AN INVESTIGATION OF CLUSTER ANALYSIS TECHNIQUES
AS A MEANS OF STRUCTURING SPECIFICATIONS
IN THE DESIGN OF COMPLEX SYSTEMS
by
TIMOTHY A. HOLDEN

B.S., U. S. Naval Academy
(1972)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
OCEAN ENGINEER
AND FOR THE DEGREE OF
MASTER OF SCIENCE IN MANAGEMENT
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1978

© Timothy A. Holden, 1978 .

Signature Of AULROL ... simvrreyeemettpeassesttecsieoecacnens
/Department of Ocean Engineering
. Mav 12, 1978

Certified bBy.eve e vt i et ci v e cecce o oo e
Theaia QUUFersor Sldan Sshool/6f Mas;gement

Certified by..wveeeefenn. g —_ . ﬁ
Thesis Fnnervianr. nanzr'l-me/p{t of Ocean Englneerlng

Accepted by......... e e sesesseseceseseasensaentssnaassensuns
- 2 e~ ~Chairman, Department Committee

Accepted by..... R T R PP e VR Cet et
Chairman, Depar mental Graduate Committee

AN INVESTIGATION OF CLUSTER ANALYSIS TECHNIQUES
AS A MEANS OF STRUCTURING SPECIFICATIONS
IN THE DESIGN OF COMPLEX SYSTEMS

by
TIMOTHY A. HOLDEN

Submitted to the Department of Ocean Engineering on
May 12, 1978 in partial fulfillment of the
requirements for the Degree of Ocean Engineer

and to
the Sloan School of Management on
May 12, 1978 in partial fulfillment of the
requirements for the Degree of
Master of Science in Management

ABSTRACT

Complex design problems are characterized by a multitude of
competing requirements. The designer of such a system
frequently finds the scope of the problem beyond his concep-
tual abilities and attempts to solve this problem by
decomposing the design problem into smaller more manageable
subproblems. Since design requirements form the interface
between the users of a system and its designers, a
disciplined framework is required for the decomposition of
the design problem into subproblems which will best satisfy
the overall problem objective.

Cluster analysis is a heuristically based technique by which
attributes of a system are sorted into groups; such that,
the degree of "natural" association is high among members of
the same group and low between members of different groups.

The purpose of this thesis is to investigate the use of a
specific cluster analysis technique, developed by Dr. Raphael
Andreu. As a means of imposing a framework upon the
requirements for an existing computer operating system
forming the first step in the decomposition of the global
design problem into subproblems. It is envisioned that the
imposition of such a framework on design requirements will
provide new insights and understanding of the relationships
among requirements which may verify the design or suggest
improvements to the design of a sample operating system.

Stuart Madnick
Professor of Management
Thesis Supervisor

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to the
following people for their help and guidance in the prepara-
tion and completion of this research: Professors Stuart
Madnick of the A. P. Sloan School of Management, thesis
supervisor; Chryssostomos Chryssostomidis, Department of
Ocean Engineering, thesis advisor; and Kevin J. O'Toole,
Department of Ocean Engineering, academic advisor.

The following graduate students in the Sloan School of
Management also provided invaluable assistance in the
critique of this research: Raphael Andreu, Sid Huff, and
Chat-Yu Lam.

The author also wishes to thank his true friends for their
assistance and understanding during the three years at MIT.

TABLE OF CONTENTS

Page
Chapter I: Description of the Problems Inherent in
Large Scale System Design 9
1.1 Problem Description 9
1.2 System Development Cycle 11
1.3 Summary 17
1.4 Thesis Outline 18
Chapter II: Cluster Analysis Methodology and the 20
Decomposition Facility
2.1 The Cluster Analysis Problem 20

2.2 Solution of the Cluster Analysis Problem

by the Application of Graph Decomposition

Techniques 31

2.3 Decomposition Methodology 35

Chapter III: Sample Operating System 39
3.1 General Characteristics of a Large Scale

Computer Operating System 39

3.2 Sample Operating System Description 41

3.3 Summary 50

Chapter IV: Requirements Definition 51

4.1 Requirements Definition Methodology 52

4.2 Summary 61

Chapter V: Interdependency Assessment Methodology 62

5.1 Interdependency Assessment Methodology 62

5.2 Summary 65

-5 =

(Table of ContentS...ise.....Continued) Page
Chapter VI: First Ieration of the Design Problem 67
6.1 Analysis of Problem Structure 67
6.2 Main Subproblems 71
6.3 Subproblems Generated by a Second
Decomposition 80
6.4 Relationships Among the Main
Subproblems 82
6.5 Summary 89

Chapter VII: Second Iteration of the Design
Problem 90
7.1 Requirements Redefinition 91

7.2 Analysis of the Resulting Problem

Structure for the Second Iteration 96
7.3 Main Subproblems 98
7.4 Subproblems Generated by a Second

Decomposition 107
7.5 Relationships Among the Main

Subproblems 109
7.6 Comparison of the Design Structures

Implied by the First and Second
Iterations 119
7.7 Summary 124
Chapter VIII: TImplications of the Decomposition
Process for the Design of the Sample

Operating System 125

(Table of Contents..........Continued) Page
8.1 Design Overview of the Sample
Operating System 126
8.2 Functional Comparison of the Levels

and Layers of the Sample Operating

System with the Subproblems

Generated by the Decomposition

Methodology 130
8.3 Inconsistencies Identified in the

Comparison of the Sample Operating

System and the Decomposition

Methodology 138
8.4 Summary ' 143

Chapter IX: Concluding Statements Concerning the
Applicability of the Decomposition

Methodology to the Design Process and

Recommendations for Improvement 145

9.1 Objective of the Methodology 145

9.2 Recommendations for Improvement 147

9.3 Summary 152
Bibliography 153

Appendix A: Formal Specification of Evaluation
Parameters 157
Appendix B: Algorithm for the Identification fo

Kernel Subsets 160

(Table of ContentS..veeeeen. Continued)

Appendix C:

Appendix D:

Appendix E:

APPENDIX F:

APPENDIX G:

APPENDIX H:

APPENDIX I:

APPENDIX J:

APPENDIX K:

Preliminary Set of Regquirements
Preliminary Interdependency
Assessment Results

Results of the Interactive
Decomposition Package for the

First Iteration

Main Subproblems Resulting from the
First Iteration of the Decomposition
Methodology

Final Requirements Definition

Final Interdependency Assessment
Results

Results of the Interactive
Decomposition Package for the

Second Iteration

Main Subproblems Resulting from the
Second Iteration of the Decomposition
Analysis

Linkage - Interface Assessment

169

190

215

221

258

282

306

312

6.1

LIST OF FIGURES

Page
System Development Cycle 12
Extended Machine Concept of a Generalized

Operating System 43
Heirarchical Design Structure of a Generalized
Operating System 46
Problem Structure Implied by the First Iteration

of the Decomposition Methodology 72
Problem Structure Implied by the Second Itera-

tion of the Decomposition Methodology 99

Heirarchical Design Structure of the Sample

Operating System 129

CHAPTER I

DESCRIPTION OF THE PROBLEMS INHERENT
IN LARGE SCALE SYSTEM DESIGHN

1.1 Problem Description

The design of complex systems is characterized by many
of the following problems as identified by Andreu and
Madnick.l

. There is no established framework in which the design
decisions can be coordinated among various design
groups. This can lead to an optimization of sub-
problems, but sub-optimization of the aggregate design
problem.

. The adaptiveness of the system to changes in opera-
tional requirements is made difficult and time
consuming since such changes often impact the entire
system.

. The incorporation of new technology into an existing
system is cumbersome and expensive since there is no
systematic means of assessing the impact of new
technology on the system operation.

System performance evaluation may require an enormous

model to represent the entire system.

ZRaphan Adndreu and Stuart Madnick, "A Systematic Approach to
the Design of Complex Systems: Application to DBMS Design and
Evaluation”, Center for Information Systems Research, Report

32, Sloan School of Management, MIT (Cambridge, MA, 1977) p.6.

- 10 -
. The designer has no means to determine if the
problem has been completely and consistently defined,
or alternatively, over-constrained.
The most common technique currently in use to simplify the
design of a complex system is to decompose the global problem
into smaller sub-problems. However, without proper guidance,
this leads to many of the following problems as documented
by Mandel and Chryssostomidis.2
. The subdivision of a given problem into lower level
problems imposes limitations on accuracy and is,
therefore, an approximation. This implies that the
optimization of the subproblems does not necessarily
lead to total system optimization.
. A designer of a specific sub-problem is likely to
have incomplete knowledge of the total problem.
The decomposition process should be independent of
any specific technology or implementation technique.
The designer of a large scale system is faced with a number
of possible pitfalls as the size and complexity of the
design problem increases. The problems can be loosely
defined as a lack of a consistent framework in which to make

design decisions. Fred Brooks3 has defined this problem as

?p. Mandel and C. Chryssostomidis, "A Design Methodology For
Ships and Other Complex Systems'", Phil. Trans. R. Soec., London
A4.273, (London, 1972), p.87.

SFPed Brooks, The Mythical Man-Month: Essays on Software
Engineering, (Reading, MA), p. 16-17.

- 11 -

one of conceptual integrity and identified this as the most
important consideration in system design. Conceptual
integrity in this context dictates rigorous design sequence,
for if there is no rigor in the design, the resulting

product of the design process is highly idiosyncratic; in the
worst case, it is based on the failure history of the parti-
cipants. As a final measure, rigorous design should survive
its implementation and provide a framework for intellectual

control of changes to design requirements change.

1.2 System Development Cycle

In order to develop a rigorous and consistent framework
for the design process, one must examine structure of the
design problem as it exists in general in order to propose
improvements to the structure. Although many procedures have
been defined for a typical computer software design problem,
Andreu favored the following System Development Cycle as
proposed by Freeman to illustrate the nature of the design
problem.

Figure 1 is a representation of the five steps which
Freeman recognized in the design cycle. Each step consists
of an input and output and an operation which take place
in each step. The function of each step is now further
defined from the perspective of the need to establish a
framework in which the global design problem may be

decomposed.

- 12 -

NEEDS ANALYSIS

Input:
Operation:
Output:

Primitive needs, system context, user problems.
Identification of major functions and constraints.
General requirements.

(2)

FUNCTIONAL SPECIFICATION

Input:
Operation:

Qutput:

Requirements, system analysis of context.

Conversion of needs into explicit functions, selection
of operational constraints.

Specifications of system functions, constraints, and
objectives.

1
A

(3)

ARCHITECTURAL DESIGN

Input: Specifications, general context of desired systems,
knowledge of similar problems.

Operation: Discovery of problem structure, identification of major
pieces of system, establishment of relationships
between parts, abstraction.

Output: Structural description of system.
(4) DETAILED DESIGN SPECIFICATION
Input: Architectural description, programming environment
details.

Operation: Abstraction, elaboration, choice of alternatives.

Qutput: Blueprints for programs.
(5) IMPLEMENTATION
Input: Blueprints.

Operation: Encoding of algorithms and data representations,

testing, debugging.
Qutput: Improved system.

FIGURE 1.1: The System Development Cyc]e4

draphael Andreu, "A Systematic Approach to the Design and Structuring
of Complex Software Suystem", unpublished Doctoral thestis, MIT Sloan
School of Management, February, 1978.

- 13 -

1.2.1 NEEDS ANALYSIS:

This stage of the design process incorporates a careful
assessment of the needs which the final system must fulfill.
This stage is generally the most unstructured of all the
stages; since a new system must be designed to respond to
the user's percieved needs. The information derived from
the stage ranges from the most nebulous of statements of
need, to statements of such detail as to actually specify
implementation. The lack of structure in this phase of the
design process is likely to introduce errors which will be
repreated throughout the remaining stages of the design
process.

In order to avoid the errors introduced by a poor needs
analysis phase and driven by a desire to apply the decom-
position methodology to an untested system design, an
existing well-documented computer operating system was
selected for analysis.

1.2.2 FUNCTIONAL SPECIFICATION:

This stage of the design process is concerned with the
development of documentation aids in order to generate
formal and accurate statements of the system requirements.
Typically, functional specifications are characterized by
many of the following properties: completeness, consistency,
correctness, testability, non-ambiguity, design freedom,
and robustness to change. Obviously, the generation of

functional specifications is not an easy task, usually taking

- 14 -

place as an iterative or refining process in which the
global system requirements are continually refined until the
system is completely defined.

Numerous research efforts are currently underway to
formalize the process of functional specifications. One
particular method developed by TRW, Defense and Space Systems
Group is called the Software Requirements Engineering
Methodology (SREM).5 It is an automated system which
attempts to enforce the discipline of a framework in the
individual interpretation of the problem by the design
engineer to reduce the ambiguity of software requirements
and thereby lead to increased consistency in functional
specifications.

In addition, other "problem statement languages"
developed by Tiechroew and others6 have identified two
classes of requirements; specifically, "functional" require-
ments, what the system is to do and "performance" require-
ments, regarding constraints on measures of system behavior.

No attempts were made in this thesis to implement any
of the problem statement languages, as such. However, a
series of guidelines for requirements definition were
established to insure that the requirements had all the

characteristics of a "well-defined" set of requirements. The

SCarZ G. Davis and Charles R. Vick, "The Software Development

System”, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Vol. SE-3,
No. 1 (Jan 1977), p.70.

6SZoan School, MIT, "System Documentation Language Report",
unpublished Sloan School report, MIT, Sloan School (Cambridge,
MA), p.2.

- 15 -

classification of functional versus performance requirements,
developed in the problem statement languages, were used in
the interdependency assessment process.

1.2.3 ARCHITECTURAL DESIGN:

This stage of the design process 1s concerned with the
discovery of problem structure in the design as defined by
Freeman. That is, the identification of major sub-problems
of the system and the establishment of relationships between
these sub-problems. Utilizing this technique, Andreu has
noted the existence of both a problem structure and a system
structure inherent in each system design.

The problem structure is concerned with how different
parts of the system interact from a design standpoint; that
is, what parts of the system can be designed independently
of others as opposed to what parts must be designed at the
same time. The problem structure then is used to identify
the trade-offs that must be taken into account between
completing solutions of the design problem. The concept of
a problem structure was a key element used in the inter-
dependency assessment phase.

The system structure, on the other hand, is concerned
with how system parts interact once the system is designed
and in operation. Andreu has pointed out that the two
structures do not necessarily coincide:

"Traditionally the 'design problem structure'

has been determined by the system structure in

- 16 -

that it is very common to organize the design

of a new system around 'standard' system

structures, drawn from similar systems pre-

viously designed.“7
As previously stated, a subdivision of a given problem into
lower level problems imposes limitations on accuracy and 1is,
therefore, an approximation. Secondly, unless the process
is rigorous, it is highly idiosyncratic. The goal of any
proposed framework must be to reduce the designer's depend-
ency on "standard" system structures in such a way as to
rigorously decompose the design problem into well-defined
subproblems.

Therefore, a framework is required at this stage of the
design process, to resolve the trade-offs that may exist
among system requirements as imélied by available alternative
implementation techniques. Andreau has proposed a framework
which addresses this issue based on cluster analysis tech-
niques. The purpose of the framework is to:

. explicitly establish the nature of the problem by

decomposition;

. establish a consistent framework in which trade-offs

can be assessed.
The methodology constitutes a well-structured series of
activities that the software engineer should perform during
the design process. The value of such a methodology, claims

Andreu,
Z

Andreu, p.41.

- 17 -

"...1is that the concept of interrelated design
subproblems stemming from the explicit inter-
dependencies among requirements, constitutes a

better basis for the subsequent detailed design

stages than the original disjointed set of

requirements."8
1.2.4 DETAILED DESIGN SPECIFICATION:

This stage constitutes the actual design of program
modules as opposed to system design. The work of Parnas9
has focused on the means of structuring the software médules
in order to implement the system. This stage is beyond the
concern of this thesis.

1.2.5 IMPLEMENTATION:

This stage is concerned with the actual programming of
the system. Efforts by LiskovlO have attempted to develop
structural programming tools to systematize the activities
at this stage of the design. This stage is also beyond the

concern of this thesis.

1.3 Summary

The system development cycle is characterized by

8
Andreu, p.41.

‘David L. Parnas, "On the Criteria to be Used in Decomposing
System into Modules", Communications of the ACM., Vol. 165,
Number 12 (Dec. 18972}, pp. 1053-1058.

ZOBarbar'a Liskov and Valdis Berzins, "An Appraisal of Program
Specifications”, Computation Structures Group Memo 141-1, MIT,
Laboratory for Computer Science (April 1977), p.1-12.

- 18 -

increasing attempts to structure or systematize each stage
of the design process. The purpose of this thesis is to
apply the techniques developed by Andreu in order to verify
the design of the computer operating system under investi-
gation by the application of the methodology as proposed by

Andreu.

1.4 Thesis Outline

The computer operating system entitled, "The Sample
Operating System (SOS)" was developed by Professor Madnick
and Professor Donovanll of the MIT Sloan School of Manage-
ment. This system design problem was selected for examina-
tion since it is a reasonably non-trivial and well-documented
software design problem.

Chapter II is devoted to a discussion of cluster
analysis techniques in general, and a description of the
specific methodology proposed by Andreu.

Chapter III presents a description of the general
characteristics of the sample operating system.

Chapter IV presents both the procedure and the results
of the requirements definition phase for the sample operating
system. This chapter presents in detail the guidelines which
were used to generate the requirements and, by example,
demonstrate some of the pitfalls encountered in requirements

definition.

ZZStuart E. Madnick and John J. Donovan, Operating Systems,
(New York, 1974), pp.381-431.

- 19 -

Chapter V presents the methodology for the interdepend-
ency assessment phase and the resulting input for analysis
utilizing Andreu's methodology.

Chapter VI presents the results of the first decomposi-
tion using the analytic techniques previously described.
These results are considered an intermediate step; therefore,
the results are analyzed as motivation to continue along in
the next set decomposition.

Chapter VII presents the results of the second decom-
position analysis and compares the results with those
previously obtained.

Chapter VIII presents a comparison of the design frame-
work implied by the decomposition methodology vis-a-vis the
actual design of the sample operating system.

The final chapter will present suggestioné for changes
or improvements to the cluster analysis techniques proposed

by Andreu, based on the experience of the user.

- 20 -

CHAPTER II

CLUSTER ANALYSIS METHODOLOGY AND
THE DECOMPOSITION FACILITY

This chapter is devided into three sections in order to
present the cluster analysis methodology as applied to the
general decomposition problem.

First, the need for such a methodology is motivated by
establishing the objective of such cluster analysis tech-
niques and the types of problems encountered in the applica-
tion of the methodology. Definitions of general terms are
offered for use through the rest of the discussion.

Second, a solution to the decomposition problem using
cluster analysis techniques is defined. Specifically, the
decomposition problem is defined and the techniques for
partitioning the requirements set are presented according to
the work by Andreu.

Finally, the use of the decomposition software analysis

techniques developed by Andreu are presented.

2.1 Cluster Analysis Problem

Cluster analysis techniques may be defined as analysis
techniques to sort the attributes of objects into groups
such that the degree of natural association is high among
members of the same group and low between members of dif-

ferent groups. When successfully applied, the techniques

- 21 =-

can be used to reveal problem structure as relationships
that existfor a given set of data.

In order to apply these techniques, one must be capable

of the following:

. Definition of a group of objects to be clustered; in
this case, design requirements for a computer
operating system.

. Selection and common definition of attributes common
to all objects in this group; in this case, the
singular attribute selected was the existence of an
interrelationship between a given pair of requirements.
The definition of interrelationship will be discussed
in Chapter V.

. Definition of an evaluation parameter so that the
degree of natural association among members of
clusters may be measured.

. Definition of an algorithm to find the best partition
of a group of objects. Specifically, an algorithm
which defines a partition with the "best" measure
evaluation parameter without having to evaluate all
the possible partitions.

The following definitions have been applied to the

cluster analysis problem.

In general, a group of objects O, may be defined as

follows:

Let O : {Ol,...Oi...ON} be the set of objects in

- 22 -

which the clusters are to be identified. These
are composed of individual design requirements
and also represent the nodes of any graphs which
are drawn. |[N| may be defined as the cardinality
of a set of objects; that is, the number of
objects within a given set.
Each object may be characterized by a set of attributes:
X : {Xl...Xj...XN} measured in some consistent scale.
In the case of the discussion, the attribute is the
existence of interdependencies.
Therefore, introducing a slight change of notation, an object

Oi € O is characterized by a vector.

A :{(aij, aij = 1 if nodes Oi and Oj are related, an
interdependency exists; = O otherwise. This is the so-called
adjacency matrix in which it is assumed that aij = 1 when
i=7j.

The adjacency matrix is constructed by making a pair-
wise assessment of the relationships among all pairs of
requirements. The adjacency matrix is simply an NXN matrix,
where N is the number of requirements objects. Once a set
of objects and their interrelationships have been established
the next problem is defining evéluation parameters to measure
the degree of natural association.

2.1.2 EVALUATING SET DECOMPOSITIONS:
Any method for evaluating the success of a decomposition

scheme must consider the strength of intra-subset relation-

- 23 =
ships, and some means for combining these two parameters.
Therefore, the following evaluation parameters were defined

by Andreu.12

Strength: A measure of how tightly coupled the modes

in a given subgraph are is defined as follows:

Number of links joining nodes

in the same subset -(N - 1)

N (N-1)]2

where a subgraph is a graph composed of a subset of the
original members of the total graph of nodes to be decomposed.
Strength is evaluated by measuring the number of links
joining nodes in the same subset minus N-1, N being the
cardinality of the given subset, normalized by a factor of
N(N-1)/2. In a subset of N nodes, N-1 is the minimum number
of interdependencies which can form as subgraphs without
disjointed components; thus, the number of links in excess
of N-1 is a measure of subset internal coherence, beyond the
minimum required for it to be coherent at all. The factor
N(N-1)/2 is the maximum number of links that may exist in a
subset of cardinality N; normalizing by the factor permits
comparable measures for subsets of different cardinality.

Coupling: a measure of the extent to which two sub-
sets are independent, and is defined as follows:

Number of links actually joining

nodes of two different subsets

N'M

ZgAndreu, p.100.

- 24 -
In order to evaluate the coupling parameter, the number of
interdependencies established between two nodes in different
subsets are counted and normalized by the factor N'M; where
N and M are the cardinalities of the two subsets.
Measure: The final evaluation parameter of clustering
success for a given partition may be defined as follows:

P P
M=1ZIS8, - z Cij

=1t i=1

j=i+l

The measure parameter represents the summation of all the
strengths of all subsets in the given partition minus the
couplings associated with all possible pairs of subsets.

P is defined as a partition or subgraph of the original
requirements set. Appendix A contains a formal definition
of each of the evaluation parameters listed above.

The parameters are defined so that the measure value
should be large to indicate a good evaluation of the natural
association of a partition generated by cluster analysis
techniques. Therefore, given a group of partitions one
would select the partition with the highest value of measure
as representing the "best" partition.

Given a requirements set, attributes in the form of
interdependencies and evaluation parameters as previously
defined; one is now faced with the problem of determining an
algorithm which will generate the best partition for a

requirements set of non-trivial size.

- 25 -

2.1.3 CLUSTERING SCHEMES:

Given an adjacency matrix and evaluation parameter as
previously defined, a technique is now needed to deal with a
non-trivial decomposition problem which would not require
having to investigate or compute all feasible decompositions
that exist for a given requirements set. A heuristically

13 since he has

based procedure was selected by Andreu
demonstrated that neither an optimization nor a graph
theoretic approach is feasible to solve a problem of non-
trivial size. Therefore, the various families of cluster
analysis techniques and heuristic graph decomposition tech-
niques were investigated to determine which were the most
feasible.

In general, there are two generic types of cluster
analysis methods, the heirarchical method and the partition-
ing method. The following discussion will focus upon the
similarities and differences of the two methods, concluding
with the rationale for the method selected for use by
Andreu.

However, prior to a discussion of actual cluster analy-
sis methods, the following definition of the concept of a
distance matrix must be presented to transition from the
adjacency matrix of interdependence established between
design requirements to a similarity matrix defined cluster
analysis techniques. The binary assessment procedure, used

for identifying requirement with dependences is simplistic

7
*3Andreu, pp.103-1089.

- 26 -

but it is not useful for defining distances as established
for Euclidan geometry. For the purposes of cluster analysis
techniques; specifically, computing similarity matrix S,
scale conversions may be needed prior to the representation
of a pair of objects Xi and Xj into an entry of the form
Sij = f(Xi,Xj) in the similarity matrix. The scale conver-
sions must meet the properties of "metrics" which is one type
of distance function.
The formal properties of metrics have been identified
by Anderberg as follows:
"Let S be a symbolic representation for a measurement
space and let x, y, and z be any three points in S.
Then a distance function D is a metric if and only if
it satisfies the following conditions:
l. D(x,y) = 0 if and only if x=y

2. D(x,y) >0 for all x and y in S

3. D(x,y) D(y,x) for all x and y in S

nld
4. D(x,y) < D(x,z)+D(y,z) for all x, y, and z in S

The first property implies that x is zero distance from
itself and that any two points zero distance apart must be
identical. The second property prohibits negative distances.
The third property implies symmetry by requiring the distance
from x to y to be the same as the distance from y to x. The
fourth property, the triangle inequality, requires that the
length of one side of the triangle be no longer then the sum

of the lengths of the other two sides. The satisfaction of

14Michael R. 4nderberg, Cluster Analysis for Applications,
(New York, 1873), p.99.

- 27 -

these properties is required so that the concept of distance
is the Euclidean distance of elementary geometry. Once the
property is established the well-known properties of
Euclidean distance geometry can be applied to similarity
matrices.

A distance function which satisfies the first three
conditions of a metric, but not the triangle inequality is
known as a semimetric. Furthermore, a metric which
additionally satisfies the following property

D(x,y)=MAX{D (x,2),D(y,2)} for all x, y, 2z in S
is called an ultrametric since the latter property is con-
siderably stronger than the triangle inequality.

AndreulS has pointed out that the concept of cluster
analysis is not a precise technique since it is heuristically
based. Furthermore, Blashfield and Aldenderfer16 have shown
that the various cluster analysis methods do, in fact,
generate different solutions to the same data. Therefore,
the value of the methodology is strictly dependent upon:

1) The number of subsets into which the original set

is decomposed, where the maximum = N and the
minimum = 1.
2) The extent to which the clusters are individually

coherent and collectively are distinctly different.

SAndreu, p.113.

16R0ger K. Blashfield and Mark S. Aldenderfer, "4 Consumer
Report on Cluster Analysis Software', Pennsylvania State
University Report (PA, 1973), p.3.

- 28 -

The two approaches to cluster analysis techniques,
discussed in the following section, differ in the means by
which they approach a middle-ground solution to either
extreme.
2.1.3.1 Agglomerative Techniques:

The first basic method of cluster analysis is called
the agglomerative method. The measure of similarity used
is Euclidean distance. The methodology begins with N
clusters, each object in O is a simple member cluster. The
method proceeds as the NxN distance matrix is searched for
the two most similar entries, which are then combined to
form a cluster. The method continues until all objects
belong to one single cluster. This method yields a result
which exhibits a strictly heirarchical pattern of relation-
ships, in which the number of levels or ranks equals the
number of steps in clustering.

The form of linkage; i.e., the criteria used to join
objects together to form clusters, may vary from a single
linkage cluster, in which an object is joined to a cluster if
it has a certain level of similarity with at least one member
of the cluster, to the complete linkage method, which
requires that an object must achieve a specified level of
similarity with all members of a given cluster before being
joined to it.
2.1.3.2 Partitioning Method:

The second method of cluster analysis is called the

- 29 -

partitioning method. The partitioning method differs from
the agglomerative method in that the solution does not
portray a heirarchical relationship among the entities. The
resulting clusters obtained from a partitioning solution are
discrete and exist at a single rank.

The method proceeds as follows: the user selects a
statistic to be optimized during the cluster analysis; in
this case, measure (M). All objects are initially assigned
to a single cluster of N objects. The user must choose the
number of clusters (K) which are believed to exisf in the
data. The methodology must then use some scheme to determine
K leader/seed objects. These seed objects represent a
Kernel of objects about which the remaining objects are
clustered. An object is then assigned to a cluster with the
nearest centroid. The method then recalculates the centroid
of the cluster, and the process is then repeated until there
are no membership changes which will improve the overall
solution. This method is iterative in the solution tech-
nique, as an object may actually change its membership from
one cluster to another during the process. The agglomerative
method, on the other hand, requires only one pass through
the data for a complete solution. The partitioning method is
more time-consuming, but allows a certain robustness to the
solution since each cluster is re-examined and members may be
re-assigned. However, the method requires the specification

of certain limiting parameters "a priori" specifically: the
p y

- 30 -
user must specify K, final member of clustering before
proceeding with the partitioning.

Another distinction among partitioning methods 1is
related to the calculation of the centroid for each cluster.
As pointed out by Blashfield and Aldenderfer,

"The combinatorial methods require the recalculation

of the centroid of a cluster after each change on

membership. Non-combinatorial methods calculate
centroids only after the complete pass has been made.

Therefore, combinatorial method of control calculation
is considered to be more conservative."17
The partitioning method then avoids the major weakness of
the agglomerative method, since the iterative nature of the
partitioning method allowsearlydecisions regarding which
object is merged into which cluster to be re-examined as the
algorithm proceeds. For this reason, the partitioning
cluster analysis method was selected for use by Andreau.

In order to implement the partitioning method of cluster
analysis, one is faced with the following problems:

1) Conversion of the binary adjacency matrix into a
similarity matrix which satisfies the requisite
metric properties.

2) Identification of the K parameters which is the
number of seed nodes.

3) Identification of the actual nodes which are the

seed nodes.

1 81asnfield, p.9.

- 31 -

Andreau investigated the use of heuristic graph decom-
position techniques, particularly the concept of a "core
set" to solve the preceeding problems. The techniques are

described in the following section.

2.2 Solution of the Cluster Analysis Problem by the Graph

Decomposition Techniques

The purpose of this section is to present the tech-
niques proposed by Andreau for the solution of cluster analy-
sis problems; specifically the conversion of the adjacency
matrix and identification of partitions through the use of
heuristic graph decomposition techniques.

In order to solve the cluster analysis problems pre-
viously defined, Andreau investigated the use of heuristic
graph decomposition techniques. The definitions of require-
ments, interdependencies, and the adjacency matrix still
apply to the problem at hand. The following definitions
apply to graph decomposition techniques:

Core set: CSi associated with a node Oi in the set

CSs. :{oj]oj S.T. aij = 1}
that is the set of all nodes related to
Oi’ including itself.

Connectivity of node Oi:

c, = [Csil - 1, where]CSiI is defined as the

cardinality of set X

Conceptually, one is searching the adjacency matrix for

- 32 -

objects with a high connectivity whose core sets do not
interfere with each other. Once identified, these objects
form the Kernel of subsets of objects whose elements are
strongly related. As determined by Andreul8 once the number
of Kernel subsets has been identified, the remaining nodes
can be assigned to the subsets in which they best fit; where
the measure of best fit is as previously defined by the over-
all measure (M). The actual procedure used to identify the
subsets is presented in Appendix B.

The procedure requires the "a priori" specification of
the parameter (K) which is related to the number of sub-
graphs expected to result from the decomposition. Andreu's
experiences indicated that obviously 1 < K < N where N
equals the number of nodes or objects subject to decomposi=-
tion. Andreu stated more strongly that K should be set at
a value somewhat higher than the expected number of sub-
graphs, yet the lower the value of K, the more conservative
is the result since fewer subgraphs will be identified
considering the interferences among many core sets. In order
to normalize the selection process and to make the facility
more robust, the selection process for K was redefined as
follows;

K = percentage of the maximum value of connectivity,

Ci’ for the entire graph.
Note that the value of K has been redefined as a percentage

value of Ci; this implies that K should be initially
18

Andreu, p.125.

- 33 -

selected as a high value (80%) in order to yield a conserva-
tive result.

Andreu then investigated the possibility of generali-
zing the definition of the core set as follows:

cs, : {Oi,O. such that the minimum path

J
O. - 0, < P ; where P < 1
i j = -

Note that in the case where P = 1, this is equivalent to the
previous definition of the core set. The definition of P=1
is required in order to specify a minimum path. A more
complete explanation is offered by Andreu;lg briefly the
point is that the minimum path among objects Oi' Oj’ OK is
as follows:

When minimum path (Oi > Oj) = Minimum Path (Oj > OK)

then either

1) Oj,‘OK are both adjacent to O,

or 2) Oi is adjacent to neither Oj nor Ok

This is true only in the case where P=1; therefore, Andreu
uses P=1 when computing the core sets as previously defined.

A starting point for partitioning cluster analysis has
thus been identified, by the calculation and identification
of core sets as follows:

1) select K = percentage value of maximum value of

of connectivity;
2) select the node with the maximum value of

connectivity Ci;

ZgAndreu, v.136.

- 34 -

3) select the core set, consisting of all objects

0. for which C. > K (C.MAX).
i i i

The final problem involved in generating a partitioning
methodology was to develop a method to convert the binary
adjacency matrix into a similarity matrix meeting the metric
conditions of Euclidean distance; since the single binary
coefficients dervied directly from entries in the adjacency
matrix fail to meet these properties. Andreu incorporated
the "core set" concept previously introduced in order to

define entries in the similarity matrix as follows:

S;5 = 1- |csi csjl
lcs. cs.l
1 J
where Sij = Similarity matrix distance measure between
objects O, and O.
1 J
CSi = Core set for noe Oi

For the special case, for some pair of nodes Oi and Op such

that Si =0 that is (CSi=CSk), then it is true that S..=

k 1j—ka
for all j. The nodes Oi and Ok are equivalent with respect
to the rest of the graph as described by the matrix S. For
cluster analysis purposes, this special case represents the
case for which nodes i and k are equivalent. The pair is
collapsed to form a single node.

This section has determined that there are several

problems which must be solved in order to apply cluster

- 35 =

analysis techniques to set decomposition problems. Andreu
has used heuristic graph decomposition techniques in order
to:

. Identify the K parameter which represents the maximum
value of such nodes for a given graph.

. Convert the adjacency matrix defined by a binary
assessment of interrelationships into a similarity
matrix meeting the metric properties of Euclidean
geometry.

The final section of this chapter will present é stepwise,
discussion of the application of these technigques to the

decomposition problem.

2.3 Decomposition Methodology

The decomposition problem was analyzed utilizing a soft-
ware package by Andreu. The package is written in Fortran
and runs on the PRIME computer system of the Sloan School of
Management.

The features available with this system are as follows:

1) Enter the adjacency matrix developed from the
requirements interdependency assessment. This
function is performed using the "ENGR" command.

2) Compute a distance matrix for the graph under analy-
sis using the "DIMN" command. The package actually
computes the distance matrix P=1 is assumed by the
package, also it treats collapsed nodes not as

single nodes.

- 36 -

3) Compute the similarity matrix from the distance
matrix using the "SIMA" command.

4) Generate an initial partition using the "INPA"
command to identify the "core of subgraphs" likely
to exhibit high strength. The user must specify
value for the K parameter.

5) Use the clustering algorithms to generate clusters
and return a value for measure, strength, and
coupling.

There are three clustering methods available for use:

Heirarchical Clustering Method 1 - which merges the

"closest" pair of clusters measuring the distance
between two clusters A and B by the mean of the
distance between the nodes of A and the nodes of B.

That is,
1 I = {(a,b)

NaNg

d(A,B) =

where NA and NB represent the cardinality of A and B
respectively, the summation is over all the elements
a € A and b ¢ B.

Heirarchical Clustering Method 2 - which merges the
pairs of clusters which lead to a minimum mean of the
distance between all pairs of nodes in the cluster
resulting from the merge. That is,

1
1l ZS (a,a™)
N

minimize X =

2
A

- 37 -

where Na = the cardinality of the set merger A
a,al € A.
the summation is over all pairs of nodes.
Heirarchical Clustering Method 3 - which merges the

two clusters A and B that lead to a minimization of

the parameter vy.

y = —=& 1, & 1, X 1
NNy [(a,a™) Ny,) (a,a”) Ny I4(b,b7)

where the first summation is overall pairs of nodes
in A and B, the second overall pairs in A, and the
third overall pairs in B. This method evaluates each
clustering step as a function of the partition para-
meters before and after the clustering and, therefore,
tends to produce the best partitions; i.e., those
with the highest measure.

Additional facilities exist in the software package to

perform a number of additions and deletions from the graphs

and to print out the results.

The analysis package was designed to recognize a single
decomposition problem at a time. Therefore, the package
always deals with a current graph; that is, the fundamental
working entity that the package is currently working on. 1In
addition, Steps 1 through 4 must be accomplished prior to
invoking Step 5. Any change in the order will generate a

system error.

_38...
The use of the decomposition methodology is presented

in Appendices E and H for the first and second iteration of

the methodology.

- 39 -

CHAPTER III

SAMPLE OPERATING SYSTEM

The Sample Operating System, developed by Professor
Stuart E. Madnick and John J. Donovan20 as a pedagogical
tool to illustrate the basic functions of a computer opera-
ting system, was selected as the design problem for analysis.
The selection of an existing, well-documented system was
dictated by a desire to insulate the decomposition analysis
from any problems associated with poor needs analysis.

The Sample Operating System is composed of all the
functions normally associated with a computer operating
system; however, due to its strictly pedagogical nature, it
has some unique features as well. It was conceptually
convenient to break the system down with its functional
areas for descriptive and requirements definition purposes.
The following discussion will highlight the general functions

of the Sample Operating System.

3.1 General Characteristics of a Large Scale Computer

Operating System

In most general terms any operating system is a group
of programs within a computer system which manage the
hardware/software resources of the computer, and thereby
serve as the interface between the user's programs and the

resources of the computer.

20Madnick and Donovan, p.381.

- 40 -

Madnick and Donovan have defined the following entities

within a computer system:

user: one who desires to utilize the computer resources.

job: any collection of activities needed to complete
the work desired by the user. A job may be
further subdivided into steps, tasks, or
processes.
job step: wunits of work which must be done sequentially;
namely, compile, load, and execute.
task: a program or job subdivision which is the basic
unit or work for the operating system.
process: a complete sequence of instructions that are
functionally/computationally independent of
other proéesses.
The normal resource management functions of the operating
system may be generalized into the following four functions:

. Keep track of a resource;

. Enforce a policy that determines which user gets a
given resource, especially to resolve conflicts
arising from competition for the same resource.

. Allocate a resource.

Reclaim a resource.
The functional resources of any large-scale computer system
may be described as follows:

. Memory Management Functions

. Processor Management Functions

41
. Device Management Functions
. Information Management Functions
The definitions, management functions, and resources pre-
viously defined will be adopted in order to fully describe

the characteristics of the Sample Operating System.

3.2 Sample Operating System Description

The Sample Operating System, as described by Madnick
and Donovan, is conceptually designed around a process,
recognizing that a process is the smallest computational
entity and, therefore, has certain requirements necessary for
its support. Thus, the Sample Operating System implements
a basic system nucleus required for a complete system; yet
it does not include other capabilities such as language
processors or utility programs.

3.2.1 EXTENDED MACHINE CONCEPT:

At the most basic level, a computer processes only
specific hardware instructions; such as ADD and LOAD. In the
Sample Operating System it was necessary to provide the
basic functions for process support as additional hardware -
like instructions at a level above the basic machine instruc-
tions. These instructions are called extended instructions
and are implemented by means of the Supervisor Call
Instruction. These instructions are conceptually similar to
subroutine calls which enable the user to perform certain
resource management functions at a higher level than the bare

machine. For example, SVC 'H' is used to halt a job and

- 42 -

signal the supervisor process. Each extended machine
instruction calls a handler routine and may be user callable.
The basic hardware instructions of the machine combined

with the operating system provided "supervisor instructions"
comprise the instruction set of the extended machine. The
Kernel of this operating system runs on the bare machine,

the user's programs run on the extended machine. Figure 3.1
represents the extended machine concept.

3.2.2 HEIRARCHICAL MACHINE STRUCTURE:

Since the Sample Operating System was intended to be
primarily a pedagogical tool, a layered system architecture
called heirarchical operating system structure was selected
as the basis for system design. Basically, the methodology
allows the segregation of major functions of the operating
system into a heirarchy of capabilities. Its major advant-
ages include:

. It is a powerful means of proving the correctness

and maintaining the operational integrity of the
operating system.

. Lower layers of the system provide services to higher

layers only via well-defined interfaces.

. The modular structure enables the easy identification

of the major functions of the operating system.

In order to implement the heirarchical concept in con-
junction with the extended machine concept, it was necessary
to define the following:

. Certain key functions needed by many of the system

Process 3 Process 1
Extended
machine
User
programs
rocesses
Bare (processes)
machine

(Operating system software)

Process 4 ‘ Process 2

FIGURE 3.1 Extended Machine Concept of a
Generalized Operating System

- 44 -
modules could be separated into an "inner extended
machine".

. Certain modules, which were not utilized as key
functions yet still operating system modules, could
be separated out and run on the extended machine in
essentially the same way as a user's process.

It is, therefore, apparant that each module of the operating
system must be identified as running either in the inner
extended machine, the outer extended machine, or as a
process.

For further clarification, Madnick and Donovan have
generalized the inner/outer extended machine concept into
levels of the extended machine, and all operating system
functions that run as processes can interrelate and are
generalized into layers of processes. The Kernel of the
operating system then is all these modules that reside in the
extended machine and, therefore, do not include operating
system processes.

For purposes of the Sample Operating System design, the
basic functions of the operating system have been placed in
the Kernel, and as many tasks of the operating system as
possible have been placed into separate system processes.

In this heirarchical implementation, we impose the following
restriction: a given level is allowed to call upon the
services of lower levels only; i.e., those levels closer to

the bare machine. This restriction requires well-defined

- 45 -
interfaces and synchronization schemes throughout the Sample
Operating System.

Figure 3.2 graphically portrays the heirarchical
operating system structure.

The three concepts implemented for the design of the
Sample Operating System design (that is, process focus,
extended machine concept, and heirarchical structure) have
evolved into a system with the following features:

. process synchronization semaphore, used extensively

for resource allocation synchronization;

. message system for interprocess communication;

. five levels and layers of the Sample Operating System:

Levels - Process Management, lower module
Memory Management module
Process Management, upper module
Layers - Device Management module
Supervisor Process module
A brief description of the function of the levels and layers
is provided to further clarify the structure of the Sample
Operating System.
3.2.3 PROCESS MANAGEMENT, LOWER MODULE:

This module enables the Sample Operating System to
support multiprogramming and the basic system primitive
operations required for interprocess synchronization.

The basic primitives as previously described, are the

so-called P-V operations. Both operations act on a semaphore

Components of operating system

Operating system Operating system
Process A Process B
Process 3
Outer
extended
machine

Process 4

Inner
extended

Bare
machine

(Rey operating
system functions)

(Remaind;;‘of k€§ opera-
\ ting system software)

Process 1

User programs
(processes)

Process 2

FIGURE 3.2 Heirarchical Design Structure of
a Generalized Operating System

- 47 -

which has an associated integer value and serves as a
counting lock as follows:

P-operation: IF Semaphore Value > O then

Value = Value-l

IF Semaphore Value < O then
Value = Value-1 and the process
is ineligible to allocate the
given resource.

V-operation: IF Semaphore Value > O then

Value = Value+l and ﬁo process 1is
ineligible to allocate the given
resource.

IF Semaphore Value < O then
Value = Value+l and there is a
process waiting to allocate given
resource.

Since there is a semaphore associated with each resource
the P-V operations can serve as a lock where semaphore value
initially = 1. By requiring a P-operating before accessing
and a V-operating after completion, the integrity of the
resource is ensured.

3.2.4 MEMORY MANAGEMENT MODULE:

This module performs the operations necessary for
dynamic allocation and freeing of memory for job partition
allocation and for allocating space for use by the operating

system.

- 48 -
3.2.5 PROCESS MANAGEMENT, UPPER MODULE:

This module provides the routines for the control of
processes; i.e., process creation and deletion. The module
also provides for interprocess communication with buffered
messages. This module was split from the Process Management,
lower module since it depends on the functions of memory
management to allocate or free memory areas to store system
information concerning each process and to provide temporary
buffers to store interprocess communication messages.

3.2.6 DEVICE MANAGEMENT MODULE:

This module runs as a separate process; hence, it is
considered a layer of the operating system. There is one
device management module per device which provides the
routines necessary to issue the appropriate input/output
commands to external devices. This module depends heavily
upon the interprocess communication message facility to issue
I/0 and to interpret the status information for a return
message. Device management for this service is simple since
all devices are dedicated and consist only of card readers
and line printers.

3.2.7 SUPERVISOR MODULE:

The supervisor module, also runs as a separate process
of the Sample Operating System; specifically, one per job
stream. The supervisor provides interfacing for all the
routines needed to run a job. In particular, the supervisor

process is responsible for coordinating the following:

- 49 -

1) Reads in a job stream.

2) Allocates a partition of memory for each job in
sequence.

3) Creates and starts the appropriate device manage-
ment process.

4) Loads the user's object deck into the partition.

5) Creates and starts a process in the given partition.
Since the supervisor process is not needed until
the user's job ends, it stops running and waits for
a message signalling completion of the user's job.

6) Finally, when completion is signalled, the super-
visor cleans up by destroying the allocated parti-
tion of memory, and goes to the next job input
stream.

3.2.8 USER'S PROGRAMS AND PROCESSES:

Initially the Sample Operating System creates a single
process for each job; however, the user is free to create
additional processes to run in parallel. The user's job runs
in problem state with non-zero protection key assigned;
thereby, restricting user access (to privileged instructions
and memory areas external to the user's allocated partition).

The nucleus routines, such as P-V operations, are
restricted from the user and cannot be accessed by the user's
job. However, the interprocess communication message
facility is available to the user and can be utilized for

interprocess synchronization of user processes.

- 50 -

3.3 Summary

The basic design philosophy of the Sample Operating
System and a functional description of the major modules has
been presented as the system is currently configured. The
next two chapters will first define the requirements as they
exist for the Sample Operating System; and second, assess

the interrelationships among these requirements.

- 51 -

CHAPTER IV

REQUIREMENTS DEFINITION

The purpose of this chapter is to describe the method-
ology of the requirements definition for the Sample Operating
System. The requirements were defined from a description of
the Sample Operating System and program listings as provided
by Madnick and Donovan, subject to certain guidelines
established by Andreu to insure that as much as possible
the requirements are defined in a clear, correct, and
concise manner.

It must be stated at the outset that requirements
definition was the most time-consuming portion of this
analysis. The definition phase was repetitively iterated as
requirements were defined more clearly, make less ambiguous,
corrected, discarded, combined, separated, and new require-
ments added continuously. Since one can become completely
embroiled in the problem, it is essential that the require-
ments be reviewed periodically by an interested third party.

The initial methodology for requirements definition was
proposed by Andreu23 and was based on his experience with
the problem. Andreu began with a set of requirements for a
database management system and sought to refine those
requirements as they existed. For the Sample Operating

System, however, no such precise list of requirements

23Raphae2 Andreu, "An Exercise in Software Design: From
Requirements to Design Problem Structure', MIT Sloan School
unpublished report (June, 1977), pp.3-15.

- 52 -

existed. Therefore, it was necessary to draft a set of
requirements from a textual description of what the system
does using program listings to resolve unclear issues.
Consequently, the Andreu methodology was supplemented with
additional guidelines based on these experiences in defining
requirements.

The following section will define the methodology and
by way of example, demonstrate what constitutes good or poor

definitions of requirements.

4.1 Requirement Definition Methodology

4.1.1 DEFINITION CLARITY:

Requirements should be stated clearly and conciseiy.
It is conceptually difficult to deal with requirements which
are verbose or deal with more than one specific issue. In
addition, requirements interdependencies are assessed on a
one-for-one basis. Therefore, each requirement for the
Sample Operating System was limited to a single sentence,
covering only one issue. The requirements for the Sample
Operating System are presented in Appendix G, and each
requirement statement is followed by a definition of the
requirement and a statement of implications of that require-
ment for the design of the system. This format was valuable
for it enabled a single sentence requirement definition
statement, yet it facilitated further amplification of the

design requirement which was very helpful in the inter-

- 53 .
dependency assessment phase.
4.1.2 SCOPE OF DEFINITION:

Requirements must not be stated in very general terms,
or in terms dealing with issues beyond the scope of design.

For example: The operating system must be capable of

maintaining memory resources. This is a general state-

ment characteristic of all operating systems by
definition. This statement does nothing to further
define characteristics of the Sample Operating System.

In addition, no requirements were defined for the

following functions: system reliability, documentation,

and system security, simply because none of these

issues were addressed as needs of the Sample Operating

System, and, therefore, were beyond the scope of the

design.

4.1.3 IMPLEMENTATION INDEPENDENCE:

As stated by Andreu and Madnick24 requirements should
not specify an implementation scheme that may be used in the
design of the system. Clearly a requirement which specifies
how a requirement is to be implemented biases the design
process. Specifically, such a procedure precludes the
design from considering alternative solutions to a given
design problem. The specific implementation scheme may be
appropriate within its limited realm of consideration, but
may not be optimal in the context of the overall design

problem. Finally, any implementation scheme, specified
24

Andreu and Madnick, p.42.

- 54 -

"a priori" inevitably affects other requirements in other
stages of the design process. The criteria for requirements
definition is simply that the requirement definition must
state only what is to be done and not how.

For example: the statement, "A process can issue a call

to read the text and name of the message sender"; this

violates the guidelines since the statement defines the
means of implementation. The requirement focuses on

how a process recognizes the text and name of a message

sender, rather than what was intended.

Therefore, the requirement was re-written as: "The
receiving process may read the name and text from the
originator".

4.1.4 SYSTEM STRUCTURE INDEPENDENCE:

Any definition of requirements should avoid biases
toward pre-established assumptions about the structure of the
final design according to Andreu. 25

This guideline is very subtle in its application, and
represented the most difficult guideline to fulfill since
the Sample Operating System had been designed and was
described in terms of its final structure. Conceptually,
anyone seeking to define a non-trivial system must organize
his thoughts in some manner to avoid total confusion. The
most logical framework for organization is in terms of the

functional requirements of the system. The most general

25 Andreu, "An Exercise in Software Design, p.46.

- 55 -

functional requirements for an operating system focus upon
the role as a resource manager of memory, processors,
devices, and files. Therefore, one tends to define require-
ments in the framework, and the trivial decomposition
solution would define four distinct subproblems which
correspond to those functional requirements. Clearly, such
a solution would offer no new insights into the structure of
the design problem.

For example, the requirement "This operating system

must be pedagogical and modularly structured", was

considered to violate the guideline. The Sample

Operating System was designed to be pedagogical.

Although it is generally recognized that the most

effective method of achieving pedagogical clarity is

through modular design, suéh a statement is constraining
upon the system designers and, therefore, was re-written
as follows: "The operating system must be designed as

a pedagogical tool". The resulting decomposition of

the design requirements should indicate what degree of

modularity was achieved in the actual design.
4.1.5 INDEPENDENCE AMONG REQUIREMENTS:

This guideline implies that all requirements must be
semantically independent; namely, that redundant require-
ments must be eliminated.

For example: the two requirements "Basic system

primitives and certain routines are restricted from the

- 56 -

user, the use of which will generate an error" and

"The operating system shall protect itself from the use

of supervisor routines by the user" are redundant; the

former being implied by the latter. The former
requirement was, therefore, eliminated.
4.1.6 SIMPLICITY:

Each requirement should address one well-defined
capability that the final design is to demonstrate. The
purpose of the decomposition methodology is to assess inter-
dependencies among individual requirements, and to group
similar requirements together. Therefore, grouping require-
ments by definition masks the decomposition.

Many requirements were originally defined with multiple
capabilities. It was necessary, therefore, to separate each
capability with a separate requirement.

For example: the following requirement, originally

written as a single requirement, was separated into

four distinct requirements: "A process synchronization
mechanism must be provided:
1) to serve as a lock on a database.
2) for timing of synchronous processes.
3) for synchronization of the message facility.
4) to lock a device.
4.1.7 NO STAND-ALONE REQUIREMENTS:
Requirements which are only remotely concerned with the

final design should be avoided; for example, features which

- 57 -
may be added to an operational system at a later time
illustrate this point.

For example: The requirement, "The supervisor process

must be modularized so that improvements to the system

can be easily accomplished", satisfies this guideline.

The requirement indicates that improvements to the

system are anticipated, yet it does not limit the

requirement by specifying what improvements will be
made later.
4.1.8 PLAUSABILITY:

Naturally, a requirement should avoid the impossible;
therefore, statements shall be eliminated which imply
requirements which are:

. not available with current technology;

. in violation of fundamental physical requirements;

. clearly violating other requirements.

For example: The requirement, "The input/output

devices are limited to card readers for input job

streams and line printers for output", implies that no
spooling system is available. This in turn dictates
that job scheduling be accomplished on a first-come,
first-served basis.

Initially, it was felt that such non-capabilities

(i.e., lack of spooling capability and lack of file

system) should be explicitly stated as a requirement

rather than inferred. However, the assessment of

- 58 -

requirements for facilities which do not exist would
have been difficult to accomplish. Therefore, the lack
of a certain capability was not addressed in require-
ments definition.
In addition to the previous guidelines established by
Andreu, the following additional guidelines were developed.
4.1.9 SEMANTIC INTERPRETATION:

The requirements should be defined in a manner that
limits semantic interpretation. This guideline resulted
from an examination of the various "problem statement
languages" which are currently being investigated. Stating
requirements formally, in a problem language statement,
could not only reduce the ambiguity of the requirement, but
aid in the interdependency assessment phase. Although no
specific langu;ge was employed for requirement definition,
the basic structure and intent of a rigorous definition
language was used to define the requirements; specifically,
the requirements were defined as follows:

1. ©Utilize generally understood terminology; for

example, "reclaim memory resources" versus
"garbage collection". Reference to functions was
by formal ferminology job scheduler.

2. Avoid terms which are not commital; for example,

"operating system must supply ... " instead of,
"operating system may or should be capable of..."

3. Recognize the distinction between existence

- 59 -
statements and performance statements. For example,
the requirement, "The process scheduler must time-
slice CPU usage among ready processes to achieve
multi-programming", implies the existence of some
time quantum.

The actual performance requirement is stated
separately as "A process must be blocked, and con-
trol released to the process scheduler when a time
quantum of 50 ms is exceeded".

Limitations implied by existence statements must be made
explicit in a performance statement.
4.1.10 SCOPE OF REQUIREMENT DEFINITION:

The requirements must be defined at the same level of
scope. The customer, in this case being the person for whom
a system is designed, must have a macro-level objective
which the system must be designed to satisfy. ©P. Mandel and
C. Chryssostomidis state:

"The objective of most problems that man is capable of

conceiving or is interested in solving is that of

choosing the course of action which subject to pre-
vailing constraints, optimizes the 'well being' of all
concerned."26
The following concepts have been identified at the outset of
the design process.
An objective function to be optimized for the design

process.

26Mandez and Chryssostomidis, p.85.

- 60 -

. Prevailing constraints, which impose limitations upon

the designer.

. Requirements flow directly from the customer in

response to the overall objective of the system design.
The objective function usually takes the form of a multi-
matrical expression to be optimized and for most large-scale
computer systems, consists of the maximization of throughput
or minimization of response time.

The objective function of the Sample Operating System
is pedagogical clarity and, therefore, it is very difficult
to state that the objective function has not been fulfilled.
For the purposes of the design of the Sample Operating
System, a design philosophy has been identified which
defines the design criteria for the system on a macro-level.
The requirements that comprise the design philosophy
influence each of the remaining requirements and, therefore,
were not incorporated into the assessment process.

The design constraints usually serve to limit the
permissable range of solutions of the problem. The
constraints, then, impose limitations on the designer which
affect the global design problem. In the Sample Operating
System, certain hardware constraints were imposed "a priori"
upon the design problem. Specifically, the operating
system must be designed to run on IBM/360 hardware. The
implications of this constraint affect certain basic
functions of the operating system. Since the design con-

straints have been specified "a priori", such constraints

- 61 -

have been separated from the remaining system requirements
and were not incorporated into the assessment process since
the constraints represent limitations on system design.
Finally, the system requirements are defined in direct
response to the customer's objectives. The system level
requirements must be defined at a level below the most
general of system level statements, yet remain above the

level which begins to limit the options of the designer.

4.2 Summary

The requirements for the Sample Operating System were
defined in two iterations. The preliminary set of require-
ments was defined initially and are presented in Appendix C.
The second or final requirements set was defined after the
initial application of the deéomposition methodology and

are presented as Appendix G.

- 62 -

CHAPTER V

INTERDEPENDENCY ASSESSMENT METHODOLOGY

The purpose of this chapter is to establish the guide-
lines that were used for the assessment of interdependencies
between pairs of requirements. The assessment was conducted
on a pair-wise basis according to the following definition
of interdependence.

Two requirements are termed interdependent of the
design decisions made with respect to one requirement con-.
straint, or influence the definition of the second require-
ment. Thus, the interdependent relationship between two
requirements can be viewed in two ways:

Supportive: in the sense that the two requirements

are compatible; meeting one requirement will help
to satisfy the other as well.

Conflicting: the interdependency is such that some

trade-offs must be established between the two
requirements in the later stages of the design
process.
The result of the assessment process is the decomposition
of the global system requirements into a number of sub-
problems, which ideally will be a collection of highly

dependent requirements.

5.1 Interdependency Assessment Methodology

The methodology for interdependency assessment proposed

- 63 -

by Andreu consists of a pair-wise assessment of the inter-
dependencies between requirements by the generation of
"conceptual models" within whose context the assessment can
be made. The purpose of generating a conceptual model for
the assessment process is to have a specific mental frame-
work so that the process is consistent and conceptually
rigorous. The following guidelines have been proposed by
Andreu, for the generation of conceptual models:

. Scan the requirements in order to develop loose
conceptual models of the system.

. Supportive requirements can be identified by
visualizing a conceptual model in which a possible
implementation would allow for common processing in
the final system in order to meet the two require-
ments involved.

Supportive requirements can be identified in cases
where two distinct requirements call for similar
functions to be performed in different circumstances
in the final design.

. Conflicting requirements can be identified by:

.. searching for deadlocks

.. identifying when a given requirement imposes
limitations or constraints in other requirements.

.. identifying the need for "symmetric" processing;
that is, additional processing to meet a given

requirement is necessary.

- 64 -

The procedure of assessing all the interdependencies
for a large system can become burdensom. Therefore,

Andreu, has proposed a set of procedural guidelines, based
on his experiences, which were helpful in avoiding some of
the pitfalls of this time consuming process.

. Establish an order for the assessment to be made.

. Write down conceptual models as they occur.

. Avoid going backwards to renew an assessment made
previously. Finish the assessment process and then
return.

. If the assessment of similar requirements becomes
confusing change to a different set.

. If no conceptual models are apparent skip the
assessment until one is available.

. If one feels uncertain or lacks confidence in the
assessment process; stop, and come back to it later.

. A second assessment pass is useful, since it enables
one to employ new conceptual models and to review the
assessments which have been previously established.

In addition to the guidelines established by Andreu the
following additional guidelines were identified.

In the case where the assessor's experience is lacking,
the results of the assessment process should be reviewed by
another interested third party in order to:

verify the conceptual model.
verify the nature of the interdependency.

. verify the resulting adjacency matrix.

- 65 -

In order to define a more rigorous conceptual model
for the assessment process, the following assessment
template was imposed upon each assessment:

1. Does the first requirement conflict with the
implementation of second requirement, causing
deadlocks, symmetric processing, or imposing
limitations? For example, the first requirement,
"System resources must be allocated to a job prior
to being allocated a processor". The user
resources (i.e., processof) are allocated at the
user level, and the system resources are allocated
at job level, which requires symmetric processing.

2. Does the first requirement support the implementa-
tion of the second requirement by common processing:
or do they call for similar functions to be per-
formed in different circumstances? For example,
the first requirement, "System resources must be
allocated to a job prior to the job being made
eligible to run" is supported by "the supervisor
process must schedule jobs and prepare the jobs for
execution". In this case, the supervisor process
controls the allocation of resources for each job,

preparing them for execution.

5.2 Summary

A pair-wise interdependency assessment was conducted

- 66 -
according to the guidelines previously established for each
requirement defined. Since an interdependency is symmetric,
in the sense that an interdependency between requirement #8
and #30 implies an interdependency between #30 and #8.
Therefore, each requirement was assessed with the require-
ments that followed it. At the time of assessment, an indi-
cation was made whether the interdependency was supportive or
conflicting, and a brief statement of the rationale for the
interdependency was made.

As was the case for requirements definition, the
interdependency assessment process took place in two
iterations. The preliminary interdependency assessment is
presented in Appendix D, and the final interdependency

assessment is presented in Appendix H.

- 67 -

CHAPTER VI

FIRST ITERATION OF THE DESIGN PROBLEM

The interdependencies assessed between pairs of require-
ments were formed into an adjacency matrix and input into
the software analysis package developed by Andreu. This
chapter will present an analysis and discussion of the
resulting problem structure. The analysis and discussion
will consist of the following sections:

. An analysis of the resulting problem structure for

the first iteration.

. Discussion of the main subproblems.

. Discussion of the subproblems generated by a second

decomposition.

. Relationships among the main subproblems.

. Motivation for a second iteration.

6.1 Analysis of Problem Structures

A total of sixty-five requirements were input with the
software analysis package for decomposition. Appendix E
presents a copy of the output of the analysis and will be
frequently referred to during the analysis. The analysis
provided as follows:

First, the data, in the form of links (interdependen-
cies) between nodes (requirements) was verified by checking
that all assessed interdependencies were, in fact, present.

This was accomplished using the "NOLK" command.

- 68 -

Second, all isolated nodes: those nodes with no
interconnecting links were identified. As a procedural
convenience, the initial graph was input with several extra
nodes. It is possible to delete nodes during the analysis,
but no new nodes may be added. Therefore, in order to
enter new nodes, one must redefine the entire graph. To
avoid this time-consuming process, extra nodes were padded
into the graph, and the graph saved with the padded nodes.
A working copy of the graph was generated by identifying and
deleting isolated nodes and then saving the temporary
working copy.

6.1.1 MAIN SUBPROBLEMS:

The adjacency matrix was decomposed utilizing the
steps outlined in section 2.3 and the results including a
heirarchical tree are presented in Appendix E. The design
requirements decomposed into six clusters or main sub-
problems (abbreviated at MS), of twenty to four members each.
The decomposition was generated using the so-called
heirarchical clustering method -3, the following evaluation
parameters resulted:

Strength: 1.9864
Coupling: .8674
Measure: 1.1119

Strength was defined as a normalized evaluation of

subset internal coherence; that is, how tightly coupled the

nodes in a given subgraph are. Coupling is defined as an

- 69 -

evaluation of the extent to which two subgraphs are inter-
dependent. Measure equals strength minus coupling. The
evaluation parameters obtained are important in a relative
sense, since there is no absolute value of any parameter
which indicates a good decomposition. A comparison of
strength and coupling was made to make some statements of the
decomposition. A coupling/strength ratio = .43 was deter-
mined indicating that the coupling between subgraphs was
nearly half the measure of internal coherence. This
indicates that the subgraphs are internally coherent (high
strength value) and still have a reasonable degree of
coupling. Whereas a small coupling value would indicate that
the subgraphs were relatively decoupled.

In order to further investigate the coupling evaluation

Andreu27

suggests a second decomposition in which each main
subproblem is treated as an entire graph and decomposed into
subproblems. Since the coupling parameter increases as
subproblems are defined, and strength remains constant, the
decomposition of the main subproblems into subproblems
decreases the overall partition measure. If the coupling
parameter between main subproblems is low originally, the
main subproblems are fairly disjoint and a second decompo-
sition should be investigated. In the ideal case, a main
subproblem may exhibit such internal coherence (high
strength) that it does not decompose into subproblems. This

27Andreu, "4 systematic Approach to the Design and Struc-

turing of Complex Software Systems”, p.277.

- 70 -

became the motivation for a second decomposition; that is,

a main subproblem was considered well-defined if no decom-
position resulted. Therefore, a second decomg@gition of

each main subproblem was performed; the results are presented
in Appendix E.

6.2.2 SECOND DECOMPOSITION STEP:

Each main subproblem resulting from the original decom-
position was individually decomposed as follows:

1. A separate graph was defined for each main sub-
problem by eliminating all nodes external to the MS
under analysis. This was accomplished using the
"DEMO" command. The nodes of the current are re-
numbered at this point, which required rather
awkward collating schemes to keep the original set
of requirements synchronized with each new sub-
graph.

2. Each MS was decomposed according to the methodology
of section 2.3.

Of the six MS originally defined only two,
MS 2 and MS 3 further decomposed.
6.1.3 ANALYSIS METHODOLOGY.

In order to analyze the structure of the design problem
implied by the decomposition technique, it is useful to
investigate the following entities:

Elements: requirements contained within a given

subset.

- 71 -

. External Interdependencies: 1links that exist among

the elements of different subsets. The command

"PRLK" was useful in identifying the external links.
Recalling the core set identification process, éertain nodes
were identified as seed nodes, about which other nodes were
clustered. 1In order to identify the main focus of each
cluster, one examines the requirements involved in the
largest number of interdependencies; i.e., the node in an MS
with the largest number of links. It is assumed that this
is the seed node for the MS and is, therefore, related to
the main focus of that MS. It is also noted that a given
main subproblem may have several nodes with nearly the same
number of links which could be called equivalent seed nodes.
A closer examination of these nodes must be undertaken to

determine the nature of such a main subproblem.

6.2 Main Subproblems

The problem structure resulting from the application of
the decomposition methodology is presented in Figure 6.1.
The problem structure was interpreted as composed of the
main subproblems, depicted as blocks in Figure 6.1 and the
subproblems, generated by a second decomposition, depicted
as circles within the parent MS. The interdependencies
among the elements of different subproblems were generalized
into interfaces which are required in design between sub-

problems.

Multi-programming
Support Functions

Process Management Functions

-~
rocess Process

Creation/

Time
Slicing

Supervisor Process

Resource and Memory Management

Resource)
Allocation

Device
Management
Functions

Message
Facility

FIGURE 6.1 Problem Structure Implied by the First
Iteration of the Decomposition Methodology

- CL

_73...

The interpretation of main subproblems should be
intuitive if the MS are well-defined. Since each MS was
built around a certain seed node, interpretation became a
problem of identifying the node and understanding how the
other member nodes were built around it.

The more interesting part of the interpretation was to
identify the counter-intuitive or non-obvious results.
These results suggested a structure of the design that was
not apparent at the outset or perhaps errors in the analysis.
In either case, it was the identification of non-intuitive
results that represent the value of the process.

The following discussion will highlight the general
and specific characteristics of the design structure
indicated by the decomposition methodology.

The decomposition methodology generated six main sub-
problems at the end of the first decomposition. The six
main subproblems have been generalized into the following
groups:

1) Multi-programming support functions

2) Process management functions

3) Resource and memory management functions

4) Supervisor process functions

5) Device management functions

6) Message facility
The requirements statement are decomposed into these six

main subproblems and are presented in Appendix F.

- 74 -

The following discussion will highlight the character-
istics and discrepancies discovered in each main subproblem.
6.2.1 MULTI-PROGRAMMING SUPPORT FUNCTIONS:

The requirements which decomposed into the multi-
programming support main subproblems were all concerned with
the features and facilities that must be provided by the
operating system in a multi-programming environment. These
features include:

. a multi-programming environment must exist

. job scheduling

. re-entrant and pure code

. supervisor process support

. synchronization techniques

. protection among jobs
The seed node was requirement 5, "The operating system must
provide for a multi-programming environment".

However, it must be noted that requirement 43, "P-V
mechanisms must be provided", had a larger number of links
than requirement 5. The P-V mechanism provides the basic
multi-programming support by synchronizing operating system
functions, but it represents a specific tool rather than a
focus for the main subproblems. In addition, the P-V
mechanism is used for four distinct functions. Therefore,
it was decided to further investigate this requirement and
attempt to redefine it.

Some of the requirements have a dual function, and,

- 75 -

therefore, decomposed into this MS, which at first appeared
counter-intuitive; for instance, the requirement, "Device
handler routines must support multiple job streams from
card readers". Intuitively, one would have expected this
requirement to fall squarely in the device management MS.
However, the issue is the requirement to support multi-
programming by providing input from multiple job streams.
It is expected that such dual requirements will also have
interfaces linkages between the two MS in which they seem
to belong. This will be investigated later.

This MS did not decompose upon the second decomposition.
6.2.2 PROCESS MANAGEMENT:

The smallest computation entity defined by the operating
system is the process; therefore, the operating system must
recognize this feature and provide the necessary functions
for support of the process. The requirements which decom-
posed into this MS constitute the largest set of requirements
in a given MS and deal with those basic functions required
for process support. These features include:

. Process creation/destruction

. Allocation/De-allocation of a processor to a
process

. Time-slicing

. Extended machine instruction environment

. Process Scheduling

The seed node for the MS was requirement 6, "The operating

_76...

system must be process oriented", which is indeed the focus
of the MS.

Requirement 44, "An interrupt handler must be provided"
had nearly the same number of linkages as requirement 6.
Time slicing CPU usage requires an interrupt handler;
however, this is not the only function of the interrupt
handler. This requirement presented problems later in the
interface analysis. Therefore, it was decided to redefine
the requirement by separating it into a number of distinct
interrupt handlers.

The decomposition included one counter-intuitive
requirement.

"Message facility must be accessible to all processes."
It was expected that this requirement would decompose in the
message facility MS. Upon examination of the interdepen-
dency assessment and the conceptual models used for this
requirement, it was noted that the requirement is defined as
being interrelated with three requirements in the MS and
only one in the message facility MS. The issue there is one
of process accessibility to the message facility, which is
the primary means for interprocess communication. Therefore,
this requirement related more closely to process support
than to the message facility.

This main subproblem decomposed into three subproblems

in the second decomposition.

- 77 -
6.2.3 RESOURCE AND MEMORY MANAGEMENT FUNCTIONS:

This main subproblem is composed of requirements which
deal with resource allocation in general, and memory
management in particular. The functions concerning resource
allocated include:

. Resources are requested through the supervisor.

. Information tables are utilized to monitor resource

~allocation.

. Operating system can dynamically allocate memory for

its own use.
The requirements dealing with memory management functions
include:

. Operating system must allocate memory.

. The mechanisms by which memory is allocated,

protected, and reclaimed.
This main subproblem essentially has three nodes of similar
linkage value. The three requirements all deal in general
terms with resource and memory allocation, but no clear
definition is apparent. It can be argued that memory
management is a subset of the general resource management
function of the operating system. It is noted that this MS
has the largest number of interfacing linkages with other
main subproblems. This was expected since the members of
the MS seem to cover such a broad area of responsibility.

This requirement decomposed into two subproblems in the

second decomposition.

- 78 -

6.2.4 SUPERVISOR PROCESS:

The requirements which decomposed into this main sub-
problem all deal with the functions of the supervisor
process. The supervisor process is that process which
schedules jobs and prepares them for execution. Many of the
functions normally performed by the supervisor were
decomposed into the multi-programming support main sub-
problems, particularly the job scheduling function. The
supervisor process is a subset of the functions required for
multi-programming support and, therefore, this result seems
to make sense. It is also noted that there are a large
number of linkages between the supervisor process main
subproblem and the multi-programming support module.

The existence of a supervisor process module distinct
from the multi-programming support module is considered a
significant insight into the problem structure. The design
problem structure dictates that both the supervisor process
and multi-programming support main subproblems are dis-
tinctly separate at the same level of comparison and
deserve equal design concern.

This module did not decompose on the second decompo-
sition.

6.2.5 DEVICE MANAGEMENT FUNCTIONS:

The members of this module clearly are concerned with

the functions required for device management. These

functions include:

- 79 -

. A device management routine.
. Devices and protocols required to support multi-
programming.

The seed node for this main subproblem was requirement 36.
"The operating system must supply a device management
routine." This main subproblem decomposed very clearly;
that is, it had the highest strength value for all the main
subproblems which did not decompose on the second
decomposition.
6.2.6 MESSAGE FACILITY:

All of the requirements in the module directly address
the needs for 7éessage facility, which is an interprocess
communication £echnique in the Sample Operating System
which enables user processes to communicate and synchronize
execution.

The seed node for this main subproblem was requirement
46. "A message facility has many requirements since there
are many features defined for use of the facility."
Although the message facility may seem to be a relatively
less important function of the operating system, the decom-
position methodology implies that it constitutes a complete
main subproblem. It may be that one may generate an entire
main subproblem just by defining a large number of require-
ments for a relatively insignificant feature; or conversely,
this facility may be of greater significance to the operating

system than previously anticipated.

- 80 -

This module did not decompose in the second decompo-

sition.

6.3 Subproblems Generated in a Second Decomposition

A second decomposition was conducted as described in
section 6.1 and resulted in the decomposition of MS 2 and
MS 3 into three and two subproblems respectively. The
term subproblem will be used to describe the clusters which
resulted from a second decomposition of the main subproblem.
6.3.1 MS 2 - PROCESS MANAGEMENT FUNCTIONS:
MS 2 decomposed into three subproblems as follows:
1) MS 2A - Subproblem A: Process Creation and
Scheduling
This subproblem is designated MS 2A. All of.
the requirements in the subproblem were concerned
with process creation and scheduling. These
functions included such features as initial process
creation, process identification, process blockage,
scheduling, and message facility accessibility.
2) MS 2B - Subproblem B: Process/Operating System
Interface
This subproblem is designated as MS 2B. All
of the requirements in this subproblem were concerned
with the extended machine instructions which are the
means by which processes communicate with the

operating system.

- 81 —
3) MS 2C - Subproblem C: Process Time-Slicing
This subproblem is designated MS 2C. All of
the requirements in this subproblem are concerned
with process time-slicing, the process scheduler's
role and the interrupt mechanism required to handle
timer interrupts. As pointed out previously, the
interrupt handler includes many more functions than
time interrupts. This caused some problems in
interfaces descovered in the later stages; there-
fore, it was decided to redefine this requirement
to explicitly define all of its functions.
6.3.2 MS 3 RESOURCE AND MEMORY MANAGEMENT FUNCTIONS:
MS 3 decomposed into two subproblems as follows:
1) MS 3A - Subproblem A: Resource Allocation
This subproblem is designated as MS 3A. This
subproblem was concerned with the allocation of
resources in general, and the mechanism for memory
allocation in particular. As before, this sub-
problem is not clearly defined since it concerns
both issues. First, the subproblem deals with some
broad issues of how resources are allocated, to
whom and when are they allocated. Second, the
subproblem deals with the protocols for memory
allocation and de-allocation; specifically, only
the operating system may dynamically allocate

memory. It was decided to further investigage the

- 82 -

issues of resource allocation and memory allocation
in the next iteration to determine if the require-
ments or the conceptual models were ill-defined or
improperly assessed.
2) MS 3B - Subproblem B: Protection
This subproblem was designated MS 3B. This
subproblem is concerned with the protection mech-

anisms for both memory and user processes.

6.4 Relationships Among the Main Subproblems

The relationships among the main subproblems are best
explained by examining the focus of each main subproblem
and the conceptual models used in the interdependency
assessment phase which motivated the linkages. The software
package makes the linkages explicit through the "PRLK"
command the results are presented in Appendix E.

The linkage between main subproblems were generalized
into interfaces between the main subproblems. The
following discussion will note the general characteristics
of these relationships.
k6.4.l LINKAGES BETWEEN MS 1 MULTI-PROGRAMMING AND MS 2

PROCESS MANAGEMENT FUNCTIONS:
1) MS 1 Multi-programming Support;
MS 2A Process Creation/Scheduling:
This interface between these two subproblems

consisted of the mechanisms for providing multi-

- 83 -

programming by process creation, blockage, and
synchronization. Processes are created by the
system and scheduled in a round-robin fashion to
achieve multi-programming of user's jobs.

2) MS 1 Multi-programming Support;
MS 2B Process/Operating System Interface:

This interface between these two subproblems
was concerned with signaling processing completion
to the operating system, so that the next process
could begin.

3) MS 1 Multi-programming Support;
MS 2C Process Time-Slicing:

The interface between these two subproblems
was concerned with the mechanism of time-slicing
CPU usage to achieve multi-programming. The
interrupt handler requirement was included in this
interface; when it seemed to belong more properly
in the MS 2B subproblem. This problem supported
the need to re-examine the interrupt handler
requirement.

6.4.2 MS 1 MULTI-PROGRAMMING - MS 3 MEMORY MANAGEMENT
FUNCTIONS:
1) MS 1 Multi-programming - MS 3A Resource and
Memory Allocation
The interface between these two subproblems

was concerned with the mechanisms for user and

- 84-

system allocation of memory. Dynamic allocation
memory is restricted to the system processes.
MS 1 Multi-programming - MS 3B Protection

The interface between these two subproblems
was concerned with protection of user jobs and
memory. The interface did not deal with the
mechanisms of protection, but the fact that pro-
tection mechanisms must exist to support multi-

programming.

6.4.3 MS 1 MULTI-PROGRAMMING - MS 4 SUPERVISOR PROCESS:

The interface between these two subproblems was

concerned with the mechanisms for the protection of user

jobs and system processes. Protection here is defined at

the job level controlled by the supervisor.

6.4.4

MS 1 MULTI-PROGRAMMING SUPPORT - MS 6 DEVICE

MANAGEMENT :

The interface between these two subproblems is con-

cerned with the procedural mechanisms by which devices

support multi-programming; especially the existence of a

of

device handler routine and the dedication of devices to user

jobs.

6.4.5

1)

MS 2 PROCESS MANAGEMENT - MS 3 MEMORY MANAGEMENT

FUNCTIONS:

MS 2A Process Creation and Scheduling;
MS 3A Resource Allocation:

The interface between these two subproblems

2)

3)

4)

- 85 -

was concerned with the use of information tables
to enable the operating system to monitor processes
and resources. This interface explicitly points
out that since processes and resources must be
monitored, the operating system should attempt to
use the same mechanism to accomplish this task.

MS 2A Process Creation and Scheduling;

MS 3B Protection:

The interface between the subproblems 1is
concerned with identification of processes by
symbolic name for protection purposes.

MS 2B Process/Operating System Interface;
MS 3A Resource Allocation:

The interface between these two subproblems
was concerned with freeing memory upon completion
of a job.

MS 2B Process/Operating System Interface;
MS 3B Protection:

The interface between these two subproblems
was concerned with the two state machine concept.
A process is required to run in the problem state,
all resource requests must pass through a super-
visor. Therefore, protection is afforded by
limiting the scope of system functions available

to the user.

- 86 -

5) MS 2C Process Time-Slicing; MS 3B Protection:

The interface between these two subproblems is
concerned with an interrupt handler to deal with
unauthorized memory access requests. This inter-
face seemes distinctly out of place, until one
recalls that the requirement for all interrupt
handlers regardless of purpose, is located in MS 2C.
The lack of definition of the interrupt handler
has been a persistent problem; therefore, it was
redefined.

6.4.6 MS 2 PROCESS MANAGEMENT - MS 4 SUPERVISOR PROCESS:
1) MS 2A Process Creation/Scheduling;
MS 4 Supervisor Process:

The interface between these two subproblems
was concerned with the protocols for user process
creation. The supervisor process creates one
process per user, initially; all others are
dynamically created by the user.

2) MS 2B Process/Operating System Interface;
MS 4 Supervisor Process:

The interface between these two subproblems
is concerned with the generation of an end-of-job
signal from the final user process to the super-
visor.

3) MS 2C Process Tim-Slicing; MS 4 Supervisor Process:

The interface between these two subproblems

- 87 -

is concerned with the interrupt handler which
terminates user processing. Again, this is the
same persistent problem of a poor interrupt handler
requirement, since time-runout is just one of the
interrupts for which a handler is required.

6.4.7 MS 2 PROCESS MANAGEMENT - MS 5 MESSAGE FACILITY:

1) MS 2A Process Creation and Scheduling;

MS 5 Message Facility:

The interface between these two subproblems is
concerned with the usage of a message facility by
user processes as a synchronization technique.
This enables user processes to synchronize
processing by starting and blocking each other
using messages.

2) MS 2B Process/Operating System Interface;
MS 5 Message Facility:

The interface between these two subproblems
was concerned with the mechanisms for message
generation by the user processes.

6.4.8 MS 2 PROCESS MANAGEMENT - MS 6 DEVICE MANAGEMENT:
MS 2C Process Time-Slicing; MS 6 Device Management

The interface between these two subproblems
was concerned with the generation of an I/O inter-
rupt. Once again, this seems to be misplaced
since the process time-slicing function is in no

way concerned with I/O interrupt handling.

- 88 -~
6.4.9 MS 3 MEMORY MANAGEMENT FUNCTIONS - MS 4 SUPERVISOR
PROCESS::
1) MS 3A Resource Allocation; MS 4 Supervisor Process:

The interface between these two requirements
deals with the issue of the timing of resource
allocation and de-allocation. The supervisor
process coordinates all resource allocation and
de-allocation for the operating system.

2) MS 3B Protection; MS 4 Supervisor:

This interface is concerned with establishing
protocols for the user destruction of user
processes only. The supervisor sets up a memory
partition and user processes are restricted to
that memory area; therefore, they may create and
destroy processes only within that memory area.

6.4.10 MS 3 MEMORY MANAGEMENT - MS 5 MESSAGE FACILITY:
MS 3A Resource Allocation; MS 5 Message Facility:

The interface between these two processes 1is
concerned with the gueuing requirements for the
message facility. In order for the message
facility to enqueue itself, it must be able to
dynamically allocate a buffer area.

6.4.11 MS 3 MEMORY ALLOCATION - MS 6 DEVICE MANAGEMENT:
MS 3A Resource Allocation; MS 6 Device Management:
The interface between these two subproblems

is concerned with the use of job control language

- 89 -

statements and information tables to specify and
monitor resource allocations.
6.4.12 MS 4 SUPERVISOR PROCESS - MS 6 DEVICE MANAGEMENT:
The interface between these two subproblems is
concerned with the reclamation of device resources upon
completion of a job. It is interesting to note that alloca-
tion is not an issue, because that is controlled in MS 3

Resource and Memory Allocation.

6.5 Summar

The analysis of interfaces between subproblems is a
verification procedure which supports the initial main sub-
problem analysis. Given two subproblems, the nature of the
interface could be intuitively derived based on one's
knowledge of the way in which various functions of the oper-
ating system are supposed to interface. An examination of
the links, which the decomposition methodology has implied,
verifies the expected result. In cases where the expected
result was not verified, or if counter-intuitive interfaces
were implied, one could go back to the main subproblem and
find misplaced or ill-defined requirements. The second
iteration of the decomposition methodology focused on a re-
definition of problem requirements and a re-assessment of

interdependencies for the entire requirements set.

- 90 -
CHAPTER VII

SECOND ITERATION OF THE DESIGN PROBLEM

The entire process of requirements definition and inter-
dependency assessment is very much a learning process. As
one continues to iterate upon the process, the requirements
become more well-defined, and the assessment of interdepen-
dencies more consistent through the application of better
conceptual models. The second iteration is a cumulation of
a series of smaller iterations and reflects a flattening of
the learning curve.

The analysis of the first iteration of the design
problem highlighted a number of discrepencies in the
resulting decomposition. The requirements which were
identified as being problematic were re-examined from the
perspective of their role in the Sample Operating System.
Where warranted, these requirements were re-defined. At
this point, the entire requirements set was reviewed by two
graduate students familiar with operating systems in
general; namely, Sid Huff and Chat-Yu Lam. Based on their
analysis and recommendations, certain requirements were
re-defined or re-written. The entire requirements set, in
its final form as contained in Appendix G, was subjected to
the interdependency assessment process. This chapter will
point out the changes made to the requirements set, and
present an analysis and discussion of the resulting problem

structure. The chapter is organized as follows:

- 91 -

. Requirements re-definition.

. An analysis of the resulting problem structure for
the second iteration.

. Discussion of the main subproblems.

. Discussion of the subproblems generated by a second
decomposition.

. Relationships among the main subproblems.

. Comparison of the first and second interations.

7.1 Requirements Definition

The following changes were made to the preliminary set
of requirements, Appendix C, based on the results of analysis
of the first iteration and examination by an interested third

party.

7.1.1 PRELIMINARY REQUIREMENT 6:

"The operating system must be process oriented." This
requirement was considered to violate the guideline that all
requirements be defined at the same level of scope. This
requirement defines in very general terms that there are
certain basic functions that the operating system must
provide at a process level. The implications of this
requirement have been made explicit in other requirements
which are defined at a level more consistent with the remain-
ing requirements set. Therefore, the requirement was changed
to a design philosophy and appears as requirement 3 in the

final requirements set.

- 92 -

7.1.2 FINAL REQUIREMENT 6:

"Input/output devices are limited to card readers for
input job streams and line printers for output." 1I/O
devices were limited by the designers of the Sample Operating
System to card readers and printers. This was not made
explicit in the preliminary requirements set and, therefore,
is included in the final requirements set as a design
constraint.

7.1.3 PRELIMINARY REQUIREMENT 11:

"User communication with the operating system is via
SVC instruction." This requirement was considered to violate
the implementation independence guideline for requirement
definition. The specification of "SVC instruction" con-
strains the viewpoint of the designer unnecessarily.
Therefore, the requirement was re-written and appears as
requirement 12 in the final set: "User communication with
the operating system is via special call".

7.1.4 PRELIMINARY REQUIREMENT 13:

"The supervisor process must create and delete the
environment in which a job runs." This requirement was
awkward and unclear. Therefore, it was re-written as
requirement 19 in the final set: "The supervisor process
must schedule jobs and prepare the job for execution".

7.1.5 PRELIMINARY REQUIREMENT 24:
"A process shall be blocked, and control released to

the traffic controller, when a timer runout trap is detected."

- 93 -
This requirement states that there is a time limit
established for processes; yet, it does not explicitly state
the time limit. Therefore, the requirement was re-written
making the time limit explicit, and is presented as
requirement 25 of the final set: "A process must be blocked
and control released to the process scheduler when a time
quantum of 50 ms is exceeded".
7.1.6 PRELIMINARY REQUIREMENT 23:

"The supervisor process must reclaim all system
resources when an error condition abnormally terminates a
job." This requirement was unclear, since a user process 1is
created for each job. Also the user may create additional
processes, any one of which may create an error which
terminates an entire job. Therefore, the requirement was
re~defined and is presented as requirement 29 in the final
set: "The supervisor process must reclaim all system
resources when an error condition is raised by a process".
7.1.7 PRELIMINARY REQUIREMENT 41:

"Input/output devices operate via multiplexor channel."
This requirement violates the implementation independence
guideline for requirement definition, and is in fact
redundant in the case where devices are dedicated. The
requirement was, therefore, eliminated.

7.1.8 PRELIMINARY REQUIREMENT 43:

"The name of the sending process must be prefixed to a

message." This requirement violated the implementation

independence guideline for requirement definition, since the

- 94 -

real issue is the fact that the receiving process must be
able to determine which process sent the message. Therefore,
the requirement was re-written and is presented as require-
ment 53 in the final set: "The process receiving a message
must be able to determine the originator of the message".
7.1.9 PRELIMINARY REQUIREMENT 43:

"A process synchronization mechanism must be provided."
This requirement was the source of a number of inconsisten-
cies in the first iteration of the design problem. Upon
closer examination, it was determined that the process
synchronization mechanism has a number of specific uses.
The requirement was re-defined to clarify the use of the
process synchronization mechanism and hopefully, reduce the
incqnsistencies in the design problem. The requirement was
re-defined as follows:

Final Requirement 43

"A process synchronization mechanism must be provided
to serve as a lock on a database.”

Final Requirement 44

"A process synchronization mechanism must be provided
for the timing of synchronization processes.”

Final Requirement 45

"A process synchronization mechanism must be provided
for synchronization between the send and receiver in

message processing."

- 05 -

Final Requirement 46

"A process synchronization mechanism must be provided

to lock a device."

7.1.10 PRELIMINARY REQUIREMENT 44:

"An interrupt mechanism must be provided." This

requirement was identified as being poorly defined and

leading to inconsistencies

in the first iteration of the

design problem. An interrupt handler is provided by the

operating system for a number of specific interrupt

mechanisms. Therefore, this requirement was re-defined to

explicitly define each of the interrupt handlers as follows:

Final Requirement 47

"An interrupt handler
interrupts.”

Final Requirement 48

"An interrupt handler
program interrupts."”

Final Requirement 49

"An interrupt handler
call interrupts."

Final Requirement 50

"An interrupt handler
external interrupts."

7.1.11

routine must be provided for I/0

routine must be provided for

must be provided for supervisor

must be provided to handle

The following requirements were found to be missing

from the original requirements set and, therefore, added:

- 96 -

Final Requirement 71

"The I/O interrupt handler routine must provide for
a synchronous scheduling of a process requiring fast
processing."

Final Requirement 72

"The operating system must include a task which loads
the 0/S into the computer and defines the processing
environment."
These changes were incorporated into the final requirements
set, and the interdependencies between requirements were
assessed. The next section presents an analysis of the
resulting problem structure after the application of the

decomposition methodology.

7.2 Analysis of the Resulting Problem Structure for the

Second Iteration

A total of seventy-two requirements were input into the
software analysis package for decomposition. Appendix I
contains a copy of the output of the decomposition and will
be referred to during the analysis. As before, the analysis
prbceeded in the following manner.

First, the input data was verified.

Second, all isolated nodes were identified. 1In this
decomposition, requirement 72, "The operating system must
include a non-system resident task which loads the O/S into

the computer and defines the processing environment" was

_97..
identified as being isolated. Although certainly a
consideration for design, the initial program load routine
is tailored to the final operating system design. The IPL
routine may call routines provided by the operating system,
but the requirements for IPL are not usually considered in
the design of the operating system. As before, all padded
nodes were deleted at the time.

The adjacency matrix was decomposed according to the
procedure outlined in section 2.3 and the results, including
a heirarchical tree are presented in Appendix I. The design
requirements decomposed into eight clusters or main sub-
problems. The heirarchical clustering method -3 was used to
generate the evaluation parameters. The evaluation para-
meters resulting from the second iteration are presented

with those from the first iteration for comparison:

First Second
Iteration Iteration Change

Strength 1.9864 2.733 27% increase
Coupling .8674 1.32 34% increase
Measure 1.1119 1.411 20% increase
Coupling/ o

Strength .43 .48 10% increase
Average Main

Subproblem 10.16 8.125 25% decrease

Size

An examination of the evaluation parameters indicates that
all have increased from the first to second iteration, with

the coupling parameter showing the largest increase.

- 98 -

Note also that the strength has increased as well from
the first to the second iteration. An increase in strength,
which is the normalized evaluation of subproblem internal
coherence, indicated that the main subproblems which have
been identified focus closely on the general subject of each
main subproblem.

Thus, an increase in the strength and coupling para-
meters has resulted in an increased measure for the "good-
ness" of the main subproblem decompositions. This measure
is strictly relative from the first iteration to the second
iteration. The real value of the second iteration lies in
the increased understanding of the problem structure which
is generalized by the decomposition methodology.

The remaining sections will analyze and descripe the
resulting problem structure. The final section of the
chapter will present a comparison of the similarities and
differences of the design structure implied by the first

and second iterations.

7.3 Main Subproblems

The problem structure resulting from the application of
the decomposition methodology is presented in Figure 7.1;
The problem structure was interpreted as being composed of
the main subproblems depicted as blocks in Figure 7.1, the
subproblems, generated by a second decomposition, depicted

as circles within the parent main subproblem. The inter-

99 -

Supervisor
Process

Extended Machine
Instruction Mechanism

Process Control Functions

Process System Process
Scheduling Initiated Initiated
nterrupt Interrupt

Process Creation

Interprocess Communication

0/S Information Message
Tables Facility

Memory Allocation Function

Device Management
Functions

Process Synchronization
Functions

FIGURE 7.1 Problem Structure Implied by
the Second Iteration of the
Decomposition Methodology

- 100 -

dependencies among the elements of different subproblems
were generalized into interfaces which are required in the
design process between subproblems.

The eight main subproblems have been generalized into
the following groups:

1) Supervisor Process.

2) Extended Machine Instruction Mechanism.

3) Process Control Functions.

4) Process Creation Functions.

5) Interprocess Communication.

6) Memory Allocation Functions.

7) Device Management Functions.

8) Process Synchronization Function.

The requirement statements have been separated into these
eight main subproblems and are presented in Appendix J.

The following discussion will highlight the general and
specific characteristics of the design structure implied by
the decomposition methodology.

7.3.1 SUPERVISOR PROCESS:

The requirements which decomposed into the supervisor
process main subproblem were all concerned with the genera-
tion of a multi-programming environment through the
supervisor process. The supervisor process 1is that process
which prepares and schedules the user jobs for execution.
The supervisor process then consists of a number of specific

tasks which must be performed for each job entering the

- 101 -

system. As contained in main subproblem 1, these tasks
include:

. Resource allocation: system resources must be allo-
cated to each job as it enters the system. These
resources consist of memory and devices.

. Job scheduling: the supervisor schedules each job
for execution. This system uses a very simplified
algorithm (first-come, first-served).

. Loading: the supervisor process must load each user
job into a specific memory area.

. Characteristics of the supervisor process: the
supervisor process must be modularized and all system
processes are written in re-entrant and shared code.

This main subproblem had the lowest individual strength
parameter for all the main subproblems, indicating that the
requirements are not exceptionally cohesive; or conversely
that the requirements in the main subproblem cover a wider
scope.

The main subproblem did not decompose on the second
decomposition.

7.3.2 EXTENDED MACHINE INSTRUCTION MECHANISM:

The requirements in this main subproblem are all
concerned with the extended machine instruction mechanism.
The description of the Sample Operating System in section
3.2 included a brief explanation of the purpose of the
extended machine instructions. Basically, the extended

machine instructions were provided to enable the user to

- 102 -

perform certain resource management functions and hardware-
like instructions.

This main subproblem contains the requirements which
deal with the characteristics and protocols for the use of
the extended machine instructions.

This main subproblem did not decompose on the second
decomposition.

7.3.3 MS 3 PROCESS CONTROL FUNCTIONS:

The requirements in the subproblem are all concerned
with the functions necessary to control processes in the
operating system. Once created, a process may be "blocked"
or ready to run. When "ready to run", a process may be
"running" or "waiting". This main subproblem identifies the
states of blocked, running, or waiting. This main sub-
problem also identifies what conditions may change a process
state and how resource allocation is state-dependent.

The redefinition of the interrupt handler requirement
is clearly apparent in this main subproblem. The control of
processes in the operating system is interrupt-driven; that
is, once a process becomes eligible to run, its execution
"is dependent upon a number of interrupts which are generated
in response to an asynchronous or an exceptional event in
the program. This main subproblem includes all of the
interrupt handler routines and, therefore, provides for the
control of processes.

The main subproblem contained two requirements which

did not seem to fit into the classification of process

- 103 -

control. They are:

Requirement 23

"Supervisor routine must reclaim all system resources
when a job is completed."

Requirement 29

"Supervisor routine must reclaim all resources when an

error condition is raised."

These requirements seem to belong in the supervisor process
main subproblem. The supervisor process is initially
created, one per input job stream. It performs its func-
tions of resource allocation, scheduling, and loading as a
separate process. After all this has been done, the super-
visor process is no longer needed until the user's job ends.
It stops running and waits for a message, "success" or
"failure", signalling completion to come from the user's
program.

According to this scheme, the supervisor is dependent
upon an interrupt signal generated by the user for successful
completion, or by the system in the way of an error, to
restrict and reclaim all the resources of the current user.
Therefore, the mechanism by which the supervisor process is
signalled to restart is contained in the interrupt handler.
This is a case in which the implementation scheme of the
interrupt handler and supervisor process restart ought to be
considered simultaneously. When viewed from this perspec-
tive, it makes sense that requirements 23 and 29 were

decomposed into main subproblem 3.

- 104 -

This main subproblem decomposed into three subproblems
during the second decomposition.
7.3.4 MS 4 PROCESS CREATION:

The requirements in this main subproblem were all
concerned with the protocols for process creation. Initially
the operating system creates a single process for each user's
job. The user may then create additional processes dynami-
cally during execution. Naturally the system imposes certain
constraints and procedures upon the dynamic creation of
processes. These constraints and procedures are the focus
of this main subproblem and deal with:

. When the user may create additional processes?

. How or by what mechanisms may these processes by

created?

. How are user processes identified?

. What restrictions are imposed upon dynamically

created processes?
It is noted that dynamic creation of user processes is one
of the main functions necessary for multi-programming since
the processes are time-sliced for CPU usage.

This main subproblem did not decompose any further.
7.3.5 MS 5 INTERPROCESS COMMUNICATION:

The requirements in this main subproblem were concerned
with the tables and features provided by the operating
system for interprocess communication. The main mechanism

for interprocess communication has been previously identified

- 105 -

as the message facility. This main subproblem contains all
the requirements for the message facility, as well as the
requirements for system tables required to monitor and
control processing. These two groups of requirements have
been generalized under the heading of interprocess communi-
cation since the operating system communicates internally
with information tables and user processes communicate via
the message facility.

This main subproblem had the highest strength parameter
of all main subproblems, indicating that this main sub-
problem had the greatest internal cohesiveness among require-
ments. This main subproblem decomposed into two well-
defined subproblems in the second decomposition.

7.3.6 MS 6 MEMORY ALLOCATION FUNCTIONS:

The requirements in this main subproblem were all
concerned with the protocols for memory allocation within
the Sample Operating System. This main subproblem
represents a distinct change from the first iteration in
which numerous resource allocation procedures were also
contained in this main subproblem. The second iteration has
resulted in a very well-defined main subproblem; its
strength parameter was the second highest, which did not
decompose upon the second decomposition.

7.3.7 DEVICE MANAGEMENT FUNCTIONS:
The requirements in the main subproblem were all

concerned with the functions required for device management.

- 106 -
This main subproblem was virtually unchanged from the
previous iteration.

The main subproblem contains the requirements which
deal with the following issues:

. The existence and functions of a device management

system.

. Procedures for requesting resources and I/O by the

user.
This main subproblem did not decompose upon the second
decomposition.
7.3.8 PROCESS SYNCHRONIZATION FUNCTIONS:

The requirements in the main subproblem are specifi-
cally concerned with the process synchronization mechanism
provided by the Sample Operating System. This main sub-
problem resulted from the redefinition of the global process
synchronization requirement contained in the first iteration
of the decomposition process. The requirements were re-
defined and analyzed independently from each other. The
process synchronization mechanism is used extensively
throughout the Sample Operating System to provide a linked
list for the sequential locking of resources.

The existence of a main subproblem dealing exclusively
with the process synchronization mechanism indicates that
the implementation of this mechanism warrants the equiva-
lent amount of design consideration given to the other main

subproblems.

This

7.4 Subp

- 107 -

main subproblem did not decompose any further.

roblems Generated by a Second Decomposition

A se
section 7
MS 5 into
following
problems.
7.4.1 MS

MS 3

1)

2)

cond decomposition was conducted as described in
.2, and resulted in the decomposition of MS 3 and
three and two subproblems respectively. The

discussion will describe the resulting sub-

3 PROCESS CONTROL FUNCTIONS:
decomposed into three subproblems as follows:
MS 3A Process Scheduling:

All of the requirements in this subproblem were
concerned with the procedures necessary to schedule
a process in the Sample Operating System. This
subproblem was similar to MS 2A Process Creation
and Scheduling, except that the functions of
process creation have now been separated into an
entire main subproblem.

MS 3B System Initiated Interrupts:

The requirements in this subproblem define the
types of interrupts that are system generated to
control processing. These interrupts are centered
around the time-slicing of CPU usage to achieve
multi-programming. The system may also supply
interrupt handler routines for supervisor calls

and for external interrupts.

3)

7.4.2

- 108 -

MS 3C Process Initiated Interrupts:

In contrast to MS 3B, the requirements of this
subproblem are concerned with the means by which
user processes may signal the operating system via
interrupts to control processing. The user process
must signal completion to the operating system so
that resources may be reclaimed and other processes
scheduled. Therefore, the subproblem is primarily
concerned with user signalling completion to the
operating system. As previously pointed out in
section 7.3.3, this subproblem also contains the
requirements that the supervisor process be

restricted upon completion of the user's job.

MAIN SUBPROBLEM 5: INTERPROCESS COMMUNICATION:

MS 5 decomposed into two subproblems as follows:

1)

2)

MS 5A Operating System Information Tables:

The requirements in this subproblem are
concerned with the operating system's use of infor-
mation tables to monitor and control processing.
The requirements deal with the existence of such
tables and the fact that the tables must be
dynamically allocated and released by the operating
system.

MS 5B Message Facility:
The requirements of this subproblem are

concerned with the existence of a message facility

- 109 -

for user process communication. The message
facility is the primary means of user process
communication and, like information tables, must be
a dynamically allocated table to enable queuing of
messages. The requirements deal with the pro-

cedures and constraints for sending and receiving

messages.

7.5 Relationships Among the Main Subproblems

The relationships among the main subproblems were
investigated as previously explained in section 6.4. The
linkages between main subproblems were generalized into inter-
faces between the main subproblems. It is noted that the
second iteration resulted in a large number of main sub-
problems and a larger coupling parameter. Therefore, the
number of linkages between main subproblems was expected to
be much greater than in the first iteration. A comparison
was made of those subproblems actually having linkages in

the first and second iteration.

First Iteration Second Iteration

Average number of

linkages between 3.52 links 2.52 links
subproblems for

Wh+Ch linkages subproblem subproblem
exist
Number of existing 27 36
linkages

Although the number of subproblems having linkages is

greater in the second iteration (36 vs. 27), the average

- 110 -

number of linkages between subproblems is more than a third
less. This indicates that the interface between two given
subproblems may be more highly defined since the linkages
will focus on a fewer number of issues. The following
discussion will attempt to make the definition of interfaces
between subproblems more explicit.
7.5.1 LINKAGES BETWEEN MS 1 SUPERVISOR PROCESS AND

MS 2 EXTENDED MACHINE INSTRUCTION MECHANISMS:

The interface between these two subproblems is formed
due to the use of a special call instruction to request
resources from the supervisor.

7.5.2 MS 1 SUPERVISOR PROCESS AND MS 3 PROCESS CONTROL
FUNCTIONS:

MS 1 and MS 3A Process Scheduling:

The interfaces between these two subproblems con-
sists of conflicting implementation. First, the memory
and device resources are allocated on a job level by
the supervisor. The processor is assigned on a process
level only when a process is runnable. Second, Jjobs
are scheduled strictly first-come, first-served, but
there is an I/O fast processing scheme that enables
asynchronous scheduling of a process requiring frequent
update.

MS 1 and MS 3C Process Initiated Interrupts:

The interface between these two subproblems consists

of the mechanism by which the supervisor process is re-

- 111 -

started after a user job terminates. MS 3C contained

the seemingly misplaced requirements that the super-

visor must reclaim resources when a job terminates.

This interface makes the association between the

supervisor process and user initiated job termination

explicit, and verifies the decomposition of subproblem

MS 3C.

7.5.3 MS 1 SUPERVISOR PROCESS AND MS 4 PROCESS CREATION
FUNCTIONS:

The interface between these two subproblems consists of
the protection mechanisms employed by the supervisor process
to insure that jobs are isolated from each other. The
mechanism is the creation of a single user process initially
for each job, which runs exclusively in the user's partition.
7.5.4 MS 1 SUPERVISOR PROCESS AND MS 5 INTERPROCESS

COMMUNICATION:

MS 1 and MS 5A Operating System Information Tables

This interface between these two subproblems deals
with the fact that the supervisor process must utilize
information tables to determine what resources are free or
in use to support multi-programming.

7.5.5 MS 1 SUPERVISOR PROCESS AND MS 6 MEMORY ALLOCATION:
The interface between these two subproblems obviously

concerns the fact that memory is a resource which must be

allocated by the supervisor process.

7.5.6 MS 1 SUPERVISOR PROCESS AND MS 7 DEVICE MANAGEMENT:

The interface between these two subproblems is of a

- 112 -

dual nature. First the device handler routine directly

supports multi-programming by providing multiple job streams

from multiple sources to the system. Second, devices are

resources which must be allocated to jobs by the supervisor

process.

7.5.7 MS 1 SUPERVISOR PROCESS AND MS 8 PROCESS
SYNCHRONIZATION:

The interface between these two subproblems is formed
when the supervisor process uses process synchronization
mechanism as a lock fcr resource allocation.

7.5.8 MS 2 EXTENDED INSTRUCTION MECHANISM AND MS 3 PROCESS

CONTROL FUNCTIONS:
MS 2 and MS 3B System Initiated Interrupts
The interface between these two subproblems concerns

the fact that the use of extended machine instructions
generates a supervisor call interrupt. A handler
routine must be provided which interprets the interrupt
and performs the intended instruction.

MS 2 and MS 3C Process Initiated Interrupts

The user signals process completion by a special
extended machine instruction which is the interface
between these two subproblems.

7.5.9 MS 2 EXTENDED MACHINE INSTRUCTION MECHANISM AND
MS 4 PROCESS CREATION FUNCTIONS:
The processes are restricted in their use of extended

machine instructions; therefore, this interface is concerned

- 113 -

with the fact that dynamically created processes run in the
problem state while extended machine instructions are
executed in the supervisor state.
7.5.10 MS 2 EXTENDED MACHINE INSTRUCTION MECHANISM AND
MS 5 INTERPROCESS COMMUNICATION:
MS 2 and MS 5B Message Facility
The message facility is available to all processes
via extended machine instructions. The interface is con-
cerned with the use of extended machine instructions in
support of the message facility.
7.5.11 MS 2 EXTENDED MACHINE INSTRUCTION MECHANISM AND
MS 8 PROCESS SYNCHRONIZATION:

The interface between these two subproblems is concerned
with the protocols for use of the process synchronization
mechanism. The synchronization mechanism is available via
extended machine instruction; but since it serves to lock
resources, it is restricted and cannot be called by user
processes.

7.5.12 MS 3 PROCESS CONTROL FUNCTIONS:
MS 3A Process Scheduling and MS 4 Process Creation
Functions
The interface between these two subproblems is
concerned with the scheduling of dynamically created
user processes. Since the scheduling is strictly
round-robin, a dynamically created process is scheduled

upon creation.

- 114 -

MS 3A and MS 5 Interprocess Communication/
MS 3A and MS 5A Operating System Information Tables

The interface between these two subproblems is
concerned with the fact that ready process control
blocks may be chained together to facilitate round-
robin scheduling.
MS 3A and MS 5B Message Facility

The interface between these two subproblems is
concerned with use of the message facility as a means
of providing process synchronization.
MS 3A and MS 8 Process Synchronization

The interface between these two subproblems is
concerned with the use, by the operating system, of
the process synchronization mechanism to schedule or
synchronize its own system processes.
MS 3B System Initiated Interrupts and MS 7 Device
Management Functions

The interface between these subproblems is the I/O
interrupt handler. The user process must request I/O
through the operating system and the I/O interrupt
handler is provided to service the user's request.
MS 3C Process Initiated Interrupts and MS 5B Message
Facility

The interface between these two subproblems is
concerned with the fact that when a process signals
completion, all messages waiting to be read by that

process are destroyed.

- 115 -

MS 3C and MS 6 Memory Allocation Functions
The interface between these two subproblems is
concerned with memory reclaimation once the user job
has completed.
MS 3C and MS 7 Device Management Functions
The interface between these two subproblems 1is
concerned with the fact that the device handler routine
must be terminated when a job is terminated.
MS 3C and MS 8 Process Synchronization
The interface between these two subproblems is
concerned with the fact that all locks set by the
operating system in consideration of a particular job
must be released when that job terminates.
7.5.13 MS 4 PROCESS CREATION FUNCTIONS AND MS 5 INTER-
PROCESS COMMUNICATION FUNCTIONS:
MS 4 and MS 5A Operating System Information Tables
The interface between these two subproblems is
concerned with protection mechanisms employed by the
operating system to protect dynamically created
processes. The operating system utilizes information
stored in tables to protect user processes.
MS 4 and MS 5B Message Facility
The interface between these two subproblems consists
of the identification of user processes so that message

originators and destinations may be defined.

- 116 -

7.5.14 MS 5 INTERPROCESS COMMUNICATION AND MS 6 MEMORY
ALLOCATION:

MS 5A Operating System Information Tables and MS 6
Memory Allocation

The interface between these two subproblems is
concerned with the use of information tables to allo-
cate memory. Memory allocation is heavily dependent
upon information tables to identify free areas and to
enforce protection rights for certain memory areas.
MS 5A and MS 7 Device Management Functions

The interface between these two subproblems is
concerned with device management functions which require
dynamic system tables to monitor and control the allo-
cation of device resources.
MS 5A and MS 8 Process Synchronization

The interface between these two subproblems is
concerned with the extensive use of process synchroni-
zation mechanism with a semaphore to serve as a lock
on a database. The counting semaphore may be used as
a prioritized list of processes waiting for a particular
resource.
MS 5B Message Facility and MS 8 Process Synchronization

The interface between these two subproblems is
concerned with the use of the process synchronization
mechanism to establish an ordered queue for the message

facility.

- 117 -

7.5.16 MS 6 MEMORY ALLOCATION FUNCTIONS AND MS 7 DEVICE
MANAGEMENT :

The interface between these two subproblems is con-
cerned with the use of job control language statements to
specify memory resource requirements. The JCL statement
requirement is decomposed into MS 7; therefore, all resource
requests must interface with MS 7 to specify the desired
resources.

7.5.17 MS 6 MEMORY ALLOCATION FUNCTIONS AND MS 8 PROCESS
SYNCHRONIZATION:

The interface between these two subproblems is
concerned with the use of the process synchronization
mechanism to serve as a lock on system tables to prevent
unauthorized access or modification.

7.5.18 MS 7 DEVICE MANAGEMENT AND MS 8 PROCESS
SYCHRONIZATION MECHANISM:

The interface between these two subproblems is concerned
with the use of the process synchronization mechanism to lock
devices in the device management function.

7.5.19 SUMMARY:

An investigation of the interfaces between pairs of
subproblems identified the most obvious relationships among
the main subproblems. In one case, described in section
7.5.2, the examination of interfaces has verified a seemingly
misplaced decomposition of requirements. The number of

interfaces among subproblems has decreased significantly in

— Room 14-0551
- —— 77 Massachusetts Avenue

» » Cambridge, MA 02139
M IT leran eS Ph: 617.253.5668 Fax: 617.253.1690
' Email: docs@mit.edu
Document Services http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Page 118 does not exist. There appears to just be a page
numbering error by the author.

j_morris
Typewritten Text
Page 118 does not exist. There appears to just be a page
numbering error by the author.

- 119 -

the second iteration, resulting in interfaces which are more
clearly defined.

The final section of this chapter will compare the
problem structures which were implied by the first and second

iterations of the decomposition methodology.

7.6 Comparison of the Design Structure Implied by the First

and Second Iterations

The method for analyzing the similarities and differ-
ences in the design structure implied by the first and second
iterations of the decomposition methodology was to compare
the subproblems which resulted from each iteration. Each
iteration was analyzed in isolation from the other; there-
fore, the title of each subproblem will not reveal any more
than a general similarity. The comparison must include an
analysis of the functions or issues involved in each sub-
problem to determine how the nature of each subproblem has
changed from the first iteration to the second.

The first iteration resulted in the decomposition of
sixty-five requirements into six main subproblems. Two of
the main subproblems decomposed a second time into two and
three subproblems. Therefore, the first iteration resulted
in a total of nine distinct subproblems for comparison. The
second iteration likewise originally resulted in a decompo-
sition of eight main subproblems, again two of which further

decomposed into two and three subproblems. Therefore, the

120 -

second iteration resulted in eleven distinct subproblems for

comparison.

7.6.1

GENERAL FUNCTIONAL COMPARISON:

The general function of each subproblem was investigated

from the first iteration and compared to the function of the

subproblem resulting from the second iteration. A pair-wise

subproblem comparison was suggested of the following form:

Subproblems From
First Iteration

Supervisor Process

Device Management
Functions

Message Facility

Resource and Memory
Management

Process Creation and
Scheduling

Process/Operating
System Interface

Process Time-Slicing

Multi-programming
Support Functions

Subproblems From
Second Iteration

1. Supervisor Process

2. Device Management
Functions

3. Message Facility

4. Operating System Information
Tables

5. Memory Allocation Functions

6. Process Creation

7. Process Scheduling

8. Extended Machine Instruc-
tion Mechanism

9. System Initiated Interrupt

10. Process Synchronization
Mechanism

11. User Initiated Interrupts

7.6.2 COMPARISON OF SPECIFIC SUBPROBLEM FUNCTIONS:

Supervisor Process:

Both iterations identified the need

for a supervisor process, which prepares and schedules Jjobs

- 121 -

for execution. The supervisor process in the second
iteration is more well-defined since it incorporates many

of the requirements which previously had been decomposed
into the multi-programming support subproblem. The require-
ments which shifted deal specifically with the functions of
the supervisor process in the support of multi-programming.

Device management functions: The subproblems generated

for the device management functions were nearly identical

for the first and second iterations. The subproblem
resulting from the second iteration included the requirement
for job control language statements. In the previous
iteration this requirement had been contained in the resource
and memory allocation function subproblem.

Message facility subproblems: The subproblems generated

for the message facility were identical from the first to
the second iteration. However, in the first iteration the
message facility constituted an entire main subproblem;
whereas in the second iteration, it was a subproblem
generated after a second decomposition.

Resource and memory management functions and operating

system information tables and memory allocation functions:

The first iteration of the design requirements generated
a main subproblem which was concerned with the allocation of
resources and specifically memory by the operating system.
This main subproblem was better defined in the second

iteration; in that two subproblems were generated which

- 122 -

separated the functions of the previous main subproblem.
Memory allocation subproblem, in the second iteration, is
specifically concerned with these requirements for memory.
The operating system information tables subproblem deals
with the protocols and information requirements which had
been associated with the general resource management
functions of the first iteration. 1In addition, the mechanics
of resource allocation were decomposed into the supervisor
process subproblem of the second iteration which has resulted
in more well-defined subproblems.

Process creation and scheduling functions and process

creation and process scheduling functions: The single sub-

problem, Process Creation and Scheduling Functions, of the
first iteration, was decomposed into one main subproblenm,
Process Creation and one subproblem, Process Scheduling
Functions in the second iteration. The requirements
involved in both iterations are identical. The functional
separation achieved in the second iteration has resulted in
more clearly defined subproblems.

Process/operating system interface and extended machine

instruction mechanism: The requirements contained in each

of these two subproblems are nearly identical from the

first to the second iteration. However, in the first
iteration, the process/operating system interface was a sub-
problem; whereas in the second iteration, the extended
machine instruction mechanisms constituted an entire main

subproblem.

- 123 -

Process time-slicing and system initiated interrupts:

The requirements for process time-slicing decomposed in the
first iteration into a single subproblem entitled "Process
time-slicing". In the second iteration, the definition of
the interrupt handler requirement had been considerably
expanded. One result was the definition of a subproblem
dealing with system initiated interrupts. The main focus of
system initiated interrupt handler was with time runout
however, it also included the requirements external and I/O
interrupt handler routines as well.

Multi-programming support functions and process sychron-

ization mechanism: The multi-programming support function

main subproblem, generated in the first iteration was
eliminated in the second iteration, being replaced by the
process synchronization mechanism main subproblem. The
multi-programming support functions included many functions
which belong to the supervisor process. In fact, it was
previously argued that the supervisor process main subproblem
could have been considered a subset of the multi-programming
main subproblem. In the second iteration, all of the
requirements representing supervisor process funptions have
been decomposed into that main subproblem.

The process synchronization mechanism requirement was
re-defined from the first to the second iteration. Since
this mechanism provides basic multi-programming support, it

had decomposed into the multi-programming support main sub-

- 124 -

problem in the first iteration. After the redefinition in
the second iteration, the process synchronization mechanism
had decomposed into a distinct and separate main subproblem.

User initiated interrupts: The redefinition of the

interrupt handler routine requirements from the first to

the second iteration resulted in the decomposition of a sub-
problem dealing with user initiated interrupt handler. Since
the main focus of this subproblem involves the user signaling
completion of a job, it had no similar subproblem counter-

part from the first iteration.

7.7 Summary
The comparison of the problem structure implied by the
first and second iterations yields the following results:
. The second decomposition resulted in a greater number
of subproblems.
The subproblems resulting from the second decomposi-
tion were more well-defined than those resulting from
the first iteration.
. The changes in subproblems from the first iteration to
the second were inituitive and seemed to result in a
better problem structure.
. The interfaces between subproblems in the second iter-
ation were also more clearly defined.
The next chapter will analyze the implications of the second
iteration problem structure on the design of the Sample

Operating System.

- 125 -
CHAPTER VIII

IMPLICATIONS OF THE DECOMPOSITION PROCESS
FOR THE DESIGN OF THE SAMPLE OPERATING SYSTEM

The motivation for applying the decomposition method-
ology was to generate a framework upon the design require-
ments of the Sample Operating System to provide insight and
understanding of the relationships among the system
requirements. The framework resulted in the identification
of subproblems of system requirements and the establishment
of relationships between pairs of subproblems. The frame-
work then constitutes a better basis for the subsequent
detailed design stage, than the original disjoint set of
requirements. Better in the sense that a design team now
has a framework; i.e., design subproblems, in which
alternative implementation schemes may be thoroughly
investigated.

The prupose of this chapter is to examine the sub-
problems, which resulted from the second iteration of the
decomposition methodology, from the perspective of the
completed Sample Operating System to determine if the
completed design is verified by the results of the decompo-
sition methodology. The verification procedure was first
to determine if the Sample Operating System was designed in
a manner consistent with the intuitive results of the
decomposition methodology by a comparison of the specific

functions identified for the heirarchically structured Sample

- 126 -

Operating System with the functions generalized for each
subproblem by the decomposition methodology. The procedure
attempted to determine if the decomposition methodology
indeed provided a framework for design; yet was sufficiently
unconstraining so that a designer was free to investigate
alternative implementations and still arrive at the final
Sample Operating System design as it exists.

Since the design process for the Sample Operating
System is not documented in a manner that would elucidate
the decisions made by the designers in the early stages of
the design process, a description of the final system was,
therefore, used extensively as the only documentation aid
for the system.

The second part of the verification procedure was to
identify inconsistencies, non-intuitive design features, or
contentions that were made obvious through the application

of the decomposition methodology.

8.1 Design Overview of the Sample Operating System

The description of the Sample Operating System by
Madnick and Donovan included a design overview, which closely
represented the major design decisions. The design overview
is presented to highlight both the design philosophy and the
intent of the system designers.

"The design of the Sample Operating System follows

closely the framework presented in (Fig. 8.1).28"

28Madnick and Donovan, p.19.

- 127 -

"We build our concept of an operating system around
a process. We recognize that there are certain
requirements necessary to support processes. A process
in the proper environment could call certain basic
functions. Unfortunately, most present-day hardware
does not provide these basic functions."

"Thus, our first design task is to build basic
functions (extended machine for process support). These
comprise the nucleus or Kernel of the operating system.
Examples of these basic functions are the P-V operations,
basic multiprocessing support, and traffic controlling.
The reader can think of these software functions as
being executed in the same way as hardware instructions.

"It is best to think of the Kernel as being an
extended machine that consists of a number of extended
instructions. In this implementation, the extended
instructions are accomplished by means of the supervisor
call instruction.....

"....Certain operating system functions can be
provided in the form of special system processes rather
than system primitives. In this sample operating
system, there are several such processes, including the
supervisor processes (job stream handlers) and the
device handler processes..... ...The hierarchical
construction of the Kernel is such that each successive

level, from the bottom up, depends only on the

- 128 -

existence of those levels below it, and not on those
above it. This approach has the advantage of pedago-
gical clarity, offers debugging ease, and may be

relevant to the development of new theory."29

From Figure 8.1 one may discern five levels and layers (or

modules) of the Sample Operating System.

[:Process Management, lower module (lowest)

Levels Memory Management Module
l-—Process Management, upper module
Device Management Module
Layers [

Supervisor Process Module (highest)

The functions of process management have been split
into a lower module and an upper module because certain
functions of process management (upper module) depend upon
memory management functions, but memory management itself
depends on certain process management routines that must be
in a module below memory management. Clearly this step
increases the pedagogical clarity of operating system. It
is also noted that the Sample Operating System has no
spooling process nor information management (file) system.

An examination was conducted of the functions of each
level and layer in the heirarchical operating system
structure of the Sample Operating System to determine if
they correspond to the functions of the subproblems identi-

fied in the decomposition methodology.

29Madniek and Donovan, pp.383-385.

- 129 -

[JoBs |

Supervisor Process

/| (job scheduler)
/7 7 \
AN
J/ / \
/ ¥
72 Process 1 Process 2
4
r/’ ~Process 3
SPOOLing 2
\0
;&o Level 5

Level 3

Level 1

Bare
machine

rocessor manageme
lower module

emory management
Processor management upper
Device management
Information management

FIGURE 8.1 Heirarchical Design Structure of the Sample
Operating System

- 130 -

8.2 Functional Comparison of the Levels and Layers of the

Sample Operating System with the Subproblems Generated

By the Decomposition Methodology

8.2.1 PROCESS MANAGEMENT (LOWER) MODULE COMPARED WITH
PROCESS CONTROL AND PROCESS SYNCHRONIZATION MECHANISM
SUBPROBLEMS :

The functional description of the process management

(lower) module is as follows:

The module schedules and runs processes that are
eligible to run and provides the basic primitives for
synchronization of processes.

These functions are wholly contained in the two main sub-

problems of Process Control and Process Synchronization

mechanism. The process control main subproblem as described
in section 7.3.3 is concerned with the functions necessary
to control all processes in the operating system. This
main subproblem decomposed into three subproblems; specifi-
cally, process scheduling, system initiated interrupt
handler, and user initiated interrupt handler. The process
scheduler is concerned with the procedure for scheduling
eligible processes and corresponds to the process scheduler
of the Sample Operating System. The system and user
initiated interrupt handlers define the functions necessary
for process multiplexing by the operating system and the
user. These functions essentially distinguish between

eligible and ineligible processes.

- 131 -

The second main subproblem included in the comparison
is the process synchronization mechanism. As described in
section 7.3.8 this main subproblem is concerned with the
specific function of the synchronization mechanism and
directly corresponds with the "basic primitives for synchro-
nization of processes" described in the process management
(lower) module of the Sample Operating System.

8.2.2 MEMORY MANAGEMENT MODULE COMPARED WITH THE MEMORY
ALLOCATION MAIN SUBPROBLEM AND OPERATING SYSTEM
INFORMATION TABLES SUBPROBLEM:

The functional description of the memory management
module is as follows:

This module performs the operations necessary for
the dynamic allocation and freeing of memory for:
a) job allocation.
b) operating system dynamic allocation.

The allocation functions defined for job and system needs

correspond to the functions described in the memory

allocation main subproblem and operating system information
table subproblem as described in section 7.3.6 was concerned
with the protocols for memory allocation and directly
correspond to the functional description of the memory
management module for job partitions.

The operating system information table subproblem was
decomposed from the interprocess communication main subprob-

lem. As described in section 7.4.2 this subproblem is

- 132 -

concerned with the use of information tables to monitor and
control processing and corresponds to the memory management
module allocation functions for memory for operating system
dynamic allocation. It is noted that the decomposition
methodology defined the functions of operating system
dynamic allocation of memory for information tables as a
subproblem of interprocess communication; whereas the
designers of the Sample Operating System treated the func-
tions as a subproblem of memory management. The conceptual
distinction is as follows:

a) Decomposition of the information table requirements
as a subproblem of interprocess communication
resulted from an assessment of "What" was the
function of information table? The function 1is,
of course, to monitor and control processing by
communicating the status of resources thru tables
shared among the processes of the operating system .

b) The treatment of the dynamic allocation of memory
for information tables (operating system dynamic
allocation) resulted from an assessment of how is
the information table requirement to be implemented?
Since the function requires a significant amount of
memory allocation, it was considered a subproblem
of the memory management module.

The interdependencies among reguirements were assessed

in an implementation independent environment. The applica-

- 133 -

tion of the decomposition methodology, a framework (i.e.,
subproblems) in which alternative implementation schemes
may be thoroughly investiaged. For the final design, the
information table subproblem was combined with the memory
allocation subproblem to form the memory management module
of the Sample Operating System.

This comparison raised the following issue:

If a main subproblem decomposes upon the second
decomposition should one assess the main subproblem as com-
posed of several subproblems or should one assess the
subproblems as independent design problems at the same
level as main subproblems?

The purpose of decomposition methodology is to provide
a framework of subproblems in which the designer is free to
optimize the subproblem by investigating alternative
implementation schemes. The framework is meant to provide
a structure for the desigﬁer, but not to impose additional
constraints upon the designer's freedom. Since the assess-
ment of subproblems as independent design problems offered
more flexibility to the designer, one should, therefore,
assess subproblems resulting from a second decomposition at
the same level as main subprgblems. In terms of the
previous comparison, treating the operating system informa-
tion table subproblem within the structure of the inter-
process communication main subproblem would have added a

constraint upon the system designer.

- 134 -

8.2.3 PROCESS MANAGEMENT (UPPER) MODULE COMPARED WITH THE
PROCESS CREATION SUBPROBLEM AND THE MESSAGE FACILITY
SUBPROBLEM:

The functional description of the process management
(upper) module is as follows:

"The module provides routines for:

a) the control of processes; specifically, creation
and deletion.

b) interprocess communication with buffered
messages."30

These functions correspond to the functions of the
process creation subproblem and the message facility sub-
problem. The process éreation subproblem, as described in
section 7.3.4, is concerned with the protocols for process
creation, and correspond directly with the functions of this
operating system module.

The second subproblem included in this comparison is
the message facility subproblem which was decomposed from
the interprocess communication main subproblem. For reasons
stated in the last section, the message facility subproblem
was treated as an independent design problem at the level
of a main subproblem. Its functions, as described in
section 7.4.2, are concerned with the existence and use of
a message facility by all process for interprocess communi-
cation. These functions correspond with the functions of

"interprocess communication with buffered messages" as
30

Madnick and Donovan, p.388.

- 135 -

specified in the process management (upper) module.
8.2.4 DEVICE MANAGEMENT MODULE COMPARED WITH THE DEVICE
MANAGEMENT FUNCTION SUBPROBLEM:
The functional description of the device management
module is as follows:
"This module provides the routines necessary to
issue the appropriate input/output commands to
extended devices. A special portion of the device
management routine handles interrupts."3l
These fﬁnctions correspond to the functions contained in
the device management function subproblem. As described in
section 7.3.7, this subproblem is concerned with the
functions required for device management, specifically, the
procedures for requesting resources and I/0 by the user.
8.2.5 SUPERVISOR PROCESS MODULE COMPARED WITH THE
SUPERVISOR PROCESS MAIN SUBPROBLEM:

As implied by the title of this section, both the
module and the main subproblem are nearly identical.

The functional description of the supervisor process
module is as follows:

"This module serves as the job scheduler. It can
use all the functions provided by the previous modules

w32

to create an interface for the process of user jobs.

These functions correspond exactly with the functions of the

SJMadnick and Downovan, p.389.
SzMadnick and Donovan, p.389.

- 136 -
supervisor process main subproblem. As described in section
7.3.1, the supervisor process 1is concerned with the
generation of a multi-programming environment for user
processes. It is that process which prepares and schedules
user jobs for execution.
8.2.6 SUPERVISOR CALL HANDLER COMPARED WITH THE EXTENDED
MACHINE INSTRUCTION MECHANISM MAIN SUBPROBLEM:

Madnick and Donovan describe an additional group of
routines which are not reflected in the heirarchical opera-
ting system structure as follows:
"Several routines don't conveniently fit our
heirarchical level structure. The most notable case
is the SVC handler used to activate the extended
machine instructions and transfer between levels."
The requirements for these réutines are wholly contained in
the functional description of the extended machine instruc-
tion mechanism main subproblem. As described in section
7.3.2, the main subproblem is concerned with the character-
istics and protocols for the use of the extended machine
instructions. ‘Since these instructions may be called by any
level or layer of the operating system, they cannot be
generalized into the heirarchical system structure.
8.2.7 SUMMARY OF THE FUNCTIONAL COMPARISON:

The comparison of the functions of the modules for the
Sample Operating System with the functional description of

the requirements contained in each design subproblem defined

- 137 -

by the description methodology has yielded several
instruction insights:

. The rationale for treating design subproblems,
resulting from the second decomposition of a main
subproblem, as independent design problems at the
level of main subproblems was developed. Since
independent design problems provide a framework,
yet impose fewer constraints upon the designer,
the design process should deal with subproblems
as independent design problems to be optimized.

. The decomposition methodology identified a greater
number of subproblems, and the subproblems were
internally more defined, than the levels and layers
of the final operating system design. For instance,
the process management (lower) module has three
distinct functions:

a) schedules and run processes;

b) defines eligible processes;

c) provides basic system primitives.
The decomposition methodology identified four sub-
problems to correspond with the function process
management (lower) module; specifically:

a) process scheduling function:

b) system initiated interrupt handler;

c) user initiated interrupt handler;

d) process synchronization mechanism.

- 138 -

The designer now has at his disposal a framework in
which the functions of each subproblem are clearly defined,
internally. The designer next investigates alternative
implementation schemes to satisfy the requirements of each
subproblem. In addition, the interfaces between pairs of
subproblems are clearly defined so that, in the case of
system and user initiated interrupt handler, common functions
or processing may enable concurrent implementation schemes
for subproblems so closely related.

Therefore, the designer‘is presented with a clearly
defined framework of subproblems which he may choose to
agglomerate into larger modules to satisfy the design
problem.

The next section will investigate some of the inconsis-

tencies identified by the decomposition methodology.

8.3 Inconsistencies Identified in the Comparison of the

Sample Operating System and the Decomposition

Methodology

The inconsistencies identified in the comparison of the
Sample Operation System and the decomposition methodology
were of two types. First, the final design of the Sample
Operating System contained certain features that were not
reflected in the results of the decomposition methodology.

Second, process of requirements definition, interdependency

assessment, and application of the decomposition methodology

- 139 -

identified unresolved contentions or conflicts in the

Sample Operating System.

8.3.1 FEATURES OF THE FINAL DESIGN OF THE SAMPLE OPERATING
SYSTEM NOT REFLECTED IN THE RESULTS OF THE
DECOMPOSITION METHODOLOGY:

The main feature not captured in the decomposition
methodology was the heirarchical nature of the Sample
Operating System. This is significant because the heirarchi-
cal design incorporates a strictly limited interfacing
protocol between the levels and layers of the Sample Oper-
ating System in which each successive level from the bottom
up, depends only on the existence of those levels below it.

It can be argued that the heirarchical construction
technique was a design decision made in a later stage of the
design process since it satisfies the objective of the
design; that is, the modular and heirarchically structured
design is pedagogically'effective. Yet, the interface
protocols are very restricting and the separation of the
process management module into an upper and lower module
were dictated by existence dependence of upper levels upon
lower levels. Therefore, an investigation was made of the
linkages between subproblems to determine if the heirarchical
nature of the Sample Operating System could be inferred
"post facto" from the facilities available in the decomposi-
tion methodology.

The results of the previous section were used to

- 140 -

identify when subproblems and modules were equivalent.

Final Design Decomposition Methodology
Process Management (lower) Process Scheduling
Module

System Initiated Interrupt
Handler

User Initiated Interrupt
Handler

Process Synchronization
Mechanism

Memory Management Module Memory Allocation

Operating System Information

Tables
Process Management (upper) Process Creation
Module
Message Facility
Device Management Module Device Management Functions
Supervisor Process Module Supervisor Process
Supervisor Call Handler Extended Machine Instruction

Mechanism

Since the linkages between subproblems are assessed in
an undirected manner, and are symmetric, the actual direction
of the linkages could not be determined. Therefore, no
statement could be made in regard to an "upper" module
calling a "lower" module.

A comparisonwas made of the raw number of linkages
between subproblems. The tabulation of this comparison 1is
presented in Appendix K. It was expected that some sort of

trend might be established with the number of linkages,

- 141 -

cumulated first by subproblem, second by module. Specifi-
cally, since the process management (lower) module is the
closest to the bare machine, it must be used frequently and,
therefore, one would expect the number of linkages to it to
be relatively large. Conversely, the device management
module is a layer of the operating system; therefore, its
level of interfacing in raw numbers, should be considerably
less than the previous example.

The results of the comparison are as follows:

. The average number of linkages per subproblem equalled
16.18.

. Process management (lower) module had the greatest
number of linkages, yet no trend could be established.
That is, the number of linkages exhibited no signi-
ficant trend as one approached closer to the bare
machine.

. The fact that the process management (lower) module
had a greater number of linkages was due more to the
fact that it was composed of four subproblems, rather
than by any existence dependency.

Therefore, the decomposition methodology gave no inferrence
of a heirarchically structured operating system.
8.3.2 CONTENTIONS IDENTIFIED DURING THE APPLICATION OF THE
DECOMPOSITION METHODOLOGY :
During the process of requirement definition, inter-

dependency assessment, and application of decomposition

- 142 -

methodology, numerous unresolved issues were discovered
which could lead to contentions or conflicts during imple-
mentations. These issues were involved with the implementa-
tion of system requirements and were the result of the
application of worst case usage of the system to determine
if the requirements set was complete. The unresolved
contentions were as follows:
. The operating system must have some finite limit in
the number of jobs that it will accept before a
critical resource is fully allocated. The limit could
involve memory, dedicated devices, or IBM System/360
protection keys. The limit was not established in
the requirements, nor was any priority specified to
determine which is the criticaltresource.
. The message requirement number 56 states: "Any
number of messages, for a given process, may be queued
while waiting to be read by the process." Since the
memory area for buffered messages is dynamically
allocated, it is conceivable that one process could
do nothing but write messages to itself. Carried to
an extreme all of memory could be consumed by the
process in which event the system would become
deadlocked. Therefore, some finite limit should be
placed on the number of messages which a process may
have enqueued before it is forced to read the messages.

Requirement 24 states: "Ready processes are scheduled

- 143 -

in simple round-robin fashion by the process
scheduler." The process scheduler checks an informa-
tion table to determine if a given process is ready;
if it is not ready, the process scheduler checks the
next process in a sequential chain. It is conceivable
that all processes in the system may become blocked

at the same time. Therefore, the process scheduling
function must include some mechanism to first deter-
mine that all processes are blocked and second, to
attempt to resolve the situation.

The preceeding contentions became obvious during the
decomposition methodology. The lack of further contentions
was not meant to imply that no further contentions exist in
the Sample Operating System. The decomposition methodology
contained no rigorous methodology to determine if a complete

and consistent set of requirements had been defined.

8.4 Summary
The final design of the Sample Operating System was

verified by the results of the second iteration of decompo-
sition methodology. The decomposition methodology identified
eleven well-defined subproblems which corresponded in a
consistent manner with the functions of the six levels and
layers and SVC instructions handler of the final design of
the Sample Operating System.

The decomposition methodology did not infer the heir-

- 144 -

archical structure of the final design. However, the
‘identification of linkages between pairs of subproblems
explicitly defined the interfaces which were incorporated
into the modules of the final design.

The procedures involved in the decomposition methodology;
that is, requirements definition, interdependency assessment
and decomposition methodology, include no rigorous attempt
to ensure that a complete set of requirements was defined
for the Sample Operating System.

The next chapter will present recommendations for
improvements of the methodology based upon the analysis of

the Sample Operating System.

- 145 -
CHAPTER IX

CONCLUDING STATEMENTS CONCERNING THE
APPLICABILITY OF THE DECOMPOSITION METHODOLOGY
TO THE DESIGN PROCESS AND RECOMMENDATIONS
FOR IMPROVEMENT

The purpose of this chapter is to take a retrospective
view of the decomposition methodology applied to the Sample
Operating System. Based on the experience, conclusions
will be discussed concerning the applicability of the

decomposition methodology £o the design process.

9.1 Objectives of the Methodology

The objective of the application of the decomposition
methodology was to support the designer in the architectural
design phase by providing the designer with a framework in
which the design problem can be studied in a well-defined
and organized fashion. The architectural design phase
consists of a well-structured series of activities that the
design engineer should perform in order to achieve a better
understanding of the design problems at hand, as well as to
avoid implicit and unwarranged preconceptions that can bias
the eventual design significantly. The decomposition
methodology supports the architectural design phase by
clustering the global system requirements into subproblems.
The methodology then does not purport to provide a best
answer, since the techniques are satisfying rather than

optimizing.

- 146 -

The purpose of this chapter, the methodology must be
expanded to include the following stages:

. Requirements definition stage;

. Interdependency Assessment Stage;

. Application of the Decomposition Methodology Developed

by Andreu.

The methodology supports the design process by
decomposing system requirements into subproblems. The sub-
problem concept narrows the scope of consideration of the
design engineer to more specific well-defined areas of
concern. But as pointed out by Leopold, Svendsen, and
Kloehn,33 subproblems create more levels of management and
organizations produce designs which are copies of the
communication structure of the organization. The result can
be that the solution to the design problem becomes a series
of compromises based on political expediency rather than
on technical objectivity. Any methodology must provide for
better communication based on technical objectivity to
satisfy the design problem.

The decomposition methodology facilitates consideration
and discussion of the system requirements, system objectives
and constraints early in the design process. In fact, the
methodology forces the user to conduct a pair-wise assess-

ment of the interdependencies of all requirements. This is

3gﬁeuven Leopold, Edward C. Svendsen, and Harvey Kloehn,
"Warship Design/Combat Subsystem Integration - A Complex
Problem, Unnecessarily Overcomplicated", Naval Engineers
Journal (August 1972) p.44.

- 147 -

significant in two ways:

. An exhaustive pair-wise assessment of interdependen-
cies executed in a top-down manner, forces one to
think in terms of conceptual models freeing the
designer of his dependencies upon tradition-bound
designs.

. The decomposition methodology causes the elimination
of prevalent misconception or traditional design
practices by displaying the complex interrelation-
ships which heretofore were unavailable to the
designer.

The usefulness of the methodology was verified by the results
of the applicatioﬁ to the design of the Sample Operating
System as stated in section 8.4. Yet the experience gained
in the application of the methodology suggested improvements
to all three phases of this methodology to improve both its
effectiveness and to increase the scope of the applicability.
The next section of the chapter will present those recommend-

ations for improvement.

9.2 Recommendations for Improvement

9.2.1 SUGGESTIONS TO IMPROVE COMMUNICATION:

The decomposition methodology is but a small supporting
tool in the overall design process; specifically, in the
architectural design phase. The most time-consuming stages

of the methodology were the requirements definition stage

- 148 -

and interdependency assessment stage. The functions
required in each stage were hand-written and the analysis
was performed off-line. The lack of any text facility pre-
cluded an on-line assessment of design problems. The time
required to perform the stages of methodology could be
reduced, and the methodology'improved if the three stages
could be made completely interactive by the addition of a
facility for limited documentation statements. The specific
documentation statements needed are defined in the supplement
sections.

9.2.2 REQUIREMENTS DEFINITION:

The problems associated with generating well-defined
requirements statements, even for an existing system, are
well-known. This stage of the decomposition methodology
represented the greatest expenditure of time and energy for
this thesis. As described in section 2.1, the functional
specification phase of the design process is receiving
considerable attention from researchers. Sid Huff34 has
described a template format for requirements definition which
recognizes six distinct statements built upon three basic
language constructs. The basic constraints consist of:

objects: which are items or activities such as item -
memory activity - allocated.
modifiers: which are strings of English adjectives that

describe the object.

34
Sidney Huff, "An Approach to Constructing Functional

Requirement Statements for Preliminary System Design'; unpub-
lished report, MIT Sloan School, April, 1978, pp.6-7.

- 149 -

Imperatives: which indicate the nature of relationships.
Only two imperatives are recognized -
can: implying conditional capability.

will: must be fulfilled.

These constructs are used to generate six templates which are
generic types of requirement statements. They consist of the

following:

Properties: a feature of the system.
Treatments: an operation that is done to an object.

Timing
Relationship: objects may be temporarily related.

Order
Statements: order relation, such as, equal to.

Measure: consisting of a parameter and a unit.

For example,

Memo will bejallocated in 2K blocks
| emery | It | 7 Sl
item object imp activity object modifier

The template format is a useful structuring tool for
requirements definition which may serve to identify ambi-
guities or errors. The primary benefits of the template
format to the decomposition methodology are:
. It would provide a concise, well-defined requirements
statement which could be generated and stored on-line
using a menu of constructs.

. It would be useful for determining interrelationships

- 150 -

since the statements consist of well-defined key
words.

. Completeness of requirements set could be verified
through the use of simple algorithms which would
check for the existence of capabilities clearly
defined in the property statements.

9.2.3 ASSESSMENT METHODOLOGY:

The greatest weakness of the decomposition methodology
is the fact that the binary assessment procedure is simplis-
tic and, therefore, constraining. The binary assessment
procedure ddes not allow any sort of sensitivity analysis or
weighting of the interdependencies and does not allow for
the representation or solution of an objective function.

The lack of an ability to represent an objective func-
tion resulted in the separation of the design philosophy and
constraint statements from the requirements set that was
analyzed for interdependencies. All that one could say was
that the design philosophy and constraint statements must
apply to every other requirement in a global sense or they
apply not at all. If the interdependencies could be weighted
then it would be possible to assess the relative level of
impact and to establish an objective function to be satisfied.
This objective function could be satisfied by a facility to
describe conceptual models or mathematical relationships on-
line. The mathematical relationship would be of the form of

an expression interrelating different indices or measures

- 151 -

used to measure the degree of satisfaction of an objective
function provided by each interrelationship between require-
ments. The constraints upon the design must also be
represented as limits on certain criteria within which the
final values selected for a system must fall. Ideally, all
indices used to measure satisfaction of an objective function
must be reduced to a common denominator. For instance, the
objective function may be stated in terms of response time
The response time is related to CPU time for

(Teotall

execution (T Input/Output time (T), waiting or

CPU)' I/0
blocked time (Tw). Therefore, the objective function could
be stated in terms of Ttotal = TCPU + TI/O + Tw . Inter-
relationships among requirements would be assessed according
to a conceptual model involving a time index. The decompo-
sition methodology could then provide a relative measure of
the satisfaction of the objective function by each
decomposition.

9.2.4 ADDITIONAL FEATURES:

Design is essentially an art, which is heavily dependent
upon one's background and biases. It would be interesting
although not necessary, to implement a facility in the
decomposition methodology which would enable a user to input
his own idea of the "best" decomposition in the form of sub-
problems. The decomposition package should then generate a
’ﬁeasure for the proposed decomposition and would serve as a

relative grade to the designer vis-a-vis the system-generated

"best" decomposition.

- 152 -

9.3 Summary

This study has demonstrated that the decomposition
methodology proposed by Dr. Andreu is a useful technique
providing a framework for the designer for use in the
architectural design stage. It is recognized that this
methodology is a first step in the right direction. The
usefulness of the first step was recognized by Mandel and
Chryssostomidis:35

"Unfortunately, the direct contribution of the
computer to design methodology is small because the
capabilities provided by the computer do not augment
the user's ability as a designer but rather as an
analyst. For this reason, it is felt that research
leading to documentation of an improved large system
design methodology that also takes advantage of today's
tools is both timely and worthwhile."

The value of the deéomposition methodology will improve as
the results of its application are verified through similar
research and improvements to the facilities are implemented

by designers in search of a better world.

35Mandel and Chryssostomidis, p.85.

10.

11.

12.

- 153 -

BIBLIOGRAPHY

Alexander, Christopher; Notes on the Synthetic Form;
Cambridge, MA, 1966.

Alford, Mack W.; "A Requirements Engineering Methodology
for Real-Time Processing Requirements"; I.E.E.E. Trans-
actions on Software Engineering, Vol. SE-3, Number 1,
(Jan. 1977), 60-69.

Anderberg, Michael R.; Cluster Analysis for Applications;
New York, 1973.

Andreu, Raphael C.; "An Exercise in Software Architec-
tural Design: From Requirements to Design Problem
Structure"; Unpublished report, MIT Sloan School, June,
1977.

Andreu, Raphael C.; "A Systematic Approach to the Design
and Structuring of Complex Software Systems"; Unpublished
Doctoral thesis; MIT Sloan School, February, 1978.

Andreu, R..C. and Madnick, Stuart E.; "A Systematic
Approach to the Design of Complex Systems: Application
to DBMS Design and Evaluation"; Center For Information
Systems Research Report 32, MIT Sloan School, March,
1977.

Bell, Thomas E., Bixler, David C., and Dyer, Margret E.;
"An Extendable Approach to Computer-Aided Software
Requirements Engineering"; I.E.E.E. Transactions on
Software Engineering; Vol. SE-3, Number 1 (Jan. 1977)
49-60.

Bell, T. E. and Thayer, T. A.; "Software Requirements:
Are They Really a Problem?"; Proceedings, 2nd Int'l.
Conference on Software Engineering (October, 1976) 61-63.

Bitjen, E. J.; Cluster Analysis; Groningen, Netherlands,
1973.

Blashfield, Rojer K. and Aldenderfer, Mark S.; "A Con-
sumer Report on Cluster Analysis Software"; Unpublished
report, Pennsylvania State University, 1978.

Chu, Y.; "A Methodology for Software Engineering";
I.E.E.E. Transactions on Software Engineering, Vol. SE-1,
Number 3 (Sept. 1975), 262-270.

Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R.;
Structural Programming, London, 1972.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

- 154 -

Daly, E. B.; "Management of Software Development";
I.E.E.E. Transactions on Software Engineering, Vol.SE-3,
Number 3 (May, 1977), 230-243.

Davis, Carl G. and Vick, Charles R.; "The Software
Development System"; I.E.E.E. Transactions on Software
Engineering, Vol. SE-3, Number 1 (Jan, 1977), 69-85.

Defranco, Steven J.; "Use of Heirarchical Decomposition
in Computer Systems Design"; Unpublished Master's thesis,
MIT Sloan School, June, 1977.

Dijkstra, Edsger W.; A Discipline of Programming;
Englewood Cliffs, New Jersey, 1976.

Donovan, John J.; Systems Programming, New York, 1972.

Evans, J. Harvey; "Basic Design Concepts"; A.S.N.E.
JOURNAL (November, 1969), 671-678.

Friedman, Jerome H.; "A Recurrsive Partitioning Decision
Rule for the Parametric Classification"; Stanford Linear
Accelerator Center Report #CS-75-487, Stanford, Calif.,
Jan. 1976.

Huff, Sidney; "An Approach to Constructing Functional
Requirement Statements for Preliminary System Design";
Unpublished report, MIT Sloan School, April, 1978.

Leopold, Reuven; Svendsen, CAPT Edward C.; and Kloehn,
Harvey G.; "Warship Design/Combat System Integration:

A Complex Problem Unnecessarily Overcomplicated"; NAVAL
ENGINEER'S JOURNAL, August 1972, 28-54.

Liskov, Barbara H. and Berzins, Valdis; "An Appraisal of
Program Specifications"; Computation Structures Group
Memo 141-1, MIT Laboratory for Computer Science, April,
1977.

Madnick, Stuart E. and Donovan, John J.: Operating
Systems, New York, 1974.

Mandel, P. and Chryssostomidis, C.; "A Design Method-
ology for Ships and Other Complex Systems"; Phil.
Trans. R. Soc. Lond., A .273, (1972), 85-98.

Martin-Marietta Corp; TFCC System Engineering/Software
Development, Preliminary TFCC Data Base Design Document,
DBD-6020605, December, 1976.

Martin-Marietta Corp; "TFCC System Engineering/Software

27.

28.

- 29.

30.

31.

32.

33.

34.

35.

36.

37.

- 155 -

Development, TFCC Program Performance Specification for
a Data Management System; DDS-6020 DMS, October, 1976.

Mills, Harlan D.; "Software Development"; I.E.E.E.
Transactions on Software Engineering, Vol. SE-2, Number
4 (Dec. 1976), 265-274.

Noonan, R. E.;"Structural Programming and Formal Speci-
fication"; I.E.E.E. Transactions on Software Engineering,
Vo. SE-1, Number 4 (Dec. 1975), 421-425.

Parnas, David L.; "A Techniques of Software Module
Specification with Example"; Communications of the ACM,
Vol. 15, Number 5 (May, 1972), 330-337.

Parnas, David L.; "On the Criteria to be Used in Decom-
posing Systems into Modules"; Communications of the ACM,
Vol. 15, Number 12 (Dec. 1972), 1053-1058.

Parnas, David L.; "The Use of Precise Specifications in
the Development of Software"; Proceedings of Information
Processing '77, (1977).

Punj, Doreen; Madnick, Stuart E.; and DeTreville, John
D.; "A Survey of Navy Tactical Computer Applications and
Execuctions"; Center for Information Systems Research
Report 19, MIT Sloan School, October, 1975.

RCA, Government and Commercial Systems, Missile and
Surface Radar Division; "Real Time Tactical Operating
Systems Study, Second Quarterly Report; Moorsetown,
New Jersey, 1974.

Reinhard, Nicolau; "An Experiment with Software Design
Technigues"; Unpublished report, MIT Sloan School,
January, 1978.

Ross, D. T. and Schoman, K. E., Jr.; "Structural
Analysis for Requirements Definition"; I.E.E.E. Trans-
actions on Software Engineering, Vol. SE-3, Number 1
(Jan. 1977), 6-16.

Salter, Kenneth G.; "A Methodology for Decomposing
System Requirements into Data Processing Requirements"”;
Proceedings, 2nd Int'l. Conf. on Software Engineering,
October, 1976.

"Experi-

Slagle, J. R.; Chang, C.-L.; and Lee, R. C. T.;
; I.E.E.E.

ments with Some Cluster Analysis Algorithms"
JOURNAL, Vol. 6, 1974, 181-187,

38.

39.

40.

41.

- 156 -

Slagle, J. R.; Chang, C.-L.; and Heller, S. R.; "A
Clustering and Data-Reorganizing Algorithm", I.E.E.E.,
1975, 125-128.

Slagle, J. and Lee, Richard C. T.; "Application of
Automatic Clustering to Emitter Identification"; Naval
Research Laboratory Memorandum Report 3407, November,
1976.

Sokal, Robert R. and Sneath, Peter H. A.; Principle of
Numerical Taxonomy; San Francisco, 1965.

Spero, J. R.; Hicks, W. F.; and Greene, D. L.; "A

Philosophy of Naval Ship Design and Construction"; NAVAL

ENGINEER'S JOURNAL, October 1971, 45-52.

- 157 -

APPENDIX A

Formal Specification of Evaluation Parameters

- 158 -

FORMAL SPECIFICATION OF EVALUATION PARAMETERS:36
Given a grapvh as a pair (X,L), where

X : {x|x=1,2,.... |X|}, the set of |X| objects,**
and

L : {2..]2ij

i3 exists if a link joins objects i and j e X},

the set of links,

Define

A : a.,.a,.=11f ,, 6 exists, O otherwise , the
1] 13 ij

adjacency matrix associated with the graph.

Then, the strength Si of a subset Xigx can be expressed

as:

. %gx a . - (in]-l)
S k<g I
i

|x; 1%, [-1)

2

while the coupline Ci' between the subsets Xi and ngx,

**|X| is used to indicate the cardinality of set X.

56Andreu, pp. 100-101.

- 159 -

Xi Xj = ¢ (the empty set) can be written as:
) a
kexi k2
2eX
3 v = j
o x Ik
1 J

P P
M= 2 S - z C

= i=1
j=i+l

The behavior of M is such that the higher its value,

the better the associated partition for our purposes, so that

we should, in fact, search for the partition with maximum M

value over all possible partitions of the set under decom-

position.

- 160 -

APPENDIX B

Algorithm for the Identification
of Kernel Subsets

- 161 -

ALGORITHM FOR THE IDENTIFICATION OF KERNEL SUBSETS:37
Recalling the following definitions:
. The "core set"” CSi associated with a node e to be the

set CS, : {o.|o, s.t. a,, = 1}; i.e., the set of all
1 J°] 1]

nodes related to Oi’ including o4 itself, and
. The "connectivity" of node o; to be

c, = iCSiI - 1, where by |X| we mean the dimension of

set X.
The identification of kernel subsets can be done iteratively
using the following procedure:
0) Set J = O.
1) Compute cy Voi e 0. If c; = cj ¥ i,j, set T = J+1;
KESU(J) = 0; stop.
2) Consider the k (> 1, a number specified a priori;
see the end of this section for considerations about
its value) nodes with highest cy - Without loss of

generality, assume that these are the nodes

Opre+-Op-
3) Determine CS; for o; ¢ {ol,...,ok}.
4) Compute KS, = (CS, [j::lcsj]) o; € {oi,...,ok}.
i#3
5) Select o, € {oj/...,0,} such that KSp='min (|xs,[)

7Andre% pp. 125-128.

- 162 -
6) Set J = J+1;

If IKSPI = ;ICSpl, set DESU(J) = 0 and stop, else

set KESU(J) = o_ [CS_ - KS_].
P p P

7) Set current set to:
0 =0 - KESU(J); if |0]| = 0, stop.

8) Recompute A:

old a.. if o0.,0.€0
{ 1] A

a,. = . . .
ij mark it "nonexistent" otherwise

A {a,.] H

ij

9) k=%k - 1;
If k > |0|, set k = |0];
Go to 1.
Once the procedure is executed, J Kernel subsets

KESU(1),...,KESU J have been identified.

- 163 -

APPENDIX C

Preliminary Set of Requirements

10.

11.

12.

13.

- 164 -
The operating system must be simple, implementing a
basic system nucleus.
The operating system must be designed as a pedagogical
tool.
The operating sytem must be small; occupying fewer
than 2500 cards of assembly language statements.
The operating system is to be implemented utilizing
IBM/360 hardware.
The operating system must provide for a multi-program-
ming environment.
The operating system must be process oriented.
The operating system must run on a machine that has two
distinct states.
All resource requests must pass through the supervisor
process.
System resources must be allocated to a job, prior to
the job being made eligible to run.
A process must be ready to run prior to being allocated
to a processor.
User communication with the operating system to VIA SVC
Instructions.
The operating system must protect the user jobs from
each other.
The operating system must utilize information tables to

monitor and control processing.

1l4.

15.

l6.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

- 165 -

System tables can be dynamically allocated and

released.

Certain extended machine instructions are user callable.

System processes are re-entrant and shared.

Extended machine instructions are executed in the
supervisor state.

The supervisor process must create and delete the
environment in which a job runs.

Initially one process is created for each user's job.
Jobs are scheduled on a first come, first served
basis.

The job scheduling function must be modularized so
that improvements to the system can be easily
accomplished.

The process schedulermust time-slice CPU usage to
achieve multi-programming.

Ready processes are scheduled in simple round-robin
fashion by the traffic controller.

A process shall be blocked, and control released to
the traffic controller when a timer runout trap is
detected.

A process shall be blocked and control passed to the
traffic controller when the process must wait for
synchronization with another process.

A process is blocked when it relinquishes controller

to the traffic controller.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

- 166 -

The supervisor routine must reclaim all system
resources for a job when the job has completed.

The supervisor process must reclaim all system
resources when an error condition abnormally terminates
a job.

Reference to processes within a process group is by
symbolic name.

The operating system must allocate memory for job
partitions, the size of which is specified by the user.
Memory is allocated to a job in contiguous 2 K

blocks.

The operating system may dynamically allocate memory

to itself for system processes.

Memory is allocated using a best-fit algorithm.

Memory must be protected to prevent the simultaneous
allocation of a partition to multiple jobs.

Free storage areas are collapsed into contiguous blocks
of memory whenever a partition is freed.

Operating system must supply a device management system
which runs as a separate process, one per device.
Device handler routines must support multiple job
streams from card readers.

All devices are dedicated.

The device handler routine supports one card reader

per input stream.

Device handler must support one line printer per output

stream.

41.

42,

43.
44,
45.
46.
47,

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

- 167 -

Input/output devices operate via multiplexor channel.
The user can provide his own routine for non-standard
devices.

A process synchronization mechanism must be provided.
An interrupt mechanism must be provided.

P-V operations are available only to system processes.
A message facility must be provided for user processes.
The message facility 1is accessible by all processes.
The name of the sending process must be prefixed to a
message.

The receiving process must read the name and text from
the originator.

Messages are of arbitrary yet specified length.

Any number of messages may be queued while waiting to
be read by a process.

All messages are released when a process terminates.
Messages are not receipted for, from receiver to sender.
If no messages are available to a process which expects
one, it goes blocked.

User programs utilize a simplified job control language.
The operating system must accept input data from the
user's Jjob stream.

The supervisor process must load the user's supplied
object code deck into the user partition.

The user process may dynamically create and destroy

additional processes.

59.

60.

61.

62.

63.

64.

65.

- 168 -
Dynamically created processes run in the same parti-
tion as the parent job.
User processes cannot dynamically allocate memory.
User processes cannot destroy system processes within
the same process group.
User processes run in the problem state.
The user process must signal completion of the process
to the operating system.
The user's job can reference one input device, one
output device, and one exceptional device.
There is only one supervisor processes per job

stream.

- 169 -

APPENDIX D

Preliminary Interdependency Assessment

Note:

(1)

(2)

Results

(s) Indicates that the requirement
indicated supports the imple-
mentation of the requirement

being assessed.

(c) Indicates that the requirement
indicated conflicts with the
implementation of the require-

ment being assessed.

Requirements 1 through 4 were not
assessed for the reasons stated in

4.1.10.

5:

- 170 -

The operating system must provide for a multi-

programming environment.

8(s):

9(s):

16 (s):

19(s):

22 (s)

34(s):

37(s);

43 (s)

55(s) :

The operating system must allocate resources as
a job is read into the system.

Resource allocation is performed as a job is
read into the system, except for processor
allocation.

The need for pure procedures is driven by the
need to provide for a multi-programming
environment.

The supervisor process creates one process per
job initially in support of multi-programming.
Multi-programming requires that the jobs be
scheduled.

Time slicing CPU usage facilitates multi-
programming.

Multi-programming requires that memory be
protected to prevent simultaneous allocations
of partitions.

Device handler routine facilitates the reading
of multiple job streams from different sources.
Process synchronization mechanism is used to
coordinate multi-programming.

JCL facility assists multi-programming by
delineating jobs and specifying resource

requirements.

- 171 -

65(s): The supervisor process controls multi-

programming environment.

Operating system must be process oriented.
10(5): The process has certain resource requirements

apart from job level requirements.

1l1(s): The SVC instruction support process requirements.

13(s): Most information is maintained at a process
level.

19(s): A user job begins as a process.

22(s): Process environment requires the use of a traffic

controller to achieve multi-programming.
23(s): An algorithm is regquired for process scheduling.
25(s): Multi-process synchronization is a basic
function required for a process environment.
26 (s): Relinquishing control to the traffic controller

is a basic function of a process environment.

29(s): The naming of process is required as a means of
identification.
43 (s): Process synchronization mechanism is a basic

tool for process oriented support.

46 (s): The message facility is a basic means of inter-
process communication.

47 (s): Message facility must be available to all user
processes.

58 (s): Dynamic process creation is a basic function for

a process environment.

- 172 -

Operating system must run on a machine that has two

distinct states.

1l1(s): User communication via SVC instruction ensures
that the user may be restricted from certain
privileged instructions.

15(s): Only certain SVC instructions are user callable.

17(s): SVC instructions explicitly executed in the
supervisor state.

62(s): User programs run in the problem state; hence,

system processes run in the supervisor state.

All resource requests must pass through the supervisor
process.
9(s): All resource requests must be made prior to a

job being eligible to run.

13(s): Information tables contain the information
concerning resource allocation.

27(s): Supervisor also reclaims resources when a job
has completed.

28(s): Same as 27.

30(s): Memory requests are user generated.

32(s): Dynamic memory allocation takes place through
the supervisor process.

55(s): JCL facility specifies the resources required
of a job to the supervisor process.

60(c): The user cannot dynamically allocate memory.

64 (s):

- 173 -

The user is restricted in the number of I/O

devices he may request.

9: System resources must be allocated to a job, prior to

the job being made eligible to run.

10:(c):

27:(s):

28:(s):

30: (s):

36:

55: (s):

(s):

There are user resources; i.e., the processor,
which are allocated at the process level.

The same process reclaims resources upon
completion.

Same as 27.

Memory allocation must fall within this require-
ment.

Device handler routine is started for each job
at this time.

JCL facility identifies resources required of a

job.

10: A process must be ready to run prior to being allocated

a processor.

13:(s): A process's status is maintained in an informa-

19: (c)

20:(s):

23 (s):

25(c):

.

tion table (PCB).

Initially the user's job is a process.

The traffic controller may select a ready process
only.

Ready processes must be chained into a list of
eligible processes.

A process is not ready if blocked.

26 (c):

54 (c):

- 174 -

Same as 25.

Same as 25.

11: User communication with the operating system is via SVC

instruction.

15: (c): Only certain SVC instructions are user callable.

26(s): A process relinquishes control via SVC
instruction.

46 (s): A request to send a message is via SVC
instruction.

49 (s): A request to read a message is via SVC
instruction.

53(s): Dynamic process creation/destruction is via SVC
instruction.

63(s): A process can signal job completion via SVC

instruction.

12: The operating system must protect user jobs from each

other.

13:(s):

18(s):

34(s):

36 (s):

Information tables contain information on jobs,
processes and resources.

Supervisor routine creates a separate environ-
ment for each job and essentially isolates it
from other jobs.

Memory is also required to be protected from
simultaneous user jobs.

The device management routine runs as a separate

process, one per device to isolate jobs.

13:

37(c):

43(s):

59(s):

- 175 -

The device handler routines deal with many jobs
and must isolate each one.

The P-V operations serve as a locking function
and help to insure verifiable access rights.
Dynamically created process must remain within

their process group.

Operating system must utilize information table to

monitor and control processing.

14(s):

23(s):

30(s):

32(s):

35(s):

36: (s):

43: (s):

46: (s):

Dynamic allocation of system tables is required
for multi-programming environment.

Round-robin scheduling is most effectively
accomplished by chaining PCB's.

Memory allocation requires adjustment to infor-
mation tables.

Dynamic allocation of memory by the operating
system is used for tables.

Free storage blocks must be updated each time
memory is freed.

Unit control blocks are built and maintained by
the operating system.

P-V operations are used extensively to update
semaphores and lock resources.

The message facility is a buffered table which

is used to pass information between processes.

- 176 -

14: System tables can be dynamically allocated and released.

15:

16:

32(s):

51(s):

60 (c):

Certain

26(s):

47 (s) :

58 (s):

63(s):

Dynamic memory allocation fully supports this
requirement.

The queuing of messages requires a dynamic
allocation facility.

The user is strictly prohibited from dynamic

allocation.

extended machine constructions are user callable.
The process may issue an SVC instruction to stop
itself.

Message facility is implemented with user
allable SVC's.

Dynamic process creation is implemented with
user callable SVC's.

User signals completion via an SVC instruction.

System process routine an re-entrant and shared.

21(s):

32: (s):

36(s):

6l (c):

Job scheduling is a system process which must be
shared.

The operating system maintains pure code by
dynamically allocating memory for work space

for system routines.

The device management process is a system process
which must be shared.

User processes cannot destroy system processes.

17:

18:

19:

20:

- 177 -

Extended machine instructions are executed in the
supervisor state.
44 (s): The interrupt handler must be provided to service

an SVC interrupt.

The supervisor process must create and delete the

environment in which a job runs.

19: (s): The supervisor initially creates one process per
job.

27:(s): This requirement deals with the destruction of
processes.

28(s): Same as 27.

58 (s): User creation of processes supplements the job
environment.

61l (c): The user cannot destroy the entire job
environment.

Initially one process is created for each user's job.
58(s): The user process may create additional processes

to create a process group.

Jobs are scheduled strictly on a first come, first
served basis.
21(s): FCFS scheduling is simplistic; therefore, we can
improve system performance at some later time
if this is strictly modularized.
39(s): The fact that all input devices are dedicated

forces us to use an FCFS algorithm.

21:

22:

23:

- 178 -

The job scheduling function must be modularized so that

improvements to the system can be easily accomplished.

37(s): 1In order to improve the sophistication of the
job scheduler, it would be necessary to inter-
face to a great extent with the device handler
routine.

39(s): Again for the same reason, improvements to the
job scheduler are accomplished in conjunction
with input stream handler.

55(s): JCL would be affected by improvements to the

job scheduler.

The process scheduler (traffic controller) must time-
slice CPU usage to achieve multi-programming.
24 (s): Timer runout trap is the result of CPU usage

being exceeded.

25(c): A process may terminate while awaiting
synchronization.

26(c): A process may terminate voluntarily.

44 (s): The interrupt handler processes a timer runout

and returns control to the traffic controller.

Ready processes are scheduled in simple round-robin

fashion by the traffic controller.

44 (s): The interrupt handler gives control to the
traffic controller in order to dispatch another

process.

58 (c):

63 (s):

- 179 -

Since processes are scheduled in this fashion

a user may desire tp create more processes in
order to grab a larger time gquantum.

User signals completion so that the next process

may start up.

24: A process shall be blocked, and control released to the

traffic controller, when a timer runout trap is deleted.

44 (s):

The interrupt handler is the means by which the

traffic controller regains control.

25: A process shall be blocked and control passed to the

26:

traffic controller when the process must wait for

synchronization with another process.

29 (s):

43 (s) s

46 (s) :

47 (s) :

54 (s):

Processes must be uniquely identifiable in order
to synchronize.

P-V operations are used system-wide for synchro-
nization, but this is directed towards
synchronization of system processes.

User synchronization can be accomplished via the
message facility.

Message facility is available to users.

A process, expecting a synchronizing message, is

blocked until it receives one.

A process is blocked when it relinquishes control to the

traffic controller.

27

28:

63(s):

- 180 -

The user must relinquish control by a specific

signal to the operating system.

The supervisor routine must reclaim all system resources

for a job when the job has completed.

28 (c):

35(s):

36(s):

38(s):

44 (s):

61 (c):

63(s):

The supervisor must also reclaim resources if a
user commits an error.

When memory is freed by direction of the
supervisor it must also re-configure.

The device handler routine is a resource that
must be reclaimed.

The devices used must be released.

A program interrupt starts things happening.
The supervisor routine must destroy all system
processes for a job which terminates.

The user must signal completion.

The supervisor process must reclaim all system resources

when an
35:(s):
36:(s):

38(s):

44 (s):

61l (c):

error condition abnormally terminates a Jjob.
Memory is re-configured when it is reclaimed.
The device management routine must be reclaimed.
Devices resources must be reclaimed at this
time.

The interrupt handler signals that an error has
occurred.

The supervisor must destroy all system processes

for a terminated job.

- 181 -
29: Reference to processes within a process group is by
symbolic name.
48 (s): The sending process must have a name.
49 (s): The receiving process must have a name for the
message facility to operate.
58(s): A process 1is given a name at creation time.

59(s): Names are unique with a partition.

30: The operating system must allocate memory for job
partitions, the size of which is specified by the user.
31(c): Memory allocation is limited to increments of
2K blocks.

32(c): Memory may also be allocated by the system.

33(s): A list of free areas is updated each time a
partition is freed.

55(s): A simplified JCL is available for the user to
specify his memory requirements.

59(c): Memory partition requested must be large enough
for all dynamically created processed.

60(c): The user cannot dynamically allocate memory.

31: Memory is allocated to a job in contiguous 2K blocks.
32(c): The operating system does not need memory
allocated on 2K blocks since it has its own
protection scheme.
33(s): Best-Fit algorithm memorizes partition waste.
34(s): Allocation in 2K blocks allows hardware

protection by the IBM 360 system.

32:

33:

34:

- 182 -

35(s): Memory is re-configured whenever it is freed.
43(s): P-V operations can serve as a lock on a database.
55(s): The user specifies memory requirements using JCL.

Operating system may dynamically allocate memory to

itself for system processes.

34(s): System workspaces must be protected the same as
user work spaces.

35(s): Free areas are collapsed for system processes.

36(s): Device management system requires memory for its
own tables.

51(s): Message queuing facility requires memory.

60(c): The user cannot dynamically allocate memory.

Memory is allocated using a best-fit algorithm.

35(s): Memory is reconfigured when deallocated to
insure that the largest contiguous blocks are
available.

55(s): User must specify memory requirements on JCL.

Memory must be protected to prevent the simultaneous

allocation of a partition to multiple jobs.

43: (s): The P-V operation is used extensively as a
lock on a database.

44: (s): The interrupt handler is provided as a means
of detecting out-of-bounds memory requests.

59(s): Dynamically created processes must run in the

partition of the parent job which further

35:

36:

- 183 -
protects memory.
60(s): The user is prevented from allocating additional

memory.

Free storage areas are collapsed into contiguous blocks
of memory whenever a partition is freed.
63:(s): The user must signal completion to the operating

system so that partition can be freed.

Operating system must supply a device management system,

which runs as a separate process, one per device.

37(s): Device handler must be included within device
management system.

38(s): Since devices are dedicated, only one process
per device is required.

39(s): These constitute the specific requirementé of
the device handler routine.

40(s): Same as above.

41 (s): Since I/0 devices operate via multiplexor
channel there is not need for I/O0 traffic
controller.

42 (s): Device management system must enable the user
to supply his own handling routines.

43(s): P-V operation is used to lock devices.

44 (s): P-V plus limited interrupt facility provide I/O

interface.

- 184 -

37: Device handler routines must support multiple job

38:

39:

streams from card readers.

38(s):

39(s):

41 (s) :

43 (s):

56:(s):

Dedicated devices enable sequential processing

and simplify designation of job streams.

A card reader represents an input stream; hence,
multiple card readers represent multiple job
streams.

Multiplexed channels enable simultaneous servicing
of multiple devices.

P-V operations are used to lock devices.

The device handler must be able to distinguish

among user decks and data cards.

All devices are dedicated.

39:(s):

40 (s) :

41(s):

42 (c):

43 (s):

64 (s):

Since devices are dedicated, a card reader
represents an input stream.

Since devices are dedicated, a line printer
represents an output stream.

Multiplexed channel is used for dedicated
service.

Non-standard devices may not necessarily be
dedicated.

P-V operations are used to lock devices.

User must specify which devices are being used

by his program.

The device handler routine supports one card reader per

input stream.

40:

41:

42:

40 (c):

41 (s) :

42 (c) :

64 (s):

- 185 -
The output stream conversely supports one
line printer.
Multiplexing eliminates the need for an I/0
traffic controller.
A user may specify his own routine.
The user must designate the card reader to be

used.

Device handler must support one line printer per output

stream.

41 (s) :

42(s):

64 (s):

Multiplexing eliminates the need for an I/O
traffic controller.

A user can supply his own routines.

The user must specify the line printer to be

used.

Input/output devices operate via multiplexor channel.

42 (c):

43 (s):

56(s):

The user may provide his own routines and I/O
interface.

The P-V operation can be used to lock a device.
Input data for a user's program must be accepted

via multiplex or channel.

The user can provide his own routine for non-standard

devices.

64:

The user must specify the use of an exceptional

device to the system via JCL.

- 186 -

43: A process synchronization mechanism must be provided.

45 (s) :

The synchronization mechanism is used as the
basis for process support and, therefore, is

not available to users.

44: An interrupt handler must be provided.

46:

48

63(s):

A user signals completion via SVC interrupt.

A message facility must be provided for user processes.

47: (s):

48: (s) :
49: (s):
50:(s):

51:(s):

52:(s):
53: (s):

54: (s):

The message facility is available to all
processes.

Requirements for sending a message.

Requirements for receiving a message.

This contains the message length requirement.
Messages may be queued iﬁ order to be read by a
process.

Messages are released when a process terminates.
The message facility has no receipt mechanism.

Messages can be used for process synchronization.

The name of the sending process must be prefixed to a

message.

49 (s) :

53(s):

54 (s) :

The receiving message must be able to read from
whom the message came.

The message facility does not receipt for
message transfer.

The message facility can be used for one-to-one

process synchronization.

49:

50

52:

55:

56:

- 187 -

The receiving process must read the name and text from

the originator.

51(c): The gqueuing process makes it essential that
the message receiver be able to tell from
whence the message came.

53(c): Messages are not receipted for.

54 (c): A process awaiting synchronization must be able
to determine that the message is from the

proper source.

Messages are of an arbitrary, yet specified length.
51(s): Since messages may vary in length, queuing them
is the most simplistic means of dealing with

the variable length.

All messages are released when a process terminates.
53(s): The sending process may have been terminated

before the receiving process read the message.

User programs utilize a simplified job control language.

60: (s): User is limited to the amount of memory
specified in his JCL.

64 (s): The user must specify his input/output device

requirements utilizing JCL statements.

The operating system must accept input data from the

user's job stream.

57:

58:

59:

61l:

- 188 -
65: (s) : The supervisor process controls the loading of

the user's deck into the machine.

The supervisor process must load the user-supplied

object deck into the user partition.

60: (s): Once the user's deck is loaded, he is stuck
with whatever memory partition he requested.

65: (s): The supervisor process handles the loading

function.

The user process may dynamically create and destroy

additional processes.

59 (s): Dynamically created processes are limited to
the user's partition.

60(c): The user cannot destroy system processes.

6l(s): User-created processes are limited to problem

state.

Dynamically created processes run in the same partition

as the parent job.

60: (s): The user process cannot create processes which
also expand its memory requirements.

62: (s): User processes all run to problem state.

User processes cannot destroy system processes within
the same process group.
62:(s): Since all user processes run in the problem

state, and system processes in the supervisor

- 189 -

state, we are protected.

63: The user process must signal completion of the process
to the operating system.
65: The supervisor process now takes over to re-
claim resources or to signal the traffic

controller.

- 190 -

APPENDIX E

Results of the Interactive Decomposition

Package for the First Iteration

- 191 -
MOLK
RECORDED LINKS.
FROM NODE TO NODE(S) 3

5 Co11y By 9y 1é&y 19y 20 22» 34y 37 43y
é I.j ’ . . vy
) ¢ 13) 10 L1y 139 19: 22y 23y 25y Zéy 29y 43y

Ahe 47 S8

&
o]

7 4y 1le 15e 17y H2»

L " DA ol s ey e r .
£ 1307 S Yo L3e 27 v EZ0e 32y 55 A0y &
o N o .) - o

@ Y G By 10y 27y s B30y FhHe GOy

23 28 289 G4y
49y H8y &3+
v 43Xy 59y

sy oy

DXy Oy 32y ZGHe Fhy

& Gy 13y LGy

B8y &Sy Ty 18y 2y

Py 13s 18y 34y 34y

127 &y By 10» 12
4%y A&y

Yoy 32y Hle &G

; ST g I xe

& Fy Lly 28 A7 S8y SO

y :

He 2l

SO S D
-~

pay
L)

P P L N T T
'

EoliE TR0 S I (U o

i
B

12
-

£

R
0
o

19 279 28y 88y &1y

ot
i

-

. b Lh
i - i
[y

F O

2

20 a4y Sy 10 21 39

24 ¢y 1&e 209 A7 39y GG
22 { &7 Sy He 299 25y 2&y 444
23 P AY by 10» 13y A4 DBy 43

24
s

I o

A

e
L

P
28
=]
foie
o~
WA
X3

F
-
FON]
"~

~=
IS
[
~

Y b
-
3oL
3

2.
-
i
=
kS
s
~d
-
L
=

e
28

-y
Foary

e
S
G
"=
§—-‘-
e
~
¥
i
5
(E]
3
0
'l
=
F s
i
-

XHe 28y 44dr Sl &
.

Ry K3

g)

B B 18y 27y 38y & 38y 44 Sl
. & 0

IR

P

)

) i

Yo &y 10 Ll 15y 22y &3y
) -

)

)]

‘r-L
[e I 1%

o~
o
N e S e

17
2%
30

31

&
=
+3
B
jaxs
~
£
G
P
&
w0
N

=

HQy

Do

Lad
N
P

Eahe Gl

S~ e

38y 39y

A7 (Gé e
3e ¢ A%0 by
38 i 13y A
L) ¢ H4 e

P

4 {

20
23S £ Rl
Al

. o
A S
;

-~

e

-~

.

Lo
&y

11y

SN
FOR A 4

14y
1ide
KX
15y
38

GGy

192

A&y
53y

Ay

3Py

-5l
o I

25

&l
D&y
40

&3y

e

Sl

Sy

L

{ 490 500

{

{ G2y

{ 48, 49y

L 2L 30y ar Sy
i

3
A S

&HO
H2v

57y G8e 59y

o~

OF LINES PER

L
-
&
-
-~
-
tn
=
53]
—
-

MODE

B
4

NOE

7

i

PR N
y iy DY/

Ardedhe by

PHE FOLLOWING HODES HAaVE

1 2 3 2] Sy

P
o

- 193 -

NOTES HaVE M REMAMED A% FOLLOWS?
I MO, NEW MO,

a 1

..
P

i
H "".\ F]

o
L
Fey
£

RED?
saVE
ENTER

! NAME S
Sl

FILLE

bl

STATUS SaAaVED IN FILE 308a12
REQ:

AN
PRRECLUSTERING COMPLETE?

FERFORMED AND

TaAREM Aab SITNGEL

FRECLUSTERIMNG
CLUSTERS MOT

REG:
L.

CLUSTER (MO} ORJIECTS

e e e e e e e iy

1 i

-
[y

3 ¢ - s vl
P . e oy .
i K o] Y

54
Koo -(.l. l‘

3
<
s
aJ

&

D
o

00~
. et

PR

s .
o
e T T R e N N

1 {
. {

1 3 ,
La ¢)
)

1.3 { ¥)
i

14 o)
1

15 {1)
1é o4 (
17 {17 X
E] ¢ - L
L A 4 p
19 { "

[O i aal mea i e S S e e B e ol b b pd B R S
'

et

b

[
HO]

194 -

DISTaNCE
EOMODES.

MATRIX

P N e

[
wd 12

ol
[

Ee]
Ly

ottt

P T L S e el el i B S SRR g S

il

COMPUTED

-~

D e T e T T R e e e el L SUO PN

-

RN

2t et e

et et

WITH

IZI'

1y

- 195 -

REQ:
(ENNIY
FPRECLUSTERING COMPLETE?

FRECLUSTERING FERFORMED AN OISTAMCE MATRIX COMPUTED WITH RS
CLUSTERS NOT TAREN AL SINGLE NODES.

RS
GlmMa

SIMILARLTY MATRLIX COMPUTED .

REQS
INFA
EMTER PERCENTAGE FORAMETER!

B0,
[HMITTaL FARTITION COMPUTED WEITH F o= 80.00 %

RS
ML
BEST FARTITION MEASURES
anoYOU WAMT TOD O FRINT THE
M

CLUSTER (NDD

1 C1ED 1 4] 10 2é 2F 28 29 X0

3 1 T L

2 {132 & 3 & w1l 1® 1% 1w 2l 22
5

& 17 xm o33 34 xE 0 EEs 38
37 A4l 52 &0
4 ¢oryo14 18 200 24 ng o A0 B5Y
& Ly o2m o 4R a4 4 oA A7 ag 4y 50

. 4
A (15 8 1

BEST FARTITION MESSURE?Z (
OO YO WanNT TO PRINT THE TREET
M0

CLUSTER (NO OBJECTS

1 CLa L& 17 32 33 34 35

[P
o

2 (14) 7ol 1% 18 1% 20 21 22

" e

i) i1
145 4 & ¥10 0 23S 27 2B 2y 300 31

o
-~

G
] Oy 18 23 240 HY
& ¢ %) 2% 42 44 48 46 47 48 49 5O
E 1y a1

i3 :oTE ey un oy E
a8 Ry B2 330 41

-~

REQS
Dl
CPRECLUSTERING COMPLETE

FRECLUSTERTMG FERFORMED aAND DISTAMCE MATRIX COMPUTED WITH P
CLUSTERS NOT TaAREMN A% SINGLE NODES.

BT PARTITION MEASURES L1119
YOU WaMT TO PRINT THE TREE

CLUSTER (MO ORJECTS

1 t11

) (17

i

o~

.
L

l, ¥, A3
5 ; Y
o L

Codd

1w

197

—— i e e e e me e e e e e s e e e e

i

i } - e e e e e me 3R

i i i

H ! H H

! i H H

i H . e 3

{ H H i {

i S e mmme e e X H H !

! i H H i i

! i - s s e —— e - 3 H H

H i i H H i H !

H i H i H i

H H i i i ! i i
———— i i i H i ——— e
i i £ ! i H i H
H H i -— - H i i H
i i H i H i H H H
I i 1 i ! i i i H H
i H i H I i H i i
| H ! - e 3 § i i i i
i i i H ¢ i i H i H !
1 H -- e 3 ! i H -——— i
i i i [! P
i i H H i H P -
i i i HE i H i Pl i i
i i H HE ! H i L H
1 i i HE i H b i
i 1 i HEE i P - I B i i
i H i 1 P - T i
i i H P i i i - i i
H i i HE i P Pl i i
i i - 7 H P L B !
i [T R 1 Pt [i i
i H e HE H [-
{ ! I T R A | b H HIEE B HI I
! i HE S S A I i I SRS I R I
i [R A P H I S T B }
H L A i Po-- 3 - I S R S S
H N T Pooboi [S T T R
- R I S HEE S B [i
HE HEE S ! I T | i

3 MY O]

8

o B ol o R B R A I A S I H LB B B S EaiEs s IO s
£ et WYY D B e et e [e <5 TR MY

svee evos sems sene sene eem wesn sont suss | aene ,{z

i
i
--

i
i
RO "'\{(

vves tese sase sws soms aree vese sets 0ve oon ewe sews vowe seie tese }k vess srem sras some wues vesn atse sevs vere seee eme

i
1
i
1

e e v e e s e s o e e e e P

kS

LE e o e

R

ves some sevm sars wase cocs snne seve sasa sase ssos sons B

=180 1a7
—1 45,917
=1 0%, 000

v e
w3,

s

N
07

" L +

0

RER:
FRECL

CLUSTER (N

y

ORJECTS

1 (1

2 (17

R IS
o~

fe

STRENGTHS
DOURLING:
MEASURE S

FERS
QN

a4
+

13

2y

(14

4)
7)
&)

)
LR

e

1 &

al

2 3
21 22
4 &
a4 47

14
32 34
4.2

REHEA
i 7y

119,

&
25

91
24

e

D

45

199 -

16 17

40 43
1 i 2 o)
5% 54

w) 7

3&
44

38

4%

FRvFeby Tyl Ll LBy lE LBy LYy 20y 2L 22625,

>
R4

e 30e 3L asy
k]
Ll
A
'

HedB e 49y 5O/

THE FOLLOWI
3
15

‘L
2& &7

37 38
49 5O

...‘,fv

NODES HAVE
QLI NG, MEW

4)

N3

18
29

BEEN REMAMED

HGleEBeHao

MODES
4 o]

MO,

HAVE

gy

e L

&

18 20
29 30
40 4z
51 54

A5

REEN

'.;? u
Y- B
21 22

31 32
4445

G5 57

FOLLOWS 3

1315 1
54 E59

sy g e
A S e tg N

460

404354

REMOVED?

10 Ll

a5 a7
5850 59

[el]
w1

p G He P e L 2Ae 27y

13
25

s.) (5
48
&0

53

20

28y

- 200 -

REQ
0L
(FRECLUSTERING COMFLETE)

NGO FRECLUSTERING FERFORMED DISTANTE

REQS

s IMA
SIMILARITY MATRIX COMPUTED.

REQZ
TNty
ENTER PERCENTAGE FARAMETER?

B0,
INITIAL PARTITION COMFUTED WITH F o=

REQ:?

HLMS

BEST PARTITION MEASURE:R 0.091
noo youw WaNT TO PRINT THE TREET
ML

FEGS
FREL

CLUSTER (NQJY ORBJECTS
1 (113
11

Rz

AT I

STRENGTH: 0.0%909,
COURLING: 0.00000
MEASURES 0,091,

o -, g o .
1 2 z B] &

MATRIX COMPUTED

50.00

"
fn ol

WITH F

1.

- 201 -
REQS
REST
ENTER FILE MAME:

SU5ALE
ADJACENCY MATRIX READ FROM FILE S08al1d

REQS:
DEMO

Ed
*
ALrBel2rlér 1793303994052y 53081045590 L0r 2602728y 29230, 3145047
+

1yt Gay S8y 14y 23y 2495732 34y 35, 36, 38937960142, 444548749150/
THE FOLLOWING NODES HAVE EEEN REMOVED?
1 4 5 8 9 10 12 14 1& 17
23 24 26 @Y 28 29 30 FL 32 33
34 3% 36 X7 38 3% 4L 42 44 45
44 47 48 4% H0 H1 HZ 53 55 566
57 58 60 41

o
=
L
Faa)
e
i
i
=
<Z
HEE
e
ih
it
=z
=
i
=X
-t
e
i
.
-
-
f]
i
£
53
e

OLD MO, MEW NO.

20 10
21 11
2 2
25 13

40 14
43 15
) 1é&
54 17

- 202 -

REQ:
YL
CPRECLUSTERING COMPLETED

MO PRECLUSTERING FERFORMEDS DISTANCE MATRIX

REQ?
$1MA

SIMILARLITY MATRIX COMFUTED.
REQRS

THFA

ENTER FERCENTAGE FARAMETER?

80,

INITIAL FARTITION COMPUTED WITH P o= 80.00 X%,

R4
R

s

< E
I
&
I
N

L4

i
EST FARTITION MEASURE S 0. 448
0D YOU WANT TO FRINT THE TREE®

REQ:?

PG

CLUSTER MO ORIECTS
1 oD 1 3 7 ¢ 1L 13 1E
& (&) 2 4 5 &0 1d 17
& {3 8 10 14
REQ:
Eval.
STRENGTH? 00,8857,

COURLINGS 0,4370y
MEASURE 0. 448,

COMPUTED WITH F

1.

REGE
FEST
ENTER FILE

GOEAL2
ARJATENCY
REQS

M)

?
*

AleBe 12y 160179 33,39 4Ly F2yE3v G123y P L1132 185185192021y 300
A0r 43554959 14,2324, 5793293453536y 3837060942y 44545,5,48,47,350/

THE FOLLDWING NODES

i 2
145 14
25 A2
A1 43
e 537

NODES HaVE
DL MO NE

NAME !

HATRIX

- 203 -

READ FROM FILE S08a12

&
18
34
443
&0

HAVE BEEN REMOVED:Z
7 & 11 13
1% 20 2 28
35 3& 37 38
4% 48 49 a0
&1

BEEN REMaAMED A5 FOLLOWSS

WM

R e T.3 R s
AL RIS O S

1é

€8 Od B e
O L

P

"

25y

- 204 -

REQ:
OIMN
(FRECLUSTERING COMPLETE)

MO FRECLUSTERING FERFORMEDS DISTANCE MATRIX COMFUTED WITH F =

FEQR:

SIMA
SIMILARITY MATRIX COMPUTED.

REQ:
IMFA
ENTER FERCEMTAGE FARAMETER:

H.
INITIAL FARTITION COMPUTED WITH P = 80,00 X,

REG:

HCM3

BEST FARTITION MEASURE: 0,449
N0 YOU WANT TO FRINT THE TREE?
NI

REQS
FREL

CLUSTER (N0 QBJECTS
1 (13 1
13

10 11

3
<
i
=
O
.
e
(RS

15
16

Pt

L
PRra ey
e
Bt

< ¢ 3

RE(33
BVl
STRENGETHS

GO ING
MESSURE S

- 205 -

ENTER FILE MNamMiE:
508412

AUJACENCY MATRIX READ FROM FILE 50SA12

REQS

L0

;

e Erl2vlarl 33539 a4l s SR HEs SR 3r6r Pl 13y 1E 1818202120y 200

B
?

+
4

I7960v 42944545, 48, 49,30/

THE FOLLOWING NODES HAVE REEN REMOVEDRS
1 2 3 4] A 7 a K4 10
1 12 13 15 la 17 18 19 20 21

25 26 27 28 29 30 31 32 33

1

3
4 3% %6 BV 38 3% 40 41 42 43
44 45 44 A7 48 4% 5O EL §R 0 83
oy My

‘ £ 0
- R ey

W] G ok i &0 &1

EOR SR I o5

L

NODES HAVE BEEN RENAMED A5 FOLLOWS:
LD NO. NEW NO.

1
25 2
24

5

L ‘;}' ‘d"

flide

O1rMN

(PRECLUSTERING COMPLETE)

PRECLUSTERING PERFORMED AND DISTANCE MATRIX COMPUTED WITH F o= 1l

CLUSTERS NOT TAREN AS SINGLE NODES,

REQ:

SIMa

SIMILARITY MATRIX COMPUTEL.
REQS

Tty

EMTER FERCENTAGE PARAMETER?
B0

THITIAL FARTITION COMPUTED WITH B o= 80,00 .

FOFRCLUSTERING HAS ONLY OME CLUSTER.
T IT.

A0 83,54, 59y 49 5Py L0y 2627928, 29930531r46947 51555658y 32, 34,3036 38y

- 206 -

REQ?
REST
ENTER FILE NaMES

S05A12
ADJACENCY MATRIX READ FROM FILE S5085a13

REEQz
LMD

18r19e20s 2192225940439 54959049599y

’

ﬁl()vi?-fwf;‘?:ri?.ﬁvif‘?v30931946747?5195595}}(59'335: ¥
1492324575425 4474%5, 48,4950/

THE FOLLOWING NODRES HaVE BEEN REMOVEIDS
1 2 3 4] & 7 g 9
11 1 13 14 15 Ld 17- 18 1%
21 22 23 24 25 26 27 28 29
31 33 37 40 41 432 43 44 4%
47 A48 49 50 51 P 53 G4 55
57 58 59 &1

3 b

MODES HAVE BEEN RENAMED AS FOLLOWS?
OLD NO. MEW NO.

e)
3 1
e .
34 w
e -

10
20
30
48
56

- 207 -

REQ?
DM
(FRECLUSTERING COMPFLETE)

FRECLUSTERING FERFORMED AND DISTAMCE MATRIX COMFUTED WITH B = 1»
CLUSTERS NOT TAKEN A8 SINGLE NODES.

REQS
S Me

SIMILARITY MATRIX COMFUTELD.

REQ:
INFA
ENTER FERCENTAGE FaRAMETERS

INITIAL FARTITION COMPUTED WITH F = 80,00 X.

RED:

M3

BEST FARTITION MEASURE: 0,519
0OYOU WaMT TO PRINT THE TREE?T
RN

REDS

Fr L.

CLUSTER (MO ORJECTS

1 {7 1 G

3
.
L
.,
s
i~
. "l

fEz

el

ETREMGTHY 0.,461%0,
COUFLINGY 0.0000¢
MEASURE: 2,415,

- 208 -

NTER FILE NAME]
SOBALE

ANJACENGY MATRIX READ FROM FILE S08A1<

REQ:
DEND

el lbr LTy AT e3P el s R TS e BeBr Sy r L1y 13 18y 18, 1972002120y

¥
*

) e es a N N P T
359409ﬂ$95@9b9947b999lOvdévd/viﬁvﬁ?wﬁOyjlv#év4,9qivqu9qovqbv

L4y 23524057932, 34935, 346y 38, 372607

THE FOLLOWING NODES HAVE BEEN REMOVED:
: 2 X 4 b & 7
12 13 14 15 14 17

22 23 24 25 2h 27

53]
.
~G

10
19 20

-
(e 8}

1

R

1
& =7 28 29 30
A1 A2 33 34 35 38 37 38 A 40
41 43 44 37 a1 52 a3 e a9 Gé
a7 e a9 &0 A1

MODES HAVE BEEN REMAMED A% FOLLOWS:
LT NO. NEW NO.
42 1
44 2
45
48
R

50

F S
LIRS 44

s,
Lo

- 209 -

REQ@:
LLMM
CRPRECLUSTERING COMPLETE?

FRECLUSTERING FERFORMED AND DISTANCE MATRIX COMPUTED WITH
CLUSTERS NOT TARKEN A% SINGLE NODES,

REQ: .
5IMA

SIMILARITY MATRIX COMPUTELD.

REQS
TidF i
ENTER FERCENTAGE FARAMETER?

80,
INITIAL FARTITION COMPUTED WITH P o= 30,00 %,

REQS
ST

BEST PARTITION MEASURE: 0+ 400
00 YOU WANT TO FRINT THE TREE?
NI

REQ:
FREL.
CLUSTER (NOY ORJECTS

1 (&l 1 2 3 4 b &

1y

- 210

EMTER FILE NaMEL

SEALD
ADLJACEMDY MATRIX READ FROM FILE
RECH

PBIE

<

AleBe 120 18 e 172 B339 4L o B2y HA 4L

Babe LEe 1¥ e 20 0

Rt ST

BeFe L 1A 22,09/

G b v fed T

Ry B B35 Rb F7» 380 A0S

2o A4 AF 2 4R 49 B0/

> _b E
i

AeBeP el 026y 27 v 2029 3L oAb 4751

F0 55 587%

CLUSTER TN

2 {8 1%
3 &) 13

£
EaatN

3
4) 57
26
48
10

P
e

X7
49

-
"~
- -~
T

B4
-

#.3
ES
&

=%
h=
-

He/

41

e

ne
Ha

31

,....
S
£ 24

A

LIMKS

LIMKS

LA NRS

LIMES

LINKS

LINKES
MOME .

LINRS

LINESG

BETWEEN

BETWEEN

BETWERM

BETWEEN

BETWEEN

BETWEEN

BETREREM

BETWEEN

CLUSTERS

o 4n
1& - &
A - 2

e o 21

CLUSTERS
&l - EY

)

CLUSTERS
- 14
CLUSTERS
2o 14

12 - A7

CLUSTERS
[

IZ:; :":3

CLUSTERS

211

pod

&

e

B

£

e

£y

LIMKS

LIMES

LINKS

LINKS
FOME .

LLINKS

Lo ENKS

LINES

LENKS

LINES

LITMKS

MONE .

BETWEEN

BETWEEN

RETWEEN

BETWEREN

RETWEEN

RETWEEN

BETHEEN

BETWEEN

BETWEEN

el

BETWEEN

CLUSTERS
LI 3

CLUBTERS

2o 18
1% 40
21 - 18

CLUSTERS
1% - 14
H4 - 14
G4 07

CLUSTERS

CLUSTERS
2o 4R
14

21 42

21 - 50

LI V)

A5

A2

CLUSTERS

ot B o
I)

GTERS

g
]

CLUSTERS
1% 40
28 18

40

CLUSTERS

&

&

e

-

)

e

3

EE

e

don

e

Lo LIS

LANKSG

BT WE M

BETWERM

LG BETHWEEN

LIMES

LLINKS

LIMKS

MOMNE -

LoEMES
HIOME &

LIMRS

LIMKS

LINKS
MONE «

L1 MES

LINKS

LINKS
MONE

BETWEEN

BETWEEMN

RETHEEMN

BETWEEN

BETWEEN

BETWEEN

BETWEEN

BETHEEN

CLUSTERS
7o AR

Yo 45

CLUSTERS
Be - 3l

CLUGTERS

-1

o

CLUSTERS
4 - 23
A0 - 24
CLUSTERE

40 - F2
CLUSTERS
CLUSTERS
CLUSTERS
40 -~ 3O
CLUSTERS

3 o
2F - 24

24 -~ 32
24 - 34
CLUSTERS

CLUSTERS

25 4

CLUSTERS

F]
fed

5

i~

e
Fiatd

pasd

3
k4

&

fard

b

&

-

£

EX

B

e

s

~n

Y

e

e

RS

LINKS BETWEEN

LINKS BETWEEM
MUME .

LINKE BETWEEM

LINES BETWEEM
MONE .

LINES BETWEEN

REd

CLUSTE

S0

&HO

CLUSTE

CLUSTE
A
42

42

A%

g

243)

o
A&

&

8

B

Y

e

- 215 -

APPENDIX F

Main Subproblems Resulting From The

First Iteration of The Decomposition Analysis

Note: (l1) The number in parenthesis indicates
the number of interdependicies

identified for the requirement.

- 216 -

Main Subproblem 1: Multi-programming Support Functions:
5 (11): Operating system must provide a multi-program-
ming environment.

12 (7): Operating system must protect user jobs from
each other.

16 (5): System process routines are re-entrant and
shared.

20 (4): Jobs are scheduled strictly on a first-come,
first-served basis.

21 (5): Job scheduling function must be modularized so
that improvements to the system can be easily
accomplished.

37 (9): Device handler routines must support multiple

job streams from card readers.

43 (12): P-V mechanism must be provided.
45 (1): P-V operations are available only to system
processes.

56 (3): Operating system must accept input data from the
user's job stream.
57 (2): Supervisor process must load the user's program.

65 (4) There exists one supervisor process per job

stream.

Main Subproblem 2: Process Management Functions:
M5 2A: Process Creation and Scheduling.

6 (l4): The operating system must be process oriented.

MS

10

19

23

25

29

47

58

9):

5):

7):

8):

6):

4):

(10) :

- 217 -

A process must be ready to run prior to being
allocated to a processor.

Initially one process is created for each
user's job.

Ready processes are scheduled in simple round-
robin fashion.

A process shall be blacked while awaiting
synchronization with another process.
Reference to a process 1is by symbolic name.
The message facility must be accessible to
all processes.

The user process may dynamically create and

destroy other user processes.

2-B Process/Operating System Interface:

7 (4):
11 (8):
15 (6):
17 (2):
26 (6):
63 (8):

The operating system must run a machine that
has two states.

User communication with the operating system
is via SVC instruction.

SVC instructions are user callable.

SVC instructions are executed in the super-
visor state.

A process shall be blocked when it specifi-
cally relinquishes control to the process
scheduler.

User processes must schedule completion.

- 218 -

MS 2-C Process Time-Slicing:

27 (6):
24 (2):
44 (10):

The traffic controller must time-slice CPU
usage to achieve multi-programming.

A process shall be blocked when a timer run-
out trap is detected.

An interrupt handler must be provided.

Main Subproblem 3: Resource and Memory Management Functions:

MS 3-~A Resource Allocation:

8

9

13

14

30

31

32

33

35

(10) =

(8):

(12):

(4):

(9):

(7):

(11):

(4):

(7):

All resource requests must pass through the
supervisor.

System resources ﬁust be allocated to a job,
prior to the job being made eligible to run.
The operating system must utilize information
tables to monitor and control processing.
System tables can be dynamically allocated
and released.

The operating system must allocate memory for
job partitions the size of which is

specified by the user.

Memory is allocated in 2K blocks.

Operating system must dynamically allocate
memory for itself.

Memory is allocated using a best=-fit algo-
rithm.

Free storage areas are collapsed into

continguous blocks of memory whenever a

50 (2):

51 (5):

60 (9):

- 219 -
partition is freed.
Messages are of an arbitrary yet specified
length.
Any number of messages may be queued.
User processes cannot dynamically allocate

memory.

MS 3-B Protection:

34 (9):
59 (7):
62 (4):

Memory must be protected to prevent the
simultaneous allocation of a partition to
multiple jobs.

Dynamically created processes must run in the
same partition as the parent job.

The user processes run in the problem state.

Main Subproblem 4: Supervisor Process:

18 (6):
27 (10):
28 (9):
61 (6):

Supervisor process must create and delete
the environment in which a job runs.
Supervisor routine must reclaim all system
resources when a job has completed.
Supervisor process must reclaim all system
resources when an error condition abnormally
terminates a job.

User cannot destroy system process within

the same process group.

Main Subproblem 5: Device Management Functions:

36 (16);

Operating system must supply a device manage-

- 220 -

ment routine.

38 (10): All devices are allocated.

39 (9): Device handler routine supports one card
reader/input stream.

40 (6): Device handler must support one line printer/
output stream.

41 (8): I/O devices operate via multiplexor channel.

42 (7): The user can provide his own routines for
non-standard devices.

64 (6): The user's job can reference 1 input, 1 output,

1 exceptional type of device.

Main Subproblem 6: Message Facility:
46 (12): A message facility must be provided.
48 (5): The name of the sending process must be pre-
fixed to a message.
49 (7): The receiving process must read the name and

text of a message.

52 (2): All messages are released when a process
terminates.
53 (4): The receiver of a message may destroy the

message without acknowledgement.
54 (5): If nomessages are available to a process which

expects one, it gets blocked.

- 221 -

APPENDIX G

Final Requirements Definition

I.

- 222 -

Design: Philosophy

1.

The operating system must be simple,
a basic system nucleus.

DEFINITION: The operating system 1is

in the sense that it is to implement

features most essential for learning

implementing

to be simple
only those

the funda-

mentals of the operating system. Therefore, the

system is to implement a basic system nucleus

to include the following features:
~=—= Multi-programming;

--- Basic multi-programming support;
--- Dynamic memory allocation;

--- Device management;

-—-- Simple top level supervisor; and

--- Traffic control.

IMPLICATIONS FOR DESIGN: The nucleus does not

include the following:

--- language processors;

--- utility programs;

--- spooling;

--- file systems;

- applicétion packages;

--- debugging facilities; and

-—- subroutine libraries.

The operating system must be designed as a peda-

gocial tool.

- 223 -

DEFINITION: Since the operating system is to be

used as an instructional tool, simplicity and

easy identification of the major functions are

the objectives of the design. As previously
described, the heirarchical operating system
structure enables:

--- easy identification of the relevant sections
for processor management, memory management,
and device management; and

--- identification of the well-defined inter-
faces between the various functional
section.

IMPLICATIONS FOR DESIGN: The design concepts of

extended machine instructions and heirarchical
operating system structure have been selected;
as the optimum method of satisfying the design
objective.

Also the pedagocial clarity of the operating
system is preferred to performance.
The operating system must be process oriented.

DEFINITION: The requirement is vague as it

stands, yet it recognizes the fact that there
are certain requirements necessary to support a
process. The following entities exist within
the system:

-—-- job stream: sequential;

- 224 -

--- job: collection of activities needed to do
the work required;

--- process group: processes belonging to the
same job; and

--- process: a system-created entity which is
the smallest computational entity with which
the system must deal.

IMPLICATIONS FOR DESIGN: Therefore, the opera-

ting system must provide certain basic functions
by the extended machine including:

-== P-V operations;

--- basic multi-processing support; and

--- traffic controlling.

The software functions can be thought of as being
executed in the same way as hardware instructions.
Again, the basic functions represent what the
operating system must accomplish; the extended

machine implements the requirements.

II. Design Constraints

4.

The operating system must be small; occupying
fewer than 2500 cards of assembly language state-
ments.

DEFINITION: It was not clear from the system

description that the requirement occurred "post
hoc, ergo propter hoc".
If, in fact, this was a design constraint

then it must be analyzed in conjunction with the

- 225 -
requirements for simplicity and a basic nucleus.
Clearly, adding more simplistic capabilities to
the system increases the number of assembly
language statements and at some point, would
conflict. It was assumed that since the actual
operating system deck 2500 that this require-
ment was not significant.
The operating system is to be implemented
utilizing IBM System/360 hardware.

DEFINITION: This simple requirement has far-

reaching significance for the design; specifi-

cally, the hardware constraint has implications

for the following functions:

--- IBM/360 is a two state machine;

(problem, supervisor states identified)

--- Protection is provided in 2K blocks;
(protection must be provided to match memory,
allocation is in 2K blocks)

--—— Interrupt mechanisms are hardware functions
which dictate what sort of interrupts are
recognized and how they are processed.

IMPLICATIONS FOR DESIGN: Since the guidelines

for defining requirements called for indepen-
dence among requirements, it was not clear if
the implication of the constraint needed to be

stated explicitly as requirements.

- 226 -

Since the design constraints were not
assessed with the remaining design requirements,
it was decided to draft the implications of the
design constraint and to include these in the
assessment process.

The input/output devices are limited to card
reader for input job streams, and line printers
for output.

DEFINITION: This was a design constraint,

imposed "a priori", which limits both the
flexibility and complexity of the operating
system.

IMPLICATIONS FOR DESIGN: This requirement

reduces the variety of hardware and, therefore,
the scope of the device management functions of
the operating system. The impact of the
requirement is specifically written into

subsequent requirements.

ITITI. Design Requirements

7.

The operating system must provide for a multi-
programming environment.

DEFINITION: Multi-programming - multiple job

streams from different sources.

IMPLICATIONS FOR DESIGN: The operating system

must have the facilities for:

--- input stream interpretation - those

- 227 -

functions which delineate jobs and job steps;
--- job control - those functions of the operating
system which control the processing of a job
in the system; and
--- job scheduling - those functions which pre-
pare a job for execution.

Limitations on Multi-programming: There must

be some sort of a limit established for the

number of jobs that the operating system can

handle. 1In fact, the system is limited by:

1. 15 protection keys;

2. the number of I/O stream must equal the
number of devices; and

3. the amount of memory available.

The operating system must run on a machine that

has two distinct states.

DEFINITION: The two states are problem state

and supervisor state. This requirement implies
first that user programs execute in the problem
state, and second, a processor can correctly
execute privileged instructions only in the
supervisor state. Privileged instructions
include requests to:

--- change the state of the machine;

--- start I/0;

--- change the protection rights of memory; and

- 228 -

--- change the interrupt states of the machine.
Since the operating system includes the imple-
mentation of the extended machine concept,
these instructions may take advantage of the
dual state machine by making system routines
unavailable to the user and, therefore, only
certain selected routines are user callable.

IMPLICATIONS FOR DESIGN: Therefore, the

operating system must have the capability to:

--- distinguish machine state;

--- identify privileged instructions; and

--- identify user-callable extended machine
instructions.

All resource requests must pass through the

supervisor.process.

DEFINITION: The supervisor routine is a top-

level process that establishes the environment
in which a job will execute. Initially, all
resources required by a given job are stated
explicitly on JCL cards. The supervisor routine
coordinates requests for resources prior to
creating a process for the job.

IMPLICATIONS FOR DESIGN: The tasks which the

supervisor must perform are as follows:
-—-- allocate memory;

--- allocate devices required;

10.

11.

12.

- 229 -

--- read the user deck into his partition;
--- start user process; and

--— upon completion, reclaim all resources.
System resources must be allocated to a job
prior to the job being made eligible to run.

DEFINITION: The specific resources consist of

memory and input/output devices.

IMPLICATION FOR DESIGN: These resource allo-

cations are made at a job level. There are other
resources which are allocated at the process
level.

A process must be ready to run prior to being
allocated a processor.

DEFINITION: Resources required at the process

level consist of only the processor.

IMPLICATION FOR DESIGN: Since resource alloca-

tions are made at the process level, there must
be a traffic controller routine to create a
process-oriented environment and the system must
have some means of determining when a process is
not eligible to run.

User communication with the operation system is
via special call.

DEFINITION: What need has the user of communi-

cating with the operating system? Once all the

13.

14.

- 230 -
resources are allocated, must there by any
communication? These questions require the user
to communicate with the operating system:
--- create a process;
--- destroy a process;
--- halt job and signal supervisor;
--- find a PCB given its name;
--- read a message;
--- send a message;
-—— start/étop process; and
--- abnormally terminate the job.

IMPLICATIONS FOR DESIGN: The operating system

must take action based on the user requests.
The operating system must protect user jobs from
each other.

DEFINITION: Protect in this sense means to

prohibit unauthorized access to memory locations.

IMPLICATIONS FOR DESIGN: For purposes of this

system, a separate supervisor process exists in
a separate process group for each job stream.
There is no communication between process of
different jobs; therefore, they essentially are
invisible to each other.

The operating system must utilize information
tables to monitor and control processing.

DEFINITION: The operating system must maintain

15.

- 231 -
information on a varying number of jobs,
processes, and resources. This requirement
attempts to identify the table and thereby mini-
mize proliferation and redundancy of system
information.

IMPLICATIONS FOR DESIGN: The following informa-

tion tables exist in the sample operating system:

--- nucleus databases;

--- process control block - one per process
containing save areas, used by the system
routines for storing the status conditions,
and semaphores;

--- memory - free storage blocks;

--- processor management - message facility; and

--- device management - unit control block
stored in a permanently allocated area for
every unit.

Notice that as previously stated, the emphasis

for all transactions is at the process level;

therefore, the process control block contains
most of the system information.

System tables can be dynamically allocated and

released.

DEFINITION: System tables refer to those tables

built and maintained by certain system processes.

These tables include:

l6.

17.

- 232 -

--- process control block;
--- semaphores;

--- free storage block;
--- message; and

--- unit control block.

IMPLICATIONS FOR DESIGN: The operating system

must be capable of dynamically allocating memory
to itself for these tables.

A possible deadlock could occur at the point
of a user's program which consumed all of memory;
namely by continually writing messages. The
system has no built-in limiting functions to
idéntify such overrun conditions.

Certain system routines are user callable.

DEFINITION: The nucleus routines are the SVC

instructions of the extended machine concept.
Some of the routines allow unrestricted memory
reference and, therefore, are not available to
the user.

IMPLICATIONS FOR DESIGN: When an SVC instruction

is issued, the handler routine must check to

see if the operation requested is, in fact, user-
callable.

System process routines are re-entrant and

shared.

18.

19.

- 233 -

DEFINITION: System process have only one copy

resident in the system. Therefore, they must be
efficiently shared in a multi-programming
environment. Pure procedure operates only on
variables in registers or in separate data seg-
ments associated with the job.

IMPLICATIONS FOR DESIGN: The need for pure

procedure is driven by the need for a multi-
programming environment. The system can set
locks through the P-V operations to prevent

race conditions.

Extended machine instructions are executed in the
supervisor state.

DEFINITION: The extended machine instructions

along with the normal hardware instructions,
comprise the nucleus of the system. SVC handler
is used to activate the extended machine
instruction and transfer between loads.

IMPLICATIONS FOR DESIGN: When an SVC instruc-

tion is issued, a supervisor call interrupt
occurs and control is transferred to SVC
handler routine. Therefore, an SVC handler
interrupt must be provided.

The supervisor process must schedule jobs and
prepare the jobs for execution.

DEFINITION: The supervisor routine initially

20.

21.

- 234 -

creates a process. The user may generate his
own processes by SVC instructions during
execution of his process group. This require-
ment deals only with establishing the USER PROG
and not with specific resource allocations.

IMPLICATIONS FOR DESIGN: This requirement is an

explicit statement of one of the functions of

the supervisor process. The following instruc-

tions apply:

--- a non-system process cannot stop a system
process; and

--- a process must be stopped prior to its being
deleted.

Initially one process is created for each user's

job.

DEFINITION: One process is created by the

supervisor process after all job level resources
have been allocated to the job.

IMPLICATIONS FOR DESIGN: The user must create

any additional processes desired on his own.
Jobs are initiated strictly on a first-come,
first-served basis.

DEFINITION: Jobs are read into the system in

the form of job streams from card readers.
Jobs are accepted into the system as long as

sufficient resources exist. Since there is no

22.

- 235 -

spooling capability, a job cannot be copied in
the system. Once in the system, user jobs are
redefined in process groups which contend for
the processor in a multi-programming environment.

IMPLICATIONS FOR DESIGN: The supervisor process

must determine if it can schedule a job before
reading it into the system.

The supervisor process must be modularized so
that improvements to the system can be easily
accomplished.

DEFINITION: The system description indicated

that sophistication of job scheduling is limited
by the brevity of the implementation. There-
fore, the system could easily be extended to
provide more advanced features and facilities.
Modularization of the function was critical, not
for pedagogical clarity, but to provide for
system improvements.

IMPLICATIONS FOR DESIGN: Although modularized

design was emphasized as a design philosophy for
pedagogical clarity, it is now emphasized to
allow easy improvement. This function should be
designed incorporating interface features easily
adaptable to a system which will implement

advanced features such as spooling.

23.

24.

- 236 -

The process scheduler must time-slice CPU
usage among ready processes to achieve multi-
programming.

DEFINITION: Traffice controller resides in the

process management, lower level, and enables a
process to run until a certain time quantum has
elapsed; at which time, the process is stopped
and another started. A process is ready when it
is not blocked or waiting for the completion of
some external event such as I/O operation or for
a message from another process.

IMPLICATIONS FOR DESIGN: The traffic controller

schedules ready process in a round-robin fashion.

Interrupts must be enabled to identify when a

process:

--- exceeds its time quantum;

--- becomes blocked; and

--- relinquishes control to the traffic
controller to await the completion of an
external event.

Ready processes are scheduled in simple round-

robin fashion by the process scheduler.

DEFINITION: Round-robin scheduling means that

processors are sequentially scanned until a

ready process is found.

25.

26.

27.

- 237 -

IMPLICATIONS FOR DESIGN: The traffic controller

must maintain a current list of processes from
which to select the next ready process.

A process must be blocked and control released
to the process scheduler when a time quantum of
50 ms is exceeded.

DEFINITION: Timer runout trap must be indicated

when a process exceeds its time quantum. By
blocking a process is meant that it is ineli-
gible to run temporarily.

IMPLICATIONS FOR DESIGN: Interrupt mechanism

must be provided to detect a time runout.

A process shall be blocked and control passed
to the process scheduler when the process must
wait for synchronization with another process.

DEFINITION: Multiple process creation may

require that one process await the completion of
a previous process in order to run.

IMPLICATIONS FOR DESIGN: Some mechanism (basic

primitives) must be provided for the synchroniza-
tion of processes.

A process shall be blocked and control passed

to the traffic controller when the process
specifically relinquishes control to the process
scheduler.

DEFINITION: A user process may actually finish

28.

29.

- 238 -

execution and relinquish control to the traffic
controller.

IMPLICATIONS FOR DESIGN: User process must

signal termination stop process instructions, or
abnormal termination.

The supervisor process must reclaim all system
resources from a job when the job has completed.

DEFINITION: Reclaimation of resources is

accomplished on a job level, since processes
only gain the use of a processor.

IMPLICATIONS FOR DESIGN: This requirement

implies successful completion of a job; there

are such things as unsuccessful completions.

The supervisor must at this point:

--- print a message on the printer;

--- destroy all processes created for or by the
user job;

--- free memory partition; and

--- move on.

A message must be available to signal successful

completion.

The supervisor process must reclaim all system

resources when an error condition is caused which

terminates processing for a process.

DEFINITION: An error in one user process which

reaches the supervisor level, is capable of

30.

31.

- 239 -
terminating processing for the entire process
group.

IMPLICATIONS FOR DESIGN:

-—— certain error conditions must be defined,
remember that this system does not have
debugging facilities;

--—- the supervisor must perform the same func-
tions as in the previous requirement; and

--- an error message must be provided.

Reference to processes within a process group

is by symbolic name.

DEFINITION: In order to communicate back and

forth user processes must be able to identify
each other. Therefore, each process is given a
name by the process that creates it.

IMPLICATIONS FOR DESIGN:

--- each process must be named by the process
creating it; and

--- each process must have a unique name field
in order to identify it.

The operating system must allocate memory for a

job, the size of which is to be specified by

the user.

DEFINITION: The operating system provides

routines that will allocate a block of memory

of a given size and given address alignment

32.

33.

- 240 -

using a best-fit algorithm.

IMPLICATIONS FOR DESIGN:

--- user must specify the job partition size
required by JCL;

--- the operating system must maintain a list
of storage areas, accomplished using free
storage block list; and

--- a queue is established for those jobs
awaiting memory.

Memory is allocated to a job in contiguous 2K

blocks.

DEFINITION: Partitioned allocation for user's

jobs is a simple memory requirement scheme
which facilitates multi-programming. A block is
a uniquely named group of words whose addresses
are contiguous.

IMPLICATIONS FOR DESIGN:

--- the user must specify memory requirements in
increments of 2K; and

--- the operating system should allocate memory
such that the amount of wasted memory is
minimized.

The operating system may dynamically allocate

memory to itself for temporary work space or

traffic areas for system processes.

34.

- 241 -

DEFINITION: All system tables and system

processes which do not run in the user's process
need temporary memory allocated to them.

Dynamic memory allocation means that partitions

are created as required during processing. The

operating system may use these areas for:

--- work space for system processes; or

--- temporary buffer areas for message storage.

IMPLICATIONS FOR DESIGN: Tables must be main-

tained, testing free and allocated storage areas,
usually using a chaining method to facilitate
the dynamic nature of allocation scheme.

Memory is allocated using a best-fit algorithm.

DEFINITION: The memory allocation algorithm

cycles through a free storage list, which is
arranged in ascending order, until it finds a
block large enough to contain the requested
area. In order to minimize breakage, the
allocated area with the specified alignment is
selected as close to the beginning of the block
as possible.

IMPLICATIONS FOR DESIGN:

--- excess memory is re-linked to a free storage
list whenever memory is allocated; and
--—- a free storage list, arranged in ascending

order, must be available in order to

350

- 242 -

accomplish the best-fit scheme.

Memory must be protected to prevent the simul-
taneous allocation of a partition to multiple
jobs.

DEFINITION: Memory protection is a hardware

function in the IBM System 360. Each partition

is assigned a protection key (1 through 15).

The "0" key is reserved for the operating

system. Since the hardware actually associates

the keys with each 2K byte block of memory,
partitions must be multiples of 2K, and all
locks within a partition are set to the same
value. Access control functions are those
functions which protect an area of storage
against unauthorized access by:

--- insuring that all storage references by an
executing task for the purpose of writing,
executing and/or reading in that storage
are are legal; and

--- provides a task from modifying areas of
main storage beyond the limits.

IMPLICATIONS FOR DESIGN:

--- protection keys must be assigned and set when
memory is allocated; and
--- partition locks must be tested prior to

allowing access to memory.

36.

37.

- 243 -

Free storage areas are collapsed into contiguous
blocks of memory whenever a job partition is
freed.

DEFINITION: Since memory is allocated in con-

tiguous blocks, the operating system must re-
combine memory partitions and update its list
of free areas.

IMPLICATIONS FOR DESIGN: Memory is to be

reconfigured and the list of free space updated
and re-ordered whenever a partition of memory

is freed.

The operating system must supply a device manage-
ment system which runs as a separate process,

one per device.

DEFINITION: The device management system:

--- provides the routine necessary to issue the
I/0 commands;

--- monitors the I/0 devices; and

--- interprets the status information when an
I/0 interrupt occurs. It must also maintain
interfaces to process management interrupt
handlers and event monitoring functions.

IMPLICATIONS FOR DESIGN:

--- management system can use semaphores as locks

against two processes simultaneously

38.

39.

-~ 244 -
attempting to access the same device; and
- ﬁhe fielding and handling of input/output
interrupts are performance by a special
routine that is involved whenever an I/0
interrupt occurs. It runs for a very short
time, just long enough to store status
information and perform a V operation on
Wait-Semaphore.
Device handler routines must support multiple
job streams from card readers.

DEFINITION: Support means that the routines

must distinguish among:

--- job control cards;

--- object deck;

--- data cards;

and to delineate jobs and job steps.

IMPLICATIONS FOR DESIGN: Each card reader

represents an input job stream.
A device is dedicated to a job.

DEFINITION: A dedicated device is allocated to

a job for the job's entire duration; this is
especially applicable to card readers and
printers. Allocation is made by the supervisor
during job definition.

IMPLICATIONS FOR DESIGN:

--— a card reader represents an input job stream;

40.

41.

42.

- 245 -

--- a line printer must be allocated to a job

prior to the job being made eligible to run.
The device handler routine supports one card
reader per input stream.

DEFINITION: I/O that can be processed sequen-

tially to terminate an I/O stream. A single card
reader then is used to read in an entire job
stream.

IMPLICATIONS FOR DESIGN: The system can continue

to accept jobs as long as sufficient responses
are allocatable. As soon as we reach the
resource limit we must stop reading in jobs.
Therefore, the supervisor process must allo-
cate resources as jobs are being used in in
order limit the number of jobs at the appropriate
time.
The user must specify a name for his input
stream on JCL.
The device handler routine must support one line
printer per output stream.

DEFINITION: The user may specify a certain

output device in his JCL.

IMPLICATIONS FOR DESIGN: The device name for

output must be specified in JCL.
The user must provide his own routines for non-

standard devices.

43.

- 246 -

DEFINITION: The user may supply his own routine

to issue his own I/0 commands.

IMPLICATIONS FOR DESIGN: The user must indicate

the use of a non-standard device in his JCL
statements. The device handler process must
supply a routine to handle the interface for
devices wherein the user wishes to provide his
own I/0 commands.

A process synchronization mechanism must be
provided to serve as a lock on a database.

DEFINITION: The process synchronization

mechanism is the P-V operations used in conjunc-

tion with semaphore.

--- P operation - of value >0 then value = Value-l
if value < 0 then value=value-l
and the process is ineligible
or blocked.

--- V operation - if No processes are ineligible
then value=value+l
if there is a process ineligible
then value=value+l
and the waiting process is
eligible.

--- Applications - the semaphore when the initial

value=1l can serve as a lock by

44.

45‘

46.

- 247 -
requiring a P-operation before

accessing and a V-operation
afterwards, can insure integrity
of a resource.

IMPLICATIONS FOR DESIGN: P-V operations can be

used to provide protection for databases.
A process synchronization mechanism must be
provided for the timing of synchronous processes.

DEFINITION: For processes which require synchro-

nous processing, the P-V operations can be used
to insure that such synchronization takes place.

IMPLICATIONS FOR DESIGN: Since P-V operations

are available only to system process, this
technique may be used to insure that system
processes run in sequential order.

A process synchronization mechanism must be
provided for synchronization between the sender
and receiver in message processing.

DEFINITION: A message facility is available to

all processes for interprocess communication.
The P-V operations can be employed by the
message facility to insure that messages are
synchronized and queued.

IMPLICATIONS FOR DESIGN: The P-V operation can

be used to establish a message queue facility.
A process synchronization mechanism must be

provided to lock a device.

47.

48.

49.

- 248 -
DEFINITION: All devices are dedicated, one per

job. The P-V operation can be used to lock each
device.

IMPLICATIONS FOR DESIGN: The P-V operation can

be used to lock devices.
An interrupt handler routine must be provided
for I/0 interrupts.

DEFINITION: An interrupt is an occurrence that

causes the processor to take some immediate action.
The IBM System/360 has a mechanism for being
interrupted, saving its status, determining what
general class of interrupt has occurred, and

executing an appropriate interrupt handler routine.

IMPLICATIONS FOR DESIGN: The interrupt handler
determines the cause of the following faults and
calls the appropriate operating system function.
In this case, it calls the I/O interrupt handler.
An interrupt handler routine must be provided for
program interrupts.

DEFINITION: Program interrupts consist of inter-

rupts employed within the program structure to
enable a synchronous processing.

IMPLICATIONS FOR DESIGN: This facility is

available only to system processing and must be
provided for that purpose.
An interrupt handler must be provided for

supervisor call interrupts.

50.

51.

52.

- 249 -

DEFINITION: Supervisor call interrupts are

required to recognize SVC instructions. This
mechanism is used to activate the extended machine
instructions and to transfer between levels of

the system.

IMPLICATIONS FOR DESIGN: The operating system

must include a supervisor call handler.
An interrupt handler must be provided to deal with
external interrupts.

DEFINITION: External interrupts are generated

outside of the operating system due to external
conditions; specifically, timer runout trap.

IMPLICATIONS FOR DESIGN: The operating system

may utilize the timer function to provide for a
multi-programming environment.

P-V Operations are available only to system

processes.

DEFINITION: Since the P-V operations in effect

control the synchronization of the operating sys-
tem and lock various resources, they are available
only to operating system processes for use.

IMPLICATIONS FOR DESIGN: User processes must have

another mechanism available to synchronize their
processing.
A message facility must be provided to all

processes.

53.

54.

- 250 -

DEFINITION: The message facility must be avail-

able for interprocess communication to all
processes in the system.

IMPLICATIONS FOR DESIGN: User processes must be

identifiable by name. The message facility must
recognize:

--- a sender;

~-=-— a receiver;

--- the size of the message; and

--- the text.

The message facility must be able to queue up
messages to a given process, uses memory manage-
ment for message buffers, uses P-V operations to
synchronize message flow.

The process receiving a message must be able to

determine the originator of the message.

DEFINITION: The receiver of a message must be able

to determine from whence it came.

IMPLICATIONS FOR DESIGN: A process may be kept

waiting for a message from another process, as a
means of synchronization.

The receiving process may read the name and text
from the originator.

DEFINITION: In order to respond to a message the

receiver must be able to verify that it is the

correct message from the correct process. In order

to take action on a message the receiver must be

55.

56.

57.

- 251 -
able to read the message.

IMPLICATIONS FOR DESIGN: The receiver must have

the capability to read the name of the originator
and the text of the message, but this does not
imply that the message must, in fact, be read.
Messages are of an arbitrary, but specified length.

DEFINITION: The message facility must allow for

a valuable message size.

IMPLICATIONS FOR DESIGN: The message queue must

be dynamically allocated space since the number
and size of messages is variable. Note that no
limit is specified for the number of messages.
Any number of messages for a given process may be
gueued while waiting to be read by the process.

DEFINITION: A process can have a varying length

queue of messages waiting to be read.

IMPLICATIONS FOR DESIGN: Each process has a

variable length message queue which is dynamically
allocated.

All messages, enqueued for a given process to read,
are released when that process terminates.

DEFINITION: When a process terminates, all

messages waiting to be read are freed.

IMPLICATIONS FOR DESIGN: This is performed within

the destroy process SVC by freeing memory used to

store the messages.

58.

59.

60.

- 252 -

Messages are not receiptable for, from receiver to
sender.

DEFINITION: The receiver of a message does not

have to acknowledge receipt of any message to the
sender.

IMPLICATIONS FOR DESIGN: If the message facility

cannot locate the process for which the message
was intended an error condition is caused.

If no messages are available to a process which
expects one, it may go blocked.

DEFINITION: The message facility can be used for

process synchronization; therefore, a process is
blocked until properly synchronized.

IMPLICATIONS FOR DESIGN: The user has a mechanism

for the synchronization of various processes.
User programs utilize a job control language
statement to specify resource requirements.

DEFINITION: Job Control Language is the means by

which a user specifies and quantifies his resource
requirements to the operating system. For the
purposes of the sample operating system, the
simplified JCL must specify: |

--- memory size required;

--- name of input device type;

--- name of the output device type; and

--- non-standard device for which the user will

supply his own handler routine.

61.

62.

63.

- 253 -

IMPLICATIONS FOR DESIGN:

-—— JCL card is used to delineate job boundaries;
--- It must be the first card of the deck so that
resource requirements may be determined.

The operating system must accept input data from

the user's job stream.

DEFINITION: The user may input data to be read

and used in execution of the object deck.

IMPLICATIONS FOR DESIGN: The supervisor must be

capable of distinguishing among JCL, object deck,
and data cards for any job.

The supervisor process must load the user-supplied
object deck into the user area of memory.

DEFINITION: Once the supervisor has allocated the

resources required for the user's job, the user's
object deck is read into his partition.

IMPLICATIONS FOR DESIGN: This is a function of

the supervisor process.
All processes may dynamically create additional
processes.

DEFINITION: The user has the SVC instructions

available to him which allows the creation of
additional processes.

IMPLICATIONS FOR DESIGN: The user processes run

in the same partition and state as the initially
created user process. The user may destroy only

user created processes.

64.

65.

66.

- 254 -

Dynamically created processes run in the same
memory area as the parent job.

DEFINITION: Dynamically created processes must

share the memory partition allocated to the
parent job and have the same protection attributes
assigned.

IMPLICATIONS FOR DESIGN: Dynamically created user

processes must be identifiable and are protected
from other jobs in the same manner as is the
parent job.

User processes cannot dynamically allocate memory.

DEFINITION: This is directly implied by #59.
Since user created processes»run in the partition
of the parent job, no more memory is needed.
However, some people will attempt to get more
memory than they can use.

IMPLICATIONS FOR DESIGN: The user must specify the

memory requirements of the entire job, including
dynamically created processes, once and be satis-
fied with it. Attempting to exceed the user's
memory partition will generate an error.

User processes can destroy other user processes
only within the same process group.

DEFINITION: System processes are created for the

use of the operating system and must be maintained.
These processes consist of supervisor process and

device handler process.

67.

68.

69.

- 255 -

IMPLICATIONS FOR DESIGN: System processes must be

identifiable and protected from user destruction.
The user destroys a process by unlinking the PCB,
system processes do not have a specified PCB.
User processes run in the problem state.

DEFINITION: The problem state is one of two

states defined by the IBM System/360.

IMPLICATIONS FOR DESIGN: System processes are

protected from user violation and/or destruction

by the two state machine concept.

The user process must signal completion (successful
or unsuccessful) to the operating system.

DEFINITION: A completion signal; i.e., stop

process, 1is required so that:

-—— traffic controller may schedule a process; and

--—- supervisor process may reclaim system resources
at the end of a job.

IMPLICATIONS FOR DESIGN:

--- user processes may only stop user processes;

--- a process must be stopped before it is destroyed.
The user's job can reference at most: 1 input
device, 1 output device, 1 non-standard devices.

DEFINITION: The operating system will allow

references to only one each of the three degrees
types.

IMPLICATIONS FOR DESIGN: I/O commands operate as

streams unless otherwise specified by the user in

70.

71.

- 256 -
the handling of exceptional devices.
There is one supervisor process per Jjob stream.

DEFINITION: The supervisor process must schedule

all jobs and prepare them for execution by calling

other appropriate modules of the system. Functions

of the supervisor process include:

--- determines the amount of memory required;

--- set storage protection keys;

--- starts a process in an interface routine for
each device;

--- reads in the user's object deck;

--- user process starts to run; and

--- upon completion, the supervisor process
destroys all processes created for or by the
user frees memory and devices.

IMPLICATIONS FOR DESIGN: The supervisor process

acts as the interface between the user and the
operating system.

The I/0 interrupt handler routine must provide for
a synchronous scheduling of a process requiring
fast processing.

DEFINITION: The interrupt mechanism transfers

control to the traffic controller causing the
process waiting for the interrupt to start running
immediately. It is, therefore, possible to attain
very fast processing of exceptional interrupts.

IMPLICATIONS FOR DESIGN: Interrupt routine trans-

- 257 -

fers control directly to the traffic controller in
order to run a new process.

System Initialization: The operating system must
include a non-system resident task which loads the
0/S into the computer and defines the processing
environment.

DEFINITION: Initial program load routine runs

free of most of the rest of the system, and
serves to initialize supervisor process and SVC
routines, essentially by initializing PCB
entries and free storage blocks for memory.

IMPLICATIONS FOR DESIGN: This system is used

infrequently and depends heavily upon the final
implementation design in order to carry out its

functions.

- 258 -

APPENDIX H

Final Interdependency Assessment

Results

Note 1l: (s) Indicates that the requirement indicated
supports the implementation of the require-

ment being assessed.

(c) 1Indicates that the requirement indicated
conflicts with the implementation of the

requirement being assessed.

Note 2: Requirements 1 through 6 were not assessed
for the reasons stated in 4.1.10.

- 259 -

The operating system must provide for a multi-

programming environment.

10(s):

13(s):

14 (s):

17(s):

19(s):

21(s):

35(s):

40 (s) :

60(s) s

70(s) :

Resource allocation is performed as a job is
read into the system, except for process
allocation.

A multi-programming environment must include
job protection mechanism.

Information tables are the mechanism by which
the operating system monitors and controls the
multi-programming environment. |
The need for pure procedures is driven by a
multi-programming environment.

The supervisor process creates one process per
job initially to support multi-programming.
Multi-programming environment requires that
multiple jobs be scheduled.

Some memory allocation scheme is required to
support a multi-programming environment.
Device handler routine facilitates the reading
of multiple job streams from different sources.
JCL assists multi-programming by delineating
jobs and specifying resource requirements.

The supervisor process controls and synchro-
nize all the functions in a multi-programming

environment.

The operating system must run on a machine that has two

- 260 -

distinct states; i.e., problem and supervisor.

12(s):

16(s):

18(s):

49 (s) :

67 (s):

User communication with the operating system
via a special call ensures that the user may be
restricted from certain privileged instruc-
tions.

Only certain special instructions are user
callable.

Special instructions explicitly executed in
the supervisor state.

An interrupt handler must be available in
order to change machine states.

User processes an restricted to the problem

state.

All resource requests must pass through the supervisor

process.

10: (s):

12: (s)

[

28: (s):

31:(s):

37:(s):

All resources, less processor, must be allo-
cated prior to the job being made eligible to
run.

Resource requests are processed as privileged
instructions through the supervisor process.
The resources must also be reclaimed by the
supervisor.

Resources are reclaimed when an error condition
terminates job processing.

Memory allocation is a resource request.
Device management is a resource which must be

allocated.

10.

11.

60: (s):

70: (s) :

- 261 -

JCL specifies the resources required of a job
to the supervisor process.
The supervisor process controls all resource

allocations.

System resources must be allocated to a job prior to the

job being made eligible to run.

11(c):

19(s):

31: (s):

37:(s):

60: (s):

70:(s):

User resources; i.e., processes are allocated
at the process level.

The supervisor process allocates all resources
to a job.

Memory is an allocatable resource.

The device handler routine is allocated to a
job at this time.

JCL enables the user to identify his resource
needs.

The supervisor process controls all resource

allocations.

A process must be ready to run prior to being allocated

a process.

14 (s):

25(c):

26 (c):

The status of a process is directly maintained
and controlled by information tables.

A process shall not be ready if it exceeds the
time quantum.

A process shall not be ready if it is waiting

to synchronize with another process.

12.

13.

27 (c) :

59 (c):

- 262 -

A process shall not be ready if it specifi-
cally relinguishes control to the traffic
controller.

A process shall not be ready if it is waiting

to receive a message.

User communication with the operating sytem is via

special call.

16 (c):

27 (s):

46 (s)

49 (s):

52 (c):

68 (s):

Only certain of the special calls are available
to user processes.

A process may relinquish control to the
operating system via special call.

The process synchronization mechanism is imple-
mented using a special call.

The supervisor call interrupt is generated by
special call.

The message facility is another mechanism
employed for user communication.

The user must signal completion using a special

call.

The operating system must protect user jobs from each

other.

14:(s):

20(s):

35(s):

Information tables contain the information
required to protect user's jobs.

The creation of a single process initially,
isolates user jobs from each other.

The protection of memory partitions can be

14.

- 263 -
accomplished with the same implementation
utilized for the requirement.

64 (s): As a protection mechanism, dynamically created
processes run in the memory area of parent
job.

66(s): To protect jobs, a process can destroy only
those non-system processes within its process
group.

67 (s): User processes run in the problem state to

prevent access to system level functions.

The operating system must utilize information tables to

monitor and control processing.

15(s): Dynamic allocation of system tables is required
in support of multi-programming environment.

24 (s) : Round-robin scheduling is accomplished most

effectively by chaining the tables together.

32(s): Memory allocation is accounted for in 2K
increments.
33(s): The operating system may dynamically allocate

memory for information tables.

36(s): Collapsing free storage areas requires that
the system tables be updated.

43 (s): P-V mechanism is used extensively to restrict
access to system tables for protection.

52 (s): The message facility requires use of informa-

tion tables extensively.

15.

l6.

17.

- 264 -

System tables can be dynamically allocated and

released.

33(s): Dynamic memory allocation facility fully
supports this requirement.

56(s): The queuing of messages requires a dynamic
memory allocation facility.

66 (c): The user is strictly prohibited from dynamic

memory allocation.

Certain system routines are user callable.

18(s): Extended machine instructions are executed
in the supervisor state to provide a system
check to determine if use is authorized.

51(;): P-V operations are specifically restricted
from the user since these are used as system
locks.

52(s): The message facility is made available to all

users for user communication.

System process routines are re-entrant and shared.

33(s): The operating system maintains pure code by
dynamically allocating memory for work space
for system routines.

37 (s): The device management process is a system
routine which must be shared among many users.

44 (s) : The process synchronization mechanism is used
as a lock to synchronize usage of certain

routines.

18‘

19.

70(s) :

- 265 -

The supervisor process is a system routine

which must be shared among many jobs.

Extended machine instructions are executed in the

supervisor state.

49 (s) :

67 (c):

An interrupt handler must be provided to
recognize and handle extended machine instruc-
tions.

User processes must run in the problem state,
and generate calls to the operating system via

extended machine instructions for resources.

The supervisor process must schedule jobs and prepare

the jobs for execution.

20(s) :

21 (s):

22(s):

28 (s):

29 (c):

62(s):

70(s) :

The supervisor initially creates one process
per job.

The supervisor schedules jobs strictly on a
first-come, first-served basis.

The functions of the supervisor, and the inter-
faces must be clearly defined so that improve-
ments may be easily accomplished.

Another function of the supervisor routine is
to reclaim all system resources.

The supervisor must reclaim resources when a
process generates a system level error.

The supervisor must also load the user's deck
in order to prepare a job for execution.

One supervisor process exists per job stream.

20.

21.

22.

23.

- 266 -

Initially, one process is created for each user's job.
63(s): The user process may create additional
processes to form a process group after the

user process has been initiated.

Jobs are initiated strictly on a first-come, first-

served basis.

22(s): The FCFS scheduling is simplistic; therefore,
we can improve system performance at some later
time by modularizing this function.

40(s) : The fact that all input devices are dedicated
card readers, forces the FCFS implementation.

71(c): The provision for a fast I/O processing mech-
anism may preclude a job from being scheduled

strictly FCFS.

The supervisor process must be modularized so that

improvements to the system can be easily accomplished.

70 (s): Modularization of the supervisor process
requires that its functions and interfaces be
clearly defined so that any change in its

implementation be made explicit.

The process scheduler must time-slice CPU usage among

ready processes to achieve multi-programming.

24 (s): All processes are scheduled round-robin, so
that the next sequential ready process is

selected for scheduling.

25.

25.

26.

- 267 -
25(s) : The specific time-slice quantum equals 50ms.
50(s): An external interrupt is generated when a
timer runout is deleted, and a handler must be

provided.

Ready processes are scheduled in simple round-robin

fashion by the process scheduler.

26 (c): A process is not scheduled it is is waiting
for synchronization with another process.

44 (s): A process synchronization mechanism must be
provided to enqueue ready processes in a chain.

59 (s): A process is not scheduled if it is waiting
for message synchronization with another
process.

63(s): User processes may create additional processes
which must in turn be scheduled.

71(c): The fast I/0 processing mechanism allows imme-
diate scheduling of a process, conflicting

with the round-robin scheduling.

A process must be blocked, when a time guantum of 50ms

is exceeded.

50(s): An external interrupt is generated when the
time quantum is exceeded, and an interrupt

handler must process the interrupt.

A process is blocked, when waiting for synchronization

with another process.

27.

28.

44 (s):

48 (s) :

51(s):

59 (s):

- 268 -

A process synchronization mechanism is
provided.

A program interrupt mechanism is provided to
enable a process to signal that it is waiting
for synchronization.

Process synchronization mechanism is available
only to system processes.

The user processes utilize the message facil-
ity to signal other user processes for

synchronization.

A process is blocked, when it specifically relinquish

control to the process scheduler.

48 (s) :

68 (s):

A program interrupt facility is required so
that a process can signal the process scheduler.
The user must signal completion of a process,
and, thereby, relinquish control of the

processor to the process scheduler.

The supervisor process must reclaim all system resources

from a job when the job has completed.

29 (c):

36(s):

37(s):

43 (s):

The supervisor must also reclaim resources if

a user process generates a system level error.
Free storage areas must be collapsed and recon-
figured when a job ends.

The device handler routine for a particular

job must be terminated.

All system locks must be released when a

29.

30.

46 (s) :

48 (s) :

68 (s):

70(s) :

- 269 -

particular job terminates.
All devices which are locked by the job must

be released.

The user must signal the end of his job, and
an interrupt handler must be provided to deal
with the signal.

The user is required to signal completion.
The supervisor process is restarted when the
job ends just long enough to clean up all the

resources.

Supervisor must reclaim system resources when a user

process generates a system level error.

48 (s) :

68 (c):

Upon generation of a system level error inter-
rupt, a handler must take control and deal
with the interrupt.

Normally the user must signal completion, but
this requirement dictates that abnormal ending

must be recognized.

Reference to processes within a process group is by

symbolic name.

53(s):

54 (s):

63(s):

The message sending and receiving recognition
mechanism is strictly accomplished by process
names.

Same as 53.

Dynamically created processes within a process

31.

32.

64 (s):

66 (s):

- 270 -

group must be named as they are initiated.
Processes of the same process group must run
on the same memory area as the parent job.
User processes may destroy other user processes
only within the same process group by symbolic

name.

The operating system must allocate memory for a job,

the size of which is to be supplied by the user.

32(c):

34 (s):

36 (c):

43 (s):

60(s):

65 (c) :

Memory allocation is limited to 2K increments.
Memory must be allocated using a best-fit
algorithm.

Memory is collapsed into contiguous blocks
whenever it is freed, which enables reassign-
ment. |

The process synchronization mechanism may be
used to lock a database after allocation.

The user specifies his memory requirements in
JCL.

Once initial memory has been allocated, the

user cannot dynamically allocate memory.

Memory is allocated in 2K blocks.

34 (s):

35(s):

The best-fit algorithm is used to limit the
wasted memory space.
Allocation is 2K blocks allows hardware protec-

tion of memory be IBM/360 hardware.

33.

34.

36(s):

43 (s):

60 (s) :

65 (c):

- 271 -

Memory is configured whenever it is freed.

The process synchronization mechanism can be
used to lock a database once memory has been
allocated.

The user must supply his memory requirements

in 2K increments.

User process cannot dynamically allocate memory

whereas system process can.

Operating system can dynamically allocate memory to

itself for temporary workspace or buffer areas for sys-

tem processes.

35(s):

36(s):

37 (s):

43 (s):

56 (s):

65(c):

Once allocated, memory areas must be protected
to prevent simultaneous access.

Memory must be reconfigured by the operating
system whenever a block is freed.

The device management system requires memory
for temporary workspaces.

The process synchronization mechanism can be
used to lock databases.

The message facility requires dynamic memory
allocation to enqueue messages.

User processes are strictly prohibited from

dynamically allocating memory.

Memory is allocated using a best-fit algorithm.

36(s):

Memory is configured when de-allocated to

ensure that the largest contiguous blocks are

35.

36.

37.

- 272 -
available to the system.
60 (s): The user must specify his memory requirements

in a JCL statement.

Memory must be protected to prevent the simultaneous

allocation of a partition to multiple jobs.

43 (s): The process synchronization mechanism is avail-
able to lock a database.

64 (s) : Dynamically created process must run in the
same memory partition as the parent job, which
further protects memory.

65(s): The user is strictly prohibited from dynami-
cally allocating memory which reduces the

protection requirements.

Free storage areas are collapsed into contiguous blocks

of memory whenever a job partition is freed.

68(s): The user must signal completion of his job, to
the operating system so that memory may be

reclaimed.

The operating system must supply a device management

system, which runs as a separate process, one per device.

38(s): A device handler routine must be included in
the device management system.

39(s): Since devices are dedicated, only one person
per device is required.

40 (s) : The device handler routine is specifically

38.

41 (s)

42 (s):

46 (s)

47 (s) :

69 (s) :

- 273 -

required to support only one card reader per
input stream.

The device handler routine is specifically
required to support only one printer per output
stream.

The device management system must enable the
user to supply his own routine for non-standard
devices.

The process synchronization mechanism is avail-
able to lock a dedicated device.

An interrupt handler routine is provided to
process I/0 interrupts.

The user must declare his devices, and is
limited to a card reader, a printer, and a non-

standard device.

Device handler routines must support multiple job

streams from card readers.

39(sj):

40 (s)

61l(s):

69 (s):

Dedicated devices enable sequential processing
and simplify the designation of job stream.

A card reader represents an input stream;
hence, multiple card readers represent multiple
job streams.

One aspect of the device handler routine is to
distinguish among JCL, object deck, and user's
data.

The user must specify which card reader consti-

39.

40.

A device

40(s):

41 (s) :

42 (s):

46 (s) :

60(s):

69 (s):

- 274 -

tutes his input job stream.

is dedicated to a job.

Since devices are dedicated, a card reader
represents an input job stream.

Since devices are dedicated, a printer repre-
sents an output job stream.

Non-standard devices employed by the user must
be dedicated to his job.

The process synchronization mechanism is
available to lock a device.

The user must identify the devices used by a
JCL statement.

The user must explicitly identify which devices

he is using.

The device handler routine supports one card reader per

input stream.

42 (c) :

46 (s)

60 (s):

61l(s):

69 (s) :

The user must specify his own handler routine
for any non-standard devices used.

The process synchronization mechanism can be
used to lock a device to an input stream.

The user must identify the devices used by a
JCL statement.

The device handler must enable the operating
system to discern between JCL, object deck,
and user's data.

The user is limited to one card reader or non-

41.

42.

43.

- 275 -

standard device for input.

The device handler routine must support one line printer

per output stream.

42 (c):

46 (s):

60 (s) :

69 (s):

The user

devices.

47 (s)

60(s):

61 (s):

69 (s):

to serve

44 (s) :

A user must supply his own handler routine for
any non-standard devices.

The process synchronization mechanism can be
used to lock a device for an output stream.

The user must specify a printer for use in the
JCL statement.

The user is limited to one line printer or non-

standard device.

must provide his own routines for non-standard

An interrupt handler for I/O interrupts must
recognize that a user is providing his own
device handler routine.

The user must specify the use of a non-stand-
ard device in a JCL statement.

Any non-standard device handler routine must
recognizé JCL, object deck, and user's data.
The user is limited to a single non-standard

device.

A process synchronization mechanism must be provided

as a lock on a database.

The mechanism also may be used for the timing

44.

45.

46.

- 276 -
of synchronous processes.
45 (s) : The mechanism may also be used for synchroni-

zation of the message facility.

46 (s) : The mechanism may also be used to lock a
device.
51(s): The mechanism is restricted to use by system

processes only.

A process synchronization mechanism must be provided

for the timing of synchronous processes.

45(s): The mechanism is also used for synchronization
of the message facility.

46 (s) The mechanism is also used to lock a device.

51(s): The mechanism is restricted to use by system

processes only.

A process synchronization mechanism must be provided for

synchronization between the sender and receiver in

message processing.

46 (s) : The mechanism is also used to lock a device.

51 (s): The mechanism is restricted to use by system
processes only.

56 (s) : The mechanism is used to establish an ordered

queue for the message facility.

A process synchronization mechanism must be provided to
lock a device.
51(s): The mechanism is restricted to use by system

processes only.

47.

48.

49,

- 277 -

An interrupt handler routine must be provided for I/O

interrupts.

48 (s) :

49 (s) :

50(s):

61 (s):

71(s):

An interrupt handler routine must also be pro-
vided for program interrupts.

An interrupt handler routine must also be pro-
vided for supervisor call interrupts.

An interrupt handler routine must also be pro-
vided for external interrupts.

The interrupt handler may be utilized to recog-
nize input data from the user's job stream.
The interrupt handler must provide a special
facility to enable fast processing of I/O
requests for non-standard devices requiring

frequent updates.

An interrupt handler routine must be provided for

program interrupts.

49ks):
50(s):

68 (s):

An interrupt handler routine must also be
provided for supervisor call interrupts.

An interrupt handler routine must also be
provided for external interrupts.

The user must signal process completion via a

program interrupt.

An interrupt handler routine must be provided for super-

visor call interrupt.

50(s):

An interrupt handler routine must also be

provided for external interrupts.

52.

53.

- 278 -

A message facility must be provided to all processes.

53(s):

54 (s):

55(s):

56 (s):

57(s):

58(s):

59(s):

The message facility must enable the process
receiving a message to determine the origina-
tor of the message.

The message facility must enable the process
to read the name and text from the originator.
The facility must be able to handle messages
of an arbitrary, yet specified length.

The faculty must use some sort of chaining to
queue waiting messages.

The facility must be able to release messages
for a process which terminates.

There is no need for a receiver of a message
to acknowledge to the originator.

The message facility can be used for process
synchronization by blocking processes, expect-

ing messages.

The process receiving a message must be able to deter-

mine the originator of the message.

54 (s) :

58 (s) :

59 (s):

The message determines the originator by
reading the name of the originating process,
separate from the text.

As long as the receiver knows from whence the
message came, there is no need for receipt.

A process may be blocked until it receives the

message it anticipates from a specific process.

54.

55‘

56.

57.

- 279 -

The receiving process may read the name and text from

the originator.

56 (s): In a queue of multiple messages, a process
must be able to determine the name and text
of the originator.

58(s): As long as a process can read the name of the
originator, there is no need to receipt a
message.

59(s): A process may be synchronized by blocking it
until it receives the proper text from a given

process.

Messages are of an arbitrary yet specified length.
56 (s): Messages may be of a variable length and
number; therefore, a queuing process is

required to store all messages dynamically.

Any number of messages to a process may be queued while

waiting to be used.

57 (s): The gqueued messages may not necessarily be
read by a process; therefore, they must be

released when that process terminates.

All messages, enqueued for a given process to read, are

released when that process terminates.

58(s): A process may never read the messages addressed
to it; therefore, there is no facility required

for receipting.

60.

61.

62.

63.

- 280 -

68 (s): A user process must signal completion to the
operating system so that the enqueued messages

for that process may be released.

User programs utilize a job control language statement

to specify resource requirements.

61 (s): The operating system must be capable of
discerning among JCL, user's object deck, and
user's data.

69(s): The user must specify I/0 devices in the JCL

statement.

The operating system must accept input data from the

user's job stream.

70(s) : The supervisor process controls the input of
the user's job streamwand must, therefore,
separate all the JCL, user's object deck, and

data.

The supervisor process must load the user supplied
object deck into the user's area of memory.
70(s) : The supervisor process explicitly performs this

function as it exists, one per job stream.

All processes may dynamically create additional process.

64 (s) : Such processes are limited to the initial user
memory area.

66(s): The user processes can also destroy processes

but these are limited to user processes only.

64.

66.

- 281 -

Dynamically created processes run in the same memory

area as the parent job.

65(s):

66 (s):

67 (s):

The user cannot dynamically allocate memory;
therefore, all user processes must run in the
area of the parent.

User processes of different jobs are made
invisible to each other and, therefore, can
only destroy processes within the same process
group.

The user processes run in the problem state
and, therefore, are not capable of allocating

additional memory.

User processes can destroy other user processes only

within the same process group.

67 (s):

User processes run in the problem state and in
the same memory area as the parent job; there-
fore, user processes of different process

groups are invisible to each other.

- 282 -

APPENDIX I

Results of the Interactive Decomposition
Package for the Second Iteration

- 283 -

REQ?
SAVE
ENTER FILE NAME?

50885

STATUS SAVED IN FILE

REQ:
MOLK

RECORDED LINKS,
FROM NODI TO NOUECS) S

10 10 13y 14y 179 19y 2
5y 12 146y 18y A%y &7

gy 10s 12y 28« 29y 31

gy)

~d

A0y &Gy 700

e
i
e

&0 70y
19 3l &0 D0

sy
an s ¥

Jy Gy
102 14-»
By Do LY
dv 1A 350 &4
Tde 13y 135 24
XXy TSy HHy

12 18y S1y 52y
IZxy FPe 44y POy
L& A4%w &7

L0 20y 21 22 28
19y &3y

7 L9y 22¢ ¢

10

fry
=
N

AE [y
"*) ¥ .\) ¢

<3
—r
fany
-

<

-

£
~—
o
(&3]
B3

-
=
~d
.

2Gw

P

et
[
T Y T e M
; €5 5
£ €8
<3 A g
<
e
L
By

i
o~
.
.
SRS
=
o]
.,
£
-
o
-
“\
=

P

-
P
St

B

i~

&Sy FOw

P

.

.

D RN

e,

P

s
<
i
u
3
~

Sly O

S e

s B
Ahe Sl

e~

43y A4y ATy Sl
7l

S &H8

44 (107
47 7
48
49
50
51

[}
bl

a3
aa

S~

P

LR
23

P

Ghy 07

.

55

934

=y
[y

59
&0

~

i 4
WS

52e 53y 54
10 Zle 22y Zae 39¢ 40¢ aAly 42

P TR R

&1 A2y 479 H0» FO»

a2

53

—~ A e

X0r S99 HE

7y 13y Z0y 38y &3y AT &by &T

Yy Ile 3F2e 33 3Ty &4

&) 139 15y 3Gy &3y &4y HTFy

) Be 130 18y &4y &8
-

<

o~ O
o
-4

=
v,
£

7y 12y Je 2By 29 345y A8e H7y
7y R7Pe 3By 3P A0y 41
Ry Py Py 10y 17y LW
3y 21y 24y 47y

4
.

fxy]
82

&~

o
L
-

i
S,

~i i~
[~d
B T T T s SN

i o

(AVERAGE NO. OF LINKS PER NODES

y ey U
Sl R B b e PR Py Py Ay PP T8 VY80

THE FOLLOWING NOUES HAVE BEEN REMOVED?
1 2 3 4 5 P T S A
79 8

QLD NOS NEW MO

7 1

o)
. Nee
? s

10 4
11 b
12 A
13 7
14 [
13 ¥
14 10
17 11
18 12
19 13
20 14
21 1%
22 1&
23 17
24 18

25 19

o

2h 20
R |
= w

28 22

RER:
DM

CFPRECLUSTERING COMPLETE

MO FRECLUSTERING FERFORMED

INERER

Ll

TEQLATED NOOES?

P

SHES

THE FOULLOWING MODES

&

(23]

HAVE

BEEM

DISTAMCE

285 -

TR

£l
24

e L

Aae %o
)
RV W]
y
,:3 4
28
ey
Aw S
30
-

WL

32
33
34
35
R

[l

37
38
39
40
41
a7

T N

4%
a4

REMOVEDS

MATRIX

a1
[

wd w

54
55
S
57
58
5%
40
&1
H2
&3
&4
&3
&S
&H7
48
&Y
70
71

Rk

COMPUTED

WITH

‘ll'

- 286 -

REQ:
O IMN

(PFRECLUSTERING COMPLETE?

NO FRECLUSTERING PERFORMEDG: DISTANCE MATRIX COMPUTED WITH B o= 1.

REQ:
a1

STHILARITY MATRIX COMPUTED.
REQ?
LNF

ENTER FERCENTASGE FaRAaMETER:?
20 .

IMITIAL PaRTITION COMPUTED WITH P = 20,00 ¥%.

BEST FPARTITION MEASURE:S
200 YOLD WanNT 70 FRINT THE
N

REQ?
PRI

CLUSTER NO) OBJECTS

I ¢ 1 A 4 13 18 1é 54 &4
& ¢ 33 2 a0 10 12 43

3 ¢ 43 G017 1Y 44
¢ 1,4
{

4 7 7 Y24 EHT G 400 51
] S 2 A T R A) - B VB)
& CL2 1y 31 32 33 34 3% 36 4L Ha un

S5 568
7 ¢ 7y lg 200 3738 3% 40 45

2 ¢ Fy 21 22 230 42

o
2 {8 44 47 48 4% 5o Bl 53 53

- 287 -

REQ:
HEM2

BEST FARTITION MEASURE:?
DO YOU WANT TO FRINT THE
NO

o276
TREET

REQ:

FREL.

ORJECTS

CLUSTER (NO)
1 (11 1 3 4 11 13

&4
(13) 2 & 10 12 17
44 &2 &5
(M 518 20
7 7 14 24
@) 8 9 25 26
9y 31 32 33 34
7y 446 47 48

-3

38
58
27
35

50

SN AR D G
Ean T e S S

REQ:

HOMA

BEST PARTITION MEASURES? 1.411
COOYOLU MANT TO PRINT THE TREET
IRENES

O3 T R SR

9 20
&5
e

.......

s R73® 3By 40 4%

RET)E

EUaL.

STREMGTH: 2.7333,
COUPLINGY 1.3228.
MEAGLIRE? 1

15

19

39
40
28
34
51

1é
21

40
&1
29
54

G2

.......

£ A

30
55

T

S

43

59

&3

1.411

E?

- 288 -

TRE

THE

SURE:

BEST PARTITION ME

FRESS RETURNS

SM3

[0 YOU WANT TO FRINT

YES
SET FAFER AND

H

e e - o o - mow - mm - W e - e e e e me em e e e e e e 3

3
i
i i I
1 i i
H 1
i H H
“ e e - % i
{ i
i i
i i
i § i
i i i !
H H - e e e e eees 3 i
i i i H H
: i i o m e em m e e 3% i

H i H H

m : w e em % :
i H H i H —— - - 3 H

i H i
H ———— e —- e 3 i H H H
i H H H i H H
i i H H -— - - e e e 3

H H i H H i H i

i -——-— 3% i - e - 3 ! H i ——-—— 3
I H t H i H H i H

oot beas ess esn mens sens sess sane sere sese

000 bese sose saee sess 4990 Sese sess S0rs SeRe SRS Sebe ssse SHeE SEee suvn Ser

asss sese s4as a8RE sebe Sare Gess SESS SeRs SSSL DN G880 SEDE BOSA Seed Suee 4400 S40s $OE SASH BASH $REE 0se EUEL See Yere aese

vose seve seve ouen seve sess soss swee Seve Se0d BeVe ein Taes SORS U SESe cavs sase smse *

aaoe sase sane sves ases sese Sess s4ss s480 S40s $TES GSNS Ga Sse Sese SAGS GULe S84 Sene sase 44eh Sove

i
i i
i i
i i >*
i I i 4 H
i * HE E R] t
oo H i i HER i HEE i
HI B B i i H Po--% 1 i i HI i
LI S B i H H [S S B i L H
[T N i - 3 i i -—- 3% i i i i i -3 1§ i -—
LI T | HEE L [HE S S S S B T T T L
LI S B Podod -3 I I T T S T B I T R B Pl -
LI B R | Pod LI L A N R A [S N B HIE B
R R . A I B B HEC LN N T S S S S [T N L
HANE T R A T A A I T N N R T S S B S T [T I T [T B
I T R T T T S B i il - % L A . T I I L T T B
L A R A A [T S N S T S TS S SN S SN S SO S SN SRS NN S S S S B

“
61

1
15
2
2
0
3
18
5
17
19
43
44
41
45
58
60
24
14

[4
[y

34
31
G54
13
64
1é
56

3

4
11

47
48
46

ad

51
49
50

27

8 seas ca00 so0a sasa sane sost auss

38
45
39
37

MEASURES ?

=201.3500

~164.667
~133.042
~PP, 792
~74,458
~49.570
-25.311
~12.669
““3 + 307
1.183
0.893

1

X
e K

s vre s s ens un sre v ome 3K

By 4

~1946.000
~161.667
~124.792
~9GH. 292
~4b6.617
~22.978
~10.072
~2+604
1.359
0.618

| SR - *

L R X ey ——

~191.500
~185,.750
=120.375
~92,.292
~65. 792
~43,117
~20.094
~7.544
~1+60%
1.411

0. 555

-185.8667
~150.917
~114.875
~88,042
~&0 . 875
~39.700
~19.5467
=&, 707
~Q.371
1.387
0.070

H
i
t

FE mm o e o m e - m— - -

i

~179.147
~1446.147
=110.792
~83 . 458
~57.958
~35.422
~16.+.408
-G+ 655
0.182
1.053

e e

R

~172.667
~140,542
~104.,792
~80.042
=33 292
~30,728
~14.619
~4. 014
0.934
0.971

- 290 -

REQ:
FRCL-

CLUSTER (NO) ORJECTS
1 ¢ 9
2 ¢ 4)
3 (13)

3 4 11 13 &4

6 10 12

17 18 19 20 21 22 23 41 42
44 53 62 65

E

1
ot
o
&
o

15

£
0N G RS e

4 {7 14 24 57 58 60 61
5 (10) Q© 27 446 47 48 49 H0 H1L 0 52
& (&)Y 28 26 28 29 30 59
7 (9y 31 32 33 34 35 36 H4 5H 63
8 (5)Y 37 38 39 40 45
REQ?
DENO
/2383101205917 918919520921 922923v41 9429439449539 6296597 01492457
H

BRr60561v8y9 v 27946947 948949550551 v SB29 255269289299 302599 3132933y
B4y 3 e 369549559639 37938v39¢40945/

THE FOLLOWING NODES HAVE BEEN REMOVED:
2 9 & 7 8 9 10 12 14 17
18 19 20 21 22 27 24 25 26 27
28 29 30 31 32 33 34 35 34 37
38 A9 40 41 42 43 44 45 46 47
48 49 50 51 a2 53 G54 5% 57 58
G9 &0 61 62 63 635

NODES HAVE REEN RENAMED AS FOLLOWS?
OL.IY NO. NEW NO.

1

3

4

11

13

15

16

56

64

SRR S
;J

-

N

- 291 -

v . ny oo . .
Ay Al D e Bl Pl B 1P e 20,21 v 220230412430 F

AR 885 A2 0 A% e 7 14 v P4 E7 s SRy 400 AL v Be P27 446047 » 4B 4F

¢

e T gy e g o e ey g o
B e B e DAy PRV RO EP e AR e AR By BBy Kb B4y EG AR P2 BBy 390 40 40/

AR e

THE FOLLOWING NODES HAVE BEEN REMOVETD:

e b & 7 3 v 10 13 14 17
14 19 20 21 23 24 25 264 27
24 29 30 Al 33 34 A5 34 X7
34 39 40 41 43 44 4% 464 47
48 48 =i il] aA G4 S5 B a5e
5y &40 Al &2 &3 &%

NODES HAVE BEEN RENAMED A8 FOLLOWS?
OLI0 NGO MNEW NGO,

O H D B

g o
Siéy]

A 2
REae
DTN
(PFRECLUSTERING COMPLETE

MO PRECLUSTERING PERFORMEDG DISTANCE MATRIX COMPUTED WITH F

T

HEST FARTITION MEASURE S 0,250
N0 OYOU WANT TO FRINT THE TREE®
N

Y

REG

Tl
FRCL

CLUSTER (MO ORJE

1 C%y 1L 2 3 4s 4 78 9

Relzgs
E Al

STRENGTHE 0,2500
COUPLINGE 0,0000,
MEASBURE D 0,350,

- 292 -

REDE
NEMD

+
M

SLeBeded el Z el Bl b oSb A4 By 17y lBe 192021 522023041 04204344

SR A2vAS e T e 14024057 BB A0 AL B P e 27 v 44247 v A8 4P B0 D1 v B2y

D RE 282902 E9 X B2y B3y F4 30340400y 63937y 38y EP 400 405/

THE FOLLOWING NODES HAVE BEEN REMOVEDZ
1) 4] 7 8 9@ 11 13 14
1 L& 17 18 19 20 21 22 23 24
R 24 2 28 29 A0 31 32 A3 A4
A5 X 37 A8 39 40 41 42 43 44
A% 44 47 48 4% 20 Sl 52 53 a4
bR) 07 ae 5e &0 &l &2 &3 Hd

NODES HAVE BEEN RENAMETD A% FOLLOWS:
M0 N NEW NO.
2 1
& &
10 3
132 4
REQ?Z
TIMN
CPRECLUSTERING COMPLETE)

LUSTERING PERFORMED AND DISTANCE MATRIX COMPUTED WITH F o= 1
STERS MOT TAKEN AS SINGLE NODES.

REG S
HITMA
BEST PARTITION MEAS

LIRE S 0. 333

IMT THE TREET

D YQLD WaNT 10 PR
MNT)

REG?2

g

CLUSTER (MDY OBJECTS

1 {42 1 3 2 4
REQL
mi el

STRENGTHS 0.3335,

COUPLINGE 0.0000,

MEAGURE S S IFRLI I

- 293 -

Tk 1)

s

fl"334y11913#1%?lépﬁéyéépﬂvéyIOylﬁv?plﬂgﬁﬁyﬁ?yﬁﬂyéﬂy

¢
élvSrQeE?yﬁﬁpﬁ?vﬁﬁyﬁ?yﬁﬂyﬁlyﬁﬁyﬂﬁyﬁﬁyﬁﬁy??yﬁ@vﬁ@yﬁly32v33934p
+

b

BB B EE AT ATy ER IV 400 45 4

THE FOLLOWING NODES HAUE BEEN REMOVET:

1 2) 4 & 7 5] 9 10 11
12 13 14 15 14 24 25 2 27 28
29 A X1 X2 RE 24 A% A 37 3
S 410 A% A 47 48 49 S0 9l b
S gy e u G e &0 &1 &3 H4

MODES HAVE BEEN RENAMED A% FOLLOWS!
LD ND NEW

4% 14
4% 15
REQ
MM
CPRECLUSTERING COMPLETE

FEECLUSTERING FERFORMED AND OISTANCE MATRIX COMPUTED WITH F o=
CLUSTERS NOT TAKEN A% SINGLE NONES,

HITME
BEs
Ly vy
MY

HEG
R

ST FARTITION

BEaHT 10

MEASURE?
BRIMT

DLUSTER OMOY ORFJECTS

REQY
EiAL

STREMETH?
COUPLING 2
MEASURE?

Sl 1
[)
r} e

i &

0, 8000,
L3200,

mad e Ld

THE

- 294 -

0,480

TREET

g i
NN
i

12

g 10 14

- 295 -
REQ?
THNI)
$
ALy Ee 8l e A e LB lArSebdeRebv 1012y Ee 17y 18y L9 20020 v22 2341042y

+
o

A A4 X0 A2 A5 B P e 27 v A6 47 v 48 49 5O 01 v T2

DL A, Ry 2P B0 HO e XL AR Xy B4y BEy X6 HAPBEy AR BV 2 3B 39 A0 407
THE FOLLOWING NODES HAVE BEEN REMOVEDS
1 2 X 4 & & a 4 19 11
L2 13 1% 16 17 18 1o 20 21 22
23 25 24 27 28 29 X0 31 X2 X3
x4 3 3 X7 28 39 40 41 43 43
44 A% 44 4% A 49 S0 Gl 5 53
G] S 59 & &3 &4 &5

MODES HAVE BEEN RENAMED A% FOLLOWSS
OLD N NEW ND.

J !
-

3
-8
> il

e s s
FC R

oy

Wt E -

DTN
(PRECLUSTERING COMPLETED

USTERING PERFORMED AND DISTANCE MATRIX COMPUTED WITH F o= Ly
N AS SINGLE NODES.

PRECE
CLUSTERS NOT TaARK

REQS

HEM3

BEST PARTITION MEASURE?
DOOYDU WANT YO FRINT THE
M

REQS
L.

R

CLUSTER (NOY ORJECTE

1 £ A 1 2 3 4 b & 7

REQ?
EV AL

STRENGTH? Q3334
COURLING: 0.0000y

MEASLIRE 2 0,333,

- 296 -

REQ:
[END

Zle3s 451l v139 1891695664925 10512591 7518219920921922¢23+41+42y

4393495396285 7y 14924957+ 5860981 9259265285299 3059231932y 33734

8936545550639 37 938539940545/

THE FOLLOWING NODES HAVE BREEN REMOVED?
1 2 3 4] é 7 10 11 12
13 14 15 16 17 18 19 20 21 22
23 24 25 26 28 29 30 X1 32 33
34 35 34 37 38 39 40 41 42 43
44 45 53 54 9% S5é 57 5e 59 &0
61 62 63 b4 63

NODES HAVE REEN RENAMED AS FOLLOWS?
OLLD NO. NEW NO.

8 1
9 2
27
44
47
48
49
50
51
52 10
REQT
DIMN
(PRECLUSTERING COMPLETE?

N DA S LR

PRECLUSTERING FERFORMED AND DISTANCE MATRIX COMPUTED WITH P o= 1y
CLUSTERS NOT TAKEN A8 SINGLE NODES.

REQ:
HIME

BEST FARTITION MEASURES 2
DO0YOU WANT TO FRINT THE TREET

M)

RERs
P
CLUSTER ONOY OBJECTS

FELD:
EUs L

GTREMGTHY 0. 6447
0. 142%

- 297 -

REQ:
N0

S

e A Ll Xl 1A Sa e Ad R dvl0rl2e S 17l B 19220521 v 20y DR QLA

M

THE FOLLOWING o0DES HAVE BEEN REMOVEDS
1 2 A 4 G & 7 & 9 10
11 f 13 1a 15 14 17 18 1% 20
21 pat.S 24 aF Al 33 KA E 3]
o) 3 39 44 41 43 44 45
4é ! 45 50 Gl 53 e I
0 E &1 &1 & &3 o &5

MODES HAVE BEEN RENAMED A8 FOLLOWSE
DL MO MW WO,

I E MM
CPRECLUSTERTNG COMPLETED
PRECLUSTERING FERFORMED AND DISTANCE MATRIX COMPUTED WITH F
STERS NOT TAKEN A% STNGLE NODES.

5]

R

HEM 2

BEST PARTITION MEASURE!
0 yol WaNT T FRINT THE
M)

REQ?

SR

CLLISTER MDY ORIECTS

1 f&D 1 2 3 i 4 4

fE

EA e

STRENGTHD 0.3333
COUPLING? 0.0000y
MESELRE X33

T

- 298 -

REQ?

DEND

*

P Al L 1 A Gheadr by 10v 2y Sy 17 1By 19 R0 202 2T AL ALy

' . A e sor on . o " oy oo . e . . - g e L
AT, AN HEeAT £GP 1A 24 BT G060 by QR a7 8h A7 AR, AP e B0 L o022y My

P

THE FOLLOWING NODES HAVE BEEN REMOVEDS
1 2 3 4 a & 7 8 9 1o
11 17 13 14 1 1 & 17 18 e 20
21 22 23 o 2% 2 27 28 29 30
X7 A8 A 40 41 43 43 44 4% 4
47 A8 a4 0 bl ! w2 a3 B4 57 5
B &0 &l &2 &4 &
MODES HAVE
MO ML

BEEN RENAMED A% FOLLOWS:

REQ?:
[NEMN
CPRECLUSTERING COMPLETED

FERFORMED AND DISTANCE MATRIX COMPUTED WITH B o= 1.
TAKEN A5 SINGLE NODES.

RED?

LM

REST FARTITION MEAGURES AR
I YO WANT TO FRINT THE TREE?Y
M}

CLUSTER (NOY OBIECTS

1 P9l 1 2 2 4 b é 7 3

ird

FER:

ATET

STRENGTHE 03278,
COURLINGT 0.0000y
MEMSURE S Q.02

- 299

REDS
NEMD

Ala2 o B0 Ll vl 318 lbvSdodd e 10r 128179180l 20s 2122923041240,
&

ooy

u s
wd

SRy A0 AL e By P el oA 470 AR A v EHOy oy

THE FOLLEHEG NODES HAVE BEEM REMOVED?

1 z X 4 g & 7 5] W 19
11 12 13 14 1% 14 17 18 i9 20
21 2 2 24 2 26 27 28 29 R0
X1 30 A A4 A% 34 41 42 43 44
46 47 ag 4% 0 51 a2 a3 d b
S Gd WES iy &0 &l a2 &3 &4 &3

MODES HAVE RBEEN RENAMED A8 FOLLOWS?

QLT NO. NEW NO.

1

-3

mod

[y

40 4
45 5

RER
rEMN
PESECLUSTERING COMPLETED

FREECLUSTERING PERFORMED AND DISTANCE MATRIX COMPUTED WITH P

CLUSTERS NMOT TAKEN A% SIMGLE NODES,

RED?
HEME
CURRENT
LA RLE

Has OMNLY ONE CLUSTER.

FROLUSTERING
i

nooIr.

RE0:

Frpt,

VLUST

RED
Eval.

04000«

STREMGTHS
COUPLINGS
MEASLIRE S

v 2y

1e

RED S
REST
ENTER F

2054612

TLE NaME:

ADIACENCY MATRIX READ FROM
REQL
MW S

*

ALe B e 1L LB LSl Sb0 647

Dadel 0yl

4
4+

SrlBe20.NE A5/
<

122199410430 447
4

H
R S R N IR NN

Aby A7 88 4P » B0 HL 252/

LR SRS R R I N

A7 e AP 40 AN S

REQ:
FREL

CLUSTER (NOY ORIECTS

Q@ 1 A 4
43 2 s 10
@ I+ L
5y 171w
B0 22
73 214 24
&) 5] g
Froooadh Av
&) 2% 24
Yy 31 32
TR SR ¢4

Lo
B

Py

O e
.

OIS R
T e,

.

]

D

10
11

Py

-,

300

FILE

11

132

43
42
A7

49
2%
X4
40

506A12

q o
Soud

&0

Sl
aw

Kb

&4

fERY
PR

LEINKS

LIMES

LINKS
MONE

LIMES

LIMKS

LIMES

LINKS
MOME .

LIMES

LINKS

LINKG

PIINE

BETWEEMN

BE TR M

BETWEEN

BETHEEN

BETWERN

BETWEEN

HETWEEN

BETWEEN

BETWEEN

BETWEEMN

BETWEEMN

CLUSTERS
3o &

CLUSTERS

,{} . !,

CLUSTERS
Lo 7
13 - 14

CLUSTERS
o e
1 - 27

CLUSTERS

CLUSTERS
1 - 2%
i S L

CLUSTERS
L
1o
X F1
3 - 04
4 - 3l

A e A

- 31

1% - 34

H4 - 5E

e
S

CLUSTERS
11 :

CLUSTERS

- 301 -

1 &% 11

e

e

o

£

X

-

LIMES

LIMKS

LIMES
IRENTRI

LMK

LIMES
MOME .

LINES

HOME .

LITMKSD

LIRS

LIMNRS

LINKS

LINKES

LIMES

LIMES

BETWEEM

BETWEEM

BETWEEMN

BETHEEN

BETWEEN

BETWEEN

RETWEEN

BETWEEM

BETWEEN

BETWEEN

¥

BT R RN

o

BETWEEN

CLUSTERS
2o 4%

I

12 - 43

CLUSTERS
I

A LA
& Syl

CLUSTERS
2o 4l
12 &l

CLUSTERS

CLUSTERE
& o A4

10 - 44

TS

CLUBTERS
CLUSTERS

CLUSTERS
& - 4D
10 -~ 4%

CLUSTERS
5w 19
18 - 17
45 - 41

CLUSTERS
5o 21

20 - 42

CLUBTERS

e - 57

CLUSTERS
5o

18
CLUSTERS

47

CLUSTERS

£.1
e

302

o

1

&

e

=N

)

9

1o

@

)

-

L

s

-

o

-

£

XS

e

LIRS
MOHE .

LEMKES

LIMES

LIMKS
MIIME

LM
LM

MONE .

LIMES
MOME .

LINES
MIONE .

LITHNES

I
MOME

LINKS
MONE .

LTRSS
MONE -

LIMKES

LIRS

LIMKS

LINRS

BETWEEN

¥

A

BE

BETWEEN

BE

RETWEEN

FETWEEN

THEEM

CTWEREN

BETWEEN

BETWE RN

,...
RN
-
=
pra

BET

B

TWEEN

BETWEEN

BETREERN

BETWEEN

CLUSTERS

CLUSTERS

......

CLUBTERS
41 - 42
43 - Az

44 - 42

CLUSTERS
CLUSTERS
CLUSTERE
CLUSTERS

CLUSTERS
41 - 3l
41 - 3Fé
41 -~ BHEH

CLUSTERSE
CLUSTERS
CLAUSTERS

CLUSTERS

S)

CLUSTERS
2@ - 30
&2 - 30

CLUSTERS
22 - 3l

2y

JETERS

37

4

Lk

e

]

2

s
&

&

303

i

)

g

9

12

-

E

]

e

Y

X

oy

R

e

s

“

LINMES

LIpES

LINKES

LINMRS

MONF

MUME

LINES

LINRG

L INES

LINKSG
MONE

BETWEEMN

DETHEEN

BETUWEEM

BETWERMN

BETWEEM

BETWEE M

BETWEEM

BETWEEN

BETWEEN

BETHEEN

24

CLUSTERS
PR

a0 - 4

CLUSTERS
47
14 - AR

G
- 29

aEo- 5Y

CLUSTERS

CLUSTERS

CLUSTERS
Qo 50
0

CLUSTERS

27 A1

CLUSTERS
8o~y
e "'.}' ".{ ,')

CLUSTERS

&

g

2

o

o

k4

-

-

o

s

-

S

-

-

LUMRS BETWEEN

MOE

LINKS BETWEEN

LIRS

BETWEEN

LIMKE H

A

ETWEEM

CLUSTERS

26 - A7

e

1o

e

&

123

1o

- 306 -

APPENDIX J

Main Subproblems Resulting From The
Second Iteration of the Decomposition Analysis

Note: (11) The number in the parenthesis indicates
the number of interdependencies identified
for the requirement.

- 307 -

Main Subproblem 1: Supervisor Process:
7 (10): The operating system must provide for a multi-
programming environment.
9 (8): All resource requests must pass through the
supervisor.
10 (8): System resources must be allocated to a job prior
to it being runnable.
17 (5): System process routines are re-entrant and shared.
19 (9): Supervisor process must schedule jobs and prepare
them for execution.
21 (5): Jobs are initiated strictly on a first-come, first-
served basis.
22 (3): Supervisor process must be modularized so that
improvements are easy.
62 (2): Supervisor process must load the user-supplied
‘object deck into memory.

70 (9): There is one supervisor process per job stream.

Main Subproblem 2: Extendéd Machine Instruction Mechanism:
8 (5): Operating system must run on a machine that has
two states.
12 (8): User communication with operating system is via
special call.
16 (5): Certain system routines are user callable.
18 (4): Extended machine instructions are executed in the

supervisor state.

Main Subproblem 3: Process Control Functions:

- 308 -

SUBPROBLEM MS 3-A - Process Scheduling:

11 (6):

24 (7):

26 (6):

59 (6):

71 (3):

A process must be ready to run prior to being
allocated a processor.

Ready processes are scheduled in round-robin

fashion by process scheduler.

A process shall be blocked when awaiting synchron-
ization.

If no messages are available to a process explicitly
then it goes blocked.

I/0 interrupt handler must provide for a synchronous

scheduling of a process requiring fast processing.

SUBPROBLEM MS 3-B - System Initiated Interrupts:

23 (3):
25 (9):
47 (7):
49 (6):
50 (5):

Process scheduler must time-slice CPU usage.

A process shall be blocked when its time quantum
is exceeded.

Interrupt handler must be provided for I/O
interrupts.

Interrupt handler must be provided for supervisor
call interrupts.

Interrupt handler must be provided for external

interrupts.

SUBPROBLEM MS 3-C - User Process Initiated Interrupts:

27 (4):

28 (10):

A process shall be blocked when it specifically
relinquishes control.
Supervisor routine must reclaim all system resources

when a job is completed.

29 (5):

48 (8):

68 (7):

- 309 -
Supervisor must reclaim resources when an error
condition is raised.
Interrupt handler must be provided for program
interrupts.
User process must signal completion to the opera-

ting system.

Main Subproblem 4: Process Creation Functions:

13 (7): Operating system must protect user jobs from each
other.

20 (3): Initially one process is created for each user's
job.

30 (5): Reference to a process is by symbolic name.

63 (5): All processes may dynamically create additional
processes.

64 (7): Dynamically created processes run on the same
memory area as parent job.

66 (6): User processes can destroy other user processes
only within the same group.

67 (5): User processes run in the problem state.

Main Subproblem 5: Interprocess Communication:

MS 5-A - Operating System Information Tables:

14 (10): Operating system must utilize information tables
to monitor and control.

15 (4): System tables can be dynamically allocated and
released.

33 (9): Operating system may dynamically allocate memory

- 310 -

to itself for workspace.

MS 5-B - Message Facility

52
53

54

55
56
57

58

Main

31
32

34

35

36

65

(10) ¢

(

(

(

5):

6):

2):
7):
4) :
4):

Message facility must be provided to all processes.
Processes receiving messages must be able to
determine the originator.

Receiving process may read the name and text from
originator.

Messages are of an arbitrary yet specified length.
Any number of messages may be queued.

All messages are released when a process terminates.

Messages are not receipted for.

Subproblem 6: Memory Allocation Functions:

8):

8):

4):

7):

5):

The operating system must allocate memory for a job.
Memory is allocated to a job in contiguous 2K
blocks.

Memory is allocated using a best-fit algorithm.
Memory must be protected to prevent simultaneous
allocation.

Free storage areas are collapsed into blocks when

a job is freed.

User processes cannot dynamically allocate memory.

Main Subproblem 7: Device Management Functions:

37 (13):

38

(

5):

Operating system must supply a device management
system.
Device handler routines must support multiple job

streams.

39

40

41

42

60

61

69

(8):
(10) =

(6):

(8):

(12) :

(6):

(7):

- 311 -

A device is dedicated to a job.

The device handler routine supports one card
reader per input stream.

The device handler routine must support one line
printer.

The user can provide his own routines for non-
atandard devices.

User programs use JCL to specify resource
requirements.

Operating system must accept input data from user's
job stream.

User's job can reference at most 1 input, 1 output,

and 1 non-standard device.

Main Subproblem 8: Process Synchronization Functions:

43

44

45

46

51

(10) :

(5):

(10) :

(6):

A process synchronization mechanism must be
provided as a lock database.

A process synchronization mechanism must be pro-
vided for synchronous process.

A process synchronization mechanism must be pro-
vided for sender and receiver of messages.

A process synchronization mechanism must be
provided to lock a device.

P-V operations are available only to system

processes.

- 312 -

APPENDIX K

Linkage - Interface Assessment

- 313 -

LINKAGE - INTERFACE ASSESSMENT

Subproblem

Process Scheduling
System Initiated
Interrupt Handler

User Initiated Interrupt

Handler
Process Sychronization
Mechanism

Memory Allocation
Operating System
Information Tables

Process Creation
Message Facility

Device Management
Functions

Supervisor Process

Extended Machine
Instruction Mechanism

Cluster
Number

3

4

11

00 O\

10

Module

Process Management
(lower) Module

Memory Management
Module

Process Management
(upper) Module

Device Management
Module

Supervisor Process
Module

Supervisor Call
Handler

- 314 -

NUMBER OF LINKAGES BETWEEN SUBPROBLEMS

10

4 5 11 9 7 6
3 2 3 - 2 6
0 3 - - - -
3 0 2 2 - -
- 2 0 3 2 -
- 2 3 0 5 3
- - 2 5 0 2
- - - 3 2 0
- 1 1 - 3 2
3 1 4 - - -
- 5 1 - 2 2

