A GRADING REPORT GENERATOR
by
RONALD WING-KEONG LAW

S.B., Massachusetts Institute of Technology
(1973)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF
SCIENCE
at the
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

June, 1976

Signature of Author Seeseensraentessscarsenaserresenerosseneonns
Alfred P. Sloan School of Management, May 7, 1976

a

-

B

L
Certified by .1....vuov.~tv‘tnv e s s e e e e PFeasoe v D‘rl‘—v-"'vunttoo;..
Thesis Supervisor
Accepted by .icccieiaianeenn e eesescacerstsieessrsasatsaas Ceteticeteneane

Chairman, Departmental Committee on Graduate Students

ABSTRACT

Title of thesis : A GRADING REPORT GENERATOR

Name of author : RONALD WING-KEONG LAW

Submitted to the Alfred P. Sloan School of Management on May 14, 1976
in partial fulfillment of the requirements for the degree of Master of

Science.

The Grading Report Generator is a computer program designed to
automate the process of preparing pgrading reports and to provide a set
of meaningful statistics on the performance of the students in order to
aid both the teacher and the students. It allows the user to divide
the students in the subject into sections. The subject format is specified
by the user as any combination of grades for quizzes, problem sets, machine
problems, papers, take-home examinations, etc. Each grade is assigned
a weight so that a weighted average grade may be computed for each student.
The GRG generates class and section reports which arrange the students
in some user specified order, e.g. by their name, by their year, bv their
latest grade, by their average. Another kind of report shows the overall
average for each grade in a class or section, and the percentage of
students who participated in it. A count of the number of students who
are taking the subject for a letter grade, PASS/FAIL, as listeners or
have dropped the subject is also produced.

It is intended that these reports, produced by the GRG on a time-
sharing computer system, would provide meaningful and timely feedback
to the teacher and the students.

Thesis supervisor : Stuart E. Madnick

Title : Assistant Professor of Management Science

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to his thesis
advisor Prof. Stuart Madnick for his guidance and encouragement in making
this work possible. Through Stu's constructive criticism and valuable
suggestions, the author has gained an enormous amount of experience in
the solving of a real life problem. Lastly, the amount of computer

time made available by Stu is greatly appreciated.

TABLE OF CONTENTS

CONTENTS

ABSTRACT.....

S0 s e ceevossecrs e 00 e 0 ses s s OO NICOCTc s eses s 0o

ACKNOWLEDGEI‘ENTS.........-....-..--....'.-...-‘.oo.-'.---......V.

CHAPTER ONE

CHAPTER TWO :

: INTRODUCTION ® ® 8 8 8 S S 00O 0RO P E N SO O e s . e

HOW TO USE THE GRGevececcoscoconcocscsccsscccsnscs

Input File...oe... R R PR R PP PR .
Subject Statement Ceseececcetetcctetannncuoras
Section StAtements soeee..... cesesessacscnsnenanas
Grade Statements ..e.cesscecescsvne ceencscssvencas
Listing Statements teescectserssserocananns .

Data Statements eeeeeee ceescssscsssersssassesevone

CHAPTER THREE : INTERNAL DESIGN OF THE GRG ...c..... ctseccsennns

CHAPTER FOUR :

APPENDIX I

APPENDIX II :

APPENDIX III

Choice of COMPULET ceceeececccecccconsnsacannsss
Choice of Language ..ceecesass esccsssesreserasns
Program Modules ...c.ccceeee cecrecscnsscccns oo

Data Organization .ecccecececcceccccccccascans “oe
EXTENSIONS AND IMPROVEMENTS ssecesscesvena

Increasing the Capacity cecesecsscesscetasans
Generate Additional RePOTLS .veeerscccanccas ceees

Additional Online Capability cecacn ceeccns

¢ PROGRAM LISTINGS e

SAMPLE OF AN INPUT FILE .cececees cescescssescsserse
Data Card FOrmat ceeeeececcecacsoscocssscaccacsscscs

¢ LOADING INSTRUCTIONS ccevevecccccsssoncscssaasaas

O W O o

10
13

14

14
15
18
20

25

25
26
26

27

52

53

54

CHAPTER ONE : INTRODUCTION

One of the more time-~consuming tasks involved in the administration
of a subject is the monitoring of the stpdents' performance, For example,
it is customary for the person in charge of a subject to calculate after
every quiz the mean, the median, the range of grades, and the number of
students who took part in it. This information provides useful feedback
to both the teacher and students. The teacher may use this information
to decide on the way the subject will be conducted in the future. The
student may picture where he stands in the subject relative to his

classmates and decide whether extra effort will be required.

The objective of this thesis is two folds :
1) to automate the repetitious task of manually preparing grading reports,
and
2) to provide a set of meaningful statistics on the performance of the

students in order to aid both the teacher and students.

In the past there had been numerous grading programs that were
written for these purposes. But they were generally found to be either
too restrictive, becaﬁse they were designed for one kind of subject format,
or they provided too little useful information. Furthermore, their
documentation either did not exist or was incomplete, thus making it

extremely difficult for current users to maintain or update them.

In order to useful to a broad spectrum of users, a grading program
must be able to accomodate subjects of different formats. It must also

rovide the users with a comprehensive users' guide so that users may take
p p y

advantage of the various options they may want to exercise. It must
also be thoroughly designed and documented, with particular emphasis on

maintainability and future extensibility.

The present implementation of the Grading Report Generator is a
FORTRAN IV program that runs in a PRIME 300 minicomputer at the Sloan
School of Management. The GRG allows the user to define the format of a
subject as a collection of scores from quizzes, problem sets, machine
problems, take-home exams, etc. Each score carries with it a weight
which reflects a percentage of the requirements for the subject. The
overall average is a weighted average of the score weight and the score
achieved, and 1t is computed for every student in the subject. The
students may be assigned into sections. There are two classes of reports
that may be generated, and these apply to the class as a whole and to the
individual sections. The first kind of report deals with the ordering of
the students by some values, e.g. by the name of the students, by the
year of students, by the latest grade, by the student overall average, etc.
The second kind of report deals with the aggregate of the student data in
a class or section, e.g. the average for a particular grade, the rate
of participation, the number of students who registered the subject as a

graded student, listener, etc.

-

Although the present implementation may not contain all the desirable
features, it had been designed with future extensions in mind. A well |
structured framework had been laid out with emphasis on modularity. The
coding adhered rigidly to a set of rules and is described in detail in

Chapter Three.

CHAPTER TWO : HOW TO USE THE GRG

This chapter is intended as a user's guide for the Grading Report
Generator. Basically, the GRG accepts input from an input file, performs
the specified processing, and then outputs the requested reports to the
output file. The input file may be created in a number of ways. A deck
of cards may be keypunched and then read into the PRIME. The basic
procedure of accessing and logging into the PRIME minicomputer will not
be discussed here. Assuming the user is attached to the directory where
the GRG resides and he has the input already punched as a deck of cards.
The cards should be read in by issuing the following commands to the
operating system
ASSIGN CR1 .
CRMPC filename filename is name assigned to file

CLOSE ALL
UNASSIGN CR1

The input file may also be created initially by the text editor, or
subsequently modified by it. When the user is ready, he invokes the GRG
by entering :

RESUME *GRG

When the GRG is activated, it issues
PLEASE ENTER FILENAME
and user responds by :

filename

The GRG will run to completion and produce an output named REPORT.

Before describing the contents of the input file, it is necessary to
understand the functions of the GRG. The GRG is designed to allow for up
to 9 sections for the subject, each section not to exceed 80 students. The
total number of students in the subject may not exceed 300. For the
subject, a maximum of 13 scores or grades may be specified. The range of
a score is from 0 to 100. A numerical weight expressed as a percentage
must be assigned to each score, and it must also range from 0 to 100.

It is recommended that the sum of the weights make up 100 so that a

normalized average score would result.

Input File
The input file consist of two groups of statements
1) control statements

2) data statements

Control statements are variable in number and they are further
divided into 4 groups. They are
1) subject statement
2) section statements
3) grade statements

4) listing statements

Data statements are usually fixed 4n number because each one
corresponds to a student. When students have dropped the subject, their
data statements may remain in the file since they do not interfere with
the data of others. It is recommended that the data statements be

maintained in alphabetical order of the student name for ease of handling,

although the GRG has no requirement for them to be in any order.

Subject Statement

This is a single statement (one line or one card) of text contain-
ing up to 80 characters. This is also the first statement of the input
file. The user may use this statement to identify the subject, the
lecturer and any other information pertinent to the subject. This
statement appears as the heading for reports which involves the whole

class.

Section Statements

The section statements are similar to the subject statement in that
the GRG treats them as text. The user must include one section statement
for every section the class is divided into. A section statement will
appear as the heading for every report of that section. The collection of
section statements must be preceeded by a line which states the number
of section statements that are present. This number is read by the GRG
in I2 format in columns 1 and 2. The maximum allowable number of sections

is 9..

Grade Statements

The group of grade statements are Breceeded by a line which declares
how many grade statements are present. This number is also read in from
columns 1 and 2 in I2 format. The maximum number of grade statements is 13.

For each grade statement the following format applies :

10

column 1, 2, 3 any three characters
column 4 BLANK
column 5, 6, 7 a weight expressed as a percentage (1 to 100)

It is suggested that the user adapt a convention regarding the three
character assignment, e.g. QZ1, QZ2, ... for quiz 1, quiz 2, ... PS1, PS2
«+« for problem sets etc. The first grade statement will correspond to ~
the first grade columns (41,42,43) on the data statement, the second

grade statement with the second grade columns (44,45,46) etc.

Listing Statements

There are two listing statements, each containing different logical
flags. Each logical flag controls whether a particular report is
generated or not. A T, meaning true, will enable a report to be generated,
while a F, meaning false, will suppress that report. The first listing
statement contains 8 logical flags which control the overall or class

reports.

Flag 1

Flag 2

Flag 3

Flag 4

Flag 5

Flag 6

Flag 7

Flag 8

Columns 1

through 8

11

Generates a class report
number.

Generates a class report
the student.

Generates a class report
student belongs to.
Generates a class report
in alphabetical order.
Generates a class report
of the students.
Generates a class report
belongs to.

Generates a class report
the user has defined.
Generates a class report

of the student.

ordered

ordered

ordered

ordered

ordered

ordered

ordered

ordered

by

by

by

by

by

the

the

the

the

the

the

the

the

student's sequence

year or class of

course (department) the

names of the students

registration status

section the student

last or latest score

weighted average score

12

The second listing control statement

Flag 1
Flag 2
Flag 3

columns 1

through 3

Generates a section report for
students by their names.
Generates a section report for
by the latest score.

Generates a section report for

by the overall average.

contains 3 logical flags.

each section and orders the

each section and orders it

each section and orders it

13

Data Statements
Each data statement contains the background information and the
scores for one student. There may be up to 300 data statements to repre-

sent 300 students.

COLUMNS INFORMATION

lto5 Sequence number

6 BLANK

7-8 Year, e.g. G, 1, 2, 3, 4, SG
9 BLANK

10 to 12 Course, e.g. 2, 2A, 15, 63
13 BLANK

14 to 36 Student Name

37 Student Status,e.g,

BLANK means the student is taking the
subject for a letter grade

N means he is taking the subject for
a PASS/FAIL grade

L means he is a listener

C means he has dropped the subject

38 BLANK

39 to 40 . Section
41 to 43 Score 1
44 to 46 Score 2

ep o a0 ssos o

77 to 79 Score 13

14

CHAPTER THREE: INTERNAL DESIGN OF THE GRG

Choice of Computer

It is highly desirable to be able to execute the GRG online because
of delays and other inconveniences involved with a batch system. There
are 3 general-purpose time-sharing computer systems at MIT that are
suitable for this application. The Information Processing Center
operate an IBM S/370-168 and a HIS 6180, both being large scale com-
puter systems. The Sloan School of Management operates a PRIME 300

minicomputer in the basement of the Sloan Building.

Although the execution speed of the PRIME is slow by large com-
puter standards, it is quite adequate for this application because of the
small amount of processing activity involved. Also the memory and
storage capacity of the PRIME is small compared to the IPC's two large
systems, but again this application does not require an extraordinary
amount of space. Besides, the operating system on the PRIME is a truly
general-purpose time-sharing system which provides essentially the same
services as the largg computers but without many of the costly over-
heads. The PRIME currently supports as many as 7 terminals simultaneously,
thus providing the users with good accessibility to a terminal. There-
fore the PRIME was selected as the computer to develop and run the GRG.
This is also consistent with current trends towards decentralizing of
processing functions from large central facilities to local, distributed
sites where smaller machines takeover the less demanding chores of com-

putation and provide more timely turnaround of results.

15

Choice of Language

There are currently 3 suitable language for implementing the GPG on
the PRIME: FORTRAN IV, BASIC and Macro Assembler. Macro Assembler was
the first to be eliminated in the choice because it was not a higher
order language. A higher order language program usually requires less
time to develop, costs less to maintain, and may Se transported to
another machine when the compiler exists for it. The author selected
FORTRAN IV as the implementation language, not because there were any
short comings with BASIC, but rather the author is more familiar with

FORTRAN.

Although FORTRAN is termed a higher order language, there are many
desirable features of HOL's that it lacked, e.g. nested procedures, data-
structures and the if-then-else construct, etc. Therefore it would be
particularly difficult to apply the principles of struétured programming
to program development unless some programming rules or restrictions were
introduced and strictly followed. They include
1) Restrict program modules to under 2 pages in length.

2) Declare all the major variables in separate files. Then include them
into program modules by the $INSERT preprocessor facility.

3) Restrict the scope of GOTO statements.

4) Extensive use of CONTINUE statementgvto serve as the bounds of DO-loops
and as program branch destinations.

5) Assign statement numbers such that they appear in ascending order on

the left margin.

Rule 1 essentially prohibits program modules to become too long and

16

thus difficult to follow. It forces the designer to break down the
whole system into smaller modules and have each module perform a single

or a small set of functions.

Rule 2 guarantees the integrity of data declarations over the
various program modules by allowing the compiler to merge the declarations
during compile time. When modifications to the system is required, only
the declaration files need be modified. The changes would be picked up

when the program modules are later recompiled.

Since it is not possible to eliminate the use of GOTO statements in
a FORTRAN program because of the basic limitations of the language, the
use of GOTO statements should be carefully planned. For example, a
branch out of a DO-loop should be to the statement immediately following
the end of the loop. The program should also be structured such that
backward branching with GOTO statements be replaced by DO-loops whenever

possible.

Rule 4 and Rule 5 combined would make the effort required to follow
the program flow much easier because ascending statement numbers suggest

the sequential order of program steps.

The hierachy diagram of the GRG is depicted in Figure 1. 1In the
diagram, each program module is represented by a box. The diagram does
not show the order of execution of the modules. It only shows the logical
level of processing each module is responsible for. The following is a

description of each module.

MAIN

BLOCKD

PROCES

SUM

COLSUM

Figure 1.

OUTPUT

CSORT

CPRINT

Program Hierachy

SSORT

SPRINT

LT

18
Program Modules

MAIN

This is the main program of the GRG. It obtains the input file name
from the user, opens the input and output files, and then reads in the
control statements and data statements from the input file. Control is
then passed first to module PROCES and then to module OUTPUT. After
returning from OUTPUT, all functions of the GRG are complete. The input
and output files are closed and the GRG returns control to the operating

system.

PROCES

This module performs most of the arithmetic of the GRG. The weighted
average of each student is computed. Students are also assigned into the
different sections that they belong to by taking up a section pointer.
They are further classified by their status. Student scores are also
being accumulated in order to compute section and class averages for
each grade. In the computation of the average, only the grades for
credit students, i.e. students who are getting a letter grade or a grade
of PASS/FAIL, are being used. Moreover, exceptionally low grades (under
20) are also not included because of the hugh negative bias they would
introduce. Another statistic known as the participation rate is com-
puted on credit student by sections and as a class. This rate shows

the percentage of the credit students who took part in a certain quiz

or turned in their problem sets etec.

OUTPUT
This module calls subroutines CSORT and SSORT to perform the various

sorts requested by the user and outputs the result by calling the print

19

subroutines CPRINT and SPRINT. In addition, a table which contains

class averages and the participation rate for every grade is provided.

SUM

This is a function which returns the sum of an array of integers.

COLSUM
This is a functicn which returns the sum of a column of a two-

dimensional integer array.

CSORT

This is a subroutine which performs an interchange sort on an array
of pointers for the whole class of students. The sort argument may be
specified as a field of the student character data such as the student
name, the section he belongs to, etc. Alternatively, the sort argument

may be one of the students' grades or their average score.

SSORT
This subroutine is similar to CSORT in function but it operates

only on the pointers for the section of students which has been specified.

CPRINT
This subroutine generates the class reports by putting out the
appropriate headings to indicate what type of report it is. The students

-

are presented in the report in the order specified by the class pointers.

SPRINT
This subroutine is similar to CPRINT except that it generates a
report for the section that has been specified instead of the whole class,

and the ordering is by the section pointers.

20

BLOCKD
This is the BLOCK DATA subprogram where all the initialization

for the variables in labelled COMMON are specified.

The Unassigned Section

At the beginning of a term, a student may indicate that he would
register in the subject, but he could not select which section to attend
because of the scheduling for other subjects. This situation implies
that the GRG must handle these unassigned students as a special section.
When the student's data statement does not specify which section he
belongs to, he is automatically assigned to the unspecified section.
Later in the term, when his section assignment is confirmed, his data

statement may be updated to reflect the change.

Data Organization

In the interest of structured and modular programming, program
modules are deliberately kept to a small, readable size. As a result,
most of the program variables would be referenced by more than one
program module. In order to minimize the passing of these variables as
arguments in subroutine calls and function references, they are declared
as global or COMMON variables. This means the COMMON variables must
be declared in every module where they_are referenced. The PRIME
FORTRAN IV compiler has a very useful feature in the $INSERT compile-
time facility. It allows the merging of statements from another file
into the current file being compiled as if those statements were part

of the current file.

21

In the GRG, the COMMON variables are separated into 5 LABELLED
COMMON areas COM1, COM2, COM3, COM4, and COM5 according to their data type.

These are stored on the system as files COML through COMS5 respectively.

COoM1
COMMON COM1 consists of INTEGER variables which are used to store

packed character strings two to a storage word.
INFILE(3) stores the input filename of up to 6 characters long.

SBHEAD (40) stores a string of 80 characters which serves as the

subject heading in class reports.

SCHEAD (40, 10) stores a string of 80 characters for each of the
9 assignable sections plus the unassigned section. This string is

used to identify the sections in section reports.

GRHEAD (2, 14) stores the 3 character grade or score heading for each
of the 13 allowable grades plus one for the column which contains the

average.

STUDC(20,300) stores the 40 character information for each of the
300 allowable students in the class. The fields which comprise the 40

characters are describled in Chapter Two.

NUMBER(10) is a constant string of ASCII character initialized
from 1 to 10. It is used to identify the section the student is assigned

to.

PRFILE(3) is initialize to REPORT. This is the name of the output

file.

22

CRHEAD(10) is another 20 character heading used in the reports.

It reads 'STUDENTS ORDERED BY'.

RPHEAD(5,8) is an array of 10 character strings used in the reports

in conjunction with CRHEAD to describe the type of report.

coM2
COM2 consists of all the numeric variables used in the program

and they are all typed INTEGER.
ISEC is the number of sections in the class.
IGRADE is the number of grades or scores presented.

STUDN(14,300) stores the 13 allowable scores plus the average for

each of the up to 300 students.
WEIGHT(13) stores the weighing factor for each grade or score.
NCLASS is the total number of students in the class.

NSEC(10) is the number of students in each of the 9 assignable

sections plus the unassigned section.

AVGCOL is the number of the column in STUDN which is used to hold

the average. It has a value of IGRADE + 1.

WIOTAL is the sum of the specified weights for the grades that

are present.

TSEC is the number assigned to the unspecified section and has a

value of ISEC + 1.

CSEC is the number of the section which contains the total for the

23

individual sections.

GRADED(11), PSFAIL(11), LISTEN(11l), DROP(11l) contain the number
of students Vho select a letter grade, a grade of PASS/FAIL, select
the subject as a listener, or who dropped the subject, respectively.
They allow for up to 9 sections plus an unspecified section, and the

last element contains a sum of each classification.

GSECOL(10,14) contains the sum of grades in each column of the 9
allowable sections plus the unassigned section.

NSECOL(10,14) contains the number of students who figured in the
above count.

MASAVG(11,14) contains the master average of grades by column for
the 9 allowable sections, the unassigned section, and for the whole

class.

MASPCT(11,14) is similar to MASAVG but contains the participation

rate.
COM3

COM3 contains the only REAL variable used in the program, RTEMP.
COM4

COM4 declares the global logical yariables in the program.

OLIST(8) contains 8 logical flags used to control the overall class

listing reports.

SLIST(3) contains 3 logical flags for the sectional listing reports.

24

These flags are described in detail in Chapter Two.

coM5

COM5 contains variables used as pointers in the program and are

all typed INTEGER.
CLASS(300) are pointers to the whole class of up to 300 students.

SEC(80,10) are section pointers for 10 sections, each having up to

80 students.

25

CHAPTER FOUR : EXTENSIONS AND IMPROVEMENTS

There are 3 areas in the GRG which may be considered for extensions
or improvements. They are |
1) increase the capacity of the GRG to handle more students, more sections,
and the number of scores,
2) generate additional reports of interest, and

3) provide an online data-entry, enquiry and edit capability.
Increasing the Capacity

The current size of the GRG is less than 20K words (1K = 1024). This
includes about 8K words of instructions and 12K words of data. As the
maximum allowable size for a program for the PRIME minicomputer is 64K
words, there is ample space to expand the GRG to handle more students than
the present maximum of 300. Also the number of students per section and
the number of sections allowed may also be increased. To carry out these
changes, the data declarations which are contained in the five COMMON areas
may easily be modified. For example, to increase the number of students
say from 300 to 500, the dimensions of 3 variables should be changed. In
COM1, STUDC (20,300) becomes STUDC (20,500). 1In COM2, STUDN (14,300)
becomes STUDN (14,500). In COM5, CLASS (300) becomes CLASS (500). 1In
addition, a constant used as a loop count upper bound for reading in
student data statements in program module MAIN should be changed from

300 to 500.

26

Generate Additional Reports

There are many other statistics on the class or sections that a
teacher may want to collect. For example, an average score may be
computed for students belonging to each undergraduate class and for
graduate students. The average score for students belonging to different
courses may also be collected. In general there are numerous such
crass-tabulating statistics which may be gathered on the different student

attributes.

Additional Online Capability

This is perhaps the most challenging of the 3 areas for extensions
and improvements. At present, a user who wishes to carry out the functions
online data entry, enquiry and editing must use the TEXT EDITOR of the
PRIME system. The TEXT EDITOR allows the searching of fuily specified
text strings as well as partially specified text strings. However, when
it comes to entering data in specific colummns, the TEXT EDITOR becomes
very awkward because there is no command to allow easy column justification

in edit mode.

It would be very helpful to the user if a set of powerful editing
commands is available within the GRG tg‘allqw him to inquire and modify
the database in core and to produce an updated version of the INPUT file.
This would entirely eliminate the need for keypunching or use of the TEXT
EDITOR. The user may then created the INPUT file online, edit the file

online and produce reports online.

~Z MAIMN FPROGRAM

C MAIN PROGRAM
INTEGER
SINSERT COML
$INSERT COMZ
£INSERT COMZ
FIMSERT COM4
£INSERT COMS
MRITECL, 18) |
16 FORMATC “PLEASE ENTER FILENAME“) .
READCL, 28> INFILE
26 FORMATC3AZ)
CALL. SEARCHC, INFILE, 1) /% OPEN INFILE ON FUNITL %/
CALL SEARCHCZ, PRFILE, 2) /# DPEN PRINT FILE OM FUNIT2 w/
READYS, 36> SEHEAD
30 FORMAT ¢ 40AZ)
READCS, 48> 1SEC
49 FORMATC 12
0O 5@ 1 = 1, ISEC
READCS, 28> CSCHEADCT, 15, J = 1, 48
50 COMT IMUE
READCS, 48) IGRADE
Do 78 1 = 1, IGRADE
READCS, 50> GRHEADCL, 1), GRHEADCZ, 15, WEIGHTCID
50 FORMATC2AZ, 13)
70 COMT IMUE

I XIQNIddv

SONILSIT WV4Dd0dd

Lz

o

809

%)
1909
110

129

0«

NOW READ IN LOGICAL FLAGS
READCS, 89> <(OLISTCI>, I = 41,8)
FORMATCSLLD
READCS, 26> (SLISTCIN», I = 1, 3D
0o 168 1 = 1, 399
READ S, 20, END=1189> (STUDCCT, I3, J = 1, 2905,
CSTUDMCT, 13,7 = 1, IGRADED
FORMATCZOAZ, 13132
COMT INUE
COMTINUE
MCLASS = I-1
AYGCOL = IGRADE + 1
GRHEAD I, AYGCOL.> = “AV” s+ ASSIGHN AVG INTO GRHEAD ./
GRHEADCZ, AVGCOL)> = G 7
TSEC = ISEC + 1 /% THE UNASSIGHED SECTION #*/
CSER = ISEC + 2 A+ CLASS AYG AND PCT REF +/
DO 120 1 = 1,48 A+ COPY UMASSIGHED SECTIOM HEADING #/
SCHEADCL, TSEC) = SCHEAD I, 185
COMTIMUE
WTOTAL = SUMCWEIGHT, IGRADE>

CALL PROCES

CALL. OUTPUT

CALL. SEARCHC4, 8, 1> A+ CLOSE FUNIT 1 »/
CALL SEARCHC4, 8, 20 7+ CLOSE FUNIT 2 +~/
CALL EXIT

EHD

8¢

SUBROQUTIMNMNE FPROCES

SUBROUTINE PROCES
INTEGER
LOGICAL CREDIT

FINSERT COML
FINSERT COMz !
EIMSERT COM3
FIMNSERT COM4
FIMNZSERT COM3S

199

S+ PROCESS STUDENTS INDIVIDUALLY
DO 489 I = 1, NCLASS
CLASZSCIY = 1 4 ASSIGN CLASS PTR */

s COMPUTE IMDIVIDUAL AVERAGE +/
RTEMFP = 0.8

0O 188 J = 1, IGRADE

RTEMP = RTEMP + WEIGHTC Jo# STUDNCT, 1>
COMT IMNUE

STURHCAVGCOL., I) = IFIXRTEMPAWNTOTALD

6T

119

229

219

228

239

7% ASSIGN SECTION PTR AMD COUNT STUDENTS IM EACH SECTION

DD 110 J = 4, ISEC A+ TRY MATCH WITH A DECLARED SECTIOM #/

IF CSTUDCC2E, 1. NE. NUMBERC.JY> GOTO 118 s LOOP IF DOMT MATCH */
GOTO 288 4+ MATCHED, EXIT WITH THIS J #®/

COMTINUE

J = THEC s SET J TO THE AMASSIGMED SECTIOM #+/

COMTINUE

HSECCTY = NSECCI> + 1 A4 COUNT UP ONE #+/
IT = MNSECCID
SECCII, I = 1 s SECTIOM J PTR #/

4 DETERMIMNE STRATUS OF STUDENT %/
IF <STUDCOLS, I> HME. 2H > GOTO 249
GRADEDY.J) = GRADEDCJ> + 1

CREDIT = . TRUE.
GOTO 3060 s+ PROCEED TO MNEXT STEP OF PROCESSING .~
CONTIMNUE

IF CSTUDCC1%, 1> ME. 2ZHN » GOTO 220
FPESFAILCIY = PSFAILCIY + 1

CREDIT = . TRUE.

GOTO 299 A+ PROCEED TO MEXT STEP OF PROCESSIMNG */
COMTINUE

CREDIT = | FALSE. / MUST BE MOMN-CREDIT STUDEMNT =%/

IF CSTUDCC1S, 1), ME. ZHL » GOTO 239

LISTEMCIY = LISTENCIY + 1A

GOTO 206 A+ PROCEFD TO MEXT STEP OF FPROCESSIMNG #+/
COMTINUE

DROFCTY = DROFCTIY + 1

o€

300

310
499

CONT INUE

s% ACCUMULATE GRADES OF CREDIT STUDENTS BY SECTION AND COLUMN */

IF ¢ MWOT. CREDIT> GOTO 488 A+ OMIT THIS STEFP FOR MNOM-CREDITS
DO 219 K = 1, AVGCOL

IF CSTUDHCK, 12 L.T. 28> GOTO 316 A+ FILTER OUT NOISE #/
MEECOLC.J, K> = MNSECOLCI, K> + 1

GSECOLCT, KD = GSECOLCT, K> + STUDMCK, 1D

COMTIMUE

COMTIMNUE

s4 EMD OF INDIVIDUAL STUDENT FROCESSING +/

S COMPUTE THE TOTAL MUMBER OF GRADED, PASS-FAIL, */
s+ LISTEM AMD DROFPPED STUDEMTS IM CLASS #+~
GRADEDICSECY SUMCGRADED, TSEC)

SFAILCCSEDCD SUMCPSFAIL, TSECD

LISTEMNYCSECY = SUMCLISTEM, TSEC)
DROPYCSECY = SUMIDROF, TSEC)H

1€

pal%1%)
509

709

s COMPUTE MASTER AVERAGE AND PERCENTAGE BY SECTION AMD COLUMN %/
DO 598 J = 1, TSEC

ITEMP = GRADEDCTIY + PSFAILCIY> ##+ MUMBER OF CREDIT STUDENTS IM SEC
DO 568 K = 1, AVGCOL

MASAVGCT, K = GSECOLCJ, K)AMSECOLCT, KD

MASFCTCT, K = (MNSECOLCT, K)#109> A ITEMP

COMTINUE

COMT INUE

<# COMPUTE CLASS AVERAGE AND PERCENTAGE OF CREDIT STUDENTS WHO DID
ITEMP = GRADEDCCSECY + PSFAILCCSEC) o+ # OF CREDIT STUDENTS #*/

DO 7gen K = 1, AVGCOL -

ITEMPZ = COLSUMCHSECOL, TSEC, K2

MASAWGCCSEC, KD COLSUMOGSECOL, TSEC, K)AITEMPZ

MAZFPCTCCSEC, KD CITEMPZ#199. 93/ ITEMFP

COMT INUE

[

RETURM
EMD

(4%

SuU
IN

SUUEROL

BROUTINE OUTPUT
TEGER

TIME QOUTFRFUOUT

INTEGER LIMELCY), LIMNEZCLZ), LINEZ(12D

FINSERT
FIMSERT
E£IMSERT
FIMSERT
FIMSERT

comML
cCoMz
COMZ
comg
COMS

\
DATA LIMEL/"SECTION” /A
DATA LLINE2/7CREDIT STUDENT AVERAGE 7~
DATA LIMNEZRA/”THEIR PARTICIPATIOMN RATE"/

A
IF
CH
A

GEMERARTE CLASS

COHOT. OLISTOL D
Ll CSORTCL, 5, 82
LL CPRIMTCL)

20 COMTINUE

IF
CHA
CH

39 co
IF

COMNOT. OLTSTCZOD
LL CSORTC?, 8, 8)
LL CPRINTCZ)?

MTINUE
COMNOT. OLISTOZMD

OVERALL SORTED LISTINGS IF SELECTED */
GOTO 26
s# SORT BY SEGH #/

GOTO 39
s4 SORT BY YEAR #*/

GOTO 48

CALL CSORTCS, 12, 8> A+ SORT BY COURSE */

CH

LL CPRIMNTCZ)

€e

40

59

117)

70

89

190

CONTINUE

IF <. NOT. OLISTC4>) GOTO 5@
CALL CSORTC1.3, 35, 9> ~+ SORT BY
CALL CPRINTC4)

COMTIMNUE

IF < MNOT. OLLISTCS2) GOTO &9
CALL CS0ORTC2Y, 38,80 A+ SORT BY
CALL. CPRINTCS)

CONT INUE

IF . NOT. OLISTOS)Y) GOTO 79
CALL C5ORTCI9, 40, 8> s+ SORT BY
CALL CPRINTOS)

COMTIMUE

IF OO NOT. OLISTC?)) GOTO 20
CALL CSORT8, 8, IGRADE> 7+ SORT
CALL CPRIMTC??

COMTIMUE

IF O NOT. OLLISTCS>) GOTO 160
CALL CS50RTCE, 9, AYGCOL> 74 SORT
CALL CPRIMTC3D

COMT IMUE

NAME */

STATUS =/

SECTION %/

BY LAST GRADE =#=/

BY AVERAGE */

he

7% PRINT OVERALL STATISTICS #*/
WRITE S, 128> (GRHEADCL, K, GRHEADCZ, K>, K=1, AVGCOL.>
1189 FORMAT CIHL, 48, "COMPREHEMNSIVE STATISTICSZ, /477, 47X, 141K, 2A2>>

DO 269 I = 1, ISEC

IF CHSECCIN EQL G GOTO 3299

NRITEf6;71@\ LINFEL, I, LINEZ, CMASAVGCT, KD, K=1, AVGCOL >
2160 FORMATCA, 11K, 4AZ, 11, 2X, 12AZ, 1415)

WRITECS, 2202 LTHEZ, (MASPCTCL, K, K=1, ANVGCOL)
228 FORMAT O/, 228, 12AZ, 1415
380 COMTINUE

sS4 THIS HAMDLES THE UMASSIGMNED SECTION #/

IF CHSECCTSEC). ERL 9> GOTO 489

WRITEVCS, 3168 LINEZ, CMASAVGITSEC, K), K=1, AVGCOL)
319 FORMAT A, 11K, "UMASSIGHED ., 12A2, 14152

WRITECCS, 228> LINEZ, (MASPCTCTSES, K2, K=1, AVGCOL >

409 COMT IMNUE
WRITECS, 4192 LINEZ, CMASAVGOCSEC, KD, K=1, AVGCOL?
419 FORMAT /A LARK, “OVERALL 7. AZAZ, 14150
WRITECE, 228> LIMNEZ, (MASFCTCCSEC, KX, K=1, AVGCOL)

WRITE S, 420> GRADEDCCSEC) ., PSFAILCCSEC),
LISTEMCCSEC), DROPICSEC)
420 FORMAT CACASA, 218 “STATIS S, 10K, “STUDENT COUNT -, ///
21in, "LETTER GRADE-, 2, 13,
21X, "PASS-FAIL ", 12X, 13, -" e
Z1x, "LISTEMER ", 12X, 13, 7
21w, "DROPFED ", 14, I3D

113

789

716

8209

DO 899 1 = 1, TSEC

IF CHSECCID. ER) GOTO 808 A+ SKIP IF NO STUDENTS #/

IF < HOT. SLISTOL))Y GOTO 590 ‘
CALL S50RTO13, 35,8, 1) s+ SORT BY MNAME #*/

CALL SPRINTC4, I2

COMTINUE
IF O MNOT. SLISTYZ2)») GOTO 569
CALL S50RTC8, 9. IGRADE, 1> A+ SORT BY LATEST GRADE #+/

CALL SPRIMTCZ, I

COMT INUE
IF ¢ MNOT. SLISTCI)) GOTO 799

CALL SEORTYE, 8, AVGCOL, 1) A+ SORT BY AVERAGE */
CALL SFRIMTCS, ID>

COMNT IMNUE
WRITECS, 7162 CGRHEADCL, KD, GRHEADCZ, K, K=1, AVGCOL >

FORMAT CLHL, 48X, "SECTION STATISTICS?, A/ 47X, 141X, 2RZH)
WRITES, 218> LIMEL, I, LIMNEZ, CMASAVGCI, K>, K=1, AVGCOL)?
WETTECE, 22802 LINEZ, <MASPCTOL, K), K=1, AVGCOL>

WRITECS, 428 GRADEDCI>, PEFAILCI),
LISTENCIM, DROPCID

COMTIMNUE
RETURM
EMD

9¢

120

INMNTEGER FUMNCTIOMN

INTEGER FUNMCTION SUMCARRAY, DIMEND
IMTEGER ARRAY, DIMEMN, TOTAL
DIMENSION ARRAYCDIMEM)

TOTAL = &

DO 196, 1 = 1, DIMEN
TOTAL. = TOTAL + ARRAYCI>
COMTINUE

SUM = TOTAL

RETURHM
EMD

SUMCFARRAY .

DCIMEMRD

LE

190

ITHNTEGER FUNCTIONM COoOL SuUMCARRAY . RIOL

INTEGER FUNCTION COLSUMCARRAY, ROWS, COLD>
INTEGER ARRAYC1D, 14>, RONS, COL, TOTAL
TOTAL = &

0O 169 1 = 1, ROWS

TOTAL = TOTAL + ARRAYCI, COLD

COMT IMUE

COLSUM =TOTAL

RETIURM

END

8¢

SUEBRCOUTINMNE CSORTCIEEGINMNM. ERNDINMNG.

SUBROUTIMNE CSORTCBEGIM, ENDING, GRCOL >
INTEGER

INTEGER BEGIN, ENDIMG, GRCOL

LOGICAL INCHMNG

FIMSERT COML
£INSERT COMZ
#IMNSERT COMZ
FINSERT COMY
FIMSERT COMS5

180

IHCHHG = | TRUE. A+ INITIALIZE TO TRUE FOR FIRST PASS %/
LEFH = (EMDIMNG-BEGIM+1)>/2

WORD = C(BEGIMN-1>/2

MAA = MCLASS-1

DO S8 I = 1, MAX

IF ¢ HOT. IMNCHMG)Y GOTO 666 A+ SORT COMPLETE #*/
IMCHNG = . FALSE.

MAXY. = MNCLASS-I

DO 468 J = 1, MAXKL

JJ o= J+1

TEMFL = CLASSCI)

TEMFZ = CLASSCIID

IF CBEEGIN EG 8> GOTO 2868 A+ MUMERIC SORT #*/

DO 1689 K = 1, LEM

KE = WORD+K

IF CSTUDCOKEK, TEMPLY-STUDCCKEK, TEMP22)> 406, 109, 309
COMT IMUE

GRCOL. D>

6t

GOTO 480 A+ NO INTERCHAMNGE., TRY MNEXT ITEM =/
200 CONTINUE
IF <STUDNCGRCOL, TEMPLY LT. STUDHCGRCOL., TEMP2) > GOTO 300
GOTO 499 A+ MO IMTERCHAMNGE, TRY MNEXT ITEM #/
399 COMNT IHUE
C FERFORM IMTERCHAMGE OF FPOIMNTERS
CLASZCIY = TEMPZ
CLAZZCTITY = TEMFPL
IMCHMNG = | TRUJE.
499 COMNTIMNUE
5090 COMTIMNUE
99 COMTIMNUE
RETURM
EMND

0¥

SUBROUTIMMNE SSORTCIEBEGIMNN. ENDIMNG.

SUBROUTIME SSORTCBEGIMN, ENDING, GRCOL, SECTON)
INTEGER

INTEGER BEGIN, EMDING, GRCOL, SECTOM

LOGICAL IMCHMNG

FINSERT COML
FIMNSERT COMZ
FINSERT COM3
FINSERT COM4
FIMNZERT COMS

120

IMCHNG = . TRUE., /% IMITIALIZE TO TRUE FOR FIRST PASS #*/
LEM = CENDING~-BEGIM+1)>-/Z

MORD = CBEGIMN-1>~2

MAY = HNSECCSECTOMY -1

0o 598 1 = 1, MAX

IF ¢ HOT. INCHHG) GOTO €608 A+ SORT COMPLETE #/

IMCHMNG = . FALSE

MAXL = MNSEC(SECTOM)—I

0O 498 J = 1, MAX1

JJ = J+1
TEMPL = SECCT, SECTOND
TEMPZ = SECCIT, SECTOMND

894
IF (BEGIH EG 8> GOTO 208 A+ MUMERIC SORT #*/
Do 1806 K = 1, LEN
KK = WORD+E
IF (STUDCOKE, TEMPL)Y-STUDCCKK, TEMPZ? > 4689, 166, 309
CONT INUE

GRCOL

184

GOTO 4900 A+ NO INTERCHANGE, TRY MEXT ITEM */
200 CONT INUE
IF <STUDNCGRCOL, TEMPL). LT. STUDMCGRCOL, TEMP2)>)> GOTO 300
GOTO 499 A+ NO INTERCHANGE, TRY MEXT ITEM #/
369 COMT IHUE
C FERFORM IMTERCHAMGE OF FPOINTERS
SECCT, SECTOMY = TEMPZ
SECCII, SECTOMY = TEMPL
IMNCHMG = . TRUE.
499 COMTINUE
w15 1% COMTIMUE
(1515 COMTIMNUE
RETURM
EMD

(A

SUBROUTINE CFRFRIMNMNTCTYFRFED

SUBRMOUTIME CPRINTCTYFED
INTEGER
INTEGER TYPE

FINSERT COM1 !
FINSERT COMZ
#IMSERT COMZ
FIMZERT COM4
FINSERT COMS

14

00

NRITECS, 182

FORMATCLIHLD

MRITECS, 282 SBHEAD /# SUBJECT HEADING */
FORMATCAIH , 48RAZ2/7)

WRITE S, 382 CRHEAD, C<RPHEADC.J, TYPED>, J=1, 35D
FORMATCIH , 15A2770

WRITECS, 468 CGHEAD, (GRHEADCL, J), GRHEADCZ,), J=1, AVYGCOL >
FORMATOCTR, 20A2, 14010, 2R2ZD D

WMRITEYE, 583

FORMATC A/

LIMES = 7

1%

199

N

(51%]

o

A HOW BEGINS THE PRINT LOOP
DO S99 1 = 1, NCLASS
IF CLIMES. LE. 54> GOTO 169

LIMES =
WRITE S,
WRITECS,
WRITECE,

%
18>
44> C
pel%

COMT IMNUE
11 = CLASSCID

WMRITECA, 208> T, (STUDCCT, 112, J=1, 28>, (STUDMCT, 115, J=1, AVGCOL)>

FORMATCI
LIMES =
COMTIMUE

RETURM
EMHD

K~y
B] .ﬁ-"‘:;

LIMKES

<+ FORCE MNEW PAGE */
GHEFAD, CGRHEADL, I3, GRHEADCZ2, J), J=41, AVGCOL)>
sS4 SKIP OME LIMNE #/

2OAZ, 14, 1315)
+ 1

vy

-

SUBROUTINE SPRINTCTYRFE.,. SECTOMND

SUBROUTINE SPRIMTC(TYPE, SECTOND
INTEGER
INTEGER TYPE, SECTON

FINSERT COMIL1?
FINSERT COMZ
FINSERT COMZ
FIMNSERT COPM4
FIMSERT COMD

16

a0

WRITECS, 132

FORMAT CAHLY

WRITECE, 20> (SCHEADCJI, SECTOND, J=1, 40)
FORMATCIH , 48A2/7)

WRITEOS, 280 CRHEAD, CRPHEADCJT, TYPED), J=1, 55
FORMATCIH » ASAZASD

WRITE S, 49> CGHEAD, (GRHEADCL, J), GRHEADCZ, J3, J=1, AVGCOL)>
FORMAT TR, 2BA2Z, 1401R, ZAZ2 D

WRITEYS, 562

FORMAT 2

LIMES = ¥

Sy

O

109

289

589
C
C

7# HOW BEGINS THE PRINT LOOP
K = MSEC(SECTOMN)

DO 588 I = 1L, K

IF CLIMES. LE. 54> GOTO 199

LIMES = 3
WRITECS, 167
WRITECE, 48> CG
WMRITECS, 59>
COMT IMUJE

I1 = SECJCI, SEC
WRITECS, 208> 1
FORMATCIS, 2K, 2
LIMES = LIMES
COMNTIMUE

RETURM
EMND

<# FORCE MEW PARGE #*/
HEAD, (GRHEADCL, J2, GRHEADCZ, J), J=1, AVGCOL)>
s~ SKIP OME LINE #*/ '

TOMD
L CSTUDCCT, T1I2, IJ=1, 282, CSTUDNCT, 11>, J=1, AVGCOL >

BAZ, 14, 1315)
+ 1

9%

BEL.OCK. DATA

BLOCK DATA
INTEGER

FINSERT COML
FIMSERT COMZ
FIMSERT COMZ
FINSERT COM4
FIMNSERT COM3S
DHTH

INFILEA3%®” ~“/,

SEBHEAD 4% 7/,

SOHFADAZSB*” 7,

“THFSE STUDEMTS HAVE HNOT BEEN ASSIGHED TO ANY SECTION-,
13 A

GRHEAD-23+7 77,

STUDCASO089+7 A4

MMRBERSZBH 1 2 3 4 5 5 7 8 9167

PRFILE/"REFORT ",

CGHEAD/"SEQH YR CS STUDENT 5 sC/
, CRHEADS"STUDEMTS ORDERED BY /7
s+ FEPHEAD.

TRANHIAL & WP

CSECUENCE #7
#, TWEAR ’
4, “COURSE ’
#, “HAME ’
+, “STATUS ’
#, “SECTIOMN u
#, “LHZT GRADE”
+, “AVERAGE e

A

s# INITIALIZE COMZ2 VARIABLES %/

DATA
1 ISEC/®/

2, 1GRADE/D/

3, STUDNA4200+0,/ .
4, WEIGHT/13+@/

5. NCLASSA9/

£, HNSEC/16+8/

7. ANGLCOL-2.

g, WTOTAL/9/

2, TSEC/B/

#, CESEC G

1, GRADED.A11+0./
2, PSFAILA1L140,/
3, LISTEMALL*B/
4, DROPA1L14+6/

5, GSECOL/140+9/
S, MNSECOLAS14846,/
7, PMASAVGA1S5446,
3, MASPCTA15440,/
DATA

1 SECA/SO9+3,.”

ErMD

8y

CcCorMMmomMm

comMMoM SCOMLS

1
2.
3,
4.
o)
’
’

,

NUBUS B

’

#,

INFILECED
SBHEADC 48D
ECHEADC 43, 18
GRHEAD Y2, 14D
STUDC 28, 399)
HUMEER <18
PRF1LFCID
CGHEAD 28)
CRHEADC 18
RPHEAD (S, 8

g,
g
e
g’
e
e g
P s
e
.

P 1 =] ot b By

INPUT FILEMNAME */

SUBJECT HEADING *~

SECTION HEADIMNGS %/

GRADE HEADIMNGS #+/

STUDEMT CHARACTER IMNFO w/
ASCIT 1 TO 18 +/

PRINT COUTFUT> FILENAME #*/
COMMOM GRADE ROW HEADIMNG +/
COMMOM REPORT HERDING #/

A4 REFORT HEADIMGS #

6%

VWRNOUOLWRPR

¥

n
-

VN ;O

CcCortmMorr S ComMm=z2s

COMMOMN ~/COMZ/

.
-

sy

'
~

I1SELC, J# MUMBER OF SECTIONS =/
I1GRADE, s+ NUMBER OF GRADES PRESEMT #*/
STUDMNCLY, 220>, s STUDEMNT GRADE INFO #/
WEIGHTC1.3), Z# WEIGHT OF GRADE AS A PERCENTAGE %/
MCLASS, S+ TOTAL STUDEMTS IM CLASS #*/
LT s K B s STUDEMTE FPER SECTION #/
ANGLOL - s IDENTIFIES COLUMM FOR AVERAGE, IGRADE+L #*/
» WTOTAL s SUM OF WEIGHTS #+
» TEEC S+ ISEC+1, THE UMASSIGHED SECTIOM ./
CSEC s+ TSEC+2, REFERS TO CLASS AYG AND PCT #/
GRADEDYL11Y 2+« # OF GRADED STUDEMNTS PER SECTION #-
FZFAILC11D> 7+ # OF PASS-FAIL STUDENTS PER SECTIOMN #+./
LTSTEMCLILY A+ # OF LISTEMERS PER SECTION #+/
DROPCLLD S+ # OF DROPFPED STUDEMTS PER SECTIOMN #/
GSECOL C18, 144 A+ TOTAL. GRADES BY SEC & COL OF CR STUDENTS *®/
o MSECOLC1E, 14> A+ # OF STUDENTS 1IN ABOVE COUNT @+
o MASAVGOLL, 142 A4 MASTER AVERAGES BY SECTION AND COLUMM */
s MAZSFPCTOIL, 14> A+ MASTER FERCENTAGES OF CREDIT STUDS WHO DID */

0s

CcComMmrMmord

COMMOM ACOM3~

1 RTEMP P
REAL RTEMP
Corp1ord
COMMOMN ~COM4A
14 OLIST(8), /i
2 SLISTORD e

LOGICAL OLIST, SLIST

CoMPICrd

COMMOM A/COMS/
1 CLASS(388),
2 SECK89, 16>

g
o

ACOoOM3E A

REAL TEMPORARY */

gL g]) Lo Sy

OVERALL LISTING LOGICALS */
SECTIOMNAL LISTING LOGICALS =/

OIS

CLASS PTR %/
SECTIOM PTR =*/

189

52

APPENDIX II: SAMPLE OF AN INPUT FILE

Assume a subject is divided in 3 sections. There are 4 grades

available at the time of the run. They are problem sets 1 and 2,
machine problem 1 and quiz 1. The weights for these grades are 5%,
5%, 10%, and 15% respectively. The user wants class reports ordered
by the student names and their average. He also wants section reports

ordered by the latest grade, i.e. quiz 1.

The input file should contain the following:

<1 line to describe
3

€1 line to describe
<1 line to describe

€1 line to describe

4
PS1 5
PS2 5
MP1 10
Qz1 15

il T
FFFIFFRT
FTF FFF

the subject”?

section 1>
section 2>

section 3 >

{data cards for students>

Control Card Formats
Subject Statement
section count

Section Statements
(one per section)

grade count
Grade Statements

(one per grade)

Listing Statements
(two required)

Data Card Format
col. 1 to 5

col. 7 to 8

col. 10 to 12
col. 14 to 36
col. 37

col. 40

col. 41 to 43

.

.

col. 77 to 79

53

1 line of up to 80 characters
col. 1 & 2

1 line of up to 80 characters

col. 1 & 2

col. 1 thru 3: a 3 character description,
e.g. PS1, QZ1l, etc.
col. 5 thru 7: the grade weighing factor

enter a T in the column to generate report,
an F to suppress it.

The first card controls class sorts.

col. 1: by sequence number

col. 2: by year

col. 3: by course

col. 4: by student name
col. 5: by status

col. 6: by section

col. 7: by latest grade
col. 8: by overall average

The second card controls section sorts.
col. 1: by student name

col. 2: by latest grade

col. 3: by overall average

Student sequence number
Year or class of student
Course of department
Student name

Coaad
Status: N,L,C, or blank for graded students

Section
First grade

(the grades should be in the same order as

the grade statements)
the 13th grade

APPENDIX III:

54

LOADING INSTRUCTIONS

The command file C&LOAD contains the following loading commands.

The user invokes it by typing COMINPUT Cé&-LOAD.

FILMEM

LOAD

COMMON 47777

HARDWARE 17

LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
SAVE

QUIT

B&MAIN

B&PROCES
B&OUTPUT
B4 CSORT
B&= SSORT

Be¢=CPRINT
Be= SPRINT
Bé;BLOCKD

*GRG

RESTORE *GRG

SAVE *GRG 74 47777

COMINPUT TTY

zeroes out memory

invokes the linking loader

sets COMMON loading address

informs loader of CPU hardware configuration

loads binary modules

saves load module

terminates loader

restores it in memory

now save memory up to COMMON area

terminates command file

-

The first SAVE is a loader command which sets up the keys, start-

ing address, the locations occupied by the program etc. However, the

COMMON area which contains initial values is not saved by this loader

SAVE

command .

Therefore, the load module *GRG is restored to memory,

55

and a second SAVE with the same name is performed, with the beginning

and ending memory locations specified explicitly.

