirements had been issued. The

statement is also a property-type statement of the "will"

variety. The statement may be made clearer as follows:

- 123 -

"Application programs will be transportable to/from

mod object property mod

the agency's other DBMS's."

mod(cont.)

In this case, as for most of the DBMS requirement statements

used by Andreu, the statement was able to be mapped into

template form rather easily, but in so doing, sufficient

thought had to be given to the statement's meaning that

imbedded ambiguities and other possible difficulties (the

meaning of "application," here) could be exposed and cor-

rected.

The second observed effect was that of having to break

up a requirement into two or more pieces in order to map it

into template form. For instance, the original requirement

53 stated:

"Users can direct output to the system printer."

In fact, this requirement states two different things: there

will be a "system printer capability" in the target system

(this was not stated as a separate requirement elsewhere),

and output may (optionally) be printed on the system prin-

ter, Therefore, this statement was split into an existence

- 124 -

statement,

"There will be a system printer,"

mod object

and a treatment statement,

"User output can be printed using system printer."

mod object treatment mod

one of the characteristics of good requirements state-

ments, for the purposes of the SDM methodology, is that each

statement capture a single functional requirement. Thus,

the splitting of requiremrents, as demonstrated above, in

order to map them onto templates, represents movement toward

this goal.

A third issue brought to light by the requirements map-

pinq activity concerns the necessity for inclusion of cer-

tain parts of some of the original statements. This is well

illustrated by statement 77, which was originally

"Capability to support two or more concurrent

queries in different stages of processing."

- 125 -

This statement was mapped into a volume template, to say in

effect that the number of concurrent queries can be at least

two. k question arises, however, over what is meant by the

phrase "in different stages of processing," and why this is

part of the requirement statement at all. It demands, for

example, an understanding of what is meant by "stages of

processing" in this context, an ambiguous notion at best.

Also, it seers to have strong implementation overtones that

would be desirable to avoid. What is really required is

concurrent query processing capability (possibly with cer-

tain performance restrictions not mentioned here). One is

lead, therefore, to either eliminate the last phrase from

the specification, or else seek clarification from the user

(in this case, the issuing agency). The final template form

of this statement would then be

"Number of concurrent queries can be at least 2 units.

object mod order measure

As with the previous case, it might also be necessary to

include an additional statement sprcifying the existence of

a concurrent query capability.

The final type of issue raised by the statement mapping

process concerns errors in the source statements. It is

somewhat surprising, given the detailed examination these

- 126 -

requirements have received already, that there would be any

obvious errors remaining. However, consider statement 62:

"Average system recovery time is 2 hours

over a 30 day period."

In translating this statement using a volume template, the

nature of the order statement ("is," here) was studied.

Presumably, the intent of this requirement was that average

recovery time be no more than 2 hours over a thirty-day per-

iod, not that it be exactly Rggal to 2 hours. The corrected

statement was taken to be:

"Average 30-day recovery time will be no more than 2 hours."

modifier object order measure
statement

- 127 -

3.5 SUMMAIRY.

We began this chapter with a close look at a prototypi-

cal requirements statement language, PSL. We argued on the

basis of this examination that PSL, and other similar lan-

guages are not appropriate tools to set up initial func-

tional requirement statements for analysis within SDM.

Basically, we pointed out that the use of these languages

presuR~oses a system architecture in the designer's mind, if

not formally documented. We discussed some of the ambiguous

and loosely-used terms central to the requirements problem

area, and in so doing were led to an explication of a frame-

work for requirements statements. We then turned to the

development of our own approach to the requirement statement

expression problem, and put forth the template idea as a

basis for guiding statement development. The underlying

rationale for the template approach, as well as examples and

side benefits of its use, were discussed.

In the next chapter we turn our attention to the prob-

lem of extending the SDM representational model so as to

allow the system architect to express certain design-rele-

vant information not presently representable in the current

requirements model.

- 128 -

Chapter IV

EXTENSIONS AND IMPROVEMENTS TO THE SDM REPRESENTATIONAL
MODEL.

4.1 INTRODUCTION.

Underlying the SDM approach is a technique for modell-

inq the design problem by representing a system's functional

requirements and their interdependencies as an undirected

graph with unweighted (binary) links. This basic model and

methodology have been applied to some experimental systems

((Andreu 78) (Holden 78)), and have been found to be an

effective means of determining an initial design problem

structure.

The purpose of this chapter is to examine the represen-

tational scheme used within the Systematic Design Methodol-

ogy, and to suggest certain extensions to enhance the

modelling power of this scheme. The SDI basic model,

together with the extensions discussed in this report, will

be referred to as the "extended model."

The extended model is applied to a simple design prob-

lem., featuring 22 requirements for the design of a database

management system. This system was also studied earlier by

Andreu (Andreu 78). Comparisons with Andreu's representa-

tion are drawn. In later chapters we will examine graph par-

- 129 -

titioning methods that might be used with the extended

model, and measures to reflect the goodness of partitions

derived from it.

- 130 -

4.2 CVERVIEW OF THE BASIC MODEL.

The design structuring methodology reported in

(Andreu 78) forms a basis for the present work. At the core

of this methodology is a simple model (the "basic model")

used to represent general design structuring problems.

The basic model is an undirected graph: a set of nodes,

together with a set of unweighted connecting links. Each

functional requirement in the system specification is repre-

sented as a separate node. A link joining two nodes corres-

ponds to an interdependency between these nodes. Ways in

which both nodes and links are deta mined are discussed

below.

4.2.1 Generation of Nodes in the Basic Lodel.

Each node represents a single functional requirement of

the target system. Desirable properties of these functional

requirement statements include:

1. unifunctionality - each statement describes a sin-
gle function (not multiple functions) to be fea-
tured in the target system;

2. implementation independence - each statement
siiould be irplementation free, i.e., ought to spe-
cify what is required of the target system but not
how that requirement is to be met.;

3. common conceptual level - all requirement state-
ments should be, to the extent possible, at the
same level of generality, or abstraction.

- 131 -

In Andreu's research, the problem of creating the func-

tional requirements for a system was not directly addressed;

instead, they were taken as given.(11) One scheme for map-

ping English-language prose requirement specifications into

an appropriate set of functional requirement statements

according to the above guidelines was discussed in the pre-

vious chapter.

For the purposes of this report, the assumption will

again be made that appropriate functional requirement state-

ments are given to the system designer.

4.2.2 Generation of _nks in the Basic flodel.

Interdependencies between pairs of requirements are

represented as links, or "edges," in the basic graph model.

Andreu and others have discussed in some detail the

interpretation of design interdependencies. For example,

Andreu (Andreu 78, page 70) writes:

"In essence, two requirements are interdependent
when one can think of plausible implementation
schemes in which the two ought to be considered
simultaneously for design purposes, the reason
being that if such an iplementation scheme was to
be adopted, meeting these requirements would be
one of the central considerations that the desig-
ner should take into account to tailor the scheme
to the characteristics of the design in progress."

(11) Andreu did discuss guidelines for inspecting and verify-
ing the requirement statements.

- 132 -

Furthermore, interdependencies fall naturally into two

groups, termed concordant and discordant.(12) A concordant

interdependency exists between requirements A and B if the

implementation of requirement A would tend to simplify,

assist, or otherwise make easier the implementation of

requirement B. In contrast, a discordant interdependency

exists between the two requirements if implementation of A

would hamper, jeapordize, or otherwise make more difficult

the implementation of B.

The basic approach suggested by Andreu for actually

determining the interdependencies has the designer consider

each requirement pair in turn, and mentally consider the

alternative approaches he might follow in implementing the

two requirements. The various iffplementation schemes so

conceived are termed "mental ifodels" of implementation. If

the designer perceives a significant degree of interaction,

in the context of his mental models, between a given

requirement pair, he interprets the requirement pair as

beinq interdependent.

The actual determination of interdependencies and their

nature (concordant or discordant) is heavily designer-depen-

dent. There is no intent within the methodology to remove

or de-emphasize the designer's experience or judgment from

(12) These terms were suggested, in an unexpected surge of
creativity, by Prof. J. Meldman. Andreu had earlier
used the terms "tradeoff" and "concurrency."

- 133 -

the design activity. Rather, the methodology attempts to

provide structure and simplification to the decisions the

system designer must make. By only having to consider a

pair of requirements at one time, rather than the entire

set, the cognitive demands on the designer are greatly

reduced. There is a price to be paid for this simplifica-

tion, however: now the designer has easier decisions to make

(pairwise comparisons), but more of them. While not as for-

midable a task as might appear at first glance, the complete

assessment of interdependencies for a non-trivial problem

involves considerable effort.

4.2.3 An Example.

To illustrate more concretely the ideas discussed in

this paper, a specific real (but small) design problem will

be studied in terms of both the basic model and the extended

model. The problem concerns the design of a database man-

agement system (DBMS). A set of 22 functional requirements

is assumed given (refer to Section 4.4.1 for a listing of

these requirements).

Requirement interdependencies were assessed for this

requirement set in the-fashion described in the previous

section. A total of 38 interdependencies were determined.

Descriptions of each interdependency are given in Section

4.4.2 of this report, where the example system is examined

in more detail.

- 134 -

These requirements and interdependencies may be

displayed as a graph, following the basic model, as shown in

Figure 4.1. Of course, determining the graph structure for

the system requirements is only the first step in the basic

desiqn methodology. Further steps, including partitioning

the qraph appropriately, and interpreting design subproblems

and their interactions, would normally follow. As this

chapter is only concerned with representational issues,

further steps such as these will be analyzed in later chap-

ters.

- 135 -

Figure 4.1

Graph representation of the 22-node DBMS design problem

- 136 -

4.3 EXTENSIONS TO THE BASIC MODEL.

The guiding philosophy of this research is to -simplify

and structure the system design task in order to obtain bet-

ter designs. This simplification is achieved by asking the

designer to exercise his experience and judgment - to make

design decisions - in many small bits rather than in one or

a few large chunks. Structure is achieved by providing a

framework - a set of explicit steps to be followed - for the

design process so as to reduce or eliminate the extent to

which a design "just happens."

For the proposed methodology to be effective, designers

using it must be able to express, within the provided frame-

work, as much of their relevant kno wled ae and judgment as

Possible. The basic representational model employed in

Andreu's original study limits this expression of designer

information to the determination of interdependencies bet-

ween pairs of requirements. In fact, a designer will gener-

ally possess considerable additional knowledge not captured

by the basic model. In the remainder of this report, ways

of extending the basic model to include representation of

various aspects of this "additional designer knowledge" are

presented and discussed.

It should be made clear that the intention of this

report is to lay out and analyze various p2asible kinds of

extensions that could be wade to the basic model. Bo

- 137 -

choices will be made at this time as to which, if any, of

these extensions will in fact be adopted for further

research in this problem area. However, in conjunction with

the example discussed in Section 4.4, the ease of applica-

tion of each extension is examined briefly, and tentative

conclusions about priorities regarding extensions to the

basic model are drawn. These conclusions are further exa-

mined in light of the experience gained in a full-scale SDH

application study reported in Chapter 7.

4.3.1 Interdependency leights.

In the basic model, an interdependency either exists or

it doesn't - there is no middle ground, no notion of the

"strength" of an interdependency. Links within the graph

representation of a design problem are binary in nature:

the adjacency matrix is a matrix of ones and zeros.

There is nothing inherent in the design problem repre-

sentation that necessitates binary links, other than a

desire to work with as sirple and parsimonious a model as

possible. On the other hand, there is good reason to relax

this requirement, namely, that important aspects of designer

knowledge might thereby be included in the design problem

model.

One possible extension of the basic model would be the

association of a "weight" W (i,j) with each link. The inclu-

- 138 -

sion of such link weights in the graph model can be likened

to course grading: binary links would correspond to pass-

fail grading, whereas weighted links correspond to standard

(letter or numerical) grading. Just as standard grading

allows an instructor to express more information about his

or her students, so weighted links would serve to capture

more of the designer's judgment concerning the relationships

among system requirements.

There is a variety of possible ways in which such a

weight could be defined and justified. For example, the

weight W(i,1) could be taken to represent the "closeness,"

or "strength of interdependence" of the requirements i and j

in the context of the interdependency represented by link

L(i,1). With this interpretation, two requirements that are

seen to be closely related, in implementation terms, would

be connected by a link with a relatively high assigned

weight.

Alternatively, link weights could be defined in a sub-

jective probability sense. In this case, the weight W(i,j)

would represent the degree of uncertainty in the designer's

mind that the requirements i and j will interact in imple-

mentation. This interpretation would be consonant with the

uncertainty inherent in the interdependency assessment pro-

cess itself. ith this definition, a designer who is guite

certain that two requirewents i and j would be coupled in

- 139 -

implementation would assign a relatively high weight (close

to 1) to the link L(i,j); whereas if the designer believes

that there is only a fairly small likelihood of the require-

ments being coupled, the assigned weight would be lower.

These alternative definitions of link weight give rise

Subjective probability
low high

Strength low
of

Interaction

high

Figure 4.2

Logical combinations of link weight interpretations.

to four logical combinations, as displayed in Figure 4.2.

In fact, these definitions are not completely "orthogo-

nal." If, for example, two requirements are seen to be

strongly related, according to the first definition, then

there will be a tendancy for designers to view the probabil-

ity of their being related as high. Thus, it is reasonable

to assume that most designers' weight assignments would fall

in cells A and D in the above diagram.

- 140 -

4.3.1.1 Scaling Problems.

A decision to include link weights in the graph model

gives rise to certain scaling problems. First, a range must

be specified over which weights will be allowed to vary.

While not absolutely necessary, compatability with the basic

model, among other reasons, suggests that link weights be

chosen from the numerical range [0,1).

A choice must also be made between requiring the desig-

ner to choose from "pre-set" weight values (e.g., low, med-

ium, high) versus a continuous range of values. If pre-set

weiqhts are used, some mapping to numerical values must also

be chosen (e.g., "low" corresponds to a numerical weight of

0.2, and so forth). All link weights must eventually be

encoded numerically, for use in the graph partitioning

algorithms.

Also, it may prove desirable to assign special meaning

to certain weight values. For instance, a special "very

high" weight category might be defined to allow a designer

to express his conviction that two requirements absolutely

must be included in the same sub-problem.

In contrast, a "very low" weight may be used to specify

that two requirements must be in different sub-problems.

However, there are also certain arguments for avoiding such

deterministic weight assignments, in that they reduce design

flexibility are partially preempt the design structuring

methodoloqy itself.

- 141 -

For the purposes of implementing extensions to the

basic model, hard choices need not always be made among

alternative representation issues ahead of time. A software

package that designers would use to apply these architec-

tural design methods could allow the user to select, from

various options, those alternatives that most appealed to

him, that he found easiest to use, etc.

Our experiences to date indicate that system designers

most likely would not require the capability of specifying

weights directly in numerical terms. The following scheme,

using a simple three-way breakdown, has proven effective and

easy to use:

Designer's Judgment
About Weight Code Numerical Value

Strong S 0.8

Average A 0.5

Weak U 0.2

This particular encoding of weights achieves a number of

useful results. First, the three basic weightings may be

easily interpolated, as shown below:

Weight: S+ S S- A+ A A- 1+ W N-

Numerical value: 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

- 142 -

Secondly, all weights fall in the [0,1] range, a fact

useful for normalization and later decomposition purposes.

Finally, the end points in the range (the values 0 and 1)

may be reserved for "must be included" and "must not be

included" categories, if so desired.

There is another, more subtle, set of scaling issues

that involves the correctness, or accuracy, of link weight

assignments. If, in assessing a set of requirements, a

designer assigns a weight of, say, 0.85 to a certain link,

how does he know that it should be 0.85, and not 0.84 or

0.86? Cf course, he doesn't know for sure; he is simply

trying to quantify as best he can what is inherently a ill-

defined issue. This accuracy problem did not first arise

with the introduction of link weights into the model. It

was present in the basic model as well, in the guise of

deciding whether particular links should or should not be

included at all.

The original motivation for augmenting the basic model

through the inclusion of link weights (as well as other

extensions to be discussed shortly) is that designers could

provide additional information, relevant to the design

structuring problem, that is not captured by simple binary

links. The fact that this information is not one hundred

percent "accurate" should not prevent it from being

143 -

used. (13)

4.3.2 Information Linking Implementation Issues.

In the basic model, two nodes (requirements) are joined

by a link when they are deemed to be "implementation inter-

dependent" by the designer. In essence, links represent

implementation considerations. In this view of requirements

and implementation considerations, the focus is upon the

nodes, with links being a kind of implementation "glue"

which binds the nodes together.

A different way of viewing links is as "things," or

logical entities, in their own right, rather than just bind-

inqs. To some extent, the appropriateness of viewing an

implementation issue as a logical entity depends on the spe-

cificity of the statement describing that issue. Not all

interdependencies can be specified by a designer with the

same level of precision. In some cases, it is possible for

designers to indicate in some detail the nature of the

interaction that he believes will occur in the process of

implementing a given pair of requirements. Requirements for

"fast direct-access retrieval response" and for "ability to

perform sequential file processing efficiently" may be

(13) There is a strong similarity between this argument and
that put forth by Bayesian statisticians in defending
the use of personal, or subjective, probabilities in
statistical models.

- 144 -

assessed as concordant requirements since, the designer may

believe, the use of the Indexed Sequential Access Method

(ISAM) file organization is required in both cases. In such

a situation, the link joining this pair of requirements

represents more than just general implementation interdepen-

dence; in particular, it represents the use of ISAM file

organization, a rather specific implementation scheme.

In other cases, a designer will not be able (at this

stage in the design process) to be so specific. He may

believe that a pair of requirements will prove to be dis-

cordant (interfere with each other) as the design proceeds,

but may not, as yet, be able to specify how this interfer-

ence will come about.

It is useful to treat interdependencies as separately

identifiable issues for another reason also, namely, for

documenting project design decisions. It often happens in

design and development projects (especially large projects)

that early design decisions are made by one person or group,

and left undocumented. The responsible individuals may leave

the project, or otherwise become "disassociated" from that

aspect of the system. Later designers and implementors

often come to question what the motivation might have been

underlying earlier decisions. Having a well-documented

"track" for each design decision would be guite valuable for

determining how later design issues or system modifications

ought to be implemented.

- 145 -

Now, viewing links as representing logical entities

leads to certain questions about such entities: can these

entities themselves be related in ways meaningful to desig-

ners and to the design structuring problem? The answer is

yes, and the incorporation of such link relationships into

the basic model provides additional useful extensions.

There are two different kinds of relationships between

implementation issues discussed in this report. In this sec-

tion, similarity relationships are addressed; implication

relationships are addressed later.

4.3.2.1 Similarity Links Among Implementation Issues.

Two or more links may represent the same, or closely

related, implementation issues. A simple example of this

possibility is illustrated in Figure 4.3. The links joining

requirements 1 and 2, and requirements 2 and 3, both repre-

sent the interdependency "ISAM organization," an implementa-

tion consideration through which both requirement pairs

(1,2) and (2,3) are deemed by the designer to be interdepen-

dent.

In this example, the two links represent entirely the

same implementation issue. In general, however, the degree

of "sameness" between two or more implementation issues will

usually be less than 100 percent in the eyes of the desig-

ner, due to inherent fuzziness in the specification of both

functional requirements and implementation schemes. The

- 146 -

2 Ability to perform efficient
seguential file processing

ISAM ISAM
organization organization

1 Very fast 3 Single-key file direct
retrieval access capability
response

Figure 4.3

Example of Implementation Similarity Relationship

judgment as to whether a given pair of links "really" repre-

sent the same implementation issue is, again, a designer

decision.

Going one step further, a weight factor could be asso-

ciated with the similarity assessment to represent the

extent to which the designer judges the two implementation

issues to be the same. That is, such a weight would corres-

pond to the extent of overlap between the implementation

issues, in the designer's estimation.

- 147 -

4.3.2.2 Graph Representation of Implementation Issue
Commonality.

Probably the easiest approach to the schematic

representation question is to avoid it, by not actually

incorporating implementation similarity information into

the graph at all. Father, the associated information

could be kept in a table or matrix, to be included in the

model but not actually depicted schematically.

An alternative approach, which would lend itself to

easy display, would be to define a new type of node - an

"implementation node." This definition would extend the

diaqrammatic power of the graph representation. It would

also provide a simple mechanism for representing various

kinds of relationships between implementation schemes: as

links between implementation nodes. Such links would, of

course, be different in kind from links between require-

ment nodes; the latter would represent interdependencies

between pairs of requirements, the former would represent

relationships between the implementation schemes them-

selves.

As a diagrammatic technique, requirement nodes

(R-nodes, henceforth) ought to be distinguished from

implementation nodes (I-nodes). One simple approach

would be to use circles for the former (as in the basic

model) and, say, squares for I-nodes. Similarity rela-

- 148 -

tionships between implementation issues may then be

represented by undirected links between the corresponding

I-nodes. Furthermore, the degree of similarity could be

represented as a link weight, similar to the "strength of

interdependence" weights discussed in Section 4.2.

These diagrammatic ideas are illustrated in Fig-

ure 4.4. Figure 4.4(a) shows a simple four-node graph

using the style of the basic model. In Figure 4.4(b),

implementation nodes are formally indicated and labelled

(the specific implementation concept that each such node

is intended to represent would presumably be described in

accompanying documentation). In Figure 4.4(c), the fact

that certain of the I-nodes are judged to represent simi-

lar implementation schemes is depicted using links con-

necting those I-nodes. Finally, in Figure 4.4(d),

weights are attached to these links to describe the

extent of overlap, or similarity, between the implementa-

tion issues, as perceived by the designer.

Viewing implementation issues as network nodes makes

a new kind of interdependency - a multi-requirement

interdependency - representable. For instance, require-

ments 1, 2, and 3 may all be interdependent, as a group,

via some implementation issue A. That is, a single

implementation issue may interrelate all three require-

ments at once, as illustrated in Figure 4.5(a). This

- 149 -

(a) (b)

4 2

%A

3

(c) (d)

Figure 4.4

Requirement nodes and Interdependency Similarities

- 150 -

(a)

A multi-requirement interdependency

(b)

A trio of similar pairwise interdependencies

Figure 4.5

- 151 -

kind of relationship would be different from a trio of

similar pairwise interdependencies (see Figure 4.5(b)),

as it would more strongly suggest the appropriateness of

clustering the three requirements into a common design

sub-problem.

Additional kinds of information that may be repre-

sented using relationships between implementation nodes

are discussed in the following section.

4.3.3 BRresentation of Implication Information.

It may prove useful in some cases to include still more

kinds of semantic information regarding relationships among

the various requirements and implementation schemes. Addi-

tional considerations not captured in the model extensions

discussed so far include:

1. logical implications between requirements at the
same level of abstraction, and between require-
ments at different levels of abstraction;

2. logical implications between implementation con-
cepts;

3. logical relationships between requirements and
implementation schemes.

4.3,3.1 Logical Implications Between Requirements.

It may be the case that a designer possesses informa-

tion concerning relationships that exist between pairs of

- 152 -

requirements, vevn with no consideration being given to

implementation issues. Perhaps the most common type of such

a "functional" relationship (as compared with relationships

derived from implementation considerations) is implication:

"requirement 1 implies requirement 2"; or, stated somewhat

differently, "if requirement 1 is to be included in the sys-

tem specification, then it follows that requirement 2 must

be included also."

It is important to note that such a functional rela-

tionship, as defined here, may exist independently of how

requirements 1 and 2 are to be implemented. The logic of

the relationship is contained in the semantics of the func-

tional requirement statements alone, without consideration

being given to implementation alternatives.

Lateral Impli.cations.

Implication relationships may be further categorized as

beinq either "lateral" or "hierarchical." The difference

between these two types depends on the relative level of

abstraction(14) of the two reguirements, as seen by the

desiqner. Implication relationships between requirements

that exist at the same level of abstraction are laterally

(14)The concept "level of abstraction" is widely used in the
system specification and system analysis literature. It
is, however, rarely defined, and is generally taKen as a
kind of primitive concept.

- 153 -

related, while those between requirements at different level

are hierarchically related.

To make the above ideas clearer, some examples are

developed below.

ExampleS.

As an example of logical implications between require-

ments, consider the pair of requirements

- "capability for collecting resource usage statistics
for each submitted job," and

- "able to charge users by department and group for
resources used."

These functional requirements are seen to be logically

related even without considering implementation alterna-

tives: fulfilling the second requirement implies tulfilling

the first. Unless a system is able to account for resource

usage, it will have no rational mechanism for meeting the

second requirement. Furthermore, the designer would prob-

ably view these requirements as existing at a common level

of abstraction - i.e., neither is logically contained within

the other.

In passing, it might be noted that these requirements

are also interrelated at the implementation level, since the

implementation of the resource statistics collection subsys-

- 154 -

tem will undoubtedly be affected by considerations of the

lines alonq which charges are to be collected and-distri-

buted. it is conceivable, although unlikely, that two

requirements could be related through logical implication at

the functional level, yet not be related at the implementa-

tion level.

As well as one-way implication, each requirement of a

pair could logically imply the other. A possible example of

such a pair might be the requirements

- "system must be accessible in conversational mode,"

and

- "system must be convenient to use."

The designer may feel that an on-line system should always

be more convenient to use than a batch system; contrariwise,

in order for a system to be truly more convenient to use, it

must provide an interactive user interface - i.e., it must

be an on-line system.

Diagrammatically, these logical implications between

requirement nodes could be represented with a conventional

directed link, thus:

- 155 -

(a) (b)
One-way Bi-directional

Figure 4.6

Representation of Logical Implication between Requirement
Nodes.

An arrowhead is used to distinguish implication relation-

ships from implementation-level relationships.

Hierarchical Implication.

Requirements may be related in an implication sense and

also exist at different (hierarchical) abstraction levels.

For example, a requirement A may be logically part of

another requirement 3.

Consider, for instance, the pair of requirements:

- "capability for report formatting," and

- "report formatting optionally automatic."

- 156 -

These requirements are arguably related in a functional

sense, but not in the earlier sense of one implying the

other at the same level of abstraction. Rather, the first

requirement is logically "greater than" the second; the sec-

ond does not make sense without the first.

It is not necessarily easy to distinguish hierarchical

implications from lateral implications. Nevertheless, the

differences do seem to be distinguishable in some cases.

Since these two types of relationships may be seen to carry

different kinds and amounts of design structuring informa-

tion, it is appropriate to make a differentiation for the

purposes of this report.

Hierarchical implication relationships could be repre-

sented schematically as shown below, the double line being

used to distinquish from both lateral implications and from

implementation relationships.

Requirement 1
hierarchically implies
requirement 2.

Figure 4.7

Representation of Hierarchical Implication Relationships.

- 157 -

4.3.3.2 Logical Implications Between Implementation
Issues.

An argument has been made for the representation of

similarity information joining pairs of implementation

nodes (I-nodes)* Other kinds of relationships between

I-nodes may also be represented in the extended model.

The previous arguments regarding logical implication

between pairs of I-nodes may be carried across to imple-

mentation nodes also. That is, the assumed existence of

some implementation scheme X may be viewed by the desig-

ner as implying the inclusion of some other scheme, Y.

While it may even be possible to extend the distinc-

tion between lateral and hierarchical relationship types

to this case, for practical purposes the designer gener-

ally does not have a clear enough picture of ultimate

detailed implementation techniques during architectural

design activity to make such relatively fine distinc-

tions. Therefore, only one "general-purpose" type of

logical implication relationship between I-nodes is con-

sidered for inclusion in an extended graph model.

As an example of such a relationship between

I-nodes, consider the following three requirements:

1. "Very rapid record retrieval";

2. "Ability to produce sequential listing effi-
ciently";

- 158 -

3. "Ability to access records based on value of
key field."

Now, a designer might assess requirements 2 and 3 as

being related via an implementation issue X: "ISAM file

organization." Similarly, 1 and 3 may be seen to be

related via Y: "In-core index tables." Finally, for the

sake of illustration, the designer may believe that

implementation issue X logically implies implementation

issue Y; that is, the use of indexed sequential file

organization as an implementation technique implies the

use of in-core tables for record lookup.

Borrowing again from the earlier arguments regarding

implications among requirements, a straightforward way of

portraying I-node implications would be to make use of a

directed link joining two implementation nodes. The

example discussed above is so illustrated in Figure 4.8.

4.3.3.3 logical Implications between R-nodes and I-nodes.

In the previous section, arguments have been given for

including in the extended model various means for represent-

ing loqical implication relationships between P-node pairs,

and between I-node pairs. For completeness' sake, considera-

tion should also be given to implications between an F-node

and an I-node.

- 159 -

2 3

This directed link symbolizes the
fact that, while irplementation
issues X and Y are not the same
issue, the existence of X implies
the existence of Y.

Figure 4.8

Eepresentation of Implication Relationships
between Implementation Nodes.

It is possible, in theory, to differentiate implication

semantics from the conventional implementation coupling

already included in the model between B-nodes and I-nodes.

Nevertheless, it is unlikely that there would be a real need

for a capability to represent such implication information,

for two reasons. First, presumably all implications would

have the same "orientation": from R-node to I-node. After

all, the requirement nodes are the starting point for the

whole process, and implementation issues normally follow

- 160 -

from requirements. Secondly, it is unlikely that a designer

would perceive a relationship between an ER-node and an

I-node that would not correspond to an implementation link,

and hence already be included in that form. Of course, the

implementation link would represent somewhat different

information, but the fact that they join the same nodes

means that the implication link would probably have little

additional design structuring impact. For these reasons, it

is concluded that there is probably little additional R-to-

I-node (or vice versa) semantic information that a designer

would want, or be able, to include in the design model, that

is not captured already in the form of conventional imple-

mentation links. Therefore, the alternative of logical

implication between R-node and I-node will not be included

in the extended design structuring model.

- 161 -

4.4 APPLICATION OF EXTENDED MODEL TO THE 22-NODE DBMS
REQUIIEMEN.TS SET.

In order to illustrate an application of the extended

architectural design model described in this paper, a set of

22 requirements for a data base management system (DBMS),

studied earlier by Andreu (see (Andreu 78)), are analyzed

here. The 22 requirements, given in Section 4.4.1 below,

are only skeleton requirements for a real DBMS, but they are

quite satisfactory for demonstration purposes. In a later

report, the extended model will be applied to a larger, more

realistic requirements set.

In making the assessments reported here, the following

steps were followed.

1. The requirements as used by Andreu were adopted in
their entirety. The requirement statements were
then transformed into "template form" (see Chapter
3) and the Appendix for more information regarding
requirement statement templates).

2. The interdependency assessments made by Andreu in
earlier analysis of these requirements were also
used here. While this author (and, for present
purposes, DBMS designer) does not necessarily
agree completely with the appropriateness of the
interdependency assessments reported by Andreu, no
significant changes were made so as to maintain
comparability with the earlier results. The des-
criptions of these interdependencies, given in
Section 4.4.2, were clarified and expanded from
their original form.

3. Weights were assigned to each interdependency. The
weight interpretation used here was that of
strength of interaction, as described in Section
4.3.1. Assigned weights were either W (weak), A
(average), or S (strong).

- 162 -

4, Interdependencies were reviewed to determine simi-
larities. This review was conducted as follows:
first, an interdependency between, say, require-
ments n and m was selected. Then, the concept
underlying the description of this interdependency
was compared, mentally, to the underlying concepts
tor all other interdependencies in which either
requirement n or m was involved. Similarity
assessments were rated W, A, or S, similar to
interdependency assessments.

5. Requirements were again reviewed pairwise to
search for implication relationships, both lateral
and hierarchical. Because this experimental
requirements' set is quite small, each requirement
statement is rather highly abstracted. Hence the
likelihood of many logical interactions is small.
In fact, only three such relationships were iden-
tified.

6. Finally, interdependencies were reviewed pairwise
to determine logical relationships. For the same
reason as given in (5) above, few such relation-
ships were expected (only one was identified).

The results of these analyses are reported in the fol-

lowinq five sections. Section 4.4.1 lists the original DBNS

requirements (in template forr); 4.4.2 describes the

assessed interdependencies and the weights assigned; 4.4.3

gives the interdependency commonality assessments and their

assigned weights; 4.4.4 describes implication relationships

between requirements; and, 4.4.5 gives the implication rela-

tionships between interdependencies.

Fiqure 4.9 is a schematic representation of the

extended model as applied to the 22-node DBMS design prob-

lem, using the diagrammatic techniques discussed in Section

4.3. Section 4.4.6 includes comments on the process of mak-

- 163 -

ing the various kinds of assessments demanded by the

extended model.

- 164 -

4.4. 1 Sample set of 22 DBMS Requirements.

The requirements given below are slightly modified ver-

sions of the 22 requirements analyzed in (Andreu 78).

SAMPLE SET QF 22 DBMS REQUIREI.ENTS.

1. The database can have multiple logical organizations.

2. There can be user-meaningful logical data-item groups.

3. There can be user-meaningful relationships among data
items.

4. There can be algorithmic relationships among data items.

5. There will be logical operations involving data items,
qroups, and relationships.

6. Data items will be organized physically in a unique way.

7. There will be certain specific queries.

8. Frequencies of gueries will be non-uniform.

9. Data items may be referenced according to logical group
membership.

10. Data items may be referenced according to item value.

11. Data item retrieval will be as fast as possible.

12. The distribution of data items across gueries can be
siqnificantly non-uniform.

13. There will be an English-like language for expressing
queries.

14. The query lanquage will be unambiguous.

15. Query expressions will be non-procedural.

16. There will be different data item types (e.g., integers,
character strings).

- 165 -

17. Same type data items can be combined using certain
operations (e.g., addition, for integers; concatenation,
for character strings).

18. Certain data items may be represented using alternative
data types.

19. There will be a specific value range for each data item.

20. Data items can take values from a subset of their value
range.

21. Data redundancy will be minimized.

22. Storage costs will be minimized.

- 166 -

4.4.2 Requirements Interdependencies and Weights.

The assessed interdependencies and assigned weights for

the 22 DBMS requirements are given below. The numbers in

the "requirement pair" column refer to requirement state-

ments from the previous section. Weight codes are:

W - weak

A - average

S - strong.

INTERDEPENDENCIES BETWEEN DB.S REQUIREMENTS

Requirement Weight Interdependency Description
Pair

(1,2) A Logical views are definable in
terms of logical groups

(1,3) A Logical views are definable in
terms of relationships among
data ites.

(1,5) A Logical operations are carried
out in the context of the
logical view.

(1,6) S Various logical views must be
obtainable from a unique physical
view.

(1,21) A Data redundancy would otherwise
be useful in implementing
multiFle logical views.

(2,3) W Relationships may exist both
within and between logical
groups.

(2,5) A Logical groups may participate
in logical operations.

- 167 -

(3,5) S Logical relationships may be
involved in logical operations.

(4,17) A Algorithmic relationships among
data items must be consistent
with allowable operations.

(4, 18) A Algorithmic relationships must be
defined in terms of allowable
alternative data types.

(4,21) A Depending on how implemented,
algorithmic relationships can
help to avoid redundancy.

(4,22) S By virtualizing certain data, storage
requirements may be reduced through
use of algorithmic relationships.

(5,7) S Queries must be compatable using
defined operations.

(5,15) A Mapping(s) must exist between non-
procedural queries and the set of
logical operations.

(6,9) W Logical group membership should
unambiguously correspond to
membership in some part of the
unique physical organization.

(6,21) W A unique physical organization
favors non-redundancy.

(7,13) W All queries should be expressible
in the English-like query language.

(7,14) W All queries should be unambiguous.

(7,15) W All queries should be expressi-le
in non-procedural fashion.

(8,11) S Data physical organization should
reflect query type frequency
to minimize lookup time.

(8,12) A Frequencies of queries and
frequencies of data items within
queries determine frequencies
of data items' references.

- 168 -

(9,11) S Data item location via logical
group membership can affect
query response time.

(9,12) W Database searching mechanisms
should take into account
distribution of data items in
logical groups.

(9,21) A Representing every logical group
physically is an alternative that
goes against avoiding redundancy.

(10,11) V Alternative mechanisms for locating
data items by value have
efficiency implications.

(10,12) A Alternative mechanisms for locating
data items by value should take
into account their frequency of
reference iv queries.

(10,19) A Bounds checking can be used to
resolve references by data type.

(10,20) W A data reference value may fall
within the relevant range for that
data item, yet not be in the data
base.

(11,19) A Bounds checking can enhance
response time for certain queries.

(11,20) W Knowledge of relevant target
values may help in choice of
most efficient search strategy.

(11,22) S More efficient lookup strategies
usually require more memory.

(13,14) 4 The more English-like a query
language, the greater the scope
for ambiguous queries.

(14,15) W The less procedural the query
language, the greater the oppor-
tunity for ambiguity.

(16,17) Operdtions must be consistent with
the type of data item upon which
they act.

- 169 -

(16,18) A as for (16,17)

(16,22) W Certain data types may be stored
more compactly than others.

(17,18) S Cperations must al5ays be consistent
with the data types used.

(18,22) A Certain data types may be
stored more compactly then others.

(21,22) A Decreased redundancy means
decreased storage costs.

- 170 -

4.4.3 Interdeendeny Similarity Assessment.

Assessed similarity relationships and weights -between

pairs of interdependencies are given below. The numbering

scheme for interdependency pairs refers to the original

requirements$ numbers. For example, (1,2) corresponds to

the interdependency between reguirements 1 and 2. The

weiqht codes used are the same as used for interdependency

weiqhts (see Section 4.4.2).

INTERDEPENDENCY SIMILARITY ASSESSMENTS

Interdependency
Pair

(1,2), (1,3)

(2,5), (3,5)

(4,17),(4,18)

(4,21),(4,22)

(10,1 1),(1C,12)

(10,11), (10,19)

(10,19), (10,20)

(13,14) ,(14,15)

(16,17) ,(16,18)

(16,22), (18,22)

Weight Description of Nature
of Similarity

A Common issue regarding
definition of logical groups.

A Participation in logical operations.

S Comoon virtualization issue.

A Common virtualization issue.

A Similar efficiency issues.

A Both related to value
representation.

A Both related to data
reference by value.

S Both concern query language
design.

S Same issue.

S Both related to data type selection
issue.

- 171 -

4.4.4 implication Relationships Between Requirements.

Three implication relationships between requirements

were determined, shown below. The first two are one-way

lateral implications, the third is a two-way lateral impli-

cation. No hierarchical implication relationships were

detected in the 22-node DEMS set.

IMPLICATION RELATIONSHIPS BETWEIN REQUIREMENTS

Requirement
Pair

6,21

16,18

21,22

Nature of
Relationship

21 -- > 6

18 -- > 16

21 -- > 22

Comments

To minimize data redundancy,
the system ought to support
a unique physical organiza-
tion of data.

In order to be able to repre-
sent certain items using
various data types, the system
must support an appropriate
variety of data types.

Reducing data redundancy
tends to reduce storage costs.

- 172 -

4.4.5 Inilcation Relationships Between Implementation
Issues.

A single one-way implication relationship between

interdependencies was assessed, as given below.

IMPLICATION RELATIONSHIPS BETWEEN INTERDEPENDENCIES

Inter dependency
Pair

(10,11) , (10,12)

Nature of
Relationship

(10,12) -- >
(10,11)

Comments

An implementation of a
mechanism for locating data
items by value that takes
into account the items'
distribution across queries
will generally also be more
efficient in terms of re-
trieval response.

- 173 -

0 Requirement Node

Implementation link,
node, and weight

C-L- Similarity link and
weight

- - -- - Implication link

Figure 4.9

Graph diagram of DBMS design problem using extended model

- 174 -

4.4.6 Comments on Assessments.

In reporting his experiences applying the basic model,

Andreu commented on two aspects of assessing requirement

interdependencies. First, he pointed out that, although the

number of actual comparisons between pairs of requirements

increases as the square of the number of requirements, the

actual designer effort involved in making the assessments is

not nearly so large as this would seem to imply. The pri-

mary reason is that most of the requirements have no signi-

ficant interdependencies, and may be assessed quite rapidly.

In working through an experimental design consisting of over

100 requirement statements, Andreu found over 93 percent of

the requirement pairs were of this "easy" variety.

The second point Andreu made was that it turned out to

be relatively easy to conjure up "mental models," or imple-

mentation schemes, for pairs of requirements (Andreu 78,

paqe 234):

"From a personal experiential viewpoint, we must
say that the models emerged rather naturally from
confronting pairs ot requirements, and more easily
than expected."

In the course of the analysis performed on the 22-node

DBaIS requirement set in this report, Andreu's two points

were found to hold. Also, experience gained in the determi-

ndtion of the additional kinds of information - interdepen-

dency weights, interdependency similarities and associated

- 175 -

weights, and implication relationships - is summarized as

follows:

4.4.6.1 Weiqht Assessments.

It was earlier suggested by Andreu that it might be

possible to make weight assessments by counting the number

of different implementation schemes that underly a given

interdependency, then assigning a weight value based on the

total number of such schemes. This approach was not found

to be very useful, for two reasons.

First, most of the related requirement pairs were actu-

ally related via a single interdependency. However, in a

number of cases, the strengths of these single interdepen-

dencies were judged significantly different, hence deserved

different weight values. Andreu's proposed approach would

not properly handle this situation.

The other main reason is that many of the conceptual

models of interdependence were sufficiently general in

nature that it wouldn't be meaningful to try to "count" them

as individual implementation schemes.

Rather than attempt to use a mechanical approach to

determininq the weights to be assigned to each interdepen-

dency, the assessment was made judgmentally, i.e., by men-

- 176 -

tally examining the same conceptual models used in determin-

inq the interdependencies themselves in the first place. It

must be granted that such a judgmental approach to eliciting

the strengths of interdependencies would probably lead to a

fairly high variability among different designers in prac-

tice. However, this variability could be reduced somewhat,

possibly using a Delphi-like technique which would have the

designer re-think his assessments in light of assessments

made by other designers.(15) Also, some variability among

different designers is to be expected, inasmuch as the dif-

ferent designers perceive the many design issues in differ-

ent ways.

The above comments also apply to assessment of the

strengths of similarity relationships between iplementation

considerations.

4.4.6.2 Implication Relationship Assessments.

Few implication relationships were detected in the set

of 22 DBMS requirements. The main reason for this is that

the requirement statements were few in number and broad in

scope. It is expected that a more realistic (i.e., larger)

(15) There are many similarities between the Delphi technique
used in forecasting and "opinion averaging" analysis,
and some of the modern programming management methods
such as "structured walkthroughs."

- 177 -

requirements set would exhibit a higher proportion of

requirement and implementation issue implication relation-

ships.

Those relationships that were assessed in the 22-node

requirement set were actually identified rather easily. The

scanning of requirements statements or interdependency des-

cription statements to locate implication relationships

could be done rapidly, and related statements generally

stood out quite plainly.

On balance, the additional assessment time and effort

needed to determine the extra information required by the

extended model was somewhat less than that needed to deter-

mine the original basic interdependencies. The demands that

would be placed on a designer to supply this data are non-

trivial, but not out of the realm of reason, assuming the

designer believes that the final quality of the design

structure will be significantly improved as a result.

- 178 -

4.5 SUMMARY.

The argument in this chapter has been that there are

important additional kinds of information designers gener-

ally possess that cannot be represented in the basic archi-

tectural design framework developed originally by Andreu.

Certain classes of such untapped information, believed to be

most relevant and accessable via designer judgment and know-

ledge, have been identified. Possible schemes for repre-

senting much of this additional information in the context

of an extended graph model have been discussed.

To summarize the various kinds of information proposed

for the extended architectural design framework, consider

Figure 4.10. Shown here is the schematic representation of

certain design irnormation, using the basic design model,

involving five functional reguirements (1,2,3,4, and 5). A

designer, having studied the 10 requirement pairs, has iden-

tified five implementation interrelationships (1-2, 1-3,

2-3, 1-4, and 1-5).

Adding extension 1 to the representation - weights on

the implementation links - the designer's assessments might

be as shown in Figure 4.11.

Extension 2 is then added: the implementation issues

are explicitly represented as I-nodes, and similarities

among them are determined and added to the diagram. Assum-

ing a single such similarity relationship, suppose implemnen-

- 179 -

Figure 4.10

Basic requirements graph model

Figure 4.11

Interdependency weights added to model of Figure 4.10

- 180 -

Figure 4.12

Interdependency similarity information added to model of
Figure 4.11

A/
'0

A

-- (2)

Figure 4.13

Implication information added to model of Figure 4.12

- 181 -

tation nodes (1-2) and (1-3) are determined to represent

similar issues (within estimated 50 percent average over-

lap). This information is portrayed in Figure 4.12.

Finally, additional semantic information, in the form

of logical implications at both functional level and imple-

mentation level are assessed and added to the schematic. In

Figure 4.13, (1) represents a lateral implication from

requirement 1 to requirement 4; (2) represents a bi-direc-

tional lateral implication between requirements 3 and 4; (3)

is a hierarchical functional implication from 1 to 2;

finally, (4) is a logical implication relationship between

implementation issues (1,4) and (1,5).

It was not the intention of the discussion in this

chapter to imply that all alternatives under consideration

have to be brought to bear in modelling design structuring

information - only that they might be useful. Specifically,

ways in which such information could be incorporated into

design structuring algorithms will be the subject of the

next chapter.

- 182 -

Chapter V

GRAPH DECOMPOSITION ANALYSIS TECHNIQUES FOR USE WITH THE
EXTENDED SDf MODEL.

5.1 INTRODUCTION.

In his initial research on software architecture,

Andreu employed a simple binary, undirected graph model to

represent a system's requirements and their implementation

interdependencies. While this "bare bones" model proved

satisfactory for the early exploratory studies, it was also

clear that improvements, primarily in the form of exten-

sions, could be made so as to allow a designer to represent

additional design-relevant information.

Certdin of these potential extensions were identified

and discussed in the previous chapter. There it was argued

that the most significant such extension was the inclusion

of a weight factor to correspond to each assessed interde-

pendency. with this extension, the requirements graph

becomes a weiqhted graph, with a weight on each arc repre-

senting the strength of the corresponding interdependency.

Other possible extensions were also discussed there, includ-

inq relatioships between interdependencies, as well as cer-

tdin kinds of directed relationships.

- 183 -

An important part of the Systematic Design Methodology

is the set of analysis techniques that are used to perform

various kinds of decomposition analysis on a given require-

ments graph. Included here are procedures for calculating

the goodness index for a given graph partition (based upon

the "strength/coupling" criterion espoused by a number of

software design theorists; see, for instance, (Stev-

ens, et. al. 75)) ; procedures for calculating similarity

arid/or distance measures between pairs of for subsequent use

in clustering algorithms; clustering techniques themselves,

for performing hierarchical cluster analysis to generate

graph decompositions; and other types of decomposition ana-

lysis routines, including a new top-down hierarchical pari-

tioning algorithm developed especially for treating the SDM

graph decomposition problem (discussed in detail in the next

chapter).

Having extended the SDM representational framework, it

becomes necessary to analysis techniques so as to incorpo-

rate the information included in the new representation.

The major purpose of this chapter is to present, justify and

discuss certain new analytical mechanisms that were devel-

oped to treat the requirements decomposition problem in the

context of the extended SEM model. In addition, this chap-

ter will present other new analytical techniques and discuss

their pros and cons. Sore potentially valuable decomposi-

- 184 -

tion approaches, which have not yet been fully exploited in

the SD1 context, will be outlined. The results of a compa-

rative analysis among currently viable decomposition methods

will be presented. Two different approaches to incorporat-

inq interdependency similarity information into the graph

decompositon will also be briefly discussed. A medium-scale

example analysis illustrating the effectiveness of the

extended analysis technigues is presented, and contrasted to

the somewhat different results obtained for the same example

graph in earlier work.

Finally, appendices D and E intAude documentation and

an example execution trace of the computer package that has

been developed to implement the new analysis methods.

- 185 -

5.2 3DI ANALYSIS AND INTERDEPENDENCY UEIGHTS.

As stated above, the single most useful and important

extension made to the original requirements graph model

involves incorporation of weight factors corresponding to

the requirement interdependencies. In our work to date,

weights are chosen from the range [0, 1.0], with lower

values corresponding to "weaker" interdependencies. A use-

ful practical device in this regard is to select the weights

from three possible candidates: W (weak), A (average), or S

(strong). For computational purposes, these are mapped into

numerical values, for example,

S - 0.8

A - 0.5

w - 0.2

In this section we examine extensions that have been

made to various analysis mechanisms to incorporate such link

weiqhts.

5.2.1 Extension to Decomposition Goodness Index.

The concept of decomposition goodness has been captured

by quantifying a commonly accepted notion of software design

quality: Alexander (Alexander 64), Stevens (Stevens 75),

Myers (Myers 78) and others have convincingly argued that a

good software design is one that consists of modules that

possess high strength, or internal binding, and which simul-

- 186 -

taneously are weakly interconnected. In the SDM, this

"strength/coupling" criterion is quantified in the following

way. Suppose the graph representation of the target design

problem has been decomposed into a set of non-overlapping

subgraphs:

G 1,G2'''''' k
Then, if S. = the strength of subgraph G., and C.. = the

1 1 1J

coupling between subgraphs G. and G., we define
1 3

k-1 k

M = S. - C
1 / ij

i=1 i=1 j=i+1

and use M as a figure of rerit for the decomposition.

5.2.1.1 Strength and Coupling - Unweighted Graphs.

The quantities S. and C.. are themselves defined in1 13

terms of the structure of the corresponding subgraphs. Var-

ious arguments regarding how S. and C.. ought to be defined
1 1J

in the case of the original graph model (with unweighted

links) are discussed by Andreu (Andreu 78), and will not be

repeated here. The following definitions for these quanti-

ties were given:

(1) define S (strength of subgraph i) as:

S. = [L. - (n.-1)]/[n. (n.-1)/2
I i i i i

- 187 -

where L. = the number of links contained within

subgraph i,

n. = the number of nodes contained within

subgraph i.

(2) define C (coupling between subgraph i and j) as:

C =L /(n n)

where L. . = the number of links connecting nodes in

subgraph i to nodes in subgraph J,

n.,n. = the number of nodes in subgraphs i,j

respectively.

These definitions have strong intuitive appeal, and

seemed to work well in the case of the original graph model.

To clarify them further, consider the two-subgraph decompo-

sition of the graph shown in Figure 5.1. In that figure,

the total graph includes 11 nodes and 16 links. The values

of the various parameters used in calculating M are:

L1 = 6
L 6

L2

L12 3

n = 5

n 2 =6

So we find that

- 188 -

Subgraph 2

Figure 5.1

A simple decomposition.'

- 189 -

Subgraph 1

S = (L - (n -1))/(n (n1 -1)/2)
1 1 1 l1

= (6-(5-1))/(5(5-1)/2) = 0.20

Similarly,

S = 0.13

And,

C 12 L12 I/(n2

= 3/(5(6)) 0.10

Consequently, the goodness of this decomposition would be

calculated to be

M =S 1+ S2 - Cl2

= 0.230

5.2.1.2 An Improvement to the Strength Index.

In extending the measure definition, two kinds of

changes were incorporated. First, it was decided that a

small modification to the structure of the strength function

would improve its value qualitatively. It may be noted that

the value of Cij can range from 0 to 1. Now, the software

enqineering literature that addresses the strength/coupling

issue does not suggest that either factor is of primary

importance in design. Also, Andreu (Andreu 78, page 104)

presented some motivating arguments to illustrate that

weighting one component (either strength or coupling) une-

qually relative to the other could lead to counterintuitive

decompositions. Therefore it makes most sense that our

- 190 -

strength and coupling formulations should carry equal weight

in the determination of M. Unfortunately, as presently

defined, the strength term S. does not fall within the range

[0,11, but rather, in the range [0, 1-2/ni], while the cou-

pling term does fall in the range [0,1]. For instance, in

Figure 5.1, the maximum strength that could be exhibited by

the five-node subgraph number 1 would be 1-2/5 = 0.6., wher-

eas the maximum coupling that could occur between the two

subqraphs is 1.0. From this definition, larger subgraphs

would have higher maximum Si values, as the term 2/ni would

decrease as ni increases. These observations suggest that

the present tormulation for Si includes an (unwanted) an

bias in favor of larger subgraphs.

In order to remedy this problem, we may adjust the

definition ot Si slightly, in the following way. Redefine

S as:

Si = [Li - (ni-1)]/{ni(ni-1)/2 - (ni-1)]

where Li and ni are defined as before. The range of Si

accordinq to this definition is then [0,1]. There is only

one difficulty with this definition: Si is undefined when

ni = 2. Thus a special calculation must be carried out in

this case. Fortunately, since very small subgraphs are gen-

erally of little interest in SDM analysis anyway, the

- 191 -

approach taken is to simply assign two-node subgraphs a

strength value of 1.0 (modified by the link weight'factor,

Andreu did originally consider the above definition for

subgraph strength (Andreu 78, page 103) but rejected it

because of the presence of the singularity at ni = 2. He

also commented that both versions of the strength index tend

to produce similar results. Essentially, Andreu argued that

the modified version appeared no better than the original

one, and complicated things slightly. Therefore he kept the

original version.

We take somewhat the opposite stance here: the modified

strength definition given above is arguably better than the

original definition, and the singularity at ni = 2 is trivi-

ally avoided in the manner discussed above. First, the

modified strength avoids the large-subgraph bias, as dis-

cussed above. Intuitively, fully-connected subgraphs should

all have maximum strength, which they do under the modified

index. Second, the modified index provides a greater range

of possible strength values for a given node set, hence a

higher sensitivity to subgraph geometry, as illustrated

- 192 -

below:

S 0 0.167 0.33 0.50

modified S 0 0.33 0.67 1.00

Thirdly, there are precedents for the modified strength

index in other similar graph model applications in the lit-

erature (e.g., Estabrooke 66; Hubert 74). These authors

have argued in favor of the modified index, in contexts

similar to ours, as a good general-purpose subgraph strength

measure. Finally, the "nice" properties of the modified

index, and the parallels with the coupling measure, as sum-

marized below, provide additional indirect evidence in favor

of the modification.

Admittedly, none of the foregoing arguments is com-

pletely conclusive. Nonetheless, they present a cumulative

weight of evidence in favor of the modification. In the

final analysis, choices such as this one, in the present

research eftort, are perhaps guided more by intuition and

"what makes sense" than by provable theorems. (Thi; charac-

teristic is not unique to SDM, either.) While trying to

locate an example graph decomposition that would "prove" the

- 193 -

superiority of the modified strength index over the original

index proved fruitless, the indirect evidence cited above is

deemed substantial enough to warrant adopting the modified

index.

5.2.1.3 Link Weight Information and Similarity.

The other issue at this point concerns how link weight

information ought to be factored into the calculation of Si

and C . Consider first the strength function. Perhaps the

most obvious way of extending Si to incorporate link weights

would be to replace the L term with the sum of the weights

on the links within subgraph i. While appealing, this

definition has some drawbacks, the most signigicant of which

is the fact that the value of Si may then be negative, even

for fully connected subgraphs (subgraphs in which there are

no disconnected nodes). It may of course be argued that

there is nothing especially bad about a definition that

admits negative strength subgraphs. Nevertheless, since

most of our development effort in the SDM project has been

quided by what seems intuitively reasonable (lacking crite-

ria of obsolute correctness), it seems prudent to avoid

counterintuitive definitions such as this.

Consequently we will adopt a slightly different

extended definition of S . We accept the original defini-

tion as a reasonable starting point, and attempt to extend

- 194 -

it while maintaining its positive featives, especially its

residing in the [0,1] range. This may be accomplished in

the following way:

Define the extended S' function as
1

S.' = [L. - (n.-1)]/[n.(n.-1)/2 - (n.-1)]*(W./L.)

where L. and n. are defined as before, and
1 1

W. = the sum of the weights on the links in

subgraph i.

S has all the properties of the original S i, plus the new

property of reflecting interdependency weight information.

That is, the higher the summed link weights Wi (for a given

L .) the higher S ', as would be required by intuition.

In a parallel fashion, C.'. may be modified to capture
1J

the effect of inter-subgraph link weights, as follows.

Define the extended C .'. function as
1J

C.= [L . /(n.n .)]*(W. ./L. .)
lJ I i J 1J 1J

where L ., ,n , and n . are defined as before, and
1J 1 J

W.= the sum of the weights on the links
13

connecting nodes in subgraph i to nodes in

- 195 -

subgraph J.

Consequently it is clear that

C! W. /(n nj)

Once again, C! possesses all the properties of Cij (specif-

ically, it falls in the range [0,1], plus captures the

interdependency strength effects as represented by inter-

subqraph link weights.

The question again arises as to why the foregoing modi-

fications to capture link weight information were used, as

opposed to some alternative modifications. As before, there

is no "theorem" that can be used to "prove" that these are

the best modifications. Cumulative indirect evidence (e.g.,

maintenance of desirable properties, widespread use and

understandinq of arithmetic mean concept), together with our

best judgment and favorable experience to date (i.e., no

counterintuitive results for "obvious" decompositions) sup-

port the above choices. One additional point is also worth

mentioning. Empirical evidence with SDM so far indicates

that designers tend to produce a reasonably symmetric dis-

tribution of interdependency weights, so that using arith-

metic mean, as opposed to, say, median, introduces no appre-

ciable "long tail" bias.

- 196 -

In summary, the new (extended) definition of subgraph

strength, S'., exhibits three important properties:

1. it falls in the range [0,1];

2. it is normalized, in two ways:

a) in terms of subgraph size (for a given number
of links, larger subgraphs have lower
strengths),

b) in terms of "tree-relative connectedness" (sub-
graph strength is measured relative to the
minimum necessary to form a graph - i.e.,
"tree" connectedness) ;

3. it is invariant in terms of "proportional connect-
edness": regardless of n, a tree-connected sub-
graph always has strength 0, A fully connected
subgraph always has strength 1.0 (assuming all
links have unity weight).

Similarly for the new coupling definition C

1. falls in the range [3,1],

2. is normalized in terms of size of the coupled sub-
graphs, and

3. is invarient in terms of "proportional connected-
ness."

The strong intuitive appeal of these properties lends

credence to the appropriateness of the definitions of sub-

graph strength and coupling.

Finally, one additional important feature of these

definitions ot S! and C!j is the fact that they include as a

special case the original definitions (i.e., weight set to

1.0, S' and C' become S. and C.. as defined earlier).
i ij i 1

- 197 -

5.2.1.4 An Example.

To see how these functions work out in a caldulation,

consider Figure 5.2(a). Computations show that

L 1= 6, L 2 = 7, L 1 2 - 3

n = 5, n 2 = 6,

1 = 3.2, V2 = 3.8, W1 2 = 1.2

As a result,

S = (6-4)/(5(4)/2-4)*3.2/6 = 0.18 ,

S2 = (7-5)/(6(5)/2)*3.8/7 = 0.12 ,

and

C1 2 = 1.2/(5(6)) 0.04

Finally,

M = S1 + S2 - C 1 2 0.26

It may be noted that this value turns out to be quite close

to the value of 0.23 obtained in the earlier (unweighted

links) case, Figure 5.1.

Now, to illustrate the sensitivity of the new functions

to link weights, consider Figure 5.2(b). The decomposition

is identical to that of Figure 5.2(a), except that the

inter-subgraph link weights are slightly higher on the aver-

age, while the intra-subgraph weights are slightly lower

than before. The new M turns out to be

M = 0.318,

- 198 -

Subgraph 1 Subgraph. 2

Figure 5.2(a)

Decomposition of weighted graph.

Subgraph 2
Subgraph 1

Figure 5.2(b)

Same decomposition as for 5.2(a), with different weights

- 199 -

a value, as expected, somewhat higher than the previous

value.

5.2.2 Extensions to the Basic Similarjt Measure.

The central analytical task within the SDM involves

identification of good graph decompositions (those with the

highest possible H). One class of techniques for generating

decompositions involves transforming the graph decomposition

problem into a hierarchical clustering problem. Clustering

techniques have been studied intensively for a number of

years, and a rather large collection of different algorithms

is available (Hartigan 76). Some specific clustering algor-

ithms found useful is the SDM decomposition problem are dis-

cussed later in this report.

5.2.2.1 Basic Concepts of Inter-node Similarity.

Before any clustering methods may be applied to the SDM

graph decomposition problem, a measure of "similarity," or

closeness between each pair of nodes in the requirements

graph must be defined. Basically, a similarity algorithm

transforms a graph into a similarity matrix, which may be

used to drive various clustering algorithms to produce a

graph decomposition hierarchy. These relationships are

illustrated in Figure 5.3.

- 200 -

ORIGINAL
GRAPH

- =

w o

SIMILARITY MATRIX

Decomposition 1

Decomposition 2

Clustering
Algorithm

n

Decomposition n
Figure 5.3

Graph decomposition via cluster analysis - the process.

SIMILARITY

ALGORITHM

Clustering
Algorithm

Clustering
Algorithm

2

How ought such a similarity algorithm be defined for

weighted graphs? To answer this question we must have an

interpretation, in graph terms, of what it means for two

nodes to be "close" to each other. A reasonable approach

might be to use the concept of path length (or minimum path

length) between two nodes. Path length, of course, produces

a distance (or "dissimilarity") measure, so to obtain a

similarity measure some transformation would have to be

applied. Regardless, path length proves to be not very

appropriate as a measure in this context because it fails to

take into account the "environment" within which a pair of

nodes resides. For example, we would clearly want a good

similarity algorithm to produce a lower similarity between

nodes x and y in Figure 5.4(a) than between the same nodes

in Figure 5.4(b). In the first case, other things being

equal, we would want to cluster node x together with the

other three nodes on the left side, node y with the nodes on

the right. In the second case however it would make most

sense to cluster nodes x and y together, along with the

other nodes in the figure. However, assuming equal x-y link

weights (and assuming path length is defined as the sum of

the link weights along a given path through the graph), the

path length similarity measure would be equal in both cases,

thus would not distinguish the environmental differences

mentioned above.

- 202 -

Figure 5.4(a)

An inter-node similarity illustration.

Figure 5.4 (b)

A second inter-node similarity illustration.

- 203 -

5.2.2.2 The Core Set Approach.

A better approach is based on a definition first sug-

gested by Gottleib (Gottleib & Kumar 68), in the context of

clustering index terms for library design. This approach

begins with the definition of the "core set" of a given node

in a graph:

Definition. The core set 9(x) of a given node x is the

set of nodes connected to x in the graph, including x

itself.

If A = (a1 j) is the graph adjacency matrix, such that

0 if no links connect nodes i and j.

aig

wi, the weight on the link connecting

nodes i and j, if one exists, then

f(x) = { y: aij > 0) U Ix).

In Fiqure 5.5, two nodes x and y are identified, and

their associated core sets O(x) and O(y) are indicated. It

should be noted that the basic core set concept does not

include link weight information - i.e., link existence or

non-existence is all that is involved in the definition.

Hence a definition of inter-node similarity based solely on

core set information will again fail to incorporate link

weight information.

- 204 -

However the core set concept does provide a means for

including part of the graph environment information that the

path length definition failed to achieve. In particular, we

adopt Gottleib's measure as a starting point:

Definition. Let the basic similarity measure between

nodes x and y be defined as

P = v (x) nA f(y)j/A (x) U x(y)j

That is, P is the ratio of the cardinality of (number of

nodes in) of the intersection of the core sets to the cardi-

nality of the union of the core sets of nodes x and y. For

instance, in Figure 5.5,

A(x) fx,2,3,4,5,y}

fd(y) = {y,x,5,6,7,8}

I(x) A f(y) = 1 {x, y, 5) 3

I/(x) U O(Y) I I (x,y,2,3,4,5,6,7,811 = 9, so

P = 3/9 = 0.33.

Andreu tound that the core set-based definition of

inter-node similarity worked well for unweighted graphs

(Andreu 78). The bdsic reasoning behind this definition is

illustrated in Figure 5.6. The definition may be profitably

- 205 -

5 6

-
/

7

9000

Core Set

4,5,Y} 0(Y) = {YX,5,6,7,8}

Figure 5.5

The core set concept.

- 206

viewed from a "gravitational" point of view: the larger a

given node's core set, the stronger is the "force"- pulling

that node into the core set, and hence away from nodes not

in the core set. However, pairs of core sets often have a

non-empty intersection, as pictured in Figure 5.6. The lar-

ger this intersection, relative to the size of the two core

sets, the stronger the force pulling the two core nodes

together. Hence the ratio of core set intersection size to

core set union size captures the essential notion of inter-

node similarity central to the strength/coupling criterion

which underlies the entire graph decomposition problem.

5.2.2.3 Link Weights and the Core Set Definition.

The essential effect of link weights on the P measure

can be summarized as follows. For a given pair of nodes

{x,y} and corresponding core sets/6(x) andZ(y) (where it is

assumed 1i6(x) 0 0(y)j > 0), the higher the weights on the

links connecting nodes x and y to nodes in%6(x) f) (y),

relative to the weights on the links within O(x) and 0 (y),

the stronger the similarity between nodes x and y. Again,

the gravitational interpretation helps to make this clearer.

Link weights may be viewed as "moderators" of the gravita-

t ional ef f ect of Z (x) , X (y) , and Z (x) ti 0 (y) u pon x and y .

That is the link weight on links from x toA,(x) fl 9(y) and

- 207 -

Core Set Intersection,

0(X) 0(Y) -

Nodes X and Y are
pulled more strong-
ly together in (a)
than in (b)

(b)

Figure 5.6

Core sets - the "gravitational" interpretation

- 208 -

from y to f(x) A f(y) should be erployed to moderate the

i/(x) 11 6(y) I numerator term in the P function given ear-
xy

lier. Similarly, the weights on the links from x to other

nodes in X(x), and from y to other nodes in %(y), should be

used to moderate the 10(x) U O(y) I denominator term in P .

This effect can be accomplished as follows. As in the

earlier extensions to the definitions of strength and cou-

pling, we will make use of average (arithmetic mean of) link

weight to incorporate weight data into the similarity defin-

ition. Define the terms:

U = average (mean) weight on links joining nodes x
and y to nodes within Z(x) 0 ff(y)

V = average (mean) weight on all links in f(x) U,(y)

Then define the extended inter-node sioilarity measure

P' as
xy

P ' = P XY*(U XY/VXY)

= Ig(x) f) A(y) I*Ux/[O(x) U p0(y) 1*V J

As an example, consider the graph shown in Figure 5.7

(the same as the graph in Figure 5.5, with weights added to

the links). As earlier,

Z(x) = {2,3,4,5,y)

J(y) = (x,5,6,7,8)

- 209 -

Figure 5.7

Core sets of a weighted graph.

- 210 -

U = (0.5+0.4+0.7)/3 = 0.533
xy

V = [3(.6.4+.3+. 4)+(.4.7+.7+.6+.4))/10

.500 .

So P'= (3/9) (.533/.500) 0.356
xy

5.2.2.4 A Further Adjustment.

A variety of test cases was examined and the measure

P' behaved appropriately in almost all cases. There
XY

turned out to be one important instance in which P' did not
XY

produce the results that were to be expected, however. The

nature of this problem may be easily illustrated. Consider

the two 3-node weighted graphs shown below.

.5 .5

Case 1

.9 .9

Case 2

Clearly, we would desire that the similarity between x and y

in case 2 be greater than the same similarity in case 1.

However, due to the nature of the function P it. turns out

that in both cases U = V , so the ratio of these terms
xy xy

cancels out of the expression. The result is that the x-y

similarities are equal in both cases.

- 211 -

In general, this cancellation effect will occur whe-

never the following condition holds:

A(x) A A (y) = A (x) U / (y) - (x, y .

That is, whenever the core set union and intersection differ

only by the nodes x and y themselves. This is not at all an

unusual occurence, hence an additional modification must be

made to P in order to override this cancellation effect.
xy

A qood deal of experimentation with a number of posssi-

ble adjustments led to the following simple change: replace
2.

the term U with U , in the P definition. That is,

define

Pxy (UXY)PXY

=0 f(x) A /6(y) |*U X[10 (M U A (y) I *V]Y

This simple change really has the effect of scaling all the

P values by the factor U Y. In the special case described

above, it insures that the link weights on the x-y path do

have. an impact, as desired.

To see this impact, consider the two 3-node graphs dis-

cussed a moment ago. Now we would find that

Case 1 : P = (1/3) (0.5 /0.5) = .167

Case 2 : P = (1/3) (0.9 /0.9) = 0.300,

a much more reasonable result than that obtained earlier.

- 212 -

5.2.2.5 Some Test Cases Using P .

In order to better see the operational effect of the

similarity function P , it is worthwhile examining

sequences of simple graphs, in which a single factor is

changed from one step to the next. Figures 5.8 and 5.9 con-

tain some interesting sequences. In Figure 5.8, in the

sequence a-b-c-d, more and more nodes are added to 0(x) and

0(y) individually, but these nodes do not impact the inter-

section. All link weights are kept constant at 0.5. The

effect is to "pull apart" nodes x and y, i.e., to make it

increasingly desirable that two clusters should be created

by severing the x-y link. As is shown, the similarity Pxy

correspondingly decreases through the seguence, as is

desired.

Now in the sequence b-e-f-g, the graph structure is

held fixed while link weights are altered. In (b),

P = 0.25. In (e), the link weight WY is increased from

.5 to .9, while the other two weights are decreased to .2.

Clearly, we would expect the similarity PY to increase, and

it does (to C.93). In (f) the opposite changes to link

weights result in P decreasing (as expected) to 0.03.Xy

Finally, in the sequence c-g-h-i-j, similar intuitively

correct results are also seen. In particular, if (i) is

compared to (t) , it is seen that the impact on P is
XY

slightly greater in the former case, when link weights are

- 213 -

05

0.5--

(a)

5 .5 11111 5

.25-"

(b)

.30'

(g).

(h)Cc)

(i)
(d)

2 92

.934--

.030-

Cf)

Ci)

Figure 5.8

Examples illustrating behavior of similarity measure.

- 214 -

5 .5

-0.167 -

(a)

(b)

(c)

d
j

I

)?igure 5.9

Examples illustrating behavior of
similarity measure.

- 215 -

(g)

.33 '

(d)

changed from all 0.5 to the 0.9-0.2-0.9 pattern. This is

reasonable, since the extra nodes in (i) would be expected

to exert an even greater "gravitational" effect on x and y

than in (f) as a result of the link weight change.

The patterns exhibited in Figure 5.9 are equivalently

intuition-supporting. It should be noted that the graphs in

Figure 5.9 all have the property that

f(x) C) 0 (y) = (x) U ,0 (y) - [x,y J

Hence if the measure P' were used, the sequence b-e-f-gxy

would all exhibit precisely the same similarity between

nodes x and y. Obviously this result would not conform to

intuition: in (e), for instance, x and y would be expected

to be more similar than in (f). The use of PY instead of

P insures that this is the case.xy

- 216 -

5.3 CLUSTERING ANALYSIS TECHNIQUES USlING THE EXTENDED
MODEL.

The main purpose of cluster analysis is to "group simi-

lar objects" (Hartigan 75). While there is a large number

of individual techniques available in the clustering litera-

ture, they may be broadly categorized into two groups:

aqqlomerative (or "bottom-up") techniques and partitioning

("top-down") techniques. The former class of techniques

begins with each point (node) being viewed as a separate

cluster, then proceeds to join together the "most similar"

pair of clusters. The merging process is repeated until a

single cluster remains.

Partitioning techniques move in the opposite direction.

Beginning with a single encompassing cluster, they proceed

to break up the cluster into two (or more) sub-clusters.

After each cycle, a decision must be made as to which cur-

rent cluster should be partitioned next.

There are also other "hybrid" techniques that possess

aspects of both classes. "Leader" techniques, for example,

begin by partitioning the entire set into a set of espe-

cially strongly connected clusters ("leader" clusters) plus

unaliocated elements. Special methods are then used to

decide what to do with the unallocated points - i.e., assign

them to one of the leader clusters, or group some of them

together to form additional clusters

- 217 -

A discussion of clustering techniques used in the

earlier SDM analysis is given in (Andreu 78). In general,

the most effective techniques (in terms of both algorithm

execution speed and ability to locate good decompositions)

have been basic bottom-up clustering approaches (to be des-

cribed shortly). Andreu experimented with some other

approaches but found them to be too inefficient in terms of

of solution time to be used on graphs of nontrivial size. A

new top-down partitioning technique that exhibits good exe-

cution speed has recently been developed by this author, and

is compared in performance against the various clustering

algorithms in Chapter 6. Many other techniques exist that

have yet to be explored, and a few of the most promising

ones are briefly discussed in a later section of this chap-

ter.

5.3.1 Four Hierarchical Clustering Techniques.

At this point four different hierarchical clustering

techiques that have been used most frequently in SDM analy-

sis, and which are presently included in the SDM PL/1 analy-

sis package, will be described. All four techniques are

based on similarity (as opposed to distance) coefficients.

Figure 5.10 illustrates three clusters of graph nodes, shown

for simplicity as points. (Once a similarity matrix has been

computed, the information originally conveyed by the graph

- 218 -

(c)

Figure 5.10

Three subsets, ready for the next "merge" decision.

- 219 -

links and weights has been absorbed into the similarity

values, hence the actual graph structure loses importance.)

Assume that the original unclustered points (nodes) have

been partially clustered to the stage indicated in Fig-

ure 5.10. The next clustering decision is the determination

of the best pair of clusters, (a,b), (a,c), or (b,c), to be

merged at the next step.

For each of the methods (termed HIER1, HIER2, HIER3,

and HIER4) a criterion value is calculated for each cluster

pair that may be merged at that step. The cluster pair with

the largest criterion value is then merged to form a single

cluster, producing the next level up in the clustering hier-

archy. This process is then repeated until a single cluster

remains.

5.3.1.1 Single Linkage Clustering (HIER1).

The essence of the clustering decision involves the

question of what is meant by the closeness between two sets

of points, given that the closeness between each pair of

points is quantitatively known. Perhaps the simplest

interpretation of set closeness is that employed in the

"single linkage" clustering algorithm: the closeness between

two sets A and B is the closeness between the closest pair

of points (a,b) such that a e A and b c B. The algorithm

derives its name from the fact that only a single pair of

- 220 -

points (a,b) need be especially "close" in order that the

entire sets A and B be judged to be "close". While the sin-

qle linkage algorithm generally gives good results, it can

sometimes lead to unusual clustering patterns, notably the

"strung out" pattern illustrated in Figure 5.11.

Single linkage clustering, then, is formalized accord-

ingly:

For each pair of clusters (X,Y), calculate

PXY .max (pi) },
lE:X

jeY

where p.. = similarity between points i and j.

Then merge the clusters (X*,Y*) such that

PX*Y* >= PXY) XY.

5.3.1.2 Complete Linkage Clustering (HIER2).

Single linkage may be viewed as a "risk-prone" algor-

ithm: the algorithm is willing to presume that, if the point

pair (a,b) is close, the other points in A and B will be

close also, hence A and D should be merged. In contrast,

complete linkage is a "risk-averse" algorithm. Rather than

make the assumption stated above, this algorthm insures it

by seeking to merge the cluster pair such that the least

similar points are closest. hat is, under maximum linkage,

the pair of clusters to be merged at any stage is determined

by:

- 221 -

0

O' 0 0

0 0

0

010

0
O0

Figure 5.11

Single-linkage clustering anomaly.

- 222 -

For each pair of clusters (XY), calculate

P = {min (p..)
XY iSX 1)

jCY
Then merge the cluster pair (X*,Y*)

such that P ,Y, >= PX V XY.

Thus, single linkage follows a "maxi-max" rule, while

complete linkage is a "maxi-min" technique.

5.3.1.3 Largest Pre-merge Centroid (HIER3).

If sets X and Y contains points [x , , ... },
1 2n x

I, Y2' '' yn }. respectively, then the "similarity cen-
Y

troid" between these sets is defined as

nX ny

D = [1/(n n)]* P

i=1 j=1

where P the similarity coefficient between

points x. E X and y. e .

DXy is a measure of "average similarity" between the sets X

and Y.

The largest pre-merge centroid algorithm makes use of

the D measure: at any stage in the clustering, the cluster

pair (X,Y) with the largest value of D is selected for the
XY

next merge. Formally:

- 223 -

For each pair of clusters (XY), calculate E ,

then merge cluster pair (X*,Y*) such that

DX*Y* >= DXY ,Y

5.3.1.4 Largest Post-Merge Centroid (HIER4).

If set X contains points (x1, x ,# .' x } then the
1 2 n

"similarity centroid" of the set X is defined as:

n -1 nx

DX = [1/((n) (n -1)/2J* P
1)J

i=1 j=i+1

where P = the similarity measure between
1-J

points x. 6 X and x. 6 X.
1 J

Dx is a measure of the "internal similarity" of the set X.

The measure DX is used in the largest post-merge similarity

algorithm: the cluster pair (X,Y) such that, when merged,

exhibits the largest internal similarity value, is selected

as the next pair for merging. Formally, we have,

For each pair of clusters (X,Y), let Z <- (X,Y)

and calculate D . Then merge the cluster pairZ
(X*,Y*) such that DZ Z=U ~ Z

- 224 -

5.3.2 Cripar:atiye Analysis of Clustering Methods.

Each of the clustering algorithms described in the pre-

vious section makes good intuitive sense. There is no obvi-

ous a priori way of choosing among them - i.e., of determin-

ing which one would tend to produce the best results in a

typical SDM graph analysis. For this reason, all four

algorithms are included in the SDM analysis package, and a

user of the package may apply whichever one he chooses, or

all four.

However, it is worthwhile to explore somewhat the ques-

tion of dominance: does one (or mote) of the algorithms

tend to produce consistently superior decompositions rela-

tive to the others? A related question concerns efficiency:

are certain of the clustering algorithms significantly

faster executing than others in general? Of course, these

questions cannot be answered for all possible cases. How-

ever, the experiment reported here will at least give some

clues.

For this experiment, a "random graph generator" was

developed, a series of graphs generated, and each clustering

method applied to each graph. The results are discussed

below.

The randon graph generator (written in PRIME 403

extended BASIC) functions as follows. The user is requested

to supply the node count for the graph to be generated, as

- 225 -

well as the mean (Mg) and variance (Vg) of the distribution

of links-per-node for the target graph. In developing the

qenerator, it was assumed that the number of links per node

would follow a normal distribution.

The generator, for each graph node, then proceeds to

select normal random numbers from N(MgVg) (truncated at 0)

to use in allocating links to each node. To determine the

"recipient" node for each such link, the generator again

draws a random number, from the uniform distribution

U[1,nodecount]. Finally, the link weight is likewise ran-

domly selected, from U[0,1], modified so as to produce the

values 0.1, 0.2, ... , 0.9 with egual likelihood.

A series of 7 graphs was generated using the random

qraph generator, to be used in the comparative analysis.

Furthermore, it was felt that "random" graphs, while provid-

ing unbiased cases, probably do not exhibit as much struc-

ture as would real-world cases. Therefore, a set of six

non-random graphs, generated by hand to exhibit significant

clustering structure, was also included in the analysis.

The specifications of the various test graphs are given in

Table 5.1.

The results of the experiment are given in Table 5.2.

This exhibit shows the measure for the best achieved decom-

position for each of the four decomposition methods. A sum-

mary of the information from Table 5.2 is contained in

- 226 -

Graph ID
Number

Number of
Nodes

Mean Links
per Node

Variance
of LPN

Total No.
of links

40

randomly
gener-
ated

15

10

non-
random

22

15

10

6

6

6

Table 5.1

Specifications for random and non-random graphs.

- 227 -

1.0

1.5

1.5

1.5

1.2

1.2

1.5

61

42

37

27

31

24

14

2.5

3.5

3.5

3.5

4.0

2.5

3.5

3.3

2.9

2.6

2.3

2.3

2.3

1.6

0.9

0.5

0.5

0.5

0.5

Graph ID
Number

Number of
Nodes

M value for best located decomposition
(numrber of clusters in best result)

HIER1 HIER2 HIER3 HIER4

randomly
generated
graphs

15

15

15

10

non-
random

10

11

12

13

.076 (5)

.04 (1)

.035 (3)

.24 (3)

.08 (1)

.052 (1)

.049 (2)

.25 (3)

.39 (3)

.48 (3)

.28 (2)

.05 (1)

.06 (1)

.098 (5)

.04 (1)

.046 (5)

.24 (3)

.11 (2)

.052 (1)

.056 (3)

.29 (3)

.27 (2)

.48 (3)

.28 (2)

.05 (1)

.06 (1)

.036 (3)

.10 (2)

.079 (4)

.24 (3)

.08 (1)

.052 (1)

.056 (3)

.41 (4)

.39 (3)

.48 (3)

.28 (2)

.05 (1)

.06 (1)

.021 (2)

.07 (3)

.080 (3)

.15 (4)

.08 (1)

.061 (2)

.085 (2)

.41 (4)

.26 (3)

.48 (3)

.28 (2)

.05 (1)

.19 (2)

Table 5.2

Relative performance of the four hierarchical clustering techniques

HIER2 HIER3 HIER4

Clear winner

Tied for best

2nd or tied for 2nd

3rd or tied for 3rd

4th or tied for 4th

2

4

5

2

0

Table 5.3

Relative performance for the clustering routines.

Weight Category

4

3

2

1

0

Algorithm

HIER1

HIER2

HIER3

HIER4

Clear Winner

Tied for 1st

2nd or tied

3rd or tied

4th or ties

Ranking

26

32

33

35

Table 5..4

Ranking for clustering routines.

- 229 -

for 2nd

for 3rd

for 4th

HIER1

Table 5.3. There it may be seen that all the algorithms

except HIER1 (single linkage) produced a "clear winner" in

at least one test case (in particular, in at least one ran-

domly generated test case). HIER1, even though not produc-

ing a clear winner, did show the second-highest rate of pro-

ducinq "ties for best." The net result is that the first,

third, and fourth algorithms somewhat outperform the first,

although all four algorithms perform the decomposition task

reasonably effectively.

A simple effectiveness ranking may be produced by arbi-

trarily assigning a 4 for producing a "clear winner", 3 for

"tied for best", etc. The ranking that results is given in

Table 5.4. This ranking reiterates the fact that three of

the four algorithms (HIEh2, HIER3, and HIER4) are essen-

tially equivalently powertul in determing good decomposi-

tions, while the fourth (HIEB1) seems somewhat less effec-

tive.

The conclusion to be gained from this effectiveness

test is that it is useful (and important) to have a variety

of algorithms at hand to bring to bear on such decomposition

tasks. There is a nontrivial risk that, in amy given prob-

lem, any one algorithm will produce a considerably inferior

graph decomposition.

All the clustering algorithms are reasonably fast in

terms of computer execution time. Rough measurements

- 230 -

obtained during the foregoing tests indicate that HIER1 is

somewhat (e.g., 40 percent) faster than HIER2, HIER3, and

HIER4. The latter three all seem to execute with roughly

equal speed. As a benchmark, each of the latter three

algorithms required approximately 3 CPU seconds on a 370/168

to perform complete clustering on the 40-node graph used in

the comparative analysis. All the clustering algorithms are

bounded by an execution speed proportional to n2

5.3.3 A "Greedy" Custering Algorithm.

A somewhat different approach to clustering, motivated

by the work of Ward (Ward 63), was also investigated. Ward

suggested that a general approach to clustering might be

based on the notion of seeking to optimize some objective

function to be specified by the investigator. Ward's own

approach was to maximize the mean squared error function;

that is, at each clustering step, the cluster pair to be

merged is the pair that leads to the minimum increase (or

maximum decrease) in the within-group mean squared error.

Ward's particular criterion is only applicable to clustering

problems wherein corresponding to each point is a vector of

data values (e.g., the points might be individuals, the data

values mniqht be heiqht, weight, etc.).

Ward's qeneral objective function maximization approach

may be applied to the SDM graph clustering problem, by

- 231 -

adopting a different objective function. The most

appropriate candidate for objective function is the decompo-

sition goodness measure, M. Following this criterion, at

any stage in the clustering, the cluster pair (pq) would be

merged was greater than for all other potential cluster mer-

gers. More precisely:

At stage k, there are t clusters,

(Ck 1 Ck ... Ckt
Let Dk = {C k, Ck ' # ' ktDk k 'k ' . ., . .C1 t 1 3D k(i~j) =(C k ,Ck 2 0 on (C k U C k, so* C k

(= - C - C) U [C U C)k k. k. k. k.
1 J 1 J

= the new decomposition obtained from Dk

by merging clusters Ki and K.

Define AM (i,j) = N(D (ij)) - M(D).
k k k

Then merge clusters K., and K , such that

Ank(i*,1*) = max (AHk(i'l)).
i,J

Since this approach to clustering follows a path of

local steepest ascent, termed a "greedy" algorithm: the

algorithm tries to "get all it can," for the given objective

function, at each step. Of course, such an algorithm is

also "myopic," in that it only concerns itself with the best

move at each stage; large increases early in the clustering

may lead to poor results later on. It is not clear at this

- 232 -

point whether such a greedy algorithm would do as well as

the more conventional techniques discussed earlier.-

In order to study the effectiveness of the greedy

approach, this algorithm was programmed in PL/1 and added to

the interactive analysis package. Certain of the graphs

used in the comparative analysis reported in the previous

section were also decomposed using the greedy algorithm.

First ot all, the "greedy" algorithm in its present

form is essentially inapplicable, as it is simply too inef-

ficient. Decomposing a 10-node graph, for example, requires

on the order of 15 370/168 CPU seconds. This is not to say

that this algorithm need necessarily be hopelessly slow,

however, as discussed below.

Putting aside efficiency considerations momentarily,

the "greedy" algorithm seems to perform in an unusual man-

ner. In two of the test cases studied (cases 6 and 7) , this

algorithm produced the same decomposition as the best of the

other four techniques. However, in two other cases (cases

10 and 11), "greedy" was unable to find the best decomposi-

tion, evcn though all four of the other algorithms did find

it. While the cases studied here are limited because of the

above mentioned ef ficiency problems, "greedy's" performance

seems decidedly mixed.

The efficiency problem with "gLeedy" stems from the

fact that a large number goodness) must be made, especially

- 233 -

during the earlier clustering stages. In its present form,

these M-calculations are carried out in their entirety

(i.e., no approximations are introduced). While any given

M-calculation is not terribly time-consuming (requiring per-

haps .02 CPU seconds), the large number of such calculations

made by "greedy" rapidly add up. For example, in the first

clustering staqe alone, for a simple 15-node graph, there

would be

(14 + 13 + 12 + ... + 1) = 7(15) = 105

such calculations, requiring approximately two CPU seconds.

The "greedy" algorithm could probably be made accept-

ably efficient by developing an approximation to the N cri-

terion that is employed within it. Such an approximation,

potentially suitable to this algorithm, has been developed

on behalf of yet another graph decomposition technique

entirely, the interchange algorithm (discussed in detail in

the next chapter). However, in light of the mixed perfor-

mance of "greedy" in the early studies, as its applicability

and use within the "greedy" algorithm has not yet been

explored.

5.3.4 Other Approaches to Graph Decomposition.

In this section, a variety of other approaches to the

decomposition of weighted graphs will be identified and

briefly discussed. while the techniques to be presented

- 234 -

here (with one exception) have not been incorporated into

the SDm analysis packaqe, they are all potentially appropri-

ate for that purpose, pending further testing. Future

extensions to the package might include one or more of these

techniques.

5.3.4.1 A Leader Technique.

The basic idea underlying leader (sometimes called

"core") techniques is to isolate a few non-overlapping,

strongly coherent subgraphs, then to perform additional ana-

lysis to determine what to do with the leftover nodes (if

any).

Following the thinking underlying the goodness measure

M, we would like to identify leader subgraphs that have

especially high strength, and which are relatively weakly

coupled to the other subgraph nodes (notably, to nodes in

the other leader subgraphs).

Andreu derived such an aljorithm for identifying leader

subqraphs, described in (Andreu 78, pages 124-133).

Andreu's algorithm is based on the notion of node connectiv-

ity. The connectivity of node i is simply the number of

nodes that are linked to node i (recall Andreu worked with

binary links). The algorithml then

1. isolates a subset, U, of nodes with highest con-
nectivity;

- 235 -

2. finds the node of this subset with the largest
"kernel subset," where the kernel subset of node i
is the set of all nodes that are members of CS
(the core set of node i) but not members of the
core sets of other nodes in the subset U;

3. isolates that kernel subset as a leader subgraph,
and reduces the original graph accordingly;

4. repeats the first three steps for the remaining
nodes in U until of the possible stopping condi-
tions is reached.

This leader subgraph technique could be extended to

analyze graphs with weighted links by re-defining the con-

cept of connectivity. The following definition of c , the

connectivity of node i, would serve to identify those nodes

that are both thickly (many links) and strongly (high link

weights) connected in the network:

Let CS. core set of node i

Then c. = connectivity of node i

= ia..

jECS
ji

That is, c. is simply the sum of the weights on the links

within CS..
1

Re-defining c . in this fashion, then applying the

remaining steps of Andreu's algorithm, will tend to isolate

leader subgraphs which are both thickly and strongly con-

- 236 -

nected within themselves. Both characteristics are impor-

tant for qood leader subgraphs, as it is equally important,

in decomposing the requirements graph, to avoid cutting a

large number of links as it is to avoid cutting links with

high weights.

One potential difficulty with the leader subgraph tech-

nique, one which Andreu does not really address, concerns

what to do with leftover nodes (i.e., nodes that do not

become members of one of the kernel subsets). There are

various approaches that may be taken - lump leftovers into

the subqrapt to which each is most strongly connected, group

certain leftovers to form a new cluster, etc. - but specific

implementation techniques may prove challenging.

5.3.4.2 The Bond Energy Approach.

A new cluster analysis algorithm was developed by

McCormack (McCormack, et. al. 71), and has recently been

applied effectively to certain cluster applications similar

in nature to SD3 decomposition (Hoffer & Severance 75).

This technique operates directly upon a graph adjacency

matrix. By permuting the rows and columns of the matrix in

such a way as to push numerically larger array elements

together, this algorithm serves to identify the natural

qroups and clusters that occur in the data, as well as the

associations of these groups with one another. The authors

- 237 -

have named their algorithm the "bond energy" technique.

Central to it is a "measure of effectiveness", or ME, which

is used to quantify the "clumpiness" of a given permutation

of the rows and columns of the array. The ME is larger for

an array which possesses dense clumps of numerically large

elements as compared to an equivalent array in which the

rows and columns have been permuted so that the large ele-

ments are more uniformly distributed.

McCormick suggests the following measure of effecti-

ness:

N N

ME = 7a. (a +a + a + a
ij i+1,j i-1,j i.jJ+1 l-

i=1 j=1

Essentially, this ME is the sum over all node pair of the

"bond energy" for each node pair, where bond energy for

nodes (ij) is calculated as

a (a + a + a + a -)
ij i+l,j i-1,j i,j+l i,j-1

In matrix terms, the bond energy for node pair (i,j) is the

product of the four nearest-neighbor adjacency values

(weights) for that node pair.

The algorithm used to locate the row/column permutation

with the highest ME involves reducing the overall total

(N!)2 permutations to 2N calculations by applying the near-

- 238 -

est-neighbor feature of the maximand. While the algorithm

does not guarantee optimal ME, its use has shown it to pro-

duce very good results in general. This algorithm basically

involves arbitrarily placing one column in a permuted posi-

tion, then placing each remaining column in turn in the

position that produces the greatest contribution to ME. In

the qeneral case, this procedure would have to be repeated

on the matrix rows; however, in the case of a symmetric

matrix (the present case), no such row permutations need be

executed.

The bond energy algorithm (BEA) suffers from the disad-

vantaqe that it gives no hierarchical trace. That is, it

produces a single best clustering, not a hierarchical

sequence of clusters. Conseguently, additional mechanisms

would have to be added "on top" of the BEA itself to allow

such exploratory marginal analysis. Furthermore, some of

the clustering and partitioning algorithms discussed earlier

miqht be effectively combined with the BEA to allow such

marqinal analysis to be performed easily.

The BEA was illustrated by McCormack in an example

problem that bore much similarity to the usual SDM context.

This suqqests that it might be a particularly fruitful

avenue for investigation for SDM analysis.

- 239 -

5.3.4.3 Node Tearing Techniques.

The central idea underlying this class of decomposition

techniques is to locate small separating sets - i.e., sets

of nodes with low cardinality such that their removal from

the graph splits the graph into two unconnected subgraphs.

In this sense, the network is said to be "torn" in half -

hence, node tearing.

A new algorithm for node tearing was reported recently,

by Sangiovanni-Vincentelli (Sangiovanni-Vincentelli, et.

al. 77). Many of the basic concepts used in this technique

are similar to those used by Andreu in the leader subgraph

approach discussed earlier (core set, connectivity, etc.),

and their algorithm has much the same flavor as that of

Andreu's, although its objective is somewhat different.

In particular, the algorithm proposed by Sangiovanni-

Vincentelli presumes a binary graph. As in the case of the

leader algorithm, however, it appears that it is feasible to

extend it to incorporate link weight information into its

operation. The key decision point in the algorithm is the

choice of the "next iterating node" (see the reference for

details). Sangiovanni-Vincentelli suggests a "greedy" stra-

tegy for making this decision, namely, to choose the node

that minimizes the connectivity of a certain subgraph. If

this criterion were changed, to "minimize the sum of the

weights on the links within that subgraph," the modified

- 240 -

algorithm should function properly and take account of link

weights appropriately. In particular, in the case where

link weights are all equal, this modified algorithm should

lead to the same results as the original.

5.3.4.4 The Interchange Algorithm.

Another top-down hierarchical partitioning technique

has been developed, by the present author, specifically for

the SDM graph decomposition problem. This algorithm succes-

sively partitions the "current graph" into two subgraphs,

using a criterion derived directly fran the decomposition

goodness measure, M. Its detailed operation, and examples

of its use, are given in the next chapter, so it will not be

further elaborated upon here.

- 241 -

5.4 A CASE STUDJ USING INTR DEPENENCTjQ WEIGHT EXTENSIONS.

In order to illustrate the application of the various

techniques discussed in this paper, including the use of the

SDM analysis package, we present here a decomposition analy-

sis of a particular small design problem. The problem

addressed is one that has been used in this research effort

in the past: a set of 22 requirements and interdependencies

for the design of a database management system. The

requirements were originally developed as a simple test veh-

icle in an early phase of the SDM research (see Andreu 78),

and have been referred to on a number of occassions. In

particular, we made use of the 22-node system in illustrat-

ing various potential extensions to the SDM representational

model in the previous chapter.

Source statements of the system's requirements, and the

interdependency relationships, are given in the foregoing

reference. Figure 5.12 shows the graphical representation

for this design problem. The interdependency weights are

given in coded terms, as discussed earlier: V means "weak,"

A, "average," and S "strong." A similar scheme is used to

label strengths of interdependency relationships.

In the earlier analysis of this 22-node design problem,

the basic (binary) graph model was used. An analysis of

that graph produced the folowing best decomposition:

- 242 -

NODES INCLUDED

1,2,3,5

6,9,21

4,16,17, 18,22

8,10,11,12,19,20

7,13,14,15 .

This decomposition is illustrated in Figure 5.13.

5.4.1 Results from the Case Study.

Under the extended model and associated analytical

techniques, a somewhat different clustering results. The

results produced by each of the hierarchical clustering

methods, and by the interchange partitioning technique, are

given below.

METHO D

HIEF1

H1Fb2

HIER 3

HILE4

INTERCH

IBEST P1

0.04

0.28

0.33

0.23

0.38

NUMBEE OF CLUSTERS

1

3

3

3

4

- 243 -

CLUST Eh

1

2

3

4

5

Figure 5.12

The 22-node DBMS weighted requirements graph

- 244 -

Subgraph 5

.bgraph 1

Subgraph 2

Subgraph 4 Subgraph 3
Figure 5.13

Best decomposition of the unweighted 22-node graph

- 245 -

Thus it is seem that the interchange meth69d produced the

best decompostions. The clusters resijting from its execu-

tion were:

CL aIT I.ER *.119 U 11099M,

1 1,2,3,5,6

2 4w,16,17,18,21,22

3 S,9,10 ,11,12,19,20

4 7,13,14,15

This clustering is illustrated in Figure 5.14.

The difference between the two results resides entirely

in the treatment of nodes 6, 9, and 21. In the earlier

oase, these three nodes were lumped together to form their

own cluster. However, in the present analysis, each node

has been moved into one of the other clusters. Comparison

betveen Figures 5.13 and 5.14 indicates the reason for the

abanqe: the difference resides in the relative link weights

an the lipks extending from nodes 6, 9, and 21. It may be

seen that, by partitioning in the manner iluastrated in Fig-

upe 5,14, two links of "09" weight and twq of "A" weight are

cet, It the partition of Figure 5.13 were imposed, however,

tvo *S0 links, three "A" links, and one "U" link wogid have

been aut, Clearly, latter partitioping is more "costly" in

terms of link cuts. If the strength of subgraph (6,9,21)

- 246 -

Subgraph 4

Subgraph 1

Subgraph 3
Figure 5.14

Best decomposition of the weighted 22-node graph

- 247 -

was quite high, this more costly set of link cuts might have

"paid off"; however, as the links (6,9), (6,21), and (9,21)

are not particularly strong (having weights of W, W, and A

respectively), such is not the case. Consequently, the new

decomposition produced by the extended analysis techniques

can in this case be reasonably justified as being an

improvement over the earlier approach.

As part of the documentation of the SDM analysis package

included in the appendices, the terminal session that pro-

duced the foregoing results for the 22-node graph is

included as Appendix E.

- 248 -

5.5 SDM ANALYSIS USING OTHER MODEL EXTENSIONS.

To this point we have addressed in some detail the

question of how to extend the key analytical mechanisms used

in performing SDM decomposition analysis to incorporate

interdependency strength factors. However, interdependency

strength is not the only extension to the SDM representa-

tiondl model proposed in Chapter 4. Other proposed exten-

sions include

1. interdependency similarity relationships and
accompanying strength factors;

2. implication relationships between requirements and
between interdependencies;

3. hierarchical implication relationships.

That chapter made it clear that the various kinds of

model extensions that were proposed there were not necessar-

ily appropriate bases for extensions to the full set of

decomposition techniques. To take a case in point, it may

be clear that directed (implication) relationships between

requirements exist, are relatively easily identified by sys-

tems analysts, arid may be appropriately represented in the

SDI model. It may not, however, be at all obvious how the

information contained in sucL relationships ought to be used

to affect good decomposiitons of the requirements graph.

- 249 -

Study of the kinds of model extensions identified in

Chapter 4 has suggested that some of the proposed extensions

may be more generally relevant than others. In particular,

application of all the proposed extensions to a particular

case study, the 22-requirement DBMS discussed in the previ-

ous section, indicated that, of all of the proposed secon-

dary extensions, the one most frequently and usefully

applied was interdependency similarity relationships. The

DBMS example discussed there gave rise to ten such relation-

ships, whereas only three inter-requirement implication

relationships could be identified, and only one hierarchical

implication relationship identified.

On the basis of this example, and of the broader insight

gained in studying it and other similar sets of requirements

(especially the application study discussed in Chapter 7),

it may be tentatively concluded that, if the SDM analysis

techniques are to incorporate any of these "secondary"

extensions to the main weighted-graph techniques reported

earlier in this paper, then attention should be directed

toward interdependency similarity relationships first. The

purpose of this section is to explore possible ways in which

this may be accomplished.

- 250 -

5.5.1 Interdependency Similariti Relationships.

To briefly review the nature of interdependency similar-

ity relationships (hereafter termed "ISR's"), the following

is reproduced from Chapter 4:

"Two or more links (interdependencies) may
represent the same, or closely related implementa-
tion issues. A simple example of this possibility
is illustrated in Figure 5.15. The links joining
requirements 1 and 2, and 2 and 3, both represent
the interdependency "ISAM organization," an imple-
mentation consideration through which both
requirement pairs (1,2) and (2,3) are deemed by
the designer to be interdependent.

In this example, the two links represent
entirely the same implementation issue. In gen-
eral, the degree of "sameness" between two or more
implementation issues will generally be less than
100 percent in the eyes of the designer, due to
the inherent fuzziness in the specification of
both functional requirements and implementation
schemes. The judgment as to whether a given pair
of links "really" represent the same implementa-
tion issue is, again, a designer decision.

Going one step further, a weight factor could
be associated with the similarity assessment to
represent the extent to which the designer judges
the two implementation issues to be the same.
That is, such a weight would correspond to the
extent of overlaP between the implementation
issues, in the designer's estimation."

The question at this point is not what ISR's are, not how

they ought to be logically represented or viewed, but rather

how they may be incorporated into the decomposition analy-

sis. Two different approaches present themselves, both of

which have been investigated.

- 251 -

5.5.1.1 Modification of Similarity Coefficients.

The main effect of ISR's is related to the effect of inter-

dependencies themselves (essentially, an ISR may be viewed

an an "interdependency between two interdependencies";

alternately, they may be likened to Chen's concept of "rela-

tionship relations" (see Chen 77)). Whereas the importance

of interdependencies is to suggest that the associated

requirements be grouped together in a decomposition, the

proper interpretation of an ISR is to suggest that the asso-

ciated interdependencies are related and ought to be grouped

together. However, since interdependencies are not

"things," this statement has to be taken to mean that the

system requirements which correspond to the related interde-

pendencies ought to be grouped together.

The foregoing is actually harder to say than illustrate.

Fiqure 5.16 indicates that interdependencies (1,2) and (2,3)

are related. A good decomposition algorithm ought, there-

fore, to operate so as to group (1,2) and (2,3) into a com-

mon subgraph - i.e., to group requirements 1, 2, and 3

together. This is not to say that such a grouping must

occur, of course, only that our preference for such a decom-

position would be stronger than would be the case were there

ISR no so assessed.

One possible approach to adjusting the decomposition

algorithms to take account of this issue would be to modify

- 252 -

Ability to perform
sequential file processing

Very fast 3 Single-key file
retrieval direct access
response capability

Figure 5.15

A simple interdependency similarity relationship (ISR)

Interdependency
similarity

relationship
(ISR) .

Figure 5.16

Representation of the ISR of Figure 5.15

- 253 -

the particular similarity coefficients associated with the

affected requirements. In the foregoing example, the simi-

larity coefficients (p12' 13' 23' 21' 31' 32) would all need

to be modified - i.e., increased - so as to reflect our

judgment of the extent to which the ISE makes these three

requirements "more similar" to each other than they other-

wise would be.

As usual, there is no objective rule to be followed, and

we muct be guided again by our intuition. However, some

considerations to be kept in mind include:

1. however much the increase in the particular coef-
ficients, they should not be increased beyond 1.0,
the accepted upper limit for p..;

1J

2. a weight factor may be attached to the ISE, in a
manner parallel to that for interdependency
strengths, and may be used in the adjustment of
the similarity coefficients.

A reasonable similarity modification technique, which

observes the two conditions given above, may be stated as

follows. Define the modified similarity between the

affected requirements to be

p = min (1.0, p. *(1.0+v) },

where i and j range over the three (or possibly four)

affected node pairs, and v is the weight on the associated

ISR.

- 254 -

For instance, if v were taken to be 0.5, the suggested

modification would increase each affected similarity coeffi-

cient by 50 percent, to a maximum of 1.0.

This similarity modification approach has been incorpo-

rated, for testing purposes, into the SDM analysis package.

Its efffectiveness as compared to a different approach (to

be discussedd momentarily) will be reported below.

One serious shortcoming ot the similarity modification

approach is that its effect is brought to bear only through

the use of the hierarchical clustering algorithms. It is

not driven by a modification to the underlying graph itself.

Another shortcoming is that its impact is not reflected in

the decomposition goodness measure K, since M depends only

on the underlying graph structure and the particular decom-

position at hand, not on the inter-node similarities. The

only real impact of this approach is to guide the clustering

process along a (possibly) different, presumably better,

path than would otherwise be the case. We will see that the

second suqqested approach, explored next, manages to avoid

these drawbacks.

5.5.1.2 Modification of the Graph Structure.

The major drawbacks to the first approach to incorporat-

inq ISE information into the decomposition process hinged on

the fact that only the similarity coefficients, not the

underlying graph structure, was impacted.

- 255 -

If we study the underlying structure, it is clear that

what is needed is a modification that will transform each

ISR into a mechanism that serves to more strongly "hook

together" the corresponding requirements nodes that would

otherwise occur. A simple solution is to transform each ISE

into a new graph node, with links to each connected require-

ment node. Since these new nodes do not represent original

requirements, but rather ISR's, they are termed "ISR-nodes."

Examples of ISR-nodes are given in Figure 5.17(a) and (b).

The ISE-node approach does meet all the important

requirements for incorporating IS information into the ana-

lysis:

1. since ISR-coupled nodes are now more strongly
bound together, through the medium of the new
ISR-nodes, decompositions will be more likely to
group such nodes together than otherwise;

2. since this technique modifies the underlying graph
structure, all decomposition methods, including
the interchange technique, continue to apply;

3. the goodness measure will reflect the impact of
ISR information.

The ISE-node approach seems the preferable method, and

this is borne out in a case study, reported next.

5.5.2 An Example of the Use of IS Data.

For a case study, we will consider again the set of 22

DBMS requirements studied earlier. Interdependency similar-

- 256 -

)

ISR

ISR Node-

Figure 5.17(a)

Modification of a 3-node subgraph to include an ISR node.

ISR SR Node

Figure 5.17 (b)

Modification of a 4-node subgraph to include an ISR node.

-257 -

ISR Weights

s - strong

a - average

w - weak

Figure 5.18

The 22-node requirements graph including ISR's

- 258 -

A W
aw

W 3
A

A A

S A

6

W W

9 A21

A

SS
SS

11 22 g .

A s A

W

W

9 A s

20
W A

a 16

10

Figure 5.19

Best clustering of 22-node graph with~
ISR's not included.

- 259 -

ity relationships (ISR's) were assessed for the requirements

graph in Chapter 4, and associated strength factors were

assigned. Figure 5.18 contains the relevant information in

graphical form. Further details are available in Chapter 4.

In the first part of the test, the original graph struc-

ture (with no ISR-nodes) was input to the SDM analysis pack-

age, and the best decomposition located using only the clus-

tering algorithms. This turned out to be:

CLUTER REQUIREMENT NODES

1 1,2,3,5,6,7,13,14,15,21

2 4,16,17,18,22

3 8,9,10,11,12,19,20

For this decomposition, M = 0.33. This decomposition is

illustrated in Figure 5.19

Then the MODSIM command (not described in Appendix D, as

it is still experimental) was executed, and the appropriate

similarity coefficients modified as discussed earlier. A

second decomposition analysis resulted in a somewhat differ-

ent decomposition, namely:

- 260 -

CLUSTEE REQUIEMENT NODES

1 1,2,3,5

2 7,13,14,15

3 6,9,21

4 4,16,17,18,22

5 8,10,11,12,19,20

The qoodness measure turned out to be M = 0.20. The decom-

position is shown graphically in Figure 5.20.

These results are reasonable and believable, as is also

suqqested by Figure 5.18. The inclusion of the assessed

ISR's ought to move the optimal decomposition in the direc-

tion of four or five "clumps," rather than the three

obtained earlier. However, since the underlying graph was

not modified, it is not surprising that M is somewhat lower

in the second case.

The second test involved changing the graph structure to

include 10 new ISR nodes, then analyzing the resulting

32-node graph in the usual manner. The optimal result

obtained froir this analysis is slightly different (and, we

will arque, somewhat preferable) from that obtained in the

first (similarity modification) analysis. It is:

- 261 -

Figure 5.20

Best cluster decomposition of 22-node graph using
the similarity modification approach to treating ISR's

- 262 -

CLUSTER RP UlIREM~tiT NODES

1 1,2,3,5,6

2 7,13,14,15

3 4,6,16,17,18,21,22

4 8,9,10,11,12,19,20

with M = 0.58. It is shown in Figure 5.21.

First of all, this new M is higher because it is calcu-

lated with respect to the 32-node graph, not the 22-node

version. Thus, it is not really comparable to the earlier

value.

Secondly, the optimal decomposition in this case includes

four, not five, clusters. From the graphs (Figures 5.20

and 5.21), one would have a rather hard time determining

which decomposition - the four-subgraph one or the five-sub-

qraph one - was better by inspection. However, it is seen

that the above four-cluster decomposition manages to keep

together nodes 21, 22, and 4, which were jointly linked by

an ISE node as well as linked pairwise by normal interdepen-

dencies. If it weren't tor the additional ISR links, there

would be little to judge between the two alternatives. The

fact that the presence of the ISE node swings the balance to

four clusters rather than five supports our a priori assess-

ment in this case.

- 263 -

Best decomposition of the 22-node graph using the ISR-node
approach to treating the ISR data.

- 264 -

Thus it may be concluded that the ISE-node technique

seems to lead toward the desired effect at least as well as

the similarity modification technique, and at the same time

avoids the drawbacks of the latter identified earlier. The

ISR-node technique may then be concluded to be the prefera-

ble method of incorporating interdependency similarity rela-

tionship assessments into the formal SDM decomposition ana-

lysis.

- 265 -

5.6 SUMMARY.

Central to the Systematic Design Methodology is the graph

model used to represent the design-relevant information per-

taininq to a target system. A key issue in the development

of this methodology is the determination of what information

ought to be elicited from a system architect to use in the

creation of a preliminary design. The issue is essentially

one of cost effectiveness: what is the cost (primarily in

designer time and effort) of attempting to elicit a particu-

lar piece of information, and what can such information add

to the effectiveness of the design?

While easily posed, this question is, at this point,

impossible to answer precisely. While the cost side of the

issue is not too difficult to deal with, the really diffi-

cult problem resides in determining design quality, and in

particular, the impact that certain information may have on

design quality.

The approach followed within the SDM project has been to

use the surrogate "high strength-low coupling decomposition

of the system requirements graph" for the real objective,

"high design quality." While there are some very believable

arguments supporting the appropriateness of this surrogate

((Alexander 64), (Andreu 78)), the case is far from com-

- 266 -

plete. Cf course, the same can be said for countless other

developments wherein the cost of full-scale objective test-

ing is prohibitively high (including essentially all other

software design and development methodologies).

In this research, then, we have placed considerable

faith in our own intuition and judgment for effecting a rea-

sonable tradeoff between what design-relevant information

may be elicited from designers at a reasonable "cost" and

what information is most useful and effective in creating a

better preliminary probleir structuring. To that end, cer-

tain extensions to the basic binary-link representational

model used in earlier SDM studies, were proposed and exa-

mined in Chapter 4. In this chapter, the SDM analysis

mechanisms were also extended, to incorporate two of the

most important model extensions: interdependency strength

assessments, and interdependency similarity relationships.

The manner in which these extensions impact the SDM decompo-

sition goodness measure M, the inter-requirements similarity

calculations, the clustering algorithms, and other aspects

of the analysis scheme, has been described, with examples,

herein. As well, the appendices include accompanying docu-

mentation of the SDM analysis package.

*~ * ***

In the next chapter we consider in detail a new decom-

position algorithm for partitioning weighted requirements

- 267 -

graphs. Under comparison with the hierarchical clustering

techniques described in this chapter, it turns out to be

considerably more effective for the purpose of locating a

decomposition with high strength and low coupling. Follow-

ing that, we present the result of the application of the

Systematic Design Methodology to a real design problem.

Then in Chapter 8 we address the issue referred to above -

how are we to determine whether SDM has value for software

system design?

- 268 -

Chapter VI

SDM DECOMPOSITION ANALYSIS USING THE INTERCHANGE ALGORITHM.

6.1 INTRODUCTION.

This chapter introduces a new algorithm for partition-

inq weighted graphs in a top-down hierarchical manner. The

algorithm, termed the interchange partitioning technique,

has been developed to aid in the analysis of requirements

graphs generated through the Systematic Design Methodology.

However, it is sufficiently general and powerful to be of

use in numerous other types of graph analysis problems also.

As well as describing and giving examples of the basic

interchange technique, this chapter also included a discus-

sion of certain simplitications that may be made to the

algorithm in order to significantly improve its operational

efficiency without hampering its effectiveness (ability to

produce good graph decompositions). The algorithm is com-

pared in effectiveness against the hierarchical clustering

methods discussed earlier (Chapter 5), and is shown to be

significantly more effective in locating good graph parti-

tions. Also, a "master ccntrol" algorithm is presented for

quidinq the execution of a complete graph decomposition

using the interchange partitioning technique. Appendix F

- 269 -

contains a computer-produced execution trace of the

algorithm operating on an example graph. Examples of the

use of the interchange partitioning scheme are included

throughout.

6.1.1 Graph Decomposition in the SD1 gontext.

There are two distinct issues involved in the graph

decomposition problem. First, there is the question of what

the decomposition objective function ought to be. Second,

there is the question of how to go about actually effecting

the decomposition - i.e., how to identify and select sub-

graphs.

The notion of a "good" graph decomposition is, of course,

context dependent. In the developement of the SDH, we have

adopted a measure that operationalizes a key concept of

software design, namely, that a good software architecture

is one which both maximizes the internal strength of each

system module, and which also minimizes the coupling between

modules. Thus a graph decomposion in which each subgraph is

densely connected, and pairs of subgraphs are loosely inter-

connected, will have a relatively high value of M, the

objective function. This objective function is discussed in

qreater detail in Section 6.4.1.

As for actually effecting the decomposition of graphs,

we have experimented with a variety of techniques. These

techniques may be classified into two major categories:

- 270 -

1. clustering techniques (bottom-up), and

2. partitioning techniques (top-down).

Clustering techniques require the generation of a similar-

ity (or dissimilarity) matrix to express the closeness (or

distance) between all pairs of data points. In the case of

graph decomposition, the "data points" are the nodes of the

graph. Once a (dis)similarity matrix has been defined, var-

ious hierarchial clustering heuristics may be applied to

successively lump together individual nodes into subsets,

subsets into larger subsets, etc., until the entire set is

generated. While hierarchical clustering techniques as such

have no inherent stopping rule, the goodness measure, M', may

be calculated after each subset merger, and the particular

decomposition exhibiting the highest M "remembered" as the

best decomposition. Since the focus of this chapter is par-

titioning algorithms, not clustering techniques, the reader

is referred to Chapter 5 and the references for further

details.

Partitioning techniques take a variety of forms, but

have the common property of dealing directly with the graph

structure, rather than a similarity matrix defined out of

the graph structure. Typically, partitioning techniques seek

to successfully break up a graph into subgraphs until either

some stopping criterion is rEached, or until each subgraph

contains a single node.

- 271 -

Partitioning techniques are especially useful in SD

decomposition for two different reasons. First, since they

are fundamentally different from the various types of clus-

terinq techniques also used for this function, they provide

an effective cross-check on the validity of the resluts

achieved by the other methods. Also, they tend to locate a

best decomposition with a smaller number of steps than clus-

tering techniques, because optimal SDM decompositions occur

fairly near the top of the decomposition "tree" (i.e.,

fairly near to the single subgraph state - see Figure 6.15).

While the graph theory literature reports a variety of

approaches to the partitioning problem, none of these

schemes are directly appropriate for our class of problems.

For example, one common partitioning technique involves

identifying complete subgraphs, then using these subgraphs

as "leader" subsets, and effecting a final partition by

assigning the remaining nodes to one of the leader sub-

graphs. However, in the SDM context, design problem repre-

sentations yield graph structures with few if any complete

subqraphs of non-trivial size. Also, when complete sub-

graphs do exist, they often overlap, and there is no obvious

way of dealing with this problem in the SDM context.

- 272 -

6.1.2 Shortcominjs of Previous SDM Partitioning
Techniques.

In his work on the development of the phase-1 SDH,

Andreu (Andreu 78) identified and tested two different par-

titioning techniques - one a "leader" identification techni-

que similar to the complete subgraph method mentioned above,

the other an iterative technique for factoring out sub-

graphs. These two partitioning techniques exhibit certain

difficulties and shortcomings, both inherently and with res-

pect to the present SDM model.

The leader technique, while quite efficient, serves

only to identify certain "good" starting subgraphs. The num-

ber and size of the subgraphs can be controlled only

qrossly. Also, the technique generally results in numerous

unassiqned nodes, and there is no obvious means of deciding

what to do with the leftover nodes: whether they ought to be

assiqned to certain of the leader subgraphs, and if so,

which one, or whether certain of the unassigned nodes ought

to be grouped together to form another subgraph.

Andreu chose to assign each of the leftover nodes to a

subgraph such that the measure M increased the most. This

resolution technique is not as straightforward as it sounds,

however. For example, suppose the leader technique gives

rise to five leader subgraphs plus ten unassigned nodes. In

order to determine the leader subgraph to which the first

- 273 -

unassigned node (say, node z) should be assigned, the values

AM. 'M= . must be calculated, where N' is the goodness

measure of the initial partition, and N is the goodness
Ix

measure for unassigned node x placed in leader subgraph i.

Node x would then be assigned to that leader subgraph cor-

responding to the maximum AN ix over all i. However, the

values M' and M i must be calculated with a number of nodes

unassigned. A problem arises as to how.to treat these unas-

signed nodes: they could be treated as individual sub-

graphs, could be ignored, or possibly handled in yet another

fashion. Each such treatment has drawbacks: as the final

node resolution problem is akin to solving a set of simulta-

neous equations, such stepwise approaches are not directly

suitable.

In particular, a simple hill-climbing resolution

approach for assigning leftover nodes, such as that used by

Andreu, is especially questionable, being so sensitive to

the order in which the unassigned nodes are dealt with,

among other things. The ineffectiveness of a hill-climbing

approach in decomposition by clustering is discussed further

in Chapter 5, Section 5.3.3.. The foregoing points illus-

trate some of the difficulties associated with leader sub-

graph approaches in general.

Andreu's iterative approach is novel and quite inter-

esting, but suffers from a drawback even more severe: its

- 274 -

computational requirements grow very rapidly with the size

of the subgraph. The procedure effectively involves itera-

tive recomputation of a matrix of size n (where n = the num-

ber of qraph nodes). Each recomputation requires n calcu-

lations. After a number of iterations, the matrix tends to

stabilize in such a way that one or more subgraphs with high

internal strength may be identified and "factored out" of

the qraph. The process is then repeated, as many times as

necessary, successively identifying and factoring out sub-

qraphs, until only a single unfactorable subgraph remains.

Andreu tested the iterative approach on a few fairly small

qraphs, with promising results. But he also indicated that

the calculation barrier rapidly becomes large as n is

increased, since both the amount of calculation at each

iteration (proportional to n) increases rapidly, and the

number of iterations required to completely factor the graph

also increases rapidly (by an unspecified amount). Andreu

himself found the iterative approach to be too inefficient

to be used for problems of non-trivial size.

Yet another drawback to both leader subgraph and itera-

tive approaches is that they give the user very little in

the way of control over the size of the resulting subgraphs.

It would be useful, for example, to be able to specify, a

priori, certain minimum or maximum sizes on subgraphs. For

instance, a system designer might prefer a decomposition

- 275 -

with approximately balanced subgraph sizes and slightly

lower objective function value. Providing him with- control

on subgraph size would allow him to make such a tradeoff

intelligently. The leader technique could conceivably be

modified to include such control, although there is no

apparent way to so modify the iterative technique.

Finally, it is important to note that both the leader

and iterative techniques were developed to partition binary

(unweighted) graphs. Since the basic graph model has now

been extended to include, among other things, weights on the

qraph links, neither algorithm is immediateiy applicable to

the new model. Modifications for these techniques to extend

their applicability to the current SDK model may be possible

to develop, although such extensions have not yet been stu-

died.

In the remainder of this chapter we present and illus-

trate a new partitioning algorithm. This algorithm, termed

the "interchange" algorithm (as it functions by interchang-

ing pairs of nodes between subgraphs), avoids the problems

discussed above. It is quite efficient (we show it is

polynomial time bounded); it generally reaches an optimal

decomposition after a relatively small number of iterations;

it produces complete partitions (thus avoids the resolution

problem of the leader subgraph method); it is designed to be

- 276 -

applied to weighted graphs (hence can be used with the

extended SDM model) ; and it included bounds-setting control

on subgraph size. The algorithm has been implemented in

PL/1, and tested on a variety of graph decomposition cases.

Results of some of these tests are also reported.

- 277 -

6.2 THE BASIC INTEECHANGE ALGORITHM,

The graph partitioning algorithm presented here has the

following features:

1. It is a hierarchical partitioning approach. That
is, it seeks to partition the given graph into two
subgraphs in an appropriate fashion, then to par-
tition one of the subgraphs, etc. This approach
is the inverse of that followed by the hierarchi-
cal clustering techniques mentioned earlier, in
that the clustering techniques progressively group
subgraphs (subsets) together, forming fewer and
larger clusters, whereas the hierarchical parti-
tioning technique successively subdivides the sub-
graphs, forming more and smaller clusters.

2. The basic mechanism underlying the technique is to
begin with an arbitrary initial factoring of the
current subgraph (the subgraph to be partitioned)
into two equal-sized, smaller subgraph then to
perform pairwise interchanges of nodes between the
two halves according to a simple criterion until
no more improvement can be made in a certain
objective function. Then resulting two partitions
then replace the original subgraph in the global
factoring of the given graph.

3. The algorithm is quite efficient. To factor a
graph of 2n nodes into two subgraphs of n nodes
each quires a number of operations proportional
to (n + n). Thus it is of the class of n-squared
procedures, the most efficient class of general
graph-manipulation procedures. (Some graph proce-
dures belong to even more efficient classes, e.g.,
order n, but they are generally oriented to very
specific problems or are significantly constrained
in terms of their generality.)

4. The technique allows the user to specify upper and
lower bounds on the sizes of the subgraphs to
result from the partitioning of a given graph. In
the software design context, this feature may be
quite useful - for example, in cases where the
designer has a priori information about the appro-
priate size range for a given design subproblem.

- 278 -

In this section we describe the basic interchange

alqorithm, which forms the heart of the interchange parti-

tioning scheme. In the following sections, we describe both

extensions to, and simplifications of the algorithm, a con-

trol structure for implementing the algorithm for applica-

tion in the SDM, and some examples of its use.

6.2.1 The Basic Interchange Technique.

The basic interchange technique used in this algorithm

is partly based on early work by Kernighan and others (Ker-

niqhan & Lin 70). It functions as follows. Given an arbi-

trary initial partitioning of a weighted graph with an even

number of nodes into two eqgal sized subgraph. Pairs of

nodes, one node taken from each of the two subgraphs, are

repeatedly interchanged so as to improve the partitioning

with respect to a given quality criterion (to be discussed

shortly), until a certain stopping condition is reached. A

test is required to determine whether or not there is any-

thinq to be gained by repeating the procedure another time

(Kernighan & Lin 70). Extensions of the procedure to the

case of arbitrary-sized initial graphs and non-equal sized

subqraphs will be discussed shortly.

central to the interchange technique is the issue of

what the quality criterion (the criterion used to determine

which pairs of nodes, out of all Fossible pairs, should be

- 279 -

interchanged) ought to be. In Kernighan's development,

interest focused on minimum-cut partitions. That is, Kerni-

qhan sought a partitioning such that the sum of the weights

on the severed links was a minimum. Actually, quite effi-

cient heuristic procedures for the minimum-cut problem have

been available for some time, one of the earliest having

been presented by Ford and Fulkerson in the context of their

proof of the famous "max-flow min-cut" theorem (Ford & Fulk-

erson 60). However, these approaches gave no control over

subgraph size, one of Kernighan's (and our) objectives.

In the present case, the quality criterion clearly

should be related to our concept of the global goodness of a

graph decomposition - i.e., to the goodness measure, H.

Accordingly, we adopt, as a measure of the "gain" realized

through interchanging two nodes in a given bi-partition, the

impact that the interchange would have on M. This concept

of interchange gain will be eployed to guide the develop-

ment of the basic interchange algorithm.

The discussion to follow is best motivated by means of

a simple example. Suppose we wish to determine a partition-

ing of the six-node graph given in Figure 6.1, into two par-

titions of three nodes each. Further, suppose we begin with

some arbitrary initial partition, say, the one illustrated

in Figure 6.2.

- 280 -

0.5

0.5

'0. 7 0.6

0.3

Figure 6.1

A simple weighted graph

Subgraph 1

(to minimize diagram complexity, weights'on graph links
will only be shown when a graph is first introduced)

Figure 6.2

(Arbitrary) initial partitioning of graph
of Figure 6.1

- 281 -

Inspection of Figure 6.2 indicates that the interchange

(7 -> 1; () -> 2) (i.e., node 1 switched into sub-

graph 1, node 6 into subgraph 2) would produce an optimal

partitioning of this graph. The interchange procedure func-

tions as follows. First, the quantity AM(x,y) is calculated

for each node pair (x,y), where x belongs to one of the two

subqraphs and y to the other. AM (x,y) is the net impact on

the goodness measure M of the entire decomposition that

would occur as a result of interchanging nodes x and y.

Next, the specific node pair (x*,y*) for which AM(x,y) is a

maximum is located, and the values x*, y*, and AM(x*,y*)

are recorded. Nodes x* and y* and "marked" to be no longer

eligible for interchange considerations (thereby reducing by

(2n-1) the number of node pairs that must be considered for

interchange at the next iteration - assuming the original

graph contained 2n nodes). This procedure is repeated again

for the reduced graph, and repetition continues until no

more unmarked node pairs remain. Thus if the original graph

contains 2n nodes, arbitrairly partitioned into two sub-

graphs of n nodes each, there will be n repetitions of the

above procedure. The end result will be a list of n tri-

ples, the kth triple being of the form

(x*, y*, Am(x*,y*)),

where x* and y* are the nodes to be interchanged at step k,

and AM(x*,y*) is the gain in global partition goodness that

- 282 -

would occur as a result of making the (x*,y*) interchange.

It should be noted that the gain AM(x*,y*) at step k is

really a marginal entity, as it is calculated under the

assumption that the previous k-1 interchanges in the list

were in fact implemented. Also, any partition gain value

could be positive or negative, although the sum of all n

values must always egual zero, since summing all n values

corresponds to the total gain achieved from interchanging

all node pairs, which is logically equivalent to making no

interchanges at all.

At this point the following question arises: which of

the pairwise interchanges in the list ought to actually be

effected? One approach would be to only irplement the kth

interchange if both (1) the previous k-1 interchanges have

been implemented, and (2) the first k interchanges all have

non-negative gains Ai(x*,y*). However, this strategy would

fail in the case where the first few interchanges produced a

(small) negative gain, i.e., worsened the goodness measure

for the decomposition, but later interchanges produced lar-

qer positive gains, so that the combined impact turned out

to be positive. This situation is shown graphically in Fig-

ure 6.3. Lxperience with the interchange algorithm has

shown that such sitiations are not uncommon.

In this figure, the cumulative impact is negative dur-

ing the first

- 283 -

Gain cumulative
value impact

actual gains for
this interchange

gain

Figure 6.3

Depiction of interchange sequence in which
early interchanges have a negative effect,
but a net positive effect eventually accrues.

- 284 -

Inter-
changes

four interchanqes, but becomes positive with the fifth

interchange, and reaches a maximum after eight interchanges.

This example makes it clear that the first k interchanges

should be implemented such that the kth partial sum of gains

is a maximum. More precisely, if the kth triple is denoted

as

(xk 'k ' k k ' k

then we seek to identify the index k* such that

k* q

A Mp(ip1 ip) = max A M (ip p)
p=1 p=1

once the index corresponding to the largest partial

sum, K*, has been determined, the final action of the algor-

ithm is to iirplement the interchanges. That is, the node

pairs

1 1), 2 ' 2 ' (i k* * k*
are interchanged to produce the terminal partition.

6.2.2 An Example.

To make the foregoing arguments clearer, consider the

execution trace ot the algorithm when applied to the graph

shown in Figure 6.1, with the following arbitrarily sel.ected

initial partition:

partition 1: 1 2 6

partition 2: 3 4 5

- 285 -

This initial partition is that illustrated in Figure 6.2.

During the first cycle of the algorithm there -are three

eligible nodes in each subgraph (all nodes are eligible for

interchange; none have yet been marked as ineligible). Thus

we want to calculate 3*3 or 9 possible gain values, and

select the largest. Table 6.1 gives the results of this

calculation. From this table we see that the largest gain

is achieved when nodes 5 and 1 are interchanged. Thus the

triple (5,1,.66) is placed on the list, and nodes 5 and 1

are marked as being ineligible for further consideration for

interchanges. Logically, the interchange shown in Fig-

ure 6.4(a) has been made. The above procedure is then

repeated, with a reduced graph containing four nodes, two in

each subgraph.

For the next cycle, since we have decided after the

first cycle to interchange nodes 5 and 1, the starting par-

tition is that shown in Figure 6.4(b). The objective func-

tion for this initial partition is M' = 0.29. Only nodes

2,3,4, and 6 are eligible for interchange.. Calculations

show that the largest gain value is -0.64, corresponding to

the interchange of nodes 4 and 2. Since.the largest gain is

negative, the best possible interchange still makes the par-

tition worse with respect to M. This observation is in line

with intuition, since the starting partition at cycle 6

(shown in Figure 6.4(b)) is clearly the overall optimal par-

- 286 -

Original Goodness Measure M = -0.367

Subgraph #2 nodes

Subgraph
#1

nodes

-0.23

-0.30

-0.25

-0.19

0.011

-0.02

-0.025 0.65 -0.21

Optimal gain value

AM* occurs when nodes

1 and 5 are interchanged

Table entries

are gain values,

AM(ij).

If nodes 1 and 5 are interchanged, the resulting
goodness measure will be M' = -0.367 + 0.65 = 0.283.

Table 6.1

Gain matrix for deciding on initial interchange
of graph shown in Figure 6.2

- 287 -

I

interchanges made after cycle 1

Figure 6.4(a)

Effect of first pair of node interchanges on
graph of Figure 6.2.

Subgraph 2Subgraph 1

O0
Figure 6.4(b)

signifies
ineligible
node

Resulting situation after interchanges implemented.

- 288 -

tition for the network; any interchange at this point will

only serve to reduce M.

To corplete the second cycle, we add the triple

(4,2,-0.64) to the list, and mark nodes 4 and 2 as ineligi-

ble for further interchanges. The list now contains two

entries:

(5,1,0.66)

(4,2,-0.64)

After the second cycle, we have logically interchanged nodes

(5,1) and (4,2), so the third cycle is begun with the start-

ing partition shown in Figure 6.5.

The initial measure for this starting partition is

MI = -0.35. Since there is only one pair of nodes eligible

for interchanging - node pair (3,6) - d single calculation

shows the resulting impact on M to be -0.02.

Table 6.2 shows the sequence of maximum gain values and

node pairs to be interchanged that resulted at each step.

The task at this point is to locate the largest partial sum

in Table 6.2, then implement all the node interchanges in

the list up to arid including the interchange corresponding

to that partial sum. As was pointed out earlier, this stra-

tegy avoids the trap of ignoring interchange seqluences that

become beneficial only after a number of initial inter-

changes have been made.

- 289 -

In the case of this example, the largest partial sum

occurs at step 1 - i.e., after a single interchange has been

made. Thus the best final partition is that shown in Fig-

ure 6.6.

The question now arises as to whether a single such

pass through the interchange procedure is sufficient. Put

differently, what would happen if the final partition that

was generated at the end of the first pass (that shown in

Figure 6.6, for the foregoing example), was used as the

startikng partition for the second pass?

The second question may be answered empirically in this

case by actually performing a second pass. When this is

done, the execution trace shown in Table 6.3 results.

Table 6.3 indicates that the largest partial sum occurs

after the final step, and is 0.00. This corresponds to com-

pletely interchanging all the node pairs. Since the result-

ing partition is logically equivalent to the starting one,

the best alternative in this case is to make no interchanges

at all.

This phenomenon occurs because the initial partition is

in fact a very good one; hence, the first few interchanges

in the sequence of optimal interchanges substantially wor-

sens the partitioning, while interchanges toward the end of

the list begin to improve the partitioning again, eventually

ending up with the original partition. The largest partial

- 290 -

Node pair

(5,1)

(4,2)

(3,6)

Maximum Gain

0.66

-0.64

-0.02

Partial sum

0.00

0.66

0.02

0.00

Table 6.2

Execution trace for interchange example (first pass)

Node pair

(4,2)

(3,6)

(5,1)

Maximum Gain

-0.64

-0.01

0.65

Partial Sum

0.00

-0.64

-0.65

0.00

Table 6.3

Execution trace for interchange example (second
pass, starting with best identified partition
from the first pass).

- 291 -

Cycle

Cycle

signifies
Figure 6.5 ineligible

node

Result after second interchange completed.

Subgraph 1 Subgraph 2

Figure 6.6

Best obtained partition during first pass

- 292 -

sum of the maximum gains is zero. The sequence of maximum

gains is typified schematically in Figure 6.7.

In general this condition ("maximum partial sum=O") may

be adopted as a stopping rule for the algorithm, as it

serves to define the situation in which no further partition

improvements can be made. It should be noted, however, that

the particular resulting partition is dependent, to some

extent, on the arbitrarily selected initial partition.

There is no guarantee that all possible starting partitions

will be mapped into the same final partition by the basic

interchange algorithm. It turns out in practice, however,

that the algorithm is quite insensitive to starting parti-

tion. The approach taken here is to execute the interchange

algorithm on various different starting partitions (three

different partitions are used in the example shown in the

trace given in Appendix F). Then, if different final parti-

tions result, the best (largest M) such partition is

selected.

Note also that, while in the foregoing example a single

cycle produced both a local and a global optimum decomposi-

tion, in general this would not necessarily occur. other

example decompositions will be introduced shortly in which

two or more "productive" passes through the interchange

sequence are required before the stopping condition is

reached.

- 293 -

Gain
values

actual gain for
this interchange

maximum cu
impact is

I~ Ir
ch

cumulative gain

Figure 6.7

Depiction of interchange sequence wherein no
improvement can be made in the starting partition.

Lmulative
zero

- 294 -

nter-
anges

6.2.3 A Second Example.

Consider the weighted graph shown in Figure 6.8. It is

intuitively clear that the best overall decomposition of

this graph contains three subgraphs, with nodes 1,2,3,4 in

subgraph 1., nodes 5,6,7 in subgraph 2, and nodes 8,9,10 in

subqraph 3. However, the basic interchange technique is (so

far) only capable of partitioning a given graph into two

equal-sized subgraphs.

If we select an arbitrary initial partition, for exam-

ple,

subqraph 1: 1 2 3 9 10

subgraph 2: 4 5 6 7 8

and apply the interchange procedure, the execution trace

shown in Table 6.4 results. The net effect is that the best

bi-partition (partition into two equal-sized subgraphs) for

this graph is that shown in Figure 6.9. This partition, of

course, is not a particularly good one, for the reason dis-

cussed above. It is the best that can be done under the

constraint of two equal-sized subgraphs. In the next sec-

tion a technique will be introduced that will allow us to

relax this constraint, thereby greatly extending the utility

of the basic interchange algorithm.

- 295 -

Mog 6 SN-

Subgraph 1 -
'000

0 5OOV

100 I
'0ep0.7 *9

0.6 0

0. 4
4

8 05 0.4 Subgraph 2

3

-5 .4 7

0.8 0.9

Figure 6.8

Graph for second example, showing initial partition.

- 296 -

2

0.5I0

Maximum Gain

(9,4)

(10,8)

(1,5)

(2,6)

(3,7).

0.0040

0.0767

-0.2686

-0.0359

0.2238

0.00

0.0040

0.0807

-0.1879

-0.2238

0.0000

Table 6.4

Interchange execution trace for second example.

- 297 -

Node Pair 'Partial SumCycle

Subgraph 1

Figure 6.9

Best final partition for s'econd example.

- 298 -

6.3 ALGOR1THM EXTN,_SIONS - PARTITION SIZE BOUNDING AND
.UNLBUAL-SIZED SUBSETS.

Up to this point a target graph containing 2n nodes has

been assumed, with the objective being to subdivide such a

qraph into two subgraphs containing n nodes each. These are

quite constraining assumptions; there is no reason in gen-

eral that it would necessarily be appropriate to divide a

given qraph exactly in half, nor that this even be possible

(i.e., it might contain an odd number of nodes). Therefore

these assumptions will now be relaxed. At the same time a

very useful feature will be added to the basic algorithm,

through the introduction of a simple extension.

6. 3. 1 Dummy Nodes.

Consider now the task ot partitioning a given graph of

n nodes (not "2n" as before) into two subgraphs, each of

which contains at least n nodes, and at most n2 nodes, with

n, + n 2 = n. It is clear that n 4 n . Note that n need

not be an even number.

To accomplish this task using the basic interchange

algorithm, the original graph G is augmented through the

introduction of a certain number of dummy nodes. The origi-

nal graph toqether with the dummy nodes will be termed the

ar_q MeLnted graph, G . The dummy nodes have no links to other

nodes - that is, they are represented by a row and column of

zeroes in the graph adjacency matrix.

- 299 -

In order to make the dummy node technique effective, a

small adjustment must be made to the calculation of the

decomposition goodness, K. Specifically, B must be defined

so as to be unaffected by the introduction and distribution

of the dummy nodes. This is quite easy to accomplish. The

individual S. and C.. terms making up f all have the fol-
1 1)

lowing general form:

f1 (link weight sum)*(average link weight)/f 2 (node count),

where f and f 2 are slightly different functional forms for

the strength and coupling terms (see Section 6.4.1). Now,

since the dummy nodes are disconnected from the rest of the

network, their inclusion in the graph only impacts the deno-

minator terms, i.e., node counts. By adding the minor

adjustment to the A calculation that disconnected nodes not

be included in the node count term, the presence of dummy

nodes can be made transparent to the value of f. This modi-

fication to the definition of R has no other effect, as it

is assumed that there are no "real" disconnected nodes in

the original graph.

The interchange algorithm is then applied to the graph

Ga in the usual way. Dummy nodes and regular nodes both

participate in the interchange. The dummy nodes are simply

dropped from the final partition, to yield to yield a decom-

- 300 -

position of the original graph into subgraphs that are not

necessarily of equal size.

6.3.2 Choice of Dummy Nodes.

The question arises as to how many dummy nodes should

be added to the original graph. A simple empirical argument

will demonstrate the reasoning behind the answer.

Consider a starting graph G of 5 nodes, and assume one

dummy node is added to give an augmented graph Ga of six

nodes. The basic interchange algorithm is then applied, and

the resulting final partition will have three nodes in each

subgraph. One of the two subgraphs will contain the single

dummy node and two "real" nodes, while the other subgraph

will contain three "real" nodes. In this case, then, the

original graph is of size n 5, and the size bounds on the

resulting subgraphs are n1 = 2 and n2 = 3.

Now suppose three dummy nodes are added to the same

starting graph G. Then the final subgraphs will each con-

tain four nodes. Since the dummy nodes may end up split in

any combination between the two subgraphs, it is clear that

the size bounds on the subyraphs are now ni = 1 and n2 4

it would make no sense in this case to consider adding more

than 3 dummy nodes (i.e., 5 or more) , since a "trivial" par-

tition - a partition in which one of the subgraphs contained

only dummy nodes - might otherwise result.

- 301 -

Repetition of the above argument for other sizes of G

leads to Table 6.5. This table illustrates the number of

dummy nodes nd that must be added to a graph of n nodes in

order to insure that each of the two subgraphs will have at

least n1 , and at most n2, "real" nodes. From Table 6.5 it

is clear that in general nd, the number of dummy nodes, must

be chosen such that

n d = n - 2*n .

With this choice of n d' the number of nodes in the augmented

graph Ga is always even (as required by the basic inter-

change algorithm), since

nt = n + nd = n + (n - 2*n 1) 2*(n - n),

For example, if it was desired to partition a graph of

43 nodes into two subgraphs such that each contained at

least 10 nodes, and therefore at most 33 nodes, this would

imply that n = 10 and n = 43. Therefore it would be neces-

sary to add

nd = n - 2*n = 43 - 2*(10) = 23

dummy nodes before applying the interchange algorithm to the

augmented graph.

6.3.3 An Example Using the Dummy Node Technique.

To illustrate both the operation of the interchange

algorithm while dummy nodes are present, as well as the

effectiveness of the dummy node technique itself, consider

- 302 -

of "real" nodes in G

5

3

7
I I

4

2

0

5

3.

6

4

2

Table 6.5

Number of dummy nodes to be added to a graph of
n nodes to insure a minimum subgraph size of n1 nodes.

- 303 -

lower
bound
on
partit-
ion
size

n = number of

. . . .

n 1

the graph of Figure 6.8 from the previous section. This is

the same graph used in the earlier example of Section 6.2.3.

Recall that the basic interchange algorithm without dummy

nodes produced the decomposition of this graph shown in Fig-

ure 6.9 - a clearly suboptimal decomposition that resulted

primarily because of the exact halving property of the basic

algorithm.

The basic algorithm is now applied to the current

graph, with the minimum subgraph size taken to be ni = 3.

An augmented graph Ga must be defined, where Ga consists of

the original graph G plus

nd = n - 2*n1 = 10 - 2*3 = 4

dummy nodes. Schematically, then, the graph to be parti-

tioned is that shown in Figure 6.10.

An initial partition is selected, say,

subgraph 1: 1 2 3 9 10 11 12

subgraph 2: 4 5 6 7 8 13 14

The decomposition goodness measure for this partition turns

out to be M = -0.29. The final partition is determined to

be:

subgraph 1: 1 2 3 4 8 9 10

subgraph 2: 5 6 7 11 12 13 14

- 304 -

After the dummy nodes are discarded, the decomposition

illustrated in Figure 6.11 results. Table 6.6 gives the

execution trace for this partition.

With the addition of the four dummy nodes, the inter-

change algorithm produced a partition with the smallest sub-

graph containing at least (in this case, exactly) three

nodes, the selected value of nl. Also, the final partition-

ing (Figure 6.11) is clearly better than that obtained ear-

lier without dummy nodes (Figure 6.9). It is better in the

sense that it represents a "natural" subdivision of the ori-

ginal graph. If the interchange algorithm was to be applied

again, to subgraph 2 in Figure 6.11, it is reasonable to

expect that the result would be the optimal global decompo-

sition of the original graph. (This is in fact what hap-

pens, as shown in Section 6.5.) This result should be con-

trasted with that shown in Figure 6.9, wherein it is clear

that since the first partitioning is a poor one, further

partitionings of the resulting subgraphs can never lead to

the qlobal optimum decomposition. As illustrated by this

example, the dummy node technique contributes a very impor-

tant and useful extension to the interchange algorithm.

- 305 -

Augmented Graph, Ga

'000a

100,

f 2
I / ---- A

)

Subgraph 1

Subgraph 2

Initial Graph, G

901
VANN. .0I

7 1

14

-9,

Dummy
nodes

Figure 6.10

Graph for example of Section 6.3 showing dummy
nodes and initial partition.

- 306 -

Subgraph 2

Figure 6.11

Final decomposition of example graph of Section 6.3.3
after one pass of the interchange algorithm (dummy
nodes not shown) .

- 307 -

Node pair

(12,8)

(11,4)

(10,13)

(9,14)

(1,5)

(2,6)

(3,7)

Maximum gain

0.0876

0.2284

-0.2639

0.0286

-0.2686

-0.0359

0.2239

Partial sum

0.000

0.0876

0.3158

0.0519

0.0804

-0.1881

-0.2239

0.0000

Table 6.6

Interchange trace for example of Section 6.3.3.

- 308 -

Cycle

6.3.4 Choosing the Number of Dumm odes.

Two alternative considerations arise in choosing n ,

the number of dummy nodes: whether or not it is desired to

set the minimum subgraph size at some level greater than one

node.

If the user of the interchange algorithm has in mind a

specific minimum subgraph size n , then n is determined1 d
from the relationship nd n - 2*n1 , as discussed in Sec-

tion 6.3.1. On the other hand, it may often happen that the

investigator does not want to disallow any small subgraphs.

Since the smallest possible subgraph consists of exactly one

node, in such a case it would be necessary to set n, = 1.

From this, nd would be determined to be n - 2, so the total

number of nodes in the augmented graph would be

n = n + (n-2) = 2*n - 2.

In the previous example, Section 6.7, if n 1 had been

taken to be 1, it would have been necessary to add 8 dummy

nodes, to produce an augmented graph of 18 nodes. In this

case, the interchange algorithm would have produced the same

partitioning obtained earlier, as is seen from the trace

qiven in Table 6.7.

- 309 -

- Initial Partition

Partition #1: 1

Partition #2: 4

is:

2

5

9 10 11 12 15 16

7 8 13 14 17 18

Interchange Trace Table:

Cycle Node pair

(16,8)

(15,4)

(11,13)

(12,14)

(10,17)

(9,18)

(1,5)

(2,6)

(3,7)

Final partition is:*

Partition #1: 1 2

Partition #2: 5 6

Maximum gain

0.0876

0.2284

0.00

0.00

-0.2639

0.0286

-0.2686

-0.0359

0.2283

3 4 8

7 11 12

Partial sum

0.0000

0.0875

0.3158

0.3158

0.3158

0.0519

0.0804

-0.1881

-0.2239

0.0000

9 10 13 14

15 16 17 18

* A second round of interchange calculations
using this as the starting partition results
in a maximum partial sum = 0.00.

Table 6.7

Initial and final partitions, and interchange
trace, for example graph of Section 3.3 with

n = 1.

- 310

6.4 A SIMPLIFIED INTERCHANGE ALGORITHM.

one of the reasons originally put forth for the devel-

opment of this algorithm was the need for an efficient hier-

archical partitioning technique. It was pointed out ear-

lier, for instance, that the iterative partitioning

technique studied by Andreu was interesting but impractical,

due to its inefficient operational properties. In its pre-

sent form, the new algorithm is much more efficient than the

iterative approach. However, certain minor simplifications

in the calculations of the interchange technique may be made

in order to make it considerably faster still.

The main bottleneck in the present form of the algor-

ithm centers on the gain calculation. If there are 2n eli-

qible nodes, n2 calculations are required to locate the

lar.Jest gain value during the first cycle. In the next

cycle, (n-1)2 calculations will be required, etc. The total

number of qain calculations will be, for a network origi-

nally containing 2n nodes,

n

T = 2

k=1

This is a fairly large number of calculations steps for any

non-trivial values of n. For example, if 2n = 200 nodes,

then n = 100, and

T = 100*100 + 99*99 + ... + 2*2 + 1*1 = 338,350.

- 311 -

Some efficiencies are necessary if the interchange algorithm

is to be useful in problems of significant size.

Now, operation of the interchange technique could be

made considerably faster by simplifying the interchange cal-

culation itself - the elementary node pair interchange and

corresponding measure calculation - since this step is exe-

cuted so many times. In this section we develop such a sim-

plification through incorporation of an approximate measure

gain criterion, and give an example of its use. In practice

the simplified algorithm, based on the approximate gain cri-

terion has been found to behave essentially as well as the

original algorithm, in terms of its capability for producing

good partitions.

6.4.1 LM Approximate Measure Gain Criterion.

The key simplification that can be made to improve the

algorithm's efficiency involves an approximation to the mea-

sure gain calculation, AM(i,j).

Calculation of AM(i,j) basically consists of the cal-

culation of the goodness measure for a particular bi-parti-

tion of a given graph, namely, the bi-partition obtained by

interchanging the nodes x and y with respect to some initial

bi-partition. Now, the definition of M for any graph that

- 312 -

has been decomposed into k subgraphs is given as

k k-1 k

M = j - C

i*=1 i=1 j=i+1

When the number of subgraphs k is equal to 2, this becomes

M S 1 + S2 - Cl 2

The definitions of strength and coupling for a weighted

qraph (from Chapter 4) are:

1. strength S. of subgraph i:

S. = [L. - (n.-1)]/[(n.) (n.-1)/2 - (n.-1)]*w.
1 1 1 1 1 1

where L. = the number of links within i

n. = the number of nodes within i

w = the average weight on links within i.

2. coupling C. . hetween subgraphs i and j:1J

C.. = [L../(n.n.) *w..
1J IJ l J 1J

where L.. = the number of links between i and j
13

n.,n. = the number of nodes in i, j

w.. the average weight on links between i and j.
1J

- 313 -

6.4.1,1 Simplifying Si.

First consider the S. term. This may be written

S. = 2/f (n -1) (n. -2)]*L.ir. - {2/(n. -2)]*i.

Now, a pairwise node interchange does not affect the value

of n. , so n. is a constant as far as the calculation of
1 1

AM(x,y) is concerned. Also, since w. is an average, it may

be assumed that its value is not substantially affected by

interchanqing nodes x and y. This is the case since most of

the link weights that go into the calculation of i would

remain unchanged. Therefore the entire second term in the S.

expression may be treated as a constant term. Since in the

calculation of AM(x,y), this constant value will subtract

out, it may be dropped henceforth.

Also, it may be noted that w. is defined as ./L. ,

where W. is the sum of the weights on the links in subgraph

i, and L. is the link count in subgraph i. Hence the effec-

tive expression for Si becomes

S. = 2/[(n. -1) (n.-2)]*W.1 1 1

- 314 -

6.4.1.2 Simplifying C.. .

If W.. is defined as the sum of the weights on links

connecting subgraphs i and j, then w.. V.. /L.. . Thus the
1) 1) ij

expression for C.. simplifies to
1)

C.. =/(n.n.)*..
.J l J ij

6.4.1.3 Further Simplification of AH(x,y).

If we let S ,S 2, and Cl2 be the values of strength and

coupling for some starting bi-partitioned graph, and let S1,

S1, and Cf2 be the eguivalent values after nodes x and y

have been interchanged. Then

AM(xy) = (Sj + S1 - C12) (S1 + S2 - C1 2

Since equal-sized subgraphs are being considered, we may let

n =n = n2, and the expression for AM(x,y) becomes

AM(x,y) = 2/[n(n-1)]*(W'+W'-W1 -W 2) - (1/n)*(W12 12

If we now approximate (n-1) (n-2) by n 2, we may factor

out a 1/n2 term and get

AM(x,y) = (1/n 2)*[2*(+WW 1W 2- (W12 -W1 2) 3

- 315 -

Now, the interchange algorithm is eventually going to

make an ordinal comparison among all the M(xry) values for

all (x,y) combinations. Thus the constant 1/n2 , which will

be present as an external multiplier in each term, may be

dropped from the AM(xy) expression. This is so since it

will be present in all such terms, and consequently serves

only to scale all the values, having no net impact on their

ordinal relationship.

Therefore the effective value for AB(x, y) reduces to

M(x,y) a 2(+w - w1 - v 2) - (w12 - " 1 2)

In order to go further with the reduction of the expression

for AM(x,y), it is necessary to introduce some new termi-

noloqy. We define:

1. E = the sum of the weights on the external links
connected to node x - that is, those links that
connect node x to some node in the other subgraph;

2. I, = the sum of the weights on the internal links
connected to node x - that is, those links that
connect node x to other nodes within the same sub-
graph;

3. 0 = the sum of the weights on the "other" links
within the same subgraph as node x - i.e., those
links not connected to node x;

4. O = the sum of the weights on the "other" links
inlerconnecting the two subgraphs - i.e., those
links not connected to either node x nor node y;

- 316 -

5. w the weight on the link connecting node x to
nole y (if no such link exists, w is assumed to
be zero).

Now, the W terms in the earlier expression for AM(xy)

may be translated into terms involving E,IO, and w. In

particular, it is fairly easy to see that

W= IX + lx (2)

W= I + 0 (3)
2 y y

W= E - w + 0 (4)1 y xy x

W' E - w + (5)
2 x xy y

W = E + E - w + 0 (6)12 x y xy xy

WS I + I + W + 0 (7)
12 x y xy xy

The only sliqhtly confusing part in the above eguations

involves the role of w . When x and y are interchanged,

all associated external links become internal, and vice

versa, with the exceptin of the link connecting x and y (if

any).

Now, if equations (2) through (7) are substituted into

relation (1), the latter reduces to

AMI (xy) x 2[(E -I)+ (E -I) - 2w]
xxy y xy

- [(I-E) + (I -E) + 2w]
x x y y xy

= 3[(E -I) + (E -I) - 2w] ... 8
x x y y xy

- 317 -

It is no surprise that the "0" terms in (2) through

(7) cancel out of (8), since by definition these terms

represent a part of the graph structure that is unaffected

by the interchange of nodes x and y.

Finally, we define

D = E - I, and

D E -I
Y Y Y

Also, for the same reason as discussed earlier (immaterial-

ity of scale factors) we drop the factor 3 in relation (8).

This yields the final result,

AM(xy) c D + D - 2w (9)x y xy

Expression (9) is the simplified measure gain expres-

sion. To be strictly correct, the right-hand side of expres-

sion (9) is proportional to an approximation of the exact

measure gain AM(xy). As was argued, proportionality con-

stants are immaterial for purposes of the interchange algor-

ithm's proper functioning; also, the approximations involved

in the foregoing reduction are relatively minor, so that we

would expect the simplified algorithm to still do a good job

in partitioning graphs in a manner appropriate to our needs

- i.e., in a manner that will usually locate a very good, or

optimal, partition as measured by the true value of M.

- 318 -

6.4.2 A Verification Exercise.

To briefly illustrate the validity of relation (9) in

the previous section, consider the graph shown in Fig-

ure 6.12, with the associated subgraphs 1 and 2. Two nodes

x and y, one in each subgraph, are shown; also, the weights

on certain links are specified, for illustrative purposes to

follow.

In Figure 6.13, the same graph is shown, after nodes x

and y have been interchanged between the two subgraphs. In

terms of the foregoing definitions, the following may be

seen to hold:

W- w1 + w2 + o1

W2 w 5 + V 6 + 02

W 12 W 3 + w4 + W 1 + l2

W' W + 0
1 7 1

W' = w + 0
2 3 2

W = w + W + w + w + w + 0
12 1 2 4 5 6 12

where o1 and o2 represent the sum of the weights on the

"other" links in subgraphs 1 and 2 respectively (those links

not attached to nodes x and y, respectively); similarly, ol2

represents the sum of the weights on the other links that

-run between the two subgraphs.

- 319 -

Fiaure 6. 12

Initial graph for verification exercise

Subgraph 2

Figure 6.13

Graph of Figure 6 .12 after nodes x and y have been
interchanged.

- 320 -

if the expressions given above are substituted into

relation (1) for AM?(xy), the result is

AM(x,y) [w 7 +o 1+W3+0 2 - (wl+w2 +o 1) - (w5 +w6 +o2) J

- 1+W 2 +W4 +W5 6+012 ~ (w3 +w4 +w7 +o1 2) I

= 2[w 3 +w7 - (w1 +w2 +w5 +W 6) J - Iw1 +w2 +w5 +w6 - (w3 +w7)]

3[w 3+w7 - (w1+W2++w6 *

On the other hand, if relation (9) is used instead of rela-

tion (1), the result is

A M (x,y) c D + D - 2w
x y xy

= (E - I) + (E - I) - 2w

= (w 3+w 4-w 1-w2) + (w4+w 7-w 5-w 6) - 2w4

3 + W7 - (w 1 + w2 + W5 + W6

which, except for the irrelevant factor 3, is the same as

that obtained from relation (1). Thus the foregoing simpli-

fication analysis is verified in this example.

6.4.3 Suumiary of the Simplified Interchange Algorithm.

To review the approximate gain technique: in order to

determine the relative gain that would result from inter-

chanqinq the node pair (x,y), where node x currently resides

in subqrdph 1 and node y in subgraph 2, the quantities D

- 321 -

and D are calculated. In general, Dk is calculated by

summinq the weights on the links that extend from node k to

nodes in the other subset, then subtracting the sum of the

weights on the links that extend from node k to other nodes

within the same subset. Once D and D have been determined,
x y

the approximate gain term G (x,y) is calculated from the for-

mula

G(xy) = D + D - v .x y xy

The quantity G(x,y) is the approximation to the quantity

AM(x,y)used earlier in the basic interchange algorithm.

By inspection of the algorithms' code, the estimated

ratio of calculation times for G(x,y) to AM(x,y) is on the

order of 1 to 100 - i.e., the calculation time for G(x,y) is

approximately 1 percent of the calculation time for

AM(x,y). This large difference is the source of the effici-

ency improvement that results from using the approximate

gain criterion.

Once G(x,y) has been calculated for every eligible node

pair, the procedure continues as before (see Section 6.2.3)

to locate the largest gain value, logically interchange the

corresponding nodes, mark those nodes as ineligible for

further consideration, then repeat with one fewer node in

each subset. The final calculation of the maximum partial

- 322 -

sum of gain values, which determines the terminal partition,

is also carried out exactly as before.

6.4.4 Further Efficiencl Improvements.

The calculation of G(x,y) is almost fully uncoupled

with respect to the two nodes x and y. That is, with the

exception of the w term, G(x,y) involves D and D , whichxy xy
can be calculated individually for nodes in subgraphs 1 and

2, respectively. This gives us a means of improving the

speed of the interchange algorithm still further. The basic

idea is as follows. First, all the D and D terms are
x y

sorted into descending order. Then G(x,y) is calculated for

each pair (x,y) such that x and y are within some arbitrary

count 6 from the top of the D and D lists, respectively.
x y

The largest such value of G(x,y) is then selected, thereby

identifying the next pair of nodes to be interchanged. This

technique avoids a global search over all (x,y) pairs at the

cost of possibly missing the largest gain value. However,

the likelihood of missing the overall largest value of

G(x,y) may be made as small as desired by setting the value

of high enough. The extra work involved in this approach

consists of sorting two lists of n elements each, while the

saved calculations involve a proportion (n - 6/n) of the n

potential calculations. The extra improvement in algorithm

efficiency mounts rapidly with n. Judging by a few cases

examined in detail, 6 need not be very large to insure

- 323 -

locating the Iragest G(xy) value - e.g., 6 = 10 percent

seems to be more than sufficient in the cases examined.

Additional studies may suggest ways in which estimate on

the basis of w , D and DY values.

6.4.5 Comparison of the Basi and Simplified
Interchange Algorithms.

Consider once again the 10-node graph introduced in

Fiqure 6.8(a). This graph is augmented with the addition of

four dummy nodes, and both the basic and simplified inter-

change alqorithms are applied to it, using the starting par-

tition qiven below:

subgraph 1: 1 3 5 7 9 11 13

subgraph 2: 2 4 6 8 10 12 14

The traces for the first pass of each algorithm are shown in

Table 6.8(a) and Table 6.8(b) respectively.

Basically, both versions of the algorithm produced the

same final partition at the end of the first pass, following

essentially the same locus of interchanges. When a second

pass was taken through each version of the algorithm, the

results were again identical and the loci of interchanges

were also nearly identical. Of course, in all cases the

actual numerical values of gain were rather different bet-

ween the two versions, since the gain calculation differ-

- 324 -

Cycle Node pair Maximum Gain Partial Sum

0 --- --- 0.000

1 .(9,6) 0.338 0.338

2 (13,?) 0.085 0.423

3 (11,4) 0.139 0.562 (optimall

4 (1,12) -0.214 0.348

5 (3,14) -0.014 0.334

6 (7,8) -0.240 0.094

7 (5,10) -0.094 0.000

Table 6.8 -(a)

Interchange trace for example of Section 6.4, without
simplifications.

Cycle Node Pair Maximum Gain Partial Sum

0 --- --- 0.00

1 (9,6) 2.60 2.60

2. (11,2) 0.30 2.90

3 (13,4) 0.80 3.70 Coptimall

4 (1,12) -1.30 2.40

5 (3,14) -0.10 2.30

6 (7,8) -1.70 0.60

7 (5,10) -0.60 0.00

Table 6.8(b)

Interchange trace for example of Section 6.4, with
simplifications.

- 325 -

ences are the essence of the difference between the two

algorithms. Also, the order in which dummy nodes were han-

dled varied somewhat due to minor implementation differ-

ences. This has no impact on the interchanges of "real"

nodes, which is the important issue. The main invariant

factor is the ordinal relationship among the gain values in

both cases. Inspection of Tables 6.8 (a) and (b) shows that

this invariance of ordinality is indeed maintained for this

example.

- 326 -

6.5 COMPAEATIVEI ANALYSIS - INTERCHANGE VERSUS
HIERARCHICAL CLUST'ERING.

It is enlightening to compare the effectiveness of the

interchange algorithm against the four hierarchical cluster-

ing algorithms studied earlier. Each of the graphs used in

the comparative analysis of the clustering algorithms (Sec-

tion 5.3.2) was also decomposed using the interchange algor-

ithm. The results are summarized in Table 6.9. The net

result is that in all but one case the interchange algorithm

produced at least as good a decomposition as the best clus-

tering routine, and in five of the 13 cases produced a bet-

ter result than the best clustering routine. In the one

case where interchange failed to produce a result as good as

the best clustering routine, it found one almost as

good.(16)

weighed against this superior performance is the fact

that interchange is more costly to use in terms of computer,

and to some extent human, resources. For instance, inter-

change required approximately 9 CPU seconds to decompose the

40-node graph (case 1 in Table 5.1, Chapter 5), whereas the

clustering routines each required no more than about 3 sec-

onds. Also, the current software used to execute the inter-

change routine may be used in an "exploratory" fashion (the

main parameters being the minimum subgraph size, and choice

(16)the result produced by interchange in this case exceeded
the results of the other three clustering algorithms.

- 327 -

Objective function (M) values

Graph ID
number

Interchange
result

0.123 *

0.157 *

Best clustering
result

(algorithm no.)

0.098 (2)

0.10 (3)

0.08 (4)

0.24 (1,2,3)

0.11 (2)

0.061 (4)

0.085 (4)

0.41 (3,4)

0.39 (1,3)

0.48 (1,2,3,4)

0.28 (1,2,3,4)

0.05 (1,2,3,4)

0.19 (4)

0.94 *

0.39

0.48

0.28

0.05

0.19

* cases where
algorithm;

interchange exceeded

+ case where interchange failed to
best clustering algorithm;

= cases where interchange and -best
algorithm did equally well.

best clustering

do as well as

clustering

Table 6.9

Comparison of interchange and best result obtained
using hierarchical clustering.

- 328 -

0.107

0.24

0.125

0.074

0.075

13

Objective function (M) values

Category

Clear winner

Tied for first

Second or tied for second

Third or tied for third

Fourth or tied for fourth

Fifth or tied for fifth

Algorithm.

HIER1 HIER2 HIER3 HIER4 INTERCHANGE

Clear winner

Tied for first

2nd or tied

3rd or tied

4th or tied

5th

Composite score 57

Table 6.10

Comparison of the weighted performance of interchange
and the four hierarchical clustering routines.

- 329 -

Weight

5

4

3.

2

1

0

of next subgraph to be partitioned). Therefore the user of

the package must spend somewhat more time using interchange

to locate an optimal result for a given graph. Alterna-

tively, an automatic "governor" may be used to guide the

execution of interchange, saving the user time, but removing

the opportunity for exploring for potentially superior par-

titions.

If we re-do the weighted comparison shown earlier in

Tables 5.2 and 5.3, using now a weight of 5 for "clear win-

ner," 4 for "tied for first," etc., the new results with

interchange included are as shown in Table 6.10. Inter-

change earns a score of 57, while the clustering techniques

score from 32 to 39. All in all, then, the interchange

algorithm is seen to be a powerful, if somewhat less effi-

cient, technique for SDM graph decomposition. The inter-

change algorithm has been incorporated into the current SDM

analysis package, and its use is described briefly in Appen-

dix D as part of the documentation of the SDB analysis pack-

age.

- 330 -

6.6 HIERARCHICAL PARTITIONING USING THE INTERCHANGE
TECHNIQUE.

The original objective in developing this partitioning

algorithm was to devise a means of decomposing a graph into

subqraphs so as to locate the best overall decomposition as

determined by the value of M. At this point we have demons-

trated an efficient algorithm that is capable of dividing a

given graph into two subgraphs, with the option of controll-

ing the size of the subgraphs. All that is reguired to meet

the original objective is some sort of "master" algorithm,

within which the interchange algorithm may be imbedded,

which will perform the following tasks:

1. keep track of the original graph and the list of
subgraphs

2. decide which subgraph on the list should be parti-
tioned next (using the interchange routine)

3. generate initial partitions to accompany each call
to the interchange routine;

4. monitor the results of the interchange execution
for the occurrence of the stopping condition (max-
imum partial sum of gains = 0) for any given
starting subgraph and starting partition.

6.6.1 The SubSraph Selection Rule.

The only really non-trivial issue as far as the master

algorithm is concerned involves the nature of the decision

rule to be used to select the next subgraph for partition-

ing. Consider for illustrative purposes the initial 10-node

- 331 -

graph given earlier (see Figure 6.8(a)). As was shown in

the previous section, the best general bi-partitioning of

this graph is that illustrated in Figure 6.14 below, low we

wish to determine which of the two subgraphs indicated in

the figure to select for. the next round of partitioning. In

this simple case the answer is intuitively clear: subgraph 1

should be partitioned next, as it has the clearest division

into two subqraphs.

The "next subgraph" decision rule may be made opera-

tional in the following way. First, the strength S of each

subgraph i in the current decomposition must be calculated.

There may be anywhere from 1 to (n-1) such subgraphs. Then

the subgraph with the smallest strength measure is selected

as the next subgraph to be partititoned.

The logic behind this choice is simple: the lower the

subgraph strength, the higher its propensity for being sub-

divided. Also, this rule is a reverse image of the rule for

deciding which subset pair to merge next when clustering

techniques are used in handling the decomposition problem

(see Chapter 5, Section 5.3).

In the case of Figure 6.14, the strengths of the two

subsets are 0.078 and 0.233 respectively. Thus the lowest

strength rule would select subgraph 1 as the next subgraph

to partition, which is certainly the correct choice in this

case, as discussed earlier.

- 332 -

Figure 6.14

Partitions of the graph from Section 6.2 after one
pass of the interchange algorithm, showing subgraph

strengths.

- 333 -

6.6.2 A Stopping Rule for the Ilaster Algorithm.

What stopping rule might be used to eventually halt the

hierarchical partitioning procedure being implemented by the

master algorithm? One obvious rule would be to continue par-

titioning until all current subgraphs are too small to be

subdivided further - i.e., until n. < 2*nl , where n. is

the dimension of subgraph i and n is the lower bound on

subgraph size. Note that if n1 = 1, the master algorithm

would have to continue partitioning until all subgraphs con-

sist of exactly one node.

It may be possible to devise a simple stopping rule

that would halt the master algorithm well before this point

is reached, however. Experience with partitioning a variety

of graphs with the interchange method suggests that, gener-

ally speaking, the maximum value of M is attained after a

fairly small number of "splits" have been made. In the

above example, for example, only two splits were required to

reach the optimum, whereas a total of nine splits were

implemented before completely decomposing the original

graph. Hence some simple rule such as stopping after k suc-

cessive steps have yielded a lower value of M than the

preceding step may prove useful and effective. A study of

such stopping rules will be conducted in the future.

- 334 -

6.6.3 The Master Algorithm.

One possible implementation of a master algorithm for

controlling the interchange partitioning method is given

below.

1. Get data on graph structure, link weights; also

get value of n1 (subgraph lower bound).

2. Assign the entire graph as the current partition

(CP);

CP <-- entire graph.

3. Calculate the measure M for CP;

Mopt <-- M; CP opt-- CP.

4. Calculate the strength S. for each subgraph i in

CP. Locate the subgraph with the lowest value;

assume this is subgraph Z .

(i.e., S k<= S. f)

5. Call the Simplified Interchange Algorithm to par-

tition subgraph .,

6. Update CP: CP <-- (old CP with subgraph k

replaced by its sub-partitions as determined in

step 5).

7. Calculate M for CP.

- 335 -

8. If M > Mopt then do:
optp

Lop <-- It

CPopt <-- CP.

9. If there are further subgraphs that can be parti-

tioned, then go to step 4; otherwise STOP.

6.6.4 An Example Usinq the Master Algorithm.

To complete this paper an example decomposition "from

start to finish" is presented. Once again the ten-node

example graph discussed in previous examples (see Fig-

ure 6.8(a)) will be used. Appendix A contains a complete

trace of the execution path of the master algorithm in par-

titioning this graph. Figure 6.15 contains a schematic

representation of the partitioning process, and indicates

the value of the goodness measure of the intermediate decom-

position at each step. As is clear from this diagram, the

overall optimum value of M occurs after pass 2, for the

decomposition

[(1,2,3,4), (5,6,7), (8,9,10)).

The optimum decomposition measure is M=0.484.

- 336 -

Partitions At Each Stage

0.0505(1,2,3,4,5,6,7,8,9,10)

(1,2,3,4,8,9,10) (5,6,7)

(1,2,3,4) (8,9)

(1,2,3,4) (8) (9)

(1,2,3) (4) (8) (9)

(1,3)

A
(1) (3)

(1) (3)

(1) (3)

(8)

(8)

I
(8)

(9)

I
(9)

I
(9)

(10)

(10)

(10)

(10)
(10)

(10)

(10)

(1,2,3,4) (8,9,10)

0.292

0.484*

-0.101

(5,67)

(5,6,7)

(5,6,7)

(5,6,7)

(5,6,7)I
(5,6,7)

(5) (6,7)

(5) (6) (7)

*optimum measure

Figure 6.15

Decomposition "tree" showing complete decomposition
of graph from Section 6.2.3.

- 377 -

-1.189

-2.178

-3.300

-4.800

-5.900

-7.40

(2)

(
(2)

(2)

(2)

(4)

I
(4)

I
(4)

I
(4)

Value of M

6.7 SUMMARY.

A new algorithm for performing top-down hierarchical

partitioning upon a weighted graph has been defined and dis-

cussed. The algorithm functions by performing pairwise node

interchanges and calculating the corresponding gain to the

partition goodness measure M that results. The node pair

exchanges that produce the maximum gain are retained, and

those nodes are marked as ineligible for further inter-

changes, then the process repeated until no available node

pairs remain. The sequence of node pair interchanges that

leads to a maximum partial sum of the maximum gain values is

then implemented. If the maximum partial sum is zero, then

no interchanges are effected and no further improvement is

possible.

The interchange algorith' is "driven" by the partition

qoodness measure M. In order to improve the efficiency of

the algorithm certain approximations to the calculation of M

were introduced. These approximations were verified by way

of example, and were shown to lead to an equivalent set of

interchanges in one example problem. Experience with the

approximate gain technique has shown it to be essentially as

effective, in terms of identifying good decompositions, as

is the exact technique. The approximate technique is on the

order of 100 times faster than the exact technique.

- 338 -

A comparative analysis in Section 6.5 shows that the

interchange dominates all the hierarchical clustering tech-

niques in 13 out of 14 cases studied. In the one case where

interchange did not dominate, it did determine the second-

best decomposition of the five techniques being studied.

A "master" algorithm appropriate for controlling and

driving the node interchange algorithm was also introduced.

A complete trace of the decomposition of a 10-node graph,

using this master algorithm and the approximate interchange

technique is included in Appendix F.

It is believed that the interchange algorithm is a use-

ful contribution to the body of general graph partitioning

techniques. In the present context (SDM), it is especially

powerful, as it may be used as the core of a top-down parti-

tioning search for the optimal graph decomposition. Since

our experience with SDM has consistently shown that the

optimal decomposition tends to reside fairly near the top of

the decomposition tree (see Figure 6.15), a top-down search

will generally reach the optimum fairly rapidly as compared

with bottor-up clustering approaches used in this work pre-

viously.

* * * * *

In the next chapter, we turn from analytical work on

SDM decomposition to a real-world application of the metho-

doloqy. This application involves the architectural design

- 339 -

for a new budgeting and planning system for M,.I.T. Chapter

7 contains detailed description of the system under design,

as well as the process of applying SDM, and the lessons

learned therein.

- 340 -

Chapter VII

THE USE OF THE SYSTEMATIC DESIGN METHODOLOGY IN THE DESIGN
OF AN APPLICATION SOFTWARE SYSTEM.

7.1 INTRODUCTION - THE NEED FOR SDM EVALUATION.

The Systematic Design Methodology research to date has

involved both methodology development and application stu-

dies. The applications addressed in earlier reports include

designs for a database manager (Andreu 77(a)) and an operat-

ing system (Holden 78). In both cases, however, these stu-

dies were carried out by SDM researchers themselves - not by

the "real" system desiqners. For this reason, they pre-

sented a somewhat biased result. For one thing, the

individual performing the study was already very familiar

with the methodology itself, its goals, and operational fea-

tures. Thus there was little or no designer learning time

involved (there was, however, learning time as regards the

application being addressed). Furthermore, while these

investigators did both report that using SDM seemed to pro-

vide both direct (an effective architecture) and ancillary

(a better understanding of the system reguirements) bene-

fits, the credibility level of their assessments must be

judged somewhat lower than would be those of a real system

designer operating with a real design problem.

- 341 -

In order to determine how well SDH would perform in a

real design context, and to learn how a practicing system

architect would view and evaluate it, we undertook to locate

an appropriate scenario within which to carry out such a

study. Fourteen organizations were contacted by letter and

then by telephone, and five indicated they (a) currently had

an appropriate design problem under consideration, and (b)

would be willing to spare the manpower necessary to carry

out such an evaluation. One of these organizations was

M.I.T.'s own Business Systems Development office (BSD). It

was felt that BSD was the best choice for an initial outside

application study for three different reasons. First, com-

munication and transportation problems would clearly be

nonexistant (all the other organizations were located in

distant cities). Second, following an initial presentation

of the concepts and objectives of the SDN, the BSD people

concerned seemed genuinely interested and willing to expend

some effort in a serious evaluation of the methodology.

Finally, the system deemed most appropriate for the evalua-

tion scenario was a fairly conventional, yet reasonably com-

plex, data processing application system. As the earlier

SDM applications had been concerned with systems software -

a database management system and an operating system - this

study promised to provide new insights as to SDM applicabil-

ity to such application systems design.

- 342 -

This investigation, then, provides the first

significant unbiased evaluation(17) of the usefulness and

effectiveness of the methodology. Also, in return it pro-

vides the BSD system designers with an SDM-derived architec-

ture upon which they may base the further detailed design

and development of their target system.

The remainder of this chapter is organized as follows.

In the next section, background information on the target

system, a new M.l.T. computer-based budgeting system, is

qiven. Section 7.3 contains a discussion of the process of

applying the SDM to the Budget System architecture design,

and includes certain observations made by the BSD designers,

as well as lessons learned by the SDM resedrcher, in the

course of working through the application. Section 7.4 des-

cribes the results of the graph decomposition calculations,

and presents the system architecture that emerged from the

SDM analysis. Implications of the suggested architecture

are also discussed. Finally, the important lessons learned

from this exercise are summarized in the Summary, Sec-

tion 7.5. Appendices G through M include various exhibits

pertaininq to the analysis and decomposition exercise,

including original and final sets of requirement statements,

and the interdependency assessments.

(17)in the sense that the assessment data comes from real
system designers, not the SDM researchers.

- 343 -

7.2 APPLICATION SYSTEM BACKGROUND - THE M.I.T.
BUDGETING SYSTEM.

In this section we provide brief background information

on the specific application system being addressed in the

study. The focus is a computer-based system to support the

.I.T. budqeting process. This system will be referred to

as the Budgeting System. A clear distinction must be made

between the present budgeting system, which is also par-

tially computer based, and the new system being designed.

Both the present system, and considerations for the new one,

will be discussed below.

Much of the information presented below was gleaned

from two sources: a Sloan School of Management Master's

Thesis written by M. Gutierrez and U. Schirmer which pro-

vides a detailed description of the present M.I.T. budgeting

process, and supporting systems (Gutierrez and Schirmer 77);

and, especially, a report written primarily by the chief

designer of the new M.I.T. Budgeting System, H. von Letkem-

ann (von Letkemann 78).

7.2.1 Current M.I.T. Budgeting Environment.

In this report the terms budget and budgeting are used

in a broad context. They include financial planning and

financial management, and therefore overlap with other ele-

ments, general planning at one end of the spectrum and spe-

- 344 -

cific accounting or reporting at the other. The terms

include, but are not limited to, the existing Institute

budget system, financial target setting procedures, fore-

casting of financial reguirements, local departmental budg-

eting systems, and generation of various financial reports.

Budgeting functions at M.I.T. take many forms. In this

report these functions are divided according to the three

levels of management primarily concerned with them. The

titles listed for these three levels are examples and are

not meant to be all inclusive.

1. T22 Management - concerned with Institute-wide
planning and management. This group includes the
President, Chancellor, Provost, Treasurer, certain
Vice Presidents and the supporting Finance and
Budget Offices.

2. Senior Management - concerned with planning for,
and management of, specific major components of
the Institute. This group includes the Deans,
Vice Presidents, Department Heads, and the Direc-
tors of Laboratories, Centers, and programs.

3. Administrative Management - concerned with carry-
ing out the plans and supporting operations of
senior management. They include Administrative
Officers, and certain Administrative Assistants.

At M.I.T. an overwhelming number of demands for funding com-

pete for a finite amount of resources. The Institute has a

fiscal 1979 operating budget of $336 million. Of this

amount approximately $200 million is direct expense for

sponsored research, $55 million for instruction and unspon-

sored research, and the balance for support services and

- 3 45 -

auxiliary activities. There are about 130 budgeting

entities consisting of schools, academic departments,

interdepartmental laboratories and centers, senior officers,

support departments and special activities. The active

accounts number about 10,000. Resources must be allocated

among those programs in a manner consistent with the aca-

demic and societal goals of the Institute.

The Institute faces substantial fiscal pressures and

constraints, both internal and external. It has considera-

ble fixed expenses, including an extensive physical plant

and a 60% tenured faculty. Recent shifts in enrolment pat-

terns have strained the capacities of some departments and

led to underutilization of others. Externally, the impact

of inflation has been substantial. The cost of materials

and services has gone up every year, and salaries and wages

have been increased in an attempt to keep pace with the

increased cost of living. Inflation has also aggravated a

second key problem, the economic slowdown that the United

States has experienced for the last several years. Although

there are some indications of recovery, many sources of

gifts and research sponsoring agencies, including government

agencies, corporations, foundations and individuals, are

still holding back because of their own economic problems.

Additionally, problems such as the ever worsening energy

crisis, dnd additional government regulations and require-

ments continue to burden the Institute's limited resources.

- 346 -

.I.T.'s responses to these economic problems have

taken several forms. Budget reductions have been necessi-

tated in every area. For the most part these budget adjust-

ments have been absorbed without detriment to the services

provided. However, there is the general feeling that the

easy cuts have been made and that future reductions will be

more painful.

Major efforts are under way to develop new sources of

recurring income and gifts to be used in operations. The

Leadership Campaign, and the expansion of the Industrial

Liaison Program, efforts by faculty to secure more sponsored

research support, all are directed toward this goal. Vari-

ous other Institute programs, including the new Facilities

Management System to optimize building energy use, and

increased undergraduate enrolment, have also been introduced

to achieve further economies or additional income.

Some of the financial challenges which M.I.T. faces

will change with time and others will remain the same. New

problems will arise and old ones will be solved, but it is

clear that the Institute rust use its resources wisely and

efficiently if it is to continue to weet its goals of excel-

lence in education and contribution to our society. With

these goals in mind and the knowledge that resources are

limited, it is essential tor M.I.T. to have a good system

for budgetinq and financial management.

- 347 -

7.2.2 The Existing Budgeting System.

The budget system now used at M.I.T. grew as a result

of responses to specific requirements. As a need was recog-

nized a new component of procedure came into existence. The

system is soundly based on the M.I.T. account structure and

includes some analysis functions. These characteristics

make it a valuable guide for any new system. However, it is

still a loosely-connected mixture of manual procedures and

computer operations. The system has not been developed suf-

ficiently to take advantage of the available data already in

the budqet files and in those of the Accounts Reporting Sys-

tem (ARS). Other important data, particularly historical

data, is not even in these files and must be developed manu-

ally from various sources. The functions of the existing

budqet system are hampered by the lack of an integrated base

of consistent information. This has kept it from being the

important management tool it could be. Some of the limita-

tions of the existing procedures are discussed from the

viewpoints of the various levels of management.

7.2.2.1 Top Management.

The reports used or issued by Top Management at M.I.T.

are predominantly manually produced. They are frequently

prepared in response to changing requirements. Often the

pertinent data does not exist in a computer-based file, or

- 348 -

if it does the format or content may be inconsistent with

other files. Even periodic reports, such as the Treasurer's

Report, the Operating Budget, the calculation of research

overhead, the M.I.T. Operating Plan (MITOP), and the Dynamic

Model(18) are produced either entirely or partially by hand.

The manual preparation of a report does not necessarily

detract from its value or content, but often this prepara-

tion requires extended periods of scarce managerial time.

Production of reports either entirely or substantially by

computer would use Institute resources more efficiently,

Cumbersome manual methods of handling information have

a real impact on what information is used and what is done

with it. For example, the Dynamic Model forecasts Institute

financial scenarios several years into the future by pro-

iectinq current data and assumed trends. Because of the

time and difficulty involved in changing the assumptions and

running additional iterations, only a limited number of com-

binations are reviewed. It the model could be changed more

easily, more combinations of variables, and their relative

impacts, could be assessed and it could be run more often.

Then managers could spend their time more effectively in

steering controllable elements and monitoring important

external factors.

(18) For additional detail on these and other components of
the current budgeting system, refer to (Gutierrez and
Schirmer 77).

- 349 -

There is no system for looking ahead several years by

collecting, evaluating and summarizing the planned activi-

ties and expense projections of the senior managers of the

Institute on a regular basis. Even when setting budget tar-

qets with the Chancellor there often has been little atten-

tion paid to the years beyond the period being budgeted.

Although many senior managers do their own longer range

planning, these plans and projections are never brought

together to show the aggregate of the estimates and their

effect on where M.I.T. will be three to five years hence.

Fund accounts are frequently managed in a less than

optimal fashion. For instance, an unrestricted gift may be

received and then designated for a specific use by the

Institute. The fund is then accounted for according to that

designation. In time that designation may begin to lose

priority. With no easily accessible record to show that it

was originally an unrestricted gift, there is no way to be

sure that the gift is being used to the Institute's best

benefit.

7.2.2.2 Senior Management.

As with top management, senior management must rely

heavily on the current and previous year's figures when

developing their future budget plans. Although certain

items in their budgets will be adjusted by the Budget Office

- 350 -

to reflect salary and tuition increases and other changes,

it is sometimes difficult to know what resources Vill be

required for the coming year, particularly if any changes in

activities are planned. The President, Chancellor and Pro-

vost give general guidance, but they depend heavily on the

judgement of the deans regarding new subjects, trends in

student demand, and research undertaken. The absence of

uniform planning and budgeting presentations allows for a

significant amount of subjective judgement to be exercised

in the establishment of the budget targets.

in the cases where a request of the senior manager for

a budget increase is accepted, it is likely that the request

has been supported by a detailed and well structured projec-

tion explaining the requirment. Although no detailed justi-

fication nor any plan beyond the next fiscal year is nor-

mally required, it is often those managers who document

their needs and provide the most meaningful presentations

who get the most consideration for additional funding. How-

ever, the current budget system provides almost no effective

support to those managers who are motivated to develop such

thorough documentation.

- 351 -

7.2.2.3 Administrative Management.

Administrative management is the group closest to the

day-to-day financial management of the Institute. As a

qroup, it has the greatest need for current and detailed

information about individual accounts. This function is

supported by the Institute with periodic reports such as

those listed below.

The Accounts Reporting System (ARS) provides them with:

Detailed Transaction Report

Monthly Statement

Information Summary

Volume Report

Analysis of Expired and/or Overrun Accounts

The Budget Office provides them with:

Budget Proposal Forms

Budget Authorization (green sheet)

Budget versus Actual Analyses

The Payroll department Froduces:

Salary and Wage Expenses by Individual

consolidated Salary Expense Analysis

The ARS reports contain essential accounting data, including

information regarding monthly charges, fiscal year and cumu-

lative figures, and authorized budgets. Commonly mentioned

shortcomings of ARS reports are that the data is not timely

and that the commitment figures are not always meaningful.

- 352 -

These problems are inherent in the design of the current

accountinq and purchasing systems.

Budget vs. Actual reports produced by the Budget Office

are the only real analyses that the Institute provides the

administrative managers. These reports compare fiscal

year-to-date expenditures with Budget Office projections

based on standard expenditure patterns. While the projec-

tions are generally sensible and realistic, not all adminis-

trators find them useful. Under the current system however,

these reports are probably the best that could be produced

on an Institute-wide basis.

In many instances, individual departments have devel-

oped their own tailored systers to monitor actual-versus-

budgeted expenditures or provide other services deemed

important by that department. The scope and sophistication

of these "local" systems varies widely. However, their

existence indicates the existence of a multitude of report-

ing and monitoring needs not now met by the current budget-

inq and accounting systems. They also represent a rich

source of ideas for potential features of a new budgeting

system.

- 353 -

7.2.3 General Rguirements for a New Budgeting System,

In this section, an overview of various user require-

ments for a new budgeting system is presented. These

requirement issues are derived from many sources, including

interviews with management personnel across the Institute,

other interviews and questionnaire survey results from a

study of the planning and budgeting practices of eleven

other colleges and universities (Hudock 77), and analysis of

the current M.I.T. Budgeting System operational capabili-

ties.

The new budget system will build on many strengths of

the existing Budget system and the systems developed by sev-

eral of the administrators. It will automate many of the

manual procedures and extend the present system's capabili-

ties by increasing the data available to both the Budget

Office and the departmental users. Capabilities could be

expanded by sharing the data bases of other systems and by

making budget data available to users in other areas. Some

additional input would allow improved support for a broad

range of financial management applications and additional

reporting capabilities. These features are discussed in

this section in the context of the management level primar-

ily involved.

- 354 -

7.2.3.1 Preliminary Technical Issues.

The present budgeting system is batch-oriented and

heavily involves magnetic tapes for data storage. The new

system would provide for considerable on-line function, as

well as batch, and would rely much more on disk storage

media. Tapes may still be used for disk backup, and possi-

bly for transferring data between other older systems.

The new system will be developed and operated on one of

the Institute's I.B.M. System/370 computers. Storage for

the proposed database will reguire on the order of one full

disk pack (3330-1 type). The system will be able to inter-

face with different terminal types so as not to constrain

the system users. Any terminal which normally communicates

with the 370/168 should be acceptable. A new printer, the

IBM 3800, is desirable for the new system. It would allow

more data to be shown on a report, could produce the reports

in less time, and would print them on 8 1/2 inch by 11 inch

paper, which is easier to handle and store. A sample print-

out from the IBM 3800 printer is included in Appendix G.

The new system will be designed to operate in conjunc-

tion with a database management system. The database man-

aqement system (DBMS) will support storage of detailed

information and allow simple access and updating through

batch or interactive processing. The DBMS will support

standard and non-standard reports and inquiries, and func-

- 355 -

tion independently of the programs and systems using it. It

is planned that the database management system will interact

with many systems, increasing its usefulness beyond just the

budqetary function.

7.2.3.2 Support for Top Management.

These functions are categorized in three areas: spe-

cial information requirements, standard reports, and plan-

ning.

Special information support for top management basi-

cally involves supporting the need for "one-time" reports or

queries. Although it is not feasible to anticipate every

request for such information, the Budget System must carry a

wide range of data that can be easily accessed, organized

and presented as required. The details of this function are

somewhat dependent on the capabilities of the database man-

aqement system used. It is anticipated that the data would

include at least the Chart of Accounts and detailed monthly

budqet and actual figures for each object code for each

account. Certain data for past fiscal years would also be

included. For fund accounts there would also be historical

information that could facilitate their management. For

example, fund data should include the donor's original

designation for the gift and its related income as well as

how it is currently being used, thereby making more effec-

tive fund management possible.

- 356 -

The new system would continue to produce most of the

current standard reports, including (but not limited to):

The Printed Budget

Certain portions of the Treasurer's Report

Indirect Cost Recovery Percentage

MITOP

Dynamic Model

Periodic Summary of Operations

Modeling and analysis capabilities must be provided to

explore historical data and to project observed trends and

assumptions. This would probably require a new program to

replace the Dynamic Model, which would automatically inter-

relate the various assumptions. This would facilitate re-

running the irodel so as to check out assumptions or do sen-

sitivity analyses on individual factors. This modeling and

analysis system could be devcloped in-house or a commer-

cially available package might be used.

If M.I.T. is to take full advantage of the new system's

modeling and forcasting capability there must also be input

concerning the plans made by top and senior management. The

budget system would provide the support for collecting,

storing and providing access to such data. The most impor-

tant contribution to a forecasting system would be senior

managers submitting their plans and projected expenses

related to those plans. These should be for two specific

- 357 -

periods; for example, a "short range" one year plan and a

"long range" three year plan. The plans should be in a rea-

sonably uniform format and should be correlated with pro-

posed budget targets as well as the senior managers' area

summaries in the Report of the President and Chancellor.

The Budget and Fiscal Planning Office would then collect

these plans and projections and enter them into a planning

database to support modeling and forecasting.

7.2.3.3 Support for Senior Management.

The Budget System would provide senior managers with

standard periodic reports, special reports and access to the

database that would allow them to make their own inquiries

and analyses. These reports would contain data extracted

from the Budget System database or any other file which is

normally accessible.

Of the standard periodic reports currently produced by

the Budget Office only the Budget Authorizations issued

prior to the beginning of the fiscal year would remain the

same. In the new system the subsequent budget authoriza-

tions and changes would be included in a Monthly Analysis

report. The Monthly Analysis would also replace the Budget

vs. Actual Report. This report would be a summary of the

analyses produced for administrative management.

- 358 -

Special reports for senior management vould be availa-

ble on request. They would include variations of the

Monthly Analysis report and other widely-used reports. It

is anticipated that they would be requested via a terminal

and printed either at the terminal or on a high speed prin-

ter at the data center.

Customized reports could be obtained by use of an

easy-to-use Report writer language to access the database.

Senior manaqers would be able to access their data, perform

various kinds of calculations, and display the results in a

variety of formats.

The Budget database would also be available for special

inquiries or analyses originated by senior managers. There

would be support for batch processing as well as a pre-pro-

grammed "menu" for terminals which would allow easy access

to the database for the most common types of inquiries.

More complex analyses could te obtained by using an easily-

learned database inquiry language.

Protection of data against unauthorized access would

most probably be done by a system of passwords. Within a

department there might be several levels of security depend-

ing upon the sensitivity of the data and the "need to know."

Furthermore, even when data elements would be accessible to

authorized users, most ot them would be on a "read-only"

basis. To maintain datatase integrity, only the data

- 359 -

"owner" - such as ARS, Payroll, or Budget Office - would be

allowed to add or change most data.

As for top management, there is a need for senior man-

agers to submit their future plans and projected expenses.

Not only will this aid top management in modeling and fore-

casting, but it will also assist senior managers in present-

inq a concise, meaningful and convincing proposal for their

financial support.

7.2.3.4 Support for Administrative Management.

Just as the administrative managers have the most inti-

mate and continuing contact with budget and accounting func-

tions, they would experience the greatest impact from the

new budget system. The system would make considerably more

data available and would provide facilities to access it.

It would also demand more of them, in that to effectively

use the system they must provide, and revise as necessary,

month-by-month projections of expenditures and income for

each account and object code. The system would make this as

easy as possible to do. Each object code would have a stan-

dard or "default" projections formula which the administra-

tors could either accept or replace with their own. Projec-

tion changes within an object code would be made directly by

the Administrative Officer and reviewed by the Budget Off-

ice. Other changes to the budget data would be submitted to

- 360 -

the budget Office, which would be responsible, as it is

today, for review prior to updating the database.

Program Budgeting can be an effective tool in relating

plans or goals of the Institute and senior management to the

financial resources available. It is a method by which

budgets are established along program or activity lines.

Although some administrative managers use Program Budgeting,

others budget and monitor solely on a line-item basis. The

new budget system should encourage the use of Program Budg-

eting. This budgetary method would be far more useful in

monitoring expenditures than the traditional line-item

budget. In addition, program budgeting would be a signifi-

cant aid in estimating requirements and in preparing for the

target-setting discussions between senior managers and the

Chancellor.

The Budget System should provide manual and on-line

options for the preparation and submission of budget propo-

sals. Duplication of effort, and time to prepare proposals,

would be minimized by using the computer to do the calcula-

tions and make projections and modifications within the

budget target amount.

The new system would supply all the periodic informa-

tion currently contained in the Budget Authorizations (after

the start of the fiscal year) , Monthly Statements, Informa-

tion Summaries, and the Budget vs. Actual reports. This

- 361 -

would be done with a single Monthly Analysis report which

would show current month, fiscal year to date, budget and

other data in a format which would compare actual and plan-

ned account activity.

In addition to replacing these Institute reports, the

system could eliminate the requirement for some of the

departmentally-produced reports. If a department still

wished to have its own special formats, they could do so by

extracting their infornation from the database using the

Report Writer feature.

The Budget System would produce optional reports on

request. These would include standard reports for non-stan-

dard periods, such as contract year, or reports which would

be widely, but not universally used.

The system would support the additional needs of admin-

istrators for inquiries into the database or for special

analyses. Access to the data would be read-only, and, sub-

ject to data security restriction, would use the same facil-

ities available to senior management.

7.2.3.5 Support for the Fiscal Planning and Budgeting
Office.

The new budget system would cause some significant

changes in the activities of the Fiscal Planning and

Budget Office. In addition to most of its current res-

- 362 -

ponsibilities, there would be the establishment and

maintendnce of a database for the long range projections

of the senior management. The dollar amounts and other

volume fiqures should provide the Budget Office with the

base for a good forecasting system.

Processinq of budget proposals would be simplified

by the use of computers and terminals, greatly reducing

the routine manual functions. Proposals could be

accepted either on paper or via department terminals. In

either case, the computer would edit them for internal

consistency and check or generate necessary totals. The

computer would determine if the proposals were within the

authorized target amounts and also check for- open

accounts without proposals. Any discrepancies would be

followed up by the Budqet Office.

The current procedures of written requests and

appr.ovals for nonrecurring equipment, carryforward

amounts, sabtatical leaves and other special expenses

would remain unchanged. The approval actions would enter

the budget system as authorized budget changes.

The existing u'iund Draft procedure would remain in

effect, except the input log sheet would be replaced by a

similar record entered via a terminal or batch input by

the managing department and checked by the Budget Office.

- 363 -

The budget proposals accepted and approved by the

Budget Office mould continue to be adjusted for "dollar

budgeting" via the computer, and Budget Authorizations

("green sheets") would be printed and distributed as at

present. Once the fiscal year begins, any subsequent

adjustments would appear on the new Monthly Analysis

report produced from the Budget database. A note

explaining the change would also be shown.

It is anticipated that the Budget database would

have month-by-month fiqures for:

Proposed budget, next fiscal year

Authorized budget, this fiscal year

Actual expense, this fiscal year

Authorized budget, last fiscal year

Actual expense, last fiscal year

Summarized data would be included for prior years. The

database would also carry, or be able to access, the data

from the Chart of Accounts, account makeup and non-stan-

dard support, and additional data as required for fund

and research accounts. Non-standard financial agreements

between top and senior management, and other nonrecurring

transactions, would be catalogued in a special Budget

Office file. The database organization must allow the

addition of data elements that are not currently required

so that the database can grow and change with the needs

of the Institute.

- 364 -

7.3 SDM ANALYSIS OF THE NLW BUDGETING SYSTEM.

In this section we describe briefly the steps that were

taken in conducting the SDM analysis of the M.I.T. Budgeting

System, arid the methodological lessons learned. The key

documents developed or referenced during this activity are

contained in appendices.

As mentioned earlier, the SDM researchers' "interven-

tion" in the Budqeting System design activites commenced

with a presentation on the nature and purpose of the metho-

doloqy, attended by the M.I.T. BSD staff. Following the

presentation, it was agreed by the researchers and the BSD

stafi that the Budget System was probably the most appropri-

ate system to use as an SDM test scenario. The main reason

for this was that the system's development was at the right

stage - i.e., most user requirements had been determined and

documented, although detailed design activity had not yet

commenced. Also, the system was perceived to be about the

riqht size and scope for an effective SDM study: large

enough to present considerable complexity to the designers,

but not so large as to overwhelm the SDM researchers.

7.3.1 Fegiirements Presaration.

The first step in the study was to prepare a set of

SDM-oriented requirement statements for the new system.

Following initial discussions with the Budget System desig-

- 365 -

ners, it was decided that the designers would prepare an

initial requirements list, which would later be modified, if

necessary. This initial list of statements was prepared by

the two key Budget System designers, H. von Letkemann and R.

Shaw, and is reproduced in entirety in Appendix H. These

requirments statements were developed largely out of exist-

inq prose documentation of the needs of the various Budget

System user groups, similar to the description given in Sec-

tion 7.2.3

This initial set of requirement statements proved

somewhat inappropriate for SCN use for various reasons. The

most important difficulty concerned the manner in which many

of the statements had been constructed by the designers. As

may be seen in Appendix H, many statements consisted of a

very general "leader" statement, followed by a series of

sub-statements. For instance, original statement 19 was

19. Support Special reports for budget-related activities.

a) Standard reports at non-standard times

b) Standard reports for non-standard periods

i) Contract period

ii) Sponsor's fiscal year

c) Standard data in non-standard formats

d) Report writer language for fully customized

reports. This language must be easily learned

and used.

- 366 -

Also, a number of the statements included reference to

implementation mechanisms, something to be avoided at this

stage in system design. As an example, original statement

18 read

18. On Personnel Action Form add a box to indicate

whether person hired is a replacement or an

addition.

It is clear that as stated, this requirement specifies a

procedural technique rather than a function to be provided.

Finally, the various statements exhibited wide varia-

tions in their abstraction level. Statement 1, for

instance, oriqinally read

1. Automate as many manual [rocedures as feasible

to save time and effort.

There is a rather substantial difference in abstraction

level between statement 1 and statement 18 (above). In

fact, statement 1 was later removed, as it was felt to be so

all-encompassing as to be design-irrelevant.

Occasionally, the designers' original set of reguire-

ment statements included requirements for issues to be stu-

died further, as opposed to the functions of the targjt sys-

term. For example, original statement .37 read

J ~67-

37. Determine the desirability and feasibility of

encumbering salary and wage budgeted amounts.

Statements such as these were judged to be "study tasks,"

and were not included as system functional requirements in

the final set of statements.

A two-stage approach was followed for re-writing the

set of functional requirements to work them into a form more

suitable for additional SDN analysis. In the first stage,

the SDM researcher re-drafted all the statements following

the qeneral guidelines discussed in Chapter 3. The temp-

lates concept was followed in framing individual statements,

and proved quite effective in helping to meet the guide-

lines.

In the second stage, the designers examined the re-

drafted statements to make additions, corrections, and modi-

fications. This took place over the course of two meetings,

of about two hours each. One interesting phenomenon occur-

red at this point. In many instances, the designers pos-

sessed specific, often implementation-oriented, information

that bore upon certain requirements. They felt that it was

important that such information be included within the

requirement statements themselves. However, in many cases

it was precisely this kind of detailed, implementation-or-

iented information that the requirements had been redrafted

to avoid.

- 368 -

One of the underlying principles of SDK analysis is

that requirement statements should specify functions only,

not procedural issues. including procedural information

("implementation issues") in the requirements tends to unne-

cessarily constrain later design options at the start, per-

haps resulting in potentially superior alternatives never

beinq considered. However, in this case the designers were

effectively saying that various good procedural ideas had

occurred to them, and they would "like to see them reflected

in the requirement statements." Certain other factors

played d role in the matter as well: wanting to include

reference to a "pet idea" of particular users; wanting to

include references to specific techniques or devices for

which it was felt that higher authorities might require some

"sellinq."

An effective solution to this problem was to add a Com-

ment section to many of the requirement statements. This

feature allowed the designers to include additional informa-

tion, deeffea not appropriate or relevant for the basic

requirement statement, but which they desired to have for-

mally stated along with the basic statements. Examples are

contained in Appendix I.

The two meetings mentioned above led to a reasonable

set of functional requirement statements for use in further

SDi4 analysis. However, this was by no means the final ver-

- 369 -

sion of the statements. In the meetings to follow, numerous

additional modifications to both statement form and content

were made. Certain new statements were added in light of

improved understanding that occurred as a result of these

discussions. Similarly, some other statements were deleted

or merged together, and minor or major wording alterations

were made to many. The final version of the Budgeting Sys-

tem Functional Requirement Statements is given in Appen-

dix I.

Another mechanism found useful in the development of

the requirement statements involved the use of the Waterloo

Script text formatting system ("USCRIPT") which runs on

M.I.T.'s IBM System/370 computer. This powerful formatter

allows the user to write command macros. One such macro was

used to provide automatic numbering control on the require-

ment statements. Through this means, statements could be

added, deleted, or their sequence altered, without requiring

extensive and time-consuming statement renumbering.

7.3.2 Interdependency Analysis.

Once the requirement statements had been expressed in a

form appropriate to SDM,, work began on determining the exis-

tence and strength of the various requirement interdependen-

cies. This work was carried out in a series of six joint

meetings, each lasting about two hours.

- 370 -

A simple form was designed for carrying out the

interdependency analysis, a copy of which is included here

in Appendix J. The approach followed was straightforward.

Beginning with requirement pair (1,2), each individual con-

sidered whether or not a significant implementation interde-

pendency existed between the two requirements. This assess-

ment was carried out by considering "conceptual models" of

the implementation of each requirement in the pair, then

determining in the context of these models whether or not

there would arise any concordant or discordant interaction

between them. These notions of mental imilementation

models, and concordant and discordant interdependencies have

been described in depth in (Andreu 77(b)). The basic idea

is as follows:

1. First, one thinks about how the first requirement

would most likely be implemented. This generally

requires thinking through some detailed design,

procedural-type issues.

2. With that "mental todel" in mind, the same thing

is done as regards the second requirement.

.3. Then the two mental models of implementation are

jointly compared to determine whether

a) one scheme makes it easier to implement the
other (condordance);

- 371 -

b) one scheme makes it more difficult to implement
the other (discordance);

c) there is no appreciable overlap, or interac-
tion, in the above sense, between the two.

The result of this comparison suggests the existence

or non-existence of an interdependency between the

requirements under consideration.

4. Finally, the strength of each interdependency was

assessed. Strength ratings were chosen from a set

of three alternatives:

S - strong

A - average

U - weak.

While interpolation and extrapolation of these

categories are possible, these three alternatives

were found to be satisfactory for this project.

The interdependency strength assessment was made

judqmentally, based on the perceived amount of

"overlap," or interaction, between the mental

models being contrasted.

In practice, the different individuals involved in the

assessment activity nearly always agreed on a common

strenqth value for a given interdependency. Intuitively,

then, these assessments should be judged to be reasonably

consistent between different designers.

- 372 -

Interdependency analysis proved to be somewhat more

difficult for the designers than expected. The main reason

for this seemed to be the difficulty in constantly keeping

in mind precisely what interdependency assessment was sup-

posed to be. Specifically, there was a noted tendency for

the focus to shift from issues about how two particular

requirements might be related at the implementation level,

to whether or not they were loically related. An example

of this phenomenon should make it clearer. Requirements 56

and 57 are, respectively

56. budget proposals can be prepared manually.

57. Budget proposals can be prepared on-line.

Now, on first glance it right appear that since both

requirements pertain to budget proposal preparation, they

must have an interdependency, probably a strong one. This

would be an instance of what was termed "logical relation-

ship," above. In practice, this kind of logical relation-

ship is easier to identify than is the inplementation-level

interdependency, consequently they often "jumped out" at the

designers during the interdependency analysis activity,

tendinq to further obscure the search for true implementa-

tion interdependencies. The only solution to this problem

- 373 -

was for the SDM researcher to continually ask the designers

whether a given interdependency they had determined to exist

was in fact a result of iplementation overlap, or something

else. If the answer was "something else" (e.g., in the

above example, the source of the initial interdependency

assessment was "both requirements concern budget proposal

preparation") then we had to think more carefully about the

requirements and our mental models of their implementation

within the target system. In the above example, this re-

thinking did in fact lead to an implementation interdepen-

dency, judged to be weak in importance. The underlying

argument concerned a key implementation model, the concept

of a suspense or holding file for budget proposals, that was

seen as leading to a concordant interdependency between the

two requirements.

7.3.3 Some Lessons Learned.

The interdependency analysis activity, as mentioned

above, consumed approximately eleven hours of meeting time.

This is a not inconsiderable load. However, in this case at

least, the meetings were judged to be profitable exercises

in a sense independent of any potential benefits that may

emerge from the SDM-produced architecture per se. Specifi-

cally, some important issues regarding the Budget System

were raised, discussed, and cleared up or at least better

- 374 -

understood as a result of the careful, repeated study being

qiven to each requirement. This effect is raised and dis-

cussed, and modelled as an important SDM benefit in the next

chapter.

The most general side benefit gained from the SDM ana-

lysis exercise concerned a heightened awareness and under-

standinq of all the "pieces" of the new Budget System,, and

now they fit together. The designers indicated that working

through the SDM activities, especially the interdependency

analysis step, served both an integrating and differentiat-

ing function. Developing implementation-free requirement

statements tended to force them to "stand back," to abstract

from many of the specific implementation-oriented details

with which they were generally concerned, thus helping them

to develop a better graspe of the "big picture." An example

of this concerns original requirement

5c) Provide checks to ensure that each person

is not budgeted more than 100% E.F.T.

Discussion of this requirement led to the broader recogni-

tion that what was really desired was a general set of edit-

ing and checking capabilities, not limited to this one par-

ticular aspect. Hence the more general requirement,

53. Budgeted proposals will be automatically

- 375 -

checked and edited to the extent possible.

emerqed. Nonetheless, the problem with EFT (effective

full-time) budgeting of certain staff occasionally exceeding

100% was felt to be an important instance of the general

requirement, so was included in the final set of require-

ments as a comment.

Another class of lessons learned concerns new ideas

that occurred to the designers as a result of working

throuqh the SDM analysis. A good example of this was

related by the chief designer during one of the meetings.

It concerned his observation of the parallels between the

research proposal tracking and budget proposal tracking

tasks. In the past these activities were viewed and treated

separately. However, through having to think carefully

about the relationships among the requirements in the course

of the interdependency analysis, he had come to recognize

many procedural commonalities between the two general activ-

ities. This, he pointed out, suggested new, potentially

better ways of performing the former task based on ideas

that had been developed for performing the latter. At the

present time the procedures for performing the two tasks are

quite different. Essentially, the need to develop a mental

implementation model for the research proposal tracking

requirement led the designer to consider a similar, better

understood model for the budget proposal tracking

- 376 -

requirement, which in turn led to the idea of implementing

both requirements in a common fashion. This may be thought

of as a kind of inverted interdependency analysis: rather

than deriving the interdependency from the conceptual imple-

mentation models, one implemented model was derived from the

second model and the perceived potential interdependency.

The normal and inverted patterns of interdependency analysis

are illustrated in Figure 7.1(a) and (b).

A third category of benefit reported by the designers

was that working with the SDM concepts gave them some useful

new ways of thinking about system design in general (not

restricted to this specific system). The most frequently

cited case concerned the central SDM concept of separating

functional issues in the requirement statements, and imple-

mentation issues in the interdependency assessments. The

designers reported that they found this a most useful way of

orqanizinq their thoughts in addressing system design prob-

lems, and in fact found themselves using the concepts when

discussing design issues with other parties. They reported

conversations with the Director of Business Systems Develop-

ment (their boss) in which the SDA conceptual framework was

used to help clarify certain design issues being discussed.

Another category of "lesson" that ought to be mentioned

concerns the importance of what we will call "political"

issues in the systew preliminary design process. As with

- 377 -

Requirement 1

Implementation
Model 1

leads to

Inter-
dependency

Requirement 2

O--Z23
Implementation
Model 2

Figure 7.1(a)

Normal pattern for Interdependency Assessment

Requirement 1

/ Imple-
mentation
Model 1

Inter-

leads to dependency

®~42

0
Requirement 2

Figure 7.1(b)

Inverted pattern for Interdependency Assessment

- 378 -

G _

practically any activity that results in impacts on the

working needs and relationships of the members of the organ-

ization in which it operates, system design activities are

subject to more than strictly "technical" concerns. In the

case of system preliminary design, these concerns fall into

two main qroups: (a) impact of system design activities on

the needs of eventual users of the target system, and

(b) impact on the needs of the designers and developers of

the system. The SDM exercise brought to light cases of both

types. This was found useful by the designers, although not

because they believed that these kinds of issues ought not

enter the design process at all. In most cases the desig-

ners were not really in a position to make such a judgment.

Rather, it was seen to be beneficial simply to recognize the

nature of the reasoning underlying such considerations.

Desiqn decisions involving "politically-based" requirements,

for instance, miqht be handled in a manner different from

that for other requirements.

An example of this issue concerns the need for the

Budget System to interface and share data with certain other

existing administrative data processing systems. The desig-

ners, in assessing interdependencies among requirements that

involved this need for data sharing, found themselves limit-

inq their thinking to certain implementation approaches and

rulinq out other, potentially good approaches that were seen

- 379 -

as "politically infeasible" for some reason. In another

instance, the designers suggested that certain items ought

to be included '(generally as comments) in the SDH require-

ment statements on the grounds that some other individual or

organizational entity "would want to see it there." There

were also some instances of comment items stemming from the

designers' desires to give expression to particular techni-

ques or approaches they felt to be especially important. As

a hypothetical example, a designer might be convinced (per-

haps quite correctly) that a particular device would be

necessary to properly meet one or more user requirements.

Therefore, even though the choice of device could be argued

to be an "implementation approach" to meeting the require-

ments, the designer might choose to include a reference to

the particular device as a comment on the requirement state-

ment, so as to help develop a mental association between the

device and the requirement in the minds of the users reading

the requirement statements later on.

Andreu expressed concern over the time required to exe-

cute the SDM interdependency analysis on requirements sets

of nontrivial size (Andreu 78). He countered this concern,

however, with the observation that the interdependency

matrix is quite sparse, hence the problem is not as serious

as it might at first appear. This turned out to be accurate

in the present case as well. For the Budgeting System, 77

- 380 -

requirerents were determined, and 289 interdependency

assessments trade over a course of about 12 hours. This

represents approximately four interdependencies per require-

ment, and approximately 2.4 minutes per assessment. Note

however, that the total potential number of interdependen-

cies is 77x76/2 = 2926. Using the total figure, the assess-

ment rate turned out to be 15 seconds per interdependency

assessment. The fact that about 90% of the requirement

pairs are of the "easy" assessirent type, and hence require

very little study time, makes the entire interdependency

assessment activity feasible.

In carrying out his DBMS application study, Andreu per-

formed all the interdependency assessment himself - i.e., he

played the role of a single DBMS designer. He later pointed

out (Andreu 78, page 232) the fact that he felt a group

approach to the assessment activity might work out well, in

that individual designers need reinforcement of their think-

ing process from other designers to insure them that they

are not "way oft base." This in fact did seem to be the

case with the Budgeting System assessment exercise. Having

three people thinking about the interdependencies definitely

resulted in a clearer and more consistent set of interdepen-

dency, and in the propagation of ideas, modification and

improvements to the requirements, etc. that would not all

have been generated by any single individual. An effective

- 381 -

balance - between target system-relevant knowledge possessed

by the designers, and SDM-oriented concepts better under-

stood by the SDM researcher - was in evidence. On numerous

occasions, the SDI researcher suggested possible interdepen-

dencies that were discounted by the designers as a result of

their better grasp of the needs of the target system. In

contrast, the SDM researcher was effective in maintaining

the correct focus during the requirement statement develop-

ment and interdependency assessment activities, as discussed

earlier. The materialization of this symbiosis suggests

that a qroup approach ,to interdependency assessment is prob-

ably the most fruitful one.

7.3.4 Summary.

This exercise has indicated clearly that there are

immediate design benefits to be had from the SDM require-

ments preparation and interdependency analysis activities.

The common source of these benefits lies partially in the

simple fact of having to think carefully, and repeatedly, in

a structured way, about what each requirement really means,

about how each might be inplemented, and about how alterna-

tive implementation schemes interact. In the next section

we analyze the architecture for the new Budgeting System

that emerges from this analysis.

- 382 -

7.4 AN ARCfITCTURE FO M.I.T.IS NEW BUDG"ETING SYSTEN.

Once the interdependency analysis has been completed,

the interdependency statements can be entered into the com-

puter for use in the decomposition analysis. The Budgeting

System interdependency statements are of the form:

nodel node2 weight description

The weiqht values are entered as 'W', 'A', or 'S', as dis-

cussed earlier. The "description" is a brief text commen-

tary used to document the rationale underlying the desig-

ners' assessment of the existence of that particular

interdependency. A complete listing of the Budgeting System

interdependencies is given in Appendix K.

It should be noted that the capability of entering,

storing, and retrieving interdependency descriptive inforna-

tion was judged by Andreu to be an important feature not

present in his initial version of the SDM analysis package.

While the techniques that have been developed for this pur-

pose in the current effort have been found useful, there are

some further improvements that could be made, and are dis-

cussed in the final section.

- 383 -

7.4.1 Decomposition Analysis Results.

The Budgeting System interdependencies define its

requirements graph. The interdependencies data file (Appen-

dix K) was converted, using a simple standalone routine (to

be incorporated into the analysis package in the future), to

another data file (containing no text information) that

could then be used as input to the MASTER decomposition

routines. These routines are described and documented in

Appendix E.

The facilities of the analysis package were then used

to develop decompositions of the requirements graph, to

evaluate them using the objective function N, to modify and

manipulate the decompositions in various ways, and to save

and print out the results so obtained.

Each of the five decomposition techniques (four clus-

tering techniques, and the interchange algorithm) were

applied to the Budgeting System requirements graph. The

outcomes are shown in Table 7.1. Of the four clustering

methods, HIEB3 produced the best overall decomposition, with

an objective function value of N = 0.67. The objective

function values for HIER1, HIER2, and HIEB4(19) were, res-

pectively, 0.05, 0.27, and 0.27.

(19)These algorithms are discussed in detail in Chapter 5.

- 384 -

A.92Eithn
Cbjective Function Value

for Best Located Decomposition

HIER 1

HIEiR2

HIER3

HIER 4

INTELCHANGE

0.05

0.27

0 . 67

0.27

0.85

Table 7.1

Comparison of results of five decomposition

aiqorithws on the Budgeting System requirements graph

- 385 -

The interchange algorithm was also applied to the

requirements graph, and produced a decomposition with

M = 0.85. This decomposition, then, was judged to be the

best in terms of identifying high-strength, low-coupling

subgraphs (as measured by M). This best decomposition of

the requirements graph produced by the interchange method is

illustrated in Figure 7.2. Appendix L contains a listing of

the abbreviated Budgeting System requirements (no Comment

sections included there, for brevity) organized according to

subqraph. Finally, Appendix H contains a listing of the

inter-requirement links between each identified pair of sub-

qraphs.

The task that remains, then, is to study the decomposi-

tion - both the requirements subsets, and the sets of inter-

dependencies between requirement subsets - so as to formu-

late an interpretation of the graph decomposition as a

system architecture. At the same time we seek to identify

anomalies, counterintuitive results, etc., that might indi-

cate earlier errors in assessments, requirements formula-

tion, etc. Alternatively, anomalous results might turn out,

on closer inspection, to be correct after all, but simply

unforseen. Such issues will be examined in greater detail

in the next section.

- 386 -

Reqjuirements

7,28, 38, 56, 57-6 2,65,66,68,7 1,76

18-26, 29, 31- 34, 36,39-42

16,43-52,64,74

15, 77

9# 16, 1.3

53-5 5,67,69,70

11,12,14

5,6,271.35

8 ,63,7 5

1-4, 17,30,37

72, 73

ltljue 1.2

Best located decomposition produced by the interchange
method on the Budgeting System requirements graph.

- 387 -

7.4.2 Analysis of Aesign Subproblems.

A total of eleven design subproblems were identified in

the best decomposition of the requirements graph. Three of

these subproblems are "middle-sized," containing 15, 19, and

13 requirements; the remainder are somewhat smaller, rang-

inq in size from two to seven requirements each.

Figure 7.3 shows the relationships between the eleven

design subproblems and the 21 inter-subproblem linkages.

The size of the linkages shown in the figure is related to

the number of interdependencies encompassed by each, as

explained in Section 7.3. This figure will be expanded with

additional descriptive information following our discussion

of the individual subproblems and linkages in this and the

next section.

Subproblem 1 - Preparation of Budget Propsls.

This subprobler centers on the preparation of budget

proposals. One of the intended features of the new Budget-

inq System is a much more streamlined, easier-to-use set of

proposal preparation facilities, including on-line prepara-

tion, automatic checking and cross-checking of entered data

for consistency and reasonableness of values, on-line exami-

nation by the Budget Office, and on-line modification by the

budget preparers (administrative officers, department heads,

etc.). Most of the requirements in this subproblem hinge

directly on these related activities.

- 388 -

Subprobe

co4

Subproblem Subproblem
2

Subprob lem .
5

Subj

Subpnroblem
9

Figure 7.3

Relationships among the eleven design subproblems

Requirements 7, 28, 38, 62, and 68 all are related to

the maintenance of various kinds of data directly relevant

to proposal preparation. The fact that these data sources

are identified together is useful for later detailed design

of the Budgeting System database - e.g., when deciding on

segment structure, record layouts, etc., it is most useful

to have a clear idea of what data is most likely to be used

jointly or in closely related activities.

Requirements 56 and 57 pertain to the proposal prepara-

tion process itself. Reguirements 58, 59, 60, and 61 all

pertain to the issues surrounding the checking, editing, and

revision of budget proposals or changes to pending propo-

sals. Requirement 71, regarding fund draft checking, is

closely tied to various other requirements within this sub-

problem, including those involved with special financial

arrangements (7,68), and those requirements with similar

processing steps (59,60,61,62).

There are two seeming anomalies, in the presence of

requirements 65, 66, and 76 in this subproblem. A deeper

examination, however, reinforces the correctness of this

assignment. Requirements 65 and 66 involve handling of

research proposals by the Budgeting System. Research propo-

sals may not appear at first glance to have much in common

with budget proposals. However, as discussed in Section

7.3.3 earlier, one of the useful discoveries made by the

- 390 -

chief designer in the course of the SDM interdependency

analysis was the existence of strong potential implenenta-

tion parallels between the handling of research and budget

proposal preparation. (20) These parallels manifest them-

selves in interdependencies that eventually result in the

research proposal preparation requirements being grouped

together, for design consideration purposes, with the budget

proposal preparation requirements.

The existence of requirement 76 in Subproblem 1 simi-

larly makes good sense upon closer examination. The Insti-

tute's overhead recovery rate is, in fAct, a key item of

information in budget proposal preparation. The rate is

adjusted as a function of the Institute's financial situa-

tion each year. The intention in the new Budgeting System

is to estimate the rate for the coming fiscal year on the

basis of information available in the budget proposals

(hence requirement 76) and make this estimate available to

the budget officers for their proposal preparation activi-

ties. Thus the manner in which recovery rate calculations

are made is closely tied in with proposal preparation, so

should be considered together for design purposes.

(20)specifically, the use of a common suspense file approach
pending final acceptance of the proposals.

- 391 -

Subproblem 2 - Operations Reporting.

The second subproblem is the largest in terms of the

number of requirements included: 19 requirements. Its cen-

tral focus might be termed "operations reporting." Basi-

cally, this subproblem addresses monitoring of actual income

and expense information against the operating budget - i.e.,

the control side of the budgetary process. Since this is

perhaps the largest and most important function to be pro-

vided by the new Budgeting System, it is most appropriate

that it should also turn out to be the focus of the largest

desiqn subproblem.

Certain of the requirements in this subgroup directly

address the operational analysis and reporting capabilities

of the new system, including requirements 18, 19, 29, 31,

33, and 39. Many of the remaining requirements ended up in

this group because of strong data interrelationships between

them and the ones cited above. This includes requirements

20 through 26. These requirements specify that certain

databases will be maintained by the Budgeting System, data-

bases intimately linked to the provision of the monitoring

and reporting functions to be provided.

It is interesting to note that these requirements end

up together in the requirements decomposition because of

their data-oriented interrelationships, as opposed to their

pocessing interrelationships. One of the recent "discover-

- 392 -

ies" in software engineering research concerns the

frequently underestimated importance of the role of data

structures and data handling in system design. Earlier work

usually assumed program control flow to be the pre-eminent

concern, data organization to be of secondary importance;

more recent work has tended to elevate the relative impor-

tance of data organization (Jackson 75). The evidence that

emerges from the present study is that SDM is inherently

quite compatable with this more balanced view of the impor-

tance of both processing and data interrelationships in det-

ermininq good system structure.

Finally, a few other requirements fall into this sub-

problem because they specify reporting needs that would be

met primarily using data common to other requirements of the

same subproblem. included here are requirements 34, 36, 40,

41, and 42. All five of these statements refer to potential

reportinq requirements of various types that all would most

likely involve budget and actual operational data common to

other requirements in this subproblem.

In summary, while Subproblem 2 is a fairly large sub-

problem, careful study indicates that the 19 requirements do

"hang together" for design purposes, largely as a result of

their common data implications.

- 393 -

jubproblem .3 Databass Access for Nonstandard Report Gener-

ation.

The third subproblem contains 13 requirements. The

focus of this subproblem is database access for purposes

other than standard report generation. This includes

requirements for users' ad-hoc access (requirements 44 and

45), users' access via the report writing facility (require-

ments 43 and 46), and access to the Budgeting System's data-

bases via other systems (requirement 16). This subproblem

also includes certain database security requirements that

pertain to user access, namely, requirement 47 through 52.

These requirements all relate to data ownership and data

element controls that are closely related to data ownership.

Since these security issues manifest themselves, in imple-

mentation terms, primarily at the point of data access, it

makes very good sense that they be grouped together with

other data access requirements.

The presence of requirement 74 in this subproblem also

makes good sense: formal training issues would undoubtedly

be heavily concerned with data access, as this would be the

main interest of most users. An interesting side point

reqarding this requirement is that, at first glance, it may

not appear to be a design-relevant issue at all. This ques-

tion was in fact debated among the system designers and the

SDM researcher, with (eventually) the opposite conclusion.

- 394 -

The main arqunent ran as follows. There is no requirement

statinq that the system (specifically, access to data) be

"easy for users to use." Such a requirement would be too

qeneral, at too high an atstraction level, to be appropriate

for SDM analysis. In contrast, requirement 74, specifying

the need for formal user training, is more specific, at an

abstraction level comparable with the other requirements,

and at the same time achieves most of the same results. In

thinkinq about how one might "implement" a requirement such

as 74, one is led to imagine what a trainer would have to

say to explain various aspects of system functioning thought

to be of interest to different user groups. Thinking in

this way leads the system designers to adjust their concep-

tual models of implementation for the associated require-

ments, with an eye to the need for formal training.

Finally, requirement 64 (support for current budgeting

techniques) also ended up in Subproblem 3. The case for

this requirement being in this subproblem is not obvious

initially. However, a review of the "audit trail" of inter-

dependency assessments indicates that requirement 64 was

found to be interdependent with only two other requirements:

weakly with 32 (Subproblem 2), and with average strength

with requirement 74 (Subproblem 3). Its ending up in the

present subproblem is therefore justifiable on purely

"mechanical" qrounds. The rationale for its interdependency

- 395 -

with 74 concerns user training. Formal training on the one

hand, and support for all budgeting methods on the'other,

are seen to be discordant requirements. Through this line

of reasoning one can envision second-order relationships

between 64 and many of the other requirements in Subproblem

3, bearing on the fact that a multitude of budgeting

approaches would probably make the implementation of user

access to data, and control of data, more difficult to

achieve. Clearly, users may require access to different

data combinations under, say, line item budgeting than they

would under program budgeting. However, the fact remains

that requirement 64 is only tangentially concerned with the

main focus of Subproblem 3, but as it is no "closer" to any

other subproblem, it ended up there.

Subprgblem 4 - Physical Report Handling.

This subproblem only contains two requirements, and is

therefore rather easy to interpret. Its focus is physical

report handling. One requirement (15) concerns the report

medium, specifying that reports will be physically easy to

handle. In implementation terms, this may be viewed as

arguing against the production of reports on standard 11x14

inch computer paper, and suggests the use of 8 1/2 x 11 inch

paper for reports. In fact, this requirement is an example

of a situation discussed earlier: the designers' original

- 396 -

requirement statement (see Appendix H, requirement 7)

actually specified the way in which this requirement could

be achieved, i.e., contained within it its own implementa-

tion approach. In the spirit of SDK analysis, the require-

ment was re-written so as to be functional in form, and

implementation-free. However, as the designers did not want

to lose sight of their irplementation concept (and indeed

wanted other readers of the requirement statements to be

aware of it also) they decided to keep it, in the form of a

comment on requirement 15 (Appendix I).

The other requirement in this subproblem, 77, simply

says that the new Budgeting system should be designed so as

to minimize unnecessary delay in report production- and dis-

tribution. A discordant interdependency between require-

ments 15 and 17 occurs because one way of meeting 77 would

be to employ a number of RJE terminals or remote printers at

user sites; but this would likely result in reports being

printed on large forms, thereby counteracting requirement

15.

Sgijbrol 5-Ueo FT to Define Personnel Levels.

Subproblem 5 contains three reguirements, and is

straightforward to interpret. The central focus for this

subproblem is the ise of EFT ("effective full-time") units

for dealing with personnel data. The idea is that many

- 397 -

administrative officers (AO's) find it easier to think in

terms of EFT units for personnel budgets than in dollar

terms, hence requirement 9 specifies that EFT may in fact be

employed to develop personnel budgets. However, as budgets

are necessarily framed eventually in dollar terms, there

must be a mechanism within the Budgeting System for convert-

inq between EFT and dollars. This is not as simple a task

as it may at first appear; a number of detailed issues have

to be considered, and the conversion algorithms may be

rather complex.

Finally, requirement 13 specifies the need for flexi-

bility in manpower reporting (as opposed to budgeting). In

practice it is easier to report some types of manpower in

man-months, other types in, say, man-hours, etc. Clearly,

allowinq such reporting tlexibility complicates still

further the dollars-EFT conversion issue, hence this

requirement's presence here.

S.bpj.lem 6 - Maintenance of Database Integrity, Control.

This subproblem includes six reguirements, and has as a

central focus the maintenance of database integrity and con-

trol. Requirements 53, 54, 55, and 67 all relate directly

to this issue in various ways. It should be noted that

these requirements impact system design primarily in the

choice of a commercial DBMS to be used as the heart of the

- 398 -

new system, as there is no intent in the minds of the

designers to develop their own underlying data management

software.

Requirements 69 and 70 pertain to computerized funds

drafts being performed, either on-line or via batch transac-

tions. Once again, these requirements might appear to be

rather distant from the preceding four. Closer examination

dispels this notion, and confirms again the correctness of

the partitioning. Funds drafting, and the checking and ver-

ification thereof, is perhaps the most sensitive data-han-

dling aspect of the new system, as it deals directly with

the movement and control of real, spendable credits.(21)

Therefore the requirements to allow electronic funds draft-

ing in the new system are especially closely related to the

integrity concerns, notably the audit trail requirement

(67). In implementing the integrity requirements, very

close attention will also have to be paid simultaneously to

the funds draftiny issue.

The separation of requirements 69 and 70 from other

requirements dealing with funds (see Subproblem 10) is

another qood example of the issue discussed on page 373,

concerning the need to carefully differentiate between

requirements that are logically related (e.g., all require-

(21)most of the system's databases will consist of budget
data, or else real expense (credit) data.

- 399 -

ments dealing with funds), and those that are related in

implementation terms.

Subproblem - Or-gaization of Budgeting/Accounting Objects.

This subproblem includes three requirements. The sub-

problem's focus is the organization of the budget-

ing/accounting "objects." This term has an unambiguous

meaning to the budgeting and administrative staff of the

Institute. "Objects" represent one way of organizing the

elements of income and expenditure of the Institute; for

instance, "secretarial salaries" might be an expenditure

object, while "federal grants" might be a revenue object.

In the present budgeting system, there is a fixed set of

objects, and codes for each object, with which all concerned

must work.(22)

The new system, as these requirements indicate, is to

have greater flexibility in terms of object definition.

Specifically, it will be possible to define multiple hierar-

chies of objects. Also, departments will be able to define

their own personal objects within the central system.

The three reguirements of this subproblem are clearly

related quite closely for implementation purposes. In par-

ticular, it may be noted that the requirements for multiple

(22)at least as far as the central budgeting office is con-
cerned, although many departments also run their own
parallel systems that better meet their specific needs.

- 400 -

object hierarchies (11 arid 12) probably rule out the possi-

bility of usinq a hierarchically-oriented commercial DBMS

such as IBM's Information Management System (IBM 74) for the

system's database manager,

L2r2lem 8 - Development and Manageaent of Planning Data.

This subproblem contains four requirements, and has as

its focus the development and management of Institute

intermediate-range planning data. Planning data differs

from budget data in a number of ways. First, its develop-

ment is neither homogeneous nor universal across the Insti-

tute. Some departments develop much more, and more highly

detailed, planning data than do others; some plan up to two

years ahead, others up to three years, still others five

years out. Also, tihe nature of the data differs from budget

data, often being more in the form of descriptions of under-

lying goals, directions, etc., for a given department,

rather than hard numbers at a relatively fine level of

detail.

During their analysis of the present planning/budgeting

practice, the Budget System designers found a need for some

level of automated assistance to the p1anninj function of

various administrative staff. Since this function is fairly

closely related to the budgeting tunction, to include some

pldnninq assistance capabilities in the -new system seemed

- 401 -

appropriate. Requirements 5 and 6 address the planning data

issue directly. Requirement 35 concerns data requirements

for the "Dynamic Model" - M.I.T.'s financial forecasting

model. Since many of the model's data requirements are in

the nature of planning data, it is appropriate that this

requirement fall in the current subproblem. Specifically,

the determination of the type of planning data to be

obtained from the Institute managers ought to be influenced

directly by the data needs of the model.

The inclusion of requirement 27 in this subproblem is

another instance of a surprisingly intelligent outcome of

the SDM decomposition. While logically related (in the

sense discussed on page 373) to requirements 21 through 26,

this requirement differs on one very important respect:

historical actual data is the key database referenced by

managers and administrators in drawing up their intermedi-

ate-range plans. None of the other requirements 21-26 have

this property. The implementation of planning assistance

facilities in the new Budgeting System must take into con-

sideration both what planning data will be captured, and

what data will be required by managers in developing their

plans. Requirements 5 and 6 correspond to the former con-

cern, requirement 27 to the latter.

- 402 -

Suh22blem 9 Z Mpjgyee Benetit Pate Calculations.

This subproblem, with three reguirements, concerns

employee benefit rate calculations. In the present budget-

inq system, management of employee benefits may present some

complexities, especially when a) ... ; b) ... ; or c)

For instance, a department's budget may be approved given a

certain staffing profile. That profile may then be altered

through substitution of certain staff members for others

(e.g., increasing the number of individuals assigned to a

particular research project). This kind of change may

require a compensating change in employee benefit amounts

being charged to that department. Such a change is, at pre-

sent, frequently "lost in the shuffle." Subproblem 9

addresses the need for an effective mechanism for controll-

ing the employee benefit issue within the Current and Future

budgets.

Since employee benefit amounts are a percentage of per-

sonnel salaries and wages, it makes good sense that require-

ment 8 be included in this subproblem. Similarly, require-

ment 75 is concerned with handling non-standard employee

benefits (e.g., benefits for a part-time faculty member),

which are subject to very similar needs for control as are

standard benefits.

- 403 -

Subproblem 10 - Organization and Man|gemnt of Fund

Agcounts.

There are seven requirements in Subproblem 10. The

focus of this subproblem is the organization and management

of fund accounts. At the heart of this design subproblem is

requirement 30, "...facilitate the effective use of funds

accounts." The other requirements in this subproblem (with

one exception, to be explained shortly) all partially derive

from requirement 30. Requirements 1, 2, and 3 all specify

alternative ways in which fund data may be organized (and

hence retrieved during queries, etc.). Requirement 4

addresses the need to supply adequate descriptive informa-

tion for each fund account within the database itself.

Requirement 37 pertains to reporting standard fund informa-

tion. Finally, requirement 17 specifies the need for access

to data in the databases of other Institute DP systems. The

system designers saw this as closely associated with effec-

tive fund management, largely because much of the informa-

tion that would be needed in order for requirement 30 to be

properly implemented resides in the Gift System.(23) A

direct link to the latter system would be superior to dupli-

cating and separately maintaining the necessary databases.

(23) This is the system that is used to manage gifts,
bequests, etc.

- 404 -

.Sib1r2obleYm 11 - Database }xpKandabtu.ly.

The final subprobler contains two requirements, and its

focus is database expandaoility. Specifically, requirements

72 and 73 state that, unlike the present budgeting system,

the new system will allow new data elements to be defined

within objects or accounts, in order to provide additional

flexibility and usefulness for the system's users. For

instance, one department may wish to summarize a certain set

of account balances in a unique way. The new system would

allow a special data item to be defined to hold the appro-

priate summary data, and also to tie the new item logically

to tue lower-level items it summarizes, so that when changes

are made to the lower-level items the surmary item will also

be updated. (24) This requirement ties into the concept of

logical data independence that has come to prominence along

with the use of database management systems (Martin 77).

* * ** *

This concludes the analysis and interpretation of the

eleven identified system design subproblems. The subprob-

lems and their interpretations are summarized in Table 7.2.

In the next section we analyze the interrelationships (sets

of interdependencies) between the various subproblems. The

combined interpretation of subproblem and interrelationship

(24)either actually or virtually - see (Folinus, et.
al. 76).

- 405 -

Summary Descrtion

1 Preparation of budget proposals

2 Operations reporting

.3 Database access for purposes other than
standard report generation

4 Physical report handling

5 Use of EFT to define personnel levels

6 Maintenance of database integrity, control

7 Crqanization of budgeting/accounting objects

8 Development and management of planning data

9 Employee beneiit rate calculations

10 Crqanization and management of fund accounts

11 Database expandability

Table 7.2

Subproblem Summary Descriptions.

- 406 -

S uiLi>_r~ob_1_em

analyses constitutes the aLCitecture interpretation tor the

new Budgeting Syster. The final section contains concluding

comments pertaining to qlchal aspects of this architecture.

7.4.3 Analysis of Subprobler Interrel ationshs.

There is a total of 20 links interconnecting the 11

design subproblems in the new Budgeting System architecture.

Some statistics regarding these linKs are shown in Table 7.3

below. It is shown there that the average number of inter-

dependencies per subproblem link is 4.5; however,.there are

only five links consisting of more than five interdependen-

cies. Since both number of interdependencies as well as

interdependency weights are irportant determinants of link

strength, Table 7.3 also shows total weight for each link.

This is just the sum of the weights on all the interdepen-

dencies making up each link. From this table it may be seen

that the distribution of link total weights is as shown in

Fiqure 7.4 following. From the figure, it is clear that the

desiqn partitioning has two rather strongly interconnected

subproblems ((1,2), and (2,10)), three subproblem linkages

of medium strength ((1,10), (2,3), and (2,8)), while the

remaining subproblen linkajes have a total weight of less

than 2.0, so are relatively weaxly connected. In the dia-

grain of Figure 7.3 earlier, the strongest linkages are shown

shaded, the medium-weight ones are drawn as double lines,

while the remainder are shown as single lines.

- 407 -

First
ID # Subproblem

Second
Subproblem

2

3

5

6

Number of
Linking
Interde-

pendencies

20

5

4

3

4

10

Total Average
Weight

7.6

1.9

1.1

1.2

1.4

3.8

3.2

1.0

1.3

3.8

1.0

6.8

1.9

0.5

0.7

1.3

0.9

0.9

0.5

0.5

0.8

Weight

0.38

0.38

0.28

0.40

0.35

0.38

0.46

0.50

0.65

0.38

0.50

0.43

0.38

0.50

0.35

0.65

0.30

0.30

0.50

0.50

0.80

Table 7.3

Statistics for the Inter-subproblem Linkages

- 408 -

frequency

x
X XX X
x xxxxxxxx X x

1.0 2.0 3.0

x
x X X

4.0

f .1 ii r 7.4

Distribution of Link Total Weights.

It is worth recalling at this point that the underlying

motivation for this entire S;M exercise is to formulate a

system architecture which exhiits high module strength and

low coupling. The objective function M, ot course, is a

formal attempt to quantify that concept. Informally and

judgmentally, a system decomposition with only two rela-

tively strongly interconnected subproblem pairs, three pairs

with medium interconnection strength, and fifteen with rela-

tively weak interconnection strength should probably be

judged as a fairly good one trom this point of view.

We now examine each subproblerr linkage, and describe an

interpretation of the nature of, and the reasoning behind,

each.

- 409 -

7.0 8.0

Linkage I (Subproblems 1 and 2).

This is the largest linkage, with a total link weight

of 7.6. Eleven of the linking interdependencies represent

common data issues: databases defined, either implicitly or

explicitly, in conjunction with requirements in Subproblem 2

that are also needed for effecting certain proposal prepara-

tion-related requirements in Subproblem 1. This includes in

particular Chart of Accounts data, and Current and Future

Budget databases.

The remaining linking interdependencies represent con-

cordant relationships that arise because of common process-

ing techniques. In one case, the automatic proration feature

may be used to good effect in proposal preparation as well

as operations monitoring activities; in the other case,

potential methods of operational monitoring facilitate cer-

tain aspects of monitoring proposal preparation.

Linkage 2 (Subproblems 1 and 3).

This linkage has a total weight of 1.9, and includes

five interdependencies. Two of the interdependencies repre-

sent the need for training users to use the system for pro-

posal preparation. The other three represent the use of the

menu-oriented query facility for proposal and fund draft

review and checking.

- 410 -

Sinkage 3 (Subproblems 1 and 5).

This linkage corsisits oL four interdependencies, with a

total weight of 1.1. The cumiron focus tor all fouL concerns

the ability of users to prepare and/or mnonitor the personnel

component of budget proposals in the most convenient units

(typically, EFT or dollars)

Lnkagj 4 (_utj~robleils 1 vil 6).

This linkage includcs *inree interdependencies, with

total weiqht 1.2. The pLOcess ot preparing budget, proposals

(Subproblem 1) requires adrinistrators to access various

Kinds of data that will, in the future, be available via the

new system. T"he focus of thiS linkage concerns the imple-

mentation issues surrounding prtectinj the security and

integrity (Subproblem 6) of tihe data that will be accessed

for proposal preparation juroses.

Linka e 5 (Subjroblems 1 and 9).

This linkage includes tour interdependencies, and has a

total weight of 1.4. These interdelendmcies all pertain to

the role of employee benvrit calculations in the proposal

preparation process.

- 411 -

Linkage 6 (Subproblems 1 and 10).

This linkage contains 10 interdependencies, and has a

total weight of 3.8. Subproblem 1 addresses budget proposal

preparation generally, and the requirements within Subprob-

lem 1 that connect to Subproblem 10 are concerned specifi-

cally with the role that funds play in proposal preparation.

Subproblem 10 focuses on the orgainzation and use of fund

accounts. Good information is the key to better management

of Institute funds (gifts, bequests, etc.). At the present

time fund monies are frequently not used to their greatest

benefit, because individuals who make expenditure decisions

haven't been informed of, and have no easy way of discover-

ing, the existence of certain funds whose designation meets

their needs. The intention in the new Budgeting System is

to make fund purpose information readily available to users,

and to otherwise orient the reporting and control of fund

data so as to make more effective use of fund monies. This

would conserve general monies to more fully meet the needs

to which funds do not apply.

Linkgq 7 LSubproblems 2 and 3).

This linkage contains seven interdependencies, with

total weight of 3.2. All seven interdependencies have a

fairly strong common focus: they all represent techniques to

allow users to access data in a manner other than via stan-

dard reports (special reports, ad hoc queries, etc.).

- 412 -

Linkage A (Subproblems 2 and 5).

There are two interdependencies makiny up this linkage,

with a combined weight of 1.0. The focus of these interde-

pendencies is the proration of personnel budgets for the

production of periodic operating reports.

LuLgaag 9 (Subproblems 2 and 7).

This linkage includes two interdependencies, with a

combined weiqht of 1.3. It focuses on the use of a hier-

arcnical organization of object codes for facilitating the

production of special reports.

Lilkqg 10 (Subproblems 2 and 8).

This linkage contains ten irterdependericies, with a

total weight of 3.8. All of these interdependencies hdve a

clear common focus, namely, data commonality between

requirements for operations reporting (Subproblem 2) and for

planning (Subproblem 8). Although as pointed out earlier,

planning data and budgeting data is not identical, there is

enough commonality to generate numerous implementation-level

interdependencies. For instance, some of the data required

by the Dynamic Model (requirenent 35 in Subproblem 8) may be

obtained from various managers' Future Budgets (require-

merit 22, Subproblem 2) databases.

- 413 -

ignkage 12 (Subproblems 2 and 9).

This linkage contains two interdependencies, with total

weight 1.0. Its focus is the data management issues common

to Future Budget personnel data.

Linkaqe 12 (Subproblems 2 and 10).

This linkage contains 16 interdependencies, with a

total weight of 6.8. All of the interdependencies within

this linkage concern different aspects of data access com-

monality between the two subproblems. Eight of the interde-

pendencies focus on databases common to ad hoc retrieval

requests associated with operations monitoring, and similar

requests associated with funds management. Another four

interdependencies are related to databases common to opera-

tions monitoring, and to making effective use of fund

accounts. Another three relate to similar databases common

to standard report generation for operations monitoring and

for fund management. Finally, one of the interdependencies

represents the common need for access to other systems' data

files.

Linkae 13 (Subproblems 2 and 11).

This linkage represents five inter dependencies, with a

total weight of 1.9. All five interdependencies pertain to

the application of the facility for adding new data item

- 414 -

types to currently existing databases, to the development of

operations monitoring requirerrents.

Linkage 14 (Subproblems 3 and 4).

There is a single interdependency in this linkage, with

a weight of 0.5. The focus of this link is mechanisms for

speeding the delivery of Budgeting System information, in

the form of standard reports, to system users.

Linkage 15 (Subproblems 3 and 6).

There are two interdependencies within this linkage,

with a total weight of 0.7. Their common focus is the

maintenance of database integrity and security by means of a

transaction logging technique.

Linkaqe 16 (5 Uroblems 5 and 9).

There are two interdependencies in this linkage, with a

total weight of 1.3. Their common focus is the conversion

of personnel data between dollars and EFT.

LinkqGg 17 (jubproblems 6 and 9).

This linkage includes three interdependencies, with

combined weight 0.9. Their focus is audit trail maintenence

in the face of automatic system updating of certain data

items.

- 415 -

~inkagqIe (Subproblems 6 and j_0).
This linkage includes three interdependencies, total

weight of 0.9. They all focus on the effecting of computer-

based funds drafting.

Linkage 9 (Subproblems 6 and 11).

This linkage consists of a single interdependency,

total weight 0.5. The linkage concerns the implementation

of a data change log ina restructurable database.

L2inkq 0 (Subproblems 7 and 8).

This linkage contains a single interdependency, with a

weight of 0.5. It concerns the use of the object hierarchy

for organizing the development of planning data for the

Dynamic Model.

Lijnk1_e 21 (Subpr oblems 10 and 11).

The final linkage also includes but one interdepen-

dency, with a weight of 0.8. Its focus is the addition of

fund purpose categorization information to the funds

accounts.

* * * **

This completes the description of the individual link-

ages between the design subproblems. Summary descriptions

of the 21 inter-subprobler linkages are given in Table 7.4.

- 416 -

Summary Descristion

1 1,2

2 1,3

1,5

1,6

5 1,9

1,10

2,3

2,5

2,7

10U 2,8

11 2,9

12 2,10

2,11

3,4

3,6

16 5,9

common databases; common processing
viz. proration, monitoring.

training in proposal prep. use; proposal/
fund draft review and checking via query.

alternative units tor personnel data.

protection of the security and integrity
of proposal preparation data.

employee benefit calculations in pro-
posal preparation.

effective use of funds in proposal preparation.

data access for nonstandard usage.

personnel data proration in periodic rpts.

use of hierarchical object organization in
production of special reports.

operations reporting and planning data
commonality.

common Future Budgeting/Personnel Budgeting
data managerent issues.

data commonality: ad hoc retrieval, monitor-
ing standard reporting, other systems.

extension of operations monitoring data files.

prompt report delivery.

use of logging to effect database integrity
and security.

conversion of personnel data: dollars vs. I?T.

- 417 -

ID Subgraphs

17 6,9

18 6,10

19 6,11

20 7,8

21 10,11

aintenance of audit trail in face of auto.
updating of data elements.

effecting computer-based funds drafting.

maintenance of change log when database
structure is modified.

hierarchy of object codes used to effect
generation of Dynamic Model data.

addition of fund purpose categorization
data to fund accounts.

Table 7.4

Summary Description of the Subproblem Linkages.

- 418 -

Fiqure 7.5 shows a complete description of the SDM-der-

ived architecture for the new Budgeting System. Each design

subproblem and linkage is labelled in an abbreviated fash-

ion, based on the descriptions given in Tables 7.2 and 7.4.

in the final section of this report we briefly discuss

certain broad issues that arise out of this architecture.

we also summarize there the work to date and suggest some

areas for further research.

- 419 -

us ofoir

1. ognzto

Budget proposal oeain ngnrto

preparation common data; proration; rprigo yai oe

monitoring dt

\be te

'5.

personn l

automaic upadata

0 conversion
ojc

9.

Employee

Fiur 7. 5'

Complete ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s fcrpto hiteSMacietr ortenwBdeigSs er.

7.5 SUMMARY.

The original objectives of this study were threefold:

1. to study the application of the Systematic Design
ethodology in a real, ongoing design context;

2. to study the reactions of a group of real(25) sys-
tem designers to the methodology, to begin to
learn their views of its usefulness, effective-
ness, etc.

3. to assist the Budgeting System design team in con-
structing an architecture for this new system.

As for the first point, the various steps of the SDn were

able to be executed with little difficulty. As reported

earlier, a substantial amount of time was spent initially in

preparing the requirement statements. Also, the interdepen-

dency analysis phase consumed guite a bit of meeting time.

However, the decomposition analysis and architectural

interpretation were both relatively straightforward, and not

particularly time consuming. This suggests that the time

and effort invested early in the SDM effort pays off in

terms of a "good" initial decomposition and easily inter-

pretdble architecture later on.

Such an observation is in general agreement with what

other software design researchers have found in other con-

texts. Boehm, for instance, has estimated on the order of a

3-to-1 payback to additional time invested in early design

(25)as opposed to SDM researchers playing the role of system
designers

- 421 -

activities (Boehm 75) . Also, the truth of this observation

in the SDI context is verified by earlier applications car-

ried out by other SDK researchers. Andreu (Andreu 77(a))

applied SDN to the design of a database management system.

He adopted a set of government-issued DBMS requirement

statements for use in his design. His first pass at build-

ing a system architecture resulted in a rather unsatisfac-

tory decomposition, with a few large, unwieldy, hard-to-in-

terpret subproblems. After "completing the requirements

set" by studying the requirements statements carefully for

missing requirements, ambiguous statements, etc., and making

a number of additions and modifications, a second decomposi-

tion resulted in what Andreu argued was a much better archi-

tecture - smaller, more coherent subproblems arranged in a

fashion he found much easier to interpret.

In contrast, in the present study we spent much more

time in framing and refining the original requirement state-

ments. In fact, the requirement specifications upon which

the SDM statements were based was the result of over a year

of study, analysis, interviews, etc. Also, the SDM version

of the statements was given reasonable in-depth study over a

number of iterations by both the system designers and the

SDM researcher. It is most likely for this reason that the

requirements decomposition and resulting architecture turned

out to be as good as it did after a single "pass" of the SDN

- 422 -

analysis. With very few exceptions (to be discussed below)

the design subproblems and linkages were clear and easy to

interpret. All subproblems were found to have an obvious

design focus, as described earlier. Similarly, the impor-

tant design implications of the various inter-subproblem

linkages were easily identified. Judged by this mixture of

intuitive and explicit measures, SDM functioned well in

quiding us to the identification of a good architecture for

the new Budgeting System.

The second point coricerris reactions of the Budgeting

System designers to SDh. They expressed both positive and

negative reactions to the analysis exercise, all of which

were discussed earlier (see Section 7.3.3). In summary, the

main negative reactions concerned the time required for the

analysis, and some uncertainty about the overall value of

the exercise (the latter occurred mostly at the outset).

Both issues were tempered, of course, by an appreciation of

the research nature of the study. The positive reactions

concerned new design ideas, as well as clarification and

improvement of current ideas, that emerged during the exer-

cise; discovery of new ways of approaching the design task

in general (e.g., separation of functional concerns from

implementation issues); and their belief tuat the final

architecture would be of assistance in the later detailed

desiqn efforts.

- 423 -

As for the final point, the eventual value of the

Budgeting System architecture presented in the preceding

section cannot be known at this time. Rather, it will be

necessary for the SDM researchers to follow up this exercise

in the future to learn what kind of impact this study might

promulgate.

The study has provided a number of other insights, many

of which were mentioned earlier in this report. The most

important of these are summarized below.

1. The design architecture that emerged from our work

did prove to be relatively "clean" (high strength,

low coupling). However, a few minor points might

bear additional investigation by the system desig-

ners. For instance, requirement 64 was found not

to have an obvious "home" in any subproblem. This

may suggest that either certain interdependencies

between it and other requirements were missed dur-

ing the earlier analysis, or possibly that other

requirements more closely associated with require-

ment 64 are missing from the requirement set.

2. A second minor decomposition issue concerns the

size of Subproblem 2. As discussed in Section

7.4.2 earlier, there are good reasons for the

relatively broad scope of this subproblem. The

- 424 -

operations reporting function is central to the

Budgeting System, hence we should expect this sub-

problem to encompass a larger collection of

requirement statements than many of the others.

The centrality of the subproblem is further evi-

denced by noting that it has eight linkages to

other subproblems - substantially more than any of

the others (see Figure 7.5). The centrality of

this subproblem should serve as a signal to the

system designers that perhaps the detailed design

ouqht to also center on the implementation of

these requirements. Also, in general the presence

of a large subproblem such as this in a decomposi-

tion should be carefully studied, as it may sug-

qest possible improvements to the decomposition.

Andreu found the occurrence of especially large,

heterogeneous subproblems to be "caused" by in

incomplete or poorly framed requirements set.

Also, it could be that certain interdependency

assessments are missing or in error. While they

will not be further investigated here, these pos-

sibilities are worth some study by the system

designers in the future.

- 425 -

3. A third summary point is that the SDM -techniques

used in this study seemed to function rather well.

The use of a three-way breakdown for specifying

interdependency weights should be judged quite

effective in practice: a threefold distinction

could be made easily by the designers, and the

need for finer detail rarely arose. Other mechan-

isms - the interdependency data form, use of

WSCRIPT to manage the requirement statements, etc.

- worked well. The decomposition package also

functioned effectively. A number of ideas for

marginal improvements to the package arose in the

course of its application to the Budgeting System

problem, but these will not be elaborated on here.

4. One lesson that came through quite clearly in this

exercise is the important role data linkages play

in determining requirement interdependencies in

this kind of system design. In a number of cases,

part or all of the common implementation issues

tying a set of requirements together within a sub-

problem were common databases required for their

implementation. Also, such data commonality

formed the basis of the linkage between various

subproblems. It is interesting to note that in

- 426 -

the previous SDM application exercises this impor-

tant role of data commonality was not evidenced.

This is not too surprising since systems like the

Budgeting System are much more concerned with cap-

turinq, processing, reporting, and otherwise deal-

ing with various databases than would be "sys-

tems" software such as a DBMS or an operating

system, at least at the architecture level. How-

ever, while perhaps not so surprising in retros-

pect, this observation should serve to make the

importance of database organization for the Budg-

etinq System stand out during future design and

implementation work.

While still a research project, the Systematic Design

Methodology is proving its eftectiveness in aiding system

architects to organize arid manage the many and diverse

requirements typical of complex systems design. This study

has suqqested new improvements that may be made to the meth-

odology, while again confirming its fundamental soundness

and value.

In the next chapter, we examine this issue - the funda-

mental efficacy of the Systematic Design Methodology - in

more detail.

- 427 -

Chapter VIII

SDM EFFICACY.

8.1 INTRODUCTION.

The growth in the size and complexity of computer soft-

ware systems during the last decade has made it increasingly

important for software developers to create and use various

new tools and techniques to assist them in managing the com-

plexity of their task. New techniques have been developed

to assist and guide system developers through all stages of

the development cycle - from very early stages (e.g., users'

needs analysis methods such as TRACE (Altman, et, al. 71)),

throuqh design (Structured Design (Myers 78)), coding

(Structured Programming (Dijkstra 76)), testing (Mills 71),

operation, and maintenance stages. Some methods are spe-

cific to a particular type of problem (e.g., techniques for

"structured testing" (Mills 71)), while others are much

broader and more in the spirit of guidelines (e.g., ARDI

(Hartman et.al. 68)).

An important outgrowth of the development of these new

approaches, not yet widely recognized, is the need for soft-

ware "research on research": for the development of meth-

ods, models, techniques, etc. for evaluating the successful-

- 428 -

ness of the various new ajproaches to software design and

development. This research is needed because one feature

most of the new methods have in common is that it is quite

ditcjlt, frequntly imossi1l, to objectively test their

efficac (their "power to produce the desired or intended

result"). More will be said about the efficacy issue momen-

tarily.

8.1.1 helated Research.

The literature pertaining directly to evaluation of

software development methods is almost nonexistant. How-

ever, some studies have been reported in related areas.

Probably the most frequent target of attention has been pro-

ductivity levels within the programming and system develop-

ment activities. Key studies include those of Aron

(Aron 70), Wolverton (Wolverton 74), Putnam (Putnam 78), and

Walston and Felix (Walston and Felix 77) . These studies

have basically addressed two main concerns:

1. what is programmer (developer) productivity, and
how ouqht it be measured?

2. what factors influence productivity, and how?

Walston and Felix, for example, have identified and ranked

29 different influencing factors, using as a productivity

index the ratio delivered source lines of code to total

effort in man-months.

- 429 -

Another set of studies has addressed the system

development cycle. Many of these studies present normative

frameworks, extracted from the authors' experience; for

example, (Cooper 78), and (Cave and Salisbury 78). Others

have developed models of the system development process, and

use them to try to better understand the effects of various

parameters on the process, and to serve as the basis for

process planning and control methodologies (e.g., Put-

nam 78).

A few other studies address specific stages of the sys-

tem development cycle - for example, software testing (Bate

and Ligler 78), or system maintenance (Lientz, et. al. 77).

Most of these studies also attempt to identify the important

independent and dependent variables of the associated pro-

cess, to develop models relating the sets of variables, and

to analyze the models so as to gain further insight into the

nature of the process. While none of these studies is

directly applicable to the problem of determining the effi-

cacy of a software development methodology, some do indi-

rectly bear on the issues involved. The models developed in

Sections 2 through 4 will draw on the results of these and

other studies.

- 430 -

8.1.2 The Effticacy Problem.

Two key reasons underlying the difficulties in testing

the efficacy of a new software development methodology or

technique stand out. First, an objective study would gener-

ally entail the carrying out of controlled experiments in

which the method under study is pitted against other poten-

tial methods (includinq no "method") for performing the same

activity or achieving the same result. At the very least,

this would require a number of parallel repetitions of a

single development task, measurement of outcomes, (26) and

statistical comparison of the improvement, if any, resulting

from the method under study. Due to the extraordinary time

and effort involved in even such a straightforward test,

these kinds of studies are infeasible for all practical pur-

poses.

Even if some extremely wealthy organization was willing

to spend the money required to carry out such a test, the

experiment would be seriously confounded in other ways. For

instance, there would be the very difficult problem of cont-

rolling for difterences between the different individuals

used on the various instances of the development projects.

(26).Even defining a measurable outcome for many such tasks
is often surprisingly difficult - consider the debates
over the nature of program complexity (McCabe 76).

- 431 -

Furthermore, in many cases the situation is even more

problematic. As we have noted earlier, the system develop-

ment process is really a set of tasks comprising a life

cycle (Figure 1.2, Chapter 1). The impact of new methods is

frequently presumed to be distributed throughout all or a

substantial part of the cycle. Thus experiments to test and

measure a method's efficacy would have to actually develop,

run, modify, and maintain numerous similar systems - thereby

moving the testing task even further outside the realm of

feasibility.

8.1.3 The Case of the New York Times Information Bank.

One famous case will illustrate many of the issues

identified above. A fairly recent "revolution" in the pro-

qramminq field was initiated by Dijkstra with a now famous

letter in the Communications of the ACM, entitled "GOTO's

Considered Harmful" (Dijkstra 68). Out of this observation

and other research by programming theorists (e.g.,

(Dijkstra 76), (Wirth 76)) has emerged a set of concepts and

techniques termed "structured programming."

one of the chief contributors to structured programming

and related new programming concepts has been I.B.M. With

an eye on the commercial possibilities, I.B.M. undertook a

major test of these "Improved Programming Technologies"

("IPT's"), reported in (Baker 75). The selected site was

- 432 -

the development of a computer-based "morgue," or information

bank, for the New York Times newspaper. I.B.M.'s basic idea

was to try out some of the most promising new methods in the

comtext of a real, large system development project, while

controlling those variables subject to control (e.g., pro-

iect staff turnover), and making many "measurements" of the

tactors it deemed important (e.g., programmer productivity).

The first published reports of the success of the test

were qlowing. Almost incredible rates of productivity

(hiqh), error occurrence (low), and other key variables. were

reported (Baker 72), (Baker 75). However, on closer inspec-

tion a number of questions were raised by skeptical obser-

vers that brought the seemingly incontrovertible results

distinctly into question. Some of these points were,

1. The experiment wasn't well controlled: since a
number of new methods were used together on the
test, it was impossible to clearly distinguish the
impact of each (experimental confounding);

2. The experiment wasn't representative: many cri-
tics have pointed to the fact that I.B.M. used
some of its top systems people in the project,
thereby biasing the results significantly relative
to what a typical organization with less skilled
staff might expect;

3. The experiment wasn't repeated: results could
only be compared against "similar" developments
elsewhere; but there are so many variables present
in such projects that the existence of "similar"
projects is obviously arguable.

- 433 -

The debate surrounding the conclusiveness of the New York

Times test, and the value of the IPT's generally, still con-

tinues today.

8.1.4 Approaches to the Efficacy Problm.

Perhaps the clearest single message provided by the

I.B.L. experiment and the accompanying debate is that prov-

ing, objectively and conclusively, the efficacy of software

development methodologies such as the IPT's is extremely

difficult, if not impossible.

If this is indeed the case, how then can software engi-

neers and software development researchers ever hope to know

whether their efforts in new methodology development achieve

worthwhile results? Strictly speaking, they can't. However,

(a) to some extent it doesn't matter, and (b) to the extent

that it does matter (e.g., for validating research efforts

such as this one), there are some ways to partially circum-

vent the dilemma. The sense in which it doesn't matter has

to do with how one defines the purpose of a new methodol-

oqy/technique. It sometimes happens that the usefulness of

a new technique will be self-evident to almost everyone

(e.g., using a test-data generator as compared to generating

test data by hand), and the key objective becomes one of

qetting people to change their behavior, to adopt the new

technique. People generally are hesitant to change, even

- 434 -

when it is clear there is a better way to accomplish some

goal. when the human cost of change is factored in, the new

way may not actually be so much better after all.

In most cases, however, the fundamental net benefit to

be gained from a new technique is not so intuitively obvi-

ous.(27) In these cases there are still things one can look

for, test against, etc., that will serve to build a cumula-

tive case in favor of (or possibly against) the technique in

question. This is the approach taken by I.B.M. in the New

York Times example cited earlier. The testing philosophy is

not directed at strictly proving the case, in the objective

"mathematical" sense, but rather at collecting sufficient,

and sufficiently well-documented, evidence such that reason-

able people would agree that the technique in question does

lead to the identified net benefits. Thus whereas I.B.M.'s

claim to greatly improved programming productivity using the

IPT's mdy not have convinced the skeptics, the fact that

many more firms have, to varying degrees, confirmed the

benefits of the IPT's than have argued against them, lends

solid credibility to I.B.M.'s arguments.

(27)There is a locally well-known quote in the handbook "How
to Get Around M.I.T.": "'intuitively obvious to the
most casual observer' usually means 'impossible to
prove'."

- 435 -

8.1.5 A Predictive VieWPoint of Efficacy.

There is, unfortunately, a "deadly embrace" problem

evident in the foregoing approach. On the one hand, a new

technique's efficacy can only be "proven" through the col-

lection of substantial indirect evidence; on the other hand,

before deciding to use a new technique, users would usually

want to see evidence of its efficacy. How does the process

get started? Human inquisitiveness, the urge to try some-

thing new (and unproven), plays a role here, as does the

research process (Chapter 7 being an instance thereof).

There is, however, another approach that can be taken

in this regard. This approach entails taking a somewhat

different viewpoint on the efficacy issue - a viewpoint we

will term "predictive." From this viewpoint, we seek to

identify what we expect (through introspection, judgment,

limited application experience, feedback from others, etc.)

to be the important effects of the methodology or technique

in question. We can go further, for instance to develop a

classification of the various impacts that use of the metho-

dology is expected to produce, or even to model these

impacts in a preliminary way - e.g., by suggesting possible

relationships among variables, or by identifying possible

ways of quantifying the potential impacts.

There are a number of benefits to doing this. First,

it would provide a conceptual baseline for all parties

- 436 -

interested in the methodology and what it may have to offer.

Second, it would help lay out for potential users of the

methodology the presume.d impact on outcome variables, as

opposed to rcess variables. As an example, one view of

the "chie.f programmer team" approach to system development

(a major component of the IPT's) is that it is a new way of

organizing programmers to carry out the programming task in

a manner which tends to maintain high morale (a process

viewpoint). Another view is that it is a way of substan-

tially improving programmer productivity and reducing errors

(outcome variables). For cost-benefit assessment of system

development methodologies, outcome variables are more rele-

vant.

Third, relationships identified in doing this might be

studied further to build verifiable impact models of those

aspects of the methodology, which could in turn be added to

the body of cumulative evidence regarding the methodology's

efficac y.

In the following sections, we take this approach and

formulate some simple predictive models to delineate the

classes of cost and benefit impacts that SDM would be

expected to produce in a typical application. These models

attempt to capture the important results - both positive arid

negative - that would be expected to occur as a result of

adopting and using SDM in software design projects.(28)

- 437 -

Three major categories of beneficial impact are

examined:

1. system improvements resulting from more accurate
and appropriate requirements definition;

2. reduced time and cost for detailed design and
implementation ("procedural design") resulting
from lower communication and control overhead
achievable through an improved system partition-
ing;

3. reduced cost for making later modifications to the
final system, resulting from reduced inter-module
"ripple effect."

The major category of detremental impact addressed here

is that of costs (essentially staff time) related to the

carrying out of the SDM activities that would not otherwise

have to be carried out.

While there are potentially many other categories of

costs and benefits that might be attributable to the use of

a design methodology such as SDM, it is believed that those

identified above effectively capture the first-order impact.

Other potential impacts are either so intangible as to be

impossible to model quantitatively (e.g., the psychological

impact of the methodology upon the system designers), or are

assumed to be of a marginal magnitude relative to the above

categories (e.g., the impact of SDM on the code debugging

process).

(28)It is, to be truthful, quite tempting to over-quantify
these models unjustifiably. This temptation is resisted
here, with difficulty.

- 438 -

8.2 SYSTEM SPECIFICATION IMPACT.

A common refrain from system developers, when asked why

th-.ir systems are late, over budget, or even complete fai-

lures, has been that they were unable to secure adequate

user Participation in the development process. In fact, a

survey of over 100 implementation success factor studies by

Ginsberg found "user participation" to be the single univer-

sally common factor (Ginsberg 74).

4hile there are many reasons why user participation is

important in system development, perhaps the most important

reason concerns system requirements correctness and com-

pleteriess. The manifold difficulty of eliciting a user's

complete set of requirements for a target system has been

commented upon and studied by a number of researchers (e.g.,

Bell and Thayer 76). Others, such as Boehm, have argued

strongly that not enough time is spent during the initial

requirements elicitation and verification phase of the

development process. Boehm calculates that there might be

as much as a threefold return to extra effort expended dur-

ing the early requirements analysis activities (Boehm 74).

One of the important impacts of SDM concerns require-

ments definition. SDM is "driven" by the set of system

functional requirements; use of SDM forces more attention on

the system's requirements than would typically be paid in a

normal system development project. This comes about for

three different reasons:

- 439 -

1. the need to develop requirements in statement
form, which meet the SDM criteria (unifunctional-
ity, implementation independence, common level of
abstraction; see Chapter 3);

2. performance of interdependency analysis;

3. interpretation of a partitioning of requirements
as a system architecture (see Chapter 7).

Each of these are key activities within the Systematic

Design Methodology, and have been discussed earlier in this

thesis. In carrying out each activity, the attention of the

user and system developer are jointly focussed, in a rela-

tively rigorous, structured way, upon the user-level (non-

procedural) functional specifications of the target system.

It is through this "forced," structured focussing of atten-

tion brouqht about by the need to carry out the steps of the

methodology that missing requirements are identified,

requirement inconsistencies spotted and resolved, and

requirement statement errors discovered and corrected.

There is nothing magical about why this should occur.

In essence, any approach that necessitates a careful, step-

by-step analysis of requirements in such a structured fash-

ion ought to achieve some of these same results.. Within the

SDM specifically, however, the interdependency analysis

phase, and the partitioning interpretation phase, both

direct extra light upon the kinds of problems that are fre-

quently observed to occur in this work. Interdependency

analysis requires the designer (and user, to a lesser

- 440 -

extent) to examine requirement reinforcements and tradeoffs

on a pairwise basis, thereby bringing to light requirement

inconsistencies and errors that might be overlooked if

attention were not directed to such a specific detail level.

Architectural design generation involves a general "reasona-

bleness" assessment of the various groupings of requirements

produced by the SDM graph decomposition, and experience has

shown that it also helps to highlight missing requirements

and requirement errors (Andreu 77d). Additional comments on

the qenerality of this model are given later in this sec-

tion. .

Prior to discussing the impact model for requirements

specification itself, certain underlying assumptions need to

be discussed.

Assumption 1. The requirements analysis and assessment

activity transpires in a series of identifiable "passes."

This assumption is borne out empirically, and also through a

consideration of the SDM operational mechanisms. For exam-

ple, a typical SDM-oriented development effort might follow

the passes shown in Table 8.1.

Assumption 2. Conceptually at least, there exists from

the outset a "perfect" requirements specification - one that

specifies all those requirements desired by the system's

eventual users, contains no errors, is completely consis-

tent, etc. At any point in time, this perfect set of

requirements may be factored into three subsets: a set of

- 441 -

ACTIVITY

1 Initial problem discussion.

2 Formal expresison of initial requirements.

3 Assessment of initial requirements, and
generation of revised requirements.

4 Initial interdependency analysis - identification
of additional errors and inconsistencies.

5 Discussion and generation of revised requirements.

6 Interdependency analysis, decomposition, and
determination of initial architecture - discovery
of more errors, missing requirements, etc.

7 Final revision to requirements.

Table 8.1

Typical passes for the requirements analysis
and assessment activities.

recoqnized requirements, a set of unrecognized but "knowa-

ble" requirements, and a set of unrecognized and "unknowa-

ble" requirements. The first set includes those require-

ments that have been correctly elicited. The second set

includes requirements waiting to be elicited (if the design-

ers or users could only think of them, they would recognize

them as necessary), as well as corrections to previously

elicited but incorrect requirements. The third set includes

those requirements and corrections that at this time would

- 442 -

PA SS

not be recognized as such even if they were brought to

light.

Assumption 3. During requirements analysis step i (see

Table 8.1), some proportion p of the remaining knowable
1

requirements "errors" is detected. Here, "errors" should be

interpreted broadly, to include incorrect statements, incon-

sistencies, missing requirements, etc.

The argument for proportional (as opposed to, say,

linear) error discovery rate follows from empirical observa-

tion: Bell and Thayer's experiments indicate that, essen-

tially no matter how long and hard requirements are contemp-

lated, there will always be some remaining errors. Error

decline seems to be inherently an asymptotically decreasing

function of time (i.e., ot nuwber of "passes"). Also, the

"satisticing" phenomenon first explored by Cyert and March

(Cyert and March 64) supports this arguirent. They pointed

out and supported the fact that people generally do not

strive for the "very best" in what they do, but rather gen-

erally work hard enough at a given task to obtain "satisfac-

tory" results, then rest awhile. In the present context,

for instance, a system designer would probably not (during a

given pass) seek to determine every last specification

error, but rather, having unearthed a certain quantity of

such errors, would relax the intensity of his analysis. A

"satisfactory" result during each succeeding pass would

include a smaller number of specification errors detected

- 443 -

than during the preceding pass, which is consistent with the

assumption of some proportion of errors detected each pass.

Given the foregoing assumptions, we can sketch the two

key impact relationships that make up the requirements spe-

cification model. The first of these is a declining curve

of the cost of remaining errors (Curve 1, Figure 8.1). This

curve is shown as asymptotic to the base level of unknowable

errors, as discussed above. The other curve (Curve 2) is

shown as a linearly increasing cost of staff time devoted to

SDM analysis.

Curves 1 and 2 may be combined to show the net cost

impact of SDM analysis on requirements errors. The combined

curves indicate a minimum point, t*, in Figure 8.1, which

represents the breakeven point for time spent on SDM analy-

sis, as far as reducing requirements errors goes. It should

be noted that specification error reduction is the only pay-

off factor being considered in these models that is signifi-

cantly time dependent. Put differently, assuming SDM is

used at all, the payofts to be discussed in the next two

sections will, in theory, occur. Only the payoff due to

specification quality improvements depends, to an important

extent, on how much time is sFent on the requirements analy-

sis activity.

Another important point is the question of whether this

error-reduction effect would occur with any method of

- 444 -

repeated perusal of the requirement statements. While some

error reduction would almost certainly occur, there are good

reasons to believe that SEM analysis is especially well-di-

rected toward achieving these ends. Our experience has

shown that many of the mental clues that lead to improve-

merits and discovery of errors in the requirement statements

stem from having to think about the requirements

a. repeatedly,

b. in a step-by-step, structured way,

c. from different viewpoints,

as is required in SDM analysis. Initially, the requirement

statements are considered as reg.uirement statements, looking

for ambiguities, mis-statements, etc. Later they are con-

sidered during interdependency analysis in the light of the

designer's mental models of irrlementation. This tends to

shed a whole new light on each statement, thereby turning up

different errors, problers, etc. Finally, they are consid-

ered during system structure interpretation, together with

other, cl2sely related requirements, turning up still other

types of problems.

Most individuals rapidly develop mental blocks, "blind

spots," etc. when going over the same statements time atter

time from the same viewpoint, with the same objectives in

- 445 -

mind. By having the designer focus on alternative

viewpoints and objectives for each SDM "pass," these mental

blocks are to a considerable degree mitigated.

Another interesting point that this first impact model

makes clear is that it is theoretically possible to spend

too much time on analysis activities, i.e., carrying on past

the point t* in Figure 8.1. This, however, is unlikely. In

qeneral, the problem with requirements analysis has been

that, due to its unstructured nature and due to lack of user

participation mentioned above, far too little time is usu-

ally spent on it in the course of a typical systems develop-

ment project. In such cases the model's operating point

would lie well to the left of the optimal point t*. Any

"reasonable" amount of effort directed toward SDM analysis

would most likely not move the operating point as far right-

ward as t*.

* * * * *

In the next section we consider the nature of the

impact SDM should have on a different aspect of system

development: the costs of communication and coordination

among individuals and teams in a major development project.

- 446 -

Level of Unknowable
Errors

Time

Figure 8.1

Graph sketches of the relationships for the
requirements specification impact model

- 447 -

Costs

8.3 SYSTEM PROCEDURAL DEVELOPMENT IMPACT.

The second major area of SDM impact concerns the time

required to carry out the procedural development (detailed

design, programming, and testing) phase of the system life

cycle. As a number of authors (e.g., Brooks 75, Scott and

Simmons 75) have pointed out, a major impediment to these

activities is the need for substantial coordination and com-

munication among the various individuals and groups of peo-

ple involved. Indeed, Brooks has cited this need as the

reason why "men and months are not interchangable" in system

procedural development activities.

There are two primary costs that arise as the need for

coordination and communication grows:

1. the cost of additional time that the development
staff must spend in these activities, which
detracts from productive development;

2. the cost of additional layer(s) of project manage-
ment overhead needed to organize and manage the
inter-qroup coordination and flows of communica-
tion.

An example of (1) would be the time spent in intra-group

meetings devoted to ironing out issues and misunderstandings

that arise from interdependencies between the various tasks.

An example of (2) would be the resources consumed in that

portion of the formal project management process devoted to

managing intra-group issues (e.g., designing a properly

sequenced module testing Flan).

- 448 -

Parnas (Parnas 75) has pointed out the importance of

partitioning the procedural development effort so as to min-

imize the required interactions among designers, program-

mers, etc. SDM provides, in the system functional architec-

ture that emerges from decomposition analysis and

interpretation (see Figure 2.1 and Figure 7.2 in earlier

chapters) a blueprint for subdividng the procedural develop-

ment tasks in a way that effectively meets Parnas's goal.

Each subproblem within the architectural design should, if

possible, be made a separate focus of procedural development

effort. In some cases it may be appropriate to combine

toqether two or more subproblems to form a larger subproblem

for these purposes (e.g., for distribution to a limited num-

ber of different detailed design groups), although splitting

subproblems for this purpose should obviously be avoided.

If this procedure is followed, the functional requirements

will be partitioned for procedural development in a way that

should keep to a minimum the needs for inter-group coordina-

tion and communication.

We can generalize the notion of a good requirements

partition in order to develop a model of the communica-

tion/coordination cost irpact. We define a variable D as

the density of module interconnectedness. Clearly, the

impact of D upon the two factors identified is direct: that

is, as D increases, each of these factors will increase

- 449 -

also. The graph in Figure 8.2 shows a hypothetical set of

curves that depict these relationships.

The first function (Curve 1), relating interconnection

density to additional "non-productive" staff time, is illus-

trated as a nonlinear function that "blows up" at a certain

high level of density. As interconnection density D

increases, a larger and larger proportion of staff time must

be devoted to the coordination and communication functions,

thereby shrinking the time available for productive develop-

ment (given some initial timetable) toward zero. Conceptu-

ally at least, there exists some (high) level of problem

complexity, embodied as a large D value, such that the coor-

dination and communication needs among system development

staff use up essentially all available time.

Evidence for this phenomenon is cited by Haney in the

context of development and maintenance of a Honeywell oper-

ating system (Haney 76), and by Belady and Lehman, in the

context of the IBM OS/360 operating system (Belady and Leh-

man 76).

There is an interesting parallel between the asymptoti-

callv growing need for coordination and communication dis-

cussed above, and the phenomenon of "thrashing" in a

demand-paged virtual memory system. In the latter case, a

"hiqh D value" would correspond to a lower level ot refer-

ence locality for a given set of active processes. A pro-

- 450 -

cess with a low level of reference locality is essentially

one in which the various sub-parts are "tightly intercon-

nected" (in terms of execution references over time), much

like a tightly interconnected set of modules in a system

architecture that exhibits high D. As locality decreases (D

increases), the system overhead costs rise in a distinctly

nonlinear, accelerating fashion, similar to that suggested

by Figure 8.2.

In contrast to the first function, the relationship

between extra development management overhead and D is,

hypothesized to be one of linear growth (Curve 2). The evi-

dence for this comes indirectly, from researchers such as

Wolverton (Wolverton 78), who suggests that such overhead

grows linearly with project size. While D does not neces-

sarily purport to measure size directly, it is reasonable to

argue at a first approximation that a doubling of intercon-

nectedness complexity should demand more or less proportion-

ally equivalent management response to that demanded from

the size doubling. For example, it requires some, but not a

disproportionate amount, of additional project management

time to convene a meeting for four team heads as between

two, or to send design change documentation to four teams as

compared to two.

It is not suggested that these functions are fully

representative for all values of D. In particular, D values

- 451 -

outside the range [OD*] are clearly inapplicable in this

model. But even within this range, there exists a smaller

"relevant range" within which the functions - especially the

first - are really hypothesized to hold. This restricted

relevant range is typified in Figure 8.2 with dashed lines.

We have formulated the coordination/communication

impact model in terms of the hypothetical variable D. It is

important to note that a very reasonable practical surrogate

for D would be the measure of inter-module coupling, C, used

in the SDH decomposition analysis. Furthermore, a goal of

SDM is to determine a system structure with low C, which in

turn implies low D. That is, other things being equal, use

of SDM should shift the operating point toward the lower

left along the combined curve of Figure 8.2.

A third class of impact of SDN on project development

is discussed in the next section. There we propose a model

for the effect that a system's design which is based on a

high-strength, low-coupling early partitioning of require-

ments has upon costs of maintenance and modification later

in the development cycle.

- 452 -

Staff time for
Coordination/communication
Overhead

Development
Staff Over ead

(Curve 11

relevant
range

Module
Coupling
Density, D

Figure 8.2

Graph sketches of the relationships for the
communication/coordination impact model

- 453 -

8.4 SYSTEM MAINTENANCE/ODIFICATION IMPACT.

The third major potential area of impact for -the Syste-

matic Design Methodology concerns the cost of maintaining -

and, especially, modifying - large software systems. The

rapidly inflating costs of system maintenance/modification

have been commented upon by numerous authors (e.g.,

(Boehm 75), (Yau 78)). The need to devise ways of designing

and constructing systems so as to reduce the maintenance

load and ease the costs of later modification has been

widely recognized. One study, for example, has estimated

the production cost of a software product to be about $75

per line of code (LOC), while the maintenance cost per LOC

of the same system was estimated at $4000 over the system

lifetime (Boehm 75). A variety of studies have indicated

that anywhere from 40 to 80 percent of the original system

development costs are eventually spent on "simple" mainte-

nance for the system; when all post-implementation work

(including non-trivial modifications) is taken into account

the figure rises to 200 to 400 percent (Thayer 77;

Goetz 78). At any rate, while often exhibiting rather wide

variances, these studies unambiguously indicate that soft-

ware maintenance and modification functions are assuming

increasingly high profiles, and that good system design

practice must take this fact fully into account.

- 454 -

It is common practice to differentiate between "mainte-

nance" and "modification" of software systems. The former

term refers to the fairly large number of relatively minor

changes, bug fixes and improvements that may be made to a

software product following its initial release. Examples

include a specific patch to fix a minor error, or the addi-

tion of an extra report to a batch-oriented DP system.

In contrast, software modification generally refers to

more significant changes wade to the system - changes that

usually entail some amount of redesign, and that impact most

or dll of the system's users. Major changes are usually

undertaken to add significant new functions to the system,

or to improve the operation of a major portion of the sys-

tem. A prime example is a new release of a vendor's operat-

ing system (e.g., IBM's OS/360).

For the purpose of assessing SDM's impact, we will

focus primarily on the modification function. More pre-

cisely, we will be concerned with those changes to the

user-visible functions provided by a particular system -

changes which are of significant enough scope that impacts

on multiple system modules, or major components, are likely.

While drquments could be made that SDM would impact both

maintenance and modification costs, the latter impact is

almost certainly the more significant.

- 455 -

The primary cause of system modification is the recog-

nit ion on the part of the user clientele for changes to the

functions provided by the system, including such things as

addition of completely new functions, major enhancements to

present functions, important improvements in efficiency

(response time, turnaround time, etc.), availability, relia-

bility, etc., and changes to fix major system problems. One

primary mechanism through which system modifications exert

their apparently disproportionately high economic impact is

the rippling effect that such changes have on the system.

Changes to one system component very often result in the

need to make subsidiary changes to other modules. The pro-

pagation of these indirect changes results in telescoping of

the effect of the original change: a single change can cause

other changes, which can in turn cause still other changes,

etc. When viewed in this way, the possibility of an insta-

bility phenomenon - a single change generating a never-end-

ing sequence of subsidiary changes - presents itself. In

fact, evidence exists that such an unstable situation could

occur, and may have been closely approached in certain

real-world systems (Haney 76; Belady and Lehman 76).

Since the changes to be implemented are not known a

prjori, it is not possible to model the change propagation

effect deterministically. However, some simple probabilis-

tic arguments provide considerable insight. Consider two

system modules, M and M*. Using the SDM framework, these

- 456 -

modules are "linked" to the extent that the requirements

represented within one module are interdependent with the

requirements represented within the other. The greater the

number of such interdependency links relative to the size of

the module, the greater the likelihood that a change to one

or more of the requirements in the first module will impact

(cause a change in) the other.

Suppose we let p be the probability that a change to

module Mi causes a change in module M.(29) The probability

pij would be directly related to the strength of the inter-

connection between N and M I(see Section 7.4 for an analysis

of the interconnections strength in the Budgeting System

case study). Also, p would be inversely related to the

size of (number of requirements in) module Mi., since p., is
1 1)

(conceptually at least) an a priori value. That is to say,

we don't know ahead of time which requirements it will be

necessary to change later on; therefore, we can only say

that, for a given interconnection strength, the larger the

number of requirements in module Mi, the smaller the likeli-

hood that a change will impact a requirement interdependent

with other requirements in module Mi., hence the smaller
J

(29)Note that we are concerning ourselves here with changes
to original functional requirements, and the rippling
effects related thereto. Other types of modifications,
for example the addition of totally new functions,
should be viewed in terms of the changes they bring to
bear on previously irplerented functions.

- 457 -

should be p i. As a consequence of this, pi pj in gen-

eral.

The above reasoning leads us naturally to define a

"change propagation likelihood matrix," P:

P = [p .

The (i,I)th entry in P is the probability that a change to

module i necessitates a further (new) change to module J.

The change propaqation likelihood matrix can now be used to

study the cost impact of system modifications. Suppose at

some point in time a set of changes to the system is being

considered. Let

a = the number of changes to

module i being considered.

The term a. may be thought of as the number of known "bugs"

in module i at a point in time (where "bug" is to be broadly

interpreted - e.g., an incompletely implemented function

demanded by system users would be an example of a "bug").

Let

A = [al a 2 ,... , an].

- 458 -

A is the vector of planned module changes; A will be termed

a "revision" to the syster.

Now, the originally planned changes a,, a 2 ' an

give rise to additional changes. If, for instance, there

are ai planned modifications to nodule j, this will generate

ajpjl expected number of changes to module 1, ajPj 2 changes

to module 2, and so forth. The overall expected impact of

the planned changes - the average number of "second-level"

changes - is simply the ratrix product AP. The first ele-

ment of the row vector AP is the expected number of second-

level changes to module 1, etc.

The second-level changes themselves give rise to yet

additional changes, in a corresponding manner. The expected

number of third-level changes to each module can be calcu-

lated as

(AP)P AP2,

Conceptually, this telescoping of module changes con-

tinues ad infinitum. 3athematically, the total expected

number ot changes to each module may be calculated by sum-

ming the resulting infinite series,

- 459 -

2 3
T =A + AP + AP + AP +

= A(I + P + P2 +..

If all the eigenvalues of the matrix P are real and lie in

the range (-1,1), then a basic result in matrix algebra

(Strang 77) says that this matrix series converges, to the

value

T = A(I - P) .

Essentially, the expression above summarizes the ripple

effects that occur as a result of modifications to modules

of a large system.

Some insight can be gained into the nature of this

model by considering some special cases. Suppose the change

propagation likelihood value p.. is
1)

p if i = j, and
pij

0 otherwise.

Then a single modification made to any one module results in

a total number of expected changes to that module of

1 + p + p2 + ... = 1/(1 - p)

- 460 -

For instance, if there is a 10% chance of a change in

module i resulting in another change in the same module,

then p = 0.10, and the expected number of changes resulting

from a single change to module i would be 1.1111...

Now assume that there are n modules, and p .. = p for

all ij . That is, the likelihood of change propagation

between any pair of modules if 100p%. Then a single origi-

nal change to one module generates np expected second-order

changes, each of which generates another np expected third-

order changes, etc. The total number of changes is then

1 + np + (np)2 + (np)3 + ... =1/(1 -np) .

This expression reflects the impact of both change propaga-

tion likelihood p and system size, in terms of number of

modules, n.

There is an asymptotic limit at the point rip = 1, or

p = 1/n. This limit represents the point at which the sys-

tem is large enough and interconnected enough that a single

cianqe will ripple forever throughout the system - the num-

ber of generated changes "blows up." This blow-up phenome-

non is closely related to the point D = D discussed in the

Procedural Development Model of Section 8.3.

This basic module connectivity model gives us insight

into the impact that SDM ought to have on system mainte-

- 461 -

nance/modification. SDM guides the system architect in

devising a high-strength, low-coupling structure which may

be used as a framework for constructing the detailed modules

of the target system. The fundamental assumption underlying

SDM is that the methodology leads the system architect to a

better (higher-S. lower-C) structure than would otherwise

evolve. While the veracity of this assertion is testable to

some degree, such tests have only been carried out in sub-

jective fashion (e.g., by asking the designers' opinions -

see Chapter 7). Our best indications to date are that SDM

indeed leads to a better system structure than that which a

typical designer, using only his judgment and past experi-

ence, is able to determine.

This may be translated into the terms of our mainte-

nance/modification model by saying that we would expect the

P-matrix entries for an SDM-based structure to be smaller

than those for a non-SDM-based structure. This is equiva-

lent to saying that the ripple effect for a high-

strength/low-coupling (i.e., high M) system is lower than

for another similar system with lower M.

The potential cost impact of such an improvement in

system structure has been illustrated by Haney (Haney 75).

He pointed out that informal experiments with the Xerox

Universal Timesharing System showed each change to be caus-

ing approximately 10 additional changes. This system had

about 22 major modules, so that

- 462 -

1/(1 - np) = 1/(1 - 22p) = 10 + 1 = 11 .

Hence p = 0.04 . If the interconnection propagation likeli-

hood could have been reduced by 25%, to p = 0.03 (say,

throuqh the use of SDM in the early system architectural

design phase), the number of additional changes following a

single chanqe would have dropped from 11 to 3! This would

obviously lead to substantial savings in maintenance costs.

- 463 -

8.5 SUMMARY.

In the previous three sections, three different models,

one for each of the major impact areas of the Systematic

Design Methodology, were described. To recap briefly, the

three areas are:

1. system specification - correctly identifying and
stating as many of the "knowable" functional
requirements as possible, within the constraints
of time and manpower available;

2. system procedural development - carrying out the
detailed design, coding, and testing of the sys-
tem, together with the accompanying load of coor-
dination and communication overhead among members
of the development team(s);

3. system maintenance/modification - making necessary
or requested alterations to the functions provided
by the system - correcting errors, adding new
functions, etc. - while simultaneously making sure
that all secondary, tertiary, etc. changes to
other system modules are also identified and car-
ried out.

The three models developed in the previous sections are

different from each other in certain ways. For one thing,

the first two are deterministic, while the third contains

probabilistic elements. Also, in the first model, time is

the key independent variable, whereas in the second the

focus is on the density of module interconnectedness, and in

the third, the number of changes to be made to different

system modules together with the probabilities of change

propagation. All three models attempt to capture the

effects of the modelled independent variables and parameters

- 464 -

on cost - i.e., various components of cost are the dependent

variables in the different models.

The models and concepts presented and discussed here

are in many ways crude and of limited scope. But, as we

pointed out earlier, we were able to find no other published

work on modelling the impacts of design methodologies at

all. This preliminary effort at least illustrates the feas-

ibility for improving understanding of the economic poten-

tial of improved functional design partitionings and other

related aspects of systems design.

A number of issues were raised but not completely

answered in this report. Some of the most important are:

1. how to accurately determine the various parameters
of such models;

2. how to better verify the correctness of the
models' functional forms;

3. how to make effective use of such models - e.g.,
what can be learned from sensitivity analysis or
parametric variation?

4. how to improve the models - e.g., perhaps we ought
to be looking at different aspects; perhaps some
of the "second-order" effects are really more
important than they were assumed to be here.

These and other questions are very appropriate issues

for turther SDM research, and are examined further in the

findl chapter of this thesis.

- 465 -

Chapter IX

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH.

At the outset of this work, a conscious decision was

made to take a "broad brush" approach in trying to advance

the Systematic Design Methodology on a number of fronts.

While perhaps less common for doctoral thesis research, this

approach was felt to be necessary because the problem area

being researched (software architectural design) is a new

and largely undeveloped area. The seven major fronts

addressed in this thesis were:

1. Basic philosophy and concepts;

2. The SDM modelling framework;

3. SDM decomposition analysis techniques;

4. The linkage of the SDM to preceding and following
activities within the system development cycle;

5. Efficacy of the SDM;

6. Development of the computer-based analysis package
for application of the SDM;

7. Testing the SDM.

* * * * *

- 466 -

In considering the accomplishments of this thesis in

summary, it must be kept in mind that the thrust of the work

has been methodology building - not, for example, hypothesis

testing or theorem proving. Thus the relevant questions

are, how far and how well was the methodology developed?

Most of the comments in this chapter are directed towards

those questions.

This thesis largely built upon the foundations laid

earlier by Andreu (Andreu 78). These foundations proved

solid, and continue to endure. While many of the earlier

approaches have been advanced or replaced by the results

descuibed herein, very few of Andreu's contributions were

found to be incorrect in any essential respect. A number of

his ideas continue to be applied unchanged.

In retrospect, it is safe to say that there is essen-

tially no research literature, Andreu excepted, addressing

this problem area directly. This may seem surprising, see-

ing that software engineering as a discipline is well into

adolescence now.(30) It would seem that software "enjineers"

do not view software architectural design as within their

sphere; or it they do, they have not yet come to grips with

it as a researchable issue. SDM hopetully will bejin to

change this state of affairs.

(30).Its origins stem roughly from the 1968 NATO Conference
(Randell 69).

- 467 -

There is a tendancy in much of the software

requirements-related literature toward hype - a kind of "our

methodology can do it all" argument line. (Hopefully we

have not done that here.) A good part of this is the result

of terminology confusion and variability. In reading many

of the papers describing current thinking, one often wonders

how large is the gap between what an author claims his

approach is capable of accomplishing, and what it has actu-

ally accomplished. For instance, one paper discusses (at a

theoretical level) the possibility of capturing and modell-

ing the functional requirements for a software system, then

performing simulations to test the operational soundness of

the system. Talking about simulating the detailed operation

of a system described solely in functional terms basically

suggests doing away with the procedural development phase of

the development cycle altogether! The requirements concepts

described in Chapter 3 oriented certain key aspects of sys-

tem functional requirements into a common framework, and

attempted to bring them into better focus.

Investigations into the decomposition analytics (mainly

Chapters 5 and 6) are the most clearly structured part of

this research. In particular, the interchange partitioning

algorithm stands as one of the major contributions of this

work. There is a tendancy, however, to spend an undue

amount of time on these aspects of the problem. As far as

- 468 -

SD1 is concerned, this may lead to a certain illogic - not

unlike calculating a function to five decimal places when

the input data is only accurate to two. This is counterba-

lanced by the fact that the decomposition algorithms might

well have applicability beyond SDM itself. The strength-

coupling decomposition objective function is quite general

in nature, as are many of the other analysis techniques

(e.g., use of weighted, undirected graphs). The

graph/network/clustering literature was studied mainly to

seek out ways of attacking the SDM decomposition problem.

Now it would be appropriate to look there again, to see

whether what we have learned regarding SDM analytical meth-

ods has applicability to other classes of problems. Cursory

study to date indicates a number of possibilities - e.g.,

database orqanization so as to minimize paging interrupts

(discussed further in the next section). Another possible

application, totally unrelated to SDM, came to light

recently. It concerns spheres of corporate influence.

Emerginq from the phenomenon of interlocking corporate

directorships, this problem involves how to isolate groups

of corporations that are especially tightly "coupled," to

determine which corporations fall in which groups, whether

such groups exert noticable special influences on the econ-

omy, on smaller corporations, etc. One technique that has

been used to model this problem is the weighted, undirected

- 469 -

graph (Levine 72) - the same model used in SDM. An initial

examination suggests that the SDM analytical tools may be

directly appropriate for determining spheres of influence

also.

Despite the earlier warning, there are a number of

intriguing issues for further study as regards the analysis

techniques. For instance, it was noted earlier, in decom-

posing the Budgeting System requirements graph (Chapter 7),

that a fairly wide range of "best" decompositions occurred

using the different techniques. HIER1 located a best decom-

position with an M of 0.05, HIER3 with 0.67, and INTERCHANGE

with 0.85. This leads us to ask whether there might be even

better decomposition methods waiting to be developed and

brought to bear on this problem. More on this in the next

section also.

One of the important contribution of this thesis was

testing the use of SDM in a real design context. Prior stu-

dies had been carried out by the person doing the SDM

research, hence were somewhat unrepresentative of the true

reactions of real system designers. Our application to the

M.I.T. Budgeting System provided a number of useful lessons

and insights, while basically confirming the soundness of

the approach and the perceived usefulness of the results.

Over the course of tem meetings, the system architects for

the new Budgeting System (two key individuals, and a third

less centrally involved) and this investigator worked out

- 470 -

the functional requirement statements and requirement inter-

dependencies in detail. The decomposition of the resulting

requirements graph, and the interpretation of the design

problem structure, was then carried out, as described in

Chapter 7. The final architecture for the target system was

well received by the Budgeting System architects, and they

have expressed their intention to use this architecture in

quiding their coming detailed design work. Exactly how this

ought to be done - the subject of linkage of architectural

desiqn to detailed design - is an important area for further

research, and is discussed again in the next section.

The SDM application to the Budgeting System was quite

successful, as far as it went. SDM "worked" in a technical

sense, and it was definitely perceived to be useful and

efficacious by the (presumably unbiased) system designers.

However, how are we to know whether it really will lead to a

better system design? This is the "efficacy problem"

addressed in Chapter 8. It is a difficult issue, and Chap-

ter 8 only served to scratch its surface. In that chapter

we presented three models of the impact we believe SDM would

have on the system development process and economics. We

basically took a cost-benefit view of the efficacy question,

which is only one view. ke argued there that the problem of

literally proving efficacy is extremely difficult, although

a "cumulative evidence" approach could be used as a surro-

- 471 -

gate to literal proof. Regardless, the question of whether

SDO really does what it is supposed to do - i.e., 'lead to

better system design - is clearly important, and is yet

another area for additional research. This and other poten-

tially fruitful research directions are discussed in more

detail in the next section.

- 472 -

9.1 bIIECTIONS FOR FURTHER RESEACH.

Since, as we have already said, the software architec-

turdl design field has been explored very little, there is a

wide variety of potentially fruitful directions for further

research. To limit the scope of this brief discussion, we

will address only those directions related to SDM,, and those

which we believe to be the most important and promising.

Linkage.

Probably the single most important problem to be

addressed in future SDM-related research concerns the gues-

tion of linkage of an SDM-based design problem structure to

the system detailed design process. As was pointed out ear-

lier (Chapter 8), this linkage involves a transition from

the functional development to the procedural developrent

phase of the system development cycle. Crossing this thres-

hold entails major changes: in the nature of the

desiqn/development work, in the primary modes of thought

(solution-oriented rather than problem-oriented), etc. It

would be very interesting to investigate formalisms for con-

vertinq an SDM-based architectural design into a detailed

desiqn blueprint. It seems quite unlikely at this point

that "automatic" means for performing such a conversion

could be devised. However, informal, perhaps diagrammatic

- 473 -

approaches might be devised. Requirement specification

mechanisms such as PSL (Chapter 3), or DeWolf's concepts

(DeWolf 77), might be brought to bear. Also, the informa-

tion contained in the interdependency descriptions represent

a tie from the functional to the procedural phase and might

be used to advantage here.

One approach that ought to be studied is hierarchical

structuring. Recall that in developing functional require-

ment statements for SDM, one of the guiding principles is to

frame all the statements at the same level of abstraction.

This is the main reason why hierarchical implication rela-

tionships, proposed in Chapter 4, turn out to not buy the

designer very much: they are largely factored out as a

result of the common abstraction level principle.

However, it is well known (e.g., see (Simon 69)) that

hierarchical structuring is a very common and powerful way

for humans to deal with complex systems. Therefore it makes

sense that there might be some effective way of utilizing

the power of hierarchical structuring principles in building

a bridge from functional development to procedural develop-

ment, For instance, perhaps each design subproblem could be

used to generate a set ot procedural detailed requirement

specifications, which could then be modelled using, possi-

bly, a representational mechanism such as that proposed by

DeWolf. There are surely many other untapped ways to make

use of the hierarchical structuring ideas also.

- 474 -

At the present stage of SDM's development, it is

expected that an SDM-produced architecture would be used by

software designers in a largely judgmental fashion (e.g., by

basing the partitioning of the detailed design effort on

it). It would, therefore, be useful to study more deeply

how this could, or ought to, take place. Of course, the

best way to learn more about this process is to actually do

it (experimentally), but that approach runs rapidly up

aqainst the problem of feasibility for a small research

effort. A second approach would be to "talk about it".with

system designers, as was done briefly with the ESD Budgeting

System designers (Chapter 7). A third, perhaps most promis-

inq, approach would be to track a real detailed design

effort for which an SDM architecture had been earlier devel-

oped, to determine as precisely as possible how and why SDM

influenced the follow-on design effort and outcomes. This

sort of tracking study could be carried out with the Budget-

inq System in the future, assuring the DSD designers are

willing to participate.

Study of Non-methodological Architectural Design Process.

Another potential avenue for further research would be

to examine carefully how real system designers actually

effect a design problem structure. We have suggested, pri-

mdrily on the basis of linited direct experience, that this

- 475 -

task is dealt with intuitively, partly subconsciously, based

on prior experience with similar tasks. Buried in this pro-

cess somewhere may be valuable clues for ways to improve

SDM. Of course, it is not necessarily correct to try to

emulate a designer's thought process directly in this

regard. After all, one of the major assumptions underlying

this research (an assumption frequently verified by example)

is that the judgment-based approach is often not the best.

Nevertheless, it would be worthwhile to study how a designer

does (to the extent that he even does) carry out this task,

with the hope that it would lend more insight into the

effectiveness of the SDM approach.

Efficacy.

The efficacy question was explored in some detail in

the previous chapter. It will not, however, go away that

easily, and it continues to present a very challenging prob-

lem. How are we to be sure that SDM leads to a good system

design, or even to a better design than would be obtained

without SDi? Is SDM something truly worthwhile for system

designers to use, and how can we justify the answer? To

date the bulk of our SDM research has been focussed on

building the methodology. On this dimension we have come a

reasonably long way. If the methodology is ever to be

"sold" to the outside world, more work will have to be done

on the efficacy issue.

- 476 -

Asaltis.

The important analytical techniques for applying the

SDM concepts are reasonably well developed at this point.

It may well be argued that other issues - linkage, efficacy,

etc. - diserve more future attention than do the analytical

methods. However, the latter are probably core tractable,

better structured problems. For instance, it was pointed

out in Chapter 5 that there exist certain graph decomposi-

tion techniques that have not been tried in the SDM context.

McCormack's approach (see Chapter 5, Section 5.3.4.2) .

appears especially promising. It is likely that additional

study of the clustering and network literature could unearth

still more potentially useful approaches to the decomposi-

tion and requirements modelling Froblems.

There is an inverse research issue to be considered

here also. it is quite possible that some of the analytical

methods developed in the SDM work might be useful in other

contexts. To name one possible area, researchers have tried

applying simple graph decomposition techniques to the compu-

ter database organization problem: to organize files so as

to keep close together those data items that tend to be

referenced together; this involves concepts such as spacial

and temporal locality of reference (McCabe 77), (Morgan 76).

The tools developed for SDM decomposition ought to be tested

on these related problems also.

- 477 -

Avolication Studies.

Another important avenue for further research- involves

additional application studies, preferably with real system

designers working on a real development project such as the

case study described in Chapter 7. it this time, one addi-

tional such study is underway, involving the design of a

computer-based electronics testing system. This study has

the potential of shedding new light on the applicability of

SD to designing systems consisting of more than pure soft-

ware, i.e., hardware-software systems. Other application

studies ought to similarly be directed toward untried design

contexts. (31) A promising area of hardware-software applica-

tions is real-time systems, wherein much of the detailed

design methodology development work to date has been carried

out (Davis & Vick 77).

Another aspect of future application studies concerns

technigues for using the methodology. In the Budgeting Sys-

tem study, both individual, individual followed by group,

and qroup-oriented analysis methods were tried, although no

attempt was made to monitor the relative effectiveness of

the different approaches. It is possible that for a larger

application, a Delphi-like technique could be used to advan-

(31)Holden (Holden 78), in deciding what would be the target
of his SD application study, debated between the design
of an operating system (his eventual target), and the
design of a submarine!

- 478 -

tage. Here, different system architects would work through

portions of the SDM analysis, then, while studying the same

analysis work of other team members, would be allowed to

modify his own assessments based on the feedback from the

other analysts. This approach would likely lead to a con-

verqence of design opinion (e.g., regarding the existence or

strengths of interdependencies) less susceptable to the bias

of an open meeting approach such as that used in the Budget-

ing 3ystem study.

Also, there are interesting questions such as whether

certain personality types are more adept at SDM analysis

than others. Finally, ways to streamline or improve the

effective of the analysis activities could be studied. For

instance, in doing the Budgeting System interdependency ana-

lysis, we debated the potential usefulness of a dual projec-

tor scheme for being able to easily display any pair of

re4uirements side-by-side. It was felt that this would make

the analysis activity much sirpler, by avoiding having to

constantly flip pages of paper back and forth.

Aritlsis Package.

A serious effort was made in the development of the

current version of the PL/1-based SDM analysis package to

make it easy to use, understand, and hence modify. In par-

ticular, it should prove especially easy to incorporate new

- 479 -

deomposition algourithms into the MASTER systein either for

experimental or "production" purposes, Many of the sdbpro-

grams currently rraking up the package are general-purpose,

and would be useable by new routines (e.g., the subprograms

to calculate the decomposition objective function K for any

graph).

One consideration for further work on the analysis

package could involve incorporation of some of the stand-

alone routines developed turing the Budgeting System project

to manage text-oriented tiles. While these routines have

pr*oven very useful, they are not as yet built into the KAS-

TER pacKage (see Appendix D), although doing so should not

be difficult.

in mrainj ifuture chinges to the NASTEE analysis pack-

age, the docuentation in Appendix D, together with the pro-

qrain listirqs, shouli provide all the required background

informa tion.

There are untioubtedly irany other avenues for further

study in the Sys+ematic Lesign Methodoiogy and related

re-earch Areas. While a tnesis document recessarily aviods

exuberant phraSeolo.:y,it is tair to say that working in an

unexploredi yet ciErly important res;earch area such as this

- 4 8 0 -

one is both exciting and difficult. The excitement comes

from the feeling that one is helping to open up and contri-

buting to a whole new research problem area. The difficul-

ties include the lack of much of a base to build upon, the

lack of a continqent of co-researchers to interact with, and

the occasional fear that perhaps the whole thing really is

not of much value. Having struggled with the concepts and

methods described here (simplistic as they may be) for over

a year's time, I can fairly say that I, for one, am con-

vinced of their potential for improving the quality of.the

desiqns for complex systems. I hope the reader is convinced

also.

4

0

0

- 481 -

bLFERENCES

Ah, A. , et. al. : The Description and Analysis of Computer
Al1grithms, Addison-Wesley, 1974.

Alexander, C.: Note on the Synthesis of Form, Harvard
University Press, 1964.

ALord, A.: "A liequirements Engineering Methodology for
.eaL-timne Processing lequirements", IEEE Trans. Soft.

n vol. 3, no. 1, 1977.

Altman, J. , et. al.: iandbook of iethods for Information
Sstems A nalysts and lesigngers, NTIS Publications,
AD725782, 1971.

Anderberq, I.: Cluster Analygis for A2iig t ions, Academic
Press, 1973.

Andriu, . . : "eCt Decomposition: Cluster Analysis and
Grapa Decomposition Tecihniques ", Internal Report

)12-01-1, M.I.T. Sloan School, September 1977(a).

Aridreu, .. C.: "Solvinq LecomFosition Problems: Alternative
iechniq nve. and Description of Su pport inj Tools", Internal

ei-port >J1)-)1-2, M.I.T. Sloan School, September
1-77 (b)

Andrcu, 1.C., and 3. E. Madnick: "An Exercise in Software
Architectural oesiqn: Fro Re-Auirements to Desijn Problem
Structure", Irnternal [cport PO1-01-05, November 1977 (c).

Andrcu, A.C., and 3. E. Madnick: "Corpleting the
equiremn3ts St as a Mo:-ars Towards Better Desigr
rameworks: A ioiLow-u. exercise in Architecturil
esigni", Internal Feport 10-01-C6, M1T Sloan Schiool of

Marina emen t, Dcerrher 1977 (i) .

SC.: "A Systeratic Approach to the Desijn and
Struct uring, of Complex 'oftware Systeirs," PhD. is
oloan Scitoo ofaagerent, 3.1.T., Camridge, a
197d.

- 482 -

.

Archer, L. C.: "Systematic Method for Designers". Parts I-
VI, Deign, No. 172-188, April 1963-August 1964.

Aron, J.: "Estimating Resources for Large Programming
Systems", in Buxton, J., and J. Eandell (eds.): Softw.are
Engineering Techniques, NATO Science Committee, Brussels,
1970.

Aron, J.: _TL Program Development Process - Part II: The
Development Te # preliminary draft version, Addison-
Wesley Publishers, June 1977.

Baker, F.: "Chief Programmer Team Management of Production
Programming", I.B Systems Journal, vol. 11, no. 1, Jan.
1972.

Baker, F. T.: "Structured Programming in a Production
Programming Environment," IEEE Trans. on Soft. Eng., vol.
1, no. 2, June 1975.

Date, fi., and G. Ligler: "An Approach to Software Testing:g
Methodology and Tools," fPrg. Xhird Conference on
aoftware Eiganeerin, IEEE Publications, 1978.

Belady, L., and M. Lehman: "A Model of Large Program
Development," IBA Systems Jurnal, vol. 15, no. 3, 1976.

Belford, P., et. al.: "Specifications: The Key to Effective
Software Development", Proc. 2nd. Int. Conf. on Soft.
iEg 1976.

Bell, T., and T. Thayer: "Software Requirements: Are They
heally a Problem?", Pg. 2nd Int. Conf. on Soft. Eng., g
1976.

Boehm, B.: "Software and Its Impact: A Quantitative
Assessment", patamation, vol. 19, no. 5, May 1973.

Boehm, B.: "Some Steps Towards Formal and Automated Aids to
Software Analysis and Desiqn", Infgrmation Processing 74,
North-Holland, 1974.

Brooks, F.: The Mythical Man-Month, Addison-Wesley, 1975.

Burns, I., et. al.: "Current Software Reguirements
Engineering Methodology", TRV Systems Group, Huntsville,
Alabama, 1974.

Buston, J., and B. Randall: "Software Engineering
Techniques", Report on a Conference Sponsored by the NATO
Science Committee, Rome, Italy, 1969.

- 483 -

06"

carter, . 3., et. al.:t A Situdy o Critical Factors in MIS
or ttf. U. 2. Air Force, NTIS no. AD-ACC9-647/9WA,

Colorado State University, 1975.

Cave, 4., and A.: Salisbury: "Controlling' the Software
i)evelopment Cycle - The Project' Management Task," IEEE
Tr's. or, Ssoft. Eing., vol. 4, no. 4, July 1978.

Champinie, G. A.: A Trotal Life Cyggle Cst oi lr 2a
Cotg.2uteg SsytgmM PhD Thesis, University of Mlinnesota,
1975.

Chen, P.: "irie i.ntity-Pelatioriship Model - Towards a Unified
View of 1ata," AC Irans. on Database Systems, vol. 1,
no. 1, darch 1976.

Cooper, J.: "Corporate Level Software Management," IEEE
Urans, on Soft. Eng., vol. 4, no. 4, July 1978.

Corneil, D,., and M. Woodward: "A Comparison and Evaluation
of Gra ph Theoretical Clustering Techniques," Infgr, vol.
1, no. 1, ±ebruary 197 .

cougar, J. i.: "Evolution of Business System Analysis
Technique-s", COEg uting Surveys, vol. 5, no. 3, Sept.

Cyert, ., and J. March: A eavioral TheORy 2f the Firm,
Prentice-Hall, 1963.

Davis, C., and C. Vick: "The Software Development System",
L -T iEs. Soft. Eng., vol. 3,. no. 1, Jan. 1977.

Darc, T.: stru d Analysis and System ;Ecification,
Yourdon Inc., 1978.

lleo, .11. GL-.AD1 h41.E.YS wi.1h 21j12,.catior, to Enqjineeriraq arid
Lomuter Science, Prentice-Hall, 1974.

t)eWolt, 1.: ".quiremnents Specilfication and Design for
Itetl-time 3ysteriis: A Problerr Statement", I.&D Memo No. 4,
C. 3. Drape Las., Jar. 1977.

.i jKLtra, . : "'OT U Considered ifarm± ul, " Let ter to t-(-!
zit or La),Ii Af the Ac i, vol. 11, no. 3, March 196i).

Diijtsstr.a, E.: *\ igisc iYliie of Prggrnaiing, Frentice-Hill,
1976.

bolotta, 1"., et 1. : Ja ta P9 9cs .ii1_ - i >

Wiley-Interscience, 1976.

- 484 -

Estabrooke, G.: "A Mathematical Model in Graph Theory for
Bioloyical Classification," Journal gl Theoretical
Bioloy, vol. 12, no. 2, 1966.

Folinus, J., S. E. Madnick, and H. Schutzman: "Virtual
Information in Database Systems," Report CISR-3, Sloan
School of Management, M.I.T., Cambridge, Mass., July
1974.

Ford, L., and D. Fulkerson: Flows in Networks, Princeton
University Press, 1962.

Frank, W.: "The New Software Economics," Parts 1, 2, and 3,
Computerworld, Jan. 1979.

Ginsberq, M.: "A Detailed Look at Irrplementation esearch,"
MIT Sloan School Center for Information Systems Eesearch
WP 753-74, 1974.

Goetz, X.: "The Software Products Industry - Its Future and
Promise," Computerworld, In-Depth Report, October 17, 4
1978.

4ottlieb, C., and S. Kumar: "Semantic Clustering of Index
Terms," Journal of the ACM, vol. 15, no. 4, October 1968.

Gutirrez, H., and U. Schirmer: "Description and Analysis of 4
the M.I.T. Budgeting Process," MS Thesis, Sloan School of
Management, Cambridge, Mass., May 1977.

Hamilton, M., and S. Zeldin: "Higher Order Software - A
Metriodology for Defining Software", IEE Trans. on Soft.
n., vol. 2, no. 1, March 1976.

Haney, F.: "The Architecture of Software," Data Base, ACM
SIGBDP Newsletter, 1976.

Hartiqan, J.: lustering Algorithms, John Wiley, 1975.

Hartman, W., et. al.: Management Information Systems
Handbook, McGraw-Hill, 1968.

Heninger, K.: "Specifying Software Requirements for Complex
Systems: New Techniques and Their Applications," Conf. on
Specifications for Reliable Sotaae, IEEE Computer
Society (IEEE Catalog No. 79 CH1401-9C), April 1979.

Herzoq, F., and G. Matson: "The M.I.T. Budgetary Process: A
Descriptive Model," Internal Report, M.I.T. Office of
Administrative Information Systems, Cambridge, Mass.,
1974.

- 485 -

h imml-blaui, i.: Decosition in Latg Scale Systems,
North-holland 1973.

Hoffor, J,, and D. Severanve: "The Use of Cluster Analysis
in Ph ysical Database Design," Technical Report 267,
Departmert of operations riesearch, Cornell University,
August 1975.

Holden, Tirrothy: "A Systevatic Approach to Designing Complex
Systems: Application to Software Operating Systems",
Internal Report PO10-7805-05,' M.I.T. Center for
information Systems Research, May 1978.

liolton, J. B.: "Are the New Programming Technologies Being
Used?", Datarnation, vol. 23, no. 7, July 1977.

Horowitz, .. , et. al.: Practicaja Strategies for Developing
ka4 s oftwdre S -ms, Addison-Wesley, May 1975.

Honeywell Inc.: Qerating SygjStM2ADC: reliLminary
tiAn SpgificaTios, Honeywell Systems and Research

Division, Naval Air Development Center, Contract
N622b9-72-C-Jt51, 1972.

hubert, L. : "Some Applications 3f Graph Theory to
Clusterinq," Jgychonet.rjika, vol. 39, no. 3, September
1974.

HudosC., F.: "Euport on User Needs for a New M.I.T. Budgeting
system," Internal Eeport, M.I.T.Cffice of Administrative
Information Systems, Cambridqe, Mass., 1978.

H1u.Lf, S. L., ad S. S. Madnick: "An Approach to the
Clnstruction of Furictional bequirement Statements for
System Architectural Lesign", Internal Report No.
P'310-780)6-06, NTIS no. AC57802, June 1978(a).

lu-:, S. JL., and S. L. Madnick: "An Extended Model for a
Systetiatic Approach to the Design of Complex Systems",
Internal t.eport No. PO10-7e06-07, NTIS no. A058565, July
197 (L).

1uft, 1.: Decomposition ot Weighted Graphs Usirng tue
iiterchange Partitianinq Alyorithr," Technical E.eport 3,
MIT Sloan School of Manageent, January 1979(a) ,

diuft, i.: ",nalysis Techniques for Use With the ELxtei'.1ed 3"M
model," 'echnical fReport 9, MI" Sloan School of
Aanagqment, Fobruary 1979 (L)

- 48b -

Huff, S.: "A Normative Cost-Benefit Analysis of the
Systematic Design Methodology," Technical Report 10,
Sloan School of Management, M.I.T., February 1979(c).

Huff, S.: "Architectural Design of a New MIT Budgeting
System: An Application of the Systematic Design
Methodology," Technical Eeport 11, MIT Sloan School of
Management, March, 1979(d).

IBM: Impryvd Programmjg 2c~hnoljgies: Management
Qvrview, IBM Corp., Publication GE19-5086-1, Bethesda,
MD, June 1976.

IBM: Information Managment System: Virtual Storage, IBM
Corp., Publication GH20-1260-1, Armonk, NY, 1974.

Jackson, M.: Principles of Program Dsign, Academic Press,
1975.

Jones, J. C.: Design Methods, Wiley-Interscience, 1970.

Karp, R.: "On the Computational Complexity of Combinatorial
Problems," Networks, vol. 5, no. 2, 1975.

Kernighan, B., and S. Lin: "An Efficient Heuristic Procedure
for Partitioning Graphs," e__ _Sgte Technical Journal,
vol. 49, no. 2, 1970.

Kustanowitz, A.. "System Life Cycle Estimation," Proc. Third
Int. Conf. on Software Engineering, IEEE Publications,
1978.

Leintz, B. et. al.: "Characteristics of Application
Software Maintenance," Comm. of the ACM, vol. 21, no. 6,
June 1978.

Levine, J. H.: "The Sphere of Influence," American
Sociological Review, vol. 37, no. 2, February 1972.

Madnick, S. E., and J. Donovan: Ope9gting Sstems, McGraw-
Hill 1975.

McCabe, E.: "Locality in Logical Database Systems: A
Framework for Analysis," M.S. Thesis, Massachusetts
Institute of Technology, July 1978.

McCdbe, T. S.: "A Complexity Measure," IEg. Trans. on Soft.
., vol. 2, no. 6, December 1976.

- 487 -

Mcormadck, W. et. al.: "Lroblerr Decomposition and Data base
Veorgarnizatior Isinq a Clustering Technique," Qygrations
1g'esorjrch, vol. 20, no. 5, September 1972.

Mil.ler, Georqe: "The Magical Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing
informatiori", Psy c hogjjical Revie w, vol. 63, no. 2, March
1956.

Mi.~i.ls, 1. D.: "Top-Down Programming in Large Systems," in
Dueggiyng T'chniques in Large Systems, (b. rustin, ed.),
Prenitice-fHall, 1971.

Myers, G.: "Characteristics cf Composite Design",
DatdLtig2n, vol. 19, no. 9, September 1973.

Myers, ;.: 1 2. site/Struc ed _Desg, Van Nostrand
uinhold, 1978.

Naur, P., and 6. Rande.ll: Software Eragj1ieerin, NATO
Scientific Affairs Division, Brussels, Belgium, 1968.

a rnas, s..: "Informatiori Distribution Aspects of Design
Icth odoloqy", Information jro cessini. 2.1,, North-Holland
1971.

Parnas, . : "C i the Cr iteria to bie Used in Decomposing
System s into Modules", Congw. of the ACM, vol. 15, no. 12,

e c. 1,972.

Peters, L. , anA L. Tr.Lpp: "Comparing Software Design
Iietaiadoloqies," Dataination, vol. 23, no. 11, November
1977.

Pietrasarnt-a, 'i.: "kesource Analysis of Computer Prograninirg
Systerm Development," in On The Managiement of Computer
Lrorammirg, G. Weinwurin (ed.), Auerbach Publishers,
1 i7 3.

Putnalm, L.: "A General Emipirical Solution to the Macro
sofitware sti.ariting and. Sizing Problem," IEEE ITans. on
Sott. £.Xn., voi. 4, no. 4, July 197$.

Pylc, J. : "Hierarchius - An Crdered Appro.ich to Systeirs
esign, " .Fj'.;T -C State oL the Art ejr2Et N. 8, 1975.

Robinson, L. : "ilDM - Compand arid Staff Overview", T. .
CTL-4-, S11 Project 421, SF1 International, mienlo ?ark,
C.A., Webhruary 178.

- 488 -

B oss, D., and K. Schomann: "Structured Analysis for
hequirements Definition", IEE Trans. Sogt. Erg., vol. 3,
no. 1, Jan. 1977.

Saqe, A.: Methodolov for Large § e Systems, McGraw-Hill,
1977.

Salton, G., and A. Wong: "Generation and Search of Clustered
Files," AC Trans. _n Database Systems, vol. 3, no. 4,
December 1978.

Sariiovanni-Vincentelli, A., et. al.: "An Efficient
Heuristic Cluster Algorithm for Tearing Large-scale
Networks," 1EZ Irans. on Circuits and Sy stems, vol. 24,
no. 12, December 1977.

Scott, h., and D. Simmons: "Predicting Program Development
Productivity - A Communications Model," Proc. first Nat.
Conto. on Soft. Eng., IEEE Publications, Sept 1975.

Silver, A.: "A Computer Analysis Tool for Structural
Decomposition Using Entropy Metrics," Internal Report,
Martin-Marietta Corp., Denver, Colorado, 1978.

Simon, H.: he Science of the Artificial, MIT Press, 1969.

Spillers, W. R.: Basic Questions in esi North-
Holland, 1974.

Spillers, W. E.: "Design Theory", IELE Trans. on Systems,
Nan, & Cybernetics, March 1977.

Stay, J. F.: "HIPO & Integrated Program Design", IBI System
Journal, vol. 5, no. 2, June 1976.

Stevens, J., et. al.: "Structured Design", IB Systems
Journal, vol. 13, no. 2, April 1974.

Stranq, G.: Linear lgebra and Its Applications, Academic
Press, 1976.

Taqqart, W., and M. Tharp: "Survey of Information
Requirements Analysis Techniques", Compu:ting Surveys,
vol. 9, no. 4, 1977.

6
Teichroew, D., and H. Sayari: "Automation of System

Building", Datamation, vol. 17, no. 8, 1971.

4

- 489 -

To.chroOw, f.: "A Survey of Ldnguages for Stating
-euiLreirits for Computer-based Information Systems",

Proc. oL tne Fall Joint Coirputjr Conference, AFIPS Press,
1912.

Teichr oew, L., and M. Bastdrache: "PSL Users' Manual",
iSDOJ Tki No. 98, March 1975.

Ieichroe'w, L, and E. Hershey: "PSL/PSA: A Computer-aided
Technique focr Strutctured Documentation and Analysis of
Compute r-k'ased Inf ornation Systems ", _1IhhE Trans. Soft.
Enj., vol. 3, no. 1, Jan. 1977.

Thaycr, 1.: "Underst.anding Software Through Empirical
LoliiaLility Aritlysis," Proc. of the NCC, 1975.

Uhriq, J.: 'Jystems Ihequirements Specification for Real-
time systems," Bell Telephone Labs., Whippany, NJ, 1978.

Vic, C., and C. Davis: "%equirements: Software
-ngineerinq's Big Hurdle," Ballistic Missle Defence
Advincud T echnolog y Center, Huntsville, Alabama, 1978.

von Lotkemarn, d., 3. Shaw, et. al.: "budget Syste-m
Functional Lequirements," and "Supplemrent to Functional
equ11iremeicnts," Internal Feports, M.I.T. Office of

Aministrat vo iniformation Systems, September 1978.

Wara, J.: "iierarcical Grouping to Optimize an Objective
runction," Amouican Statistical Association Journd,
Marca 19463.

Wasserian, TI.., et. al.: "Sottware Engineering: T.he Turning
Po~)in5t", Co0rjc, September 1976.

Wasserman, .,: "Toward the Lrineering of Software: Problems
oi the 1930's," he _ egon (e2get, ILEL Computer Society,

Watsion, C. , and '. Felix: "Method of Projrdm Measurement and
Sttima tion," .It. yfsters iournal, vol. 16, no. 1, 1977.

Weinwerh, G.: Coii- ycg. oi m 2ogramming, Van
No;trin d eiriLold., 1971.

Whit,, J., ara I'.. Booth: "Towards an jineering Approach
to Sor t weA Desiqn" , i1.oc. 2n-d Int. Con'. on 2o_:t. J.n.,
1 £ 76.

- 490 -

Wilson, N.: "The Information Automat Approach to Design and
Implementation of Computer-based Systems," Peport FSD
76-0093, IBM Corp., Armonk, New York, 1976.

Wirth, N.: "program Development by Stepwise Refinement",
Comm. of the ACM, April 1971.

Wirth, N.: Algorithms + jaa Structures = Programs,
Prentice-Hall, 1976.

Wolverton, R.: "The Cost of Developing Large-Scale
Software,'" IEE Tr_rs. on Computers, vol. 23, no. 6, June
1974.

Yau, S., et. al.: "Ripple Effect Analysis of Software
Maintenance," Trans. Tird Int. Conf. on Soft. Eng., IEEE
Publications, 1978.

I

- 491 -

Appendix A

CC'PLETL LISTING Of

A.1 System Flow Statements.

(1) process/interface [ECEIVES

(i-a) input/out.put REClIVED BY

PSL STATEMENT TYPES.

input/output

process/interface.

(2) intcrface EE SPGNSIULE FCB set.

(2-,1) set EE SPONS IBLE-INTF FACE

(3) process/interiace GEN EF A T E S

G;LNEBAT~E LY

A. Sys:tem Structure statements.

(4) in put /out put/process/in terf ace
ipit/output/prut/tocss/interfcace

(4-) i~ptit put/pr~oce-_ss/int erf ace
input/outVut/lprOcess/in terface.

(S) ent it y/inpu'it/output CCTAINED IN

interface.

input/output

process/inter face.

PAFT OF

SUBPARTS AF2

set/set/set

ARE set.

(7) s--!t/ st/ st u p Sl;3SETTING-CI.ITLIJA Ali: Subset.$-iij~-crjtc-

- 442 -

(3 - a) i np,)u t/o ut puat

(6 set S i l (I et

(to -a4) Se*, t S_,)U S ,.-TS

(7-a) subsetting-criteria/element/group
SUBSETTING-CRITERION set/set/set.

(8) process UTILIZED BY process.

(8-a) process UTILIZES process.

(9) interval CONSISTS OF interval (optionally preceded by
system parameter).

A.3 Data Structure.

(10) input/output/entity/set/group CONSISTS OF group or
element/"/"/"/"

(11) entity IDENTIFIED BY group/element.

(11-a) group/element IDENTIFIES entity.

(12) entity EELATED TO entity VIA relation.

(12-a) relation BETWEEN entity AND entity.

(13) relation ASSOCIATED-DATA IS element/group.

(13-a) qroup/element ASSOCIATED WITH relation.

A.4 Data Derivation.

(14) input/entity/set/group/element USED BY pro-
cess /"I/fl /

(14-a) process/ 1 /"/"/" USES
input/entity/set/group/element.

(15). input/entity/set/group/element USED BY process TO
DERIVE entity/set/element/group/out put.

- 493 -

(15-C) process USES input/entity/set/group/e1ement TU

(1£) inpu t/enti ty/set/qroup/e lement USED BY process TO
UiPJATi ertity/set/group/elerrent.

(1k-a) process USES input/entity/set/group/elevent TC
UP)ATZ ontity/set/group/element

(17) output/entity/set/qroup/element DERIVLD process.

(17-a) process UEE1VES output/entity/set/group/element.

(13) output/enlutity/set/qroup/element DEBIVLD
U.I N' input/entity/set/yroup/element.

process

(1-) process DERIVES output/entity/set/group/element
US1G ilput/ent ity/set/group/element.

(19) entity/se t/jroup/element UPDATED

(19-))

process.

proccss JPDATES entity/set/group/element.

(2) e Itity/set/group/e lement
in'put/enlt it y/set /g4roulp/e lemen t.

UPDATED BY process

(2)- :) process IJUDATEFS entity/set/group/elemeit
inpYut/enti.ty/set/group/element.

USING

USING

(21) set/rclitiori EREIVATION comment-entry.

MAINTAIN J) BY process.

(22-a) rocess A AINTAIN.S relation, subsettinj-criterion.

comrrent-en try.

A. Sy:tem Size.

CaL DXI L1TY s y;t.T,-p ra roter .

- 4(4 -

(22) re lationdeined-name

(2 3) pr:o ces s C. C DULEU

(2.4) -I ity/set/vcelat ion i

(25) relation CONNECTIVITY IS system-parameter TO sys-
tem-parameter.

(26) element/defined-name VALUE IS positive-integer.

(27) element/devined-name VALUES ARE minimum-value THRU
maximum-value.

(28) process HAPPENS system-parameter TIMES-PER inter-
val.

A.6 System Dynamics.

(29) input/output/event HAPPENS system-parameter TIMES-
PER interval.

(30) entity VOLATILITY comment-entry.

(31) set VOLATILITY-SET comment-entry.

(32) set VOLATILITY-MEMEER comment-entry.

(33) process TRIGGEFED BY event.

(33-a) event TRIGGERS process.

(34) process INCEPTION-CAUSES event.

(34-a) event ON-INCEPTION process.

(35) process TERMINATION-CAUSES event.

(35-a) event ON-TERMINATION process.

(36) condition BECOMING TRUE/FALSE CALLED event.

(36-a) event WHEN condition BECOMES TRUE/FALSE.

- 495 -

(37) cindit.iorn l'LUZ/FALSE WHILE com went-entry.

A.7 Project Management.

(33) interface/input/outpu1t/etity/set/relation/ pro-
cess/qroup/elemenrit/interval/condition/vent/memo/detined-na-
mc IESPONSIL2-?EOULLM-DEFINaR person-name.

(3.J-a) person-name RESPCNSIBLE FCb list as in (38)

(39) problem-definer-name MAILBOX ma ilbox-nare.

A.3 System Properties.

Note: in the fillowinq, "list" refers to the list of object
types used in (38) above.

(4J) list SYNONY'M synonym-narre (s)

(41) list DECrPGN cinerrnt-entr y.

(42) 1 ist (excludinq "meno") SLE-MEMO memo-namne.

(43) list KE'YWC'hD keyword-names.

(44) list ATILiJUTELS attribute-name(s).

(45) lis t Si-C.J-lTY secucity-nrre(s).

(f4) list SCCJr source- nair (s)

(47) list
name~l: (.) ,

(excluldin, itro" "dfined- names") A PPL .i S

- 49f*) -

Appendix B

THE FULL SET OF DBMS REQUIREMENTS USED BY ANDREU.

1. Data base schema (data dictionary) including inter-file
relationships, is defined and maintained independently
of database usage.

2. Separate files can be defined to be interrelated.

3. Data description language is English-like and self-docu-
mentinq.

4. Database schema is validated by system prior to usage.

5. interfile relationships can be defined at run time.

6. Field definition permits validation of input datum as to
acceptable values.

7. The maximum number of files in the data base is at least
10.

8. Maximum number of interrelated files is at least 5.

9. Maximum size of a logical record is at least 500 infor-
mation characters.

19. Maximum size of an item (field) is at least 100 charac-
ters.

11. Maximum number of items in a record is at least 50.

12. Repeated fields (multi-values attributes) can be
defined.

13. Variable-sized fields can be defined.

14. Records in the database can be added.

15. Records in the database can be changed.
4

- 497 -

16. 1ecrds; in tue database can be deleted.

17. Database update cdn be performed by on-line user
throulh query lanquage.

13. Database maintenance can be performed by batch.

19. A wulk database update (initialization) can be per-
tormed through system utility.

20 . Null-value field identification and generation sup-
port ed.

21. Field update can trigqer computation of a correlated
tield in same record.

22. Field updi-te can trigger computation (e.g., tally of a
correlated Lield in a different record).

23. Data inteuity supported at least at tile level lockout
on update.

24. Record level lockout.

25. Chiecpoin/restore tacilities.

2 b. Transa-ction- hiistory facility.

27. Separate security facilities for retrieval and update.

28s. Ddtabase level security.

29. File level security.

36. Field-level security.

31. Non-proceair al user S lanquage ava ilable tor on-line
.4uery and update.

32. oolean c.)nditionals can be used in rocord-selection
cr it eria.

33. ioelational conditiorials can he used in recor selection
cr itcri.a.

,34. Arithmetic. expression; can be used in record e lection
c ri t ca.

35. Text-strin scanning expressions can be used in r ecord
selcCtion~ criteria.

- 498 -

36. Relational condition can compare variable to variable.

37. Data meetinq selection criteria can be used for subse-
quent query processing.

38. Selected data can be stored by at least one sort key.

39. Capability for report formatting.

40. Report formatting optionally automatic.

41. Report break control feature supported.

42. Eeport summary line feature supported.

43. Multi-valued fields can be selectively listed.

44. Screen (menu) formatting facilities supported.

45. Local keyboard terminal supported.

46. bemote keyboard terminal supported.

47. CRT supported.

48. Delat Data 5260 supported.

49. User can interrogate status of system.

50. User can interrogate status of current report.

51. User can cancel active request vithout loss of data
integrity. U

52. User can suppress listing, save report, and later re-
initiate listing.

53. User can direct output to system printer.
g

54. User can route listing to other terminal.

55. Capability to broadcast messages to all terminals.

56. Signon security.
I

57. A master terminal facility with privledged commands and
control is supported.

58. Master terminal can be relocated to anyon-line termi-
nal.

- 499 -

59. System set-up effort, and each subsequent sysgen, less
than one man-month.

60. Utilities to aid set-up.

61. Avera'ge up-time for minimum configuration at least 95
percent over a 30-day period.

62. Averaqe system recovery time is 2 hours over a 30-day
period.

63. Maximum recovery time is 24 hours.

64. Maintenance requirements less than 1 hour per week.

65. Power fail restart facility.

66. Dual processor fail-soft capability.

67. Removable disks containing data base can be mounted and
processed during an on-line session.

68. A job accounting recording facility is supported suf-
fiecent to charge users by application and by depart-
ment.

69. A job accounting reporting facility.

70. Application is transportable to/from Agency's existing
systems.

71. Data is transportable to/from Agency's existing sys-
tems. -

72. System can operate in ordinary office environment.

73. System can communicate with other Agency's systems.

74. With a single terminal active, user can receive a res-
ponse from a direct access to any item in the data base
in less than 5 seconds.

75. Response time as independent as possible of file size.

76. Capability to support at least 10 active terminals.

77. Capability to support two or more concurrent queries in
different stages of processing.

- 500 -

78. Display rate of terminal at least 120 characters per
socond on a CRT and 15 characters per second on a
hard-copy terminal.

79. Dynamic file reorganization capability.

80. Dynamic reallocation of released and deleted storage
areas.

81. File size limited only by disk storage capacities.

82. Total on-line data base can be distributed over many
disk units.

83. Controls for tuning system performance at sysgen or
system load time.

84. Controls for dynamically tuning system performance dur-
inq run time.

85. Application tuninq can be accomplished by restructur-
inq the data to bias retrieval vs. update performance
characteristics.

86. Can be delivered within HI months.

87. Being used by at least 10 users within M2 months.

88. Non-recurring costs for basic configuration not more
than C.

89. Maintenance costs less than MC per month.

- 501

Appendix C

EDITED DBMS REQUIREMENTS TRANSFORMED TO TEMPLATE FORM.

The number in brackets refers to the requirement number used
by Andreu (see Appendix B).

C.1 Existence Statements.

General template form:

There will be <mod> <object>.

1. (2) There will be file interrelationships.

2. (12) " Repeated field definitions.

3. (25) " checkpoint/restore facilities.

4. (26) " transaction history facilities.

5. (28) " database level security facilities.

6. (29) " file level security facilities.

7. (30) " field level security facilities.

8. (31) " non-procedural query/update language.

9. (39) " report formatting facility.

10. (41) " report break control facility.

11. (42) " report summary line facility.

12. (44) " menu formatting facility.

13. (45) " local keyboard terminal operation.

14. (46) " remote keyboard terminal operation.

15. (47) " CRT keyboard terminal operation.

- 502 -

16. (48) " Delta Data 526C terminal operation.

17. (53-a) " system printer.

18. (55) " message broadcase facility.

19. (56) " signon security facility.

20. (57) " master terminal facility.

21. (57-b) master terminal privledged commands.

22. (60) " set-up assistance utilities.

23. (65) " power fail restart capability.

24. (66) " dual-processor fail-soft capability.

25. (68-a) " job accounting recording facilities.

26. (69) " job accounting reporting facilities.

27. (73) " inter-system communication facilities.

28. (83-a) static tuning controls.

29. (84-a) dynamic tuning controls.

C.2 Property template statements.

General form for property template:

<mod> <object> can/will be <mod> <property>.

30. (3-a) Data definition language will be English-like.

31. (3-b) Data definition language will be self-document-

ing.

32. (20-a) Data fields can be null.

33. (23-b) Null fields will be identifiable.

34. (40) heport formatting facilities will be optionally

automatic.

35. (49) System status will be queryable.

- 5C3 -

36. (50) Current request status will be queryable.

37. (67-a) Database disk units will be dismountable.

38. (70) Application programs will be transportable between

existing systems.

39. (71) Data files will be transportable among existing

systems.

40. (82) On-line databases can be distributed across multi-

ple disks.

41. (85) Loqical files can be alternately physically organ-

izable.

42. (13) Data fields can be variable-sized.

C.3 Treatment template statements.

GeneraL form for treatment template is:

<mod> Cobject> can/will be <mod> <treatment>.

43. (6) Data items can be validated using field definition

information.

44. (14) Database can be increased.

45. (15) Database records can be changed.

46. '(16) Database records can-be deleted.

47. (17-b) Database records can be updated using query lan-

quage.

48. (18) Database records can be maintained using batch

processing.

- 504 -

49. (19-a) Database can be initialized using system util-

ity.

50. (19-b) Database can be updated using system utility.

51. (23) Files can be locked during update.

52. (24) Becords can be locked.

53. (38-a) Selected data can be sorted.

54. (43) Multi-values fields can be listed selectively.

55. (51-a) Active requests can be cancelled.

56. (51-b) Data integrity will be maintained with respect

to active request cancellation.

57. (52-a) Report listing can be suppressed.

58. (52-b) Suppressed report listing can be saved.

59. (52-c) Saved report listing can be re-initialized.

60. (53-b) Output can be printed using system printer.

61. (54) User-produced listing can be printed using alter-

native terminals.

62. (58) Master terminal can be relocated using alternative

on-line terminals.

63. (79) Files can be re-organized dynamically.

64. (80) Released memory can be re-allocated dynamically.

C.4 Volume Template Statements.

General form for Volume Templates

(mod> <object> can/will be <order statement> <measure>.

- 505 -

65. (59-a) System set-up effort will be less than 1 man-

month.

66. (59-b) System sysgen effort will be less than 1 man-

ironth.

67. (61) Minimum configuration 30-day average up-time

will be at least 95 %.

68. (62) Averaqe 30-day recovery time will be no more than

2 hours.

69. (63) Maximum recovery time will be no more than 24

hours.

70. (64) Weekly maintenance time will te less than 1 hour.

71. (74) Single-active-terminal direct-access response time

will be less than 5 seconds.

72. (76) Active terminal number can be at least 10 units.

73. (77) Concurrent query number can be at least 2 units.

74. (78-a) CPT display rate can be at least 120 characters

per second.

75. (78-b) Hardcopy display rate can be at least 15 charac-

ters per second.

76. (81) File size can be equal to available physical sto-

rage size.

77. (86) Development time will be no more than M1 months.

78. (87) Ten-user installation time will be no more than M2

months.

- 506 -

79. (88) Basic configuration non-recurring costs will be no

more than C dollars.

80. (d9) Maintenance costs will be no more than MC dol-

lars/month.

81. (7-b) Maximum number of database files can be at least

10 units.

82. (8-b) aximum number of interrelated database files

can be at least 5 units. g

83. (10-b) maximum number of field characters can be at

least 100 units.

84. (9-b) Maximum number of logical record characters can

be at least 500 units.

85. (11-b) Maximum number of logical record fields can be

at least 50 units.

86. (38-b) Number of possible sort keys will be at least 1

unit.

c.5 Timinq template statements.

General form for timing statement template is:

<mod> <object> can/will be <timing relationship>

<mod> (object>.

87. (4) Schema validation will occur before database usage.

83. (5) Inter-file relationship usage can occur before

database usage.

g

- 507 -

89. (17-a) Database update can occur before database on-

line usage.

90. (21) Field update can trigger same-field-other-record

update.

91. (22) Field update can trigger computation'

92. (67-b) Disk mounting can occur during on-line database

usage.

93. (83-b) Static tuning can occur after database loading.

94. (83-c) Static tuning can occur after sysgen.

95. (84-b) Dynamic tuning can occur during database usage.

C.6 Relationship template statements.

General form for Relationship Subsetting template:

<mod> <object> can contain <mod> (object>.

96. (1-a) Schema definition can contaitn inter-file rela-

tionships.

97. (7-a) Database can contain files.

98. (8-a) Database can contain inter-related files.

99. (9-a) Logical records can contain characters.

100. (10-a) Fields can contain characters.

101. (11-a) Loqical records can contain fields.

102. (32) Record selection criteria can contain boolean

conditional expressions.

103. (33) Eecord selection criteria can contain relational

conditional expressions.

- 508 -

Now

104. (34) Record selection criteria can contain arithmetic

expressions.

105. (35) Record selection criteria can contain text-string

scanning expressions.

106. (36) Relational conditional expressions can contain

variable-to-variable comparisons.

107. (68-b) Job accounting data will contain application

charges.

1)8. (68-c) Job accounting data will contain organizational

unit charges.

General form for Belationship Independence template:

<mod> (object> can/will be independent of <mod>

(object>.

109. (75) Response time will be (as much as possible) inde-

pendent of file size.

110. (1-b) Schema definition will be independent ot data-

base usage.

111. (27) Retrieval security privileges will be independent

of update security privileges.

- 509 -

Appendix D

SDM ANALYSIS PACKAGE DOCURENTATION.

The analysis program developed for decomposing and ana-

lyzing SDM graphs is written in IBM PL/1, and operates

within the VM/370-CMS environment. The package is presently

run on the MIT 370/168 computer system. While the package

is still being tested, and may be slightly modified in the

future, it is stable enough in its general characteristics

to warrant some brief documentation, as provided here.

General features.of the analysis package include:

1. it has been implemented according to the general
precepts of structured programming; all subpro-
grams are constrained in size, and have relatively
simple structure;

2. the driving routines are command-driven, hence
easily extendable (e.g., additional new types of
decomposition algorithms could be easily added to
the system);

3. subprograms are functionally specific; the rela-
tionship between caller and calling routines is
always clear and easy to understand;

4. effective use of PL/l's powerful data types has
been made in representing clearly and succinctly
the key databases used within the system.

- 510 -

The package consists of a raster program (named, natur-

ally, MASTEB), together with a set of subprograms to imple-

ment the various functions. The MASTER program is command-

driven, so the user executes various commands by typing the

command name (followed in some cases by additional informa-

tion, after secondary prompting by the system). The various

commands, which will be explained in more detail shortly,

are:

COMMAtNDR FUNCTION

STOP Terminate session, return- to the
CMS environment;

READGRAP Eead structure information for
a graph to be analyzed, from a previously
established disk file;

PRINTADJ Print the adjacency matrix for
the graph to the terminal or to the
line printer;

CALCSIB Calculate a similarity matrix
for the current graph;

PHINTSIM Print the similarity matrix
to the terminal or the line printer;

SAVESI write the similarity matrix to
a disk file, for later retrieval;

READSIM Read a previously saved similarity
matrix from a disk file;

CLUSTER Execute one of the four hierarchical
clustering routines on the current
similarity matrix;

READCLUS Read the trace of the clustering
from the file written during the execution
of the CLUSTER command;

PRINTMEA Calculate and type at the
terminal or the line printer the goodness

- 511 -

PRINTCLU

5ODIFY

INTERCH

measure for specified stages in the
clustering trace;

Type at the terminal or line
printer the node clusters for certain
specified stages in the clustering tr

Make incremental changes to the
clustering at a certain stage in the
clustering trace;

Execute the interchange partitioning
alqorithm (a series of subcommands are
issued).

A control feature built into the analysis package checks

the logical consistency of each command. For example,

attempting to execute a SAVESI or PRINTSIM prior to having

calculated a similarity matrix (i.e., to having issued a

CALCSIM comamnd) causes a status error. A status error mes-

sage is issued, and execution continues.

D.1 i _E _.H. .MASTER CO4MMANDS.

We consider now each of the above commands, in somewhat

more detail.

(1) STOP. This comnand requires no additional explanation.

However, it should be noted that the master program has an

attention interrupt trap: hitting the "attention" (or

- 512 -

"break") key causes the program to stop its current activity

and request a new command. Thus STOP is really the only way

of "gracefully" exiting from the MASTER routine (the other

way being to hit the attention key trultiple times, causing a

forced transfer to the CP environment, not a recommended

practice).

(2) READGRAP. A typical analysis session begins with reading

in a particular graph structure via the READGEAP command.

The graph data must have been previously set up in a stan-

dard CMS disk file. The first entry must be the number of

nodes in the target graph. The remaining entries are to be

of the form

(nI,n2,weight),

to indicate that the nodes n1 and n2 are linked in the

requirements graph by an interdependency with an associated

strength value of "weight." 1hus an illustrative graph

structure file for a 6-node graph might appear as:

6

1 2 .5

1 3 .3

1 4 .8

3 4 .5

2 5 .3

2 6 .4

- 513 -

5 6 .8

The order of n1 and n2 in a particular entry is immaterial.

The entries need not be on separate logical lines in the

file, althouqh in practice it is easier to enter them that

way. The graph structure file, as for all files used by the

package, must be given a CMS name; for instance, the name

"GRAPH DATA A" might be used to identify this file to CHS,

whereas the name "GRAPH" could be used for referencing the

same file within the PL/1 routines.

Other files that play a role in the execution of MASTER

include: (a) the file on which the similarity matrix may be

saved for later use (this file is currently named "TEMP-

SIM") ; (b) the intermediate file on which the clustering

trace is written during execution of the CLUSTER command

(named CLIRACE) ; (c) a file named "OPTCLUS" on which an

optimum cluster vector may be written for later use by other

standalone routines.

(3) PRINTADJ and PRINTSIM. These commands use a common sub-

program to print out either the adjacency or similarity

matrices, either to the user's terminal or to the high-speed

line printer located in tie main computer facility. The

particular device to be used (terminal, or line printer) is

determined by a code digit that the user types in response

to a follow-up system prompt message.

- 514 -

The matrices are labelled, and the rows and columns

numbered appropriately. If the matrix is larger than 15x15,

it is "folded" column-wise - i.e., the first 15 columns are

printed, followed by the next 15, etc. In all cases, since

both matrices are symmetrical, only the lower triangular

form is printed.

(4) CALCSIM. This command causes the system to execute a

subroutine that calculates all the elements of the similar-

ity matrix, given the weighted adjacency matrix. The calcu-

lation is based on the algorithm described in Section 2.2.

(5) SAVESIM, READSIM. These commands write and read, res-

pectively, a temporary copy of the similarity atrix to or

from a disk file set up for this purpose. This file is

named TEMPSIM within the MASTER routine. These commands

make it possible to save the results of a similarity calcu-

lation from one session, to be used in a later session that

involves the same graph, thereby avoiding the cost of re-

calculating the entire matrix.

(6) CLUSTER. This command executes one of the four hier-

archical clustering routines described earlier. A secondary

prompt requests the user to enter the appropriate "version"

nimber - i.e., "1" for "HIEB81", etc. recall that:

- 515 -

HIER1 - Single linkage,

HIER2 Complete linkage,

HIER3 Maximum pre-merge centroid,

HIER4 - Maximum post-merge centroid.

The clustering routine writes a "trace" - that is, a record

of the nodal clustering at each step - to an intermediate

file named "CLTRACE." As with SAVESIM, this is done in

order to provide a "restart" capability for extended or

interrupted analysis sessions.

(7) READCLUS. This command reads the clustering trace from

the intermediate file "CLTRACE." This can be used to ini-

tialize a previously generated clustering trace for further

analysis. of course, it cannot be used until at least one

CLUSTER command has been executed, either in the current or

an earlier session. It is generally necessary to execute a

READCLUS command following each execution of the CLUSTER

command; failing to do so may result in performing analysis

upon the clustering trace from an earlier CLUSTER calcula-

tion.

(8) PRINTMEA. This command can be used to calculate the

goodness measure M ior one or a consecutive series of steps

in the currently active clustering trace. The actual pass

- 516 -

or passes, as well as the output device to be used (terminal

or line printer) are entered following secondary promptings.

For example, suppose a 40-node graph had been CLUSTERed,

qivinq rise to a clustering trace consisting of 40 steps, or

"passes." The first pass corresponds to each node as a

separate cluster; the 40th pass corresponds to a single

cluster containing all 40 nodes. In response to a secondary

prampt, the user enters the "frompass" and "topass" values

(the system checks logical consistency). If only a single

pass's measure is required, the user enters that pass number

twice in succession. The system responds by calculating and

printinq out the goodness measure K for each specified pass

in the clustering trace, in the form

PASS = nn HEASURE = rm.mwm .

(9) PRINTCLU. This command operates in a manner similar to

PhINTNEA. However, the clusters themselves, rather than the

qooduess measures, are printed. A typical printout might

appear as:

* * * PASS = 8 * * *

CLUSTER 1: 5 6 7
CLUSTER 2: 1 2 3 4
CLUSTER 3: 8 9 10

As with PRIN7Mh, the user is prorpted for device type and

for ranqe of passes in the trace for which the clustering

information is to be printed.

- 517 -

(10) MODIFY. This command allows the user to make incremen-

tal changes to a current clustering in order to search for

local improvements or test out ideas for better decomposi-

tions.. Following a secondary prompt, the user specifies

which pass in the clustering trace he wishes to modify, and

the nature of the modifications (which nodes to be placed in

which clusters). The resulting decomposition may then be

measured, printed, or saved on a special ("OPTCLUS") disk

file for later use.

(11) INTERCH. This last command transfers control to the

interchange partitioning routine, described next.

D.2 INCHCTL (INTERCHANGE CQNTC) COMANDS.

Most of the primary commands in the analysis. package are

concerned with setting up the graph data, printing out vari-

ous data, and executing the clustering routines. This com-

mand, however, serves only to pass control to a major sub-

proqram (INCHCTL). This subprogram plays a role somewhat

similar to MASTER itself, but with respect to the inter-

change alqorithm.

- 518 -

The interchanqe technique is described in detail in Chap-

ter 6, and its operational aspects will not be discussed

here.

The routine INCHCTL accepts a set of subcommands from the

terminal, which allow the user to control step by step the

execution if the interchange algorithm. This control is

especially useful in performing certain sensitivity analyses

durinq the course of the algorithm's execution.

ihe commands

COMMAND

PETUEN

INITIAL

TYPECUR

T YP2PC

T Y 11.1 P B C

E VALC UR
EVALPEG

U P DAT PAC U

1iES ET PHO

CALCSTR

SPLIT

available within INCHCTL include:

FUNCTION

Return control to MASTLR;

Initailize the current and proposed
partitions;

Print the current partition at the
user's terminal;

Print the proposed partition
at the user's terminal;

Evaluate the current/proposed
partitions and print the .4 value
at the terminal;

Replace the current partition
with the proposed partition;

Reset the proposed partition to
the value of the current partition;

Calculate the strength of a specific,
or of all, subgraphs in the current
partition;

Cdll the interchange algorithm to
partition a particular subgraph in the
current decomposition, returning the
result in the proposed partition.

- 519 -

AUTO Execute a master control algorithm to
automatically decompose the entire
graph.

A central concept in the INCHCTL routine is the use of a

"current" and a "proposed" partition. The reason for having

two potentially different active partitions is to allow ten-

tative actions to be taken in the partitioning process with-

out making them irrevocable. For instance, a user might

wish to try partitioning a particular subgraph under various

minimum-size sub-partition constraints, then select the par-

ticular version giving the best M value. Since it would be

an extreme computational burden to try all possible combina-

tions, INCHCTL is set up to take advantage of the user's

ability to "feel" for a good alternative with a few trial-

and-error attempts.

While most of the above commands are self-explanatory, a

couple diserve further elaboration.

(1) INITIAL. The structure of the target graph is passed to

INCHCTL via the parameter list in the subroutine call. How-

ever, no information regarding the initialization of the

current and proposed partitions is available at the start.

Thus the user's first task is to establish an appropriate

decomposition initialization. Normally, one would want to

beqin at the beginning - i.e., with the entire graph treated

- 520 -

as a sinqle "subqraph." Alternatively, a user may have some

particular partitioning in wind that he would like to "try

out," or from which he would like to start the analysis.

Thus the INITIAL command produces a secondary prompting mes-

saqe asking the user to choose between initializing the cur-

rent and proposed partitions "from the beginning," and

enterinq some other initialization of his choice. Format

requirements under the latter option is provided in the

promptinq message.

(2) CALCSTR. This command may be used to decide which sub-

qraph within the current decomposition to attack next.

Since it is often the case that a user will wish to calcu-

late the strength of all the current subgraphs, a secondary

prompt asks him to select a specific subgraph or to specify

"all the subgraphs."

Normally, as discussed in Chapter 6, Section 6.6, it

would make most sense to choose the subgraph with the lowest

strength to partition next, although the user may wish to

try other alternatives (e.g., the largest subgraph) in some

cases.

(3) SPLIT. This command produces two secondary prompts.

The first asks the user to enter the identification index of

the subqraph he wishes to partition (as printed out by TYPE-

- 521 -

CUR) ; the second asks for the minimum desired subgraph size

for the two subqraphs that will be produced by the inter-

change algorithm.

(4) AUTO. This command invokes the automatic master control

procedure for stepping the interchange algorithm through an

entire decomposition. A single secondary prompt asks the

user to enter the minimuw subgraph size (nmin). The program

then proceeds to decompose the target graph by always

selecting for the next split that subgraph with minimum

strength and cardinality not more than twice the value of

nmin.

Appendix B includes an illustration of the use of the

interchange control procedure and the interchange algorithm.

D.3 ROUTIjS INCLUDM IJN THE ANALYSIS PACKAGE.

There are presently a total of 26 individual programs

that make up the analysis package. Furthermore, a total of

six different files (counting terminal and line printer as

"files") may be read or written (or both) during a session.

The logical relatiuonships among the programs and files is

illustrated in Figure D.1.

- 522 -

SIMALL PRMATRX PRCLTRA CALCM

Figure D.l

Control structure for the modules of the
SDM analysis package

AL aa

The purpose of each program and file is briefly stated

below.

D.3.1 Prograins.

(1) MUSTER. Command-driven master control routine (discussed

earlier).

(2), SINALL. Calculates the similarity matrix.

(3) PRMATRX. Prints the similarity or adjacency matrices to

line printer or terminal.

(4) CLUSTER. Controls the execution of the clustering

algorithm.

(5) DU(MPPTN. Called by CLUSTER to write.the clustering trace

to the intermediate file "CLTRACE."

(6) CALCM. Calculates and prints the decomposition goodness

measure for a given step in the clustering trace.

(7) EVALPAR. Calculates the decomposition goodness measure.

(8) STRENTH. Calculates the internal strength of a subgraph.

(9) COUPL2. Calculates the coupling index between two specified

subgraphs.

(10) PRCLTRA. Prints the node clustering for a given step in the

clustering trace.

(11) H1EF1. Pertorms hierarchical clustering using single

(12) HIER2.

linkage.

Performs hierarchical clustering using complete

- 524 -

linkage.

(13) HlEn3. Performs hierarchical clustering using largest

pre-merge centroid.

(14) HIER 4. Performs hierarchical clustering using largest

post-merge centroid.

(15) GEELDY. Performs hierarchical clustering following the

"greedy" algorithm (see Section 3.3).

(16) COUPL1. Calculates the coupling index between a particular

subqraph and all other subgraphs that connect to it

(for use in the "GREDY" calculation).

(17) MERGCLU. Merges two specified subgraphs together.

(13) INCHCTL. Controls execution of the interchange algorithm

(see Appendix A.2).

(19) BILD8DS. Converts from the vector form for storing

partition inforwation to the structure form.

(23) QUDDS. Equates one partition database to

another (used by the UPDATLCU and RESETPEO commands

within INCHCTL).

(21) BILDPAb. Converts from structure form for storing

partition information to the vector form.

(22) BTJILDA. Creates a temporary adjacency matrix from a specified

subgraph.

(23) MOCIFYB. Updates the structure form to reflect a particular

cluster merge decision.

(24) PEPAETN. Prints clustering data to terminal or line printer.

(25) INCHGEN. Generates different starting partitions for use in

- 525 -

the interchange algorithm routine.

(26) INCHPTN. Performs the interchange calculations to partition a

given subgraph.

D.3.2 Files.

(1) User's terminal.

(2) Line printer. Data sent to the line printer is sent directly,

as opposed to having it written to a disk file

for later spooling. This feature can be easily

modified by changing a line in the driving EXEC.

(3) GRAPH. This is the name used within the programs for the

file containing the graph structure data. Format for

this data was explained in Appendix A.1.

(4) TEMPSIM. This file is used to store the temporary similarity

matrix if desired.

(5) CLTRACE. The clustering trace is written to this file, and

must be read in before executing commands dealing with

the results of a particular clustering.

(6) OPTCLUS. During the execution of the MODIFY command, the

user is asked whether he wishes to save the modified

decomposition he has created. If he elects to save it,

it will be written to this file.

- 526 -

Appendix E

TERMINAL EXECUTION TRACE.

This appendix consists of the terminal execution trace

of a sample session using the SDM analysis package. The

qraph being analyzed is the 22-node DBMS referred to in .Sec-

tion 4 (see Fiqure 4.1).

The commentary in italics was added to arplify and

explain the trace data.

- 527 -

MASTER Execute the !f'ASTCR program

EXECUTION BEGINS...

OK:.READGRAP

GRAPH DATA ENTERED. NNODE= 22

OK:.PRINTADJ

PRINT TO TERMINAL(I) OR LINE PTR(O)?

OK: .WRONGCOM

BAD COMMAND.

OK: .CALCSIM

OK:.PRINTSIM

PRINT TO TERMINAL(I) OR LINE PTR(O)?

.1

Read graph data from disk

Print the adjacency
matrix to the line

printer

Unrecognised command

Calculate the similarity
matrix and print it at

the terminal

- 528 -

Explanatory -Comments

SIMILARITY MATRIX:

1.000
0.000
0.031
0.000
0.000

1.000
0.092
0.256

1.000
0.000 1.000

ATTENTION INTERRUPT.

OK: .CLUSTER

SELECT PROCEDURE - 1/2/3...

OK:.PRINTMEA

STATUS ERROR.

OK:.READCLUS

OK:.PRINTMEA

SELECT RANGE,

Printout halted using
break key

Perform hierarchical
clustering using HIERl

CLUSTERING TRACE NOT YET ESTABLISHED.

Clustering trace must
be read from disk prior
to analyzing

LOWER TO HIGHER.

.18 22

PRINT TO TERMINAL(1) OR LINE PTR(0)?

.1

PASS= 18 MEASURE= -0.

PASS= 19 MEASURE= -0.

PASS= 20 MEASURE= -0.

PASS= 21 MEASURE= 0.

PASS= 22 MEASURE= 0.

OK:.CLUSTER

SELECT PROCEDURE - 1/2/3...

1487

0996

1870

0280

0373

Measures for various
stages in the clustering.
Best M = 0.0373, corres-
ponding to a single

cluster.

a2 - 529 -
.2

1.000
0.281
0.315
0.044
0.256
0.295
0.093
0.000

1.000
0.450
0.000
0.327
0.151
0.141
0.000

1.000
0.000
0.360
0.134
0.188
0.000

Repeat using HIER2

OK:.READCLUS

OK:.PRINTMEA

SELECT RANGE, LOWER TO HIGHER.

.16 22

PRINT TO TERMINAL(1) OR LINE PTR(0)?

.1

PASS= 16 MEASURE=

PASS= 17 MEASURE=

PASS= 18 MEASURE=

PASS= 19 MEASURE=

PASS= 20 MEASURE=

PASS= 21 MEASURE=

PASS= 22 MEASURE=

OK:.PRINTCLU

SELECT RANGE, LOWER TO HIGHER.

.19 19

PRINT TO TERMINAL(1) OR LINE PTR(0)?

.1

Best measure at pass 1.9
(four clusters).

Examine the clustering at
pass 19.

*** PASS 19

CLUSTER
CLUSTER
CLUSTER

1: 1 2 3
2: 4 16 17
3: 8 9 10

CLUSTER 4: 13 14

OK:.CLUSTER

Repeat clustering using
HIER3

- 530 -

-0.7122

-0. 6&49

0.0602

0.2802

0.1234

0.0280

0.0373

5
18
11

6
21
12

--- ----- Now

SELECT PROCEDURE - 1/2/3...

.3

OK:.READCLUS

OK:.PRINTMEA

SELECT RANGE, LOWER TO HIGHER.

.18 22

PRINT TO TERMINAL(1) OR LINE PTR(0)?

.1
g

PASS= 18 MEASURE=

PASS= 19 MEASURE=

PASS= 20 MEASURE=

PASS= 21 MEASURE=

PASS= 22 MEASURE=

0.2958

0.3034

0.3253

0.1170

0.0373

Best results at pass 20 -
better M than for pre-

vious techniques.

OK: .PRINTCLU

SELECT RANGE, LOWER TO HIGHER.

.18 21

PRINT TO TERMINAL(1) OR LINE PTR(0)?

Print the clustering
for a range of steps
in the clustering trace.

.1

- 531 -

*** PASS 18 ***

CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER

*** PASS

CLUSTER
CLUSTER
CLUSTER
CLUSTER

*** PASS

CLUSTER
CLUSTER
CLUSTER

* PASS

1
2
4
8

13

6
3

16
9

14

7
18
11

15
22
12 19 20

19

1
4
8

13

2
16
9

14

3
17
10

3
17
10

5
18
11

6
22
12

5
18
11

7 15 21

19 20

7 13 14 15 21

19 20

This clus-
tering cor-
responds to
the best M
value.

CLUSTER 1:
CLUSTER 2:

OK:.CLUSTER

SELECT PROCEDURE -

5
10

14 15 21
17 18 19 20 22

1/2/3 ...

OK:.READCLUS

OK:.PRINTMEA

SELECT RANGE, LOWER TO HIGHER.

.18 22

PRINT TO TERMINAL(1) OR LINE PTR(0)?

.1

- 532 -

Repeat using HIER4

PASS= 18 MEASURE=

PASS= 19 MEASURE=

.2330

.1256

.0373

PASS= 20 MEASURE= 0

PASS= 21 MEASURE= 0

PASS= 22 MEASURE= 0

OK: .MODIFY

WHICH PASS TO BE MODIFIED?

.20

ENTER CHANGES, IN FORMAT: NODE NO.,CLUS NO.

.7 4 13 4 14 4 15

Best M at pass 20 - not
as good as for HIER3

Try new clustering ar-
rangement.

TERMINATE WITH 0,0

4 0 i0

*** PASS 20 ***

CLUSTER
CLUSTER
CLUSTER
CLUSTER

1: 1 2 3 5 6
2: 4 16 17
3: 8 9 10
4: 7 13 14

PASS= 20 MEASURE=
WANT TO SAVE? (YES=I,

.0

18 21 22
12 19 2011

15

0.3782
NO-0)

Results are better than
anything so far

(M = 0.378)

Could save this clustering
on disk if so desired.

OK: .INTERCH

INCH:.INITIAL

Enter the interchange alyorithim
control routine.

Initialize to standard single
subgraph

SELECT NORMAL INIT. (1) OR OWN PARTITIONING (0)

ECHO OF INITIAL PARTITION:
1: 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22.

INCH:.SPLIT

ENTER SUBGRAPH ID NUMBER.

- 533 -

Partition the starting
subgraph

0.0374

0.1643

CARDINALITY OF SUBGRAPH NUMBER 1 =
ENTER MINIMUM SUBGRAPH SIZE.

Resul tin,q partition

INCH:.TYPEPRO

1 2 3
4 8 9

5
10

6 7 13 14 15
11 12 16 17 18 19 20 21 22

INCH: .EVALPRO

M FOR PROPOSED DECOMPOSITION = 0.133

INCH:.UPDATECU

CURRENT PARTITION <- PROPOSED PARTITION.

INCH: .CALCSTR

ENTER SUBGRAPH ID NUMBER. ENTER 0 FOR "ALL".

STRENGTH FOR SUBGRAPH I =

STRENGTH FOR SUBGRAPH 2 =

INCH: . SPLIT

ENTER SUBGRAPH ID NUMBER.

CARDINALITY OF SUBGRAPH NUMBER
ENTER MINIMUM SUBGRAPH SIZE.

0.073

0.068

M value For this par-
tition.

Set the current par-
tition to this
proposed one.

Calculate the Rtreng-ths
for both sub-
grsphs in cur-
rent partition.

Subgraph 2 lower - select
.it for next partitioning.

2 =

INCH: .TYPEPRO

1 2 3 5 6 7 13 14 15
4 16 17 18 21 22
8 9 10 11 12 19 20

Result after par-
titioning subgraph

INCH:.EVALPRO

M FOR PROPOSED DECOMPOSITION = 0.299

INCH:.UPDATECU

." 534 -r-

M getting better

Set current par-
tition to this
proposed one.

1:
2:

.2

.1

1:
2:
3:

0 0

CURRENT PARTITION <- PROPOSED PARTITION.

INCH: .CALCSTR

ENTER SUBGRAPH ID NUMBER. ENTER 0 FOR "ALL".

STRENGTH FOR SUBGRAPH I = 0.073

INCH:.CALCSTR

ENTER SUBGRAPH ID NUMBER. ENTER 0 FOR

STRENGTH FOR SUBGRAPH 1 =

STRENGTH FOR SUBGRAPH 2 =

STRENGTH FOR SUBGRAPH 3 =

INCH:.SPLIT

ENTER SUBGRAPH ID NUMBER.

0.073

0.177

0.097

Calculate strengths for
the three subgraphs.

Now partition subgraph 1
(lowest strenqth)

CARDINALITY OF SUBGRAPH NUMBER A =

ENTER MINIMUM SUBGRAPH SIZE.

INCH:.TYPEPRO

1.: 1 2 3 5 6
2: 4 16 17 18 21 22
3: 8 9 10 11 12 19 20
4: 7 13 14 15

Resulting proposed par-
tition.

INCH: .EVALPRO

M FOR PROPOSED DECOMPOSITION = 0.378

INCH: .UPDATECU

Best M so far of all
approaches tried.

- 535 -

"ALL".

CURRENT PARTITION <- PROPOSED PARTITION.

INCH : .EVA LCUR Evaluate current
partition.

M FOR CURRENT DECOMPOSITION = 0.378

INCH:.CALCSTR

ENTER SUBGRAPH ID NUMBER. ENTER 0 FOR "ALL".

STRENGTH FOR SUBGRAPH 1 =

STRENGTH FOR SUBGRAPH 2 =

STRENGTH FOR SUBGRAPH 3 =

STRENGTH FOR SUBGRAPH 4 =

INCH:.SPLIT

ENTER SUBGRAPH ID NUMBER.

0.163

0.177

0.097

0.067

Repeat procedure one
more cycle.

CARDINALITY OF SUBGRAPH NUMBER
ENTER MINIMUM SUBGRAPH SIZE.

INCH:.TYPEPRO

1:
2:
3:
4:
5:

1 2
4 16,
9 10-
7 13
8 12

3
17
11
14
20

5
18
19
15

6
21 22

INCH: .EVALPRO

M FOR PROPOSED DECOMPOSITION = 0.041 M way down from pre-
vious partitioning -
don't accept.

- 536 -

.3

3=

Proposed partition.

womb"

INCH:.INITIAL Try setting up own partition.

SELECT NORMAL INIT. (1) OR OWN PARTITIONING (0)

ENTER LIST OF NODES FOR EACH CLUSTER IN TURN.
TERMINATE EACH LIST WITH A ZERO.
TERMINATE ENTIRE ENTRY WITH ANOTHER ZERO.

.1 2 3 5 6 9 21 0

.7 13 14 15 0

.4 16 17 18 22 0

.8 10 11 12 19 20 0 0

ECHO
1:
2:
3:
4:

OF INITIAL PARTITION:
1 2 3 5 6
7 13 14 15
4 16 17 18 22
8 10 11 12 19

9 21

20

INCH:.EVALCUR

M FOR CURRENT DECOMPOSITION = 0.371

INCH: .AUTO

Good results, but not
as good as earlier.

execute automatic governor

ENTER MINIMUM SUBGRAPH SIZE.
I

BEGIN AUTO. DECOMPOSITION. USE ATTN TO STOP EARLY.

M FOR FULL GRAPH = 0.037

- 537 -

NEXT PARTITION IS:
1: 4 8 9 10 11 12 16 17
2: 1 2 3 5 6 7 13 14

M FOR THIS DECOMPOSITION = 0.133

18 19 20 21 22
15

result of first partitioning

SUBGRAPH STRENGTHS:

NO STREN CARD
1 0.968 13
2 0.073 9

SELECT NO* 1

NEXT PARTITION IS:
1: 8 9 10 11 12
2: 1 2 3 5 6
3: 4 16 17 18 21

MINCARD
8
8

19 20
7 13
22

selects subgraph 1 for
next partitioning

14 15

M FOR THIS DECOMPOSITION 0.299

SUBGRAPH STRENGTHS:

NO STREN CARD
1 0.097 7
2 0.073 9
3 0.177 6

SELECT NO. 2

MINCARD
8
8

note subgraph 3 is ineligible
for next split - only has
6 nodes (nmin - 4)

NEXT PARTITION IS:
1: 8 9 10 11 12
2: 1 2 3 5 6
3: 4 16 17 18 21
4: 7 13 14 15

M FOR THIS DECOMPOSITION = 0.378
*** BEST N ***
same end result as found
earlier.

SUBGRAPH STRENGTHS:

NO STREN CARD
1. 0.097 7
2- 0.163 5
3 0.177 6
4 0.067 4

MINCARD
8
8
8
8

FOUND NO MORE SUBGRAPHS FOR PARTITIONING.
RETURN TO INCHCTL COMMAND LEVEL.

INCH: .RETURN

INTERCHANGE ANALYSIS ENDED.

OK: .STOP

RUN ENDED.

stop run.

stop run.

- 538 -

19 20

22

no subgraphs elegible now.
AUTO stops when all -sub-
graphs contain fewer than
2*nmin nodes.

return to NASTER

Appendix F

EXECUTION TRACE CF INTERCHANGE ALGORITHM.

This appendix contains a cowputer-produced trace of the

execution path calculations performed by the master control

procedure and the imbedded interchange algorithn in the

course of decomposing the 10-node graph first introuced in

Section 6.2.3. The actual partitions effected by the algor-

ithm as detailed here are also shown in Figure 6.15.

539

GRAPi ADJACENCY MATI.IX

1
2
3
4

5
6
7
8
9

10

0.00
0.50
0.80
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.40
0.60
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.51
0.00
0.00
0.00
0. 0C
0.00
0.00

(CO4MNENTS)

0.00
C.40
0.00
0.00
0.70
0.00
0.00

0.00
0.80
0.40
0.00
0.00
0.00

0.00
0.90
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.60
0.50

Start with entire

BEGIN PARTITIONING. graph

CLUSTERS ARE: (1 2 3 4 5 6 7 8 9 10)
MEASURE.= 0.051

SEI STARTING PARTITION 1
INITIAL PAPTITION IS:
#1: 1 2 3 4 5 6 7 8 9
#2: 10 11 12 13 14 15 16 17 18

BEGIN ITERATION 1

Add 8 dzaim nodes
(n = 1)

Starting partitions chosen
arbitrairly.

INTERCHANGE TRACE:
CYCLE NODE 1 N

1 9
8
4
2
3
1
5
6
7.

ODE
10
11
12
13
14
15
16
17
18

MAX GAIN
-0.100
-0.600
-0.800
-0.300

0.100
1.300.

-0.800
-0.100

1.300

PARTIALMAX= 0.000 PARTIALMAX INDEX= 9

FINAL PARTITICN:
#1: 1 2 3 4
#2: 10 11 12 13

5 6 7 8 9
14 15 16 17 18

SET STARTING PARTITION 2
INITIAL PARTITICN IS:
#1: 1 3 5 7 9 11 13 15 17
#2: 2 4 6, 8 10 12 14 16 18

BEGIN ITERATION 1

INTEPCHANGE TRACE
CYCLE NODE 1

1. 9
NODE 2 MAX GAIN

6 2.600
- 540 -

PAR SUM
-0.100
-0.700
-1.500
-1 .800
-1.700
-0.400
-1.200
-1.300
0.000

First starting parti-
tion leads to no inter-
changes.

PAR SUM
2.600

11
13
15
17
1
3
7

c. 332

0i. C C ~2

-1.300
-0.100
-1.700
-0.600

PARTI ALMAX= 3.700 PAR"TIALMAX INDEX=

?INAL
#1:
#2:

PAPTITION:
1 2 3
8 9 10

5
12

7 15 17
14 16 18

BEGIN ITERATION 2

INTERCHANGE
CYCLE NODE

1 15
2 17

TRACE
1

PARTIALMAX= 0.300

NODE
11
12
13
14
16
1B
10
9
8

MAX GAIN
0.000
0.090

-0.800
-0.300
0.100
1.300

-1.600
-0.400

1.700

PARTIALMAX INEEX= 6

FINAL PARTITION:
#1: 5 6 7 11 12 1:
#2: 1 2 3 4 8

BEGIN ITERATION 3

INTERCHANGE TRACE:
CYCLE NODE 1 NODE

1 11 15
2 12 17
3 13 10
4 14 9
5 16 8
6 18 4
7 7 2

PARTIALMAX= C.000 PARTIALMAX

17
17

MAX GAIN
c.000
0.000

-C.800
-0.300
0.400
0.020

-1.600
0.200
2.100

INDEX= 1

FINAL PARTITION:
#1: 5 6 7
#2: 1 2 3

SET STARTING PARTITICN
INITIAL PAPTITION IS:
#1: 5 6 7 8
#2: 1 2 3 4 11

16 1H Second starting partition
15 17 locates good final par-

tition.

- 541 -

2.9-
3.7C0
3.7 0
3. 7-'
2.400
2.300
0.600
0.000

PAR SUM
0.000
0.000

-0.800
-1.100
-1.000
0.300

-1.300
-1.700

0.000

PAR SUM
0.000
0.000

-0.800
-1.100
-0.700
-3.700
-2.300
-2.100
-0.00_

3E-IN ITEPATIU- 1

INTEPCHANGE TRACE
CYCLE NODE 1

1 11
2 12
3 13
4 10

PARTIALMAX= 0.000

NODE 2 MAX GAIN
4 0.000

14 0.000
15 0.000
16 -0.800
17 -0.300
18 0.400

2 -1.600
3 0.200
1 2.10C

PARTIALMAX INDEX= 1

FINAL PARTITION:
#1: 5 6 7
#2: 1 2 3

8 9 10 11 12 13
4 14 15 16 17 18

RESULTING PARTITIONS NOT EQUIVALENT;
BEST PARTITION IS:
#1: 5 6 7
#2: 1 2 3 4 .8 9 10

Same result as for
second starting par-
tition.

"Best" is determined
via objective fun-
ction M.

END OF PASS 1 Decomposition After 1 pass.
CLUSTERS ARE: (5 6 7) (1 2 3 4 8 9 10)
MEASURE = 0.292

LOCATE SUBGRAPH WITH LOWEST STRENGTH:
SUBGRAPH NO. STRENGTH

1 0.2332
2 0.0777

FOR NEXT PARTITIONING ROUND, SELECT SUBGRAPH: 2

SET STARTING PARTITION 1
INITIAL PARTITION IS:
#1: 1 2 3 4 5 6
#2: 7 8 9 10 11 12

BEGIN ITERATION 1

INTERCHANGE TRACE:
CYCLE - NODE 1 NODE 2

9
10
11
12

Note that internal
number identi-
fiers are assigned
to the nodes of
the subgraph being
partitioned.

MAX GAIN
-0.100
-0.600
-0.400
-0.300

0.100
1.300

PARTIALMAX= 0.000 PARTIALMAX INEEX= 6

FINAL PARTITIC
#1: 1 2
12: 7 8

3 4 5 6
9 10 11 12

SET STARTING PARTITICN 2

PAF SUM
0.000
0. 000
0. o00

-0.800
-1.100
-0.700
-2.300
-2.100
0.000

Subgraph 2 is best
candidate for next
pass.

PAR SUM
-0.100
-0.700
-1. 100
-1.400
-1.300
0.000

- 542 -

N1TIAL PAFTITION IS:
1: 1 3 5 7

#2: 2 4 6 8

BEGIN ITERATION 1

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2

1 5 2
2 7 4
3 9 8
4 11 10
5 1 12

PARTIALMAX= 2.300

FINAL PARTITICN:
#1: 1 2 3 4
#2: 5 6 7 8

BEGIN ITERATION 2

&AX GAIN
1.100
1.200
0.000
0.000

-1.300
-1.000

PAL SUM
1.100
2.300
2. 30
2.300
1. CO,
0.000

PARTIALMAX INLEX= 2

9 11
10 12

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2

1 9 E
2 11 10
3 4 12
4 2 7
5 3 6
6 1 5

PARTIALMAX= 0.000 PARTIALMAX

FINAL PARTITION:
#1: 1 2 3
#2: 5 6 7

MAX GAIN
0.000
0.000

-0.430
-1.100
-0.200

1.700

INrEX= 1

4 9 11
8 10 12

SET STARTING PARTITION 3
INITIAL PARTITION IS:
#1: 4 5 6 7 8 9
#2: 1 2 3 10 11 12

BEGIN ITERATION 1

INTEPCHANGE TRACE:
CYCLE NODE 1 NODE 2

1 4 10
2 8 11

MAX GAIN
0.400
0.000
0.000

-1.700
0. 2.00
1.100

PARTIALMAX= 0.400 PARTIALMAX INDEX= 1

FINAL PARTITICN:
#1: 5 6 7
#2: 1 2 3

8 I 10
4 11 12

9 11
10 12

PAR SUM
0.000
0.000

-0.400
-1.500
-1.700
0.000

PAR SUM
0.400
0.400
0.400

-1.300
-1.120
0.000

- 543 -

- mmmm -- . --- -, -

bEGIN ITEbA~'lCN 2

INTEPCHANGE TRACE
CYCLE NODE 1

1 8
2 9
3 10
4 7
5 6
6 5

NODE 2 MAX GAIN
11 0.000
12 0.000
4 -0. 400
2 -1.100
3 -0.200
1 1.700

PARTIALMAX= 3.000 PARTIALMAX INDEX=

FINAL PARTITICN:
#1: 5 6 7 8 9 10
#2: 1 2 3 4 11 12

RESULTING PARTITIONS NOT EQUIVALENT;
BEST PARTITION IS:
#1: 1 2 3 4
#2: 5 6 7

Result after second
pass (turns out to
be optimal result)

END OF PASS 2
CLUSTERS APE: (5 6 7) (1 2 3 4) (8 9 10)
MEASURE = 0.484

LOCATE SUBGFAPH WITH LOWEST STRENGTH:
SUBGRAPH NO. STRENGTH

1 0.2332
2 0.1866
3 0.1555

FOR NEXT PARTITIONING ROUND, SELECT SUBGRAPH: 3

SET STARTING PARTITION
INITIAL PARTITION IS:
#1: 1 2
#2: 3 4

BEGIN ITERATION 1

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2 MAX GAIN

-0.100
0.100

PARTIALMAX= 0.000 PARTIALMAX INDEX= 2

FINAL PARTITION:
#1: 1 2
#2: 3 4

SET STARTING PARTITICN
INITIAL PARTITION IS:
#1: 1 3
#2: 2 4

BEGIN ITERATION 1 - 544 -

PAE SUM
0.000
0.000

-0. 400 .
-1.500
-1.700
0.000

These are "real" node
numbers -inot in-
ternal identifiers).

PAR SUM
-0.100

0.000

1NT'~hxCliiNGE TI.ACE:
CYCLF NODE 1 NO UL 2

1 1 4
3471 GAIN

(*. 100

PARTIALMAX= C.100 PAETIALMAX INDEX= 1

FINAL PARTITION:
#1: 3 4
#2: 1 2

BEGIN ITERATION 2

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2 MAX GAIN

1 3 2 -0.100
2 4 1 0.100

PARTIALMAX= 0.000 PARTIALMAX INDEX= 2

FINAL PARTITION:
#1: 3 4
#2: 1 2

SET STARTING PARTITION
INITIAL PARTITION IS:
#1: 2 3
#2: 1 4

BEGIN ITERATION 1

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2

1 2 4
2 3 1

PARTIALMAX= 3.300 PAPTIALMAX

MAX GAIN
0.300

-0.300

INDEX= I

FINAL PARTITION:
#1: 3 4
#2: 1 2

BEGIN ITERATION 2

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2 MAX GAIN

1 3 2 -0.100
2 4 1 0.100

P ARTIALMAX= 3.O00 PARTIALMAX INDEX= 2

FINAL PARTITICN:
#1: 3 4
#2: 1 2

ALL PARTITIONS EQUIVALENT, SO
BEST PARTITION IS:
#1: 1 2
#2: 3 - - 545 -

PA!' SU!:
0.1001

PAR SUM
-0.100
0.000

PAR SUM
0.300
c.000

PAR SUM
-0.100
0.000

END OF PASS 3
CLUSTEPS APE:(5 6 7)(1 2 3 4)(8 9)
M EASUP = -
*** ********* **

LOCATE SUBGRAPH WITH LOWEST STRENGTH:
SUBGRAPH NO. STEENGTH

1 0.2332
2 0.1866
3 0.0000

FOR VEXT PARTITIONING ROUND, SELECT SUBGRAPH: 3 No cal-
culations: sub-

graph only has 2 nodes.

END OF PASS 4
CLUSTERS ARE: (5 6 7) (1 2 3 4) (8)
MEASURE = -1.189

LOCATE SUBGRAPH WITH LOWEST STRENGTH:
SUBGRAPH NO.' STRENGTH

1 0.2332
2 0.1866

FOR NEXT PARTITIONING ROUND, SELECT S

SET STARTING PARTITICN
INITIAL PARTITION IS:
#1: 1 2 3
#2: 4 5 6

BEGIN ITERATION 1

Note that strengths
are only calculated
for subgraphs with

UBGRAPH: 2 at least 2
nodes.

1

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2 MAX GAIN

-0.200
-0.100

0.300

PARTIALMAX= 0.000 PARIIALMAX INDEX=

FINAL PARTITICN:
#1: 1 2 3
#2: 4 5 6

SET STARTING PARTITION 2
INITIAL PARTITION IS:
#1: 1 3 5
#2: 2 4 6

BEGIN ITERATION 1

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2.

1 5 2

PARTIALMAX= 0.300 PARTIALMAX

FINAL PARTITICN:
#1: 1 2 3

MAX GAIN
0.300

-0.200
-0.100

INDEX= 1

- 546 -

PAR SUN
-0.200
-0.300

0.000

PAR SUM
0.300
0.100
0.000

#2: 4 5 6

BEGIN ITERATICN 2

INTEECHANGi TRACE:
CYCLE NODE 1 NODE 2

1 1 4
2 3 5
3 2 6

MAX GAIN
-0.200
-0.100

0.300

PAhTIALMAX= 0.000 PAPTlALMAX INDEX= 3

FINAL PAPTITION:
#1: 1 2 3
12: 4 5 6

SET STATING PARTITICN 3
INITIAL PARTITION IS:
#1: 2 3 4
#2: 1 5 6

BEGIN ITERATION 1

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2

1 4 1
2 2 5
3 3 6

MAX GAIN
0.200

-0.300
0.100

PARTIALMAX= 0.200 PARTIALMAX INEEX= 1

FINAL PARTITION:
*1: 1 2 3
#2: 4 5 6

BEGIN ITERATION 2

INTEPCHANGE TRACE:
CYCLE NODE 1 NODE 2 MAX GAIN

1 1 4 -0.200
2 3 5 -0.100
3 2 6 0.300

PAR SUM
0.200

-0.100
0.000

PAR SUM
-0.200
-0.300
0.000

PARTIALMAX= 0.000 PARTIALMAX INDEX= 3

FINAL PARTITION:
#1: 1 2 3
*2: 4 5 6

ALL PARTITIONS EQUIVALENT, SO
BEST PARTITION IS:
$1: 1 2 3
#2: 4

END OF PASS 5
CLUSTERS ARE: (5 6 7) (1 2 3) (8) (10) (9)(4)
MEASURE = -2.178

- 547 -

PAP SU.
-0.200
-0.3 00

0.000

LOCATE STJBGPAPH WITH LOWEST SRIZNGTH:
SUBGRAPH NO. ST NFNGTH

1 0.2332
2 0.1888

FOR NEXT PARTITICNING ROUND, SELECT SUBGRAPH: 2

SET STARTING PARTITION
INITIAL PARTIIION IS:
#1: 1 2
#2: 3 4

BEGIN ITERATION 1

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2 MAX GAIN

0.300
-0.300

P ARTIALMAX= 0.300 PARTIALMAX INDEX= 1

FINAL PARTITION:
#1: 2 4
#2: 1 3

BEGIN ITERATION 2

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2

1 2 3
MAX GAIN
-0.300
0.300

PARTIALMAX= 0.00% PARTIALMAX INDEX= 2

FINAL PARTITION:
#1: 2 4
#2: 1 3

SET STARTING PARTITION
INITIAL PARTITION IS:
11: 1 3
#2: 2 4

BEGIN ITERATION 1

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2

1 1 4
MAX GAIN
-0.300
0.300

P ARTIALMAX= 0.000 PARTIALMAX INDEX= 2

FINAL PARTITION:
#1: 1 3
#2: 2 4

SET STARTING PARTITICN
INITIAL PARTITION IS:
#1: 2 3
#2: 1 4

- 548 -

PAR SUM
0.300
0.000

PAR SUM
-0.300
0.000

PAR SUM
-0.300

0.000

'I~TN 'It' ITFA TI1ON 1

INTEFCHANGf TPACE:
CYCLF NODE 1 NOD1 2 MAX GAINi PA. SUI

1 2 1 0.400 C.400
2 3 4 -C.400 0.000

P ARTIALMfAX= 3.400 PARTIALMAX INDEX= 1

FINAL PAhTITICN:
#1: 1 3
#2: 2 4

BEGIN ITERATICN 2

INTEFCHANGE TRACE:
CYCLE NODE 1 NODE 2 MAX GAIN PAR SUM

1 1 4 -0.300 -0.300
2 3 2 0.300 0.000

I
PARTIALMAX= O'3 PARTIALMAX INDEX= 2

FINAL PARTITICN:
#1: 1 3
#2: 2 4

I
ALL PARTITIONS EQUIVALENT, SO
BEST PAETITION IS:
#1: 2
*2: 1 3

6
END OF PASS 6
CLUSTERS ARE: (5 6 7) (2) (8) (10) (9) (4)
MEASURE = -3.300

LOCATE SUBGRAPH WITH LOWEST STRENGTH:
SUBGRAPH NO. STRENGTH

1 0.2332
7 0.0000

FOR NEXT PARTITIONING ROUND, SELECT SUBGRAPH: 7

END OF PASS 7
CLUSTERS ARE: (5 6 7) (2) (P) (10) (9) (4)
MEASURE = -4.800

LOCATF SUBGRAPH WITH LOWEST STRENGTH:
SUBGRAPH NO. STRENGTH

1 0.2332
FOR NEXT PAPTITICNIEG ROUND, SELECT SUBGEAPH: 1

SET STARTING PARTITION 1
INITIAL PARTITICN IS:
#1: 1 2
#2: 3 4

BEGIN ITERATION 1 - 549-

INTE kCiANEA T- ACE:
CYCLE NODE 1 N)EL 2

1 1 3
MAX GAIN

0.100
-0. 130

PARTIALMAX= C.100 PARTIALMAX INDEX= 1

FINAL PARTITION:
#1: 2 3
12: 1 4

BEGIN ITERATION 2

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2 MAX GAIN

-0.100
0.100

P ARTIALMAX= 0.000 PARTIALMAX INDEX= 2

FINAL PARTITION:
#1: 2 3
#2: 1 4

SET STARTING PARTITION
INITIAL PARTITICN IS:
#1: 1 3
#2: 2 4

BEGIN ITERATION 1

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2

1 1 2
2 3 4

PARTIALMAX= 0.500 PARTIALMAX

MAX GAIN
0.500

-0.500

INDEX= 1

FINAL PARTITION:
#1: 2 3
#2: 1 4

BEGIN ITERATION 2

INTERCHANGE TRACE:
CYCLE NODE 1 NODE 2

1 2 4
MAX GAIN
-0.100
0.100

PARTIALMAX= 0.000 PARTIALMAX INDEX= 2

FINAL PARTITION:
#1: 2 3
#2: 1 4

SET STARTING PARTITICN
INITIAL PARTITICN IS:
#1: 2 3
#2: 1 4 - 550 -

PAl SUM
0.100
C.000

PAR SUM
-0.100

0.000

PAR SUM
0.500
0.000

PAR SUM
-0.100

0.000

BEGIN ITEFATICN 1

INTPCHANGE ThACE:
CYCLE NODE 1 NODE 2

1 2 4
2 3 1

MAX GAIN
-0.100
0.100

PAh SU M
-0.100

0.000

PARTIALMAX=).000 PARTIALEAX INDEX=

FINAL PARTITION:
#1: 2 3
t2: 1 4

ALL PARTITIONS EQUIVALENT, SO
BEST PAPTITION IS:
#1: 2 3
#2: 1

END OF PASS 8
CLUSTERS ARE: (6 7) (2) (8) (10) (9) (4) (1) (3)(5)
MEASURE -5.900
** **

LOCATE SUBGRAPH WITH LOWEST STRENGTH:
SUBGPAPH NO. STRENGTH

1 0.0000
FOR NEXT PARTITIONING ROUND, SELECT SUBGiAPH: 1

END OF PASS 9
CLUSTERS ARE: (6) 1 2) (8) (10) (9) (4) (1)(3)(5)(7)
MEASURE = -7.400

OVERALL BEST PARTITION:

3PTIMUM MEASURE M* = .4837
OPTIMAL DECCKFOSITICN IS:

6 7)
2 3
9 10)

Overall optimal

partition re-
membered and
printed out.4)

- 551 -

Appendix G

EXAMPLE OUTPUT FROM THE IBM 3800 PRINTER.

On the following page is a sample of the output obtain-

able from the IBM 3800-type printer.

- 552 -

MONTHLY ANLYJ(5

DEPARTMENT NAME
CENTER FOR ALTERNATE LIFESTYLE

SPONSOR NATIONAL FROG FOUNDATION

SUPERVISOR D T OTHERVAY
ROOM E40-250

DEPT.NO. EFFECTIVE
046900 10-01-76

REFERENCE 7682054-PRA

ADDRESSEE F M FIN(
ROOM E40-211

EXPIRES
09-30-78

PAGE 1 AS OF DATE
OF 2 02-28-77

ACCOUNT NAME
CELESTIAL NAVIGATION OF TADPOLES

ACCT. NO.
84559

PARENT ACCT 84545

C N
OBJ. DESCRIPTION AND NOTES PRO- ACTUAL PROJECTED F.Y. BUDGET H FISCAL YEAR 0
CODE RATE CURRENT FISCAL REMAINING F.Y. TOTAL AUTHORIZED N VARIANCE T CUMJLATIVE TOTAL

CODE MONTH YTD F.Y. BUDGET. (FYTD)+(REM) 02-11-77 6 (BUD)-(PROJ) E AMOUNT AUTHORIZED

EXPENDITIES

SALARIES AND WAGES E.F.T.
214 OTHER ACAD. STAFF-ON 2.3 12 1,154 1,904 3,600 5,504 10,800 5,296 * 1,904 5,602
320 SECRETARIAL & CLER-ON .0 12 1,872 1,872 5,616 3,744 0 7,488

346 TECH OR ADMIN SUPT-ON .0 12 96 934 1,030 2,801 1 1,771 * 96 5,602

988 TOTAL SUBJ TO E.B. 2.3 10 1,154 2,001 6,406 8,406 19,217 10,811 * 2,001 S1,269

350 GRAD STUDENT STAFF-ON .0 1,295 1,295 3,453 2.158 * 10,360

990 TOTAL SLRY & WAGES 2.3 10 1,154 2,001 7,701 9,701 22,670 12,969 * 2.001 61,629

EMPLOYEE BENEFITS ON OFF
401 BILLING RATES 24.50X 28.50X 18 283 490 1,887 2,059 4,710 2,651 U 490 12,561
989 TOTAL SALARIES, WAGES A E B 10 1,437 2,491 9,588 11,760 27,380 15,620 0 2,491 74,290

OPERATING EXPENSES
415 TRAVEL 01 1000

419 MATERIALS AND SERVICES 12 81 1,031 1,112 2,319 1,207 0 81 6,184

523 XEROX EXPENSE 01 34 34 34- 34

818 TEL-TOLL CALLS 01 19 34 34 34- 34

991 TOTAL OPERATING EXPENSES 10 19 149 1,031 1,180 2,319 1,139 * 149 7,184

COMPUTATION EXPENSES
896 IPC CHARGES 12 140 349 167 516 375 141- 349 1,000

899 TOTAL COMPUTATION EXPENSS 10 140 349 167 516 375 141- 349 1,000

OTHER CHARGES
901 OTHER CHARGES 17 3,000

839 TOTAL OTHER CHARGES 10 3,000

.!5At'

b a a a a eb

Appendix H

INITIAL BUDGETING SYSTEM FUNCTIONAL REQUIEEMENTS AS PREPARED
BY THE SYSTEM DESIGNERS.

1. Automate as many manual procedures as feasible to
save time and effort

2. Provide in the Chart of Accounts the following for
all fund accounts:

a) Coding for Principal - Endowment* Quasi-endow-
ment, or Term Endowment

b) Coding for Income or current funds - Unres-
tricted, Restricted, Designated, or Restricted
and Further Designated.

c) Update the 60-character 'Fund Purpose" field

3. Collect and store planning data contributed by the
senior managers

a) Data must be in reasonably uniform, useful for-
mat

b) Data should include short range (Next fiscal
year) and long range (3 to 5 years) plans

c) The report of the senior managers contained in
the 'Report of the President and the Chancel-
lor' should refer to and be consistent with the
short range plan presented prior to the begin-
ning of the fiscal year.

d) Planning data would be available to the Dynamic
Model (or its replacement)

4. Provide for collecting, storing and reviewing
details of special financial agreements made among
managers. Details could be picked up when drafts

- 554 -

dre processed. These right be input at time
drafts are made.

5. Provide for budqeting and reporting by E.F.T. as
well as dollars. An interface with the Payroll
System may be necessary.

a) Automate system where possible so that a person
may be budgeted either by E.F.T. or dollars and
provide a method for one to generate the other

b) Allow for either actual or average salaries to
be used in budget proposals.

c) Provide checks to ensure that each person is
not budgeted more than 100% E.F.T.

6. Provide for producing reports in units of man-
weeks, man-months or man-years

7. Provide for additional object codes to be summar-
ies of other object codes as necessary

a) Use summary codes for subtotals on reports or
for reportinq only these subtotals

b) Explore usefulness of summary codes that would
correspond with Billing Codes

8. Review Object Code descriptions to ascertain their
current applicability

9. Provide support for special object codes for use
by each department. The descriptions for these
codes would be supplied by the using departments,
and they would subtotal to the appropriate summary
object codes.

10. Reports must be easier to handle and store. Both
the IBM 3800 and Xerox 9700 Printers would solve
this problem through the use of 8 1/2" by 11" size
paper without sacrificing data capacity.

11. Provide for sharing budget data with users of
other systems and for use of the files of other
systems by the Budget System (e.g. Gift System,
ABS, Payroll, Purchasing, etc.)

12. Provide for as much early recognition of potential
problems as possible so that corrections can be
made in time to prevent them

- 555 -

a) Provide easy way to project income and expenses
over the fiscal year on a month by month basis
so as to provide a ready measure of actual per-
formance vs. budget.

b) Provide way to flag amounts or items when pre-
determined tolerances or dates are exceeded

13. Provide and maintain access to data:

a) Chart of Accounts

b) Future budget data by month by object code
within account

c) Current fiscal year budget data by month by
object code within account

d) Last fiscal year budget data by month by object
code within account

e) Current fiscal year actual data by month by
object code within account

f) Last fiscal year actual data by month by object
code within account

g) Historical data, up to 10 years of budget and
actual data by object summary within account

h) Salary and other data required for proposal
preparation

14. Promote optimal use of fund accounts so as to con-
serve qeneral monies

a) Provide directory (or directories) and an
application index of funds so as to readily
show how they can be applied. This would
require collection and maintenance of abbrevi-
ated text of fund description and donor's
intentions.

b) Enhance existing reports (X52, X53 and/or X56)
with available data so as to make them more
useful in applying funds.

c) Provide for production of a report in X52/X53
format showinq 10 years of historical data.

- 556 -

d) Explore other ways to promote use of funds when
it is optional, such as matching fund expendi-
tures with a certain amount of General money.

15. Support monitoring of operating budget

a) Budget vs. actual

b) 'operating gap'

16. Support, improve or replace the following reports
or items of information:

a) Printed Budget

i) In detail by account within departments
and areas of responsibility

ii) In 'Schedule A' format for inclusion in
the Treasurer's Report

iii) In functional format

b) Schedules for the Treasurer's Report

c) Indirect Cost Recovery Percentage based on CAO
Studies

d) Analyze effects of potential 'dollar budgeting'
decisions, such as 1% salary change, etc. Be
sure to provide for changing scholarship, fel-
lowship and stipend rates when changing tui-
tion.

e) ITOP

f) Dynamic Model

i) Provide for automatic interrelationship
so that when data changes the subsequent
effects are shown

ii) Provide for ease of rerunning with
changes in variables and assumptions to
answer 'what if' guestions

iii) Explore use of Boeing's Execut ive Infor-
mation System or other packages to sup-
port modeling

- 557 -

q) Periodic Summary of Operations

h) Budget Authorizations and Changes, and explana-
tions of the changes, including dollar budget-
ing.

i) Provisional and approved Budget Authori-
zations

ii) Changes in authorized amounts or alloca-
tions and explanations of same, including
dollar budgeting

i) Gross and net effect of budget changes, includ-
inq, but identifying, 'dollar budgeting'

j) Budget vs. Actual Eeports (X80, X83, X84)

k) Detailed Transaction Report

i) Print account title on DTR

ii) Include detail of Purchase Order Commit-
ments

iii) Provide more information in description
and reference fields so as to facilitate
tracking expenses

iv) Expand data content to include YTD and
cumulative data

v) Do not produce DTR in months when there
is no activity for an account

1) Monthly Statement

i) Consider showing 'Travel Outstanding'
immediately following 'Travel' and subto-
taling them

ii) Supply meaningful Purchase Order Commit-
ment data

m) List of accounts about to expire

n) Budqet proposal forms and supporting documents

o) Area of Responsibility Report

- 558 -

p) Department Profiles

q) Report of Fund Crafts

r) Physical Plant Summary

17. Supply new reports as required for fiscal planning
and budgeting

a) Analysis of faculty support, in both E.F.T. and
dollars, contributed by laboratories to aca-
demic departments

b) Report on research type, discipline and func-
tion so as to satisfy both NSF and MIT require-
ments

c) Monthly Analysis

i) Determine if Monthly Analysis should be
published in place of or in addition to
Monthly Statement

ii) Investigate rounding of dollar amounts to
nearest 1

iii) Investigate feasibility of not publishing
Monthly Analysis for months in which
there is no activity in an account

iv) Provide for including or excluding cer-
tain data depending on user reguirements,
i.e. eliminate billing and fiscal year-
to-date data from report to principal
investigator, etc.

v) In forms design try to show subsections
by roundinq tops of column heads

vi) Consider showing 'Travel Outstanding'
immediately following 'Travel', and sub-
totaling them

vii) Print account numbers in lower right cor-
ner for easy lookup when reports are
filed in a nctebook

viii) Print notes to show special restrictions.

- 559 -

ix) Provide for flexibility in format for
content (optional columns)

x) Print notes that describe budget changes

xi) Supply meaningful Purchase Order Commit-
ment data

d) Summary Analysis for:

X) Parent Accounts

ii) Departments and subdepartments

iii) Schools

iv) Areas of Responsibility

v) The Institute

vi) Principal Investigator

vii) Research Type, Discipline and/or function

viii) other subdivisions as required

e) Terminal formats for entering budget proposals

f) Budget Projection - Month by month projection
by object codes for one or a group of accounts.

q) Additional reports used by certain departments,
such as K. Keays series

18. On Personnel Action Form add a box to indicate
whether person hired is a replacement or an addi-
tion.

19. Support Special reports for budget-related activi-
ties

a) Standard reports at non-standard times

b) Standard reports for non-standard periods

Contract period

ii) Sponsor's fiscal year

c) Standard data in non-standard formats

- 560 -

d) Feport-writer language for fully customized
reports. This language must be easily learned
and used.

20. Support for on-line operations with budget data-
base

a) 'Menu' for standard inquiry series

b) Inquiry language for special use

c) Support for on-line requests for reports to be
printed either on terminal or at remote printer

21. Provide data security and recoverability

a) Protect sensitive data against unauthorized use
by checking and logging indentity of user and,
possibly, by encoding data

b) Prevent data from being changed by unauthorized
persons, access would be 'read only' except to
its owner

c) System must provide data integrity through log-
ging of changes and capability of reversing
them

d) Provide adequate file backup procedures

22. Provide a simplified proposal preparation proce-
dure that will support both on-line and manual
preparation of budgets.

23. Investigate proposal preparation using primarily
summary object codes.

a) Standard MIT monthly statement summary object
codes for subtotals

b) Billing summary object codes

24. Provide for review of budget proposals and changes
by the Budget Office in simplified ways

a) Investigate feasibility ot manually-prepared
machine-readable budget proposal worksheets

b) Provide for review and acceptance of proposals
prepared either manually or on-line

- 561 -

c) Provide maximum effective amount of computer
editing of budget proposals

d) Provide check to be sure proposals are within
target amount

e) Compare actual E.F.T. and head count against
allowances

f) Provide check to be sure every open account has
a proposal

q) Be able to tell status of every proposal

25. Identify 'base general' in budget

26. Provide for changing Employee Benefit amounts when
changes are made affecting the amount of Salary
and Wages budgeted

27. Encourage the use of program budgeting while still
supporting other effective budgeting techniques
currently in use

28. Provide logical integrity of budget data by
assigning ownership and responsibi.lity for each
data element. Administrators should be able to
chdrge certain elements or allocations on their
own authority, whereas others should require
Budget office approval

29. Provide a system for tracking research proposals
so as to show whether they are accepted or
rejected, what amount of funding is made availa-
ble, funding agency, principal investigator,
length of contract, special restrictions, and
other appropriate information. Record OSP propo-
sal number on 001 form.

30. Support the establishment and use of a system of
Discipline/Function codes for research projects

31. Eliminate the need for certain departmentally-pro-
duced reports by making available either standard
or special reports.

32. Promote simplification of the budgeting and finan-
cial planning operations

- 562 -

33. Provide documentation and audit trail required for
follow-up of discrepancies it system, operational
or user areas.

34. Support handling of all required aspects of spe-
cial items such as:

a) Nonrecurring equipment

b) Carryforward amounts

c) Sabbatical leaves

i) Drafts

e) Beserves

f) Other special requests

35. Support Fund Drafts by comrputer via on-line and
batch as well as manual (log sheet) requests from
user departments. Use on-line checking by Budget
office where feasible.

36. Provide for recording joint or non-standard sup-
port for an account

37. Determine desirability and feasibility of encum-
bering salary and wage budgeted amounts.

38. Establish data base to support budget activities
as well as ALS and other data or systems

34. Investigate the feasibility of updating actual
income and expense data more frequently than once
a month.

40. Review system ot fund purpose codes to see if they
could be made more beneficial to both gift system
and tund users.

41. Provide for communication between Budget System
and Gift System.

42. Provide for additional data and types of data to
be stored as requirements occur

a) Provide for an open-ended system of descriptors
for accounts or objects within an account to
carry whatever supplementary data may be needed
by users. This would include:

- 563 -

i) Data on special funding and non-recurring
expenses

ii) Indicators as to Functional Summary cate-
gories

iii) Complete set of applicable Donor Purpose
codes for fund accounts

b) Provide for access to data via the special des-
criptors

43. Provide for discussion of all projected changes
with affected users whenever feasible

44. Provide formal training for users when system is
introduced and periodically thereafter

45. Provide, maintain and distribute adequate documen-
tation for all system users.

46. Support various Employee Benefit Codes and Over-
head Recovery Rates as appropriate

a) Ensure that data is available to show employee
benefit and overhead recovery rates appropriate
to the accounting period.

b) Support individusl employee benefit rates to
accommodate personnel from other universities
who work on projects at M.I.T., such as the
consortium for the Center for Materials
Research in Archaeology and Technology

47. Speed up delivery of reports to users

48. Explore possibility of accounting cutoff at the
end ot the month

- 564 -

Appendix I

FINAL BUDGETING SYSTEM FUNCIIONAL hEQJIRLMENTS AS USED IN
THE SDI ANALYSIS.

1. Fund accounts will be categorized by tund pur-
poses.

2. Fund accounts can be categorized by principal
type.

3. Fund accounts can be categorized by income type.

COMMENT:

Principal types may include endowment, juasi-en-
dowment, and term endowment.

Income types way include: Unrestricted, Res-
tricted, Designated, or Pestricted and Further
Designated.

4. Each fund account will be described via abbrevi-
ated text description.

COMMENT:

The current 60-character fields may be used for
this purpose.

5. Short-term and long-term planning data will be
provided by Senior Managers.

COMMENT:

Senior Managers are: Deans, Department Heads,
lab Directors, and Vice Presidents.

b. Planning data will be Frovided in a standardized
format.

COMIENT:

- 565 -

Department profile format.

7. Data regarding special financial arrangements made
by managers will be maintained.

COMMENT:

Could be between managers or between fund donors
and managers.

8. Personnel budgets can be developed in dollars.

COMMENT:

Either average or actual figures.

9. Personnel budgets can be developed in EFT.

10. There will be a facility for converting
salary/wage information between dollars and EFT.

COMMENT:

This conversion should be as automatic as possi-
ble.

11. Certain objects may be logically related to groups
of other objects.

COBNENT:

For example, summary object codes.

12. A particular object may belong to multiple object
qroups.

COMMENT:

For example, certain codes may be reserved as
summary codes for specific groups of other
object codes. Summary codes might include subto-
tal information.

13. Manpower can be reported in alternative units.

COMMENT:

For instance, dollars, man-days, man-months,
man-years.

- 566 -

14. There will be special object codes available for
use by each department.

COMMENT:

Each department would determine its own categor-
izations.

Instance: additional subdivisions on travel:
Travel to LA, Travel to Washington, etc.

15. Reports will be physically easy to handle.

COMMENT:

3800 printer would help to do this by increasing
data capacity per page.

16. Budqetinq and planning data can be accessed read-
ily by other systems.

17. The budget system can access directly data in
other systems' files.

COMMENT:

Including ARS, Payroll, Gift systems.

18. There will be a general comparison reporting capa-
bility.

COMMENT:

May be budget-versus-budget or budget-versus-ac-
tual.

May be for diiferent time periods (e.g., a par-
ticular week this year versus same week last
lear).

Other examples would be: one department versus
rest of school; comparisons between budjets of
different principal investigators.

19. Items exceeding prespecified bounds can be high-
liqhted.

2.. Chart of Accounts and associated supplementary
data will be accessable by Budget System.

-567-

21. Current fiscal year budget data vill be main-
tained.

22. Future Budget data will be maintained.

23. Last fiscal year Budget data will be maintained.

24. Current fiscal year Actual data will be main-
tained.

25. Last fiscal year Actual data will be maintained.

COMMENT:

In general, income and expense data will be
accessable by month and object code within
account.

26. Historical Budget data will be maintained for up
to 10 years.

COMMENT:

May be aggregated; will be off-line.

27. Historical Actual data will be maintained for up
to 10 years.

CONIENT:

May be aggregated; will be off-line.

28. Data required for budget proposal preparation and
not available elsewhere will be maintained.

COMMENT:

e.g., salary data from payroll system; target
data.

29. Budgeted income and expense data will be prorated
automatically on a month-by-month basis.

COMMENT:

Prorations can be selected from standard pro-
files.

Special proration profiles may be supplied by
ranaqers.

- 568 -

There will also be a "no proration" alternative.

30. Information to facilitate the effective use of
fund accounts will be available.

COMMENT:

Provide directory (or directories) and an appli-
cation index of funds so as to readily show how
they can be applied. This would require collec-
tion and maintenance of abbreviated text of
donor's intentiors and fund description.

Enhance existing reports (X52, X53 and/or X56)
with available data so as to make them more use-
ful in applying funds.

Provide for production of a report in X52/X53
format showing 5 years of historical data.

Explore other ways to prorrote use of funds when
it is optional, such as matching fund expendi-
tures with a certain amount of General money.

31. Monitoring of the operating budget will be sup-
ported.

COMMENT:

e.g., budget-versus-actual reports; operating
gap analysis.

32. Various Future Budget reports will be generated.

COMMENT:

Support, improve, or replace the following
reports:

Printed budget:

In detail by account within departments and
areas of responsibility.

In 'Schedule A' format for inclusion in
Treasurer's report.

In functional format.

Physical plant summary.

- 569 -

Department profiles.

Budget Authorizations and Changes, and explana-
tions of the changes, including dollar budget-
ing.

Provisional and approved Budget Authoriza-
tions.

Changes in authorized amounts or alloca-
tions and explanations of same, including
dollar budgeting.

Gross and net effect of budget changes, includ-
ing, but identifying, 'dollar budgeting'.

Budget proposal forms and supporting documents.

33. Periodic operating reports for each account will
be generated.

COMMENT:

Reports will include current budget and current
actual-to-date data.

Modified detailed transaction report (RS).

Print account title on DTE.

Include detail of Purchase Order Commit-
ments.

Provide additional information in descrip-
tion and reference fields so as to facili-
tate tracking of expenses.

Expand data content so as to include YTD
and cumulative data.

Do not produce DTR in months when there is
no activity on account.

Monthly statement or its replacement (monthly
analysis).

Consider showing 'travel outstanding'
immediately after 'travel,' and subtotaling
them.

- 570 -

Supply meaningful purchase order commitment
data.

Budget versus Actual reports (X80, X83,
X84).

34. Various special-purpose (non-periodic) reports
will be generated.

COMMENT:

Schedules for Treasurer's Report.

Indirect cost recovery percentage, based on CAO
studies.

MITOP.

Periodic Summary of Operations.

List of accounts about to expire.

35. !he data necessary for use by tae Dynamic Model
will be generated.

COMMENT:

The model will support automatic interrelation-
ships of variables.

36. Ad hoc requests for information will be supported.

COMMENT:

For example, analyzing the effects of potential
'dollar budgeting' decisions, such as 1 percent
salary changes, etc.

37. Various funds reports will be generated.

COMMENT:

In particular, the report on Funds drafts.

Also Funds Schedule for Treasurer's Report.

38. The system will have access to certain personnel
hiring data.

COMMENT:

- 571 -

Monitoring head count allowances.

Add box on Personnel Action form to indicate
whether person hired is a replacement or an
addition.

39. Certain budget report data items can be optionally
included or excluded from Monthly Analysis Report
as specified by the user.

COMMENT:

e.g., eliminate billing and fiscal YTD data from
report to principal investigator.

40. Variations of standard Budget System reports will
be developed as reguested.

COMMENT:

Analysis of faculty support, in both E.F.T. and
dollars, contributed by laboratories to academic
departments.

Report on research type, discipline and function
so as to satisfy both NSF and MIT requirements.

41. New budqet reports will be developed as required.

COMMENT:

e.g., Monthly Analysis:

Determine if Monthly Analysis should be
published in place of or in addition to
Monthly Statement,

Investigate rounding of dollar amounts to
nearest 1.

Investigate feasibility of not publishing
Monthly Analysis for months in which there
is no activity in an account.

Provide for including or excluding certain
data depending on user requirements, i.e.
eliminate billing and fiscal year-to-date
data from report to principal investigator,
etc.

- 572 -

In forms design try to show subsections by
rounding tops of column heads.

Consider showing 'Travel Outstandinj'
immediately following 'Travel', and subto-
talinq them.

Print account numbers in lower right corner
for easy lookup when reports are filed in a
notebook.

Print notes to show special restrictions.

Provide for flexibility in format for con-
tent (optional columns).

Print notes that describe budget changes.

Supply meaningful Purchase Order Comm.itment
data.

42. There will be a simple report-writing facility.

43. Users can develop their own special reports using
the report writing facility.

44. There will be an on-line menu-oriented query
facility.

45. There will be an on-line ad hoc guery facility.

46. Reports generated on-line can be directed to the
system printer or to users' printer/terminal.

47. Identity and activity of users will be logged.

COMMENT:

Should be provided by DE-1S.

48. Data items can be accessed only by permissable
users.

49. Data items can be changed only by their owner.

50. There will be a set of permissable users for each
data item.

51. Each data item will have a unique owner.

- 573 -

52. Data items can be encoded for security.

53. There will be a log of all database changes.

54. There will be a file backup facility.

55. The database's integrity can be restored using-
backup files and change log if necessary.,

56. Budget proposals can be prepared manually.

57. Budget proposals can be prepared on-line.

58. Budget proposals will be automatically checked and
edited to the extent possible.

COMMENT:

Every open account must have an associated pro-
posal,

EFT cannot exceed 100 percent per person.

59. There will be controlling limits on amounts in
proposed budgets and budget changes.

CONMEN4T

Check that proposals are within target amount,
or within sponsor 's limit.

Compare actual EFT and head count against allo-
wances.

May be desirable to have controls on summaries
also.

60. Budget proposals will be reviewed by the budget
office and/or GSP.

61. Budget changes will be reviewed by'the budget off-
ice and/or OSP.

62. Sources of funding for each account will be iden-
tified.

COMMIENT:

Identification information may be included in
budget account record.

- 574 -

63. Budqeted employee benefits will be changed auto-
matically following changes in budgeted salary and
wage amounts or ED rates.

64. All currently used budgeting techniques will be
supported.

COMMENT:

Including line item budgeting, program budjet-
ing, and task-oriented budgeting.

System should promote program budgeting.

65. Research proposal information can be stored,
updated, and accessed.

COMMENT:

Provide various kinds of information for track-
ing research proposals to show whether they are
accepted or rejected, what amount of funding is
requested and made available, funding agency,
principal investigator, length of contract, spe-
cial restrictions, and other appropriate infor-
ration. Record CSP proposal number on 011 form.

66. fesearch accounts and proposals will be categor-
ized by type, discipline, and function.

67. There will be documented audit trails for deter-
mining system discrepancies.

68. Required aspects of non-recurring expenses will be
supported.

COMMENT:

Concerns primarily sabbatical leaves, drafts,
carryforward amounts, and nonrecurring equip-
ment.

69. Fund drafts can be performed on-line.

70. Fund drafts can be performed in batch mode.

71. Fund drafts can be checked ard approved on-line by
3udget Office.

COMMENT:

- 575 -

Check may be done by Bu get Office, or the
responsible officer.

72. Additional data item types cin be added to
accounts or objects within a:counts.

73. New data items can include or refer to supplemen-
tary data needed by users.

74. Formal training in the use of the system will be
provided to users.

COMMENT:

Training and use documentation will be made
available to legitimate system users.

75. Non-standard employee benefit calculations will be
supported.

COMMENT:

Support individual enployee benefit rates to
accommodate personnel from other universities
who work on projects at MIT (e.g., Consortium
for Materials Research in Archealogy and Tech-
nology).

76. Overhead recovery rate calculations will be sup-
ported.

77. Standard periodic reports will be produced and
distributed to users as guickly as possible.

COMMENT:

Minimize time between cutoff date and report
receipt.

3800 printer will help by shortening printout
time and by printing in distribution sequence.

- 576 -

Appendix J

FOEM USED IN GATHERING INTELDEPiNDENCY DATA.

The data form shown on the following page was used for

qathering the interdependency data during the interdepen-

dency analysis phase of the study.

-577 -

JENZERDEPENDENCY ~ ASSENT SYSIin

I FR I TO I UT I RENAPKS I PR I TO i P I RERARKS

------------------------------ t----t----t----i------------------------t
-- t ---- t----t ------------------------ -- #--#-------- ------------------

9--9-*--------- - --------- -------------------- t--------------------------- -- t----t--------------t

t--------------------------t---t---t----------------t-

t --------------- i --- --------------

t---t-----------------------t-t------------------

I I I I I I I II

---------------- ---------- ---t-------------------

I I . I I a - I I

----------------- t---t---t-----------------------t

4---9--+----------------------t -------------------- "-----

------------------------- t---t----t----t------------------------t

I I I I I I I

t------t--t--------------------9----9----.t ---------------------------- t

+--+--------------------+---t- ---- t------- -----t

. I I I 1 a i a. a
#----9-------------------------------t----t----t----t------------------------

I I I I I I I II

#----9-------------------------------t----t----t----t------------------------

9----9-------------------------------t----t----9---+------------------------
i a a a a a a a

9-----------------------------------t-----------t-------------

a i a a a a a a

9------1--1--------------------------------t------------------------

- 578 -

Appendix K

BUDG AITING SYSTEM RLQUIREMENT INTER|DE2ENDENCIES.

'R Tu WT DESCEIPTION U

1 4 S Text description will reinforce arid

descr.be the cateqorization.

1 17 A Fund purpose data may be stored elsewhere.

1 20 A Fund purpose data iray also be in Chart of

Accounts.

1 30 S Fund purpose code is a irportant instance

of "effective-use" information.

1 36 W Possible "fund purpose" report.

1 37 W Possibly want to include fund purpose

information.

1 58 A Check budget proposals regarding fund

purpose.

1 60 A Reviewer would check fund purpose for

consistency.

1 71 W Can be checked for consistency.

1 72 S May want to add new purposes.

2 4 S Text description will reinforce and

- 579 -

describe the categorization.

2 17 W Fund purpose data may be stored elsewhere.

2 20 A Chart of Accounts contains fund accounts.

2 30 S Principal type is critical effective use

information.

2 36 W Possible fund report.

2 37 A Information to be included in fund reports.

3 4 S Text description will describe and

reinforce categorization.

3 7 A Often have special income restrictions.

3 17 W Gift system is source for fund account

data.

3 19 A Accumulated income important to monitor,

3 20 A Carried in Chart ot Accounts.

3 30 S Income type important regarding how spent.

3 36 A Likely fund report.

3 37 S Possibly want to include fund purpose

information here.

4 17 A Other systems may need to access descrip-

tion data.

4 30 S Fund purpose description used in directory

entry.

4 36 W Text description likely target of ad hoc

requests.

4 37 S Text description would be included in many

reports.

- 580 -

5 6 S Use and capture of planning data related to

format.

5 22 S Related information sources.

5 34 A Might want to develop projection reports.

5 35 S Major purpose of planning data is to

provide DR input.

6 22 W Common formatting issue.

6 34 W Summary planning reports possibly contin-

gent on planning data format.

6 35 A Format affects what can be requested.

7 30 A Special arrangements for funds.

7 37 W May want to report information regarding

special arrangements.

7 58 A May be able to automate checking to include

SFA.

7 59 A May be limits or controls on SFAs.

7 60 W SFAs are grounds for examination.

7 62 S Routine examinations.

7 68 S An SFA is a special item of importance.

7 71 W SFAs would need to be checked.

8 10 S Common conversion issue.

8 13 A Common conversion issues.

8 29 A Proration of personnel expenses important

issue.

8 63 S Employee benefits developed from personnel

budgets in dollars.

- 581 -

8 75 S Employee benefit calculations need personnel

information in dollars.

9 10 S Common conversion issue.

9 13 S EFT required for certain reporting units.

9 29 A Proration of personnel expenses important

issue here.

9 33 A Standard reports include manpower.

9 38 W Need EFT to properly monitor headcounts.

9 59 W One control item.

10 13 S Common conversion issues.

10 28 A Budget proposal data may need conversion

facilities.

10 38 W May need conversion facilities to make

effective use.

11 12 S Common logical relationships issue.

11 14 A Special codes have to summarize correctly.

11 34 A Logical relationships used in summarizing.

11 35 A Model uses mostly summary data, and logical

relationships define certain summarizations.

12 14 A Department summary codes need logical

groupings.

12 34 S Summarizations defined in logical groupings.

15 77 S Common preparation issue - easier handling

makes for faster delivery.

16 48 A Allowable accesses must be controlled for

other systems as well as individuals.

- 582 -

16 49 A Need change protection as regards other

systems.

16 52 W Other systems may need encription key access.

17 20 S Budget system will .need access to Chart data.

17 69 H Need link to Funds system.

17 71 W Need Funds systefr link.

18 19 S Comparisons indicate items to be highlighted.

18 22 A Data used in comparisons.

18 23 A Data used in comparisons.

18 24 A Data used in comparisons.

18 25 A Data used in comparisons.

18 26 W Data used in comparisons.

18 27 W Data used in comparisons.

18 29 S Prorating generates detailed information for

doing comparisons.

18 31 A Comparisons necessary for monitoring.

18 32 A Comparisons included in budget reports.

18 33 A Comparisons included in periodic analysis

reports.

18 34 A Some comparisons included in summary reports.

18 39 A May include comparisons.

18 41 A May include comparisons.

20 22 A Related data maintainance issue.

20 23 A Related data maintainance issue.

20 24 A Related data maintainance issue.

20 25 A Related data maintainance issue.

- 583 -

20 31 A Data used in monitoring.

20 32 A Data is source for reports.

20 33 A Data is source for reports.

20 34 A Data is source for reports.

20 35 A Data is source for reports.

20 36 A Data is source for reports.

20 37 9 Data possibly source for reports.

20 41 A Data possibly source for reports.

20 58 A Chart data used in checking.

20 62 w Type of supplementary data.

20 66 V Type of supplementary data.

20 68 W Requires certain supplementary Chart data.

20 72 A Descriptors may need to be used for

supplementary Chart data.

20 73 W Descriptors may need to refer to

supplementary Chart data.

21 23 W Would need to transfer data at year end.

21 29 S Requires current budget data.

21 30 S Used in monitoring reports.

21 31 S Used in monitoring reports.

21 32 S Used in monitoring reports.

21 33 A Used in monitoring reports.

21 35 W Portions of data may be used as input to DM.

21 38 A Need budget data to do function.

21 39 A Choices may include CFY budget data.

21 40 S Variations may require certain CFY budget

- 584 -

data.

21 60 A Proposed revire often requires examination

of CFY budget data.

21 62 A Part of CFY budget data.

22 29 A Future budget data submitted in prorated

form subject to change.

22 32 S Data needed for reports.

22 35 A Data needed by EM.

22 36 A Requests for future budget data.

22 41 A May require future budget data.

22 60 A Review of data maintained.

22 61 A Review of data maintained.

22 62 W S of F data must be maintained with future

budget data.

22 63 A Automatic changes will be applied to future

budget data.

22 65 A Commonality in how to treat data.

23 36 A Needed for requests.

24 31 A Needed for monitoring operating budget.

24 33 A Source data for reports.

24 34 A Source data for reports.

24 36 S Heavily used data for ad hoc requests of

information.

24 39 A Optional data items must be available or

derivable.

24 40 A Required data for variations may include

- 585 -

current acutal data.

May include current year actual data.

Needed for editing and checking -of future

budgets.

Actual data needed for funds application.

Needed for comparison to last year.

24

24

25

25

25

25

25

25

25

25

25

25

26

27

27

41

58

30

31

32,

33

34

35

36

39

40

41

36

36

53

potential

potential

potential

potential

potential

potential

potential

need old

need old

data for

data source.

data source.

data source.

data source.

data source.

data source.

data source.

budget data.

budget data.

extrapolation/modelling.

28 38 A Hiring data not now maintained.

28 56 W Manual preparation may make use of some data.

28 57 S On-line preparation will need data.

28 58 A Certain preparation data needed for

checking/editing.

28 59 W Preparer night need to interact with limits

information.

28 60 A May need special data for review.

- 586 -

LFY Actual data is

LFY Actual data is

LFY Actual data is

LFY Actual data is

LFY Actual data is

LFY Actual data is

LFY Actual data is

LFY Actual data is

Ad hoc requests may

Ad hoc requests may

DI may need actual

potential data source.

28 61 A May need data for changes review.

29 30 S Effective use of fund accounts depends on

accurately prorated data.

29 31 A Prorated data important for operations

monitoring.

29 32 A Prorating used in FB report generation.

29 40 U Variation may involve modification to

proration arrangements. I

29 49 W Changing proration may be done directly by

managers via on-line access.

29 56 A Budget prorated whien proration established. I

29 57 A Budget prorated when proration established.

29 63 A Automatic change to proration also.

30 36 A Ad hoc requests for information regarding

fund accounts important.

30 37 S Fund reports should be addressed toward

effective use.

30 62 W Easy availability of S of F information

should improve effectiveness of use.

30 69 A Makes for more effective use.

30 70 W Drafts related to effectiveness of use.

30 71 A Fund draft checking can intercept

ineffective use.

31 32 S Periodic budget-versus-actual reports serve

monitoring needs.

31 33 A Periodic reports may serve monitoring

- 587 -

capability.

31 34 A Summary monitoring reports.

31 36 V Ad hoc monitoring.

31 41 W May need to develop new monitoring reports.

31 61 A Changes impact monitoring function.

31 68 V Special items may need special monitoring.

32 33 1 Common reporting issues.

32 34 V Common reporting issues.

32 37 U Common reporting issues.

32 40 A Related reporting issue.

32 41 A Related reporting issues.

32 61 W Changes may be reviewed via reports.

32 64 W Needed for certain report requirements.

33 34 A Common data source.

33 36 A Common data for typical queries and reports.

33 37 W Common data source.

33 39 S Common report modification issue.

33 40 A Common data and reports.

33 41 S Monthly analysis scheme common.

33 62 W Sources of funding information may be in

some reports.

34 36 S May produce special-purpose report using ad

hoc facility.

34 41 W May develop new budget reports out of

special-purpose reports.

34 42 A May produce some special reports using

- 588 -

report writer.

36 41 W Ad hoc requirements may lead to new reports.

36 42 S Most ad hoc reguirements accommodated via

report writer.

36 43 A Users may wish to develop their own reports.

36 45 A May use query facility to answer ad hoc

questions.

36 48 S Data control makes ad hoc query use more

difficult.

36 72 A New data item types make ad hoc requirements

easier to implement.

37 62 A Funding sources will be shown in funds

report.

39 40 A May want qeneral mechanisms for modification.

39 41 W Modifications may lead to new reports.

39 72 W New data item types can carry data regarding

report content.

40 41 A Variations may lead to new reports.

40 65 W Budget report format may be used for

research proposal reports.

41 65 A Fesearch proposal inforrration prime

candidates for new reporting.

41 72 A Common data organization issue.

42 43 S Facility intended for users.

42 46 W Destination code in reports.

43 46 A Report directing aids must be available to

- 589 -

all users and easy to use.

43 47 W Need to log id information regarding report

writer users.

43 48 W Constrains use of report writer.

43 74 S Train use of report writer - make it easy to

use and learn.

44 46 W Possibly need to dump menu-query output to

terminals.

44 47 A Log query users.

44 48 A Control query access.

44 60 A Proposal review could use query facility.

44 61 A Proposal review could use query facility.

44 71 A Use query facility for funds drafts.

44 74 A User training would be necessary.

45 46 W May need to send ad hoc results to users

terminals.

45 47 A Log query users.

45 48 A Control query access.

45 74 A Need user training.

46 77 W Can achieve faster distributino v.ia remote

printinq of reports.

47 48 A Need identity to determine permissable users.

47 49 A Need identity to determine owner.

47 53 A Activity logging would include database

changes.

48 49 A Common access control issue.

- 590 -

48 50 S Common access control.

48 52 A Encoding can be used to insure that only

permissable users get access.

49 51 S Need owner id concept to irplement control.

49 52 W Encoding can be used to insure that only

permissable users can change items.

49 53 W Validity of change attempts logged.

50 51 W Common access issue.

53 55 S Need log to restore.

53 61 A Can locate changes via log stream.

53 63 W Need to log automatic changes to Eis.

53 67 S Log is important part of audit trail.

53 72 A Need to log additions of new data elements.

54 55 S Bestore via backup.

54 67 W Might want to perform control total checks

prior to backup.

55 67 A Restoration would have to meet audit checks.

56 57 W Common prep. activities.

56 58 W Data format, etc., common.

56 60 W Entry of manual proposals must lead to

Budget Office review.

56 74 W Need documentaticn for manual entry.

57 58 A Will want to chack on-line preparation.

57 60 W Common on-line Frocessing.

57 74 W on-line activities for users must be easy to

learn and teach.

- 591 -

58 59 S Control limits key to automatic checking.

58 60 A Budget office review forms part of, check.

58 62 A Check sources as part of checking procedures.

58 66 V Check that category codes correct.

58 75 A Adds complexity to automatic checking

funstion.

59 60 A Review against controlling limits.

59 61 A Review changes controlling limits.

59 62 A Controlling limits may be tied to S of F.

59 63 W Automatic incrementation in employee

benefits requires secondary check.

59 65 V Suspense file approach tied in with

controlling limits.

59 68 M There are limits on such items.

59 71 S Commonality in performing checks.

59 .75 A Control limits must take this into account.

59 76 A Relevant to checking overhead amounts.

60 61 A Common review mechanisms.

60 62 S Sources of funding important aspect of

review.

60 65 A OSP can use same mechanism to review

research proposals.

60 66 W Would have to check categories.

60 68 V Checking overlap, although mainly manual.

60 71 A Budget Office must be able to review these

also - common facility possible.

- 592 -

61 62 A Changes often incorporate new funding.

61 63 W Automatic changes make change review more

difficult to execute.

61 65 A May need to review RP changes,

61 66 W May need to review PP changes.

61 68 A Changes to budgeted amounts of some

non-recurring expenses may need to be

reviewed.

61 71 A Common review requirements - potential

common facility.

62 65 W S of F data related to research proposal

preparation.

62 71 A Need to chack fund draft against account

funded to.

63 67 A Need to keep audit log of changes to

employer benefits.

63 75 S Automatic changes more difficult under this

reguirement.

64 74 A Need to be able to train in all techniques.

65 66 A Categorization information part of data base.

65 76 A Overhead rates are important in manipulation

of proposals.

67 68 A Non-recurring expense transactions must be

included in audit trail.

67 69 A Fund drafts must be included in audit trail.

67 70 A Fund drafts must be included in audit trail.

- 593 -

67 75 W Non-standard employee benefits must be

auditable.

67 76 W Overhead recovery rates must be auditable.

68 71 V Fund drafts for most non-recurring expenses

must be chacked.

69 70 A Common processing issue.

72 73 S Application of new data item types.

- 594 -

Appendix L

REQUIREMENT SUBSETS DERIVED FROM THE BEST SYSTEM
DECOMPOSITION.

*** SUBPROBLEM 1 ***

7. Data regardinq special financial arrangements made
by managers will be maintained.

28. Data required for budget proposal preparation and
not available elsewhere will be maintained.

38. The system will have access to certain personnel
hirinq data.

56. Budqet proposals can be prepared manually.

57. Budget proposals can be prepared on-line.

58. Budget proposals will be automatically checked and
edited to the extent possible.

59. There will be controlling limits on amounts in
proposed budgets and budget chanqes. I

60. Budget proposals will be reviewed by the budget
office and/or OSP.

61. Budget changes will be reviewed by the budget off-
ice and/or OSP. I

62. Sources of funding for each account will be iden-
tified.

65. Research proposal information can be stored,
updated, and accessed. 4

66. Research accounts and proposals will be categor-
ized by type, discipline, and function.

68. Required aspects of non-recurring expenses will be
supported. 4

71. Fund drafts can be checked and approved on-line by
Budqet office.

- 595 -

76..Overhead recovery rate calculations will be sup-
ported.

*** SUBPROBLR 2 ***

18. There will be a general comparison reporting capa-
bility.

19. Items exceeding prespecified bounds can be high-
lighted.

20. Chart of Accounts and associated,. upplementary
data will be accessable by Budget System.

21. Current fiscal year budget data will be main-
tained.

22. Future Budget data vill be maintained.

23. Last fiscal year Budget data vill be maintained.

24. Current fiscal year Actual data will be main-
tained.

25. Last fiscal year Actual data will be maintained.

26. Historical Budget data will be maintained for up
to 1 years.

29. Budgeted income and expense data will be prorated
automatically on a month-by-month basis.

31. Monitoring of the operating budget will be sup-
ported.

32. Various Future Budget reports will be generated.

33. Periodic operating reports for each account will
be generated.

34. Various special-purpose (non-periodic) reports
will be generated.

36. Ad hoc requests for information vill be supported.

39. Certain budget report data items can be optionally
included or excluded from Monthly Analysis Report

- 596 '

U
as specified by the user.

40. Variations of standard Budget System reports will
be developed as requested.

41. New budget reports will be deve')ped as required.

42. There will be a simple report-writing facility.

*** SUBPROBLEM 3 ***

16. Budgeting and planning data can be accessed read-
ily by other systems.

43. Users can develop their own special reports using g
the report writing facility.

44. There will be an on-line menu-oriented query
facility.

45. There will be an on-line ad hoc query facility.

46. Reports generated on-line can be directed to the
system printer or to users' printer/terminal.

47. Identity and activity of users will be logged.

48. Data items can be accessed only by permissable
users.

49. Data items can be changed only by their owner.

50. There will be a set of permissable users for each
data item.

51. Each data item will have a unique owner.

52. Data items can be encoded for security.

64. All currently used budgeting technigues will be
supported.

74. Formal training in the use of the system will be
provided to users.

- 597 -

*** SUBPROBLEM 4

15. Reports will be physically easy to handle.

77. Standard periodic reports will be produced and
distributed to users as guickly as possible.

*** SUBPROBLEM 5 ***

9. Personnel budgets can be developed in EFT.

10. There will be a facility for converting
salary/wage information between dollars and KFT.

13. anpower can be reported in. alternative units.

*** SUBPROBLEM 6 ***

53. There will be a log of all database changes.

54*. There will be a file backup facility.

55. The database's integrity can be restored using
backup files and change log if necessary.

67. There will be documented audit trails for deter-
mining system discrepancies.

69. Fund drafts can be performed on-line.

70. Fund drafts can be performed in batch mode.

*** SUBPROBLEM 7 ***

11. Certain objects may be logically related to groups
of other objects.

12. A particular object may belong to multiple object
qroup*.

- 598 -

14. There will be special object codes available for
use by each department.

*** SUBPROBLEM 8 ***

5. Short-term and long-term planning data will be
provided by Senior Managers.

6. Planning data will be provided in a standardized
format.

27. Historical Actual data will be maintained for up
to 1 years.

35. The data necessary for use by the Dynamic Model
will be generated.

*** SUBPROBLEM 9 ***

8. Personnel budgets can be developed in dollars.

63. Budgeted employee benefits will be changed auto-
matically following changes in budgeted salary and
waqe amounts or EB rates.

75. Non-standard employee benefit calculations will be
supported.

*** SUBPROBLEM 10 ***

1. Fund accounts will be categorized by fund pur-
poses.

2. Fund accounts can be categorized by principal
type.

3. Fund accounts can be categorized by income type.

4. Each fund account will be described via abbrevi-
ated text description.

- 599 -

17. The budget system can access directly data in
other systems' files.

30. Information to facilitate the effective use of
fund accounts ill be available.

37. Various funds reports vill be generated.

*** SUBPROBLEU 11 ***

72. Additional data item types can be added to
accounts or objects within accounts.

73. New data items can include or refer to supplemen-
tary data needed by users.

- 600 -

Appendix M

INTERDEPENDENCIES BETWEEN REQUIREMENT
DECOMPCSITION.

SUBSETS IN BEST

CLUSTER PAIR INTERDEPENDENT NODES

1, 2 38,
58,
61,
62,
62,
65,
68,

21 ,A
24,A
22,A
20,W
29,A
40,W
20,W

56,
60,
61,
62,
62,
65,
68,

29,A
21,A
31,A
21,A
33,W
41, A
31,W

58,
60,
61,
62,
65,
66,

20,
22,
32,
22,
22,
20,

56, 74,W
61, 44,A

** NCNE **

28, 10,A
59, 9,W

61, 53,A

** NONE

** NONE **

58, 75,A
61, 63,W

7,
58,
62,
71,

3 ,A
1,A

37,A
30, A

** NONE **

29, 48,W
36, 45,A
42, 46,W

** NONE **

29, 9,A

57, 74,W
71, 44,A

38, 9,W

68, 67,A

60, 44, A

38, 10,W

76, 67, W

** I

59, 63,W

7, 30,A
60, 1,A
71, 1,W

32, 64,W
36, 48,S

59, 75,A

7, 37,W
62, 30,W
71, 17, W

36, 43,A
42, 43,S

33, 9,A

- 6Q1 -

1, 3

1, 4

1, 5

1, 7

1, 8

1, 9

1, 10

2, 4

2, 5

-- ---- - ----- ------

** NONE **2, 6

2, 7

2, 8

2. 9

2, 10

2, 11

34, 11,A

18, 27,
22, 5,S
25, 35,1
36, 27,V

22, 63,A

19, 3,A
20, 3,A
21, 30,S
32, 37,
36, 2,W
36, 30 ,1

20, 72,A
39, 72,W

46, 77,W

** NONE

47, 53,A

** NONE

** NONE

** NONE

** NONE

** NONE

** NONE

** NONE

** NONz

** NONE

** NONE

** NONE

** NONE

** NONE

** NONE

** NONE

34, 12,S

20, 35,A
22, 6,
34, 5,A

29, 8,A

20 1,A
20, 17,S
25, 30,W
33, 37,
36, 3,A

20, 73,
41, 72,A

**

49, 53,W

**

**

**

**

**

**

**

**

**

**

**

**

**

602 -

21, 35,1
22, 35,A
34, 6,1

20, 2,k
20, 37,
29, 30,5
36, 1,
36, 4,W

36, 72,A

4

5

6

7

8

9

10

11

5

6

7

8

9

10

11

6

7

8

13, 8,A

0
**

**

**

5,

5,.

5,

6,

6,

6,

6,

6,

7,

7,

7,

7,

8,

8,

8,

9,

9,

10,

9

10

11

7

8

9

10

11

8

9

10

11

9

10

11

10

11

11

- 603 -

10,

13,

**

**

**

**

53,

69,

53,

11,

**

**

**

**

**

**

**

**

1,

8,s

NC N E

NONE

NONE

NONE

63,W

17,W

72 ,A

35, A

NONE

NONE

NON".

NONE

NONE

NONE

NONE

NONE

72,S

67, 63,A

69, 30,A

67, 75,W

70, 30,W

**

**

**

**

**

**

**

**

BIOGRAPHICAL NOTE

Sidney L. Huff was born in Rochester, New York, on June
14, 1945. He attended primary and a portion of secondary
school in the Rochester area. He emigrated to Oakville,
Ontario, Canada in 1961, and completed high school in Oak-
ville.

He attended Queen's University, Kingston, graduating
with a B.Sc. (Honors) in Applied Sathematics in 1968, a
M.Sc. in Electrical Engineering in 1970, and a Rasters of
Business Administration in 1972. During this time he also
worked as a research engineer for Ontario Hydro Research
Laboratories in Toronto, and in various research positions
at Queen's University.

In 1972 he joined the Canadian management consulting
firm Woods, Gordon & Co., in the management Engineering
group. While there he completed a number of consulting
assignments in various parts of Canada. In 1973 he accepted
a faculty position in the School of Business, Queen's Univ-
ersity. He taught there, primarily in the managerial
accounting, management information systems, and management
science areas, for two years prior to beginning his doctoral
studies.

He began his doctoral program at the Sloan School of
Management, M.I.T., in the fall of 1975, majoring in Manage-
ment Information Systems. While at M.I.T. he taught the
course 15.561 (Benchmark Computer Programming) in 1976, and
served for four years on the doctoral program committee.

Mr. Huff has accepted a position as Assistant Professor
at the Universit.y of Western Ontario, in London Ontario,
where he will teach in the Management Science and Management
Information Systems fields.

- 604 -

