
A GRADING REPORT GENERATOR

by

RONALD WING-KEONG LAW

S.B., Massachusetts Institute of Technology
(1973)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF

SCIENCE

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

June, 1976

Signature of Author ...
Alfred P. Sloan School of Management, May 7, 1976

Certified by-..-

Thesis Supervisor

Accepted by
Chairman, Departmental Committee on Graduate Students

ABSTRACT

Title of thesis A GRADING REPORT GENERATOR

Name of author RONALD WING-KEONG LAW

Submitted to the Alfred P. Sloan School of Management on May 14, 1976

in partial fulfillment of the requirements for the degree of Master of

Science.

The Grading Report Generator is a computer program designed to
automate the process of preparing grading reports and to provide a set
of meaningful statistics on the performance of the students in order to
aid both the teacher and the students. It allows the user to divide
the students in the subject into sections. The subject format is specified
by the user as any combination of grades for quizzes, problem sets, machine
problems, papers, take-home examinations, etc. Each grade is assigned
a weight so that a weighted average grade may be computed for each student.
The GRG generates class and section reports which arrange the students
in some user specified order, e.g. by their name, by their year, by their
latest grade, by their average. Another kind of report shows the overall
average for each grade in a class or section, and the percentage of
students who participated in it. A count of the number of students who
are taking the subject for a letter grade, PASS/FAIL, as listeners or
have dropped the subject is also produced.

It is intended that these reports, produced by the GRG on a time-
sharing computer system, would provide meaningful and timely feedback
to the teacher and the students.

Thesis supervisor : Stuart E. Madnick

Title : Assistant Professor of Management Science

3

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to his thesis

advisor Prof. Stuart Madnick for his guidance and encouragement in making

this work possible. Through Stu's constructive criticism and valuable

suggestions, the author has gained an enormous amount ofexperience in

the solving of a real life problem. Lastly, the amount of computer

time made available by Stu is greatly appreciated.

TABLE OF CONTENTS

CONTENTS PAGE

ABSTRACT.. 2

ACKNOWLEDGEMENTS.. 3

CHAPTER ONE : INTRODUCTION... 5

CHAPTER TWO : HOW TO USE THE GRG..................................... 7

Input File... 8

Subject Statement 9

Section Statements 9

Grade Statements 9

Listing Statements 10

Data Statements 13

CHAPTER THREE : INTERNAL DESIGN OF THE GRG 14

Choice of Computer 14

Choice of Language 15

Program Modules 18

Data Organization 20

CHAPTER FOUR EXTENSIONS AND IMPROVEMENTS 25

Increasing the Capacity 25

Generate Additional Reports 26

Additional Online Capability 26

APPENDIX I PROGRAM LISTINGS 27

APPENDIX II SAMPLE OF AN INPUT FILE 52

Data Card Format 53

APPENDIX III LOADING INSTRUCTIONS 54

CHAPTER ONE : INTRODUCTION

One of the more time-consuming tasks involved in the administration

of a subject is the monitoring of the students' performance. For example,

it is customary for the person in charge of a subject to calculate after

every quiz the mean, the median, the range of grades, and the number of

students who took part in it. This information provides useful feedback

to both the teacher and students. The teacher may use this information

to decide on the way the subject will be conducted in the future. The

student may picture where he stands in the subject relative to his

classmates and decide whether extra effort will be required.

The objective of this thesis is two folds :

1) to automate the repetitious task of manually preparing grading reports,

and

2) to provide a set of meaningful statistics on the performance of the

students in order to aid both the teacher and students.

In the past there had been numerous grading programs that were

written for these purposes. But they were generally found to be either

too restrictive, because they were designed for one kind of subject format,

or they provided too little useful information. Furthermore, their

documentation either did not exist or was incomplete, thus making it

extremely difficult for current users to maintain or update them.

In order to useful to a broad spectrum of users, a grading program

must be able to accomodate subjects of different formats. It must also

provide the users with a comprehensive users' guide so that users may take

advantage of the various options they may want to exercise. It must

also be thoroughly designed and documented, with particular emphasis on

maintainability and future extensibility.

The present implementation of the Grading Report Generator is a

FORTRAN IV program that runs in a PRIME 300 minicomputer at the Sloan

School of Management. The GRG allows the user to define the format of a

subject as a collection of scores from quizzes, problem sets, machine

problems, take-home exams, etc. Each score carries with it a weight

which reflects a percentage of the requirements for the subject. The

overall average is a weighted average of the score weight and the score

achieved, and it is computed for every student in the subject. The

students may be assigned into sections. There are two classes of reports

that may be generated, and these apply to the class as a whole and to the

individual sections. The first kind of report deals with the ordering of

the students by some values, e.g. by the name of the students, by the

year of students, by the latest grade, by the student overall average, etc.

The second kind of report deals with the aggregate of the student data in

a class or section, e.g. the average for a particular grade, the rate

of participation, the number of students who registered the subject as a

graded student, listener, etc.

Although the present implementation may not contain all the desirable

features, it had been designed with future extensions in mind. A well

structured framework had been laid out with emphasis on modularity. The

coding adhered rigidly to a set of rules and is described in detail in

Chapter Three.

CHAPTER TWO : HOW TO USE THE GRG

This chapter is intended as a user's guide for the Grading Report

Generator. Basically, the GRG accepts input from an input file, performs

the specified processing, and then outputs the requested reports to the

output file. The input file may be created in a number of ways. A deck

of cards may be keypunched and then read into the PRIME. The basic

procedure of accessing and logging into the PRIME minicomputer will not

be discussed here. Assuming the user is attached to the directory where

the GRG resides and he has the input already punched as a deck of cards.

The cards should be read in by issuing the following commands to the

operating system

ASSIGN CR1
CRMPC filename filename is name assigned to file
CLOSE ALL
UNASSIGN CR1

The input file may also be created initially by the text editor, or

subsequently modified by it. When the user is ready, he invokes the GRG

by entering

RESUME *GRG

When the GRG is activated, it issues

PLEASE ENTER FILENAME

and user responds by

filename

The GRG will run to completion and produce an output named REPORT.

Before describing the contents of the input file, it is necessary to

understand the functions of the GRG. The GRG is designed to allow for up

to 9 sections for the subject, each section not to exceed 80 students. The

total number of students in the subject may not exceed 300. For the

subject, a maximum of 13 scores or grades may be specified. The range of

a score is from 0 to 100. A numerical weight expressed as a percentage

must be assigned to each score, and it must also range from 0 to 100.

It is recommended that the sum of the weights make up 100 so that a

normalized average score would result,

Input File

The input file consist of two groups of statements

1) control statements

2) data statements

Control statements are variable in number and they are further

divided into 4 groups. They are

1) subject statement

2) section statements

3) grade statements

4) listing statements

Data statements are usually fixed in number because each one

corresponds to a student. When students have dropped the subject, their

data statements may remain in the file since they do not interfere with

the data of others. It is recommended that the data statements be

maintained in alphabetical order of the student name for ease of handling,

although the GRG has no requirement for them to be in any order.

Subject Statement

This is a single statement (one line or one card) of text contain-

ing up to 80 characters. This is also the first statement of the input

file. The user may use this statement to identify the subject, the

lecturer and any other information pertinent to the subject. This

statement appears as the heading for reports which involves the whole

class.

Section Statements

The section statements are similar to the subject statement in that

the GRG treats them as text. The user must include one section statement

for every section the class is divided into. A section statement will

appear as the heading for every report of that section. The collection of

section statements must be preceeded by a line which states the number

of section statements that are present. This number is read by the GRG

in 12 format in columns 1 and 2. The maximum allowable number of sections

is 9.

Grade Statements

The group of grade statements are preceeded by a line which declares

how many grade statements are present. This number is also read in from

columns 1 and 2 in 12 format. The maximum number of grade statements is 13.

For each grade statement the following format applies

column 1, 2, 3 any three characters

column 4 BLANK

column 5, 6, 7 a weight expressed as a percentage (1 to 100)

It is suggested that the user adapt a convention regarding the three

character assignment, e.g. QZl, QZ2, ... for quiz 1, quiz 2, ... PS1, PS2

for problem sets etc. The first grade statement will correspond to

the first grade columns (41,42,43) on the data statement, the second

grade statement with the second grade columns (44,45,46) etc.

Listing Statements

There are two listing statements, each containing different logical

flags. Each logical flag controls whether a particular report is

generated or not. A T, meaning true, will enable a report to be generated,

while a F, meaning false, will suppress that report. The first listing

statement contains 8 logical flags which control the overall or class

reports.

Flag 1

Flag 2

Flag 3

Flag 4

Flag 5

Flag 6

Flag 7

Flag 8

Columns

through

Generates a class report

number.

Generates a class report

the student.

Generates a class report

student belongs to.

Generates a class report

in alphabetical order.

Generates a class report

of the students.

Generates a class report

belongs to.

Generates a class report

the user has defined.

Generates a class report

of the student.

ordered by the student's sequence

ordered by the year or class of

ordered by the course (department) the

ordered by the names of the students

ordered by the registration status

ordered by the section the student

ordered by the last or latest score

ordered by the weighted average score

The second listing control statement contains 3 logical flags.

Flag 1 Generates a section report for each section and orders the

students by their names.

Flag 2 Generates a section report for each section and orders it

by the latest score.

Flag 3 Generates a section report for each section and orders it

by the overall average.

columns 1

through 3

Data Statements

Each data statement contains the background information and the

scores for one student. There may be up to 300 data statements to repre-

sent 300 students.

COLUMNS INFORMATION

1 to 5 Sequence number

6 BLANK

7 - 8 Year, e.g. G, 1, 2, 3, 4, SG

9 BLANK

10 to 12 Course, e.g. 2, 2A, 15, 63

13 BLANK

14 to 36 Student Name

37 Student Status,e,g,
BLANK means the student is taking the
subject for a letter grade
N means he is taking the subject for
a PASS/FAIL grade
L means he is a listener
C means he has dropped the subject

38 BLANK

39 to 40 Section

41 to 43 Score 1

44 to 46 Score 2

77 to 79 Score 13

CHAPTER THREE: INTERNAL DESIGN OF THE GRG

Choice of Computer

It is highly desirable to be able to execute the GRG online because

of delays and other inconveniences involved with a batch system. There

are 3 general-purpose time-sharing computer systems at MIT that are

suitable for this application. The Information Processing Center

operate an IBM S/370-168 and a HIS 6180, both being large scale com-

puter systems. The Sloan School of Management operates a PRIME 300

minicomputer in the basement of the Sloan Building.

Although the execution speed of the PRIME is slow by large com-

puter standards, it is quite adequate for this application because of the

small amount of processing activity involved. Also the memory and

storage capacity of the PRIME is small compared to the IPC's two large

systems, but again this application does not require an extraordinary

amount of space. Besides, the operating system on the PRIME is a truly

general-purpose time-sharing system which provides essentially the same

services as the large computers but without many of the costly over-

heads. The PRIME currently supports as many as 7 terminals simultaneously,

thus providing the users with good accessibility to a terminal. There-

fore the PRIME was selected as the computer to develop and run the GRG.

This is also consistent with current trends towards decentralizing of

processing functions from large central facilities to local, distributed

sites where smaller machines takeover the less demanding chores of com-

putation and provide more timely turnaround of results.

Choice of Language

There are currently 3 suitable language for implementing the GPG on

the PRIME: FORTRAN IV, BASIC and Macro Assembler. Macro Assembler was

the first to be eliminated in the choice because it was not a higher

order language. A higher order language program usually requires less

time to develop, costs less to maintain, and may be transported to

another machine when the compiler exists for it. The author selected

FORTRAN IV as the implementation language, not because there were any

short comings with BASIC, but rather the author is more familiar with

FORTRAN.

Although FORTRAN is termed a higher order language, there are many

desirable features of HOL's that it lacked, e.g. nested procedures, data-

structures and the if-then-else construct, etc. Therefore it would be

particularly difficult to apply the principles of structured programming

to program development unless some programming rules or restrictions were

introduced and strictly followed. They include

1) Restrict program modules to under 2 pages in length.

2) Declare all the major variables in separate files. Then include them

into program modules by the $INSERT preprocessor facility.

3) Restrict the scope of GOTO statements.

4) Extensive use of CONTINUE statements to serve as the bounds of DO-loops

and as program branch destinations.

5) Assign statement numbers such that they appear in ascending order on

the left margin.

Rule 1 essentially prohibits program modules to become too long and

thus difficult to follow. It forces the designer to break down the

whole system into smaller modules and have each module perform a single

or a small set of functions.

Rule 2 guarantees the integrity of data declarations over the

various program modules by allowing the compiler to merge the declarations

during compile time. When modifications to the system is required, only

the declaration files need be modified. The changes would be picked up

when the program modules are later recompiled.

Since it is not possible to eliminate the use of GOTO statements in

a FORTRAN program because of the basic limitations of the language, the

use of GOTO statements should be carefully planned. For example, a

branch out of a DO-loop should be to the statement immediately following

the end of the loop. The program should also be structured such that

backward branching with GOTO statements be replaced by DO-loops whenever

possible.

Rule 4 and Rule 5 combined would make the effort required to follow

the program flow much easier because ascending statement numbers suggest

the sequential order of program steps.

The hierachy diagram of the GRG is depicted in Figure 1. In the

diagram, each program module is represented by a box. The diagram does

not show the order of execution of the modules. It only shows the logical

level of processing each module is responsible for. The following is a

description of each module.

Figure 1. Program Hierachy

Program Modules

MAIN

This is the main program of the GRG. It obtains the input file name

from the user, opens the input and output files, and then reads in the

control statements and data statements from the input file. Control is

then passed first to module PROCES and then to module OUTPUT. After

returning from OUTPUT, all functions of the GRG are complete. The input

and output files are closed and the GRG returns control to the operating

system.

PROCES

This module performs most of the arithmetic of the GRG. The weighted

average of each student is computed. Students are also assigned into the

different sections that they belong to by taking up a section pointer.

They are further classified by their status. Student scores are also

being accumulated in order to compute section and class averages for

each grade. In the computation of the average, only the grades for

credit students, i.e. students who are getting a letter grade or a grade

of PASS/FAIL, are being used. Moreover, exceptionally low grades (under

20) are also not included because of the hugh negative bias they would

introduce. Another statistic known as the participation rate is com-

puted on credit student by sections and as a class. This rate shows

the percentage of the credit students who took part in a certain quiz

or turned in their problem sets etc.

OUTPUT

This module calls subroutines CSORT and SSORT to perform the various

sorts requested by the user and outputs the resultby calling the print

subroutines CPRINT and SPRINT. In addition, a table which contains

class averages and the participation rate for every grade is provided.

SUM

This is a function which returns the sum of an array of integers.

COLSUM

This is a function which returns the sum of a column of a two-

dimensional integer array.

CSORT

This is a subroutine which performs an interchange sort on an array

of pointers for the whole class of students. The sort argument may be

specified as a field of the student character data such as the student

name, the section he belongs to, etc. Alternatively, the sort argument

may be one of the students' grades or their average score.

SSORT

This subroutine is similar to CSORT in function but it operates

only on the pointers for the section of students which has been specified.

CPRINT

This subroutine generates the class reports by putting out the

appropriate headings to indicate what type of report it is. The students

are presented in the report in the order specified by the class pointers.

SPRINT

This subroutine is similar to CPRINT except that it generates a

report for the section that has been specified instead of the whole class,

and the ordering is by the section pointers.

BLOCKD

This is the BLOCK DATA subprogram where all the initialization

for the variables in labelled COMMON are specified.

The Unassigned Section

At the beginning of a term, a student may indicate that he would

register in the subject, but he could not select which section to attend

because of the scheduling for other subjects. This situation implies

that the GRG must handle these unassigned students as a special section.

When the student's data statement does not specify which section he

belongs to, he is automatically assigned to the unspecified section.

Later in the term, when his section assignment is confirmed, his data

statement may be updated to reflect the change.

Data Organization

In the interest of structured and modular programming, program

modules are deliberately kept to a small, readable size. As a result,

most of the program variables would be referenced by more than one

program module. In order to minimize the passing of these variables as

arguments in subroutine calls and function references, they are declared

as global or COMMON variables. This means the COMMON variables must

be declared in every module where they..are referenced. The PRIME

FORTRAN IV compiler has a very useful feature in the $INSERT compile-

time facility. It allows the merging of statements from another file

into the current file being compiled as if those statements were part

of the current file.

In the GRG, the COMMON variables are separated into 5 LABELLED

COMMON areas COMl, COM2, COM3, COM4, and COM5 according to their data type.

These are stored on the system as files COM1 through COM5 respectively.

COM1

COMMON COMl consists of INTEGER variables which are used to store

packed character strings two to a storage word.

INFILE(3) stores the input filename of up to 6 characters long.

SBHEAD(40) stores a string of 80 characters which serves as the

subject heading in class reports.

SCHEAD(40, 10) stores a string of 80 characters for each of the

9 assignable sections plus the unassigned section. This string is

used to identify the sections in section reports.

GRHEAD(2, 14) stores the 3 character grade or score heading for each

of the 13 allowable grades plus one for the column which contains the

average.

STUDC(20,300) stores the 40 character information for each of the

300 allowable students in the class. The fields which comprise the 40

characters are describled in Chapter Two.

N NUMBER(10) is a constant string of ASCII character initialized

from 1 to 10. It is used to identify the section the student is assigned

to.

PRFILE(3) is initialize to REPORT. This is the name of the output

file.

CRHEAD(10) is another 20 character heading used in the reports.

It reads 'STUDENTS ORDERED BY'.

RPHEAD(5,8) is an array of 10 character strings used in the reports

in conjunction with CRHEAD to describe the type of report.

COM2

COM2 consists of all the numeric variables used in the program

and they are all typed INTEGER.

ISEC is the number of sections in the class.

IGRADE is the number of grades or scores presented.

STUDN(14,300) stores the 13 allowable scores plus the average for

each of the up to 300 students.

WEIGHT(13) stores the weighing factor for each grade or score.

NCLASS is the total number of students in the class.

NSEC(10) is the number of students in each of the 9 assignable

sections plus the unassigned section.

AVGCOL is the number of the column in STUDN which is used to hold

the average. It has a value of IGRADE + 1.

WTOTAL is the sum of the specified weights for the grades that

are present.

TSEC is the number assigned to the unspecified section and has a

value of ISEC + 1.

CSEC is the number of the section which contains the total for the

individual sections.

GRADED(ll), PSFAIL(ll), LISTEN(ll), DROP(ll) contain the number

of students who select a letter grade, a grade of PASS/FAIL, select

the subject as a listener, or who dropped the subject, respectively.

They allow for up to 9 sections plus an unspecified section, and the

last element contains a sum of each classification.

GSECOL(10,14) contains the sum of grades in each column of the 9

allowable sections plus the unassigned section.

NSECOL(10,14) contains the number of students who figured in the

above count.

MASAVG(ll,14) contains the master average of grades by column for

the 9 allowable sections, the unassigned section, and for the whole

class.

MASPCT(ll,14) is similar to MASAVG but contains the participation

rate.

COM3

0OM3 contains the only REAL variable used in the program, RTEMP.

COM4

COM4 declares the global logical variables in the program.

OLIST(8) contains 8 logical flags used to control the overall class

listing reports.

SLIST(3) contains 3 logical flags for the sectional listing reports.

24

These flags are described in detail in Chapter Two.

COM5

COM5 contains variables used as pointers in the program and are

all typed INTEGER.

CLASS(300) are pointers to the whole class of up to 300 students.

SEC(80,10) are section pointers for 10 sections, each having up to

80 students.

CHAPTER FOUR : EXTENSIONS AND IMPROVEMENTS

There are 3 areas in the GRG which may be considered for extensions

or improvements. They are

1) increase the capacity of the GRG to handle more students, more sections,

and the number of scores,

2) generate additional reports of interest, and

3) provide an online data-entry, enquiry and edit capability.

Increasing the Capacity

The current size of the GRG is less than 20K words (lK = 1024). This

includes about 8K words of instructions and 12K words of data. As the

maximum allowable size for a program for the PRIME minicomputer is 64K

words, there is ample space to expand the GRG to handle more students than

the present maximum of 300. Also the number of students per section and

the number of sections allowed may also be increased. To carry out these

changes, the data declarations which are contained in the five COMMON areas

may easily be modified. For example, to increase the number of students

say from 300 to 500, the dimensions of 3 variables should be changed. In

COM1, STUDC (20,300) becomes STUDC (20,500). In COM2, STUDN (14,300)

becomes STUDN (14,500). In COM5, CLASS (300) becomes CLASS (500). In

addition, a constant used as a loop count upper bound for reading in

student data statements in program module MAIN should be changed from

300 to 500.

Generate Additional Reports

There are many other statistics on the class or sections that a

teacher may want to collect. For example, an average score may be

computed for students belonging to each undergraduate class and for

graduate students. The average score for students belonging to different

courses may also be collected. In general there are numerous such

cross-tabulating statistics which may be gathered on the different student

attributes.

Additional Online Capability

This is perhaps the most challenging of the 3 areas for extensions

and improvements. At present, a user who wishes to carry out the functions

online data entry, enquiry and editing must use the TEXT EDITOR of the

PRIME system. The TEXT EDITOR allows the searching of fully specified

text strings as well as partially specified text strings. However, when

it comes to entering data in specific columns, the TEXT EDITOR becomes

very awkward because there is no command to allow easy column justification

in edit mode.

It would be very helpful to the user if a set of powerful editing

commands is available within the GRG to allow him to inquire and modify

the database in core and to produce an updated version of the INPUT file.

This would entirely eliminate the need for keypunching or use of the TEXT

EDITOR. The user may then created the INPUT file online, edit the file

online and produce reports online.

C MAIN PROGRAM
INTEGER

$INSERT COMI
$INSERT COM2
$INSERT COM13
$INSERT COM4
$INSERT COM5

WRITE(1 10)
10 FOR'AT<('PLEASE ENTER FILENAME'>

READC1, 20) INFILE
20 FORMlAT<3A2)

CAIL SEARCHC, INFILE,1> /* OPEN INFILE ON FUNITI */
CALL SFRCH(2,PRFILE-2) /* OPEN PRINT FILE ON FUNIT2 */
READC5,30> SBHEAD

30 FORPIAT(40A2)
RFE(5,40) ISEC

40 FORIAT(I2)
DO 50 I =1, ISEC
RFADC 5, (SCHEAD(J, I>, J 1,40>

50 CONT I NUE
READ(5, 40) IGRADE
DO 70 I = 1, IGRADE
READC5., 60) GRHEAD(1, I>, GRHEADC2, I>,WEIGHTCI>

60 FORMAT(2A2, 1)
70 CONT I NUE

C, MA X N F"'ROGRA n F "M

C NOW READ IN LOGICAL FLAGS
READ(5,80) (OLIST(I, I = 1,8>

80 FORMAT(8Li)
RFADC(5, 80) CSL ISTC(I) I = 1, 3)
DO 100 I= 1,300
READC5, 90, END=1iiO) (STUDC(J, I), J = 1,20),

(STUDN(J, I>rJ = 1, IGRADE)
90 FORMAT(20A2,13I3)
100 CONTINUE
11.0 CONT I NUE

NCLASS = I-I
AVIGCOL = IGRADE + 1
GRHEAD)1' AVGCOL..) = AV" /* ASSIGN AVG INTO GRHEAD *
GRHEADC2, AVGCOL) = 'G '
TSEC = ISEC + 1 /* THE UNASSIGNED SECTION */
CSFC = ISEC + 2 /* CLASS AVG AND PCT REF */
DO 120 I = 1,40 /* COPY UNASSIGNED SECTION HEADING *
SCHEAD(I, TSEC) = SCHEADCI,10)

120 CONTINUE
WTOTAL = SUMCWEIGHT, IGRADE)

C
C

CALL PROCES
CALL OUTPUT
CAlL... SEARCHC4, 0, 1) /* CLOSE FUNIT i */
CAL L SEARCH(4, 0, 2) /* CLOSE FUNIT 2 */
CALL EXIT
END

SUE3FO!Ur I N EE FFOCEE S

SUBROUTINE PROCES
INTEGER
LOGICAL CREDIT

$INSERT COMI
$INSERT COM2
$INSERT CO13
$INSERT COM4
$INSERT COM5

/* PROCESS STUDENTS INDIVIDUALLY
DO 400 I = 1, NCLASS
CLASSCI) = I /* ASSIGN CLASS PTR */

/* COMPUTE INDIVIDUAL.. AVERAGE */
RTEMP = 0. 0
DO 100 J = 1, IGRADE
RTEMP = RTEMIP + WEIGHT(J)* STUDN(J, I>

100 CONTINUE
STU JDN(AVGCOL, I) = IFIX(RTEMP/WTOTAL>

/* ASSIGN SECTION PTR AND COUNT STUDENTS IN EACH SECTION
DO 110 J =1, ISEC /* TRY MATCH WITH A DECLARED SECTION */
IF (STUDC(20, I). NE. NUMBERCJ)) GOTO 110 /* LOOP IF DONT MATCH */
GOTO 200 /* MATCHEDEXIT WITH THIS J */

110 CONTINUE
J = TSEC /* SET J TO THE ANASSIGNED SECTION */

200 CONTINUE

NSEC(.J) = NSEC(J) + 1 /* COUNT UP ONE */
II NSEC(J)
SECCII, J> = I /'* SECTION J PTR */

/* DETFRMINE STATUS OF STUDENT */
IF (STUDC(19, I).NE.2H > GOTO 210
GRADEDI-J) = GRADED(J) + 1
CREDIT = .TRUE.

GOTO '300 /,'* PROCEED TO NEXT STEP OF PROCESSING */
210 CONTINUE

IF (STUDC(19, I).NE.2HN > GOTO 220
PSFAIL(J) = PSFAILCJ) + I
CREDIT = . TRUE.
GOTO 3,00 /* PROCEED TO NEXT STEP OF PROCESSING */

220 CONTINUE
CREDIT = . FALSE. /* MUST BE NON-CREDIT STUDENT */
IF (STUDC(19, I).NE.2HL) GOTO 230
LISTEN(J) = LISTEN(J) + I
GOTO 300 /* PROCFFD TO NEXT STEP OF PROCESSING */

230 CONT I NUE
DROF'(J) = DROF'(J) + 1

300 CONTINUE
/* ACCUMULATE GRADES OF CREDIT STUDENTS BY SECTION AND COLUMN */
IF C.NOT.CREDIT) GOTO 400 /* OMIT THIS STEP FOR NON-CREDITS
DO 310 K = 1,AVGCOL
IF (STUDN(K, I). LT. 20) GOTO 310 /* FILTER OUT NOISE */

NSECOL(J,K) = NSECOL(JK) + 1
GSECO..(J, K) = GSECOL(.J, K) + STUDN(K, I)

310 CONTINUE
400 CONTINUE

/* E4) OF INDIVIDUAL STUDENT PROCESSING */

/'* CjMPUTE THE TOTAL NUMBER OF GRADED, PASS-FAIL, */
/* LISTEN AND DROPPED STUDENTS IN CLASS */
GRADED(CSEC) = SUNI(GRADED, TSEC)
PSFAIL(CSEC) = SUM1PSFAIL, TSEC)
LISTENCCSEC) = SUNI(LISTEN, TSEC)
DROPCCSEC) = SUM.:DROP, TSEC)

-* COMPUTE MASTER AVERAGE AND PERCENTAGE BY SECTION AND COLUMN */
DO 600 J =, TSEC
ITEMP = GRADED(J) + PSFAIL(J) /* NUMBER OF CREDIT STUDENTS IN SEC
DO 500 K =1, AVGCOL
MAFAVG(3J, K) GSECOL(J, K).'NSECOL(.J, K)
MASPCT (J, K) = CNSECOL (J, K) *100) / I TEMP

500 CONTINUE
600 CONTINUE

/* COMPUTE CLASS AVERAGE AND PERCENTAGE OF CREDIT STUDENTS WHO DID
ITEMP = GRADEDCCSEC> + PSFAILCCSEC> ,* # OF CREDIT STUDENTS */
DO 700 K = 1,AVGCOL
ITFMP2 = COLSUM(NSECOL, TSEC, K)
MASFV GCCSEC,K) = COLSUM(GSECOLTSEC,K)/ITEMP2
MASPCT(CSEC,K) = (ITEMP2*100.0)/ITEMP

700 CONTINUE

RETURN
END

55UED:R OUT I U - EE OU T FU T

SUBROUTINE OUTPUT
INTEGER
INTEGER LINEiC4), LINE2(12), LINE3(12)

$INSERT COMI
$INSERT CO12
$INSERT COM3
$INSERT CO14
$INSERT COM

DATA LINE1/'SECTION'/
DATA LINE2/'CREDIT STUDENT AVERAGE
DATA LINE3/-'THEIR PARTICIPATION RATE'/
,'* GENERATE CLAS5 OVERALL SORTED LISTINGS IF SELECTED *
IF C.NOT.OLISTC1)) GOTO 20
CAI.L CSORT(1, 6, 8) /* SORT BY SEQ# */
CALL CPRINT()

20 CONTINUE
IF C.NOT.OLIST(2)) GOTO 30
CALL CSORT(7, 8, 8) /* SORT BY YEAR */
CALL CPRINT(2)

30 CONT INUE
IF C. NOT. OLIST(3)) GOTO 40
CALL CSORT (9, 1.2, 0) /* SORT BY COURSE */
CALL CPRINTC3)

CONTINUE
IF C.NOT.OLISTC4)> GOTO 50
CALL CSORT(13, 36, 0) /* SORT
CALL CPRINT(4)

CONT I NUE
IF (.NOT. OLIST(5)) GOTO 60
CALL C5J0RTC37, 38, 0) /* SORT
CALL CPRINTC5)

CONTINUE
IF C.NOT.OLIST(6)) GOTO 70
CALL CSORT(39, 40, 0) /* SORT
CALL CPRINT(6)

BY NAME */

BY STATUS */

BY SECTION */

70 CONTINUE
IF C.NOT.OLIST(7)) GOTO 80
CALL CSORT(0, 0, IGRADE) /* SORT BY LAST GRADE *
CALL CPRINTC7)

80 CONTINUE
IF C.NOT.OLIST(8)) GOTO 100
CALL CSORT(0,0, AVGCOL) /* SORT BY AVERAGE */
CALL CPRINT(8)

100 CONTINUE

40

/* PRINT OVERALL STATISTICS */
WRITEC6, 110)(GRHFAD(, K), GRHEAD(2, K>, K=1, AVGCOL>

11e FORMAT(1Hi, 40X, 'COMPREHENS IVE STATISTICS', ///,47X, 14C1X, 2A2)

DO 300 I = 1, ISEC
IF (NSEC(I).EQ.0) GOTO 300
WRITEC6, 2:1.0) LINE1., I, LINE2, (MASAVGC I, K), K=, AVGCOL)

210 FOR1ATC/, 1 IX, 4A2, I1, 2X, 12A2, 1415)
W RITE(6.. 220) LINE3, RMASPCT(I, K), K= 1 , AVGCOL)

220 FORMATC/, 22X1, 2A2, 1415)
300 CONT I NUE

/* THIS HANDLES THE UNASSIGNED SECTION */
IF (NSEC(TSEC).EQ.0) GOTO 400
WRITE(6, 310) LINE2, CMASAVGCTSEC, K) K=1, AVGCOL>

310 FORMAT(/,11X, -'UNASSIGNED '',12A2,1±4I5)
WRITE(6, 220) LINF3, rASPCT(TSEC, K), K=1, AVGCOL>

400 CONTINUE
WR I TE (6, 410) L I NE2, CMASAVG (CSEC, K), K=1, AVGCOL>

410 FORMATC///'11X, 'OVERALL ', 12A2, 1415)
WRITE(6, 220) LINE3, (MASPCT(CSEC, K), K= 1 , AVGCOL)

WRITF6, 420) GRADFDCCSEC), PSFAIL(CSEC),
* LISTENCCSEC),DROP(CSEC)

420 FORMAT C//// 1, 2 -' STATUS'', 10x, 'STUDENT COUNT', ///
* 2 1 , 'LETTER GRADE', 9', 13, .'/
* 21X, -'PASS-FAIL', 12X, I 3, '
* 21, 'LISTENER', 13%, I3,
* 21X, -'DROPPED-', 14X, 13)

DO 800 I = 1,TSEC

IF (NSEC(I).EQ.0) GOTO 800 /* SKIP IF NO STUDENTS */

NOT. SLIST())
SSORT(13, 36, 0,
SPRINTC4, I)

GOTO 500
I) /* SORT BY NAME */

500 CONT INUE
TF (.NOT. :LIST(2)) GOTO 600
CALL SSORT C0, 0, IGRADE, I) /* SORT BY LATEST GRADE */
CALL SPRINTC7, I)

600 CONTINUE
IF (.NOT.SLIST(3)) GOTO 700
CALL S;JORT CO, 0, AVGCOL, I) /* SORT
CALL SPRINT(8, I)

BY AVERAGE */

700 CONTINUE
WRITE (5, 710) (GRHEAD(1, K), GRHFAD(2, K), K=1, AVGCOL>

710 FORMAT CiH1, 40.X,, 'SECT ION STATISTICS-', //, 47X, 14(X, 2A2)
WPITE(6., 210) LINF1, I., LINE2, (MASAVG(I, K), K=1, AVGCOL)
WRTF(6, 220) LINE3, CMASPCTC I, K), K=1, AVGCOL)

WRITE(6, 4201) GRADED(I), PSFA IL(I),
* L ISTENC I), DROP(I)

800 CONTINUE
RETURN
END

IF (.
CALL
CALL

I N TEE ~~NCTr I UN "Lp1 = R fCD U., D I 4 E 1EN

INTEGER FUNCTION SUM(ARRAY,DIMEN)
INTEGER ARRAY, DIMEN, TOTAL
DIMENSION ARRAY(DIMEN)

TOTAL =0

DO :100 I = 1, DIMEN
TOTAL TOTAL + ARRAY(I)

100 CONTINUE

SUM = TOTAL

RETURN
END

I NT EEEER F~NCT I ON3 COL.U1< F=lR f=ir., FROIL

INTEGER FUNCTION COLSUM(ARRAY, ROWS, COL)
INTEGER ARRAYC10, 14), ROWS, COL, TOTAL
TOTAL = 0
DO 100 I = 1, ROWS
TOTAL = TOTAL + ARRAYCI-COL)

100 CONT I NUE0
COLSUM -TOTAL
RETURN
END

UEFROU -c r I NE- CSOR~T C EC I N-J ENC I Nl GRCOL- 3

SUBROUT I NE CSORT (BEG I N, END I NG, GRCOL>
INTEGER
INTEGER BEGINENDING,GRCOL
LOGICAL INCHNG

$INSERT COM1
$INSERT COM2
$INSERT COM3
$TNSERT COM4
$INSERT COM5i

INCHNG = TRUE. /* INITIALIZE TO TRUE FOR FIRST PASS */
LFN = (ENDING-BEGIN+I)/2
-ORD = (BEGIN-1)/2
MAX = NCLASS-1
DO 500 I = 1,MAX
IF (. NOT. INCHNG) GOTO 600 /* SORT COMPLETE */
INCHNG= FALSE.
MAXY = NCLASS-I

DO 400 J = 1, MAXI
J.J = J+1
TEMP1 = CLASS(J)
TEMP2 = CLASS(.J.J)
IF (EGIN. EG. 0) GOTO 200 /* NUMERIC SORT */
DO 100 K = 1, LEN
KK = WORD+K
IF C SFTUDC(KK, TFMPI)-STUDC(KK, TEMP2)) 400, 100, 300

100 CONT INUE

GOTO 400 /* NO INTERCHANGE, TRY NEXT ITEM */
200 CONTINUE

IF (STUDhN (GRCOL, TEMPI). LT. STUDN (GRCOL, TEMP2) > GOTO 300
GOTO 400 /* NO INTERCHANGE, TRY NEXT ITEM */

300 CONTINUE
C PERFORM INTERCHANGE OF POINTERS

CL-ASS(J) = TEMP2
CLASSCJJ)= TEMPI
INCHNG = . TRUE.

400 CONT I NUE
500 CONT I NUE
600 CONT I NUE

RFTURN s
END-

UEB:ROUT I IE SSORT < I NR -rE I NGC GRCOL.

SUBROUTINE SSORT(BEGIN, ENDING, GRCOL, SECTON)
INTEGER
INTEGER BEGINENDINGSGRCOLSECTON
LOGICAL INCHNG

$INSERT CO1i
$INSERT COM2
$INSERT COM13
:IVNSERT COM4
$INSEPT COM5

INCHNG = TRUE. /* INITIALIZE TO TRUE FOR FIRST PASS */
LEN (ENDING-BEGIN+I)/2
WORD (BEGIN-1)/2
MAX NSEC(SECTON)-1
DIO 500 I , MAX
IF C. NOT. INCHNG) GOTO 600 /* SORT COMPLETE */
INCHNG = . FALSE.
MAXI = NSEC(SECTON)-I
DO too J =1 MA:1
J J = J+1

TEMP1 = SEC(.J, SECTON)
TEMP2 = SEC(.JJ, SECTON)
IF CBEGIN. EQ. 0) GOTO 200 /* NUMERIC SORT */
DO 100 K = 1,LEN
KK = WO'D+K
IF CSTUDC(KK, TEMP1)-STUDCCKK, TEMP2)) 400, 100, 300

10 CONTINUE

GOTO 400 /* NO INTERCHANGE, TRY NEXT ITEM */
200 CONTINUE

IF CSTUDNCGRCOL, TEMPI). LT. STUDNCGRCOL, TEMP2>) GOTO 300
GOTO 400 /* NO INTERCHANGE, TRY NEXT ITEM */

300 CONT INUE
C PERFORM I NTERCHANGE OF POINTERS

SEC(J., SECTON) TEMlP2
SEC(JJ., SECTON) TEMP1
INCHNG = . TRUE.

400 CONT I NUE
500 CONT INUE
600 CONT I NUE

RETURN
END

SUEBROUT I NEE CPR I NrT C r'FPE >

SUBROUTINE CPRINT(TYPE)
INTEGFR
INTEGER TYPE

$INSERT COM1'.
$INSERT COM2
$INSERT COM13
$INSERT CO14
$INSERT CON5

WRITEC6,iO)
10 FORMAT(IHi)

WRITF-6,20) SBHEAD /* SUBJECT HEADING */
20 FOFM$AT(IH , 40A2//)

WRITEC6, 30) CRHFAr, CRPHEAD(J, TYPE), J=, 5)
30 FORPAT(H ,15A2//)

WRIITF(6, 40) CGHFAD, (GRHEAD(1,J), GRHFADC<2, J), J=, AVGCOL>
40 FORMAT(7X, 20A2,:14(1X, 2A2)>

NRITEC6,50)
50 FORMATC/>

LINES = 7
C
C

C /* NOW BEGINS THE PRINT LOOP
DO 500 I = 1, NCLASS
IF CLINES.LE.54) GOTO 100
LINES = 3
WRIFC6, 10) /* FORCE NEW PAGE */
WRITE (6, 40) CGHEAD, (GRHEADC(1, J), GRHEAD(2, J), J=1, AVGCOL)
WR RITE(6, 50) /* SKIP ONE LINE */

100 CONTINUE.
II = CLASSCI)
WR I TE (6, 200) I, C STUDC C.J, I IX).J1 20)>, CSTUDN C J. I I),J=1,. AVGCOL>

200 FORMAT CI5, 2X, 20A2, 14, 13I5)
LINES LINES + 1

500 CONTINUE
C
C

RETURN
END

UEO)UT- I=E SPR I=e NT - < TrNi IP E SE F CTON 0 - >

SUBROUT INE SPR INT (TYPE, SECTON)
INTEGER
INTEGER TYPE, SECTON

$INSERT COM1.
$INSERT COM2
$INSERT COM3
$INSERT CO14
$INSERT COM15

WRITEC6, 10)
10 FORMAT(HI)

WRI:TF(6, 20) (SCHEAD(J, SECTON), J=1, 40)
20 FORMIAT(iH , 40A2//)

WR I TF(6 30) CRHEAD, (RPHEAD (J, TYPE), J=1i, 5)
30 FOFrMAT(IH , 15A2.-'/)

WFI TF C, 40) CGHEAD, (GRHEADC1, J), GRHEAD(2, J), J=1, AVGCOL)
40 FOF'IiAT C7, 20A2. -14CX, 2A2))

WRITE(6 ,50)
50 FORMA T C /)

LIN.IES = 7
C
C

C /* NOW BEGINS THE PRINT LOOP
K = NSEC(SECTON)
DO 500= I =1K

IF (LINES.LE.54) GOTO 100
LINES 3
WR I TEC(, 10) /* FORCE NEW PAGE */
WRI TE (6. 40) CGHEAD, (GRHFAD (1, J), GRHEAD(2. J>, J=1, AVGCOL>
WR I TE0C , 50) /* SK IP ONE L INE */

100 CONTINIJE
II = SEC(I, SECTON)
WRIT(E , 200) I, (STUDC(J, II), J=, 20), (STUDNCJ, II), J=1, AVGCOL>

200 FORMAT I5, 2t, 20A2, I4, 1315)
LINES LINES + 1

500 CONT I NUE
C
C

RETURN
END

E:L..OCK DAArF

BLOCK DATA
INTEGER

$INSERT COMI
$INSERT COM2
$INSERT COM3
$INSERT CO14
$I NSERT COM5

DATA
I INFILE/3*' '/

2 SBHFAD/40* v04

3 SC(HFAb/360* ',

* -'THESE STUDENTS HAVE NOT BEEN ASSIGNED TO ANY SECTION'-

4 GRHEAD.-28*+-P- ,
3 STUC/6.*F000*-
6 NUHRER./20H 1 2 3 4 5 6 7 8 910/.
7 PRFILE/'REPORT'/
8 CGHFAr'/' SEQ# YR CS STUDENT S SC'/
9, CRHEAD..''-'STUDENTS ORDERED BY
*, RPHEAD/

* 'SEQUENCE #
'YEAR

* COUIRSE
*'NAMIE'

-STATUS
'SECTION -
-'LAST GRADE'

+ 'AVERAGE -' /

e/* INITIALI?E CQM2 VARIABLES *
DATA
± I SEC/O3/

3, STIDN-4200*0/
4, WF IGHT/13*0J/
5,- N~CLASS/e/

7, A.*GCOL/O'
8, [HTOTiL-."3/,-

2, P SF AI L,"1-4*0Z/
3, L ISTEN./ii*3/
4, C)F:IJFVII* 0,f

5, GSECOL.-140*-0/
6., NSECOL'IAO*0.
7, P AFSHVl-,G. -'154 *0 /
8, Pl1SPT/±'54*0/
D AT A

1.SEC.'800:f0/-
END'

COMMOM /COMi/
INFILE(3)
SBHEAD(40)
5C (-.H E A D<4 0, :L0>
GRHEADC2, 14)
STUDCC2(20, 300)
NUMBE R C10>
PRF IIFC(2)
CGHEAD (20>
CRHFAD (10>

RPHEAD(5, 8)

/* INPUT FILENAME */
/* SUBJECT HEADING */
/* SECTION HEADINGS */
/* GRADE HEADINGS */
/* STUDENT CHARACTER INFO */
/* ASCI I I TO 10 */
/* PRINT (OUTPUT) FILENAME */
/* COMMON GRADE ROW HEADING */
/* COMMON REPORT HEADING */

/* REPORT HEADINGS */

COMMO /: 3m oa:COld.

COMMON /COM2/
i ISEC.-
2 IGRADE,
3 STUDN(14, 31003)
4 WEIGHT(13),
5 NCI.. ASS,
6 NSFC(1),
7 AVGCOL '
8, WTOTAL
9, TSEC
*, CSEC

1., GRADED (11)
2 PSFAIL(11)
3, LTSTENC11)
4, DROPC1::1)

/* NUMBER OF SECTIONS */
/* NUMBER OF GRADES PRESENT */

/* STUDENT GRADE INFO */.0
/* WEIGHT OF GRADE AS A PERCENTAGE */
/* TOTAL STUDENTS IN CLASS */
/* STUDENTS PER SECTION */

/* IDENTIFIES COLUMN FOR AVERAGE, IGRADE+1 */
/* SUM OF WEIGHTS */

/* ISEC+1, THE UNASSIGNED SECTION */
/* ISEC+2, REFERS TO CLASS AVG AND PCT */
/* # OF GRADED STUDENTS PER SECTION *./
/* # OF PASS-FAIL STUDENTS PER SECTION */
/* # OF LISTENERS PER SECTION */

/* # OF DROPPED STUDENTS PER SECTION */
GSECOLC :10, 14) /* TOTAI.. GRADES BY SEC & COL OF CR STUDENTS */
NSFCOL(10, 14) /* # OF STUDENTS IN ABOVE COUNT */
MASAVGi(:1, 14) /*M ASTER AVERAGES BY SECTION AND COLUMN */
MASFCT(:11, 14) /* MASTER PERCENTAGES OF CREDIT STUDS WHO DID *

COMMON /COM3/
I RTEMP /* REAL TEMPORARY */

REAL RTEMP

COMP1O /COM4/: " -*1=IDv

COMMON /COM4/
i OL I ST (8),
2 SLISTC3)

/* OVERALL LISTING LOGICALS */
/* SECTIONAL LISTING LOGICALS *

LOGICAL OLIST, SLIST

IOMMO /COMm=5/

COMMON /COM'5/
1 CLASS(300),
2 SFC<8CO, 10>N

/* CLASS PTR */
/* SECTION PTR */

ICOP1 N / ~ -*CO1M:--

APPENDIX II: SAMPLE OF AN INPUT FILE

Assume a subject is divided in 3 sections. There are 4 grades

available at the time of the run. They are problem sets 1 and 2,

machine problem 1 and quiz 1. The weights for these grades are 5%,

5%, 10%, and 15% respectively. The user wants class reports ordered

by the student names and their average. He also wants section reports

ordered by the latest grade, i.e. quiz 1.

The input file should contain the following:

<1 line to describe the subject>

3

<1 line to describe section 1>

<1 line to describe section 2>

<1 line to describe section 3>

4

PS1 5

PS2 5

MPl 10

QZl 15

FFF*VFFSf

FTF PF F

(data cards for students>

Control Card Formats

Subject Statement

section count

Section Statements
(one per section)

grade count

Grade Statements
(one per grade)

Listing Statements
(two required)

Data Card Format

col. 1 to 5

col. 7 to 8

col. 10 to 12

col. 14 to 36

col. 37

col. 40

col. 41 to 43

col. 77 to 79

1 line of up to 80 characters

col. 1 & 2

1 line of up to 80 characters

col. 1 & 2

col. 1 thru 3: a 3 character description,
e.g. PS1, QZl, etc.

col. 5 thru 7: the grade weighing factor

enter a T in the column to generate report,
an F to suppress it.
The first card controls class sorts.
col. 1: by sequence number
col. 2: by year
col. 3: by course
col. 4: by student name
col. 5: by status
col. 6: by section
col. 7: by latest grade
col. 8: by overall average
The second card controls section sorts.
col. 1: by student name
col. 2: by latest grade
col. 3: by overall average

Student sequence number

Year or class of student

Course of department

Student name

Status: N,L,C, or blank for graded students

Section

First grade

(the grades should be in the same order as
the grade statements)

the 13th grade

APPENDIX III: LOADING INSTRUCTIONS

The command file C+-LOAD contains the following loading commands.

The user invokes it by typing COMINPUT C+-LOAD.

FILMEM

LOAD

COMMON 47777

HARDWARE 17

LOAD B#-MAIN

LOAD BI-PROCES

LOAD B(-OUTPUT

LOAD B*-CSORT

LOAD Be-SSORT

LOAD B+-CPRINT

LOAD Be-SPRINT

LOAD Bt'-BLOCKD

SAVE *GRG

QUIT

RESTORE *GRG

SAVE *GRG 74 47777

COMINPUT TTY

zeroes out memory

invokes the linking loader

sets COMMON loading address

informs loader of CPU hardware configuration

loads binary modules

saves load module

terminates loader

restores it in memory

now save memory up to COMMON area

terminates command file

The first SAVE is a loader command which sets up the keys, start-

ing address, the locations occupied by the program etc. However, the

COMMON area which contains initial values is not saved by this loader

SAVE command. Therefore, the load module *GRG is restored to memory,

55

and a second SAVE with the same name is performed, with the beginning

and ending memory locations specified explicitly.

