
AN INVESTIGATION OF CLUSTER ANALYSIS TECHNIQUES

AS A MEANS OF STRUCTURING SPECIFICATIONS

IN THE DESIGN OF COMPLEX SYSTEMS

by

TIMOTHY A. HOLDEN

B.S., U. S. Naval Academy
(1972)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

OCEAN ENGINEER

AND FOR THE DEGREE OF

MASTER OF SCIENCE IN MANAGEMENT

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1978

© Timothy A.

Signature

Holden, 1978

of Autho........
//Department of Ocean Engineering

Mav 12. 1978

Certified

Certified

by. -
'T'honi qn RStervisor . Sl4an

by.... . . . ,
Than~~ i .m.r- -o . n-r-m t -

S0oo1/of Manjgement

of Oe Eninee7
of Ocean Engineering

Accepted by...
ChAirman, Department Committee

Accepted by..........'.-.. ' ''
Chairman, Deparmental Graduate Committee

- 2 -

AN INVESTIGATION OF CLUSTER ANALYSIS TECHNIQUES
AS A MEANS OF STRUCTURING SPECIFICATIONS

IN THE DESIGN OF COMPLEX SYSTEMS

by

TIMOTHY A. HOLDEN

Submitted to the Department of Ocean Engineering on
May 12, 1978 in partial fulfillment of the
requirements for the Degree of Ocean Engineer

and to
the Sloan School of Management on

May 12, 1978 in partial fulfillment of the
requirements for the Degree of
Master of Science in Management

ABSTRACT

Complex design problems are characterized by a multitude of
competing requirements. The designer of such a system
frequently finds the scope of the problem beyond his concep-
tual abilities and attempts to solve this problem by
decomposing the design problem into smaller more manageable
subproblems. Since design requirements form the interface
between the users of a system and its designers, a
disciplined framework is required for the decomposition of
the design problem into subproblems which will best satisfy
the overall problem objective.

Cluster analysis is a heuristically based technique by which
attributes of a system are sorted into groups; such that,
the degree of "natural" association is high among members of
the same group and low between members of different groups.

The purpose of this thesis is to investigate the use of a
specific cluster analysis technique, developed by Dr. Raphael
Andreu. As a means of imposing a framework upon the
requirements for an existing computer operating system
forming the first step in the decomposition of the global
design problem into subproblems. It is envisioned that the
imposition of such a framework on design requirements will
provide new insights and understanding of the relationships
among requirements which may verify the design or suggest
improvements to the design of a sample operating system.

Stuart Madnick
Professor of Management
Thesis Supervisor

- 3 -

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to the
following people for their help and guidance in the prepara-
tion and completion of this research: Professors Stuart
Madnick of the A. P. Sloan School of Management, thesis
supervisor; Chryssostomos Chryssostomidis, Department of
Ocean Engineering, thesis advisor; and Kevin J. O'Toole,
Department of Ocean Engineering, academic advisor.

The following graduate students in the Sloan School of
Management also provided invaluable assistance in the
critique of this research: Raphael Andreu, Sid Huff, and
Chat-Yu Lam.

The author also wishes to thank his true friends for their
assistance and understanding during the three years at MIT.

- 4 -

TABLE OF CONTENTS

Chapter

1.1

1.2

1.3

1.4

Chapter

2.1

2.2

2.3

Chapter

3.1

3.2

3.3

Chapter

4.1

4.2

Chapter

5.1

5.2

I: Description of the Problems Inherent in

Large Scale System Design

Problem Description

System Development Cycle

Summary

Thesis Outline

II: Cluster Analysis Methodology and the

Decomposition Facility

The Cluster Analysis Problem

Solution of the Cluster Analysis Problem

by the Application of Graph Decomposition

Techniques

Decomposition Methodology

III: Sample Operating System

General Characteristics of a Large Scale

Computer Operating System

Sample Operating System Description

Summary

IV: Requirements Definition

Requirements Definition Methodology

Summary

V: Interdependency Assessment Methodology

Interdependency Assessment Methodology

Summary

Page

- 5 -

(Table of Contents...........Continued) Page

Chapter VI: First Ieration of the Design Problem 67

6.1 Analysis of Problem Structure 67

6.2 Main Subproblems 71

6.3 Subproblems Generated by a Second

Decomposition 80

6.4 Relationships Among the Main

Subproblems 82

6.5 Summary 89

Chapter VII: Second Iteration of the Design

Problem 90

7.1 Requirements Redefinition 91

7.2 Analysis of the Resulting Problem

Structure for the Second Iteration 96

7.3 Main Subproblems 98

7.4 Subproblems Generated by a Second

Decomposition 107

7.5 Relationships Among the Main

Subproblems 109

7.6 Comparison of the Design Structures

Implied by the First and Second

Iterations 119

7.7 Summary 124

Chapter VIII: Implications of the Decomposition

Process for the Design of the Sample

Operating System 125

- -- -----09MIN"

- 6 -

(Table of Contents..........Continued)

8.1 Design Overview of the Sample

Operating System

8.2 Functional Comparison of the Levels

and Layers of the Sample Operating

System with the Subproblems

Generated by the Decomposition

Methodology

8.3 Inconsistencies Identified in the

Comparison of the Sample Operating

System and the Decomposition

Methodology

8.4 Summary

Chapter IX: Concluding Statements Concerning the

Applicability of the Decomposition

Methodology to the Design Process and

Recommendations for Improvement

9.1 Objective of the Methodology

9.2 Recommendations for Improvement

9.3 Summary

Bibliography

Appendix A: Formal Specification of Evaluation

Parameters

Appendix B: Algorithm for the Identification fo

Kernel Subsets

Page

126

130

138

143

145

145

147

152

153

157

160

- 7 -

(Table of Contents..........Continued)

Appendix C:

Appendix D:

Appendix E:

APPENDIX F:

APPENDIX G:

APPENDIX H:

APPENDIX I:

APPENDIX J:

APPENDIX K:

Preliminary Set of Requirements

Preliminary Interdependency

Assessment Results

Results of the Interactive

Decomposition Package for the

First Iteration

Main Subproblems Resulting from the

First Iteration of the Decomposition

Methodology

Final Requirements Definition

Final Interdependency Assessment

Results

Results of the Interactive

Decomposition Package for the

Second Iteration

Main Subproblems Resulting from the

Second Iteration of the Decomposition

Analysis

Linkage - Interface Assessment

Page

163

169

190

215

221

258

282

306

312

- 8 -

LIST OF FIGURES
Page

1.1 System Development Cycle 12

3.1 Extended Machine Concept of a Generalized

Operating System 43

3.2 Heirarchical Design Structure of a Generalized

Operating System 46

6.1 Problem Structure Implied by the First Iteration

of the Decomposition Methodology 72

7.1 Problem Structure Implied by the Second Itera-

tion of the Decomposition Methodology 99

8.1 Heirarchical Design Structure of the Sample

Operating System 129

- 9

CHAPTER I

DESCRIPTION OF THE PROBLEMS INHERENT

IN LARGE SCALE SYSTEM DESIGN

1.1 Problem Description

The design of complex systems is characterized by many

of the following problems as identified by Andreu and

Madnick.1

. There is no established framework in which the design

decisions can be coordinated among various design

groups. This can lead to an optimization of sub-

problems, but sub-optimization of the aggregate design

problem.

. The adaptiveness of the system to changes in opera-

tional requirements is made difficult and time

consuming since such changes often impact the entire

system.

. The incorporation of new technology into an existing

system is cumbersome and expensive since there is no

systematic means of assessing the impact of new

technology on the system operation.

. System performance evaluation may require an enormous

model to represent the entire system.

1 RaphaeZ Andreu and Stuart Madnick, "A Systematic Approach to
the Design of Complex Systems: Application to DBMS Design and
Evaluation", Center for Information Systems Research, Report
32, SZoan School of Management, MIT (Cambridge, MA, Z977) p.6.

- 10 -

. The designer has no means to determine if the

problem has been completely and consistently defined,

or alternatively, over-constrained.

The most common technique currently in use to simplify the

design of a complex system is to decompose the global problem

into smaller sub-problems. However, without proper guidance,

this leads to many of the following problems as documented

by Mandel and Chryssostomidis. 2

. The subdivision of a given problem into lower level

problems imposes limitations on accuracy and is,

therefore, an approximation. This implies that the

optimization of the subproblems does not necessarily

lead to total system optimization.

. A designer of a specific sub-problem is likely to

have incomplete knowledge of the total problem.

. The decomposition process should be independent of

any specific technology or implementation technique.

The designer of a large scale system is faced with a number

of possible pitfalls as the size and complexity of the

design problem increases. The problems can be loosely

defined as a lack of a consistent framework in which to make

design decisions. Fred Brooks has defined this problem as

P. MandeZ and C. Chryssostomidis, "A Design Methodology For
Ships and Other Complex Systems", Phil. Trans. R. Soc., London
A.273, (London, 1972), p. 8 7 .
3Fred Brooks, The Mythical Man-Month: Essays on Software
Engineering, (Reading, MA), p. 16-17.

- 11 -

one of conceptual integrity and identified this as the most

important consideration in system design. Conceptual

integrity in this context dictates rigorous design sequence,

for if there is no rigor in the design, the resulting

product of the design process is highly idiosyncratic; in the

worst case, it is based on the failure history of the parti-

cipants. As a final measure, rigorous design should survive

its implementation and provide a framework for intellectual

control of changes to design requirements change.

1.2 System Development Cycle

In order to develop a rigorous and consistent framework

for the design process, one must examine structure of the

design problem as it exists in general in order to propose

improvements to the structure. Although many procedures have

been defined for a typical computer software design problem,

Andreu favored the following System Development Cycle as

proposed by Freeman to illustrate the nature of the design

problem.

Figure 1 is a representation of the five steps which

Freeman recognized in the design cycle. Each step consists

of an input and output and an operation which take place

in each step. The function of each step is now further

defined from the perspective of the need to establish a

framework in which the global design problem may be

decomposed.

- 12 -

(1) NEEDS ANALYSIS

Input: Primitive needs, system context, user problems.

Operation: Identification of major functions and constraints.

Output: General requirements.

(2) FUNCTIONAL SPECIFICATION

Input: Requirements, system analysis of context.

Operation: Conversion of needs into explicit functions, selection
of operational constraints.

Output: Specifications of system functions, constraints, and
objectives.

(3) ARCHITECTURAL DESIGN

Input: Specifications, general context of desired systems,
knowledge of similar problems.

Operation: Discovery of problem structure, identification of major
pieces of system, establishment of relationships
between parts, abstraction.

Output: Structural description of system.

(4) DETAILED DESIGN SPECIFICATION

Input: Architectural description, programming environment
details.

Operation: Abstraction, elaboration, choice of alternatives.

Output: Blueprints for programs.

(5) IMPLEMENTATION

Input: Blueprints.

Operation: Encoding of algorithms and data representations,
testing, debugging.

Output: Improved system.

FIGURE 1.1: The System Development Cycle 4

4 ParhaeZ Andreu, "A Systematic Aprroach to the Design and Structuring
of cormpZex Software System", unpublished Doctoral thesis, MIT SZoan
SchooZ- of Management, February, 1978.

- 13 -

1.2.1 NEEDS ANALYSIS:

This stage of the design process incorporates a careful

assessment of the needs which the final system must fulfill.

This stage is generally the most unstructured of all the

stages; since a new system must be designed to respond to

the user's percieved needs. The information derived from

the stage ranges from the most nebulous of statements of

need, to statements of such detail as to actually specify

implementation. The lack of structure in this phase of the

design process is likely to introduce errors which will be

repreated throughout the remaining stages of the design

process.

In order to avoid the errors introduced by a poor needs

analysis phase and driven by a desire to apply the decom-

position methodology to an untested system design, an

existing well-documented computer operating system was

selected for analysis.

1.2.2 FUNCTIONAL SPECIFICATION:

This stage of the design process is concerned with the

development of documentation aids in order to generate

formal and accurate statements of the system requirements.

Typically, functional specifications are characterized by

many of the following properties: c-ompleteness, consistency,

correctness, testability, non-ambiguity, design freedom,

and robustness to change. Obviously, the generation of

functional specifications is not an easy task, usually taking

- 14 -

place as an iterative or refining process in which the

global system requirements are continually refined until the

system is completely defined.

Numerous research efforts are currently underway to

formalize the process of functional specifications. One

particular method developed by TRW, Defense and Space Systems

Group is called the Software Requirements Engineering

Methodology (SREM).5 It is an automated system which

attempts to enforce the discipline of a framework in the

individual interpretation of the problem by the design

engineer to reduce the ambiguity of software requirements

and thereby lead to increased consistency in functional

specifications.

In addition, other "problem statement languages"

developed by Tiechroew and others6 have identified two

classes of requirements; specifically, "functional" require-

ments, what the system is to do and "performance" require-

ments, regarding constraints on measures of system behavior.

No attempts were made in this thesis to implement any

of the problem statement languages, as such. However, a

series of guidelines for requirements definition were

established to insure that the requirements had all the

characteristics of a "well-defined" set of requirements. The

5 Carl G. Davis and Charles R. Vick, "The Software Development
System", IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Vol. SE-3,
No. 1 (Jan 1977), p. 70.
6Sloan School, MIT, "System Documentation Language Report",
unpublished SZoan School report, MIT, Sloan School (Cambridge,
MA), p.2.

- 15 -

classification of functional versus performance requirements,

developed in the problem statement languages, were used in

the interdependency assessment process.

1.2.3 ARCHITECTURAL DESIGN:

This stage of the design process is concerned with the

discovery of problem structure in the design as defined by

Freeman. That is, the identification of major sub-problems

of the system and the establishment of relationships between

these sub-problems. Utilizing this technique, Andreu has

noted the existence of both a problem structure and a system

structure inherent in each system design.

The problem structure is concerned with how different

parts of the system interact from a design standpoint; that

is, what parts of the system can be designed independently

of others as opposed to what parts must be designed at the

same time. The problem structure then is used to identify

the trade-offs that must be taken into account between

completing solutions of the design problem. The concept of

a problem structure was a key element used in the inter-

dependency assessment phase.

The system structure, on the other hand, is concerned

with how system parts interact once the system is designed

and in operation. Andreu has pointed out that the two

structures do not necessarily coincide:

"Traditionally the 'design problem structure'

has been determined by the system structure in

- 16 -

that it is very common to organize the design

of a new system around 'standard' system

structures, drawn from similar systems pre-

viously designed."

As previously stated, a subdivision of a given problem into

lower level problems imposes limitations on accuracy and is,

therefore, an approximation. Secondly, unless the process

is rigorous, it is highly idiosyncratic. The goal of any

proposed framework must be to reduce the designer's depend-

ency on "standard" system structures in such a way as to

rigorously decompose the design problem into well-defined

subproblems.

Therefore, a framework is required at this stage of the

design process, to resolve the trade-offs that may exist

among system requirements as implied by available alternative

implementation techniques. Andreau has proposed a framework

which addresses this issue based on cluster analysis tech-

niques. The purpose of the framework is to:

. explicitly establish the nature of the problem by

decomposition;

. establish a consistent framework in which trade-offs

can be assessed.

The methodology constitutes a well-structured series of

activities that the software engineer should perform during

the design process. The value of such a methodology, claims

Andreu,

Andreu, p. 4 1 .

- 17 -

"...is that the concept of interrelated design

subproblems stemming from the explicit inter-

dependencies among requirements, constitutes a

better basis for the subsequent detailed design

stages than the original disjointed set of

requirements."8

1.2.4 DETAILED DESIGN SPECIFICATION:

This stage constitutes the actual design of program

modules as opposed to system design. The work of Parnas 9

has focused on the means of structuring the software modules

in order to implement the system. This stage is beyond the

concern of this thesis.

1.2.5 IMPLEMENTATION:

This stage is concerned with the actual programming of

the system. Efforts by Liskov10 have attempted to develop

structural programming tools to systematize the activities

at this stage of the design. This stage is also beyond the

concern of this thesis.

1.3 Summary

The system development cycle is characterized by

8
Andreu, p.41.
David L. Parnas, "On the Criteria to be Used in Decomposing

System into Modules", Communications of the ACM., Vol. 15,
Number 12 (Dec. 1972), pp. 1053-1058.
10Barbara Liskov and Valdis Berzins, "An Appraisal of Program
Specifications", Computation Structures Group Memo 141-1, MIT,
Laboratory for Computer Science (April 1977), p.1-12.

- 18 -

increasing attempts to structure or systematize each stage

of the design process. The purpose of this thesis is to

apply the techniques developed by Andreu in order to verify

the design of the computer operating system under investi-

gation by the application of the methodology as proposed by

Andreu.

1.4 Thesis Outline

The computer operating system entitled, "The Sample

Operating System (SOS)" was developed by Professor Madnick

and Professor Donovan11 of the MIT Sloan School of Manage-

ment. This system design problem was selected for examina-

tion since it is a reasonably non-trivial and well-documented

software design problem.

Chapter II is devoted to a discussion of cluster

analysis techniques in general, and a description of the

specific methodology proposed by Andreu.

Chapter III presents a description of the general

characteristics of the sample operating system.

Chapter IV presents both the procedure and the results

of the requirements definition phase for the sample operating

system. This chapter presents in detail the guidelines which

were used to generate the requirements and, by example,

demonstrate some of the pitfalls encountered in requirements

definition.

1Stuart E. Madnick and John J. Donovan, Operating Systems,
(New York, 1974), pp.381-431.

- 19 -

Chapter V presents the methodology for the interdepend-

ency assessment phase and the resulting input for analysis

utilizing Andreu's methodology.

Chapter VI presents the results of the first decomposi-

tion using the analytic techniques previously described.

These results are considered an intermediate step; therefore,

the results are analyzed as motivation to continue along in

the next set decomposition.

Chapter VII presents the results of the second decom-

position analysis and compares the results with those

previously obtained.

Chapter VIII presents a comparison of the design frame-

work implied by the decomposition methodology vis-a-vis the

actual design of the sample operating system.

The final chapter will present suggestions for changes

or improvements to the cluster analysis techniques proposed

by Andreu, based on the experience of the user.

- 20 -

CHAPTER II

CLUSTER ANALYSIS METHODOLOGY AND

THE DECOMPOSITION FACILITY

This chapter is devided into three sections in order to

present the cluster analysis methodology as applied to the

general decomposition problem.

First, the need for such a methodology is motivated by

establishing the objective of such cluster analysis tech-

niques and the types of problems encountered in the applica-

tion of the methodology. Definitions of general terms are

offered for use through the rest of the discussion.

Second, a solution to the decomposition problem using

cluster analysis techniques is defined. Specifically, the

decomposition problem is defined and the techniques for

partitioning the requirements set are presented according to

the work by Andreu.

Finally, the use of the decomposition software analysis

techniques developed by Andreu are presented.

2.1 Cluster Analysis Problem

Cluster analysis techniques may be defined as analysis

techniques to sort the attributes of objects into groups

such that the degree of natural association is high among

members of the same group and low between members of dif-

ferent groups. When successfully applied, the techniques

- 21 -

can be used to reveal problem structure as relationships

that existfor a given set of data.

In order to apply these techniques, one must be capable

of the following:

. Definition of a group of objects to be clustered; in

this case, design requirements for a computer

operating system.

. Selection and common definition of attributes common

to all objects in this group; in this case, the

singular attribute selected was the existence of an

interrelationship between a given pair of requirements.

The definition of interrelationship will be discussed

in Chapter V.

. Definition of an evaluation parameter so that the

degree of natural association among members of

clusters may be measured.

. Definition of an algorithm to find the best partition

of a group of objects. Specifically, an algorithm

which defines a partition with the "best" measure

evaluation parameter without having to evaluate all

the possible partitions.

The following definitions have been applied to the

cluster analysis problem.

In general, a group of objects 0, may be defined as

follows:

Let 0 : { 0 ,...O ...ON} be the set of objects in

- 22 -

which the clusters are to be identified. These

are composed of individual design requirements

and also represent the nodes of any graphs which

are drawn. |NI may be defined as the cardinality

of a set of objects; that is, the number of

objects within a given set.

Each object may be characterized by a set of attributes:

X : {X ...X ...X N} measured in some consistent scale.

In the case of the discussion, the attribute is the

existence of interdependencies.

Therefore, introducing a slight change of notation, an object

0 c 0 is characterized by a vector.

A :{(a.., aij = 1 if nodes 0. and 0. are related, an
IJ 3- J

interdependency exists; = 0 otherwise. This is the so-called

adjacency matrix in which it is assumed that aij = 1 when

i = j.

The adjacency matrix is constructed by making a pair-

wise assessment of the relationships among all pairs of

requirements. The adjacency matrix is simply an NXN matrix,

where N is the number of requirements objects. Once a set

of objects and their interrelationships have been established

the next problem is defining evaluation parameters to measure

the degree of natural association.

2.1.2 EVALUATING SET DECOMPOSITIONS:

Any method for evaluating the success of a decomposition

scheme must consider the strength of intra-subset relation-

- 23 -

ships, and some means for combining these two parameters.

Therefore, the following evaluation parameters were defined

by Andreu.12

Strength: A measure of how tightly coupled the modes

in a given subgraph are is defined as follows:

Number of links joining nodes

in the same subset (N - 1)
S =

N (N-l)[2

where a subgraph is a graph composed of a subset of the

original members of the total graph of nodes to be decomposed.

Strength is evaluated by measuring the number of links

joining nodes in the same subset minus N-1, N being the

cardinality of the given subset, normalized by a factor of

N(N-l)/2. In a subset of N nodes, N-1 is the minimum number

of interdependencies which can form as subgraphs without

disjointed components; thus, the number of links in excess

of N-1 is a measure of subset internal coherence, beyond the

minimum required for it to be coherent at all. The factor

N(N-l)/2 is the maximum number of links that may exist in a

subset of cardinality N; normalizing by the factor permits

comparable measures for subsets of different cardinality.

Coupling: a measure of the extent to which two sub-

sets are independent, and is defined as follows:

Number of links actually joining

nodes of two different subsets
C =

N'M

12Andreu, 7o.100.

- 24 -

In order to evaluate the coupling parameter, the number of

interdependencies established between two nodes in different

subsets are counted and normalized by the factor N*M; where

N and M are the cardinalities of the two subsets.

Measure: The final evaluation parameter of clustering

success for a given partition may be defined as follows:

P P
M =S. - Cij

i=l1 i=1
j=i+l

The measure parameter represents the summation of all the

strengths of all subsets in the given partition minus the

couplings associated with all possible pairs of subsets.

P is defined as a partition or subgraph of the original

requirements set. Appendix A contains a formal definition

of each of the evaluation parameters listed above.

The parameters are defined so that the measure value

should be large to indicate a good evaluation of the natural

association of a partition generated by cluster analysis

techniques. Therefore, given a group of partitions one

would select the partition with the highest value of measure

as representing the "best" partition.

Given a requirements set, attributes in the form of

interdependencies and evaluation parameters as previously

defined; one is now faced with the problem of determining an

algorithm which will generate the best partition for a

requirements set of non-trivial size.

- 25 -

2.1.3 CLUSTERING SCHEMES:

Given an adjacency matrix and evaluation parameter as

previously defined, a technique is now needed to deal with a

non-trivial decomposition problem which would not require

having to investigate or compute all feasible decompositions

that exist for a given requirements set. A heuristically

based procedure was selected by Andreu 13 since he has

demonstrated that neither an optimization nor a graph

theoretic approach is feasible to solve a problem of non-

trivial size. Therefore, the various families of cluster

analysis techniques and heuristic graph decomposition tech-

niques were investigated to determine which were the most

feasible.

In general, there are two generic types of cluster

analysis methods, the heirarchical method and the partition-

ing method. The following discussion will focus upon the

similarities and differences of the two methods, concluding

with the rationale for the method selected for use by

Andreu.

However, prior to a discussion of actual cluster analy-

sis methods, the following definition of the concept of a

distance matrix must be presented to transition from the

adjacency matrix of interdependence established between

design requirements to a similarity matrix defined cluster

analysis techniques. The binary assessment procedure, used

for identifying requirement with dependences is simplistic
13 Andreu, pp.103-109.

- 26 -

but it is not useful for defining distances as established

for Euclidan geometry. For the purposes of cluster analysis

techniques; specifically, computing similarity matrix S,

scale conversions may be needed prior to the representation

of a pair of objects X. and X. into an entry of the form
1 J

Sij = +(X.,X.) in the similarity matrix. The scale conver-
1 J

sions must meet the properties of "metrics" which is one type

of distance function.

The formal properties of metrics have been identified

by Anderberg as follows:

"Let S be a symbolic representation for a measurement

space and let x, y, and z be any three points in S.

Then a distance function D is a metric if and only if

it satisfies the following conditions:

1. D(x,y) = 0 if and only if x=y

2. D(x,y) > 0 for all x and y in S

3. D(x,y) = D(y,x) for all x and y in S
114

4. D(x,y) < D(x,z)+D(y,z) for all x, y, and z in S

The first property implies that x is zero distance from

itself and that any two points zero distance apart must be

identical. The second property prohibits negative distances.

The third property implies symmetry by requiring the distance

from x to y to be the same as the distance from y to x. The

fourth property, the triangle inequality, requires that the

length of one side of the triangle be no longer then the sum

of the lengths of the other two sides. The satisfaction of

1 4Michael R. Anderberg, Cluster Analysis for Applications,
(New York, 1.973), p.99.

- 27 -

these properties is required so that the concept of distance

is the Euclidean distance of elementary geometry. Once the

property is established the well-known properties of

Euclidean distance geometry can be applied to similarity

matrices.

A distance function which satisfies the first three

conditions of a metric, but not the triangle inequality is

known as a semimetric. Furthermore, a metric which

additionally satisfies the following property

D(x,y)=MAX{D(x,z),D(y,z)} for all x, y, z in S

is called an ultrametric since the latter property is con-

siderably stronger than the triangle inequality.

Andreul5 has pointed out that the concept of cluster

analysis is not a precise technique since it is heuristically

based. Furthermore, Blashfield and Aldenderferl6 have shown

that the various cluster analysis methods do, in fact,

generate different solutions to the same data. Therefore,

the value of the methodology is strictly dependent upon:

1) The number of subsets into which the original set

is decomposed, where the maximum = N and the

minimum = 1.

2) The extent to which the clusters are individually

coherent and collectively are distinctly different.

5 Andreu, .113.
1 6Roger K. Biashfield and Mark S. Aldenderfer, "A Consumer
Report on CZuster Analysis Software", Pennsylvania State
University Report (PA, 1973), p.3.

- 28 -

The two approaches to cluster analysis techniques,

discussed in the following section, differ in the means by

which they approach a middle-ground solution to either

extreme.

2.1.3.1 Agglomerative Techniques:

The first basic method of cluster analysis is called

the agglomerative method. The measure of similarity used

is Euclidean distance. The methodology begins with N

clusters, each object in 0 is a simple member cluster. The

method proceeds as the NxN distance matrix is searched for

the two most similar entries, which are then combined to

form a cluster. The method continues until all objects

belong to one single cluster. This method yields a result

which exhibits a strictly heirarchical pattern of relation-

ships, in which the number of levels or ranks equals the

number of steps in clustering.

The form of linkage; i.e., the criteria used to join

objects together to form clusters, may vary from a single

linkage cluster, in which an object is joined to a cluster if

it has a certain level of similarity with at least one member

of the cluster, to the complete linkage method, which

requires that an object must achieve a specified level of

similarity with all members of a given cluster before being

joined to it.

2.1.3.2 Partitioning Method:

The second method of cluster analysis is called the

- 29 -

partitioning method. The partitioning method differs from

the agglomerative method in that the solution does not

portray a heirarchical relationship among the entities. The

resulting clusters obtained from a partitioning solution are

discrete and exist at a single rank.

The method proceeds as follows: the user selects a

statistic to be optimized during the cluster analysis; in

this case, measure (M). All objects are initially assigned

to a single cluster of N objects. The user must choose the

number of clusters (K) which are believed to exist in the

data. The methodology must then use some scheme to determine

K leader/seed objects. These seed objects represent a

Kernel of objects about which the remaining objects are

clustered. An object is then assigned to a cluster with the

nearest centroid. The method then recalculates the centroid

of the cluster, and the process is then repeated until there

are no membership changes which will improve the overall

solution. This method is iterative in the solution tech-

nique, as an object may actually change its membership from

one cluster to another during the process. The agglomerative

method, on the other hand, requires only one pass through

the data for a complete solution. The partitioning method is

more time-consuming, but allows a certain robustness to the

solution since each cluster is re-examined and members may be

re-assigned. However, the method requires the specification

of certain limiting parameters "a priori" specifically: the

- 30 -

user must specify K, final member of clustering before

proceeding with the partitioning.

Another distinction among partitioning methods is

related to the calculation of the centroid for each cluster.

As pointed out by Blashfield and Aldenderfer,

"The combinatorial methods require the recalculation

of the centroid of a cluster after each change on

membership. Non-combinatorial methods calculate

centroids only after the complete pass has been made.

Therefore, combinatorial method of control calculation

is considered to be more conservative. 7

The partitioning method then avoids the major weakness of

the agglomerative method, since the iterative nature of the

partitioning method allows early decisions regarding which

object is merged into which cluster to be re-examined as the

algorithm proceeds. For this reason, the partitioning

cluster analysis method was selected for use by Andreau.

In order to implement the partitioning method of cluster

analysis, one is faced with the following problems:

1) Conversion of the binary adjacency matrix into a

similarity matrix which satisfies the requisite

metric properties.

2) Identification of the K parameters which is the

number of seed nodes.

3) Identification of the actual nodes which are the

seed nodes.

7 BlZashJfield, p.9.

- 31 -

Andreau investigated the use of heuristic graph decom-

position techniques, particularly the concept of a "core

set" to solve the preceeding problems. The techniques are

described in the following section.

2.2 Solution of the Cluster Analysis Problem by the Graph

Decomposition Techniques

The purpose of this section is to present the tech-

niques proposed by Andreau for the solution of cluster analy-

sis problems; specifically the conversion of the adjacency

matrix and identification of partitions through the use of

heuristic graph decomposition techniques.

In order to solve the cluster analysis problems pre-

viously defined, Andreau investigated the use of heuristic

graph decomposition techniques. The definitions of require-

ments, interdependencies, and the adjacency matrix still

apply to the problem at hand. The following definitions

apply to graph decomposition techniques:

Core set: CS. associated with a node 0. in the set

CS. :{0.O0. S.T. aij = l}
1 J J

that is the set of all nodes related to

0., including itself.

Connectivity of node 0.:

C. = |CS.f - 1, where |CS.I is defined as the

cardinality of set X

Conceptually, one is searching the adjacency matrix for

- 32 -

objects with a high connectivity whose core sets do not

interfere with each other. Once identified, these objects

form the Kernel of subsets of objects whose elements are

strongly related. As determined by Andreu 18 once the number

of Kernel subsets has been identified, the remaining nodes

can be assigned to the subsets in which they best fit; where

the measure of best fit is as previously defined by the over-

all measure (M). The actual procedure used to identify the

subsets is presented in Appendix B.

The procedure requires the "a priori" specification of

the parameter (K) which is related to the number of sub-

graphs expected to result from the decomposition. Andreu's

experiences indicated that obviously 1 < K < N where N

equals the number of nodes or objects subject to decomposi-

tion. Andreu stated more strongly that K should be set at

a value somewhat higher than the expected number of sub-

graphs, yet the lower the value of K, the more conservative

is the result since fewer subgraphs will be identified

considering the interferences among many core sets. In order

to normalize the selection process and to make the facility

more robust, the selection process for K was redefined as

follows;

K = percentage of the maximum value of connectivity,

Cf ,for the entire graph.

Note that the value of K has been redefined as a percentage

value of C.; this implies that K should be initially

18 Andreu., p. 1 2 5.

- 33 -

selected as a high value (80%) in order to yield a conserva-

tive result.

Andreu then investigated the possibility of generali-

zing the definition of the core set as follows:

CS : {OO such that the minimum path

0. + 0. < P ; where P < 1
1. -

Note that in the case where P = 1, this is equivalent to the

previous definition of the core set. The definition of P=l

is required in order to specify a minimum path. A more

complete explanation is offered by Andreu; 1 9 briefly the

point is that the minimum path among objects oil O., 0 is
1 J K

as follows:

When minimum path (0. - 0 .) Minimum Path (0 . + 0)
1 J J K

then either

1) 0., 0 are both adjacent to 0.
J' K1

or 2) 0. is adjacent to neither 0. nor O
1 Jk

This is true only in the case where P=l; therefore, Andreu

uses P=l when computing the core sets as previously defined.

A starting point for partitioning cluster analysis has

thus been identified, by the calculation and identification

of core sets as follows:

1) select K = percentage value of maximum value of

of connectivity;

2) select the node with the maximum value of

connectivity C.;

9 .4ndreu, p.136.

- 34 -

3) select the core set, consisting of all objects

0. for which C. >K (C.MAX).

The final problem involved in generating a partitioning

methodology was to develop a method to convert the binary

adjacency matrix into a similarity matrix meeting the metric

conditions of Euclidean distance; since the single binary

coefficients dervied directly from entries in the adjacency

matrix fail to meet these properties. Andreu incorporated

the "core set" concept previously introduced in order to

define entries in the similarity matrix as follows:

S.. = i- CS. CS.
1J 1 j

CS. CS.
1 J

where S.. = Similarity matrix distance measure between
1]

objects 0. and 0.
1 J

CS. = Core set for noe 0.
1 1

For the special case, for some pair of nodes O and Ok such

that S ik=O that is (CS =CSk), then it is true that S .=SCk

for all j. The nodes k and Ok are equivalent with respect

to the rest of the graph as described by the matrix S. For

cluster analysis purposes, this special case represents the

case for which nodes i and k are equivalent. The pair is

collapsed to form a single node.

This section has determined that there are several

problems which must be solved in order to apply cluster

- 35 -

analysis techniques to set decomposition problems. Andreu

has used heuristic graph decomposition techniques in order

to:

. Identify the K parameter which represents the maximum

value of such nodes for a given graph.

. Convert the adjacency matrix defined by a binary

assessment of interrelationships into a similarity

matrix meeting the metric properties of Euclidean

geometry.

The final section of this chapter will present a stepwise,

discussion of the application of these techniques to the

decomposition problem.

2.3 Decomposition Methodology

The decomposition problem was analyzed utilizing a soft-

ware package by Andreu. The package is written in Fortran

and runs on the PRIME computer system of the Sloan School of

Management.

The features available with this system are as follows:

1) Enter the adjacency matrix developed from the

requirements interdependency assessment. This

function is performed using the "ENGR" command.

2) Compute a distance matrix for the graph under analy-

sis using the "DIMN" command. The package actually

computes the distance matrix P=l is assumed by the

package, also it treats collapsed nodes not as

single nodes.

- 36 -

3) Compute the similarity matrix from the distance

matrix using the "SIMA" command.

4) Generate an initial partition using the "INPA"

command to identify the "core of subgraphs" likely

to exhibit high strength. The user must specify

value for the K parameter.

5) Use the clustering algorithms to generate clusters

and return a value for measure, strength, and

coupling.

There are three clustering methods available for use:

Heirarchical Clustering Method 1 - which merges the

"closest" pair of clusters measuring the distance

between two clusters A and B by the mean of the

distance between the nodes of A and the nodes of B.

That is,

d(AB) = 1 Z = (a,b)

NANB

where N A and NB represent the cardinality of A and B

respectively, the summation is over all the elements

a c A and b E B.

Heirarchical Clustering Method 2 - which merges the

pairs of clusters which lead to a minimum mean of the

distance between all pairs of nodes in the cluster

resulting from the merge. That is,

minimize X = 1 s (a,a)
N2
A

- 37 -

where N = the cardinality of the set merger A

a,a E A.

the summation is over all pairs of nodes.

Heirarchical Clustering Method 3 - which merges the

two clusters A and B that lead to a minimization of

the parameter y.

= 1

NANB s(a,a)-NA s(a,a)-KB s(bb

where the first summation is overall pairs of nodes

in A and B, the second overall pairs in A, and the

third overall pairs in B. This method evaluates each

clustering step as a function of the partition para-

meters before and after the clustering and, therefore,

tends to produce the best partitions; i.e., those

with the highest measure.

Additional facilities exist in the software package to

perform a number of additions and deletions from the graphs

and to print out the results.

The analysis package was designed to recognize a single

decomposition problem at a time. Therefore, the package

always deals with a current graph; that is, the fundamental

working entity that the package is currently working on. In

addition, Steps 1 through 4 must be accomplished prior to

invoking Step 5. Any change in the order will generate a

system error.

- 38 -

The use of the decomposition methodology is presented

in Appendices E and H for the first and second iteration of

the methodology.

- 39 -

CHAPTER III

SAMPLE OPERATING SYSTEM

The Sample Operating System, developed by Professor

Stuart E. Madnick and John J. Donovan20 as a pedagogical

tool to illustrate the basic functions of a computer opera-

ting system, was selected as the design problem for analysis.

The selection of an existing, well-documented system was

dictated by a desire to insulate the decomposition analysis

from any problems associated with poor needs analysis.

The Sample Operating System is composed of all the

functions normally associated with a computer operating

system; however, due to its strictly pedagogical nature, it

has some unique features as well. It was conceptually

convenient to break the system down with its functional

areas for descriptive and requirements definition purposes.

The following discussion will highlight the general functions

of the Sample Operating System.

3.1 General Characteristics of a Large Scale Computer

Operating System

In most general terms any operating system is a group

of programs within a computer system which manage the

hardware/software resources of the computer, and thereby

serve as the interface between the user's programs and the

resources of the computer.

2 0Madnick and Donovan, p.381.

- 40 -

Madnick and Donovan have defined the following entities

within a computer system:

user: one who desires to utilize the computer resources.

job: any collection of activities needed to complete

the work desired by the user. A job may be

further subdivided into steps, tasks, or

processes.

job step: units of work which must be done sequentially;

namely, compile, load, and execute.

task: a program or job subdivision which is the basic

unit or work for the operating system.

process: a complete sequence of instructions that are

functionally/computationally independent of

other processes.

The normal resource management functions of the operating

system may be generalized into the following four functions:

. Keep track of a resource;

. Enforce a policy that determines which user gets a

given resource, especially to resolve conflicts

arising from competition for the same resource.

. Allocate a resource.

. Reclaim a resource.

The functional resources of any large-scale computer system

may be described as follows:

. Memory Management Functions

. Processor Management Functions

- 41 -

. Device Management Functions

. Information Management Functions

The definitions, management functions, and resources pre-

viously defined will be adopted in order to fully describe

the characteristics of the Sample Operating System.

3.2 Sample Operating System Description

The Sample Operating System, as described by Madnick

and Donovan, is conceptually designed around a process,

recognizing that a process is the smallest computational

entity and, therefore, has certain requirements necessary for

its support. Thus, the Sample Operating System implements

a basic system nucleus required for a complete system; yet

it does not include other capabilities such as language

processors or utility programs.

3.2.1 EXTENDED MACHINE CONCEPT:

At the most basic level, a computer processes only

specific hardware instructions; such as ADD and LOAD. In the

Sample Operating System it was necessary to provide the

basic functions for process support as additional hardware -

like instructions at a level above the basic machine instruc-

tions. These instructions are called extended instructions

and are implemented by means of the Supervisor Call

Instruction. These instructions are conceptually similar to

subroutine calls which enable the user to perform certain

resource management functions at a higher level than the bare

machine. For example, SVC 'H' is used to halt a job and

- 42 -

signal the supervisor process. Each extended machine

instruction calls a handler routine and may be user callable.

The basic hardware instructions of the machine combined

with the operating system provided "supervisor instructions"

comprise the instruction set of the extended machine. The

Kernel of this operating system runs on the bare machine,

the user's programs run on the extended machine. Figure 3.1

represents the extended machine concept.

3.2.2 HEIRARCHICAL MACHINE STRUCTURE:

Since the Sample Operating System was intended to be

primarily a pedagogical tool, a layered system architecture

called heirarchical operating system structure was selected

as the basis for system design. Basically, the methodology

allows the segregation of major functions of the operating

system into a heirarchy of capabilities. Its major advant-

ages include:

. It is a powerful means of proving the correctness

and maintaining the operational integrity of the

operating system.

. Lower layers of the system provide services to higher

layers only via well-defined interfaces.

. The modular structure enables the easy identification

of the major functions of the operating system.

In order to implement the heirarchical concept in con-

junction with the extended machine concept, it was necessary

to define the following:

. Certain key functions needed by many of the system

- 43 -

Extended
machine

User
programs
(processes)

(Operating system software)

FIGURE 3.1 Extended Machine Concept of a
Generalized Operating System

- 44 -

modules could be separated into an "inner extended

machine".

Certain modules, which were not utilized as key

functions yet still operating system modules, could

be separated out and run on the extended machine in

essentially the same way as a user's process.

It is, therefore, apparant that each module of the operating

system must be identified as running either in the inner

extended machine, the outer extended machine, or as a

process.

For further clarification, Madnick and Donovan have

generalized the inner/outer extended machine concept into

levels of the extended machine, and all operating system

functions that run as processes can interrelate and are

generalized into layers of processes. The Kernel of the

operating system then is all these modules that reside in the

extended machine and, therefore, do not include operating

system processes.

For purposes of the Sample Operating System design, the

basic functions of the operating system have been placed in

the Kernel, and as many tasks of the operating system as

possible have been placed into separate system processes.

In this heirarchical implementation, we impose the following

restriction: a given level is allowed to call upon the

services of lower levels only; i.e., those levels closer to

the bare machine. This restriction requires well-defined

- 45 -

interfaces and synchronization schemes throughout the Sample

Operating System.

Figure 3.2 graphically portrays the heirarchical

operating system structure.

The three concepts implemented for the design of the

Sample Operating System design (that is, process focus,

extended machine concept, and heirarchical structure) have

evolved into a system with the following features:

. process synchronization semaphore, used extensively

for resource allocation synchronization;

. message system for interprocess communication;

. five levels and layers of the Sample Operating System:

Levels - Process Management, lower module

Memory Management module

Process Management, upper module

Layers - Device Management module

Supervisor Process module

A brief description of the function of the levels and layers

is provided to further clarify the structure of the Sample

Operating System.

3.2.3 PROCESS MANAGEMENT, LOWER MODULE:

This module enables the Sample Operating System to

support multiprogramming and the basic system primitive

operations required for interprocess synchronization.

The basic primitives as previously described, are the

so-called P-V operations. Both operations act on a semaphore

- 46 -

Components of operating system

Operating system
Process B

extended
machine

Bare
machine

(Key operating
system functions)'

(Remainder of key opera-
>ting system software)

User programs
(processes)

FIGURE 3.2 Heirarchical Design Structure of
a Generalized Operating System

Operating system
Process A

- 47 -

which has an associated integer value and serves as a

counting lock as follows:

P-operation: IF Semaphore Value > 0 then

Value = Value-1

IF Semaphore Value < 0 then

Value = Value-l and the process

is ineligible to allocate the

given resource.

V-operation: IF Semaphore Value > 0 then

Value = Value+l and no process is

ineligible to allocate the given

resource.

IF Semaphore Value < 0 then

Value = Value+l and there is a

process waiting to allocate given

resource.

Since there is a semaphore associated with each resource

the P-V operations can serve as a lock where semaphore value

initially = 1. By requiring a P-operating before accessing

and a V-operating after completion, the integrity of the

resource is ensured.

3.2.4 MEMORY MANAGEMENT MODULE:

This module performs the operations necessary for

dynamic allocation and freeing of memory for job partition

allocation and for allocating space for use by the operating

system.

- 48 -

3.2.5 PROCESS MANAGEMENT, UPPER MODULE:

This module provides the routines for the control of

processes; i.e., process creation and deletion. The module

also provides for interprocess communication with buffered

messages. This module was split from the Process Management,

lower module since it depends on the functions of memory

management to allocate or free memory areas to store system

information concerning each process and to provide temporary

buffers to store interprocess communication messages.

3.2.6 DEVICE MANAGEMENT MODULE:

This module runs as a separate process; hence, it is

considered a layer of the operating system. There is one

device management module per device which provides the

routines necessary to issue the appropriate input/output

commands to external devices. This module depends heavily

upon the interprocess communication message facility to issue

I/O and to interpret the status information for a return

message. Device management for this service is simple since

all devices are dedicated and consist only of card readers

and line printers.

3.2.7 SUPERVISOR MODULE:

The supervisor module, also runs as a separate process

of the Sample Operating System; specifically, one per job

stream. The supervisor provides interfacing for all the

routines needed to run a job. In particular, the supervisor

process is responsible for coordinating the following:

- 49 -

1) Reads in a job stream.

2) Allocates a partition of memory for each job in

sequence.

3) Creates and starts the appropriate device manage-

ment process.

4) Loads the user's object deck into the partition.

5) Creates and starts a process in the given partition.

Since the supervisor process is not needed until

the user's job ends, it stops running and waits for

a message signalling completion of the user's job.

6) Finally, when completion is signalled, the super-

visor cleans up by destroying the allocated parti-

tion of memory, and goes to the next job input

stream.

3.2.8 USER'S PROGRAMS AND PROCESSES:

Initially the Sample Operating System creates a single

process for each job; however, the user is free to create

additional processes to run in parallel. The user's job runs

in problem state with non-zero protection key assigned;

thereby, restricting user access (to privileged instructions

and memory areas external to the user's allocated partition).

The nucleus routines, such as P-V operations, are

restricted from the user and cannot be accessed by the user's

job. However, the interprocess communication message

facility is available to the user and can be utilized for

interprocess synchronization of user processes.

- 50 -

3.3 Summary

The basic design philosophy of the Sample Operating

System and a functional description of the major modules has

been presented as the system is currently configured. The

next two chapters will first define the requirements as they

exist for the Sample Operating System; and second, assess

the interrelationships among these requirements.

- 51 -

CHAPTER IV

REQUIREMENTS DEFINITION

The purpose of this chapter is to describe the method-

ology of the requirements definition for the Sample Operating

System. The requirements were defined from a description of

the Sample Operating System and program listings as provided

by Madnick and Donovan, subject to certain guidelines

established by Andreu to insure that as much as possible

the requirements are defined in a clear, correct, and

concise manner.

It must be stated at the outset that requirements

definition was the most time-consuming portion of this

analysis. The definition phase was repetitively iterated as

requirements were defined more clearly, make less ambiguous,

corrected, discarded, combined, separated, and new require-

ments added continuously. Since one can become completely

embroiled in the problem, it is essential that the require-

ments be reviewed periodically by an interested third party.

The initial methodology for requirements definition was

proposed by Andreu23 and was based on his experience with

the problem. Andreu began with a set of requirements for a

database management system and sought to refine those

requirements as they existed. For the Sample Operating

System, however, no such precise list of requirements

2 3Raphael Andreu, "An Exercise in Software Design: From
Requirements to Design Problem Structure", MIT SZoan School
unpublished report (June, 1977), pp. 3 -1 5 .

- 52 -

existed. Therefore, it was necessary to draft a set of

requirements from a textual description of what the system

does using program listings to resolve unclear issues.

Consequently, the Andreu methodology was supplemented with

additional guidelines based on these experiences in defining

requirements.

The following section will define the methodology and

by way of example, demonstrate what constitutes good or poor

definitions of requirements.

4.1 Requirement Definition Methodology

4.1.1 DEFINITION CLARITY:

Requirements should be stated clearly and concisely.

It is conceptually difficult to deal with requirements which

are verbose or deal with more than one specific issue. In

addition, requirements interdependencies are assessed on a

one-for-one basis. Therefore, each requirement for the

Sample Operating System was limited to a single sentence,

covering only one issue. The requirements for the Sample

Operating System are presented in Appendix G, and each

requirement statement is followed by a definition of the

requirement and a statement of implications of that require-

ment for the design of the system. This format was valuable

for it enabled a single sentence requirement definition

statement, yet it facilitated further amplification of the

design requirement which was very helpful in the inter-

- 53 -

dependency assessment phase.

4.1.2 SCOPE OF DEFINITION:

Requirements must not be stated in very general terms,

or in terms dealing with issues beyond the scope of design.

For example: The operating system must be capable of

maintaining memory resources. This is a general state-

ment characteristic of all operating systems by

definition. This statement does nothing to further

define characteristics of the Sample Operating System.

In addition, no requirements were defined for the

following functions: system reliability, documentation,

and system security, simply because none of these

issues were addressed as needs of the Sample Operating

System, and, therefore, were beyond the scope of the

design.

4.1.3 IMPLEMENTATION INDEPENDENCE:

As stated by Andreu and Madnick24 requirements should

not specify an implementation scheme that may be used in the

design of the system. Clearly a requirement which specifies

how a requirement is to be implemented biases the design

process. Specifically, such a procedure precludes the

design from considering alternative solutions to a given

design problem. The specific implementation scheme may be

appropriate within its limited realm of consideration, but

may not be optimal in the context of the overall design

problem. Finally, any implementation scheme, specified

24 Andreu and Madnick, p.42.

- 54 -

"a priori" inevitably affects other requirements in other

stages of the design process. The criteria for requirements

definition is simply that the requirement definition must

state only what is to be done and not how.

For example: the statement, "A process can issue a call

to read the text and name of the message sender"; this

violates the guidelines since the statement defines the

means of implementation. The requirement focuses on

how a process recognizes the text and name of a message

sender, rather than what was intended.

Therefore, the requirement was re-written as: "The

receiving process may read the name and text from the

originator".

4.1.4 SYSTEM STRUCTURE INDEPENDENCE:

Any definition of requirements should avoid biases

toward pre-established assumptions about the structure of the

final design according to Andreu. 25

This guideline is very subtle in its application, and

represented the most difficult guideline to fulfill since

the Sample Operating System had been designed and was

described in terms of its final structure. Conceptually,

anyone seeking to define a non-trivial system must organize

his thoughts in some manner to avoid total confusion. The

most logical framework for organization is in terms of the

functional requirements of the system. The most general

25 Andreu, "An Exercise in Software Design", p.46.

- 55 -

functional requirements for an operating system focus upon

the role as a resource manager of memory, processors,

devices, and files. Therefore, one tends to define require-

ments in the framework, and the trivial decomposition

solution would define four distinct subproblems which

correspond to those functional requirements. Clearly, such

a solution would offer no new insights into the structure of

the design problem.

For example, the requirement "This operating system

must be pedagogical and modularly structured", was

considered to violate the guideline. The Sample

Operating System was designed to be pedagogical.

Although it is generally recognized that the most

effective method of achieving pedagogical clarity is

through modular design, such a statement is constraining

upon the system designers and, therefore, was re-written

as follows: "The operating system must be designed as

a pedagogical tool". The resulting decomposition of

the design requirements should indicate what degree of

modularity was achieved in the actual design.

4.1.5 INDEPENDENCE AMONG REQUIREMENTS:

This guideline implies that all requirements must be

semantically independent; namely, that redundant require-

ments must be eliminated.

For example: the two requirements "Basic system

primitives and certain routines are restricted from the

- 56 -

user, the use of which will generate an error" and

"The operating system shall protect itself from the use

of supervisor routines by the user" are redundant; the

former being implied by the latter. The former

requirement was, therefore, eliminated.

4.1.6 SIMPLICITY:

Each requirement should address one well-defined

capability that the final design is to demonstrate. The

purpose of the decomposition methodology is to assess inter-

dependencies among individual requirements, and to group

similar requirements together. Therefore, grouping require-

ments by definition masks the decomposition.

Many requirements were originally defined with multiple

capabilities. It was necessary, therefore, to separate each

capability with a separate requirement.

For example: the following requirement, originally

written as a single requirement, was separated into

four distinct requirements: "A process synchronization

mechanism must be provided:

1) to serve as a lock on a database.

2) for timing of synchronous processes.

3) for synchronization of the message facility.

4) to lock a device.

4.1.7 NO STAND-ALONE REQUIREMENTS:

Requirements which are only remotely concerned with the

final design should be avoided; for example, features which

- 57 -

may be added to an operational system at a later time

illustrate this point.

For example: The requirement, "The supervisor process

must be modularized so that improvements to the system

can be easily accomplished", satisfies this guideline.

The requirement indicates that improvements to the

system are anticipated, yet it does not limit the

requirement by specifying what improvements will be

made later.

4.1.8 PLAUSABILITY:

Naturally, a requirement should avoid the impossible;

therefore, statements shall be eliminated which imply

requirements which are:

. not available with current technology;

. in violation of fundamental physical requirements;

. clearly violating other requirements.

For example: The requirement, "The input/output

devices are limited to card readers for input job

streams and line printers for output", implies that no

spooling system is available. This in turn dictates

that job scheduling be accomplished on a first-come,

first-served basis.

Initially, it was felt that such non-capabilities

(i.e., lack of spooling capability and lack of file

system) should be explicitly stated as a requirement

rather than inferred. However, the assessment of

- 58 -

requirements for facilities which do not exist would

have been difficult to accomplish. Therefore, the lack

of a certain capability was not addressed in require-

ments definition.

In addition to the previous guidelines established by

Andreu, the following additional guidelines were developed.

4.1.9 SEMANTIC INTERPRETATION:

The requirements should be defined in a manner that

limits semantic interpretation. This guideline resulted

from an examination of the various "problem statement

languages" which are currently being investigated. Stating

requirements formally, in a problem language statement,

could not only reduce the ambiguity of the requiremeht, but

aid in the interdependency assessment phase. Although no

specific language was employed for requirement definition,

the basic structure and intent of a rigorous definition

language was used to define the requirements; specifically,

the requirements were defined as follows:

1. Utilize generally understood terminology; for

example, "reclaim memory resources" versus

"garbage collection". Reference to functions was

by formal terminology job scheduler.

2. Avoid terms which are not commital; for example,

"operating system must supply ... " instead of,

"operating system may or should be capable of..."

3. Recognize the distinction between existence

- 59 -

statements and performance statements. For example,

the requirement, "The process scheduler must time-

slice CPU usage among ready processes to achieve

multi-programming", implies the existence of some

time quantum.

The actual performance requirement is stated

separately as "A process must be blocked, and con-

trol released to the process scheduler when a time

quantum of 50 ms is exceeded".

Limitations implied by existence statements must be made

explicit in a performance statement.

4.1.10 SCOPE OF REQUIREMENT DEFINITION:

The requirements must be defined at the same level of

scope. The customer, in this case being the person for whom

a system is designed, must have a macro-level objective

which the system must be designed to satisfy. P. Mandel and

C. Chryssostomidis state:

"The objective of most problems that man is capable of

conceiving or is interested in solving is that of

choosing the course of action which subject to pre-

vailing constraints, optimizes the 'well being' of all

concerned. ,26

The following concepts have been identified at the outset of

the design process.

An objective function to be optimized for the design

process.

26MandeZ and Chryssostomidis, p.85.

- 60 -

. Prevailing constraints, which impose limitations upon

the designer.

. Requirements flow directly from the customer in

response to the overall objective of the system design.

The objective function usually takes the form of a multi-

matrical expression to be optimized and for most large-scale

computer systems, consists of the maximization of throughput

or minimization of response time.

The objective function of the Sample Operating System

is pedagogical clarity and, therefore, it is very difficult

to state that the objective function has not been fulfilled.

For the purposes of the design of the Sample Operating

System, a design philosophy has been identified which

defines the design criteria for the system on a macro-level.

The requirements that comprise the design philosophy

influence each of the remaining requirements and, therefore,

were not incorporated into the assessment process.

The design constraints usually serve to limit the

permissable range of solutions of the problem. The

constraints, then, impose limitations on the designer which

affect the global design problem. In the Sample Operating

System, certain hardware constraints were imposed "a priori"

upon the design problem. Specifically, the operating

system must be designed to run on IBM/360 hardware. The

implications of this constraint affect certain basic

functions of the operating system. Since the design con-

straints have been specified "a priori", such constraints

- 61 -

have been separated from the remaining system requirements

and were not incorporated into the assessment process since

the constraints represent limitations on system design.

Finally, the system requirements are defined in direct

response to the customer's objectives. The system level

requirements must be defined at a level below the most

general of system level statements, yet remain above the

level which begins to limit the options of the designer.

4.2 Summary

The requirements for the Sample Operating System were

defined in two iterations. The preliminary set of require-

ments was defined initially and are presented in Appendix C.

The second or final requirements set was defined after the

initial application of the decomposition methodology and

are presented as Appendix G.

- 62 -

CHAPTER V

INTERDEPENDENCY ASSESSMENT METHODOLOGY

The purpose of this chapter is to establish the guide-

lines that were used for the assessment of interdependencies

between pairs of requirements. The assessment was conducted

on a pair-wise basis according to the following definition

of interdependence.

Two requirements are termed interdependent of the

design decisions made with respect to one requirement con-

straint, or influence the definition of the second require-

ment. Thus, the interdependent relationship between two

requirements can be viewed in two ways:

Supportive: in the sense that the two requirements

are compatible; meeting one requirement will help

to satisfy the other as well.

Conflicting: the interdependency is such that some

trade-offs must be established between the two

requirements in the later stages of the design

process.

The result of the assessment process is the decomposition

of the global system requirements into a number of sub-

problems, which ideally will be a collection of highly

dependent requirements.

5.1 Interdependency Assessment Methodology

The methodology for interdependency assessment proposed

- 63 -

by Andreu consists of a pair-wise assessment of the inter-

dependencies between requirements by the generation of

"conceptual models" within whose context the assessment can

be made. The purpose of generating a conceptual model for

the assessment process is to have a specific mental frame-

work so that the process is consistent and conceptually

rigorous. The following guidelines have been proposed by

Andreu, for the generation of conceptual models:

. Scan the requirements in order to develop loose

conceptual models of the system.

. Supportive requirements can be identified by

visualizing a conceptual model in which a possible

implementation would allow for common processing in

the final system in order to meet the two require-

ments involved.

. Supportive requirements can be identified in cases

where two distinct requirements call for similar

functions to be performed in different circumstances

in the final design.

. Conflicting requirements can be identified by:

searching for deadlocks

identifying when a given requirement imposes

limitations or constraints in other requirements.

identifying the need for "symmetric" processing;

that is, additional processing to meet a given

requirement is necessary.

- 64 -

The procedure of assessing all the interdependencies

for a large system can become burdensom. Therefore,

Andreu, has proposed a set of procedural guidelines, based

on his experiences, which were helpful in avoiding some of

the pitfalls of this time consuming process.

. Establish an order for the assessment to be made.

. Write down conceptual models as they occur.

. Avoid going backwards to renew an assessment made

previously. Finish the assessment process and then

return.

If the assessment of similar requirements becomes

confusing change to a different set.

If no conceptual models are apparent skip the

assessment until one is available.

If one feels uncertain or lacks confidence in the

assessment process; stop, and come back to it later.

A second assessment pass is useful, since it enables

one to employ new conceptual models and to review the

assessments which have been previously established.

In addition to the guidelines established by Andreu the

following additional guidelines were identified.

In the case where the assessor's experience is lacking,

the results of the assessment process should be reviewed by

another interested third party in order to:

. verify the conceptual model.

. verify the nature of the interdependency.

. verify the resulting adjacency matrix.

- 65 -

In order to define a more rigorous conceptual model

for the assessment process, the following assessment

template was imposed upon each assessment:

1. Does the first requirement conflict with the

implementation of second requirement, causing

deadlocks, symmetric processing, or imposing

limitations? For example, the first requirement,

"System resources must be allocated to a job prior

to being allocated a processor". The user

resources (i.e., processor) are allocated at the

user level, and the system resources are allocated

at job level, which requires symmetric processing.

2. Does the first requirement support the implementa-

tion of the second requirement by-common processing:

or do they call for similar functions to be per-

formed in different circumstances? For example,

the first requirement, "System resources must be

allocated to a job prior to the job being made

eligible to run" is supported by "the supervisor

process must schedule jobs and prepare the jobs for

execution". In this case, the supervisor process

controls the allocation of resources for each job,

preparing them for execution.

5.2 Summary

A pair-wise interdependency assessment was conducted

- 66 -

according to the guidelines previously established for each

requirement defined. Since an interdependency is symmetric,

in the sense that an interdependency between requirement #8

and #30 implies an interdependency between #30 and #8.

Therefore, each requirement was assessed with the require-

ments that followed it. At the time of assessment, an indi-

cation was made whether the interdependency was supportive or

conflicting, and a brief statement of the rationale for the

interdependency was made.

As was the case for requirements definition, the

interdependency assessment process took place in two

iterations. The preliminary interdependency assessment is

presented in Appendix D, and the final interdependency

assessment is presented in Appendix H.

- 67 -

CHAPTER VI

FIRST ITERATION OF THE DESIGN PROBLEM

The interdependencies assessed between pairs of require-

ments were formed into an adjacency matrix and input into

the software analysis package developed by Andreu. This

chapter will present an analysis and discussion of the

resulting problem structure. The analysis and discussion

will consist of the following sections:

. An analysis of the resulting problem structure for

the first iteration.

. Discussion of the main subproblems.

. Discussion of the subproblems generated by a second

decomposition.

. Relationships among the main subproblems.

. Motivation for a second iteration.

6.1 Analysis of Problem Structures

A total of sixty-five requirements were input with the

software analysis package for decomposition. Appendix E

presents a copy of the output of the analysis and will be

frequently referred to during the analysis. The analysis

provided as follows:

First, the data, in the form of links (interdependen-

cies) between nodes (requirements) was verified by checking

that all assessed interdependencies were, in fact, present.

This was accomplished using the "NOLK" command.

- 68 -

Second, all isolated nodes: those nodes with no

interconnecting links were identified. As a procedural

convenience, the initial graph was input with several extra

nodes. It is possible to delete nodes during the analysis,

but no new nodes may be added. Therefore, in order to

enter new nodes, one must redefine the entire graph. To

avoid this time-consuming process, extra nodes were padded

into the graph, and the graph saved with the padded nodes.

A working copy of the graph was generated by identifying and

deleting isolated nodes and then saving the temporary

working copy.

6.1.1 MAIN SUBPROBLEMS:

The adjacency matrix was decomposed utilizing the

steps outlined in section 2.3 and the results including a

heirarchical tree are presented in Appendix E. The design

requirements decomposed into six clusters or main sub-

problems (abbreviated at MS), of twenty to four members each.

The decomposition was generated using the so-called

heirarchical clustering method -3, the following evaluation

parameters resulted:

Strength: 1.9864

Coupling: .8674

Measure: 1.1119

Strength was defined as a normalized evaluation of

subset internal coherence; that is, how tightly coupled the

nodes in a given subgraph are. Coupling is defined as an

- 69 -

evaluation of the extent to which two subgraphs are inter-

dependent. Measure equals strength minus coupling. The

evaluation parameters obtained are important in a relative

sense, since there is no absolute value of any parameter

which indicates a good decomposition. A comparison of

strength and coupling was made to make some statements of the

decomposition. A coupling/strength ratio = .43 was deter-

mined indicating that the coupling between subgraphs was

nearly half the measure of internal coherence. This

indicates that the subgraphs are internally coherent (high

strength value) and still have a reasonable degree of

coupling. Whereas a small coupling value would indicate that

the subgraphs were relatively decoupled.

In order to further investigate the coupling evaluation

Andreu 27 suggests a second decomposition in which each main

subproblem is treated as an entire graph and decomposed into

subproblems. Since the coupling parameter increases as

subproblems are defined, and strength remains constant, the

decomposition of the main subproblems into subproblems

decreases the overall partition measure. If the coupling

parameter between main subproblems is low originally, the

main subproblems are fairly disjoint and a second decompo-

sition should be investigated. In the ideal case, a main

subproblem may exhibit such internal coherence (high

strength) that it does not decompose into subproblems. This

27
Andreu, "A systematic Aporoach to the Design and Struc-

turing of Complex Software Systems", p.277.

- 70 -

became the motivation for a second decomposition; that is,

a main subproblem was considered well-defined if no decom-

position resulted. Therefore, a second decompk4ition of

each main subproblem was performed; the results are presented

in Appendix E.

6.2.2 SECOND DECOMPOSITION STEP:

Each main subproblem resulting from the original decom-

position was individually decomposed as follows:

1. A separate graph was defined for each main sub-

problem by eliminating all nodes external to the MS

under analysis. This was accomplished using the

"DEMO" command. The nodes of the current are re-

numbered at this point, which required rather

awkward collating schemes to keep the original set

of requirements synchronized with each new sub-

graph.

2. Each MS was decomposed according to the methodology

of section 2.3.

Of the six MS originally defined only two,

MS 2 and MS 3 further decomposed.

6.1.3 ANALYSIS METHODOLOGY.

In order to analyze the structure of the design problem

implied by the decomposition technique, it is useful to

investigate the following entities:

. Elements: requirements contained within a given

subset.

- 71 -

. External Interdependencies: links that exist among

the elements of different subsets. The command

"PRLK" was useful in identifying the external links.

Recalling the core set identification process, certain nodes

were identified as seed nodes, about which other nodes were

clustered. In order to identify the main focus of each

cluster, one examines the requirements involved in the

largest number of interdependencies; i.e., the node in an MS

with the largest number of links. It is assumed that this

is the seed node for the MS and is, therefore, related to

the main focus of that MS. It is also noted that a given

main subproblem may have several nodes with nearly the same

number of links which could be called equivalent seed nodes.

A closer examination of these nodes must be undertaken to

determine the nature of such a main subproblem.

6.2 Main Subproblems

The problem structure resulting from the application of

the decomposition methodology is presented in Figure 6.1.

The problem structure was interpreted as composed of the

main subproblems, depicted as blocks in Figure 6.1 and the

subproblems, generated by a second decomposition, depicted

as circles within the parent MS. The interdependencies

among the elements of different subproblems were generalized

into interfaces which are required in design between sub-

problems.

Multi-programmingSupport Functions Supervisor Process

Device Message
Management Facility
Functions

FIGURE 6.1 Problem Structure Implied by the First
Iteration of the Decomposition Methodology

Process Management Functions Resource and Memory Management

Resource Poeto

Allocation Poeto

- 73 -

The interpretation of main subproblems should be

intuitive if the MS are well-defined. Since each MS was

built around a certain seed node, interpretation became a

problem of identifying the node and understanding how the

other member nodes were built around it.

The more interesting part of the interpretation was to

identify the counter-intuitive or non-obvious results.

These results suggested a structure of the design that was

not apparent at the outset or perhaps errors in the analysis.

In either case, it was the identification of non-intuitive

results that represent the value of the process.

The following discussion will highlight the general

and specific characteristics of the design structure

indicated by the decomposition methodology.

The decomposition methodology generated six main sub-

problems at the end of the first decomposition. The six

main subproblems have been generalized into the following

groups:

1) Multi-programming support functions

2) Process management functions

3) Resource and memory management functions

4) Supervisor process functions

5) Device management functions

6) Message facility

The requirements statement are decomposed into these six

main subproblems and are presented in Appendix F.

- 74 -

The following discussion will highlight the character-

istics and discrepancies discovered in each main subproblem.

6.2.1 MULTI-PROGRAMMING SUPPORT FUNCTIONS:

The requirements which decomposed into the multi-

programming support main subproblems were all concerned with

the features and facilities that must be provided by the

operating system in a multi-programming environment. These

features include:

. a multi-programming environment must exist

. job scheduling

. re-entrant and pure code

. supervisor process support

. synchronization techniques

. protection among jobs

The seed node was requirement 5, "The operating system must

provide for a multi-programming environment".

However, it must be noted that requirement 43, "P-V

mechanisms must be provided", had a larger number of links

than requirement 5. The P-V mechanism provides the basic

multi-programming support by synchronizing operating system

functions, but it represents a specific tool rather than a

focus for the main subproblems. In addition, the P-V

mechanism is used for four distinct functions. Therefore,

it was decided to further investigate this requirement and

attempt to redefine it.

Some of the requirements have a dual function, and,

- 75 -

therefore, decomposed into this MS, which at first appeared

counter-intuitive; for instance, the requirement, "Device

handler routines must support multiple job streams from

card readers". Intuitively, one would have expected this

requirement to fall squarely in the device management MS.

However, the issue is the requirement to support multi-

programming by providing input from multiple job streams.

It is expected that such dual requirements will also have

interfaces linkages between the two MS in which they seem

to belong. This will be investigated later.

This MS did not decompose upon the second decomposition.

6.2.2 PROCESS MANAGEMENT:

The smallest computation entity defined by the operating

system is the process; therefore, the operating system must

recognize this feature and provide the necessary functions

for support of the process. The requirements which decom-

posed into this MS constitute the largest set of requirements

in a given MS and deal with those basic functions required

for process support. These features include:

. Process creation/destruction

. Allocation/De-allocation of a processor to a

process

. Time-slicing

. Extended machine instruction environment

. Process Scheduling

The seed node for the MS was requirement 6, "The operating

- 76 -

system must be process oriented", which is indeed the focus

of the MS.

Requirement 44, "An interrupt handler must be provided"

had nearly the same number of linkages as requirement 6.

Time slicing CPU usage requires an interrupt handler;

however, this is not the only function of the interrupt

handler. This requirement presented problems later in the

interface analysis. Therefore, it was decided to redefine

the requirement by separating it into a number of distinct

interrupt handlers.

The decomposition included one counter-intuitive

requirement.

"Message facility must be accessible to all processes."

It was expected that this requirement would decompose in the

message facility MS. Upon examination of the interdepen-

dency assessment and the conceptual models used for this

requirement, it was noted that the requirement is defined as

being interrelated with three requirements in the MS and

only one in the message facility MS. The issue there is one

of process accessibility to the message facility, which is

the primary means for interprocess communication. Therefore,

this requirement related more closely to process support

than to the message facility.

This main subproblem decomposed into three subproblems

in the second decomposition.

- 77 -

6.2.3 RESOURCE AND MEMORY MANAGEMENT FUNCTIONS:

This main subproblem is composed of requirements which

deal with resource allocation in general, and memory

management in particular. The functions concerning resource

allocated include:

. Resources are requested through the supervisor.

. Information tables are utilized to monitor resource

allocation.

. Operating system can dynamically allocate memory for

its own use.

The requirements dealing with memory management functions

include:

. Operating system must allocate memory.

. The mechanisms by which memory is allocated,

protected, and reclaimed.

This main subproblem essentially has three nodes of similar

linkage value. The three requirements all deal in general

terms with resource and memory allocation, but no clear

definition is apparent. It can be argued that memory

management is a subset of the general resource management

function of the operating system. It is noted that this MS

has the largest number of interfacing linkages with other

main subproblems. This was expected since the members of

the MS seem to cover such a broad area of responsibility.

This requirement decomposed into two subproblems in the

second decomposition.

- 78 -

6.2.4 SUPERVISOR PROCESS:

The requirements which decomposed into this main sub-

problem all deal with the functions of the supervisor

process. The supervisor process is that process which

schedules jobs and prepares them for execution. Many of the

functions normally performed by the supervisor were

decomposed into the multi-programming support main sub-

problems, particularly the job scheduling function. The

supervisor process is a subset of the functions required for

multi-programming support and, therefore, this result seems

to make sense. It is also noted that there are a large

number of linkages between the supervisor process main

subproblem and the multi-programming support module.

The existence of a supervisor process module distinct

from the multi-programming support module is considered a

significant insight into the problem structure. The design

problem structure dictates that both the supervisor process

and multi-programming support main subproblems are dis-

tinctly separate at the same level of comparison and

deserve equal design concern.

This module did not decompose on the second decompo-

sition.

6.2.5 DEVICE MANAGEMENT FUNCTIONS:

The members of this module clearly are concerned with

the functions required for device management. These

functions include:

- 79 -

. A device management routine.

. Devices and protocols required to support multi-

programming.

The seed node for this main subproblem was requirement 36.

"The operating system must supply a device management

routine." This main subproblem decomposed very clearly;

that is, it had the highest strength value for all the main

subproblems which did not decompose on the second

decomposition.

6.2.6 MESSAGE FACILITY:

. All of the requirements in the module directly address

the needs for iessage facility, which is an interprocess

communication technique in the Sample Operating System

which enables user processes to communicate and synchronize

execution.

The seed node for this main subproblem was requirement

46. "A message facility has many requirements since there

are many features defined for use of the facility."

Although the message facility may seem to be a relatively

less important function of the operating system, the decom-

position methodology implies that it constitutes a complete

main subproblem. It may be that one may generate an entire

main subproblem just by defining a large number of require-

ments for a relatively insignificant feature; or conversely,

this facility may be of greater significance to the operating

system than previously anticipated.

- 80 -

This module did not decompose in the second decompo-

sition.

6.3 Subproblems Generated in a Second Decomposition

A second decomposition was conducted as described in

section 6.1 and resulted in the decomposition of MS 2 and

MS 3 into three and two subproblems respectively. The

term subproblem will be used to describe the clusters which

resulted from a second decomposition of the main subproblem.

6.3.1 MS 2 - PROCESS MANAGEMENT FUNCTIONS:

MS 2 decomposed into three subproblems as follows:

1) MS 2A - Subproblem A: Process Creation and

Scheduling

This subproblem is designated MS 2A. All of.

the requirements in the subproblem were concerned

with process creation and scheduling. These

functions included such features as initial process

creation, process identification, process blockage,

scheduling, and message facility accessibility.

2) MS 2B - Subproblem B: Process/Operating System

Interface

This subproblem is designated as MS 2B. All

of the requirements in this subproblem were concerned

with the extended machine instructions which are the

means by which processes communicate with the

operating system.

- 81 -

3) MS 2C - Subproblem C: Process Time-Slicing

This subproblem is designated MS 2C. All of

the requirements in this subproblem are concerned

with process time-slicing, the process scheduler's

role and the interrupt mechanism required to handle

timer interrupts. As pointed out previously, the

interrupt handler includes many more functions than

time interrupts. This caused some problems in

interfaces descovered in the later stages; there-

fore, it was decided to redefine this requirement

to explicitly define all of its functions.

6.3.2 MS 3 RESOURCE AND MEMORY MANAGEMENT FUNCTIONS:

MS 3 decomposed into two subproblems as follows:

1) MS 3A - Subproblem A: Resource Allocation

This subproblem is designated as MS 3A. This

subproblem was concerned with the allocation of

resources in general, and the mechanism for memory

allocation in particular. As before, this sub-

problem is not clearly defined since it concerns

both issues. First, the subproblem deals with some

broad issues of how resources are allocated, to

whom and when are they allocated. Second, the

subproblem deals with the protocols for memory

allocation and de-allocation; specifically, only

the operating system may dynamically allocate

memory. It was decided to further investigage the

- 82 -

issues of resource allocation and memory allocation

in the next iteration to determine if the require-

ments or the conceptual models were ill-defined or

improperly assessed.

2) MS 3B - Subproblem B: Protection

This subproblem was designated MS 3B. This

subproblem is concerned with the protection mech-

anisms for both memory and user processes.

6.4 Relationships Among the Main Subproblems

The relationships among the main subproblems are best

explained by examining the focus of each main subproblem

and the conceptual models used in the interdependency

assessment phase which motivated the linkages. The software

package makes the linkages explicit through the "PRLK"

command the results are presented in Appendix E.

The linkage between main subproblems were generalized

into interfaces between the main subproblems. The

following discussion will note the general characteristics

of these relationships.

6.4.1 LINKAGES BETWEEN MS 1 MULTI-PROGRAMMING AND MS 2

PROCESS MANAGEMENT FUNCTIONS:

1) MS 1 Multi-programming Support;

MS 2A Process Creation/Scheduling:

This interface between these two subproblems

consisted of the mechanisms for providing multi-

- 83 -

programming by process creation, blockage, and

synchronization. Processes are created by the

system and scheduled in a round-robin fashion to

achieve multi-programming of user's jobs.

2) MS 1 Multi-programming Support;

MS 2B Process/Operating System Interface:

This interface between these two subproblems

was concerned with signaling processing completion

to the operating system, so that the next process

could begin.

3) MS 1 Multi-programming Support;

MS 2C Process Time-Slicing:

The interface between these two subproblems

was concerned with the mechanism of time-slicing

CPU usage to achieve multi-programming. The

interrupt handler requirement was included in this

interface; when it seemed to belong more properly

in the MS 2B subproblem. This problem supported

the need to re-examine the interrupt handler

requirement.

6.4.2 MS 1 MULTI-PROGRAMMING - MS 3 MEMORY MANAGEMENT

FUNCTIONS:

1) MS 1 Multi-programming - MS 3A Resource and

Memory Allocation

The interface between these two subproblems

was concerned with the mechanisms for user and

- 84-

system allocation of memory. Dynamic allocation of

memory is restricted to the system processes.

2) MS 1 Multi-programming - MS 3B Protection

The interface between these two subproblems

was concerned with protection of user jobs and

memory. The interface did not deal with the

mechanisms of protection, but the fact that pro-

tection mechanisms must exist to support multi-

programming.

6.4.3 MS 1 MULTI-PROGRAMMING - MS 4 SUPERVISOR PROCESS:

The interface between these two subproblems was

concerned with the mechanisms for the protection of user

jobs and system processes. Protection here is defined at

the job level controlled by the supervisor.

6.4.4 MS 1 MULTI-PROGRAMMING SUPPORT - MS 6 DEVICE

MANAGEMENT:

The interface between these two subproblems is con-

cerned with the procedural mechanisms by which devices

support multi-programming; especially the existence of a

device handler routine and the dedication of devices to user

jobs.

6.4.5 MS 2 PROCESS MANAGEMENT - MS 3 MEMORY MANAGEMENT

FUNCTIONS:

1) MS 2A Process Creation and Scheduling;

MS 3A Resource Allocation:

The interface between these two subproblems

- 85 -

was concerned with the use of information tables

to enable the operating system to monitor processes

and resources. This interface explicitly points

out that since processes and resources must be

monitored, the operating system should attempt to

use the same mechanism to accomplish this task.

2) MS 2A Process Creation and Scheduling;

MS 3B Protection:

The interface between the subproblems is

concerned with identification of processes by

symbolic name for protection purposes.

3) MS 2B Process/Operating System Interface;

MS 3A Resource Allocation:

The interface between these two subproblems

was concerned with freeing memory upon completion

of a job.

4) MS 2B Process/Operating System Interface;

MS 3B Protection:

The interface between these two subproblems

was concerned with the two state machine concept.

A process is required to run in the problem state,

all resource requests must pass through a super-

visor. Therefore, protection is afforded by

limiting the scope of system functions available

to the user.

- 86 -

5) MS 2C Process Time-Slicing; MS 3B Protection:

The interface between these two subproblems is

concerned with an interrupt handler to deal with

unauthorized memory access requests. This inter-

face seemes distinctly out of place, until one

recalls that the requirement for all interrupt

handlers regardless of purpose, is located in MS 2C.

The lack of definition of the interrupt handler

has been a persistent problem; therefore, it was

redefined.

6.4.6 MS 2 PROCESS MANAGEMENT - MS 4 SUPERVISOR PROCESS:

1) MS 2A Process Creation/Scheduling;

MS 4 Supervisor Process:

The interface between these two subproblems

was concerned with the protocols for user process

creation. The supervisor process creates one

process per user, initially; all others are

dynamically created by the user.

2) MS 2B Process/Operating System Interface;

MS 4 Supervisor Process:

The interface between these two subproblems

is concerned with the generation of an end-of-job

signal from the final user process to the super-

visor.

3) MS 2C Process Tim-Slicing; MS 4 Supervisor Process:

The interface between these two subproblems

- 87 -

is concerned with the interrupt handler which

terminates user processing. Again, this is the

same persistent problem of a poor interrupt handler

requirement, since time-runout is just one of the

interrupts for which a handler is required.

6.4.7 MS 2 PROCESS MANAGEMENT - MS 5 MESSAGE FACILITY:

1) MS 2A Process Creation and Scheduling;

MS 5 Message Facility:

The interface between these two subproblems is

concerned with the usage of a message facility by

user processes as a synchronization technique.

This enables user processes to synchronize

processing by starting and blocking each other

using messages.

2) MS 2B Process/Operating System Interface;

MS 5 Message Facility:

The interface between these two subproblems

was concerned with the mechanisms for message

generation by the user processes.

6.4.8 MS 2 PROCESS MANAGEMENT - MS 6 DEVICE MANAGEMENT:

MS 2C Process Time-Slicing; MS 6 Device Management

The interface between these two subproblems

was concerned with the generation of an I/O inter-

rupt. Once again, this seems to be misplaced

since the process time-slicing function is in no

way concerned with I/O interrupt handling.

- 88 -

6.4.9 MS 3 MEMORY MANAGEMENT FUNCTIONS - MS 4 SUPERVISOR

PROCESS:

1) MS 3A Resource Allocation; MS 4 Supervisor Process:

The interface between these two requirements

deals with the issue of the timing of resource

allocation and de-allocation. The supervisor

process coordinates all resource allocation and

de-allocation for the operating system.

2) MS 3B Protection; MS 4 Supervisor:

This interface is concerned with establishing

protocols for the user destruction of user

processes only. The supervisor sets up a memory

partition and user processes are restricted to

that memory area; therefore, they may create and

destroy processes only within that memory area.

6.4.10 MS 3 MEMORY MANAGEMENT - MS 5 MESSAGE FACILITY:

MS 3A Resource Allocation; MS 5 Message Facility:

The interface between these two processes is

concerned with the queuing requirements for the

message facility. In order for the message

facility to enqueue itself, it must be able to

dynamically allocate a buffer area.

6.4.11 MS 3 MEMORY ALLOCATION - MS 6 DEVICE MANAGEMENT:

MS 3A Resource Allocation; MS 6 Device Management:

The interface between these two subproblems

is concerned with the use of job control language

- 89 -

statements and information tables to specify and

monitor resource allocations.

6.4.12 MS 4 SUPERVISOR PROCESS - MS 6 DEVICE MANAGEMENT:

The interface between these two subproblems is

concerned with the reclamation of device resources upon

completion of a job. It is interesting to note that alloca-

tion is not an issue, because that is controlled in MS 3

Resource and Memory Allocation.

6.5 Summary

The analysis of interfaces between subproblems is a

verification procedure which supports the initial main sub-

problem analysis. Given two subproblems, the nature of the

interface could be intuitively derived based on one's

knowledge of the way in which various functions of the oper-

ating system are supposed to interface. An examination of

the links, which the decomposition methodology has implied,

verifies the expected result. In cases where the expected

result was not verified, or if counter-intuitive interfaces

were implied, one could go back to the main subproblem and

find misplaced or ill-defined requirements. The second

iteration of the decomposition methodology focused on a re-

definition of problem requirements and a re-assessment of

interdependencies for the entire requirements set.

- 90 -

CHAPTER VII

SECOND ITERATION OF THE DESIGN PROBLEM

The entire process of requirements definition and inter-

dependency assessment is very much a learning process. As

one continues to iterate upon the process, the requirements

become more well-defined, and the assessment of interdepen-

dencies more consistent through the application of better

conceptual models. The second iteration is a cumulation of

a series of smaller iterations and reflects a flattening of

the learning curve.

The analysis of the first iteration of the design

problem highlighted a number of discrepencies in the

resulting decomposition. The requirements which were

identified as being problematic were re-examined from the

perspective of their role in the Sample Operating System.

Where warranted, these requirements were re-defined. At

this point, the entire requirements set was reviewed by two

graduate students familiar with operating systems in

general; namely, Sid Huff and Chat-Yu Lam. Based on their

analysis and recommendations, certain requirements were

re-defined or re-written. The entire requirements set, in

its final form as contained in Appendix G, was subjected to

the interdependency assessment process. This chapter will

point out the changes made to the requirements set, and

present an analysis and discussion of the resulting problem

structure. The chapter is organized as follows:

- 91 -

. Requirements re-definition.

. An analysis of the resulting problem structure for

the second iteration.

. Discussion of the main subproblems.

. Discussion of the subproblems generated by a second

decomposition.

. Relationships among the main subproblems.

. Comparison of the first and second interations.

7.1 Requirements Definition

The following changes were made to the preliminary set

of requirements, Appendix C, based on the results of analysis

of the first iteration and examination by an interested third

party.

7.1.1 PRELIMINARY REQUIREMENT 6:

"The operating system must be process oriented." This

requirement was considered to violate the guideline that all

requirements be defined at the same level of scope. This

requirement defines in very general terms that there are

certain basic functions that the operating system must

provide at a process level. The implications of this

requirement have been made explicit in other requirements

which are defined at a level more consistent with the remain-

ing requirements set. Therefore, the requirement was changed

to a design philosophy and appears as requirement 3 in the

final requirements set.

- 92 -

7.1.2 FINAL REQUIREMENT 6:

"Input/output devices are limited to card readers for

input job streams and line printers for output." I/O

devices were limited by the designers of the Sample Operating

System to card readers and printers. This was not made

explicit in the preliminary requirements set and, therefore,

is included in the final requirements set as a design

constraint.

7.1.3 PRELIMINARY REQUIREMENT 11:

"User communication with the operating system is via

SVC instruction." This requirement was considered to violate

the implementation independence guideline for requirement

definition. The specification of "SVC instruction" con-

strains the viewpoint of the designer unnecessarily.

Therefore, the requirement was re-written and appears as

requirement 12 in the final set: "User communication with

the operating system is via special call".

7.1.4 PRELIMINARY REQUIREMENT 13:

"The supervisor process must create and delete the

environment in which a job runs." This requirement was

awkward and unclear. Therefore, it was re-written as

requirement 19 in the final set: "The supervisor process

must schedule jobs and prepare the job for execution".

7.1.5 PRELIMINARY REQUIREMENT 24:

"A process shall be blocked, and control released to

the traffic controller, when a timer runout trap is detected."

- 93 -

This requirement states that there is a time limit

established for processes; yet, it does not explicitly state

the time limit. Therefore, the requirement was re-written

making the time limit explicit, and is presented as

requirement 25 of the final set: "A process must be blocked

and control released to the process scheduler when a time

quantum of 50 ms is exceeded".

7.1.6 PRELIMINARY REQUIREMENT 23:

"The supervisor process must reclaim all system

resources when an error condition abnormally terminates a

job." This requirement was unclear, since a user process is

created for each job. Also the user may create additional

processes, any one of which may create an error which

terminates an entire job. Therefore, the requirement was

re-defined and is presented as requirement 29 in the final

set: "The supervisor process must reclaim all system

resources when an error condition is raised by a process".

7.1.7 PRELIMINARY REQUIREMENT 41:

"Input/output devices operate via multiplexor channel."

This requirement violates the implementation independence

guideline for requirement definition, and is in fact

redundant in the case where devices are dedicated. The

requirement was, therefore, eliminated.

7.1.8 PRELIMINARY REQUIREMENT 43:

"The name of the sending process must be prefixed to a

message." This requirement violated the implementation

independence guideline for requirement definition, since the

- 94 -

real issue is the fact that the receiving process must be

able to determine which process sent the message. Therefore,

the requirement was re-written and is presented as require-

ment 53 in the final set: "The process receiving a message

must be able to determine the originator of the message".

7.1.9 PRELIMINARY REQUIREMENT 43:

"A process synchronization mechanism must be provided."

This requirement was the source of a number of inconsisten-

cies in the first iteration of the design problem. Upon

closer examination, it was determined that the process

synchronization mechanism has a number of specific uses.

The requirement was re-defined to clarify the use of the

process synchronization mechanism and hopefully, reduce the

inconsistencies in the design problem. The requirement was

re-defined as follows:

Final Requirement 43

"A process synchronization mechanism must be provided

to serve as a lock on a database."

Final Requirement 44

"A process synchronization mechanism must be provided

for the timing of synchronization processes."

Final Requirement 45

"A process synchronization mechanism must be provided

for synchronization between the send and receiver in

message processing."

- 95 -

Final Requirement 46

"A process synchronization mechanism must be provided

to lock a device."

7.1.10 PRELIMINARY REQUIREMENT 44:

"An interrupt mechanism must be provided." This

requirement was identified as being poorly defined and

leading to inconsistencies in the first iteration of the

design problem. An interrupt handler is provided by the

operating system for a number of specific interrupt

mechanisms. Therefore, this requirement was re-defined to

explicitly define each of the interrupt handlers as follows:

Final Requirement 47

"An interrupt handler routine must be provided for I/O

interrupts."

Final Requirement 48

"An interrupt handler routine must be provided for

program interrupts."

Final Requirement 49

"An interrupt handler must be provided for supervisor

call interrupts."

Final Requirement 50

"An interrupt handler must be provided to handle

external interrupts."

7.1.11

The following requirements were found to be missing

from the original requirements set and, therefore, added:

- 96 -

Final Requirement 71

"The I/O interrupt handler routine must provide for

a synchronous scheduling of a process requiring fast

processing."

Final Requirement 72

"The operating system must include a task which loads

the O/S into the computer and defines the processing

environment."

These changes were incorporated into the final requirements

set, and the interdependencies between requirements were

assessed. The next section presents an analysis of the

resulting problem structure after the application of the

decomposition methodology.

7.2 Analysis of the Resulting Problem Structure for the

Second Iteration

A total of seventy-two requirements were input into the

software analysis package for decomposition. Appendix I

contains a copy of the output of the decomposition and will

be referred to during the analysis. As before, the analysis

proceeded in the following manner.

First, the input data was verified.

Second, all isolated nodes were identified. In this

decomposition, requirement 72, "The operating system must

include a non-system resident task which loads the O/S into

the computer and defines the processing environment" was

- 97 -

identified as being isolated. Although certainly a

consideration for design, the initial program load routine

is tailored to the final operating system design. The IPL

routine may call routines provided by the operating system,

but the requirements for IPL are not usually considered in

the design of the operating system. As before, all padded

nodes were deleted at the time.

The adjacency matrix was decomposed according to the

procedure outlined in section 2.3 and the results, including

a heirarchical tree are presented in Appendix I. The design

requirements decomposed into eight clusters or main sub-

problems. The heirarchical clustering method -3 was used to

generate the evaluation parameters. The evaluation para-

meters resulting from the second iteration are presented

with those from the first iteration for comparison:

First Second
Iteration Iteration Change

Strength 1.9864 2.733 27% increase

Coupling .8674 1.32 34% increase

Measure 1.1119 1.411 20% increase

Copng .43 .48 10% increase

Average Main
Subproblem 10.16 8.125 25% decrease
Size

An examination of the evaluation parameters indicates that

all have increased from the first to second iteration, with

the coupling parameter showing the largest increase.

- 98 -

Note also that the strength has increased as well from

the first to the second iteration. An increase in strength,

which is the normalized evaluation of subproblem internal

coherence, indicated that the main subproblems which have

been identified focus closely on the general subject of each

main subproblem.

Thus, an increase in the strength and coupling para-

meters has resulted in an increased measure for the "good-

ness" of the main subproblem decompositions. This measure

is strictly relative from the first iteration to the second

iteration. The real value of the second iteration lies in

the increased understanding of the problem structure which

is generalized by the decomposition methodology.

The remaining sections will analyze and describe the

resulting problem structure. The final section of the

chapter will present a comparison of the similarities and

differences of the design structure implied by the first

and second iterations.

7.3 Main Subproblems

The problem structure resulting from the application of

the decomposition methodology is presented in Figure 7.1.

The problem structure was interpreted as being composed of

the main subproblems depicted as blocks in Figure 7.1, the

subproblems, generated by a second decomposition, depicted

as circles within the parent main subproblem. The inter-

Extended Machine
Instruction Mechanism

Process Creation

Interprocess Communication

C0/S InformationTables MessageDFac ilit y

Memory Allocation Function

Device Management
Functions

Process Synchronization
Functions

FIGURE 7.1 Problem Structure Implied by
the Second Iteration of the
Decomposition Methodology

- 100 -

dependencies among the elements of different subproblems

were generalized into interfaces which are required in the

design process between subproblems.

The eight main subproblems have been generalized into

the following groups:

1) Supervisor Process.

2) Extended Machine Instruction Mechanism.

3) Process Control Functions.

4) Process Creation Functions.

5) Interprocess Communication.

6) Memory Allocation Functions.

7) Device Management Functions.

8) Process Synchronization Function.

The requirement statements have been separated into these

eight main subproblems and are presented in Appendix J.

The following discussion will highlight the general and

specific characteristics of the design structure implied by

the decomposition methodology.

7.3.1 SUPERVISOR PROCESS:

The requirements which decomposed into the supervisor

process main subproblem were all concerned with the genera-

tion of a multi-programming environment through the

supervisor process. The supervisor process is that process

which prepares and schedules the user jobs for execution.

The supervisor process then consists of a number of specific

tasks which must be performed for each job entering the

- 101 -

system. As contained in main subproblem 1, these tasks

include:

. Resource allocation: system resources must be allo-

cated to each job as it enters the system. These

resources consist of memory and devices.

. Job scheduling: the supervisor schedules each job

for execution. This system uses a very simplified

algorithm (first-come, first-served).

. Loading: the supervisor process must load each user

job into a specific memory area.

. Characteristics of the supervisor process: the

supervisor process must be modularized and all system

processes are written in re-entrant and shared code.

This main subproblem had the lowest individual strength

parameter for all the main subproblems, indicating that the

requirements are not exceptionally cohesive; or conversely

that the requirements in the main subproblem cover a wider

scope.

The main subproblem did not decompose on the second

decomposition.

7.3.2 EXTENDED MACHINE INSTRUCTION MECHANISM:

The requirements in this main subproblem are all

concerned with the extended machine instruction mechanism.

The description of the Sample Operating System in section

3.2 included a brief explanation of the purpose of the

extended machine instructions. Basically, the extended

machine instructions were provided to enable the user to

- 102 -

perform certain resource management functions and hardware-

like instructions.

This main subproblem contains the requirements which

deal with the characteristics and protocols for the use of

the extended machine instructions.

This main subproblem did not decompose on the second

decomposition.

7.3.3 MS 3 PROCESS CONTROL FUNCTIONS:

The requirements in the subproblem are all concerned

with the functions necessary to control processes in the

operating system. Once created, a process may be "blocked"

or ready to run. When "ready to run", a process may be

"running" or "waiting". This main subproblem identifies the

states of blocked, running, or waiting. This main sub-

problem also identifies what conditions may change a process

state and how resource allocation is state-dependent.

The redefinition of the interrupt handler requirement

is clearly apparent in this main subproblem. The control of

processes in the operating system is interrupt-driven; that

is, once a process becomes eligible to run, its execution

is dependent upon a number of interrupts which are generated

in response to an asynchronous or an exceptional event in

the program. This main subproblem includes all of the

interrupt handler routines and, therefore, provides for the

control of processes.

The main subproblem contained two requirements which

did not seem to fit into the classification of process

- 103 -

control. They are:

Requirement 23

"Supervisor routine must reclaim all system resources

when a job is completed."

Requirement 29

"Supervisor routine must reclaim all resources when an

error condition is raised."

These requirements seem to belong in the supervisor process

main subproblem. The supervisor process is initially

created, one per input job stream. It performs its func-

tions of resource allocation, scheduling, and loading as a

separate process. After all this has been done, the super-

visor process is no longer needed until the user's job ends.

It stops running and waits for a message, "success" or

"failure", signalling completion to come from the user's

program.

According to this scheme, the supervisor is dependent

upon an interrupt signal generated by the user for successful

completion, or by the system in the way of an error, to

restrict and reclaim all the resources of the current user.

Therefore, the mechanism by which the supervisor process is

signalled to restart is contained in the interrupt handler.

This is a case in which the implementation scheme of the

interrupt handler and supervisor process restart ought to be

considered simultaneously. When viewed from this perspec-

tive, it makes sense that requirements 23 and 29 were

decomposed into main subproblem 3.

- 104 -

This main subproblem decomposed into three subproblems

during the second decomposition.

7.3.4 MS 4 PROCESS CREATION:

The requirements in this main subproblem were all

concerned with the protocols for process creation. Initially

the operating system creates a single process for each user's

job. The user may then create additional processes dynami-

cally during execution. Naturally the system imposes certain

constraints and procedures upon the dynamic creation of

processes. These constraints and procedures are the focus

of this main subproblem and deal with:

. When the user may create additional processes?

. How or by what mechanisms may these processes by

created?

. How are user processes identified?

. What restrictions are imposed upon dynamically

created processes?

It is noted that dynamic creation of user processes is one

of the main functions necessary for multi-programming since

the processes are time-sliced for CPU usage.

This main subproblem did not decompose any further.

7.3.5 MS 5 INTERPROCESS COMMUNICATION:

The requirements in this main subproblem were concerned

with the tables and features provided by the operating

system for interprocess communication. The main mechanism

for interprocess communication has been previously identified

- 105 -

as the message facility. This main subproblem contains all

the requirements for the message facility, as well as the

requirements for system tables required to monitor and

control processing. These two groups of requirements have

been generalized under the heading of interprocess communi-

cation since the operating system communicates internally

with information tables and user processes communicate via

the message facility.

This main subproblem had the highest strength parameter

of all main subproblems, indicating that this main sub-

problem had the greatest internal cohesiveness among require-

ments. This main subproblem decomposed into two well-

defined subproblems in the second decomposition.

7.3.6 MS 6 MEMORY ALLOCATION FUNCTIONS:

The requirements in this main subproblem were all

concerned with the protocols for memory allocation within

the Sample Operating System. This main subproblem

represents a distinct change from the first iteration in

which numerous resource allocation procedures were also

contained in this main subproblem. The second iteration has

resulted in a very well-defined main subproblem; its

strength parameter was the second highest, which did not

decompose upon the second decomposition.

7.3.7 DEVICE MANAGEMENT FUNCTIONS:

The requirements in the main subproblem were all

concerned with the functions required for device management.

- 106 -

This main subproblem was virtually unchanged from the

previous iteration.

The main subproblem contains the requirements which

deal with the following issues:

. The existence and functions of a device management

system.

. Procedures for requesting resources and I/O by the

user.

This main subproblem did not decompose upon the second

decomposition.

7.3.8 PROCESS SYNCHRONIZATION FUNCTIONS:

The requirements in the main subproblem are specifi-

cally concerned with the process synchronization mechanism

provided by the Sample Operating System. This main sub-

problem resulted from the redefinition of the global process

synchronization requirement contained in the first iteration

of the decomposition process. The requirements were re-

defined and analyzed independently from each other. The

process synchronization mechanism is used extensively

throughout the Sample Operating System to provide a linked

list for the sequential locking of resources.

The existence of a main subproblem dealing exclusively

with the process synchronization mechanism indicates that

the implementation of this mechanism warrants the equiva-

lent amount of design consideration given to the other main

subproblems.

- 107 -

This main subproblem did not decompose any further.

7.4 Subproblems Generated by a Second Decomposition

A second decomposition was conducted as described in

section 7.2, and resulted in the decomposition of MS 3 and

MS 5 into three and two subproblems respectively. The

following discussion will describe the resulting sub-

problems.

7.4.1 MS 3 PROCESS CONTROL FUNCTIONS:

MS 3 decomposed into three subproblems as follows:

1) MS 3A Process Scheduling:

All of the requirements in this subproblem were

concerned with the procedures necessary to schedule

a process in the Sample Operating System. This

subproblem was similar to MS 2A Process Creation

and Scheduling, except that the functions of

process creation have now been separated into an

entire main subproblem.

2) MS 3B System Initiated Interrupts:

The requirements in this subproblem define the

types of interrupts that are system generated to

control processing. These interrupts are centered

around the time-slicing of CPU usage to achieve

multi-programming. The system may also supply

interrupt handler routines for supervisor calls

and for external interrupts.

- 108 -

3) MS 3C Process Initiated Interrupts:

In contrast to MS 3B, the requirements of this

subproblem are concerned with the means by which

user processes may signal the operating system via

interrupts to control processing. The user process

must signal completion to the operating system so

that resources may be reclaimed and other processes

scheduled. Therefore, the subproblem is primarily

concerned with user signalling completion to the

operating system. As previously pointed out in

section 7.3.3, this subproblem also contains the

requirements that the supervisor process be

restricted upon completion of the user's job.

7.4.2 MAIN SUBPROBLEM 5: INTERPROCESS COMMUNICATION:

MS 5 decomposed into two subproblems as follows:

1) MS 5A Operating System Information Tables:

The requirements in this subproblem are

concerned with the operating system's use of infor-

mation tables to monitor and control processing.

The requirements deal with the existence of such

tables and the fact that the tables must be

dynamically allocated and released by the operating

system.

2) MS 5B Message Facility:

The requirements of this subproblem are

concerned with the existence of a message facility

- 109 -

for user process communication. The message

facility is the primary means of user process

communication and, like information tables, must be

a dynamically allocated table to enable queuing of

messages. The requirements deal with the pro-

cedures and constraints for sending and receiving

messages.

7.5 Relationships Among the Main Subproblems

The relationships among the main subproblems were

investigated as previously explained in section 6.4. The

linkages between main subproblems were generalized into inter-

faces between the main subproblems. It is noted that the

second iteration resulted in a large number of main sub-

problems and a larger coupling parameter. Therefore, the

number of linkages between main subproblems was expected to

be much greater than in the first iteration. A comparison

was made of those subproblems actually having linkages in

the first and second iteration.

First Iteration Second Iteration

Average number of
linkages between 3.52 links 2.52 links
subproblems for
which linkages subproblem subproblem
exist

Number of existing 27 36
linkages

Although the number of subproblems having linkages is

greater in the second iteration (36 vs. 27), the average

- 110 -

number of linkages between subproblems is more than a third

less. This indicates that the interface between two given

subproblems may be more highly defined since the linkages

will focus on a fewer number of issues. The following

discussion will attempt to make the definition of interfaces

between subproblems more explicit.

7.5.1 LINKAGES BETWEEN MS 1 SUPERVISOR PROCESS AND

MS 2 EXTENDED MACHINE INSTRUCTION MECHANISMS:

The interface between these two subproblems is formed

due to the use of a special call instruction to request

resources from the supervisor.

7.5.2 MS 1 SUPERVISOR PROCESS AND MS 3 PROCESS CONTROL

FUNCTIONS:

MS 1 and MS 3A Process Scheduling:

The interfaces between these two subproblems con-

sists of conflicting implementation. First, the memory

and device resources are allocated on a job level by

the supervisor. The processor is assigned on a process

level only when a process is runnable. Second, jobs

are scheduled strictly first-come, first-served, but

there is an I/O fast processing scheme that enables

asynchronous scheduling of a process requiring frequent

update.

MS 1 and MS 3C Process Initiated Interrupts:

The interface between these two subproblems consists

of the mechanism by which the supervisor process is re-

- 111 -

started after a user job terminates. MS 3C contained

the seemingly misplaced requirements that the super-

visor must reclaim resources when a job terminates.

This interface makes the association between the

supervisor process and user initiated job termination

explicit, and verifies the decomposition of subproblem

MS 3C.

7.5.3 MS 1 SUPERVISOR PROCESS AND MS 4 PROCESS CREATION

FUNCTIONS:

The interface between these two subproblems consists of

the protection mechanisms employed by the supervisor process

to insure that jobs are isolated from each other. The

mechanism is the creation of a single user process initially

for each job, which runs exclusively in the user's partition.

7.5.4 MS 1 SUPERVISOR PROCESS AND MS 5 INTERPROCESS

COMMUNICATION:

MS 1 and MS 5A Operating System Information Tables

This interface between these two subproblems deals

with the fact that the supervisor process must utilize

information tables to determine what resources are free or

in use to support multi-programming.

7.5.5 MS 1 SUPERVISOR PROCESS AND MS 6 MEMORY ALLOCATION:

The interface between these two subproblems obviously

concerns the fact that memory is a resource which must be

allocated by the supervisor process.

7.5.6 MS 1 SUPERVISOR PROCESS AND MS 7 DEVICE MANAGEMENT:

The interface between these two subproblems is of a

- 112 -

dual nature. First the device handler routine directly

supports multi-programming by providing multiple job streams

from multiple sources to the system. Second, devices are

resources which must be allocated to jobs by the supervisor

process.

7.5.7 MS 1 SUPERVISOR PROCESS AND MS 8 PROCESS

SYNCHRONIZATION:

The interface between these two subproblems is formed

when the supervisor process uses process synchronization

mechanism as a lock fcr resource allocation.

7.5.8 MS 2 EXTENDED INSTRUCTION MECHANISM AND MS 3 PROCESS

CONTROL FUNCTIONS:

MS 2 and MS 3B System Initiated Interrupts

The interface between these two subproblems concerns

the fact that the use of extended machine instructions

generates a supervisor call interrupt. A handler

routine must be provided which interprets the interrupt

and performs the intended instruction.

MS 2 and MS 3C Process Initiated Interrupts

The user signals process completion by a special

extended machine instruction which is the interface

between these two subproblems.

7.5.9 MS 2 EXTENDED MACHINE INSTRUCTION MECHANISM AND

MS 4 PROCESS CREATION FUNCTIONS:

The processes are restricted in their use of extended

machine instructions; therefore, this interface is concerned

- 113 -

with the fact that dynamically created processes run in the

problem state while extended machine instructions are

executed in the supervisor state.

7.5.10 MS 2 EXTENDED MACHINE INSTRUCTION MECHANISM AND

MS 5 INTERPROCESS COMMUNICATION:

MS 2 and MS 5B Message Facility

The message facility is available to all processes

via extended machine instructions. The interface is con-

cerned with the use of extended machine instructions in

support of the message facility.

7.5.11 MS 2 EXTENDED MACHINE INSTRUCTION MECHANISM AND

MS 8 PROCESS SYNCHRONIZATION:

The interface between these two subproblems is concerned

with the protocols for use of the process synchronization

mechanism. The synchronization mechanism is available via

extended machine instruction; but since it serves to lock

resources, it is restricted and cannot be called by user

processes.

7.5.12 MS 3 PROCESS CONTROL FUNCTIONS:

MS 3A Process Scheduling and MS 4 Process Creation

Functions

The interface between these two subproblems is

concerned with the scheduling of dynamically created

user processes. Since the scheduling is strictly

round-robin, a dynamically created process is scheduled

upon creation.

- 114 -

MS 3A and MS 5 Interprocess Communication/

MS 3A and MS 5A Operating System Information Tables

The interface between these two subproblems is

concerned with the fact that ready process control

blocks may be chained together to facilitate round-

robin scheduling.

MS 3A and MS 5B Message Facility

The interface between these two subproblems is

concerned with use of the message facility as a means

of providing process synchronization.

MS 3A and MS 8 Process Synchronization

The interface between these two subproblems is

concerned with the use, by the operating system, of

the process synchronization mechanism to schedule or

synchronize its own system processes.

MS 3B System Initiated Interrupts and MS 7 Device

Management Functions

The interface between these subproblems is the I/O

interrupt handler. The user process must request I/O

through the operating system and the I/O interrupt

handler is provided to service the user's request.

MS 3C Process Initiated Interrupts and MS 5B Message

Facility

The interface between these two subproblems is

concerned with the fact that when a process signals

completion, all messages waiting to be read by that

process are destroyed.

- 115 -

MS 3C and MS 6 Memory Allocation Functions

The interface between these two subproblems is

concerned with memory reclaimation once the user job

has completed.

MS 3C and MS 7 Device Management Functions

The interface between these two subproblems is

concerned with the fact that the device handler routine

must be terminated when a job is terminated.

MS 3C and MS 8 Process Synchronization

The interface between these two subproblems is

concerned with the fact that all locks set by the

operating system in consideration of a particular job

must be released when that job terminates.

7.5.13 MS 4 PROCESS CREATION FUNCTIONS AND MS 5 INTER-

PROCESS COMMUNICATION FUNCTIONS:

MS 4 and MS 5A Operating System Information Tables

The interface between these two subproblems is

concerned with protection mechanisms employed by the

operating system to protect dynamically created

processes. The operating system utilizes information

stored in tables to protect user processes.

MS 4 and MS 5B Message Facility

The interface between these two subproblems consists

of the identification of user processes so that message

originators and destinations may be defined.

- 116 -

7.5.14 MS 5 INTERPROCESS COMMUNICATION AND MS 6 MEMORY

ALLOCATION:

MS 5A Operating System Information Tables and MS 6

Memory Allocation

The interface between these two subproblems is

concerned with the use of information tables to allo-

cate memory. Memory allocation is heavily dependent

upon information tables to identify free areas and to

enforce protection rights for certain memory areas.

MS 5A and MS 7 Device Management Functions

The interface between these two subproblems is

concerned with device management functions which require

dynamic system tables to monitor and control the allo-

cation of device resources.

MS 5A and MS 8 Process Synchronization

The interface between these two subproblems is

concerned with the extensive use of process synchroni-

zation mechanism with a semaphore to serve as a lock

on a database. The counting semaphore may be used as

a prioritized list of processes waiting for a particular

resource.

MS 5B Message Facility and MS 8 Process Synchronization

The interface between these two subproblems is

concerned with the use of the process synchronization

mechanism to establish an ordered queue for the message

facility.

- 117 -

7.5.16 MS 6 MEMORY ALLOCATION FUNCTIONS AND MS 7 DEVICE

MANAGEMENT:

The interface between these two subproblems is con-

cerned with the use of job control language statements to

specify memory resource requirements. The JCL statement

requirement is decomposed into MS 7; therefore, all resource

requests must interface with MS 7 to specify the desired

resources.

7.5.17 MS 6 MEMORY ALLOCATION FUNCTIONS AND MS 8 PROCESS

SYNCHRONIZATION:

The interface between these two subproblems is

concerned with the use of the process synchronization

mechanism to serve as a lock on system tables to prevent

unauthorized access or modification.

7.5.18 MS 7 DEVICE MANAGEMENT AND MS 8 PROCESS

SYCHRONIZATION MECHANISM:

The interface between these two subproblems is concerned

with the use of the process synchronization mechanism to lock

devices in the device management function.

7.5.19 SUMMARY:

An investigation of the interfaces between pairs of

subproblems identified the most obvious relationships among

the main subproblems. In one case, described in section

7.5.2, the examination of interfaces has verified a seemingly

misplaced decomposition of requirements. The number of

interfaces among subproblems has decreased significantly in

j_morris
Typewritten Text
Page 118 does not exist. There appears to just be a page
numbering error by the author.

- 119 -

the second iteration, resulting in interfaces which are more

clearly defined.

The final section of this chapter will compare the

problem structures which were implied by the first and second

iterations of the decomposition methodology.

7.6 Comparison of the Design Structure Implied by the First

and Second Iterations

The method for analyzing the similarities and differ-

ences in the design structure implied by the first and second

iterations of the decomposition methodology was to compare

the subproblems which resulted from each iteration. Each

iteration was analyzed in isolation from the other; there-

fore, the title of each subproblem will.not reveal any more

than a general similarity. The comparison must include an

analysis of the functions or issues involved in each sub-

problem to determine how the nature of each subproblem has

changed from the first iteration to the second.

The first iteration resulted in the decomposition of

sixty-five requirements into six main subproblems. Two of

the main subproblems decomposed a second time into two and

three subproblems. Therefore, the first iteration resulted

in a total of nine distinct subproblems for comparison. The

second iteration likewise originally resulted in a decompo-

sition of eight main subproblems, again two of which further

decomposed into two and three subproblems. Therefore, the

- 120 -

second iteration resulted in eleven distinct subproblems for

comparison.

7.6.1 GENERAL FUNCTIONAL COMPARISON:

The general function of each subproblem was investigated

from the first iteration and compared to the function of the

subproblem resulting from the second iteration. A pair-wise

subproblem comparison was suggested of the following form:

Subproblems From Subproblems From
First Iteration Second Iteration

1. Supervisor Process 1. Supervisor Process

2. Device Management 2. Device Management
Functions Functions

3. Message Facility 3. Message Facility

4. Resource and Memory 4. Operating System Information
Management Tables

5. Process Creation and 5. Memory Allocation Functions
Scheduling

6. Process/Operating 6. Process Creation
System Interface

7. Process Time-Slicing 7. Process Scheduling

8. Multi-programming 8. Extended Machine Instruc-
Support Functions tion Mechanism

9. System Initiated Interrupt

10. Process Synchronization
Mechanism

11. User Initiated Interrupts

7.6.2 COMPARISON OF SPECIFIC SUBPROBLEM FUNCTIONS:

Supervisor Process: Both iterations identified the need

for a supervisor process, which prepares and schedules jobs

- 121 -

for execution. The supervisor process in the second

iteration is more well-defined since it incorporates many

of the requirements which previously had been decomposed

into the multi-programming support subproblem. The require-

ments which shifted deal specifically with the functions of

the supervisor process in the support of multi-programming.

Device management functions: The subproblems generated

for the device management functions were nearly identical

for the first and second iterations. The subproblem

resulting from the second iteration included the requirement

for job control language statements. In the previous

iteration this requirement had been contained in the resource

and memory allocation function subproblem.

Message facility subproblems: The subproblems generated

for the message facility were identical from the first to

the second iteration. However, in the first iteration the

message facility constituted an entire main subproblem;

whereas in the second iteration, it was a subproblem

generated after a second decomposition.

Resource and memory management functions and operating

system information tables and memory allocation functions:

The first iteration of the design requirements generated

a main subproblem which was concerned with the allocation of

resources and specifically memory by the operating system.

This main subproblem was better defined in the second

iteration; in that two subproblems were generated which

- 122 -

separated the functions of the previous main subproblem.

Memory allocation subproblem, in the second iteration, is

specifically concerned with these requirements for memory.

The operating system information tables subproblem deals

with the protocols and information requirements which had

been associated with the general resource management

functions of the first iteration. In addition, the mechanics

of resource allocation were decomposed into the supervisor

process subproblem of the second iteration which has resulted

in more well-defined subproblems.

Process creation and scheduling functions and process

creation and process scheduling functions: The single sub-

problem, Process Creation and Scheduling Functions, of the

first iteration, was decomposed into one main subproblem,

Process Creation and one subproblem, Process Scheduling

Functions in the second iteration. The requirements

involved in both iterations are identical. The functional

separation achieved in the second iteration has resulted in

more clearly defined subproblems.

Process/operating system interface and extended machine

instruction mechanism: The requirements contained in each

of these two subproblems are nearly identical from the

first to the second iteration. However, in the first

iteration, the process/operating system interface was a sub-

problem; whereas in the second iteration, the extended

machine instruction mechanisms constituted an entire main

subproblem.

- 123 -

Process time-slicing and system initiated interrupts:

The requirements for process time-slicing decomposed in the

first iteration into a single subproblem entitled "Process

time-slicing". In the second iteration, the definition of

the interrupt handler requirement had been considerably

expanded. One result was the definition of a subproblem

dealing with system initiated interrupts. The main focus of

system initiated interrupt handler was with time runout

however, it also included the requirements external and I/O

interrupt handler routines as well.

Multi-programming support functions and process sychron-

ization mechanism: The multi-programming support function

main subproblem, generated in the first iteration was

eliminated in the second iteration, being replaced by the

process synchronization mechanism main subproblem. The

multi-programming support functions included many functions

which belong to the supervisor process. In fact, it was

previously argued that the supervisor process main subproblem

could have been considered a subset of the multi-programming

main subproblem. In the second iteration, all of the

requirements representing supervisor process functions have

been decomposed into that main subproblem.

The process synchronization mechanism requirement was

re-defined from the first to the second iteration. Since

this mechanism provides basic multi-programming support, it

had decomposed into the multi-programming support main sub-

- 124 -

problem in the first iteration. After the redefinition in

the second iteration, the process synchronization mechanism

had decomposed into a distinct and separate main subproblem.

User initiated interrupts: The redefinition of the

interrupt handler routine requirements from the first to

the second iteration resulted in the decomposition of a sub-

problem dealing with user initiated interrupt handler. Since

the main focus of this subproblem involves the user signaling

completion of a job, it had no similar subproblem counter-

part from the first iteration.

7.7 Summary

The comparison of the problem structure implied by the

first and second iterations yields the following results:

. The second decomposition resulted in a greater number

of subproblems.

. The subproblems resulting from the second decomposi-

tion were more well-defined than those resulting from

the first iteration.

. The changes in subproblems from the first iteration to

the second were inituitive and seemed to result in a

better problem structure.

. The interfaces between subproblems in the second iter-

ation were also more clearly defined.

The next chapter will analyze the implications of the second

iteration problem structure on the design of the Sample

Operating System.

- 125 -

CHAPTER VIII

IMPLICATIONS OF THE DECOMPOSITION PROCESS

FOR THE DESIGN OF THE SAMPLE OPERATING SYSTEM

The motivation for applying the decomposition method-

ology was to generate a framework upon the design require-

ments of the Sample Operating System to provide insight and

understanding of the relationships among the system

requirements. The framework resulted in the identification

of subproblems of system requirements and the establishment

of relationships between pairs of subproblems. The frame-

work then constitutes a better basis for the subsequent

detailed design stage, than the original disjoint set of

requirements. Better in the sense that a design team now

has a framework; i.e., design subproblems, in which

alternative implementation schemes may be thoroughly

investigated.

The prupose of this chapter is to examine the sub-

problems, which resulted from the second iteration of the

decomposition methodology, from the perspective of the

completed Sample Operating System to determine if the

completed design is verified by the results of the decompo-

sition methodology. The verification procedure was first

to determine if the Sample Operating System was designed in

a manner consistent with the intuitive results of the

decomposition methodology by a comparison of the specific

functions identified for the heirarchically structured Sample

- 126 -

Operating System with the functions generalized for each

subproblem by the decomposition methodology. The procedure

attempted to determine if the decomposition methodology

indeed provided a framework for design; yet was sufficiently

unconstraining so that a designer was free to investigate

alternative implementations and still arrive at the final

Sample Operating System design as it exists.

Since the design process for the Sample Operating

System is not documented in a manner that would elucidate

the decisions made by the designers in the early stages of

the design process, a description of the final system was,

therefore, used extensively as the only documentation aid

for the system.

The second part of the verification procedure was to

identify inconsistencies, non-intuitive design features, or

contentions that were made obvious through the application

of the decomposition methodology.

8.1 Design Overview of the Sample Operating System

The description of the Sample Operating System by

Madnick and Donovan included a design overview, which closely

represented the major design decisions. The design overview

is presented to highlight both the design philosophy and the

intent of the system designers.

"The design of the Sample Operating System follows

closely the framework presented in (Fig. 8.1). 2"
2 8Madnick and Donovan, p.19.

- 127 -

"We build our concept of an operating system around

a process. We recognize that there are certain

requirements necessary to support processes. A process

in the proper environment could call certain basic

functions. Unfortunately, most present-day hardware

does not provide these basic functions."

"Thus, our first design task is to build basic

functions (extended machine for process support). These

comprise the nucleus or Kernel of the operating system.

Examples of these basic functions are the P-V operations,

basic multiprocessing support, and traffic controlling.

The reader can think of these software functions as

being executed in the same way as hardware instructions.

"It is best to think of the Kernel as being an

extended machine that consists of a number of extended

instructions. In this implementation, the extended

instructions are accomplished by means of the supervisor

call instruction....."

"....Certain operating system functions can be

provided in the form of special system processes rather

than system primitives. In this sample operating

system, there are several such processes, including the

supervisor processes (job stream handlers) and the

device handler processes........The hierarchical

construction of the Kernel is such that each successive

level, from the bottom up, depends only on the

- 128 -

existence of those levels below it, and not on those

above it. This approach has the advantage of pedago-

gical clarity, offers debugging ease, and may be

relevant to the development of new theory. ,29

From Figure 8.1 one may discern five levels and layers (or

modules) of the Sample Operating System.

Process Management, lower module (lowest)

Levels -Memory Management Module

LProcess Management, upper module

-Device Management Module
Layers L[Supervisor Process Module (highest)

The functions of process management have been split

into a lower module and an upper module because certain

functions of process management (upper module) depend upon

memory management functions, but memory management itself

depends on certain process management routines that must be

in a module below memory management. Clearly this step

increases the pedagogical clarity of operating system. It

is also noted that the Sample Operating System has no

spooling process nor information management (file) system.

An examination was conducted of the functions of each

level and layer in the heirarchical operating system

structure of the Sample Operating System to determine if

they correspond to the functions of the subproblems identi-

fied in the decomposition methodology.

29 Madnick and Donovan, pp.383-385.

- 129 -

Supervisor Process

(job scheduler)

FIGURE 8.1 Heirarchical Design Structure of the Sample
Operating System

- 130 -

8.2 Functional Comparison of the Levels and Layers of the

Sample Operating System with the Subproblems Generated

By the Decomposition Methodology

8.2.1 PROCESS MANAGEMENT (LOWER) MODULE COMPARED WITH

PROCESS CONTROL AND PROCESS SYNCHRONIZATION MECHANISM

SUBPROBLEMS:

The functional description of the process management

(lower) module is as follows:

The module schedules and runs processes that are

eligible to run and provides the basic primitives for

synchronization of processes.

These functions are wholly contained in the two main sub-

problems of Process Control and Process Synchronization

mechanism. The process control main subproblem as described

in section 7.3.3 is concerned with the functions necessary

to control all processes in the operating system. This

main subproblem decomposed into three subproblems; specifi-

cally, process scheduling, system initiated interrupt

handler, and user initiated interrupt handler. The process

scheduler is concerned with the procedure for scheduling

eligible processes and corresponds to the process scheduler

of the Sample Operating System. The system and user

initiated interrupt handlers define the functions necessary

for process multiplexing by the operating system and the

user. These functions essentially distinguish between

eligible and ineligible processes.

- 131 -

The second main subproblem included in the comparison

is the process synchronization mechanism. As described in

section 7.3.8 this main subproblem is concerned with the

specific function of the synchronization mechanism and

directly corresponds with the "basic primitives for synchro-

nization of processes" described in the process management

(lower) module of the Sample Operating System.

8.2.2 MEMORY MANAGEMENT MODULE COMPARED WITH THE MEMORY

ALLOCATION MAIN SUBPROBLEM AND OPERATING SYSTEM

INFORMATION TABLES SUBPROBLEM:

The functional description of the memory management

module is as follows:

This module performs the operations necessary for

the dynamic allocation and freeing of memory for:

a) job allocation.

b) operating system dynamic allocation.

The allocation functions defined for job and system needs

correspond to the functions described in the memory

allocation main subproblem and operating system information

table subproblem as described in section 7.3.6 was concerned

with the protocols for memory allocation and directly

correspond to the functional description of the memory

management module for job partitions.

The operating system information table subproblem was

decomposed from the interprocess communication main subprob-

lem. As described in section 7.4.2 this subproblem is

- 132 -

concerned with the use of information tables to monitor and

control processing and corresponds to the memory management

module allocation functions for memory for operating system

dynamic allocation. It is noted that the decomposition

methodology defined the functions of operating system

dynamic allocation of memory for information tables as a

subproblem of interprocess communication; whereas the

designers of the Sample Operating System treated the func-

tions as a subproblem of memory management. The conceptual

distinction is as follows:

a) Decomposition of the information table requirements

as a subproblem of interprocess communication

resulted from an assessment of "What" was the

function of information table? The function is,

of course, to monitor and control processing by

communicating the status of resources thru tables

shared among the processes of the operating system.

b) The treatment of the dynamic allocation of memory

for information tables (operating system dynamic

allocation) resulted from an assessment of how is

the information table requirement to be implemented?

Since the function requires a significant amount of

memory allocation, it was considered a subproblem

of the memory management module.

The interdependencies among requirements were assessed

in an implementation independent environment. The applica-

- 133 -

tion of the decomposition methodology, a framework (i.e.,

subproblems) in which alternative implementation schemes

may be thoroughly investiaged. For the final design, the

information table subproblem was combined with the memory

allocation subproblem to form the memory management module

of the Sample Operating System.

This comparison raised the following issue:

If a main subproblem decomposes upon the second

decomposition should one assess the main subproblem as com-

posed of several subproblems or should one assess the

subproblems as independent design problems at the same

level as main subproblems?

The purpose of decomposition methodology is to provide

a framework of subproblems in which the designer is free to

optimize the subproblem by investigating alternative

implementation schemes. The framework is meant to provide

a structure for the designer, but not to impose additional

constraints upon the designer's freedom. Since the assess-

ment of subproblems as independent design problems offered

more flexibility to the designer, one should, therefore,

assess subproblems resulting from a second decomposition at

the same level as main subproblems. In terms of the

previous comparison, treating the operating system informa-

tion table subproblem within the structure of the inter-

process communication main subproblem would have added a

constraint upon the system designer.

- 134 -

8.2.3 PROCESS MANAGEMENT (UPPER) MODULE COMPARED WITH THE

PROCESS CREATION SUBPROBLEM AND THE MESSAGE FACILITY

SUBPROBLEM:

The functional description of the process management

(upper) module is as follows:

"The module provides routines for:

a) the control of processes; specifically, creation

and deletion.

b) interprocess communication with buffered

messages."30

These functions correspond to the functions of the

process creation subproblem and the message facility sub-

problem. The process creation subproblem, as described in

section 7.3.4, is concerned with the protocols for process

creation, and correspond directly with the functions of this

operating system module.

The second subproblem included in this comparison is

the message facility subproblem which was decomposed from

the interprocess communication main subproblem. For reasons

stated in the last section, the message facility subproblem

was treated as an independent design problem at the level

of a main subproblem. Its functions, as described in

section 7.4.2, are concerned with the existence and use of

a message facility by all process for interprocess communi-

cation. These functions correspond with the functions of

"interprocess communication with buffered messages" as

3 0Madnick and Donovan, p.388.

- 135 -

specified in the process management (upper) module.

8.2.4 DEVICE MANAGEMENT MODULE COMPARED WITH THE DEVICE

MANAGEMENT FUNCTION SUBPROBLEM:

The functional description of the device management

module is as follows:

"This module provides the routines necessary to

issue the appropriate input/output commands to

extended devices. A special portion of the device

management routine handles interrupts." 31

These functions correspond to the functions contained in

the device management function subproblem. As described in

section 7.3.7, this subproblem is concerned with the

functions required for device management, specifically, the

procedures for requesting resources and I/O by the user.

8.2.5 SUPERVISOR PROCESS MODULE COMPARED WITH THE

SUPERVISOR PROCESS MAIN SUBPROBLEM:

As implied by the title of this section, both the

module and the main subproblem are nearly identical.

The functional description of the supervisor process

module is as follows:

"This module serves as the job scheduler. It can

use all the functions provided by the previous modules

to create an interface for the process of user jobs." 3 2

These functions correspond exactly with the functions of the

3 1Madnick and Donovan, p.389.
32Madnick and Donovan, p.389.

- 136 -

supervisor process main subproblem. As described in section

7.3.1, the supervisor process is concerned with the

generation of a multi-programming environment for user

processes. It is that process which prepares and schedules

user jobs for execution.

8.2.6 SUPERVISOR CALL HANDLER COMPARED WITH THE EXTENDED

MACHINE INSTRUCTION MECHANISM MAIN SUBPROBLEM:

Madnick and Donovan describe an additional group of

routines which are not reflected in the heirarchical opera-

ting system structure as follows:

"Several routines don't conveniently fit our

heirarchical level structure. The most notable case

is the SVC handler used to activate the extended

machine instructions and transfer between levels."

The requirements for these routines are wholly contained in

the functional description of the extended machine instruc-

tion mechanism main subproblem. As described in section

7.3.2, the main subproblem is concerned with the character-

istics and protocols for the use of the extended machine

instructions. Since these instructions may be called by any

level or layer of the operating system, they cannot be

generalized into the heirarchical system structure.

8.2.7 SUMMARY OF THE FUNCTIONAL COMPARISON:

The comparison of the functions of the modules for the

Sample Operating System with the functional description of

the requirements contained in each design subproblem defined

- 137 -

by the description methodology has yielded several

instruction insights:

. The rationale for treating design subproblems,

resulting from the second decomposition of a main

subproblem, as independent design problems at the

level of main subproblems was developed. Since

independent design problems provide a framework,

yet impose fewer constraints upon the designer,

the design process should deal with subproblems

as independent design problems to be optimized.

. The decomposition methodology identified a greater

number of subproblems, and the subproblems were

internally more defined, than the levels and layers

of the final operating system design. For instance,

the process management (lower) module has three

distinct functions:

a) schedules and run processes;

b) defines eligible processes;

c) provides basic system primitives.

The decomposition methodology identified four sub-

problems to correspond with the function process

management (lower) module; specifically:

a) process scheduling function;

b) system initiated interrupt handler;

c) user initiated interrupt handler;

d) process synchronization mechanism.

- 138 -

The designer now has at his disposal a framework in

which the functions of each subproblem are clearly defined,

internally. The designer next investigates alternative

implementation schemes to satisfy the requirements of each

subproblem. In addition, the interfaces between pairs of

subproblems are clearly defined so that, in the case of

system and user initiated interrupt handler, common functions

or processing may enable concurrent implementation schemes

for subproblems so closely related.

Therefore, the designer is presented with a clearly

defined framework of subproblems which he may choose to

agglomerate into larger modules to satisfy the design

problem.

The next section will investigate some of the inconsis-

tencies identified by the decomposition methodology.

8.3 Inconsistencies Identified in the Comparison of the

Sample Operating System and the Decomposition

Methodology

The inconsistencies identified in the comparison of the

Sample Operation System and the decomposition methodology

were of two types. First, the final design of the Sample

Operating System contained certain features that were not

reflected in the results of the decomposition methodology.

Second, process of requirements definition, interdependency

assessment, and application of the decomposition methodology

- 139 -

identified unresolved contentions or conflicts in the

Sample Operating System.

8.3.1 FEATURES OF THE FINAL DESIGN OF THE SAMPLE OPERATING

SYSTEM NOT REFLECTED IN THE RESULTS OF THE

DECOMPOSITION METHODOLOGY:

The main feature not captured in the decomposition

methodology was the heirarchical nature of the Sample

Operating System. This is significant because the heirarchi-

cal design incorporates a strictly limited interfacing

protocol between the levels and layers of the Sample Oper-

ating System in which each successive level from the bottom

up, depends only on the existence of those levels below it.

It can be argued that the heirarchical construction

technique was a design decision made in a later stage of the

design process since it satisfies the objective of the

design; that is, the modular and heirarchically structured

design is pedagogically effective. Yet, the interface

protocols are very restricting and the separation of the

process management module into an upper and lower module

were dictated by existence dependence of upper levels upon

lower levels. Therefore, an investigation was made of the

linkages between subproblems to determine if the heirarchical

nature of the Sample Operating System could be inferred

"post facto" from the facilities available in the decomposi-

tion methodology.

The results of the previous section were used to

- 140 -

identify when subproblems and modules were equivalent.

Final Design

Process Management (lower)
Module

Memory Management Module

Process Management (upper)
Module

Device Management Module

Supervisor Process Module

Supervisor Call Handler

Decomposition Methodology

Process Scheduling

System Initiated Interrupt
Handler

User Initiated Interrupt
Handler

Process Synchronization
Mechanism

Memory Allocation

Operating System Information
Tables

Process Creation

Message Facility

Device Management Functions

Supervisor Process

Extended Machine Instruction
Mechanism

Since the linkages between subproblems are assessed in

an undirected manner, and are symmetric, the actual direction

of the linkages could not be determined. Therefore, no

statement could be made in regard to an "upper" module

calling a "lower" module.

A comparison was made of the raw number of linkages

between subproblems. The tabulation of this comparison is

presented in Appendix K. It was expected that some sort of

trend might be established with the number of linkages,

- 141 -

cumulated first by subproblem, second by module. Specifi-

cally, since the process management (lower) module is the

closest to the bare machine, it must be used frequently and,

therefore, one would expect the number of linkages to it to

be relatively large. Conversely, the device management

module is a layer of the operating system; therefore, its

level of interfacing in raw numbers, should be considerably

less than the previous example.

The results of the comparison are as follows:

. The average number of linkages per subproblem equalled

16.18.

. Process management (lower) module had the greatest

number of linkages, yet no trend could be established.

That is, the number of linkages exhibited no signi-

ficant trend as one approached closer to the bare

machine.

. The fact that the process management (lower) module

had a greater number of linkages was due more to the

fact that it was composed of four subproblems, rather

than by any existence dependency.

Therefore, the decomposition methodology gave no inferrence

of a heirarchically structured operating system.

8.3.2 CONTENTIONS IDENTIFIED DURING THE APPLICATION OF THE

DECOMPOSITION METHODOLOGY:

During the process of requirement definition, inter-

dependency assessment, and application of decomposition

- 142 -

methodology, numerous unresolved issues were discovered

which could lead to contentions or conflicts during imple-

mentations. These issues were involved with the implementa-

tion of system requirements and were the result of the

application of worst case usage of the system to determine

if the requirements set was complete. The unresolved

contentions were as follows:

. The operating system must have some finite limit in

the number of jobs that it will accept before a

critical resource is fully allocated. The limit could

involve memory, dedicated devices, or IBM System/360

protection keys. The limit was not established in

the requirements, nor was any priority specified to

determine which is the critical resource.

. The message requirement number 56 states: "Any

number of messages, for a given process, may be queued

while waiting to be read by the process." Since the

memory area for buffered messages is dynamically

allocated, it is conceivable that one process could

do nothing but write messages to itself. Carried to

an extreme all of memory could be consumed by the

process in which event the system would become

deadlocked. Therefore, some finite limit should be

placed on the number of messages which a process may

have enqueued before it is forced to read the messages.

. Requirement 24 states: "Ready processes are scheduled

- 143 -

in simple round-robin fashion by the process

scheduler." The process scheduler checks an informa-

tion table to determine if a given process is ready;

if it is not ready, the process scheduler checks the

next process in a sequential chain. It is conceivable

that all processes in the system may become blocked

at the same time. Therefore, the process scheduling

function must include some mechanism to first deter-

mine that all processes are blocked and second, to

attempt to resolve the situation.

The preceeding contentions became obvious during the

decomposition methodology. The lack of further contentions

was not meant to imply that no further contentions exist in

the Sample Operating System. The decomposition methodology

contained no rigorous methodology to determine if a complete

and consistent set of requirements had been defined.

8.4 Summary

The final design of the Sample Operating System was

verified by the results of the second it.eration of decompo-

sition methodology. The decomposition methodology identified

eleven well-defined subproblems which corresponded in a

consistent manner with the functions of the six levels and

layers and SVC instructions handler of the final design of

the Sample Operating System.

The decomposition methodology did not infer the heir-

- 144 -

archical structure of the final design. However, the

identification of linkages between pairs of subproblems

explicitly defined the interfaces which were incorporated

into the modules of the final design.

The procedures involved in the decomposition methodology;

that is, requirements definition, interdependency assessment

and decomposition methodology, include no rigorous attempt

to ensure that a complete set of requirements was defined

for the Sample Operating System.

The next chapter will present recommendations for

improvements of the methodology based upon the analysis of

the Sample Operating System.

- 145 -

CHAPTER IX

CONCLUDING STATEMENTS CONCERNING THE

APPLICABILITY OF THE DECOMPOSITION METHODOLOGY

TO THE DESIGN PROCESS AND RECOMMENDATIONS

FOR IMPROVEMENT

The purpose of this chapter is to take a retrospective

view of the decomposition methodology applied to the Sample

Operating -System. Based on the experience, conclusions

will be discussed concerning the applicability of the

decomposition methodology to the design process.

9.1 Objectives of the Methodology

The objective of the application of the decomposition

methodology was to support the designer in the architectural

design phase by providing the designer with a framework in

which the design problem can be studied in a well-defined

and organized fashion. The architectural design phase

consists of a well-structured series of activities that the

design engineer should perform in order to achieve a better

understanding of the design problems at hand, as well as to

avoid implicit and unwarranged preconceptions that can bias

the eventual design significantly. The decomposition

methodology supports the architectural design phase by

clustering the global system requirements into subproblems.

The methodology then does not purport to provide a best

answer, since the techniques are satisfying rather than

optimizing.

- 146 -

The purpose of this chapter, the methodology must be

expanded to include the following stages:

. Requirements definition stage;

. Interdependency Assessment Stage;

. Application of the Decomposition Methodology Developed

by Andreu.

The methodology supports the design process by

decomposing system requirements into subproblems. The sub-

problem concept narrows the scope of consideration of the

design engineer to more specific well-defined areas of

concern. But as pointed out by Leopold, Svendsen, and

33
Kloehn, subproblems create more levels of management and

organizations produce designs which are copies of the

communication structure of the organization. The result can

be that the solution to the design problem becomes a series

of compromises based on political expediency rather than

on technical objectivity. Any methodology must provide for

better communication based on technical objectivity to

satisfy the design problem.

The decomposition methodology facilitates consideration

and discussion of the system requirements, system objectives

and constraints early in the design process. In fact, the

methodology forces the user to conduct a pair-wise assess-

ment of the interdependencies of all requirements. This is

33Reuven Leopold, Edward C. Svendsen, and Harvey KZoehn,
"Warship Design/Combat Subsystem Integration - A Complex
Problem, Unnecessarily Overcomplicated", Naval Engineers
Journal (Augus-t 1972) p.44.

- 147 -

significant in two ways:

. An exhaustive pair-wise assessment of interdependen-

cies executed in a top-down manner, forces one to

think in terms of conceptual models freeing the

designer of his dependencies upon tradition-bound

designs.

. The decomposition methodology causes the elimination

of prevalent misconception or traditional design

practices by displaying the complex interrelation-

ships which heretofore were unavailable to the

designer.

The usefulness of the methodology was verified by the results

of the application to the design of the Sample Operating

System as stated in section 8.4. Yet the experience gained

in the application of the methodology suggested improvements

to all three phases of this methodology to improve both its

effectiveness and to increase the scope of the applicability.

The next section of the chapter will present those recommend-

ations for improvement.

9.2 Recommendations for Improvement

9.2.1 SUGGESTIONS TO IMPROVE COMMUNICATION:

The decomposition methodology is but a small supporting

tool in the overall design process; specifically, in the

architectural design phase. The most time-consuming stages

of the methodology were the requirements definition stage

- 148 -

and interdependency assessment stage. The functions

required in each stage were hand-written and the analysis

was performed off-line. The lack of any text facility pre-

cluded an on-line assessment of design problems. The time

required to perform the stages of methodology could be

reduced, and the methodology improved if the three stages

could be made completely interactive by the addition of a

facility for limited documentation statements. The specific

documentation statements needed are defined in the supplement

sections.

9.2.2 REQUIREMENTS DEFINITION:

The problems associated with generating well-defined

requirements statements, even for an existing system, are

well-known. This stage of the decomposition methodology

represented the greatest expenditure of time and energy for

this thesis. As described in section 2.1, the functional

specification phase of the design process is receiving

considerable attention from researchers. Sid Huff34 has

described a template format for requirements definition which

recognizes six distinct statements built upon three basic

language constructs. The basic constraints consist of:

objects: which are items or activities such as item -

memory activity - allocated.

modifiers; which are strings of English adjectives that

describe the object.

34
Sidney Huff, "An Approach to Constructing Functional

Requirement Statements for Preliminary System Design"; unpub-
Zished report, MIT SZoan School, April, 1978, pp.6-7.

- 149 -

Imperatives: which indicate the nature of relationships.

Only two imperatives are recognized -

can: implying conditional capability.

will: must be fulfilled.

These constructs are used to generate six templates which are

generic types of requirement statements. They consist of the

following:

Properties: a feature of the system.

Treatments: an operation that is done to an object.

Timing
Relationship: objects may be temporarily related.

Order
Statements: order relation, such as, equal to.

Measure: consisting of a parameter and a unit.

For example,

Memory will be allocated in 2K blocks

item object imp activity object modifier

The template format is a useful structuring tool for

requirements definition which may serve to identify ambi-

guities or errors. The primary benefits of the template

format to the decomposition methodology are:

It would provide a concise, well-defined requirements

statement which could be generated and stored on-line

using a menu of constructs.

It would be useful for determining interrelationships

- 150 -

since the statements consist of well-defined key

words.

. Completeness of requirements set could be verified

through the use of simple algorithms which would

check for the existence of capabilities clearly

defined in the property statements.

9.2.3 ASSESSMENT METHODOLOGY:

The greatest weakness of the decomposition methodology

is the fact that the binary assessment procedure is simplis-

tic and, therefore, constraining. The binary assessment

procedure does not allow any sort of sensitivity analysis or

weighting of the interdependencies and does not allow for

the representation or solution of an objective function.

The lack of an ability to represent an objective func-

tion resulted in the separation of the design philosophy and

constraint statements from the requirements set that was

analyzed for interdependencies. All that one could say was

that the design philosophy and constraint statements must

apply to every other requirement in a global sense or they

apply not at all. If the interdependencies could be weighted

then it would be possible to assess the relative level of

impact and to establish an objective function to be satisfied.

This objective function could be satisfied by a facility to

describe conceptual models or mathematical relationships on-

line. The mathematical relationship would be of the form of

an expression interrelating different indices or measures

- 151 -

used to measure the degree of satisfaction of an objective

function provided by each interrelationship between require-

ments. The constraints upon the design must also be

represented as limits on certain criteria within which the

final values selected for a system must fall. Ideally, all

indices used to measure satisfaction of an objective function

must be reduced to a common denominator. For instance, the

objective function may be stated in terms of response time

(Ttotal). The response time is related to CPU time for

execution (TCPU), Input/Output time (T1/0) waiting or

blocked time (Tw). Therefore, the objective function could

be stated in terms of Ttotal =CPU + TI/ + Tw Inter-

relationships among requirements would be assessed according

to a conceptual model involving a time index. The decompo-

sition methodology could then provide a relative measure of

the satisfaction of the objective function by each

decomposition.

9.2.4 ADDITIONAL FEATURES:

Design is essentially an art, which is heavily dependent

upon one's background and biases. It would be interesting

although not necessary, to implement a facility in the

decomposition methodology which would enable a user to input

his own idea of the "best" decomposition in the form of sub-

problems. The decomposition package should then generate a

measure for the proposed decomposition and would serve as a

relative grade to the designer vis-a-vis the system-generated

"best" decomposition.

- 152 -

9.3 Summary

This study has demonstrated that the decomposition

methodology proposed by Dr. Andreu is a useful technique

providing a framework for the designer for use in the

architectural design stage. It is recognized that this

methodology is a first step in the right direction. The

usefulness of the first step was recognized by Mandel and

Chryssostomidis:35

"Unfortunately, the direct contribution of the

computer to design methodology is small because the

capabilities provided by the computer do not augment

the user's ability as a designer but rather as an

analyst. For this reason, it is felt that research

leading to documentation of an improved large system

design methodology that also takes advantage of today's

tools is both timely and worthwhile."

The value of the decomposition methodology will improve as

the results of its application are verified through similar

research and improvements to the facilities are implemented

by designers in search of a better world.

35Mandel and Chryssostomidis, p.85.

- 153 -

BIBLIOGRAPHY

1. Alexander, Christopher; Notes on the Synthetic Form;
Cambridge, MA, 1966.

2. Alford, Mack W.; "A Requirements Engineering Methodology
for Real-Time Processing Requirements"; I.E.E.E. Trans-
actions on Software Engineering, Vol. SE-3, Number 1,
(Jan. 1977), 60-69.

3. Anderberg, Michael R.; Cluster Analysis for Applications;
New York, 1973.

4. Andreu, Raphael C.; "An Exercise in Software Architec-
tural Design: From Requirements to Design Problem
Structure"; Unpublished report, MIT Sloan School, June,
1977.

5. Andreu, Raphael C.; "A Systematic Approach to the Design
and Structuring of Complex Software Systems"; Unpublished
Doctoral thesis; MIT Sloan School, February, 1978.

6. Andreu, R..C. and Madnick, Stuart E.; "A Systematic
Approach to the Design of Complex Systems: Application
to DBMS Design and Evaluation"; Center For Information
Systems Research Report 32, MIT Sloan School, March,
1977.

7. Bell, Thomas E., Bixler, David C., and Dyer, Margret E.;
"An Extendable Approach to Computer-Aided Software
Requirements Engineering"; I.E.E.E. Transactions on
Software Engineering; Vol. SE-3, Number 1 (Jan. 1977)
49-60.

8. Bell, T. E. and Thayer, T. A.; "Software Requirements:
Are They Really a Problem?"; Proceedings, 2nd Int'l.
Conference on Software Engineering (October, 1976) 61-63.

9. Bitjen, E. J.; Cluster Analysis; Groningen, Netherlands,
1973.

10. Blashfield, Rojer K. and Aldenderfer, Mark S.; "A Con-
sumer Report on Cluster Analysis Software"; Unpublished
report, Pennsylvania State University, 1978.

11. Chu, Y.; "A Methodology for Software Engineering";
I.E.E.E. Transactions on Software Engineering, Vol. SE-l,
Number 3 (Sept. 1975), 262-270.

12. Dahl, 0. J., Dijkstra, E. W., and Hoare, C. A. R.;
Structural Programming, London, 1972.

- 154 -

13. Daly, E. B.; "Management of Software Development";
I.E.E.E. Transactions on Software Engineering, Vol.SE-3,
Number 3 (May, 1977), 230-243.

14. Davis, Carl G. and Vick, Charles R.; "The Software
Development System"; I.E.E.E. Transactions on Software
Engineering, Vol. SE-3, Number 1 (Jan, 1977), 69-85.

15. Defranco, Steven J.; "Use of Heirarchical Decomposition
in Computer Systems Design"; Unpublished Master's thesis,
MIT Sloan School, June, 1977.

16. Dijkstra, Edsger W.; A Discipline of Programming;
Englewood Cliffs, New Jersey, 1976.

17. Donovan, John J.; Systems Programming, New York, 1972.

18. Evans, J. Harvey; "Basic Design Concepts"; A.S.N.E.
JOURNAL (November, 1969), 671-678.

19. Friedman, Jerome H.; "A Recurrsive Partitioning Decision
Rule for the Parametric Classification"; Stanford Linear
Accelerator Center Report #CS-75-487, Stanford, Calif.,
Jan. 1976.

20. Huff, Sidney; "An Approach to Constructing Functional
Requirement Statements for Preliminary System Design";
Unpublished report, MIT Sloan School, April, 1978.

21. Leopold, Reuven; Svendsen, CAPT Edward C.; and Kloehn,
Harvey G.; "Warship Design/Combat System Integration:
A Complex Problem Unnecessarily Overcomplicated"; NAVAL
ENGINEER'S JOURNAL, August 1972, 28-54.

22. Liskov, Barbara H. and Berzins, Valdis; "An Appraisal of
Program Specifications"; Computation Structures Group
Memo 141-1, MIT Laboratory for Computer Science, April,
1977.

23. Madnick, Stuart E. and Donovan, John J.; Operatin
Systems, New York, 1974.

24. Mandel, P. and Chryssostomidis, C.; "A Design Method-
ology for Ships and Other Complex Systems"; Phil.
Trans. R. Soc. Lond., A .273, (1972), 85-98.

25. Martin-Marietta Corp; TFCC System Engineering/Software
Development, Preliminary TFCC Data Base Design Document,
DBD-6020605, December, 1976.

26. Martin-Marietta Corp; "TFCC System Engineering/Software

- 155 -

Development, TFCC Program Performance Specification for
a Data Management System; DDS-6020 DMS, October, 1976.

27. Mills, Harlan D.; "Software Development"; I.E.E.E.
Transactions on Software Engineering, Vol. SE-2, Number
4 (Dec. 1976), 265-274.

28. Noonan, R. E.;"Structural Programming and Formal Speci-
fication"; I.E.E.E. Transactions on Software Engineering,
Vo. SE-i, Number 4 (Dec. 1975), 421-425.

29. Parnas, David L.; "A Techniques of Software Module
Specification with Example"; Communications of the ACM,
Vol. 15, Number 5 (May, 1972), 330-337.

30. Parnas, David L.; "On the Criteria to be Used in Decom-
posing Systems into Modules"; Communications of the ACM,
Vol. 15, Number 12 (Dec. 1972), 1053-1058.

31. Parnas, David L.; "The Use of Precise Specifications in
the Development of Software"; Proceedings of Information
Processing '77, (1977).

32. Punj, Doreen; Madnick, Stuart E.; and DeTreville, John
D.; "A Survey of Navy Tactical Computer Applications and
Executions"; Center for Information Systems Research
Report 19, MIT Sloan School, October, 1975.

33. RCA, Government and Commercial Systems, Missile and
Surface Radar Division; "Real Time Tactical Operating
Systems Study, Second Quarterly Report; Moorsetown,
New Jersey, 1974.

34. Reinhard, Nicolau; "An Experiment with Software Design
Techniques"; Unpublished report, MIT Sloan School,
January, 1978.

35. Ross, D. T. and Schoman, K. E., Jr.; "Structural
Analysis for Requirements Definition"; I.E.E.E. Trans-
actions on Software Engineering, Vol. SE-3, Number 1
(Jan. 1977), 6-16.

36. Salter, Kenneth G.; "A Methodology for Decomposing
System Requirements into Data Processing Requirements";
Proceedings, 2nd Int'l. Conf. on Software Engineering,
October, 1976.

37. Slagle, J. R.; Chang, C.-L.; and Lee, R. C. T.; "Experi-
ments with Some Cluster Analysis Algorithms"; I.E.E.E.
JOURNAL, Vol. 6, 1974, 181-187,

- 156 -

38. Slagle, J. R.; Chang, C.-L.,; and Heller, S. R.; "A
Clustering and Data-Reorganizing Algorithm", I.E.E.E.,
1975, 125-128.

39. Slagle, J. and Lee, Richard C. T.; "Application of
Automatic Clustering to Emitter Identification"; Naval
Research Laboratory Memorandum Report 3407, November,
1976.

40. Sokal, Robert R. and Sneath, Peter H. A.; Principle of
Numerical Taxonomy; San Francisco, 1965.

41. Spero, J. R.; Hicks, W. F.; and Greene, D. L.; "A
Philosophy of Naval Ship Design and Construction"; NAVAL
ENGINEER'S JOURNAL, October 1971, 45-52.

- 157 -

APPENDIX A

Formal Specification of Evaluation Parameters

- 158 -

FORMAL SPECIFICATION OF EVALUATION PARAMETERS:36

Given a graph as a pair (X,L), where

X : {xfx = 1,2,.... JXJ}, the set of lXi objects,**

and

L : {t..It.. exists if a link joins objects i and jsEX},
lJ IJ

the set of links,

Define

A : a.. a.. = 1 if .. exists, 0 otherwise , the1J 1J 1J

adjacency matrix associated with the graph.

Then, the strength S. of a subset X.CX can be expressed
2.. 1-

as:

k, ZEX.
k< 2

a kZ - (!X 1-1)

S.

while the coupline C.. between the subsets X. and X.CX,
1J 1 J-

**|X| is used to indicate the cardinality of set X.

3 6 Andreu, pp. 100-101.

JXi1(1Xi1-l)

- 159 -

X. X. = $ (the empty set) can be written as:
1J

I a kk
kE:X-

C.. = J

1]

A partition P of X,

P : {XpX .. ,X } ,
p

X. = X,
p

ifj=l
i34j

X.,X. = $
1 J

is then assigned a measure M:

p
M = S.

i=l

p

i=1l
j=i+1

C..
13

The behavior of M is such that the higher its value,

the better the associated partition for our purposes, so that

we should, in fact, search for the partition with maximum M

value over all possible partitions of the set under decom-

position.

- 160 -

APPENDIX B

Algorithm for the Identification

of Kernel Subsets

- 161 -

ALGORITHM FOR THE IDENTIFICATION OF KERNEL SUBSETS: 37

Recalling the following definitions:

The "core set" CS. associated with a node o. to be the
1 1

set CS. : {o.|o. s.t. a.. = 11; i.e., the set of all
1 J J 1J

nodes related to o., including o. itself, and

. The "connectivity" of node o. to be

c = |CS.j - 1, where by JXJ we mean the dimension of

set X.

The identification of kernel subsets can be done iteratively

using the following procedure:

0) Set J = 0.

1) Compute c. Vo. s 0. If c. = c. V i,j, set J = J+l;
1 1 1 J

KESU(J) = 0; stop.

2) Consider the k (> 1, a number specified a priori;

see the end of this section for considerations about

its value) nodes with highest c.. Without loss of

generality, assume that these are the nodes

Ol,...ok

3) Determine CS for o c {o ,. .. ,ok .

1:
4) Compute KS. = (CS. [CS.]) o. E {o.,...,ok }

1 1 iJ 1

i3 j

5) Select o E {o , .6.0.0 } such that KS = min (|KS i)
p1'k p i=1...,k

3 7 Andreu, pp. Z25-Z26.

- 162 -

6) Set J = J+l;

If |KS I ICS 1, set DESU(J) = 0 and stop, else

set KESU(J) = o [CS - KS].
p p p

7) Set current set to:

0 = 0 - KESU(J); if 101 = 0, stop.

8) Recompute A:

old a.. if o.,0. E 0

A:{..a (IJ 1 J}A :{a ija mark it "nonexistent" otherwise

9) k= k - 1;

If k > |0|, set k = 101;

Go to 1.

Once the procedure is executed, J Kernel subsets

KESU(1),...,KESU J have been identified.

- 163 -

APPENDIX C

Preliminary Set of Requirements

- 164 -

1. The operating system must be simple, implementing a

basic system nucleus.

2. The operating system must be designed as a pedagogical

tool.

3. The operating sytem must be small; occupying fewer

than 2500 cards of assembly language statements.

4. The operating system is to be implemented utilizing

IBM/360 hardware.

5. The operating system must provide for a multi-program-

ming environment.

6. The operating system must be process oriented.

7. The operating system must run on a machine that has two

distinct states.

8. All resource requests must pass through the supervisor

process.

9. System resources must be allocated to a job, prior to

the job being made eligible to run.

10. A process must be ready to run prior to being allocated

to a processor.

11. User communication with the operating system to VIA SVC

Instructions.

12. The operating system must protect the user jobs from

each other.

13. The operating system must utilize information tables to

monitor and control processing.

- 165 -

14. System tables can be dynamically allocated and

released.

15. Certain extended machine instructions are user callable.

16. System processes are re-entrant and shared.

17. Extended machine instructions are executed in the

supervisor state.

18. The supervisor process must create and delete the

environment in which a job runs.

19. Initially one process is created for each user's job.

20. Jobs are scheduled on a first come, first served

basis.

21. The job scheduling function must be modularized so

that improvements to the system can be easily

accomplished.

22. The process schedulermust time-slice CPU usage to

achieve multi-programming.

23. Ready processes are scheduled in simple round-robin

fashion by the traffic controller.

24. A process shall be blocked, and control released to

the traffic controller when a timer runout trap is

detected.

25. A process shall be blocked and control passed to the

traffic controller when the process must wait for

synchronization with another process.

26. A process is blocked when it relinquishes controller

to the traffic controller.

- 166 -

27. The supervisor routine must reclaim all system

resources for a job when the job has completed.

28. The supervisor process must reclaim all system

resources when an error condition abnormally terminates

a job.

29. Reference to processes within a process group is by

symbolic name.

30. The operating system must allocate memory for job

partitions, the size of which is specified by the user.

31. Memory is allocated to a job in contiguous 2 K

blocks.

32. The operating system may dynamically allocate memory

to itself for system processes.

33. Memory is allocated using a best-fit algorithm.

34. Memory must be protected to prevent the simultaneous

allocation of a partition to multiple jobs.

35. Free storage areas are collapsed into contiguous blocks

of memory whenever a partition is freed.

36. Operating system must supply a device management system

which runs as a separate process, one per device.

37. Device handler routines must support multiple job

streams from card readers.

38. All devices are dedicated.

39. The device handler routine supports one card reader

per input stream.

40. Device handler must support one line printer per output

stream.

- 167 -

41. Input/output devices operate via multiplexor channel.

42. The user can provide his own routine for non-standard

devices.

43. A process synchronization mechanism must be provided.

44. An interrupt mechanism must be provided.

45. P-V operations are available only to system processes.

46. A message facility must be provided for user processes.

47. The message facility is accessible by all processes.

48. The name of the sending process must be prefixed to a

message.

49. The receiving process must read the name and text from

the originator.

50. Messages are of arbitrary yet specified length.

51. Any number of messages may be queued while waiting to

be read by a process.

52. All messages are released when a process terminates.

53. Messages are not receipted for, from receiver to sender.

54. If no messages are available to a process which expects

one, it goes blocked.

55. User programs utilize a simplified job control language.

56. The operating system must accept input data from the

user's job stream.

57. The supervisor process must load the user's supplied

object code deck into the user partition.

58. The user process may dynamically create and destroy

additional processes.

- 168 -

59. Dynamically created processes run in the same parti-

tion as the parent job.

60. User processes cannot dynamically allocate memory.

61. User processes cannot destroy system processes within

the same process group.

62. User processes run in the problem state.

63. The user process must signal completion of the process

to the operating system.

64. The user's job can reference one input device, one

output device, and one exceptional device.

65. There is only one supervisor processes per job

stream.

- 169 -

APPENDIX D

Preliminary Interdependency Assessment

Results

Note: (1) (s) Indicates that the requirement

indicated supports the imple-

mentation of the requirement

being assessed.

(c) Indicates that the requirement

indicated conflicts with the

implementation of the require-

ment being assessed.

(2) Requirements 1 through 4 were not

assessed for the reasons stated in

4.1.10.

- 170 -

5: The operating system must provide for a multi-

programming environment.

8(s): The operating system must allocate resources as

a job is read into the system.

9(s): Resource allocation is performed as a job is

read into the system, except for processor

allocation.

16(s): The need for pure procedures is driven by the

need to provide for a multi-programming

environment.

19(s): The supervisor process creates one process per

job initially in support of multi-programming.

20(s): Multi-programming requires that the jobs be

scheduled.

22(s): Time slicing CPU usage facilitates multi-

programming.

34(s): Multi-programming requires that memory be

protected to prevent simultaneous allocations

of partitions.

37(s); Device handler routine facilitates the reading

of multiple job streams from different sources.

43(s): Process synchronization mechanism is used to

coordinate multi-programming.

55(s): JCL facility assists multi-programming by

delineating jobs and specifying resource

requirements.

- 171 -

65(s): The supervisor process controls multi-

programming environment.

6: Operating system must be process oriented.

10(5): The process has certain resource requirements

apart from job level requirements.

11(s): The SVC instruction support process requirements.

13(s): Most information is maintained at a process

level.

19(s): A user job begins as a process.

22(s): Process environment requires the use of a traffic

controller to achieve multi-programming.

23(s): An algorithm is required for process scheduling.

25(s): Multi-process synchronization is a basic

function required for a process environment.

26(s): Relinquishing control to the traffic controller

is a basic function of a process environment.

29(s): The naming of process is required as a means of

identification.

43(s): Process synchronization mechanism is a basic

tool for process oriented support.

46(s): The message facility is a basic means of inter-

process communication.

47(s): Message facility must be available to all user

processes.

58 (s): Dynamic process creation is a basic function for

a process environment.

- 172 -

7: Operating system must run on a machine that has two

distinct states.

11(s): User communication via SVC instruction ensures

that the user may be restricted from certain

privileged instructions.

15(s): Only certain SVC instructions are user callable.

17(s): SVC instructions explicitly executed in the

supervisor state.

62(s): User programs run in the problem state; hence,

system processes run in the supervisor state.

8: All resource requests must pass through the supervisor

process.

9(s): All resource requests must be made prior to a

job being eligible to run.

13(s): Information tables contain the information

concerning resource allocation.

27(s): Supervisor also reclaims resources when a job

has completed.

28(s): Same as 27.

30(s): Memory requests are user generated.

32(s): Dynamic memory allocation takes place through

the supervisor process.

55(s): JCL facility specifies the resources required

of a job to the supervisor process.

60(c): The user cannot dynamically allocate memory.

- 173 -

64(s): The user is restricted in the number of I/O

devices he may request.

9: System resources must be allocated to a job, prior to

the job being made eligible to run.

10:(c): There are user resources; i.e., the processor,

which are allocated at the process level.

27:(s): The same process reclaims resources upon

completion.

28:(s): Same as 27.

30:(s): Memory allocation must fall within this require-

ment.

36:(s): Device handler routine is started for each job

at this time.

55:(s): JCL facility identifies resources required of a

job.

10: A process must be ready to run prior to being allocated

a processor.

13:(s): A process's status is maintained in an informa-

tion table (PCB).

19:(c): Initially the user's job is a process.

20:(s): The traffic controller may select a ready process

only.

23(s): Ready processes must be chained into a list of

eligible processes.

25(c): A process is not ready if blocked.

- 174 -

26(c): Same as 25.

54(c): Same as 25.

11: User communication with the operating system is via SVC

instruction.

15:(c): Only certain SVC instructions are user callable.

26(s): A process relinquishes control via SVC

instruction.

46(s): A request to send a message is via SVC

instruction.

49(s): A request to read a message is via SVC

instruction.

53(s): Dynamic process creation/destruction is via SVC

instruction.

63 (s): A process can signal job completion via SVC

instruction.

12: The operating system must protect user jobs from each

other.

13:(s): Information tables contain information on jobs,

processes and resources.

18(s): Supervisor routine creates a separate environ-

ment for each job and essentially isolates it

from other jobs.

34(s): Memory is also required to be protected from

simultaneous user jobs.

36(s): The device management routine runs as a separate

process, one per device to isolate jobs.

- 175 -

37(c): The device handler routines deal with many jobs

and must isolate each one.

43(s): The P-V operations serve as a locking function

and help to insure verifiable access rights.

59(s): Dynamically created process must remain within

their process group.

13: Operating system must utilize information table to

monitor and control processing.

14(s): Dynamic allocation of system tables is required

for multi-programming environment.

23(s): Round-robin scheduling is most effectively

accomplished by chaining PCB's.

30(s): Memory allocation requires adjustment to infor-

mation tables.

32(s): Dynamic allocation of memory by the operating

system is used for tables.

35(s): Free storage blocks must be updated each time

memory is freed.

36:(s): Unit control blocks are built and maintained by

the operating system.

43:(s): P-V operations are used extensively to update

semaphores and lock resources.

46:(s): The message facility is a buffered table which

is used to pass information between processes.

- 176 -

14: System tables can be dynamically allocated and released.

32(s): Dynamic memory allocation fully supports this

requirement.

51(s): The queuing of messages requires a dynamic

allocation facility.

60(c): The user is strictly prohibited from dynamic

allocation.

15: Certain extended machine constructions are user callable.

26(s): The process may issue an SVC instruction to stop

itself.

47(s): Message facility is implemented with user

allable SVC's.

58 (s): Dynamic process creation is implemented with

user callable SVC's.

63(s): User signals completion via an SVC instruction.

16: System process routine an re-entrant and shared.

21(s): Job scheduling is a system process which must be

shared.

32:(s): The operating system maintains pure code by

dynamically allocating memory for work space

for system routines.

36(s): The device management process is a system proces

which must be shared.

61(c): User processes cannot destroy system processes.

s

- 177 -

17: Extended machine instructions are executed in the

supervisor state.

44(s): The interrupt handler must be provided to service

an SVC interrupt.

18: The supervisor process must create and delete the

environment in which a job runs.

19:(s): The supervisor initially creates one process per

job.

27:(s): This requirement deals with the destruction of

processes.

28(s): Same as 27.

58 (s): User creation of processes supplements the job

environment.

61(c): The user cannot destroy the entire job

environment.

19: Initially one process is created for each user's job.

58(s): The user process may create additional processes

to create a process group.

20: Jobs are scheduled strictly on a first come, first

served basis.

21(s): FCFS scheduling is simplistic; therefore, we can

improve system performance at some later time

if this is strictly modularized.

39(s): The fact that all input devices are dedicated

forces us to use an FCFS algorithm.

- 178 -

21: The job scheduling function must be modularized so that

improvements to the system can be easily accomplished.

37(s): In order to improve the sophistication of the

job scheduler, it would be necessary to inter-

face to a great extent with the device handler

routine.

39(s): Again for the same reason, improvements to the

job scheduler are accomplished in conjunction

with input stream handler.

55(s): JCL would be affected by improvements to the

job scheduler.

22: The process scheduler (traffic controller) must time-

slice CPU usage to achieve multi-programming.

24(s): Timer runout trap is the result of CPU usage

being exceeded.

25(c): A process may terminate while awaiting

synchronization.

26(c): A process may terminate voluntarily.

44(s): The interrupt handler processes a timer runout

and returns control to the traffic controller.

23: Ready processes are scheduled in simple round-robin

fashion by the traffic controller.

44(s): The interrupt handler gives control to the

traffic controller in order to dispatch another

process.

- 179 -

58 (c): Since processes are scheduled in this fashion

a user may desire to create more processes in

order to grab a larger time quantum.

63(s): User signals completion so that the next process

may start up.

24: A process shall be blocked, and control released to the

traffic controller, when a timer runout trap is deleted.

44(s): The interrupt handler is the means by which the

traffic controller regains control.

25: A process shall be blocked and control passed to the

traffic controller when the process must wait for

synchronization with another process.

29(s): Processes must be uniquely identifiable in order

to synchronize.

43(s): P-V operations are used system-wide for synchro-

nization, but this is directed towards

synchronization of system processes.

46(s): User synchronization can be accomplished via the

message facility.

47(s): Message facility is available to users.

54(s): A process, expecting a synchronizing message, is

blocked until it receives one.

26: A process is blocked when it relinquishes control to the

traffic controller.

- 180 -

63(s): The user must relinquish control by a specific

signal to the operating system.

27: The supervisor routine must reclaim all system resources

for a job when the job has completed.

28(c): The supervisor must also reclaim resources if a

user commits an error.

35(s): When memory is freed by direction of the

supervisor it must also re-configure.

36(s): The device handler routine is a resource that

must be reclaimed.

38(s): The devices used must be released.

44(s): A program interrupt starts things happening.

61(c): The supervisor routine must destroy all system

processes for a job which terminates.

63(s): The user must signal completion.

28: The supervisor process must reclaim all system resources

when an error condition abnormally terminates a job.

35:(s): Memory is re-configured when it is reclaimed.

36:(s): The device management routine must be reclaimed.

38(s): Devices resources must be reclaimed at this

time.

44(s): The interrupt handler signals that an error has

occurred.

61(c): The supervisor must destroy all system processes

for a terminated job.

- 181 -

29: Reference to processes within a process group is by

symbolic name.

48(s): The sending process must have a name.

49(s): The receiving process must have a name for the

message facility to operate.

58 (s): A process is given a name at creation time.

59(s): Names are unique with a partition.

30: The operating system must allocate memory for job

partitions, the size of which is specified by the user.

31(c): Memory allocation is limited to increments of

2K blocks.

32(c): Memory may also be allocated by the system.

33(s): A list of free areas is updated each time a

partition is freed.

55(s): A simplified JCL is available for the user to

specify his memory requirements.

59(c): Memory partition requested must be large enough

for all dynamically created processed.

60(c): The user cannot dynamically allocate memory.

31: Memory

32(c):

33(s):

34 (s):

is allocated to a job in contiguous 2K blocks.

The operating system does not need memory

allocated on 2K blocks since it has its own

protection scheme.

Best-Fit algorithm memorizes partition waste.

Allocation in 2K blocks allows hardware

protection by the IBM 360 system.

- 182 -

35(s): Memory is re-configured whenever it is freed.

43(s): P-V operations can serve as a lock on a database.

55(s): The user specifies memory requirements using JCL.

32: Operating system may dynamically allocate memory to

itself for system processes.

34(s): System workspaces must be protected the same as

user work spaces.

35(s): Free areas are collapsed for system processes.

36(s): Device management system requires memory for its

own tables.

51(s): Message queuing facility requires memory.

60(c): The user cannot dynamically allocate memory.

33: Memory is allocated using a best-fit algorithm.

35(s): Memory is reconfigured when deallocated to

insure that the largest contiguous blocks are

available.

55(s): User must specify memory requirements on JCL.

34: Memory must be protected to prevent the simultaneous

allocation of a partition to multiple jobs.

43:(s): The P-V operation is used extensively as a

lock on a database.

44:(s): The interrupt handler is provided as a means

of detecting out-of-bounds memory requests.

59(s): Dynamically created processes must run in the

partition of the parent job which further

- 183 -

protects memory.

60(s): The user is prevented from allocating additional

memory.

35: Free storage areas are collapsed into contiguous blocks

of memory whenever a partition is freed.

63:(s): The user must signal completion to the operating

system so that partition can be freed.

36: Operating system must supply a device management system,

which runs as a separate process, one per device.

37(s): Device handler must be included within device

management system.

38(s): Since devices are dedicated, only one process

per device is required.

39(s): These constitute the specific requirements of

the device handler routine.

40(s): Same as above.

41(s): Since I/O devices operate via multiplexor

channel there is not need for I/O traffic

controller.

42(s): Device management system must enable the user

to supply his own handling routines.

43(s): P-V operation is used to lock devices.

44(s): P-V plus limited interrupt facility provide I/O

interface.

- 184 -

37: Device handler routines must support multiple job

streams from card readers.

38 (s): Dedicated devices enable sequential processing

and simplify designation of job streams.

39(s): A card reader represents an input stream; hence,

multiple card readers represent multiple job

streams.

41(s): Multiplexed channels enable simultaneous servicing

of multiple devices.

43(s): P-V operations are used to lock devices.

56:(s): The device handler must be able to distinguish

among user decks and data cards.

38: All devices are dedicated.

39:(s): Since devices are dedicated, a card reader

represents an input stream.

40(s): Since devices are dedicated, a line printer

represents an output stream.

41(s): Multiplexed channel is used for dedicated

service.

42(c): Non-standard devices may not necessarily be

dedicated.

43(s): P-V operations are used to lock devices.

64(s): User must specify which devices are being used

by his program.

39: The device handler routine supports one card reader per

input stream.

- 185 -

40(c): The output stream conversely supports one

line printer.

41(s): Multiplexing eliminates the need for an I/O

traffic controller.

42(c): A user may specify his own routine.

64(s): The user must designate the card reader to be

used.

40: Device handler must support one line printer per output

stream.

41(s): Multiplexing eliminates the need for an I/O

traffic controller.

42(s): A user can supply his own routines.

64(s): The user must specify the line printer to be

used.

41: Input/output devices operate via multiplexor channel.

42(c): The user may provide his own routines and I/O

interface.

43(s): The P-V operation can be used to lock a device.

56(s): Input data for a user's program must be accepted

via multiplex or channel.

42: The user can provide his own routine for non-standard

devices.

64: The user must specify the use of an exceptional

device to the system via JCL.

- 186 -

43: A process synchronization mechanism must be provided.

45(s): The synchronization mechanism is used as the

basis for process support and, therefore, is

not available to users.

44: An interrupt handler must be provided.

63(s): A user signals completion via SVC interrupt.

46: A message facility must be provided for user processes.

47:(s): The message facility is available to all

processes.

48:(s): Requirements for sending a message.

49:(s): Requirements for receiving a message.

50:(s): This contains the message length requirement.

51:(s): Messages may be queued in order to be read by a

process.

52:(s): Messages are released when a process terminates.

53:(s): The message facility has no receipt mechanism.

54:(s): Messages can be used for process synchronization.

48: The name of the sending process must be prefixed to a

message.

49(s): The receiving message must be able to read from

whom the message came.

53(s): The message facility does not receipt for

message transfer.

54(s): The message facility can be used for one-to-one

process synchronization.

- 187 -

49: The receiving process must read the name and text from

the originator.

51(c): The queuing process makes it essential that

the message receiver be able to tell from

whence the message came.

53(c): Messages are not receipted for.

54(c): A process awaiting synchronization must be able

to determine that the message is from the

proper source.

50: Messages are of an arbitrary, yet specified length.

51(s): Since messages may vary in length, queuing them

is the most simplistic means of dealing with

the variable length.

52: All messages are released when a process terminates.

53(s): The sending process may have been terminated

before the receiving process read the message.

55: User programs utilize a simplified job control language.

60:(s): User is limited to the amount of memory

specified in his JCL.

64(s): The user must specify his input/output device

requirements utilizing JCL statements.

56: The operating system must accept input data from the

user's job stream.

- 188 -

65:(s): The supervisor process controls the loading of

the user's deck into the machine.

57: The supervisor process must load the user-supplied

object deck into the user partition.

60:(s): Once the user's deck is loaded, he is stuck

with whatever memory partition he requested.

65:(s): The supervisor process handles the loading

function.

58: The user process may dynamically create and destroy

additional processes.

59(s): Dynamically created processes are limited to

the user's partition.

60(c): The user cannot destroy system processes.

61(s): User-created processes are limited to problem

state.

59: Dynamically created processes run in the same partition

as the parent job.

60:(s): The user process cannot create processes which

also expand its memory requirements.

62:(s): User processes all run to problem state.

61: User processes cannot destroy system processes within

the same process group.

62:(s): Since all user processes run in the problem

state, and system processes in the supervisor

- 189 -

state, we are protected.

63: The user process must signal completion of the process

to the operating system.

65: The supervisor process now takes over to re-

claim resources or to signal the traffic

controller.

- 190 -

APPENDIX E

Results of the Interactive Decomposition

Package for the First Iteration

a q A j A 0 J- C' t; K .J

G ~ ~ ~ ~ T 6T 2" 6 8&E T 9

ACE A92 AtrE ai ET jy T 2*

A Ar A T9
ay9 Etr lt L60t Ai t:E 0l V 9 A E a t

tr9::r t * Lt i a;trVA6E~ tE 09E AS /9 E L

A tVtA aEy T P A 6tr a~t s' 0'

A 9 A3^6 ,7 A9 At5t A~/t. aE T ATE A T a§j '
A 9 29 A Y9A 9G A GE A ALTOE

A 09

A 9 69 L VEE 9
6A 7 A

A: 9 Ax PP 'SE ;

A-9

ApCr. A7 A9 V

A r

Ay 9

A 99 A2 A Y%: S

9 /,*A 6£
1 t99n99 A3 P

A p9 Afl9 AnG '

A 9fy 'Et (F E A tEA

A AT T 6 IS

68 ty dE OT 9 4

tt 6

9t t nI- A A9

S '6 E 1T '9

A 9 Ft 3Z A~V Z Q. AQeit 1 4

Ar 9i (,LI T Q' A9 T

: E T RA F

9 V 9 9 t. 69

0 6 Aa T6 A: T A C6

TSC itT 9T1 i" T

199
A L6T 9T I6 F8

71110N 1,40u.::l
SNIl -q I*ii".10i'D B]i

\n 0N

-16T -

(6

(9

(9

(6

(6

(t I

(. 6
(6 V

(9 I
(9

(6

(0 T

T.

T t;
0t

tk

6E*$~

SE

ST

TE

(' T

(TT

, (S) El1.70C)\

- 192

47 /

.9

50
51.

536

56. *'

4)

5

9>

7))

9)

~10)
59
60

:. .

6 3

6 6'

29:> 6
£116

14v
46,
46
10

5,
37, 5

60,
6

I5'

1. 6

:16 .
p,

11,

15 y

3

25 3

4, J

6'5

:1. 41
1 4

18?
34 5

38
56

25 46
49 53C.
-46 y 483y

cr4
51

46!, 49v 507

4 9

46s'
9, S

657

3y

59

**3

39/

57Fy

487

34
325

61 9

.26

63 1"

49
130 v

3 4 0 4

19 '23

'.5'

4 55 y

62
575Y

595' 60' 61 .

58 E 59 !

44Y 65'

6,058)EU F A (3 EU N C) i)

IF. C)

F ~I3 C) C.

.11 :13 III' t. p:~ ~' EU U N C) U ~;
C

REGC

.H p (O ... L...C N N DES - A E 0
- 4 66

EN R m CJ) :

- 193

NODES --AVE BEEN RENA AI 3 F OLLCS

OL..D NC 0. NEIW NO.

5 J1.

.4

:1.0 6
117
12 8
13 9
14 10
15 11
15
116 :.2-.

.7 113

:19 15

if1 I'l)20 16
21 17

2 4 20

29 25
30 2 6

37 3 3

38 34
39 35.3

4:. 37542 36

4~ 3 9

4 1
4 6 4 2
4 7 4 3
4 843

4 i4

50 46

194 -

TVTUS SAVED IN FIE

RECL. U SER I N C0MFLETE)

PRECL USE fa L U RI N G P:E R FO 0RM ED AND D T I.STA iNCE M AT IF. 1, X C 0M P Tj WfT1 P I = 1 1F,
C LUS TR NO C y.T A K E N A I N .GL E N ODE S. +

RE

1) I
1j)

1)
1)
1)
1)

:1)

1)

1)
:1)

1)
1)

21

231

4
25

7
29 U

34

4 1
40 K 1)

41(1)

43
44(1)

5 1)

5 ..51 1)

33(1)

J4 (.

K :1.)

a 1

%JI 1)6 1

1.42J

43

45

46

4 9
50

51

4

J J

56

5
5 9
60
61

F*1IL..E NAMEI

59
60

61A *

62;
63. E
64

:: 0)SA12

19 K

1

I::
.7

[7~

Ii
L

Ii

:1.)

I.
1.
1.)

I)

1)
1)
:1.

:1.
:1.
:1.
:1.
1)
1)
:1.

23

.24

25

C ..UST ER (i .) 0 BJECITS10

- 195 -

DIN
.PRE ~CLUST. ~ 1ERI fNGC O)M P 1. LE)

PR ECLT. R I IN F P F 0 R M E D ANl I S 'TA N C
C LU S*f N 4OT TKEN AS SINLE N C LDE S

MATPIX COMPUTED WITH P' 1'

C3 I(1 M A

SI MI l LAR 1'

RE C

ENT PER F CE NT A 1
80.K

MATRIX fCPU ITC

: A R AMETER

IIIAL PARTITIO 1W C.UTED T H

SY C) U WANT TO
NO +

RE..

(N C)OB l.CTS

:1. l) 5
3J 1 51.

43 54

1.2
:39
1is

5'5

6

1.6
4 1

2 4

9

56

452

- 1L5)

1.4
X- I

. ()
58E-

0
24

1

40 5

- - 30

4 9 5(2K

P =8000 %.u

..........

PI T THE TREE

REC:)L
HCM2
fE S I:T : PR ITIO N
D] Y IAI. NT TO

RE+

(. .N. ..JECT.

1 (14) 1
38

2 (:14) 2
4

3- (2'*) 3 Y

.4 (1.4) 4

51
(4) 14

)(9 25
7 1) .41
8 (3 52

(PRECLU fJTRIF C' L UTF N G

.
37
6

13
435
55
23
42

12

5-4

9
56
24
-44

16
60
11
59

10 (
58

45

17 32 3 3 34 35 36

L5 18 19 20 21 22

26 27 28 2 30 3(1

46 47 48E .49 5 0

CO M PL. ET

E C)L U S 'TEING PRFOR ME A PE:.ND DI L STA R AN C E MATI A
CUU ER NT T)1AN AS S% iNL E NODES

c COM FUTE E WI P I ::= 1p

REQ

U!IE ji J'T PR IIO MEASUREf
DO YOU WA4PNT TO P:,RI1NJT TH E

REI i

C...USTEIR (NO) BJEC(LTS

. (.1) :. 12 16 17 33 39 41 52 53

21 22 2.
3 (16....5..

1 4

1.

2

40

- 196

MEASURFE 0.577
PRF' *INM T TH -IE. TR*1:EET

1.1:1'9
TREE

1 1 2 . I0

13D

%J

- 197 -

.8 H . II.I..JJ~1 1. 11Li9

DO YOU 1 1 PAN TO: PINT: THE2 33F!EEPN

24 4

Ilk

16- ~
17 4 ...Nk
1 2I. .

2 , 1k

5

4

27I

2 9 Al.. ... A

55

3 0 ,

2 k*JI... v

9. I 4

48(S

4

4'2
50

6
19

51

~20C
40
59~ (

""?7

ii

11

I I

I I

I I

- --* I -

- 198 -

... ,... ..- - -

...-

------ .-- - -

.... -.. -- - -. -.. *- "

.... -.. - --.--.

........ -- - - -

.,..... . t- - -.. . - I

......- 4

I I

I I
I I

'9 i LL I,~ 1 L0ii .1.8 J E L, I

01 '%)

- I S .. 4 . /

:0,250

"D8,17

74 C

f44 k

51")

L 1 .

051

--- 18.500

- 1.)59 :1

145.9 17.
1 093000

0 CI--- 8 .050

-51.6

-- 64 06

.. 3

+79

0+.4 ,.,n

---.1.68 :.67' *.1K 3<

. .:;

0 5 0, :.

.. C;:, .. '!

-- 66 3 :S'I II'J

. +

I

I

- 199 -

RE(

C::LUTJ.1ER (NO)OB.JECTVS

1 (11) 1 8 12 16 17 33 39 41 52 53
61

2 (17) 2 3 6
21 22 25

(16) 4 5 9
46 47 51

4 (4) 14 23 24
5 (7) 32 ~34 35
6 (6) 42 44 45

40
1 i)

55
5 -7
36
48

11
43

56

38
49

13
54

58

37
50

15
59
28

60(

18 19 2)

29 3O 31

STRENGTH O 1. 9864!
COUPtl:L 1:NG : 0) .87-4
MEAURE: 1.1 1 9.

3v677y J11y13,y15 1 y 9,y20,y21 22 25!,40 43 54!,59,4 5 9 10 26 7 2y

4

4.. b Eli

29 30,3:146 47,5 1,~ 55 56 ,58y.-14 23 24 ,57,32,34 ,35:,36,38',37 /60 ,4*2 4'4,

45,84,0

TI-11E (1 FOLLOWING NC
S 3 4

14 .1 5 .18

37 38 40
49 5 51 5

OL)D 1:, NO NEW N I,

:. 1
01 2

.1. 4

4.

5:3:.

HA)VE BEEN REMVE:
6 9 10

2(0 21. 22 3
30 31. 32 34

3 4 45 46
5j5 56 57" 518.)

RENIAMED AS FOLIL.WS

EVAL

11 J
24
35
47
5*9

.1.3

36
48
60

- 200 -

(P R UECLUST E RING COMFI. ETE)

NO F C L U ST ER I".1N G PERORMED D . ISTAN MA N C 1o M (- -)T RIl X C 0 M P TU Er WITH =1 H

SIMILARITY MATRIX (xCO'MIUTED.*i

REQ

ENTER F'PERCENTA GE PARAME TER
TU=)

I1NITIA 1-1 1 11:.1 I,'' W9 CiDMPUTEDi ITH Pv :.-: F ~ *oOk

,--I C.- Ml'3
fEST F A R T C ION M EA S U RE 0.091
OYOU WANT T PRINT THETREE?

NOjf.

CLUSTER (NO) C)B JL:cTS

1 (1 1 2 3 4 5 6 ' 8 9 10
11

E'.A I I

DSTRENGH
COUPL ING +
M E A ISU

0 . 0909,
0 . 0 00

- 201 -

["%E 0 '0

ENTER FILE NAME1
SA i1 2

A(D J A C E N C Y M ATRI X R ED fROM ivi FILE S0SA12

RE U
D'1EN 0

51 15, 561 7 5 ,. 14 9 23 24 357 ,32 34 y35 y 36 38 37, 60 -42 44 45 48, 49)50/

THE FOLLOWING NODES
1. 4 5 8

273 24 26 27
34 35 36 37)
46 47 48 49
517 58 60 61

HAVE B EEN
9 10

28 29
38 33,9
5() 51

RE MO V ED:
12 14
30 31
41 42
52.. 53)

NODES H A VE B E E N
OLD NC. NEW NO.

2 1

4
1:1.*

1J

13 6
:1.5 7
18 8
19 9
20J 10
21 11

40 1.4
43 15
341

59 1

R E N AiiD A S FOLLOWS:

16 17
32 33
.44 45
55 56

- 202 -

RE 0
1111'.1. MI

(F::ECLUSTERING COMPLETE)

NO P RECLUSTERI NG PERFORMED 1 DISTANCE MATRIX COMFUTED WITH P=

RE (E

SIMNILA~RITY MATRIX COMPUTED.

ENTER PERCENTAGE1H PARAMETER:
80.)

INITIAL PtARTITION COMPUTED WITH P = 80 . 00 %

I 3
.BEST P'ARTITION MEASURE: 0.448

D0 You WiN TO P RINT THE REET
NO

CL.LUSTf ER (NO) 0 BJECTS

6)
(3)

STR1%E N GTHF
uIE u E L N G
i viE(3-SUR E

3 7
4 5

10 14

9 J1.1 1.3 15 1.6
6 12 17

0 .8857 v
0.437 5

0 4 4.

- 203 -

FE C)I

E F F .LE N A M E

DJA C E NCY MAT R I X RE AD FR0 M FI L E SOSA12

R' 1: C4

1 , 12v 16y 17, 33p 39, 41 y 52 53! 61, 2y 36 y 7' y11 y 13y 15, 18, 19, 2021 v 22

40Y43,54y5,9 14,23, 24,57,32w 34,3536,38337960,42744,4574874950/

THE FOLLOWING NODES HAVE BEEN RVEMV ED+
1 2 3 6 7 8 1.1 1.2 13 .1.4

15 16 17 18 19 20 21 22 23 24
25 32 33 34 35 36 37 38 39 40
41 42 43 44 45 48 49 50 52 53
54 57 59 60 61

NODuES' HAV E F BEi: EN RENAMED A F 0LOWI... .) W S
C) L D No. NE 1W N 0

4 1

93
4

9

31 10

51 :13
14
15
816

- 204 -

RE (.) 0
DIM

PF'RECLUSTERING COMPLETE)

N3 RECLUTERI NG PERFORMED DI STANC E MATR IX COMPUTED WI TH P 1

SI ILARITY MATRIX COMPUTED.

RE 0
I NP A

ENTER PERCENTAGE PARAMETER :

INITIAL PARTI*TION COMPiUTiED W1IH P = 8.()00 %.

RE 0

BEST PARTITION MEASURE 0. 449

DO YOU WANT TO PR.I.NT THE TRE E?
NO

RE Q
PL

CLUS tJ %TE R (N0 OBJECT.1'*S3

1. (13) 1 2 3
12~ 13 15

2 (3) 9 14 16

4 5 ~ ;:' 8 :1 0 :1 1

0.57%69,

0 :.1282
0 4-49.

IRE C1

.'*S R l ISTRENGTH:

- 205 -

R E

EN- ER F IL E N A M E
(SO0SA 12

ADJACENCYiMAT*f*RIX READ FROM FILE SOSA12

RE 0
D[EI F, N0

13 812 16y17 33F39P41Y52 53y61 2v3y67113518920 y215 X2225

440443754,59,45y9y10,2642728,2930,31p46,47y51P55y56y58y3234 35 36y38y

3'7,60,42,44y45y48,49, 50/

THE F*OLLOWING NODES

1 :1

34
44
~54

~1225
-35 5

55

3
.1 3

26

36
46
56

HA o V E B E E N

NO D 11 ES HAVE' BEEN
O3L.D N0. NEW4 N. I

14
23

PE TR Pi N
KF' F f'E l C ... U '%. El: -, I N (o C -* ' ... LET E

PRE CL. U ST ER I j NG P F ER FO R M ED AND I I : ST A N CI:'-"
CLUSTERTS NOT TKEN A S SINGLE ND E

13 Sl J .
M fA TRIX 1: ' CC)MPUTED IT Ill FH P : 1?

SIMILARITYA
31LNIL~RI f ~ 1 I (C()j/ :*tiT l11

RE Ci
INPAuj:

ENTE C: El U ~ (3 El 1:: ~ j:~ N El F 1:

I ITI. . 1 P AIRTITI COM T 1' E IC W.I T H P

clCM3
CUREN ' : PRCL..USTFER HING4C HA O JNL*.Y C)NE

ILI TO1DO I.

= 0C () ()

4
15

47
5 8

5
16
.28
33
48
59

6
17
29

39
49

60

8

19

41.
51

9
20
:32

42
52 :

-7

:18
30
4 ()
50
61

10
21
33
43
5 %-3

R ENM)MED 1 A S

- 206 -

ENTER FILE NAME;:
SOA1

FR 0OM F* ILE0 SOSA12

R p a:
REQ:*

1819p20p 21' ,222 25 p40,43 54,59p 4,5,9y

1026 2728 y29 y30 31 46y47 51 555 ,56 y58

1 4 p23 924 p57 p42 244 p45 ,48 ,'49: 950/

THF FOL.LW IANG N0D ES
> 3 4

3.:1.

4-7I
5. 77

13 13

22 4

48 .49

VE BEN
5 -

15 16
-5 >

40 41.
50 51

42

.7

17

53 5

9 :. 0

19 20
c 29 30
4 55 46
j4 55j 56

58 59 61

0L.D) NO. NEW NO.
NM ED A S

35
36

60)

ADJA)C ENMCY M ATRIlX REFAD

- 207 -

RE (i

(FRECLU STERIN G COMPLETE)

PRECLUSTERING PERFORMED A ND DI:STA)NCE MAT R I X COMFUTEI WITH P = 1
CLUSTERS NOT TAKEN AS SINGLE NOIE.

REQC

SIMILARITY MATRIX COMPUTED.

REC)
1 N FP A

ENTER PERCENTAGCE PARAMETER'
S 0

INITIAL PAR'FkTITION COMPU:T.fl:ED WITH P =80.00 %

REQi

BEST PARTION MEA SURE 0 . 619
D 0 Y OU.J 4 W A NT TO PRIl1NT T H E TRp EE

N C

REOi
PCL

CLI..USTER (N0) 0BJEI:-CTS

... (7) 1 5 2 3 4 6 7

RE:~
E'JAL..

CLOJPL IN
ME: A S U RE %

0 6190,

0 . 0 0) 00
.6 9.

- 208 -

RE0Q

ENE FILE NAME*,
NTS' SA12 .flA

5 40 7 43 , 5.4 y 59 -4 , 5 9 Y 10 y 26 , 27 y 28 29 30 31 ,46,47 5.1 y 55 y 56 53

14,.2324,57 ,32 34y35,36,3,37y60/

TFIE FDLLWING NODES HAVE-' BEEN
:1

2 1

.41
57.

4
58 j

33
46

4
14
24
34

47

5
15
25

35
51

.6:16

3 6

52

R*:EM0V E D

17

53

8)

18

5.4

9
:19
29

55.

10(
20
30
40
56

NDE3 HiVE BEEN
LDNO. NEW NO.

EN A MED AS (F 0L LO W S %

45

49
50

ADJAENCYMATRIX READ

59 60 61

FROM F:'.LIE-

- 209 -

(F'RECIL U TE IN 0 CO0M PLE. TIE

F: 'E*CLtJS'TIFR [NG F IRFORMED AND DI1STANCE MARIuX COMFuTED WITH F. ,

CL..US%:)TERS NOT TAKiEN A~S SINGLE NOI*ESc%,

IREQ

REQ)
IN 1:1 ()

EN TER PE R CENTA G E PA R AMET E R

I[N ITVIAL F1(*iRT. lYE OI.N (CO(MFU*TE.C WIT P.. sj2o Vu%00 %.

Ri E (A

J:3.S T l'AR TI T ION ME(-)%S)URE.; 0,400

:. (6) 1. 2 3 4 5

- 210 -

ET I L NM E F L 0f

S 2 :1. 7, 33, 359, -4:1 52 53 6:1/

3 701/32 59

18 20 40/

14y3 24 57/

32 34 35736 37 38 -) 60/

42 44y.45v 48Y 49,50/

4 5,9:1.0,26,27'28-29 31. v46 y47v51 56/

CUT..E N..)BJCT

C~ L. L! 53T E Fl, 11 0~ 1-3 JZ i - f- -I-.:I

1 (11) 1 8 12 16 1.7 33 39 41. 52 53

2 6)

3(6)
2

3
4 (3) 18 20

5 4) 1.4 23

') ~32 34

7 (6N 42 44
(13) 4 5

47 5:1

(3) 3 5

15i

40
24
35

45
9

57
36
48
1. 0

21.

37
49
26

25 43 54
59

38 60
5
27 28 29 3:1. 46

- 211 -

L ,1 8 13 1: T~ '. F: N
L. I.NK S B ETWlEE.N

L..INKS11 BETWE.EN

t-!NNE ,1

L IKS4BET WEEI:*N 1. & 2~CI ... U %S% Fr

:1.6 6
39 - 2
39 --.. 2 1

61 59

CI I... U T TI: l: c

cI... U IS ~T FH I.-.
CLSTERS

B J. 4rF:. 2 -.. 5~5

CL IU ST .R S
0 -32

16. 35:1 **7.... 3

33 32
33 34

33 -.. 35
33 ---. 3 '7
39 --- 32
39 ---. 34
39 37
52 -- 3 :.:"

CSTERS: I;

I. ---- 4

. - 5

5 96

CLUSTERS
:1. 30
8 -- 30

.... 55
39 -- 3

1. 9 1-

PRK

:1. 3

1 4

.1 4

:1. & 5

1 & 6

1. &.3

- 212 -

6 22

54 ..-. 7

54 -1:1.

CL..U STER- F-S

19 40

:1.5 :J. 4
54 -. 1454 .. !*A

LINKS BETW t

L IK3 BET WEE M

IN1S C IFE w B E:E: N

LINKS3 BETWEEN

LINK BFETW E E N

42
6 -- 50

21. ---. 42

2:1. 5 0

2 -- 44
25- 45
43 --. 42

2 --- 9

54 -- 56

54 -55

13.-- 40

59 II..U I-- 40.

59 --. 2 :3

N B8 E T 4 E FE: N C ST E
NON E4

:2 & 6

2 & 7

: '? 8

3 & 4

3 & 5

3 &i 6

2 4

2 &5

LIK BETW14E EN

LITNK B-1 3E-TW lE E.N

- 213 -

0 35 i 7
42

L]NSBEKTWEEN CLUSTERS
L.. i. ~i 1. ~ il 7 ... 4j 2

9 -- :1.
L TNKS11 BETWEE1.*N CL.U ST ER S

3 - 58

1..IN MKS . ETJW EE N C!L.U ST ER S
40 - 23
40 -24

1I NI B IET WE E N CL. U ST ER R S
40 -- 32

LI1 NK1 B iE It T W E E N CLU. UST E R S
N0 NE .,

L if.NKS BETWEEl N CiL.U ST*ER i:

40 --- 30

LI N I ET EE 1 V *- 1r rN CI... U *T FZ E-

24 -3

24 -Ito 34

L Il Nij S BE TW L 1. E N C LUST E T
NONE.

L1I.NKS i: .. ~ BETWEEN CLU..~STRS F
23 -~ 4

23 (-- 35

23 --- 53

2:4.. 4

24 -.. 3:1

LI:NKS BET--WEEN C LUSTR S' ' :1

LI NKS . l BE.:TWEEN C LU ST E R S

NC)NE.

4 &; 5;

4 6

4 7

4 &, 5

4 & 9

5 6) 6

5 ' 7

5 E 8

5 &9

6 87

- 214 -

I141:,:NK Sf3 1f: F , f 1fEf:E N

INKIS ETI' WE I N 1:f 1: N
NONE ,

32 --. 28B
60 -- 4
60 - 5:1.

CLI..UST R 53,1:1-.

L..I N KS1 BETWEE1f:N JCLUSTERS p
-42 9

42 --- 46

-4 * - 47:'
I... ~ ~ 4 :..: NKfi P ff1'I1f: f

LN K 1\E

NAMf%* BE til 1:, E I.lf NCL..USTER 1f p
2 --- 55

56 30

56.- i-- 55

6& 8

6 9

7) % P

78 9

0 9

1f: l 1I

- 215 -

APPENDIX F

Main Subproblems Resulting From The

First Iteration of The Decomposition Analysis

Note: (11) The number in parenthesis indicates

the number of interdependicies

identified for the requirement.

- 216 -

Main Subproblem 1: Multi-programming Support Functions:

5 (11): Operating system must provide a multi-program-

ming environment.

12 (7): Operating system must protect user jobs from

each other.

16 (5): System process routines are re-entrant and

shared.

20 (4): Jobs are scheduled strictly on a first-come,

first-served basis.

21 (5): Job scheduling function must be modularized so

that improvements to the system can be easily

accomplished.

37 (9): Device handler routines must support multiple

job streams from card readers.

43 (12): P-V mechanism must be provided.

45 (1): P-V operations are available only to system

processes.

56 (3): Operating system must accept input data from t

user's job stream.

57 (2): Supervisor process must load the user's progra

65 (4): There exists one supervisor process per job

stream.

he

m.

Main Subproblem 2: Process Management Functions:

M5 2A: Process Creation and Scheduling.

6 (14): The operating system must be process oriented.

- 217 -

10 (9); A process must be ready to run prior to being

allocated to a processor.

19 (5): Initially one process is created for each

user's job.

23 (7): Ready processes are scheduled in simple round-

robin fashion.

25 (8): A process shall be blacked while awaiting

synchronization with another process.

29 (6): Reference to a process is by symbolic name.

47 (4): The message facility must be accessible to

all processes.

58 (10): The user process may dynamically create and

destroy other user processes.

MS 2-B Process/Operating System Interface:

7 (4): The operating system must run a machine that

has two states.

11 (8): User communication with the operating system

is via SVC instruction.

15 (6): SVC instructions are user callable.

17 (2): SVC instructions are executed in the super-

visor state.

26 (6): A process shall be blocked when it specifi-

cally relinquishes control to the process

scheduler.

User processes must schedule completion.63 (8) :

- 218 -

MS 2-C Process Time-Slicing:

27 (6): The traffic controller must time-slice CPU

usage to achieve multi-programming.

24 (2): A process shall be blocked when a timer run-

out trap is detected.

44 (10): An interrupt handler must be provided.

Main Subproblem 3: Resource and Memory Management Functions:

MS 3-A Resource Allocation:

8 (10): All resource requests must pass through the

supervisor.

9 (8): System resources must be allocated to a job,

prior to the job being made eligible to run.

13 (12): The operating system must utilize information

tables to monitor and control processing.

14 (4): System tables can be dynamically allocated

and released.

30 (9): The operating system must allocate memory for

job partitions the size of which is

specified by the user.

31 C 7): Memory is allocated in 2K blocks.

32 (11): Operating system must dynamically allocate

memory for itself.

33 (4): Memory is allocated using a best-fit algo-

rithm.

35 (7): Free storage areas are collapsed into

continguous blocks of memory whenever a

- 219 -

partition is freed.

50 (2): Messages are of an arbitrary yet specified

length.

51 (5): Any number of messages may be queued.

60 (9): User processes cannot dynamically allocate

memory.

MS 3-B Protection:

34 (9): Memory must be protected to prevent the

simultaneous allocation of a partition to

multiple jobs.

59 (7): Dynamically created processes must run in the

same partition as the parent job.

62 (4): The user processes run in the problem state.

Main Subproblem 4: Supervisor Process:

18 (6): Supervisor process must create and delete

the environment in which a job runs.

27 (10): Supervisor routine must reclaim all system

resources when a job has completed.

28 (9): Supervisor process must reclaim all system

resources when an error condition abnormally

terminates a job.

61 (6): User cannot destroy system process within

the same process group.

Main Subproblem 5: Device Management Functions:

36 (16); Operating system must supply a device manage-

- 220 -

ment routine.

38 (10); All devices are allocated.

39 (9); Device handler routine supports one card

reader/input stream.

40 (6): Device handler must support one line printer/

output stream.

41 (8): I/O devices operate via multiplexor channel.

42 (7): The user can provide his own routines for

non-standard devices.

64 (6): The user's job can reference 1 input, 1 output,

1 exceptional type of device.

Main Subproblem 6: Message Facility:

46 (12): A message facility must be provided.

48 (5): The name of the sending process must be pre-

fixed to a message.

49 (7): The receiving process must read the name and

text of a message.

52 (2): All messages are released when a process

terminates.

53 (4): The receiver of a message may destroy the

message without acknowledgement.

54 (5): If no messages are available to a process which

expects one, it gets blocked.

- 221 -

APPENDIX G

Final Requirements Definition

- 222 -

I. Design: Philosophy

1. The operating system must be simple, implementing

a basic system nucleus.

DEFINITION: The operating system is to be simple

in the sense that it is to implement only those

features most essential for learning the funda-

mentals of the operating system. Therefore, the

system is to implement a basic system nucleus

to include the following features:

--- Multi-programming;

--- Basic multi-programming support;

--- Dynamic memory allocation;

--- Device management;

--- Simple top level supervisor; and

--- Traffic control.

IMPLICATIONSFOR DESIGN: The nucleus does not

include the following:

--- language processors;

--- utility programs;

--- spooling;

--- file systems;

--- application packages;

--- debugging facilities; and

--- subroutine libraries.

2. The operating system must be designed as a peda-

gocial tool.

- 223 -

DEFINITION: Since the operating system is to be

used as an instructional tool, simplicity and

easy identification of the major functions are

the objectives of the design. As previously

described, the heirarchical operating system

structure enables:

--- easy identification of the relevant sections

for processor management, memory management,

and device management; and

--- identification of the well-defined inter-

faces between the various functional

section.

IMPLICATIONS FOR DESIGN: The design concepts of

extended machine instructions and heirarchical

operating system structure have been selected;

as the optimum method of satisfying the design

objective.

Also the pedagocial clarity of the operating

system is preferred to performance.

3. The operating system must be process oriented.

DEFINITION: The requirement is vague as it

stands, yet it recognizes the fact that there

are certain requirements necessary to support a

process. The following entities exist within

the system:

--- job stream: sequential;

- 224 -

--- job: collection of activities needed to do

the work required;

process group: processes belonging to the

same job; and

process: a system-created entity which is

the smallest computational entity with which

the system must deal.

IMPLICATIONS FOR DESIGN: Therefore, the opera-

ting system must provide certain basic functions

by the extended machine including;

--- P-V operations;

--- basic multi-processing support; and

--- traffic controlling.

The software functions can be thought of as being

executed in the same way as hardware instructions.

Again, the basic functions represent what the

operating system must accomplish; the extended

machine implements the requirements.

II. Design Constraints

4. The operating system must be small; occupying

fewer than 2500 cards of assembly language state-

ments.

DEFINITION: It was not clear from the system

description that the requirement occurred "post

hoc, ergo propter hoc".

If, in fact, this was a design constraint

then it must be analyzed in conjunction with the

- 225 -

requirements for simplicity and a basic nucleus.

Clearly, adding more simplistic capabilities to

the system increases the number of assembly

language statements and at some point, would

conflict. It was assumed that since the actual

operating system deck 2500 that this require-

ment was not significant.

5. The operating system is to be implemented

utilizing IBM System/360 hardware.

DEFINITION: This simple requirement has far-

reaching significance for the design; specifi-

cally, the hardware constraint has implications

for the following functions:

--- IBM/360 is a two state machine;

(problem, supervisor states identified)

--- Protection is provided in 2K blocks;

(protection must be provided to match memory,

allocation is in 2K blocks)

--- Interrupt mechanisms are hardware functions

which dictate what sort of interrupts are

recognized and how they are processed.

IMPLICATIONS FOR DESIGN: Since the guidelines

for defining requirements called for indepen-

dence among requirements, it was not clear if

the implication of the constraint needed to be

stated explicitly as requirements.

- 226 -

Since the design constraints were not

assessed with the remaining design requirements,

it was decided to draft the implications of the

design constraint and to include these in the

assessment process.

6. The input/output devices are limited to card

reader for input job streams, and line printers

for output.

DEFINITION: This was a design constraint,

imposed "a priori", which limits both the

flexibility and complexity of the operating

system.

IMPLICATIONS FOR DESIGN: This requirement

reduces the variety of hardware and, therefore,

the scope of the device management functions of

the operating system. The impact of the

requirement is specifically written into

subsequent requirements.

III. Design Requirements

7. The operating system must provide for a multi-

programming environment.

DEFINITION: Multi-programming - multiple job

streams from different sources.

IMPLICATIONS FOR DESIGN: The operating system

must have the facilities for:

--- input stream interpretation - those

- 227 -

functions which delineate jobs and job steps;

--- job control - those functions of the operating

system which control the processing of a job

in the system; and

--- job scheduling - those functions which pre-

pare a job for execution.

Limitations on Multi-programming: There must

be some sort of a limit established for the

number of jobs that the operating system can

handle. In fact, the system is limited by:

1. 15 protection keys;

2. the number of I/O stream must equal the

number of devices; and

3. the amount of memory available.

8. The operating system must run on a machine that

has two distinct states.

DEFINITION: The two states are problem state

and supervisor state. This requirement implies

first that user programs execute in the problem

state, and second, a processor can correctly

execute privileged instructions only in the

supervisor state. Privileged instructions

include requests to:

--- change the state of the machine;

--- start I/O;

--- change the protection rights of memory; and

- 228 -

--- change the interrupt states of the machine.

Since the operating system includes the imple-

mentation of the extended machine concept,

these instructions may take advantage of the

dual state machine by making system routines

unavailable to the user and, therefore, only

certain selected routines are user callable.

IMPLICATIONS FOR DESIGN: Therefore, the

operating system must have the capability to:

--- distinguish machine state;

--- identify privileged instructions; and

--- identify user-callable extended machine

instructions.

9. All resource requests must pass through the

supervisor process.

DEFINITION: The supervisor routine is a top-

level process that establishes the environment

in which a job will execute. Initially, all

resources required by a given job are stated

explicitly on JCL cards. The supervisor routine

coordinates requests for resources prior to

creating a process for the job.

IMPLICATIONS FOR DESIGN: The tasks which the

supervisor must perform are as follows:

--- allocate memory;

--- allocate devices required;

- 229 -

--- read the user deck into his partition;

--- start user process; and

--- upon completion, reclaim all resources.

10. System resources must be allocated to a job

prior to the job being made eligible to run.

DEFINITION: The specific resources consist of

memory and input/output devices.

IMPLICATION FOR DESIGN: These resource allo-

cations are made at a job level. There are other

resources which are allocated at the process

level.

11. A process must be ready to run prior to being

allocated a processor.

DEFINITION: Resources required at the process

level consist of only the processor.

IMPLICATION FOR DESIGN: Since resource alloca-

tions are made at the process level, there must

be a traffic controller routine to create a

process-oriented environment and the system must

have some means of determining when a process is

not eligible to run.

12. User communication with the operation system is

via special call.

DEFINITION: What need has the user of communi-

cating with the operating system? Once all the

- 230 -

resources are allocated, must there by any

communication? These questions require the user

to communicate with the operating system:

--- create a process;

destroy a process;

halt job and signal supervisor;

--- find a PCB given its name;

--- read a message;

--- send a message;

start/stop process; and

abnormally terminate the job.

IMPLICATIONS FOR DESIGN: The operating system

must take action based on the user requests.

13. The operating system must protect user jobs from

each other.

DEFINITION: Protect in this sense means to

prohibit unauthorized access to memory locations.

IMPLICATIONS FOR DESIGN: For purposes of this

system, a separate supervisor process exists in

a separate process group for each job stream.

There is no communication between process of

different jobs; therefore, they essentially are

invisible to each other.

14. The operating system must utilize information

tables to monitor and control processing.

DEFINITION: The operating system must maintain

- 231 -

information on a varying number of jobs,

processes, and resources. This requirement

attempts to identify the table and thereby mini-

mize proliferation and redundancy of system

information.

IMPLICATIONS FOR DESIGN: The following informa-

tion tables exist in the sample operating system:

--- nucleus databases;

--- process control block - one per process

containing save areas, used by the system

routines for storing the status conditions,

and semaphores;

--- memory - free storage blocks;

--- processor management - message facility; and

--- device management - unit control block

stored in a permanently allocated area for

every unit.

Notice that as previously stated, the emphasis

for all transactions is at the process level;

therefore, the process control block contains

most of the system information.

15. System tables can be dynamically allocated and

released.

DEFINITION: System tables refer to those tables

built and maintained by certain system processes.

These tables include:

- 232 -

--- process control block;

--- semaphores;

--- free storage block;

message; and

unit control block.

IMPLICATIONS FOR DESIGN: The operating system

must be capable of dynamically allocating memory

to itself for these tables.

A possible deadlock could occur at the point

of a user's program which consumed all of memory;

namely by continually writing messages. The

system has no built-in limiting functions to

identify such overrun conditions.

16. Certain system routines are user callable.

DEFINITION: The nucleus routines are the SVC

instructions of the extended machine concept.

Some of the routines allow unrestricted memory

reference and, therefore, are not available to

the user.

IMPLICATIONS FOR DESIGN: When an SVC instruction

is issued, the handler routine must check to

see if the operation requested is, in fact, user-

callable.

17. System process routines are re-entrant and

shared.

- 233 -

DEFINITION: System process have only one copy

resident in the system. Therefore, they must be

efficiently shared in a multi-programming

environment. Pure procedure operates only on

variables in registers or in separate data seg-

ments associated with the job.

IMPLICATIONS FOR DESIGN: The need for pure

procedure is driven by the need for a multi-

programming environment. The system can set

locks through the P-V operations to prevent

race conditions.

18. Extended machine instructions are executed in the

supervisor state.

DEFINITION: The extended machine instructions

along with the normal hardware instructions,

comprise the nucleus of the system. SVC handler

is used to activate the extended machine

instruction and transfer between loads.

IMPLICATIONS FOR DESIGN: When an SVC instruc-

tion is issued, a supervisor call interrupt

occurs and control is transferred to SVC

handler routine. Therefore, an SVC handler

interrupt must be provided.

19. The supervisor process must schedule jobs and

prepare the jobs for execution.

DEFINITION: The supervisor routine initially

- 234 -

creates a process. The user may generate his

own processes by SVC instructions during

execution of his process group. This require-

ment deals only with establishing the USER PROG

and not with specific resource allocations.

IMPLICATIONS FOR DESIGN: This requirement is an

explicit statement of one of the functions of

the supervisor process. The following instruc-

tions apply:

a non-system process cannot stop a system

process; and

a process must be stopped prior to its being

deleted.

20. Initially one process is created for each user's

job.

DEFINITION: One process is created by the

supervisor process after all job level resources

have been allocated to the job.

IMPLICATIONS FOR DESIGN: The user must create

any additional processes desired on his own.

21. Jobs are initiated strictly on a first-come,

first-served basis.

DEFINITION: Jobs are read into the system in

the form of job streams from card readers.

Jobs are accepted into the system as long as

sufficient resources exist. Since there is no

- 235 -

spooling capability, a job cannot be copied in

the system. Once in the system, user jobs are

redefined in process groups which contend for

the processor in a multi-programming environment.

IMPLICATIONS FOR DESIGN: The supervisor process

must determine if it can schedule a job before

reading it into the system.

22. The supervisor process must be modularized so

that improvements to the system can be easily

accomplished.

DEFINITION: The system description indicated

that sophistication of job scheduling is limited

by the brevity of the implementation. There-

fore, the system could easily be extended to

provide more advanced features and facilities.

Modularization of the function was critical, not

for pedagogical clarity, but to provide for

system improvements.

IMPLICATIONS FOR DESIGN: Although modularized

design was emphasized as a design philosophy for

pedagogical clarity, it is now emphasized to

allow easy improvement. This function should be

designed incorporating interface features easily

adaptable to a system which will implement

advanced features such as spooling.

- 236 -

23. The process scheduler must time-slice CPU

usage among ready processes to achieve multi-

programming.

DEFINITION: Traffice controller resides in the

process management, lower level, and enables a

process to run until a certain time quantum has

elapsed; at which time, the process is stopped

and another started. A process is ready when it

is not blocked or waiting for the completion of

some external event such as I/O operation or for

a message from another process.

IMPLICATIONS FOR DESIGN: The traffic controller

schedules ready process in a round-robin fashion.

Interrupts must be enabled to identify when a

process:

exceeds its time quantum;

becomes blocked; and

relinquishes control to the traffic

controller to await the completion of an

external event.

24. Ready processes are scheduled in simple round-

robin fashion by the process scheduler.

DEFINITION: Round-robin scheduling means that

processors are sequentially scanned until a

ready process is found.

- 237 -

IMPLICATIONS FOR DESIGN: The traffic controller

must maintain a current list of processes from

which to select the next ready process.

25. A process must be blocked and control released

to the process scheduler when a time quantum of

50 ms is exceeded.

DEFINITION: Timer runout trap must be indicated

when a process exceeds its time quantum. By

blocking a process is meant that it is ineli-

gible to run temporarily.

IMPLICATIONS FOR DESIGN: Interrupt mechanism

must be provided to detect a time runout.

26. A process shall be blocked and control passed

to the process scheduler when the process must

wait for synchronization with another process.

DEFINITION: Multiple process creation may

require that one process await the completion of

a previous process in order to run.

IMPLICATIONS FOR DESIGN: Some mechanism (basic

primitives) must be provided for the synchroniza-

tion of processes.

27. A process shall be blocked and control passed

to the traffic controller when the process

specifically relinquishes control to the process

scheduler.

DEFINITION: A user process may actually finish

- 238 -

execution and relinquish control to the traffic

controller.

IMPLICATIONS FOR DESIGN: User process must

signal termination stop process instructions, or

abnormal termination.

28. The supervisor process must reclaim all system

resources from a job when the job has completed.

DEFINITION: Reclaimation of resources is

accomplished on a job level, since processes

only gain the use of a processor.

IMPLICATIONS FOR DESIGN: This requirement

implies successful completion of a job; there

are such things as unsuccessful completions.

The supervisor must at this point:

--- print a message on the printer;

--- destroy all processes created for or by the

user job;

--- free memory partition; and

--- move on.

A message must be available to signal successful

completion.

29. The supervisor process must reclaim all system

resources when an error condition is caused which

terminates processing for a process.

DEFINITION: An error in one user process which

reaches the supervisor level, is capable of

- 239 -

terminating processing for the entire process

group.

IMPLICATIONS FOR DESIGN:

--- certain error conditions must be defined,

remember that this system does not have

debugging facilities;

--- the supervisor must perform the same func-

tions as in the previous requirement; and

--- an error message must be provided.

30. Reference to processes within a process group

is by symbolic name.

DEFINITION: In order to communicate back and

forth user processes must be able to identify

each other. Therefore, each process is given a

name by the process that creates it.

IMPLICATIONS FOR DESIGN:

--- each process must be named by the process

creating it; and

--- each process must have a unique name field

in order to identify it.

31. The operating system must allocate memory for a

job, the size of which is to be specified by

the user.

DEFINITION: The operating system provides

routines that will allocate a block of memory

of a given size and given address alignment

- 240 -

using a best-fit algorithm.

IMPLICATIONS FOR DESIGN:

--- user must specify the job partition size

required by JCL;

the operating system must maintain a list

of storage areas, accomplished using free

storage block list; and

a queue is established for those jobs

awaiting memory.

32. Memory is allocated to a job in contiguous 2K

blocks.

DEFINITION: Partitioned allocation for user's

jobs is a simple memory requirement scheme

which facilitates multi-programming. A block is

a uniquely named group of words whose addresses

are contiguous.

IMPLICATIONS FOR DESIGN:

the user must specify memory requirements in

increments of 2K; and

the operating system should allocate memory

such that the amount of wasted memory is

minimized.

33. The operating system may dynamically allocate

memory to itself for temporary work space or

traffic areas for system processes.

- 241 -

DEFINITION: All system tables and system

processes which do not run in the user's process

need temporary memory allocated to them.

Dynamic memory allocation means that partitions

are created as required during processing. The

operating system may use these areas for:

--- work space for system processes; or

--- temporary buffer areas for message storage.

IMPLICATIONS FOR DESIGN: Tables must be main-

tained, testing free and allocated storage areas,

usually using a chaining method to facilitate

the dynamic nature of allocation scheme.

34. Memory is allocated using a best-fit algorithm.

DEFINITION: The memory allocation algorithm

cycles through a free storage list, which is

arranged in ascending order, until it finds a

block large enough to contain the requested

area. In order to minimize breakage, the

allocated area with the specified alignment is

selected as close to the beginning of the block

as possible.

IMPLICATIONS FOR DESIGN:

--- excess memory is re-linked to a free storage

list whenever memory is allocated; and

a free storage list, arranged in ascending

order, must be available in order to

- 242 -

accomplish the best-fit scheme.

35. Memory must be protected to prevent the simul-

taneous allocation of a partition to multiple

jobs.

DEFINITION: Memory protection is a hardware

function in the IBM System 360. Each partition

is assigned a protection key (1 through 15).

The "0" key is reserved for the operating

system. Since the hardware actually associates

the keys with each 2K byte block of memory,

partitions must be multiples of 2K, and all

locks within a partition are set to the same

value. Access control functions are those

functions which protect an.area of storage

against unauthorized access by:

--- insuring that all storage references by an

executing task for the purpose of writing,

executing and/or reading in that storage

are are legal; and

--- provides a task from modifying areas of

main storage beyond the limits.

IMPLICATIONS FOR DESIGN:

--- protection keys must be assigned and set when

memory is allocated; and

--- partition locks must be tested prior to

allowing access to memory.

- 243 -

36. Free storage areas are collapsed into contiguous

blocks of memory whenever a job partition is

freed.

DEFINITION: Since memory is allocated in con-

tiguous blocks, the operating system must re-

combine memory partitions

of free areas.

IMPLICATIONS FOR DESIGN:

reconfigured and the list

and re-ordered whenever a

is freed.

37. The operating system must

ment system which runs as

one per device.

and update its list

Memory is to be

of free space updated

partition of memory

supply a device manage-

a separate process,

DEFINITION: The device management system:

provides the routine necessary to issue the

I/O commands;

monitors the I/O devices; and

--- interprets the status information when an

I/O interrupt occurs. It must also maintain

interfaces to process management interrupt

handlers and event monitoring functions.

IMPLICATIONS FOR DESIGN:

--- management system can use semaphores as locks

against two processes simultaneously

- 244 -

attempting to access the same device; and

--- the fielding and handling of input/output

interrupts are performance by a special

routine that is involved whenever an I/O

interrupt occurs. It runs for a very short

time, just long enough to store status

information and perform a V operation on

Wait-Semaphore.

38. Device handler routines must support multiple

job streams from card readers.

DEFINITION: Support means that the routines

must distinguish among:

--- job control cards;

--- object deck;

--- data cards;

and to delineate jobs and job steps.

IMPLICATIONS FOR DESIGN: Each card reader

represents an input job stream.

39. A device is dedicated to a job.

DEFINITION: A dedicated device is allocated to

a job for the job's entire duration; this is

especially applicable to card readers and

printers. Allocation is made by the supervisor

during job definition.

IMPLICATIONS FOR DESIGN:

--- a card reader represents an input job stream;

- 245 -

--- a line printer must be allocated to a job

prior to the job being made eligible to run.

40. The device handler routine supports one card

reader per input stream.

DEFINITION: I/O that can be processed sequen-

tially to terminate an I/O stream. A single card

reader then is used to read in an entire job

stream.

IMPLICATIONS FOR DESIGN: The system can continue

to accept jobs as long as sufficient responses

are allocatable. As soon as we reach the

resource limit we must stop reading in jobs.

Therefore, the supervisor process must allo-

cate resources as jobs are being used in in

order limit the number of jobs at the appropriate

time.

The user must specify a name for his input

stream on JCL.

41. The device handler routine must support one line

printer per output stream.

DEFINITION: The user may specify a certain

output device in his JCL.

IMPLICATIONS FOR DESIGN: The device name for

output must be specified in JCL.

42. The user must provide his own routines for non-

standard devices.

- 246 -

DEFINITION: The user may supply his own routine

to issue his own I/O commands.

IMPLICATIONS FOR DESIGN: The user must indicate

the use of a non-standard device in his JCL

statements. The device handler process must

supply a routine to handle the interface for

devices wherein the user wishes to provide his

own I/O commands.

43. A process synchronization mechanism must be

provided to serve as a lock on a database.

DEFINITION: The process synchronization

mechanism is the P-V operations used in conjunc-

tion with semaphore.

--- P operation - of value >0 then value = Value-l

if value < 0 then value=value-1

and the process is ineligible

or blocked.

V operation - if No processes are ineligible

then value=value+l

if there is a process ineligible

then value=value+l

and the waiting process is

eligible.

--- Applications - the semaphore when the initial

value=l can serve as a lock by

- 247 -

requiring a P-operation before

accessing and a V-operation

afterwards, can insure integrity

of a resource.

IMPLICATIONS FOR DESIGN: P-V operations can be

used to provide protection for databases.

44. A process synchronization mechanism must be

provided for the timing of synchronous processes.

DEFINITION: For processes which require synchro-

nous processing, the P-V operations can be used

to insure that such synchronization takes place.

IMPLICATIONS FOR DESIGN: Since P-V operations

are available only to system process, this

technique may be used to insure that system

processes run in sequential order.

45. A process synchronization mechanism must be

provided for synchronization between the sender

and receiver in message processing.

DEFINITION: A message facility is available to

all processes for interprocess communication.

The P-V operations can be employed by the

message facility to insure that messages are

synchronized and queued.

IMPLICATIONS FOR DESIGN: The P-V operation can

be used to establish a message queue facility.

46. A process synchronization mechanism must be

provided to lock a device.

- 248 -

DEFINITION: All devices are dedicated, one per

job. The P-V operation can be used to lock each

device.

IMPLICATIONS FOR DESIGN: The P-V operation can

be used to lock devices.

47. An interrupt handler routine must be provided

for I/O interrupts.

DEFINITION: An interrupt is an occurrence that

causes the processor to take some immediate action.

The IBM System/360 has a mechanism for being

interrupted, saving its status, determining what

general class of interrupt has occurred, and

executing an appropriate interrupt handler routine.

IMPLICATIONS FOR DESIGN: The interrupt handler

determines the cause of the following faults and

calls the appropriate operating system function.

In this case, it calls the I/O interrupt handler.

48. An interrupt handler routine must be provided for

program interrupts.

DEFINITION: Program interrupts consist of inter-

rupts employed within the program structure to

enable a synchronous processing.

IMPLICATIONS FOR DESIGN: This facility is

available only to system processing and must be

provided for that purpose.

49. An interrupt handler must be provided for

supervisor call interrupts.

- 249 -

DEFINITION: Supervisor call interrupts are

required to recognize SVC instructions. This

mechanism is used to activate the extended machine

instructions and to transfer between levels of

the system.

IMPLICATIONS FOR DESIGN: The operating system

must include a supervisor call handler.

50. An interrupt handler must be provided to deal with

external interrupts.

DEFINITION: External interrupts are generated

outside of the operating system due to external

conditions; specifically, timer runout trap.

IMPLICATIONS FOR DESIGN: The operating system

may utilize the timer function to provide for a

multi-programming environment.

51. P-V Operations are available only to system

processes.

DEFINITION: Since the P-V operations in effect

control the synchronization of the operating sys-

tem and lock various resources, they are available

only to operating system processes for use.

IMPLICATIONS FOR DESIGN: User processes must have

another mechanism available to synchronize their

processing.

52. A message facility must be provided to all

processes.

- 250 -

DEFINITION: The message facility must be avail-

able for interprocess communication to all

processes in the system.

IMPLICATIONS FOR DESIGN: User processes must be

identifiable by name. The message facility must

recognize:

a sender;

a receiver;

--- the size of the message; and

--- the text.

The message facility must be able to queue up

messages to a given process, uses memory manage-

ment for message buffers, uses P-V operations to

synchronize message flow.

53. The process receiving a message must be able to

determine the originator of the message.

DEFINITION: The receiver of a message must be able

to determine from whence it came.

IMPLICATIONS FOR DESIGN: A process may be kept

waiting for a message from another process, as a

means of synchronization.

54. The receiving process may read the name and text

from the originator.

DEFINITION: In order to respond to a message the

receiver must be able to verify that it is the

correct message from the correct process. In order

to take action on a message the receiver must be

- 251 -

able to read the message.

IMPLICATIONS FOR DESIGN: The receiver must have

the capability to read the name of the originator

and the text of the message, but this does not

imply that the message must, in fact, be read.

55. Messages are of an arbitrary, but specified length.

DEFINITION: The message facility must allow for

a valuable message size.

IMPLICATIONS FOR DESIGN: The message queue must

be dynamically allocated space since the number

and size of messages is variable. Note that no

limit is specified for the number of messages.

56. Any number of messages for a given process may be

queued while waiting to be read by the process.

DEFINITION: A process can have a varying length

queue of messages waiting to be read.

IMPLICATIONS FOR DESIGN: Each process has a

variable length message queue which is dynamically

allocated.

57. All messages, enqueued for a given process to read,

are released when that process terminates.

DEFINITION: When a process terminates, all

messages waiting to be read are freed.

IMPLICATIONS FOR DESIGN: This is performed within

the destroy process SVC by freeing memory used to

store the messages.

- 252 -

58. Messages are not receiptable for, from receiver to

sender.

DEFINITION: The receiver of a message does not

have to acknowledge receipt of any message to the

sender.

IMPLICATIONS FOR DESIGN: If the message facility

cannot locate the process for which the message

was intended an error condition is caused.

59. If no messages are available to a process which

expects one, it may go blocked.

DEFINITION: The message facility can be used for

process synchronization; therefore, a process is

blocked until properly synchronized.

IMPLICATIONS FOR DESIGN: The user has a mechanism

for the synchronization of various processes.

60. User programs utilize a job control language

statement to specify resource requirements.

DEFINITION: Job Control Language is the means by

which a user specifies and quantifies his resource

requirements to the operating system. For the

purposes of the sample operating system, the

simplified JCL must specify:

--- memory size required;

--- name of input device type;

--- name of the output device type; and

non-standard device for which the user will

supply his own handler routine.

- 253 -

IMPLICATIONS FOR DESIGN:

JCL card is used to delineate job boundaries;

It must be the first card of the deck so that

resource requirements may be determined.

61. The operating system must accept input data from

the user's job stream.

DEFINITION: The user may input data to be read

and used in execution of the object deck.

IMPLICATIONS FOR DESIGN: The supervisor must be

capable of distinguishing among JCL, object deck,

and data cards for any job.

62. The supervisor process must load the user-supplied

object deck into the user area of memory.

DEFINITION: Once the supervisor has allocated the

resources required for the user's job, the user's

object deck is read into his partition.

IMPLICATIONS FOR DESIGN: This is a function of

the supervisor process.

63. All processes may dynamically create additional

processes.

DEFINITION: The user has the SVC instructions

available to him which allows the creation of

additional processes.

IMPLICATIONS FOR DESIGN: The user processes run

in the same partition and state as the initially

created user process. The user may destroy only

user created processes.

- 254 -

64. Dynamically created processes run in the same

memory area as the parent job.

DEFINITION: Dynamically created processes must

share the memory partition allocated to the

parent job and have the same protection attributes

assigned.

IMPLICATIONS FOR DESIGN: Dynamically created user

processes must be identifiable and are protected

from other jobs in the same manner as is the

parent job.

65. User processes cannot dynamically allocate memory.

DEFINITION: This is directly implied by #59.

Since user created processes run in the partition

of the parent job, no more memory is needed.

However, some people will attempt to get more

memory than they can use.

IMPLICATIONS FOR DESIGN: The user must specify the

memory requirements of the entire job, including

dynamically created processes, once and be satis-

fied with it. Attempting to exceed the user's

memory partition will generate an error.

66. User processes can destroy other user processes

only within the same process group.

DEFINITION: System processes are created for the

use of the operating system and must be maintained.

These processes consist of supervisor process and

device handler process.

- 255 -

IMPLICATIONS FOR DESIGN: System processes must be

identifiable and protected from user destruction.

The user destroys a process by unlinking the PCB,

system processes do not have a specified PCB.

67. User processes run in the problem state.

DEFINITION: The problem state is one of two

states defined by the IBM System/360.

IMPLICATIONS FOR DESIGN: System processes are

protected from user violation and/or destruction

by the two state machine concept.

68. The user process must signal completion (successful

or unsuccessful) to the operating system.

DEFINITION: A completion signal; i.e., stop

process, is required so that:

--- traffic controller may schedule a process; and

--- supervisor process may reclaim system resources

at the end of a job.

IMPLICATIONS FOR DESIGN:

--- user processes may only stop user processes;

--- a process must be stopped before it is destroyed.

69. The user's job can reference at most: 1 input

device, 1 output device, 1 non-standard devices.

DEFINITION: The operating system will allow

references to only one each of the three degrees

types.

IMPLICATIONS FOR DESIGN: I/O commands operate as

streams unless otherwise specified by the user in

- 256 -

the handling of exceptional devices.

70. There is one supervisor process per job stream.

DEFINITION: The supervisor process must schedule

all jobs and prepare them for execution by calling

other appropriate modules of the system. Functions

of the supervisor process include:

--- determines the amount of memory required;

--- set storage protection keys;

--- starts a process in an interface routine for

each device;

--- reads in the user's object deck;

--- user process starts to run; and

--- upon completion, the supervisor process

destroys all processes created for or by the

user frees memory and devices.

IMPLICATIONS FOR DESIGN: The supervisor process

acts as the interface between the user and the

operating system.

71. The I/O interrupt handler routine must provide for

a synchronous scheduling of a process requiring

fast processing.

DEFINITION: The interrupt mechanism transfers

control to the traffic controller causing the

process waiting for the interrupt to start running

immediately. It is, therefore, possible to attain

very fast processing of exceptional interrupts.

IMPLICATIONS FOR DESIGN: Interrupt routine trans-

- 257 -

fers control directly to the traffic controller in

order to run a new process.

72. System Initialization: The operating system must

include a non-system resident task which loads the

O/S into the computer and defines the processing

environment.

DEFINITION: Initial program load routine runs

free of most of the rest of the system, and

serves to initialize supervisor process and SVC

routines, essentially by initializing PCB

entries and free storage blocks for memory.

IMPLICATIONS FOR DESIGN: This system is used

infrequently and depends heavily upon the final

implementation design in order to carry out its

functions.

- 258 -

APPENDIX H

Final Interdependency Assessment

Results

Note 1: (s) Indicates that the requirement indicated

supports the implementation of the require-

ment being assessed.

(c) Indicates that the requirement indicated

conflicts with the implementation of the

requirement being assessed.

Note 2: Requirements 1 through 6 were not assessed

for the reasons stated in 4.1.10.

- 259 -

7. The operating system must provide for a multi-

programming environment.

10(s): Resource allocation is performed as a job is

read into the system, except for process

allocation.

13(s): A multi-programming environment must include

job protection mechanism.

14(s): Information tables are the mechanism by which

the operating system monitors and controls the

multi-programming environment.

17(s): The need for pure procedures is driven by a

multi-programming environment.

19(s): The supervisor process creates one process per

job initially to support multi-programming.

21(s): Multi-programming environment requires that

multiple jobs be scheduled.

35(s): Some memory allocation scheme is required to

support a multi-programming environment.

40(s): Device handler routine facilitates the reading

of multiple job streams from different sources.

60(s): JCL assists multi-programming by delineating

jobs and specifying resource requirements.

70(s): The supervisor process controls and synchro-

nize all the functions in a multi-programming

environment.

8. The operating system must run on a machine that has two

- 260 -

distinct states; i.e., problem and supervisor.

12(s): User communication with the operating system

via a special call ensures that the user may be

restricted from certain privileged instruc-

tions.

16(s): Only certain special instructions are user

callable.

18(s): Special instructions explicitly executed in

the supervisor state.

49(s): An interrupt handler must be available in

order to change machine states.

67(s): User processes an restricted to the problem

state.

9. All resource requests must pass through the supervisor

process.

10:(s): All resources, less processor, must be allo-

cated prior to the job being made eligible to

run.

12:(s): Resource requests are processed as privileged

instructions through the supervisor process.

28:(s): The resources must also be reclaimed by the

supervisor.

29:(s): Resources are reclaimed when an error condition

terminates job processing.

31:(s): Memory allocation is a resource request.

37:(s): Device management is a resource which must be

allocated.

- 261 -

60:(s): JCL specifies the resources required of a job

to the supervisor process.

70:(s): The supervisor process controls all resource

allocations.

10. System resources must be allocated to ajob prior to the

job being made eligible to run.

11(c): User resources; i.e., processes are allocated

at the process level.

19(s): The supervisor process allocates all resources

to a job.

31:(s): Memory is an allocatable resource.

37:(s): The device handler routine is allocated to a

job at this time.

60:(s): JCL enables the user to identify his resource

needs.

70:(s): The supervisor process controls all resource

allocations.

11. A process must be ready to run prior to being allocated

a process.

14(s): The status of a process is directly maintained

and controlled by information tables.

25(c): A process shall not be ready if it exceeds the

time quantum.

26(c): A process shall not be ready if it is waiting

to synchronize with another process.

- 262 -

27(c): A process shall not be ready if it specifi-

cally relinquishes control to the traffic

controller.

59(c): A process shall not be ready if it is waiting

to receive a message.

12. User communication with the operating sytem is via

special call.

16(c): Only certain of the special calls are available

to user processes.

27(s): A process may relinquish control to the

operating system via special call.

46(s): The process synchronization mechanism is imple-

mented using a special call.

49(s): The supervisor call interrupt is generated by

special call.

52(c): The message facility is another mechanism

employed for user communication.

68(s): The user must signal completion using a special

call.

13. The operating system must protect user jobs from each

other.

14:(s): Information tables contain the information

required to protect user's jobs.

20(s): The creation of a single process initially,

isolates user jobs from each other.

35(s): The protection of memory partitions can be

- 263 -

accomplished with the same implementation

utilized for the requirement.

64(s): As a protection mechanism, dynamically created

processes run in the memory area of parent

job.

66(s): To protect jobs, a process can destroy only

those non-system processes within its process

group.

67(s): User processes run in the problem state to

prevent access to systemlevel functions.

14. The operating system must utilize information tables to

monitor and control processing.

15(s): Dynamic allocation of system tables is required

in support of multi-programming environment.

24(s): Round-robin scheduling is accomplished most

effectively by chaining the tables together.

32(s): Memory allocation is accounted for in 2K

increments.

33(s): The operating system may dynamically allocate

memory for information tables.

36(s): Collapsing free storage areas requires that

the system tables be updated.

43(s): P-V mechanism is used extensively to restrict

access to system tables for protection.

52(s): The message facility requires use of informa-

tion tables extensively.

- 264 -

15. System tables can be dynamically allocated and

released.

33(s): Dynamic memory allocation facility fully

supports this requirement.

56(s): The queuing of messages requires a dynamic

memory allocation facility.

66(c): The user is strictly prohibited from dynamic

memory allocation.

16. Certain system routines are user callable.

18(s): Extended machine instructions are executed

in the supervisor state to provide a system

check to determine if use is authorized.

51(s): P-V operations are specifically restricted

from the user since these are used as system

locks.

52(s): The message facility is made available to all

users for user communication.

17. System process routines are re-entrant and shared.

33(s): The operating system maintains pure code by

dynamically allocating memory for work space

for system routines.

37(s): The device management process is a system

routine which must be shared among many users.

44(s): The process synchronization mechanism is used

as a lock to synchronize usage of certain

routines.

- 265 -

70(s): The supervisor process is a system routine

which must be shared among many jobs.

18. Extended machine instructions are executed in the

supervisor state.

49(s): An interrupt handler must be provided to

recognize and handle extended machine instruc-

tions.

67(c): User processes must run in the problem state,

and generate calls to the operating system via

extended machine instructions for resources.

19. The supervisor process must schedule jobs and prepare

the jobs for execution.

20(s): The supervisor initially creates one process

per job.

21(s): The supervisor schedules jobs strictly on a

first-come, first-served basis.

22(s): The functions of the supervisor, and the inter-

faces must be clearly defined so that improve-

ments may be easily accomplished.

28 (s): Another function of the supervisor routine is

to reclaim all system resources.

29(c): The supervisor must reclaim resources when a

process generates a system level error.

62(s): The supervisor must also load the user's deck

in order to prepare a job for execution.

70(s): One supervisor process exists per job stream.

- 266 -

20. Initially, one process is created for each user's job.

63(s): The user process may create additional

processes to form a process group after the

user process has been initiated.

21. Jobs are initiated strictly on a first-come, first-

served basis.

22(s): The FCFS scheduling is simplistic; therefore,

we can improve system performance at some later

time by modularizing this function.

40(s): The fact that all input devices are dedicated

card readers, forces the FCFS implementation.

71(c): The provision for a fast I/O processing mech-

anism may preclude a job from being scheduled

strictly FCFS.

22. The supervisor process must be modularized so that

improvements to the system can be easily accomplished.

70(s): Modularization of the supervisor process

requires that its functions and interfaces be

clearly defined so that any change in its

implementation be made explicit.

23. The process scheduler must time-slice CPU usage among

ready processes to achieve multi-programming.

24(s): All processes are scheduled round-robin, so

that the next sequential ready process is

selected for scheduling.

- 267 -

25(s): The specific time-slice quantum equals 50ms.

50(s): An external interrupt is generated when a

timer runout is deleted, and a handler must be

provided.

25. Ready processes are scheduled in simple round-robin

fashion by the process scheduler.

26(c): A process is not scheduled it is is waiting

for synchronization with another process.

44(s): A process synchronization mechanism must be

provided to enqueue ready processes in a chain.

59(s): A process is not scheduled if it is waiting

for message synchronization with another

process.

63(s): User processes may create additional processes

which must in turn be scheduled.

71(c): The fast I/O processing mechanism allows imme-

diate scheduling of a process, conflicting

with the round-robin scheduling.

25. A process must be blocked, when a time quantum of 50ms

is exceeded.

50(s): An external interrupt is generated when the

time quantum is exceeded, and an interrupt

handler must process the interrupt.

26. A process is blocked, when waiting for synchronization

with another process.

- 268 -

44(s): A process synchronization mechanism is

provided.

48(s): A program interrupt mechanism is provided to

enable a process to signal that it is waiting

for synchronization.

51(s): Process synchronization mechanism is available

only to system processes.

59(s): The user processes utilize the message facil-

ity to signal other user processes for

synchronization.

27. A process is blocked, when it specifically relinquish

control to the process scheduler.

48(s): A program interrupt facility is required so

that a process can signal the process scheduler.

68(s): The user must signal completion of a process,

and, thereby, relinquish control of the

processor to the process scheduler.

28. The supervisor process must reclaim all system resources

from a job when the job has completed.

29(c): The supervisor must also reclaim resources if

a user process generates a system level error.

36(s): Free storage areas must be collapsed and recon-

figured when a job ends.

37(s): The device handler routine for a particular

job must be terminated.

43(s): All system locks must be released when a

- 269 -

particular job terminates.

46(s): All devices which are locked by the job must

be released.

48(s): The user must signal the end of his job, and

an interrupt handler must be provided to deal

with the signal.

68(s): The user is required to signal completion.

70(s): The supervisor process is restarted when the

job ends just long enough to clean up all the

resources.

29. Supervisor must reclaim system resources when a user

process generates a system level error.

48(s): Upon generation of a system level error inter-

rupt, a handler must take control and deal

with the interrupt.

68(c): Normally the user must signal completion, but

this requirement dictates that abnormal ending

must be recognized.

30. Reference to processes within a process group is by

symbolic name.

53(s): The message sending and receiving recognition

mechanism is strictly accomplished by process

names.

54(s): Same as 53.

63(s): Dynamically created processes within a process

- 270 -

group must be named as they are initiated.

64(s): Processes of the same process group must run

on the same memory area as the parent job.

66(s): User processes may destroy other user processes

only within the same process group by symbolic

name.

31. The operating system must allocate memory for a job,

the size of which is to be supplied by the user.

32(c): Memory alloca-tion is limited to 2K increments.

34(s): Memory must be allocated using a best-fit

algorithm.

36(c): Memory is collapsed into contiguous blocks

whenever it is freed, which enables reassign-

ment.

43(s): The process synchronization mechanism may be

used to lock a database after allocation.

60(s): The user specifies his memory requirements in

JCL.

65(c): Once initial memory has been allocated, the

user cannot dynamically allocate memory.

32. Memory is allocated in 2K blocks.

34(s): The best-fit algorithm is used to limit the

wasted memory space.

35(s): Allocation is 2K blocks allows hardware protec-

tion of memory be IBM/360 hardware.

- 271 -

36(s): Memory is configured whenever it is freed.

43(s): The process synchronization mechanism can be

used to lock a database once memory has been

allocated.

60(s): The user must supply his memory requirements

in 2K increments.

65(c): User process cannot dynamically allocate memory

whereas system process can.

33. Operating system can dynamically allocate memory to

itself for temporary workspace or buffer areas for sys-

tem processes.

35(s): Once allocated, memory areas must be protected

to prevent simultaneous access.

36(s): Memory must be reconfigured by the'operating

system whenever a block is freed.

37(s): The device management system requires memory

for temporary workspaces.

43(s): The process synchronization mechanism can be

used to lock databases.

56(s): The message facility requires dynamic memory

allocation to enqueue messages.

65(c): User processes are strictly prohibited from

dynamically allocating memory.

34. Memory is allocated using a best-fit algorithm.

36(s): Memory is configured when de-allocated to

ensure that the largest contiguous blocks are

- 272 -

available to the system.

60(s): The user must specify his memory requirements

in a JCL statement.

35. Memory must be protected to prevent the simultaneous

allocation of a partition to multiple jobs.

43(s): The process synchronization mechanism is avail-

able to lock a database.

64(s): Dynamically created process must run in the

same memory partition as the parent job, which

further protects memory.

65(s): The user is strictly prohibited from dynami-

cally allocating memory which reduces the

protection requirements.

36. Free storage areas are collapsed into contiguous blocks

of memory whenever a job partition is freed.

68(s): The user must signal completion of his job, to

the operating system so that memory may be

reclaimed.

37. The operating system must supply a device managemen

system, which runs as a separate process, one per d

38 (s): A device handler routine must be included

the device management system.

39(s): Since devices are dedicated, only one pers

per device is required.

40(s): The device handler routine is specifically

t -

evice.

in

on

- 273 -

required to support only one card reader per

input stream.

41(s): The device handler routine is specifically

required to support only one printer per output

stream.

42(s): The device management system must enable the

user to supply his own routine for non-standard

devices.

46(s): The process synchronization mechanism is avail-

able to lock a dedicated device.

47(s): An interrupt handler routine is provided to

process I/O interrupts.

69(s): The user must declare his devices, and is

limited to a card reader, a printer, and a non-

standard device.

38. Device handler routines must support multiple job

streams from card readers.

39(s): Dedicated devices enable sequential processing

and simplify the designation of job stream.

40(s): A card reader represents an input stream;

hence, multiple card readers represent multiple

job streams.

61(s): One aspect of the device handler routine is to

distinguish among JCL, object deck, and user's

data.

69(s): The user must specify which card reader consti-

- 274 -

tutes his input job stream.

39. A device is dedicated to a job.

40(s): Since devices are dedicated, a card reader

represents an input job stream.

41(s): Since devices are dedicated, a printer repre-

sents an output job stream.

42(s): Non-standard devices employed by the user must

be dedicated to his job.

46(s): The process synchronization mechanism is

available to lock a device.

60(s): The user must identify the devices used by a

JCL statement.

69(s): The user must explicitly identify which devices

he is using.

40. The device handler routine supports one card reader per

input stream.

42(c): The user must specify his own handler routine

for any non-standard devices used.

46(s): The process synchronization mechanism can be

used to lock a device to an input stream.

60(s): The user must identify the devices used by a

JCL statement.

61(s): The device handler must enable the operating

system to discern between JCL, object deck,

and user's data.

69(s): The user is limited to one card reader or non-

- 275 -

standard device for input.

41. The device handler routine must support one line printer

per output stream.

42(c): A user must supply his own handler routine for

any non-standard devices.

46(s): The process synchronization mechanism can be

used to lock a device for an output stream.

60(s): The user must specify a printer for use in the

JCL statement.

69(s): The user is limited to one line printer or non-

standard device.

42. The user

devices.

must provide his own routines for non-standard

47(s): An interrupt handler for I/O interrupts must

recognize that a user is providing his own

device handler routine.

60(s): The user must specify the use of a non-stand-

ard device in a JCL statement.

61(s): Any non-standard device handler routine must

recognize JCL, object deck, and user's data.

69(s): The user is limited to a single non-standard

device.

43. A process synchronization mechanism must be provided

to serve as a lock on a database.

44(s): The mechanism also may be used for the timing

- 276 -

of synchronous processes.

45(s): The mechanism may also be used for synchroni-

zation of the message facility.

46(s): The mechanism may also be used to lock a

device.

51(s): The mechanism is restricted to use by system

processes only.

44. A process synchronization mechanism must be provided

for the timing of synchronous processes.

45(s): The mechanism is also used for synchronization

of the message facility.

46(s): The mechanism is also used to lock a device.

51(s): The mechanism is restricted to use by system

processes only.

45. A process synchronization mechanism must be provided for

synchronization between the sender and receiver in

message processing.

46(s): The mechanism is also used to lock a device.

51(s): The mechanism is restricted to use by system

processes only.

56(s): The mechanism is used to establish an ordered

queue for the message facility.

46. A process synchronization mechanism must be provided to

lock a device.

51(s): The mechanism is restricted to use by system

processes only.

- 277 -

47. An interrupt handler routine must be provided for I/O

interrupts.

48 (s): An interrupt handler routine must also be pro-

vided for program interrupts.

49(s): An interrupt handler routine must also be pro-

vided for supervisor call interrupts.

50 (s): An interrupt handler routine must also be pro-

vided for external interrupts.

61(s): The interrupt handler may be utilized to recog-

nize input data from the user's job stream.

71(s): The interrupt handler must provide a special

facility to enable fast processing of I/O

requests for non-standard devices requiring

frequent updates.

48. An interrupt handler routine must be provided for

program interrupts.

49(s): An interrupt handler routine must also be

provided for supervisor call interrupts.

50(s): An interrupt handler routine must also be

provided for external interrupts.

68(s): The user must signal process completion via a

program interrupt.

49. An interrupt handler routine must be provided for super-

visor call interrupt.

50(s): An interrupt handler routine must also be

provided for external interrupts.

- 278 -

52. A message facility must be provided to all processes.

53(s): The message facility must enable the process

receiving a message to determine the origina-

tor of the message.

54(s): The message facility must enable the process

to read the name and text from the originator.

55(s): The facility must be able to handle messages

of an arbitrary, yet specified length.

56(s): The faculty must use some sort of chaining to

queue waiting messages.

57(s): The facility must be able to release messages

for a process which terminates.

58(s): There is no need for a receiver of a message

to acknowledge to the originator.

59(s): The message facility can be used for process

synchronization by blocking processes, expect-

ing messages.

53. The process receiving a message must be able to deter-

mine the originator of the message.

54(s): The message determines the originator by

reading the name of the originating process,

separate from the text.

58 (s): As long as the receiver knows from whence the

message came, there is no need for receipt.

59(s): A process may be blocked until it receives the

message it anticipates from a specific process.

- 279 -

54. The receiving process may read the name and text from

the originator.

56(s): In a queue of multiple messages, a process

must be able to determine the name and text

of the originator.

58(s): As long as a process can read the name of the

originator, there is no need to receipt a

message.

59(s): A process may be synchronized by blocking it

until it receives the proper text from a given

process.

55. Messages are of an arbitrary yet specified length.

56(s): Messages may be of a variable length and

number; therefore, a queuing process is

required to store all messages dynamically.

56. Any number of messages to a process may be queued while

waiting to be used.

57(s): The queued messages may not necessarily be

read by a process; therefore, they must be

released when that process terminates.

57. All messages, enqueued for a given process to read, are

released when that process terminates.

58(s): A process may never read the messages addressed

to it; therefore, there is no facility required

for receipting.

- 280 -

68(s): A user process must signal completion to the

operating system so that the enqueued messages

for that process may be released.

60. User programs utilize a job control language statement

to specify resource requirements.

61(s): The operating system must be capable of

discerning among JCL, user's object deck, and

user's data.

69(s): The user must specify I/O devices in the JCL

statement.

61. The operating system must accept input data from the

user's job stream.

70(s): The supervisor process controls the input of

the user's job stream and must, therefore,

separate all the JCL, user's object deck, and

data.

62. The supervisor process must load the user supplied

object deck into the user's area of memory.

70(s): The supervisor process explicitly performs this

function as it exists, one -per job stream.

63. All processes may dynamically create additional process.

64(s): Such processes are limited to the initial user

memory area.

66(s): The user processes can also destroy processes

but these are limited to user processes only.

- 281 -

64. Dynamically created processes run in the same memory

area as the parent job.

65(s): The user cannot dynamically allocate memory;

therefore, all user processes must run in the

area of the parent.

66(s): User processes of different jobs are made

invisible to each other and, therefore, can

only destroy processes within the same process

group.

67(s): The user processes run in the problem state

and, therefore, are not capable of allocating

additional memory.

66. User processes can destroy other user processes only

within the same process group.

67(s): User processes run in the problem state and in

the same memory area as the parent job; there-

fore, user processes of different process

groups are invisible to each other.

- 282 -

APPENDIX I

Results of the Interactive Decomposition

Package for the Second Iteration

- 283 -

RE Q!
SA 'lE

ENTER FI LE NAME:
(0S A5

S**jATUS SA'E lI N 1*1 F I LE SOSA5

t.4 0 L I K6

R E CO0 R ED L I N KS
FROM NODE

7

9
10
11
12

14
15
1.6
17
13
:19
20

.- ..

".4
1)

45

27
28

30

1

42
34

35 .

36 '

5)
8)
83)

6)
7) J

10)
4)
5)

5)
-4)

9)

3)
5)

3)
3)
7)
4)

6-)4)

.10)

5)

8;)

-4)
~7)

7) 3

13)

1) 0

10)
6)

8) 0

TO N(1O E () :

1. 0

10
7 5

7 '9

14

Y

8 V

Sy

135

19y
24'
14r

:1. 1

11
1. 1

95
C)

535

31

14
9 5

46,

375'
/ 5'

37 5

142,
17

1.37
16s'
12

95'
1.4

95'

1.4v
11,
33,
12.v

19 0
19
:1. 9
21

23,

24P
1.2,
1 9
19 F
5 4y

15'

13,

.47, 5

.4... y
39,

33

1)9 7 5

24
44,

1.4
15v
28,

16
'0

:1. 3

40 5'

1.3,

20
63
42
709
50

26

50,
44Y
4 8
99,
285.2) 9(5

63
32
~4

36V
32Y
3 1

69
40,
40,

...) '

.42':

17,
49
29
. 9

,6:.

35'
15
66 '.

19

3 1.

27y

46s'
6 4
245y

37

5 9
49Y
66,

60v 70Y
6 0 7 70-

52 6 8

43521.sC 5' C')5 43~ 2 !

51y 52
44 y 0
67
.. 2 28 y29 .:...

40" 71.

44, 595' 6 3 :1.

-4 8 51. 5 9
68

36 3 7 435) %5 4 09 .,0
4 8 6 %1 J
64 66

351 3 6 4 43 v (c . 5'

60
335'

352'

4~ :1.

3 c)41
34 A

46,

4y 64 65
3 34 C) I 5'

33 59 33) 39 y

69,

42

60 y

451
r56 1

46
42
69y

46D

4 0 41 y42

':50 ~ ':59
46")'!'? 5 l

D :. v
4.4

6 9
i4 0 Y i::-

21!3, 4 0!, 6 0, 7 0

41
61 v
495
50v

46!
55 v

59Y

46
47
48
49
50
51
532
5354

55
5 6
57
58
59
60

61

6t..

43.9

50

44 45' 51

68S

56y 5 J 59

7)

6)
10)
5)
6)

5)
6)

2)

.4)
4)
6)

1 2)

6)
2)
5)9 1

2"

30v.

37,26?

5'%26?
1. 52y5237
16', 2

30,
30'

1 ,

1.1
7..

61,
38
1. 9,
20?

64
65
66
6 7
68 /
6 E

70
7 :

7) 13

5) 31;
6) 1l3b
5.) 8,

/) 1 ,

7) 37,
9)
3) 21'

309 35?
32 33

15 30,
13, 18
27? 28?
38, 39

9, 10
249 479

63 65?
35v 64Y
63y 64
6-4 66?
29? 36.
40, 41.
:1.7 y 19

A V I" 1", 1) ClIF t,40% D F

YD 1EN ()

T H E FO LLOW. I W NG NOD 1 E\ S HIA 'E: BE RiE 33 1EM O's 1D: (:1
1 2 3 -4 5 6 73 74

77 78 79 80

%66y 67,

489 57,
42 ? 6 0
22' 28 61 602

.22 5.
25t

75/6

- 284

40?
50?
4 7
48
49.,
45!,
54?
59

38

28
42!,
27, y
1.
25,

26
1 4
5'2
5 2,
56Y

56,
53Y
24?

9,
.JC)

69
40,
70Y
249

37,

.4

4 77 V
4

5 4

5 *3,54 59

.45.3
589
549
26
10 y

3 9
499

.47.3
48,
44?
53
58
56Y

68
57?

52 .

3:1

42Y 47-i 60, 70?

30J, 64 1 66,

39v 40, 41v 42!,
539 54,
32, ?3 4

54? 55v 57/ .9

- 285 -

N OD ES HAiIV E BE IE N RE NM1 E V 6 S FOLLOWS
C)LDL NO. NEW NC.

7 . 29 231

O 2 30 24 52 4

9 3 31 2b
10 4 32 4 43

- 311 55 .49
11b--3
-12 34 2855

1.4 8 36 30
59 53

1.5 9 37 1 54
16 10 38 32 60
17 11 39 33 . .,6
1 12 40 :>-4 63 57
19 13 4 1 35 6V4 5S
20) 1 4 42 36 ::f 6 59
1 . 15 43 37

22 :16 44 3

213 :17 45 39is861
24 1E 46 4 0 69

25 19 47/ 41 0

0il00-2? 6 20(4 E! 42 ...(5,1
..., -??7 66
28 22 50 44 ' ~1

NO PRECLUSTERING PERFORMED;DITNEMRXCMPEDWHP=1

R IE CA 41

I SIL 1 t IE NCNDPET
66

D E (A

1:) E .. 14 0 EF : iE

- HE F L W. I. 0 NE : DE S 0 1: E s H A V E B E E N R EMV 0 DE:1
S 66

- 286 -

E*f (" L; U: S~ T. E' R; T N~ 0 : 1: E: F% F, 0 F., M 1r~~ ~ :: ,(,1 1i (: Ul 1r I- v' C. fL m 1::. 1:1.1.)" I

(PRECLUSTERING COMET)

(SI'MILARITY MATRIrX COMPUTD

R E Cl
1: Nl:F,

E N TERF PERC4aE NTAG PAAETR
80.

I NIT 1AL PARTITIN CM W P = 0

HC1

BEST PARIT ION MEASURE 1.263
DO YOU WANT fO PINT THE TREET

NO]

C... UE) OJECTS

(8) 1 3

(4) 5 1
(7) 7 4

9) 9
(1.2) 11 31

63 63

) 18 20

(5) 21 22
(' Q) 46 47

4
1 0
19'

25

3 B

48

:13
12 ~
44
5.7

26
33

15
-4:3

16 5i6 6

60
28

35 r

38 39
42 62

49. 50

6 1.

36

41. -52 5 3

.0.5
41 54 5

- 287 -

REGQ
HCM2

BEST PARTITION MEASURE: 1.276
DO YOU WANT TO PR I NT THE: TREE?

NO

REGL
PRCI...

CLUSTER (NO) OBJECTS

1 (11) 1 3 4 11 13 15 16 22 23 56

2 (13) 2 6 10
44 62 65

3 (9) 5 18 20
4 (7) 7 14 24
5 (9) 8 9 25
6 (9) 31 32 33
7 (7) 46 47 48

12 17 19 21 41 42 43

37 38 39 40 45 53
57 58 60 61
26 27 28 29 30 59
34 35 36 54 55 63
49 50 51 52

'D YOU WANT TO PI NT THE TREET

? P

CL..U ST ER. (N) DB13J ECT S

9) 3 4 11 13 :1.5 16 56 64
2 N 6 1C 12

(15. 5 1) :19 20 2 22 23 41 42
43 44 53 62 65

4 (7) 7 14 '2 4 57 59 60 61.
5 (10) 9 2 46 47 48 49 50 51 52

6 (6) 2..!5 26 21: 2..9 30 59
7 (9) 31 32 33 3.4 35 36 54 55 63

8 (5)' 37383 404

STRENGTH 27333 v
COUPL. IN :. 1. 322
M E A SUi 1 411

- 288 -

HCM3
BEST PF,ART IT ION MEASURE: 1. 4411

D o YOU WANT TO PRINT THE TREE:?

SET PAPER AN D PRE SS RETURN

33 £

63 --

35 --. * --.

36 ---- * - -

.4. --- . -. ~~. .-. -* --- I I

3 4 .--. ----.. ..--. ..--.-..----

34

10 -----..-- -- -

3e-II
13 -*i

64

65 --. - .- - -

51 6 - :.* ..-- -.---.. .-- -

60 -*

'-I .

II
II

62

4 2.
I.I

20-. *... g

I El I

3 1 I

2:1.
62 * *

5L8 1.:~ -. i

61-

24i 17I
I

14 -*

I I ~I
I II

7 I 'I, I

I I

I I

- 289 -

47 -- -- - - - - -

48 * - ---------

4 6 -- - -- - -- --- ---
52 - - ------ * ---- -

51 ------------- *

49 - ----

2 7 ---- -- - -**-- -- - - - --- -

27 ----- * -*

38

38

29
59 ---- *

25 -

28 -*- i---*

30 -- - - - - - - - -

MEASURES:
-201.500
-164.667
-133.042
-99.792
-74.4 58
-49. 570
-25. 311
-12.669
-3.307
1 .183
0.893

--196. 000
-161, 667
-...124.792

-95.292

-- 69.458

-46.617
-22.978
--10.072
--2.604
1.359
0.618

-191.500
-155.750
-..120 .375

-2292

--.65.792
--43. 117
-20,094
-7.544
-1.605
1 .411
0 .555

-185.667
-150.917
.-16 .875
--88+.042
---60.875
--39.700
-19.567
-6.707
-0, 371
1 .387
0.070

---179 , 167
--146. 167
-110. 792

- 83 . 458
--57.958
-35.422
-16 .408

-- 5.655
0.182
1.053

-172+ 667
-140.542
-104, 792
---.80. 042
-53. 292
-30 .728
--14.619

4. 016
0.934
0.971

- 290 -

REQ:
PRCL

CLUSTER (NO) OBJECTS

(9)
(4)
(15)

4 (7)
5 (10)
6 (6)
7 (9)
8 (5)

1
2
5

43
7
8

25
31.
37

3

6
17
44
14
9

26
32

38

4
10
18
53
24
27
28
33
39

11
12
19
62
57
46
29
34
40

13 15 16 56 64

20
65
58
47
30
35
45

21 22 23 41 42

60
48
59
36

61
49 50 51 52

54 55 63

REQC
DENO

/2,6,10,12,5,17,18,19,20,21,22,23,41,42,43,44,53,62,65r7, 14,24,57,

58,60,61,8,9,27,46,47,48,49,50,51,52,25,26,28,29,30,59,31,32,33,

34,35,36,54,55,63,37,38,39,40,45/

THE FOLLOWING NODES HAVE
2

18
28
38
48
59

5

19
29
39
49
60

6
20
30
40
50
61

7
21
31
41
51
62

8

22
32'
42
52
63

BEEN
9

23
33
43
53
65

RE MOV El: :
10 12
24 25
34 35
44 45
54 55

14
26
36
46
57

NODES HAVE BEEN RENAMED AS FOI...LOWS
OLD NO. NEW NO.

11
13
15
16
56
64

1.7
27
37
47
58

- 291 -

REG0

.2: ~. 5 : 1. 7 'L :1. 2 C :: 5~ !1. ':' 2 ~ 93 4? :1. 44 2 38~ l

05 1. 52, 25, 26 3,28, 29 ,30- 59!' 32i 33 34 ,35, 36, 54 55, 63! 37, 38 y 39.- 40 45/

T H E F* (LL W I... C) HA61:1 NO (? t D E, 3 1 .-1 (.):ViFi, BE N R: :E MO V E: :
5 6 7

1. 20 21.
29 30 31.
39 40 41.
49 50 5:1.
60 6 1. 62

8 9 1.0 12 :14 .1.7
23
33
4 *
53
65

24
34
44
54

25
35
45
55

26
36
46
57

42

63

37
47
5:3

0LD N0 N EWl NOr)

DIMN
(PRECLUjy~ji.STR 1 ~::IG COM PLETE)jj.

N :; PRECLUSTERI P f~NG F PEFRMED 1)

F1.1 M '31

fES ET PATITA FN :1. 1.0 l
DO O y C)U w ANT TN

NO

i~i~: ~

. (9) :- 2 :3 4 5 6 7 8 9

E ,...

0 2500
01 - 0000

0 .250,

39
48

DISTAiN CE: MAT RIX COMPU . WITI- P ::.:1.

R:,E.,N A M1'ED AS FOC)LIOW.S) 4

MEI.. AS%3URFE- C, 250

TRNG TI-
COUP1) ,L I NG
ME1, A (SU R F..

- 292 -

RE
TiENO\ C

5 ,62,,6 5 , :1. 4)24 v5-7 !,5 R 6 0 v6:189R 7 4 6 4 7,4, 4 49 5 0 5 2

22628: 2930 59,3:1.y32 -33 y3-4 35!,36 54 5,337 M3k839.k.40 45/

B.EEN REM)VE:

1 3 3

35 36 37
45 46 47
55 56 57
65

5

38
48
58 %

7
19 9
29
39

59

30
40

60

1.:J.

32':
42
5e2

62e :

:13
23
33
43
53
63

14
24
3-4
44
54

64

NODEi.. S HIAVE: B i 1: EE4 N
0 L.D N f.:. NEF.W N .

Ri17?IMN(',

(PELSTRN COPLTE

CL I:** ("I I... U S3 T ES cj 1 1:: i; 1::] ,:Z M 1:.-- N AING) :S AE A IG N E: M AT R 'F X
C I... 1. IS F' R~ IS t-.COT T A K E N A IS IS :I N (.3 L 1\N C) fl E* '1

R: F 1.

:BEST PA jjr~.RT:IIO N MEA SURE ': ~
DO YC)U WAN' T : NT T I--E

N -)

CLU .STR :I: (N0o))OBJE:CT'rS

0 .333
TREET~

1 (4) :1. 3 2 -4

REhi
EVAL~

m ,A1 3 1:1,F*tfr : UPLIG:~ J

0 : 3333 3

0333,

THE F01..LOWING NODES HAVE"

RE NAE A mF * F, LL..OW..SC 4

C0M PU1)TE 1:,-WIT I--I PFl

- 293 -

4

13 4 1 13 1 :16 56 6 426:0127 14y 2-4 y57 5806 0,

61:, 27-46 4:4849 - 5 1 2 6 -28 2930 y59? 3132 3:3 y 34 k

3- 3y 63 3 3 4 -45.

T -IE FOLLWIN N HAVE BEEN RE MO V I: of.

:1. 4
3 .

56

4 6 6
1.6 24 25 26 27
3 3 '.34 35 36 3

6 4 8 -49 50 51
7 53 59 60 61 63

28
38

6-4

RE NAMD F:. T AS: W

1. 4
:1.5

DI'.rMN
(PECUSER N C1M::LL.:TE

i... ... T EIN F M ::: AN DI S TA NCE M A T R I X C 0 MATRIX CM UTE T- : -t WTFLL UiE RS NO T TA (N 3 S ING. E NODES.

:.

3 9

:1.3

4 5

19

42 A

4 A

OLD NA NEW. N..

- 294 -

BE3T PARTITION M : 04480
D. Y! W N TO P I NT THl 0 E! T'REE T I....

30l

VEG

CLI~ ; : NC i'~ :(I:

5 :1.3 :1.5
9 1:. :1.2
0 :1.0 14le

TRELNGTi--l: 048000m
CouPL ING : C' 3200(
MAgSURE 0 44804

.,-3. .Twe-Th-11. IIMri-liril-llo, .-- >1r-a-sim.isr-,s:..e ,. -. --. ----'01' IIr'W01"IF'n11r3rl-em-r -.

- 295 -

43 44 53 2 ,05 9 237 36 4 5 4, 5 4 49 5 56 37 531 532

2,!" 28 , .2 , 3 0 :: i ;, 5 9 . 3:1 k,3 ., y 3~: 4 v35 ,36 -455 3 5,3-87~k39 4 y45/

A1.

34
44
54

3 4 5 6 0

13 15 45 J 1.6 17 18 19
25)6 2)-7 28: 29-' 30

35 36 37 3B 39 -40

45 -46 47 4f 49 50
5 56 1 5 9 62 63 64

9

20
3:1.
4:1.
5:1.
65

1. 0)
2:1.
32":
42
5 2

NO DES 13 1-IAtI:: BEEN
0 L.D N, Cj. N E W N .

1. 4
2-4.~

I) 11%MN
(PRE.CL US TERIN;' .MG COC)MPFLEE

PECLSTERNG. PERF'RME AND LISNC)E
CLSESN T TAK1-EN ASC) SI1NG(..L E IN CDE .7

-ICM3
B E S T P A R TI C) N

DO10 y f) U WANT T C)
N)

ME ASR I ER 0. 333
*RINT T.-- E E

C\L E N)C B J E C TS

:.

VAI...

C:J0 F, I.. N (3S7CTREp NT(-3

4 5 6 7

0 3333y
0 0000
0 .333

THE, FEL L 0WN N(DES HAEBENRM D

RE,'.N A MED". AS F CLLO.. 0WS

MATRIX COJ.MPU:LJTED: WITH1 P =: 1,

- 296 -

REQi
DENO
4

/1,3,4,11,13,.15,16,56y64y2y6,10,1.2,5,1.7,18,1.9y20,2122,23,41,42,

43,44,53,62,65,7, :1.4,24,57,5860,61 ,25,26,28,29,30,59,31 ,32,33,34,

35,36,54,55,63,37y38,39y40,45/

THE FOLLOWING NODES HAVE BEE:N REMOVED:
1 2 3 4 5 6 7 1.0

13 14 :1.5 16 17 :1.8 :19 20
23 24 25 26 28 29 30 31
34 35 36 37 38 39 40 41
44 45 53 54 55 56 57 58

61 62 63 64 65

NODES HAVE BEEN
OLD NO. NEW NO.

6 1
9 2

27 3
46 4
47 5

48 6

RENAMED A'S FOLLOWS:

50 8
51. 9
52 10

RE
DIMN(.

(PRCLUTEING' CPLTE

Ri
HCM3 l; l :i*r :1: f:) !1 :*i i*: F 53 U R FC0 M F,.4

ES P T A K ON A S : 3: ME.AUE .52.-4 C: S
. Y0 WAT T I *IN T T TREET

NO ,:: ! NC 3 F.T

) 5(.

R'iED :

7, U 9 :1.0

0. 4 29
.5 2 4

1:1.
21
32
42
59

:1.2
22
33
43
60

CI

~ 0
0

9 tr 1; 2,1 1: (9 T

I J a.:i

Ej~3 Ni

NW

i.3 3 '*-:1.L .:lH .1. ::CA 0. .1. L Nl ("I CI f A I
E: E1 E *i m 3 v fl w V~: 4 NO 1.L .: 1.:: c. s:~a

*3 S~:l1GON .'11) N 1 S11 V N4 3.W1V. .0N G A:3.L S3 fl -3
X I: :1.1. V W : 3 N V.L S3 I Gl WNU 0 :i :21.'"AN Id 0N :. -I ~.1S~ E5(" -.::I

N W4 1 k
0 ~l

U G.
LE

CA so

ct; t
GE 2

q99

to T

te

V

£ f~
£ t~
Z.. k.

~
8

E9

C'

tr. .:

E.* I

i:

SO1:

9

09'
6

t

B / t' Ir

: 1 11r)0 1 138 3 11El 1 -- (Ak H t3 (EO N 9 N IM T! 01 10. J H.L.

/'cty 11 0tr ' 6E WE 40 O 20091s;; t 9E i tE E 2 E i S

bITAt2:isTI Z 16T 1 : 1B T S;Z 1)INV9 9 Ti00 h2 V

CO1 D ZI]

-L6 -

-* g3 j:fl 1 E:: .:i1 W
111NI11C: fl 03

-1V k f!1

" 1: :.::CA1 --l. I M1 G13.1fl.::l 0 3

OVN Mil *0N) 10 D
3 13 P1 0 -1 -10 J 13 V (113 14 ko N Is H

- 298 -

R 133C'I

- ,4, 11. 13:15l 16: 56 64 26 10 12 y 17 18 19 20, 21, 22- 236 41J .X42

z 4453 6 5, 7 1.4 v24 57 58 60 6189 27-46y4748Y49Y5051,. Y52y25t

26 28 29, ' 30 59 37

TH FLLIl:NG NDE HAVE Bl ET EN REM y IOVEDI
) . . 13 . ")

3 4
1:1 12 :13 :1.4
21 22 23 24
3 38 39 40
47 40 4 50

5960 6:1. 62

6

1.6
26

42

,65

7

:17
27
43
53

J. %8

28
4-4
56

9

45
57

:1. 0
20
30
46
581

DIMN

PR E [C T: R FORM E D Ai ND T, s DT A N CE7 M A *RI X C' C M PU TED 1*1 WI* P = :1

I U S 'T NOT TAK 1:N A% S ING LE NOD ES .

CM
BES ARTITIO. N MEASURE :

LU.TE (NC) B JE.,CTS

0.528
T1.RE1: :.'?

1 9) 1 2 3 9 4 5 6 7 8

S Tp RNGTI-* 0 () 5278
COUP ING E :(0 0)0)00

REN.KIA MED:' A S F'OC)L LOWt

- 299 -

R t

12 .4 1.1. 137 1.5?1.6566-4761.0 :12571.7.181972021222341-.4 1

4' 44 6' 21 , 6 1 :.4v2 ?57 59f3i 6 07y6n1. 7,8,72;'1 4 6 ~47 9 487s-49? 50 51. 5'2? 12'?

26 m287,29 30 59 - 317-32, 33 ' 34 y 35,, 36 75-4 y 55!, 63/

TH F N'DES HI A'I BEEN R :: M 'V IED

142

27; :

4

'1 15 : 16
24 25 26

34 35 36
49 50 51
59 60 6 A

17
227

-41.
52

62 '1:

28
4
,53
63

1.9

19

.43
54

64

fLD NF. NI-F('EW TIE: N
0) 1... D) M C) NE N 1: k \ C)

F:FENAMED AS FIJ[L LL0OW'S

I TMN
P E C TERING CM P E1).. FE T E

1.: 1 :;: 1... J. : f \ (' 1::' lE* 1:,! F: () p: Mrjf:7 ri A iC '):':j.A N (I:PCL .USTENG PERF. MEDAD DI..S TANC
CL ..U STE*RS1. NOC)T T A KEN A INMGLE..F NODT ES.

M A T X C C) MP :U TI FED W P = 1 F :: 7

F, E CiQ +
1--fl C13

CURRENT PRCLUSTER :N HlAS ONLY O*NE: CLUSTIER
UIL E I) T I F: D IT

CLUSTE (-* N) 0BJECTff S

:. (5) 1. 2 3 4 5

FE'UAL

SfPEN(TH t 0, 6000 7

C C)UFiL.IN G 0 0000
MEASURPE 0.,600.

21.

11
31
46
5 6

RESTT
F [jI f 1,F." F, .,I I... I?? * 11. N ? A I

RE F0124! 1 y1 -56!

2 6v10!, 12/
4
.1

17 :19 -41 43 -44./1.32v".3472

14,45 4:7? 6 621/

71.49':4?U!,/5b7 6 0b61

4)I: 9 5C C ' 5:1. 5 2./.

:.32 333-4 3 35 ,36? 54? 55, 6 3/

PR CL.

CLUTER(NO) OBJECTS

1 (9)
2 (4)
3 (5)
.4 (' c: 5)

7 3)

9? 6)

10 (9)
:1.1 (5)

3

6
18 ~
19

1.4
9

47
26

32

4
1

41

23
24

48 0

:33
39

1. J1.
:1.2

43
42
57

49
29

34
40

13 15 16 56 64

65
44
62
5 8

50
30
35
45

60 61

52

36 54 55 63

- 300 -

S 0 FsA. 1.2

- 301 -

j:;. ~: ':~

:.5 -- 65

13- 22
:.3 23
6-4 -22

:1 2

3

1. 4

:. 8 5

1. 6L.INP!KS BETWEEll1.. .N CLUS[.,:TER r-r,

:1. 7
13 :1.4

1: 3..tJ
1 --- 7

: 1. -- 2

1 7 7 .

LIN T1 N K S
NON C)t11F"i

3 ... 5.

4--- 25

CI. U- T I-4
.1 34

3 --. 3:.
3 -- 54

4 -3:1.
4 - 54

1::. ---. 3 1
:.5 -- 34

64 .- .: 55

C I... UST ER:1. :. --- 35

CLSTRS

:1. 8 9

1 810

1. 2 :1. 1.

3 ~ ..

LINKS E:TWEEN

LINI'S BETWEEN

~\'

LI1.,N KS BE. 1*TWEEl1:,N

F-ETWEEN CLUIS TER I:,

LINKS BTEN

- 302 -

LIN KS.3 : TWEE

LN KS PETW E EVN

21 --- 4 3

6 -43

CL.U ST E RS
6 .2:1.

6 -- 6 2

CL USTEFTR S
2 - 6:1.

1.2 - 61.

CLUT ERS

6 - 46
10- 46.

L. : NK itS E: TWEE 1.*: 1.-: N

LN KS: B E T W E E N
NNKS 3TbE E

LNKitS isEvTWbiE ETN

LITN KS TWEE'! *-:1.:N

LINKS BETWEEN

L.:INK 1314F TWEEN* EN
NcNE :

C LU l T E: E3

C L. U~ Ef: E: R S

6 - 40
1. 0 45

5 -:1.9

:1. G :1 7

65 --. 4:1

5 -- 21.
20 -- 42

18S -- 5 7

5 - 4 16,

C L.UST E RS

2 it 4

12 is 5

2 is 6

2 * S

2 9

2 & :.0)

2 :1. :

3 S 4

3 5

3 6

/

L.14I 3itE T I..4 E~ EKh"N
LI 0NK ETEE

- 303 -

i...TN K . ET EE.LU TE,

NCN L.U1 TER1

1.8 -- 38

20 -- 3i8
20-45

LIN 1BETWE 1. TWE E N CT 1. U S T E R
4 1. 42

.4 - 42
44 ---. 42

L.I NKS B ET TWE EN1 C L.UST1ERS
NON14E <

LI N 1KS 1 BE T1WE E N C L.U T 1 T EK R

NCN E ,

L.I NKNS B3E T WE EN C L.USTE1-:RS

L. NK11S 13ETTW E EN C L.USTE R S

LIN K 3B 1*-E:T W E:FN CL.U ST ERS
4 1 - * :1.
41- 36

.41 --- 55

L N KS BF TW E N C I... 1 1 T E 8
14N E -.

N NE
LINKS BETWEEN CL U S'TERSE

LNKS BETWEEN CL UT E -

62 --- 5 .
L P1,1 E- E* Ti)E: E N C I i: i. 1 3 *T El R~ 1

122 -- 30
62 - 30

LN B!ET !-: 1 WEE N CL.UTS M T S

:22 -- 35:.

LINKS BETWEEN C L U STTERfS

2 2 -- 40

3 .:1.

.4 8 5

A4I 8j
*

.4 8~ 7

.4 $ S

4 8 9i(

4 s J. :11

5 it 6

5 7

5 8

5 8 1 9i 1%

5; 1 10

15 is :.1

- 304 -

LNI T " *l* j*.c * ' f hiE IE N

I... BE W N ; :f D Y tj I 1

LINKPOTS BETRFW FEEN

LN K B E T W E E N

LI 1NK S B ETWJE E N

NON 13E1 ,!1.:E --

LINKS BT WEE: r '.* ::lF:N

LINK.S BETWEEN

rEl'
7 ".... 3

24 --- 47

77 -- 29"
58 2 9
58 - 59

9 - F!::; .
27 -- 5

27-- 59

C L..STER 1.1:1
8 -- 37

CL..U T R 1() F 'Fz-3

6 96. 8 8

6 58 9

6 & :1.0

7 ; : 0

8 & 9LN KS 1EWEN
NiNE ,

j: --- EE

6SA:iM

I21 .1 f J IN3J.:l .c b N .1-.N

T :

T T :

6 .1. -

-SE -A:~. l ~ N ML .1 .\lN.1 I

- 306 -

APPENDIX J

Main Subproblems Resulting From The

Second Iteration of the Decomposition Analysis

Note: (11) The number in the parenthesis indicates

the number of interdependencies identified

for the requirement.

- 307 -

Main Subproblem 1: Supervisor Process:

7 (10): The operating system must provide for a multi-

programming environment.

9 (8): All resource requests must pass through the

supervisor.

10 (8): System resources must be allocated to a job prior

to it being runnable.

17 (5): System process routines are re-entrant and shared.

19 C 9): Supervisor process must schedule jobs and prepare

them for execution.

21 (5): Jobs are initiated strictly on a first-come, first-

served basis.

22 (3): Supervisor process must be modularized so that

improvements are easy.

62 (2'): Supervisor process must load the user-supplied

object deck into memory.

70 (9): There is one supervisor process per job stream.

Main Subproblem 2: Extended Machine Instruction Mechanism:

8 (5): Operating system must run on a machine that has

two states.

12 (8): User communication with operating system is via

special call.

16 (5): Certain system routines are user callable.

18 (4): Extended machine instructions are executed in the

supervisor state.

Main Subproblem 3: Process Control Functions:

- 308 -

SUBPROBLEM MS 3-A - Process Scheduling:

11 (6): A process must be ready to run prior to being

allocated a processor.

24 (7): Ready processes are scheduled in round-robin

fashion by process scheduler.

26 (6): A process shall be blocked when awaiting synchron-

ization.

59 (6): If no messages are available to a process explicitly

then it goes blocked.

71 (3): I/O interrupt handler must provide fora synchronous

scheduling of a process requiring fast processing.

SUBPROBLEM MS 3-B - System Initiated Interrupts:

23 (3): Process scheduler must time-slice CPU usage.

25 (9): A process shall be blocked when its time quantum

is exceeded.

47 (7): Interrupt handler must be provided for I/O

interrupts.

49 (6): Interrupt handler-must be provided for supervisor

call interrupts.

50 (5): Interrupt handler must be provided for external

interrupts.

SUBPROBLEM MS 3-C - User Process Initiated Interrupts:

27 (4): A process shall be blocked when it specifically

relinquishes control.

28 (10): Supervisor routine must reclaim all system resources

when a job is completed.

- 309 -

29 (5): Supervisor must reclaim resources when an error

condition is raised.

48 (8): Interrupt handler must be provided for program

interrupts.

68 (7): User process must signal completion to the opera-

ting system.

Main Subproblem 4: Process Creation Functions:

13 (7): Operating system must protect user jobs from each

other.

20 (3): Initially one process is created for each user's

job.

30 (5): Reference to a process is by symbolic name.

63 (5): All processes may dynamically create additional

processes.

64 (7): Dynamically created processes run on the same

memory area as parent job.

66 (6): User processes can destroy other user processes

only within the same group.

67 (5): User processes run in the problem state.

Main Subproblem 5: Interprocess Communication:

MS 5-A - Operating System Information Tables:

14 (10): Operating system must utilize information tables

to monitor and control.

15 (4): System tables can be dynamically allocated and

released.

33 (9): Operating system may dynamically allocate memory

MS 5-B -

52 (10)

53 (5):

54 (6):

55

56

57

58

2):

7):

4):

4):

- 310 -

to itself for workspace.

Message Facility

Message facility must be provided to all processes.

Processes receiving messages must be able to

determine the originator.

Receiving process may read the name and text from

originator.

Messages are of an arbitrary yet specified length.

Any number of messages may be queued.

All messages are released when a process terminates.

Messages are not receipted for.

Main Subproblem 6: Memory Allocation Functions:

31 (8): The operating system must allocate memory for a job.

32 (8): Memory is allocated to a job in contiguous 2K

blocks.

34 (4): Memory is allocated using a best-fit algorithm.

35 (7): Memory must be protected to prevent simultaneous

allocation.

36 (7): Free storage areas are collapsed into blocks when

a job is freed.

65 (5): User processes cannot dynamically allocate memory.

Main Subproblem 7: Device Management Functions:

37 (13): Operating system must supply a device management

system.

38 (5): Device handler routines must support multiple job

streams.

- 311 -

39 (8): A device is dedicated to a job.

40 (10): The device handler routine supports one card

reader per input stream.

41 (6): The device handler routine must support one line

printer.

42 (8): The user can provide his own routines for non-

atandard devices.

60 (12): User programs use JCL to specify resource

requirements.

61 (6): Operating system must accept input data from user's

job stream.

69 (7): User's job can reference at most 1 input, 1 output,

and 1 non-standard device.

Main Subproblem 8: Process Synchronization Functions:

43 (10): A process synchronization mechanism must be

provided as a lock database.

44 (7): A process synchronization mechanism must be pro-

vided for synchronous process.

45 (5): A process synchronization mechanism must be pro-

vided for sender and receiver of messages.

46 (10): A process synchronization mechanism must be

provided to lock a device.

51 (6): P-V operations are available only to system

processes.

- 312 -

APPENDIX K

Linkage - Interface Assessment

- 313 -

LINKAGE - INTERFACE ASSESSMENT

Cluster
NumberSubproblem

Process Scheduling
System Initiated
Interrupt Handler

User Initiated Interrupt
Handler
Process Sychronization
Mechanism

Memory Allocation
Operating System
Information Tables

Process Creation
Message Facility

Device Management
Functions

Supervisor Process

Extended Machine
Instruction Mechanism

Process Management
(lower) Module

5

11

Memory Management
Module

Process Management
(upper) Module

Device Management
Module

Supervisor Process
Module

Supervisor Call
Handler

Module

NUMBER OF LINKAGES BETWEEN SUBPROBLEMS

11 9 7 8 10 1 2

3 2

41|3 0 3

51|2 3

11 | 3

- 2 6 3

7 2

6 6

8 3

1 12

3 2 2

- - 0 9 -

2 - 9 0 1

2 2 - 1 0

3 I 0
- 2

2 2

0 3 - 1

0 2

2 0

