DEZISION RULES FOR THE AUTOMATED GENERATION
OF STORAGE STRATEGIES IN
DATA MANAGEMENT SYSTENMS
by
GRANT N SMITH

S.B., MIT
(1974)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF
SCIENCE
at the
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

June, 1975

-~

signature of Author ...’Q.‘YO...‘...Q..‘...‘.Q.I.‘.‘Il'.. LR J
Alfred P. Slpan—School of Managegent, May 9, 19745

Certified bw'&y""'bf"(*wv' A RARER/ ALEI ol AREREESAREEAN
~7) a . .- Thesis Supervisor

ACCéptea by .IO.l“‘..‘Q.‘.....“‘..‘...‘....C......Q'I...'
Chairman, Departa2ntal Committee on Graduate Students

JUN 131975

LISRARIED

Abstract PAGE 2

DECISION RULES FOR THE AUTOMATED GENERATION
OF STORAGE STRATEGIES IN DATA MANAGEMENT
SYSTEMS,

by
GRANT N SMITH

Submitted to the Alfred P, Sloan School of Management on May
9, 1975 In partial fulfiliment of the requirements for the
degree of Master of Science.

Current methods of determining storage strategles (both
logical and physical) rely usually on (1) expert opinion,
and (2) the experience of the designers. There has been
some work In the area of automated design, but the
approaches taken to date generally apply only at generation
time, thus leaving the resulting design In effect for the
rest of the 1ife of the system. Should usage of the system
change over time, as experlence shows that It wll1, large
inefflciencies may result owlng to the original cholce of
storage strategy.

The work presented here attempts to Introduce dynamic
decisions regarding storage strategies that will be Invoked
(1) on a regular baslts, and (2) when system performance
degrades below an unacceptable level., These decisions
involve both the structure of the data base (such as which
flelds are to be in which files), as well as indexing, data
encoding, factoring and virtuallizing decislons. Declision
rules are described which achieve thls result.

Also described is a procedure whereby any given request will
be most efficiently satisfled, making use of the current
structure of the data base, indexes, etc.

Finally, the set of decislon variables required to drive the
above decision subsystems 1s specified In detail.

Thesis Supervisor: Stuart E. Madnick

Title: Assistant Professor of Management Sclience

Acknovledgements PAGE 3

I wish to thank Professor Stuart E. Madnick for his
invaluable advice, comments and criticism throughout not
only the writing of this thesis, but through all the years
in which I have been so fortunate as to be associated with

him.

In everyone's life, there is one eternal optimist. In mine,
that is Professor John Donovan. He has been a poverful

motivating force throaghout this work.

Last, bat by no means least, thanks are due Chip Ziering for

many hours of fruitfull - often heated - discussion.

Table of Contents

PAGE 4

Introducticnl...’O-....Q'..."’."..‘..‘.......Page 6

The Relational Model 5f DatadecccesccceeccssseseqPage
Shared Data Bases and User Flexibility.........Page
Decision Variables and Truth Functions.........Page
The Structural Decision Subsystef.ccccecceeseces.Page
The Request Decision SubSySteMe.ecesceccecesaqsasPage
Scenario for application of

DecisSion RUleSccccccccccscescscssssssesssPage
CONClUSiONeecssessascesssoscssssosascsasssananeessPage
ReferenCeS.ecceccecscssscscssanssascscesscsssncscsescss Page

Bibliography.cecececececscccacsncssccancccnacancsssPage

Appendix 1..0...'..."..0’.‘0......Q.Q....ononcpage
Appendix 2.‘..{..:.....“....-.0Q..a.......ttncpage

Appendix 3.....t0.0".'(....'...nconoocisoant.iPage

15
37
53
68

108

126
145
151

152

156
167
1717

List of Pigures PAGE 5

Page

=
F
(]
®

2¢71 tiecesccssassecsccccscscssssensasnacnsancs 16
202 teeecsssesscscessesssessssccsssessssasaans 21
2.3 ticcescascesscssssccccccssscssscssscasscnss 28
K e . 74
P P F
P I X
P -
Tel teecescsessscscsscssessenscssscscsascenscccass 128
Te2 cesessssecccssssascscecsscesccsasassanssnsss 129
Te3 cecasesasssccscessscccscscncsssssccsnscasasses 131
Tell ceeeesscescasssssscssscssesccescsasssssanes 132
Te5 teessssessscscecsescscecesassssssscssassas 134
Teb ceeeeccsssscsessccscssscscssessasssonscans 135

7.7 ' EEEEEEENWIII N E TR B S IR I B B R R I I I I A I R 137

CHAPTER 1 PAGE 6

Introduction.

For soae years nosd. the concept of data-independent
applications programaing has been expounded. What was
primarily at stake was th2 avoidance of rewriting of
applications prograamas if and whenever the underlying data
base was changed. Involved was a mapping from the logical
data structure (as the data structure available to the
applications program came to be known) into some machine
oriented data structure (or the physical data structure),
the idea being that the system would take care of this
mapping - function. Than, if there wvere any change in the
physical struéture, th2 mapping function would be changed so
that the same 1logical structure as existed before this
change would still be presenteé to any applications
programs, and, in fact, any user (be it in the form of
programs, or a person jenerating requests against that
logical data structur2). Note that throughout we shall ase
the term user to mean either a program or a person. It is
not necessary for our purposes to distinguish between these

two classes, since as far as the database is concerned, all

CHAPTER I PAGE 7

requests look alike.

Arising from this approach is a division of responsibility,
and thus of expertise. The logical structure of the data is
in the domain of responsibility of the user, while the
physical structure ani th2 mapping function previously also
in the domain of the aser, have now been removed. This is in
fact a desirable featire as the user may concentrate efforts
on applications-oriented probleas rather thamn becoming
bogged down in the technicalities of establishing a data

base.

However, that is not juite the way things turned out. There
were several attempts to design systems which would perform
the mapping function and handle the physical structures for
the user, given the 1logical structure. But the wvay it‘
turned sut was that the wmapping capabilities tended to be
rather simplistic in conca2pt and execution, with the result
that the user had to be gquite knowledgable about the
physical structure ({and thus the mapping function).
Furthermore, no differantiation of responsibility was
generally delineateldl 2and so the user (or user group) now

took on the responsibility of both the logical- and physical

CHAPTER I PAGE 8

structures. True, for any one logical structure the user now
had a choice of physizal structure coming from a wider range
than personal experieace might previously have allowed, but
whether that was a blessing or a disguised horror remains

unclear.

Other promises made - and not kepgl- about data independence
again revolve around the mapping function. Theoretically, a
given physical structure should be able to be mapped into
several logical structures, and vice-versa. This facility

has not been realized to any notable extent.

Furthermore, the primary purpose of data independence,
namely the isolation of users from changes in the physical
data strucfure, has not yat realized its full potential.
Rarely, if ever, was the physical data structure altered
once established. It was a Herculean task to implement any
one physical structure, and no one was about to go in and

tamper once it was working.

Any one physical-to-1logical structure mapping would

generally be performel only once, and decisions as to what

CHAPTER I PAGE 9

it should be vwere male at one point in time, with a fixed
perception as to the future uses of the data base. These
decisions were, and still are, made by people. Much of the
knowledge on which th2se decisions vere based was knowleidge
gained from experienc2, and so was more akim to an art than
a science. However, some non-trivial subset of such
decisions are indeed logical and rational, and so subject to

some measure of automation.

It would be inaccurate to claim that no atteapt has been
made to take advantaje of the structured nature of some of
these decisions. On the c-ontrary, there have been several
effoits addressed to this task, and these efforts can be
divided (perhaps unfairly) into two major groups:

. simulation-orientzd decisions used prior to systenm
generation to ail in structuring decisions. These
are notably static, one-time decisions made at the
discretion of som2 person, and requiring substantial
human interveation. The results of decisions made at
that point were to be influential throughout the
life of the 1ata base. However, much credit is due
the effort to formalize some major aspects of the
decision.

. dynamic rules aused continually throughout the life

CHAPTER I PAGE 10

of the data base to monitor system wusage and
performance. The results of this monitoring effort
would, again, rejuire major human intervention in
their interpratation and acting upon. However, the
important aspact of these efforts was imn that they
attempted to track the system on an ongoing basis.
Whether any iction was taken on these results was
questionable. Jnce again there arose the dilemma of
vhether to tamper vith a working (albeit

inefficiently) systen.

This work is intended to draw on the invaluable insights
gained over the years in Jealing with such systems as
purport to proviie data independence, and some
logical-to-physical structure mapping, and to propose a
methodology for achieving some of the promises made earlier.,
It is important to 2mphasize that this is a methodology
since no one work could pretend to be all-encompassing. The
approach here will be-to:

1) describe a2 system in which there is true data
independence sasel on a physical-to-logical mapping
capability,

2) enhance this system with the ability to perform

some of the better formulated decision tasks,

CHAPTER I PAGE N1

including thzs monitoring of system use and the
dynanmic reconfiguration of the physical data
structures dithout alteration of the logical
structures. Attention will also be paid to the
initial structuring decisions made at definition
time.

3) further anhance the systen with decision
capabilities that are oriented toward the efficient

satisfying of requests against the data base.

The work here revolves around the relational model of data.
This should not be construeil to be a dismissal of all other
models (such as the network model) as inferior. The author's
familiarity with the relational model and the existence of a
well-defined set of thesoretical rules that can be applied in
the model vere the motivating factors behind this decision.
It should also be pointel out that the relational model as
herein used has embellishments and alterations derived fronm
various personal experiences and sources of the author. The
responsibilities for any errors and inconsistencies in the
model employed here shouldl not necessarily be attributed to
the well-known names behind the relational model; they may

well be the fault of the author.

CHAPTER I PAGE 12

Structure of Thesis.

Chapter II will introiuce the relational model as needed for
our purposes, and point out the differences, where
applicable, between this molel and that found in most of the

literature.

Chapter III will address itself to the methodology employed

for achieving data independence.

Chapter IV presents a list of decision variables maintained
by the system. Since there is a long list of statistical
information about system usage and performance reguired to
support dynamic decisions regarding physical restructuring,
a consistent set of rules has been developed for naming

these decision variables.

Chapter V will address itse2lf to the decision rules
responsible for initial specification, and subseguent
dynamic reconfiguration of the physical data structures -

the Structural Decisisn Sunbsystem (or SDS), and chapter VI

CHAPTER I PAGE 13

will concern those decisions made dynamically about
optimally satisfying r2gu2sts made against the data base -

q
the Request Decision Subsystem (or RDS).

Chapter VII presents 1 typical scenario, and those decision
rules developed in Chapters V and VI will be applied to the
scenario to demonstrate the effectiveness of the decision

rules.

Chapter VIII concludes the thesis with some remarks as to
further possibilities that can, and perhaps should, be
explored, as well as ways to expand the decision rules

ntilizing a similar m2thodolgy to that employed here.

Again, it must be pointed out that the decision rules
developed in Chapters V and VI are situation specific (and
certainly dependent on the implementation of Chapter III)
and are clearly not universally applicable. They are
intended to demonstrate a methodology and there is no
intention of developing a comprehensive and universal set of

rules.

CHAPTER 1 PAGE 14

Finally, some familiarity with BNF (Backus-Normal Form) is

assumed throughtout. Good introductory sources are (1,2).

CHAPTER II PAGE 15

Probably the major stumbling block 1in introducing the
relational model is the terminology. The concepts

underlying this approach are familiar to us all.

Consider a regqgular report, or table that we have all seen at
one time or another. 1In Figure 2.1 1is such a table; a
convenient format for representing such data. The coluamns
spell out the categories of data; the rows provide a value
for each category. Note that the rows and columns might
w2ll be interchanged sithout loss or alteration of meaning.
For example, in Figure 2.1 we see the columns labelled
*dept#', 'description', =2tc. And there are 7 rows. No-one
has difficulty in interpreting the information in Figure

2.1, and this is essentially the relational model.

By convention in the relational model, we always label the
columns, and put the data in the rows (ie: horizontally)
just as is the case in Figure 2.1 . Furthermore, the columns
are'called domains, and the column headings are thus domain

names. This arises from the mathematical concept of a domain

CHAPTER 11 PAGE 16

(in 000's)
Dept# Description Labor Expense Difference
Actual Budget (Actual-Budget)
1 Spray 2930 6464 7103 - 639
2 Coating 5915 12829 13981 -1152
3 Filing 998 2590 2190 + 400
6 Sanding 1637 3907 5243 -1336
7 Buffing 5915 11275 10750 + 525
10 Assemble 4788 8846 8998 - 152
and Pack
TOTAL 22243 45911 48265 - 2354

CHAPTER 1II PAGE 17

as being a collection of objects (or numbers, or any other
information-carrying item). When we choose a value from

that collection we ar2 choosing an item from that domain.

Notice that each row is created by choosing a single itenm
from each of the six domains. Bach row in the table is
called an entry. Notice also that the order of the entries
(rows) in the table 1is not important. We nmight just as
easily put the 'total' entry at the top of the table, and
then the departments in Jjecreasing 'dept#' order. 1In fact,
we lose no information if we shuffle the rows; it may be
inconvenient to have the rows in random order (as it would
be, for example, in 2a telephone directory) but no

information is lost by a random ordering of the entries.

Now, if we vere.to interchange domains 1 and 2 of Pigure 2.1
(ie: 'Dept#' and 'description') there would be no problem
provided we changed the domain names (column headings) as
well. But notice that the order of the domains within any
one entry must be the same as that in all other entries if

the table 1is to remain meaningful. Thus, the order of the

CHAPTER II PAGE 18

domains is important, while that of the rows is not.

Primary Keys.
In Figure 2.1 we may observe that there can be only one
entry in the table for any one value of 'Dept#', and the
same applies for 'description', while there is no reason for
this to be the case in any of the other columns. In fact, in
the 'labor' domain the value '5915' appears twice. Thus,
given the value '5915' and told that it is in the 'labor’
column of Figure 2.1, ve can not determine from that
information alone which department it is that is meant. (If
it is both departments, then there is no problem.) But,
given a value for 'Dapt#', there is no ambiguity about any
information relevent to that row. Eg: given Dept# = 2, vwe
can uniquely determin= all other values in the entry. Thus,
we say that 'Dept#' is a candidate primary key for the
table; ie: for any value of ‘'Dept#' there is only one entry

in the table.

In the event that there is no such domain, then some
combination of domains must be found that exhibit this
property; namely, given a set of values for that comination

of domains, the entry containing those values in those

CHAPTER II PAGE 19

domains is uniquely determinei.

A table need not hive a primary key, but it is often
advantageous from the standpoint of efficiency to do so. (Inm
the relational model propsed by Codd, et. al. no relation
may contain twvo entries that are identical, and so there
always exists some primary key, even 1if it is a combination

of all domains. This is not the case here, as can be seen in

the definition of the 'Join' operator in Appendix 2.)

Normalization.

Looking again at Figqur2 2.1, ve notice that printed above
the table 1is some additional information, éuch as the
fPlant', and the *'Period! covered. We see also that there
are two columns unier the heading of ‘'Expense'; viz.

YActual' and ?'Budget’.

Since the relational model views the world as a set of
tables, we must find some way to include that information in
the table itself. As it now stands, it is not really part of
the informarion in the table; rather it is a form of table

heading. Considering the fact that the 'Plant' and the

CHAPTER II PAGE 20

*Period' are printed at the top of the table, we may assunme
that it is of some iaportance, and we further assume that

there are other plants and other periods.

One course of action is to set wup a distinct table for each
plant/period combination, each having an identical format to
that of Figure 2.1 . This would result in a large number of
identical, yet distinct tables, and so a second course of
action suggests itself: set up a single table for all
plant/period combinations, and somehow distinguish entries
as belonging to some spacific plant and period. This can be
done by simply adding two Jomains to Figure 2.1: 'Plant' and

'Periond?.

Furthermore, we must find some way of incorporating the
notion of ‘'Expense' into the two domains ‘'Actual' and
'Budget'. To do so, we might merely rename the domains
'"Actual expense', and 'Buiget Expense'. The table now is as

appears in Figure 2.2 .

Notice, however, that thz table contains two domains each

based on the notion >f 'Expense!; we have Jjust renamed the

Plant Period Dept# Description

W Plns 10/31 1 Spray

W Plns 10/31 2 Coating

W Plns 10/31 3 Filing

W Plns 10/31 6 Saniing

W Plns 10/31 7 Buffing

¥ Plns 10/31 1 Assemble
and Pack

W Plns 10/31 TOTAL

{In 000's)

Labor Actual
Expense

2990 6464
5915 12829
998 2590
1637 3907
5915 11275
4788 8846
22243 45911

Figure 2.2

Budget
Expense
7103
13981
2190
5243
10750
8998

48265

TZ 39vd

CHAPTER 1II PAGE 22

tvo domains as in Figur2 2.2. In this case, the values
appearing 1in either column are, in fact, chosen from a
single domain: the ‘'Expense' domain. The reason for
prefixing *'Actual’ and 'Budget' to the domain name wvas to
specify the role of 2ach of these domains in the table. In
general, if a domain is used more than once in any one
table, it must be quialified by a role name. If there is a
failure to provide such role names 1in that event, then

ambiguity results.

Use of a role name is not limited to cases in which a domain
is used more than onz2 in the same table, and any domain

name may be qualified by a role name.

Figure 2.2 is a version of the table which has unique domain
{or rather role) names, and is set up in such a way that it
contains all info:nation in the table itself as opposed to
some of it in the fora of table headings. This is called a
normalized table. 1In gensral, normalizing a table consists
of taking information that applies to all entries (such as
the plant and periol of PFigure 2.1) and making it an
integral part of the entries themselves (as in Figure 2.2).

More specifically, we tak2 the primary key of tables higher

CHAPTER 1II PAGE 23

ap in the hierarchy, inl make it part of the primary key of
the lower table. An example will help to clarify this

point.

The example appearing in Figure 2.3(a) shows the logical
view of the data that might exist in a corporate data base.
Figure 2.3(b) is one form of a set of tables that might be
formed to store this logical view. Notice that some domains
(such as 'children' in the ‘'employee' table) are not really

domains, but the names of other tables.

Figure 2.3{c) is the normalized set of tables arising from

2.3(a). Notice that Figure 2.3{c) was derived from Figure
2.3(bi by the following steps:

. for each domain name in a table (say A) that is in
fact a table name (say B) take the primary key of
table A, and maks it part of the primary key of
table B.

. remove the table name (B) from table A.

This is the process of normalization, and, in the relational

model, all tables must b2 normalized (ie: must not contain

CHAPTER II PAGE 24

EMPLOYEE (E MP. NAME, AGE)

|
1
_ _— 1
! |
| |
JOBHIST (JOB.DATE,TITLE) CHILDREN {(CHILD. NAME, AGE)

|
|
SALARY (SAL.DATE,SALARY)

{a)

1) EMPLOYEE (EMP.NAME,AGE,JOBHIST ,CHILDREN)
2) JOBHIST (JOB.DATE, TITLE,SALARY)
3) SALARY (SAL.DATE,SALARY)

4) CHILDREN (CHILD.NAME,AGE)
b}

1) EMPLOYEE (EMP.NAME,AGE)

2) JOBHIST (EMP.NANE, JOB.DATE,TITLE)

3) SALARY (EMP. NAME, JOB.DATE, SAL. DATE, SALARY)
4) CHILDREN (EMP.NAME,CHILD.NANE, AGE)

o fc)
Figure_ 2.3

(Primary keys underlined)

CHAPTER 1I PAGE 25

domain names that are in fact table names).

Why 'relational' model? What we have been calling tables are
call 'relations' in th2 r2lational model. This is more than
an arbitrary name. R2member that we described above how an
entry is formed by selecting a value from each domain in the
table. In mathematical terminology, these entries are a
subset of all combinations of values, or a cartesian product
of the domains. The name used for such \a subset is a

‘relationt?.

More formally:

The cartesian product of A and B (written A X B) is a set of
ordered pairs, each first element of the pair coming from 2,
and each second element from B.

Ie: A XB = }(a,b) :a€A, b€B]|

(*€' means 'is a member of')

We can easily obtain an ordered n-tuple (where n>2) by this
method:

D1 X D2 X...X Dn = | ({(d1,d2,...dn): d4i Di, i=1,...n]

A relation will normally be written as a relation name

CHAPTER II PAGE 26

followed by an orderel, parenthesized 1list of domain names.

Ie: R1(D1,D2,D3). For example: Employee (name,emp¥,dept#).

The reader is referred to (3) for further discussion of

relations and normalization.

Second _Normal Form ani_Functional Dependence.

The process of norealization 3iescribed above (namely, the
removal of all domain names that are in fact relation names)
is adequate for most situations in which the user is careful
to ensure that ihe domains asigned to the various relations
are in fact assigned to the f'correct! relations. This is
aided by the process of iiagramming the data base as shown
in Pigure 2.3(a). Hodever, there are times when vhat seems

quite logical will, in fact, give rise to problesms.

Consider Figure 2.1 . Notice that for any given value of
'Dept#' the value of 'description' is uniquely determined;
or in other words, 'description' is functionally dependent
on 'Dept#'. Clearly, in this case, the reverse is true as

vell; namely, ‘Dept#? is functionally dependent on

CHAPTER 1II PAGE 27

*description?, but this need not be the case.

Now, if for any reason we were no longer interested in Dept#
2 and therefor struck the second row £from Figure 2.1, we
lose the fact that Dept# 2 1is 'coating'; ie: the
relationship (2,coating) lo2s not exist anyvhere else. One
way to avoid this is to =2ostablish a new relation containing
only the functionally dependent domains {Dept#,
description). We may now strike either of these domains from

the relation in Pigurs 2.1 without loss of information.

These relations are said to be in second normal fora; Ie:
Domains not functionally iependent on each candidate key are
stored in a separate relation. Figure 2.1 would thus contain
'Dept#' as a domain, but pnot ‘description®, and another

relation now contains 'Dept#!' and 'description’.

Normal Form and transitive dependence.
Third normalized relations are second normalized relations
in which there exist no transitive dependencies.

If B is functionally dependent on A, and C is functionally

§

CHAPTER 1II PAGE 28

dependent on B, then by the algebraic transitivity lavs, C
is also dependent on A. But in a somwhat different manner,
since it is also dependent on B which is dependent on A. 1In
this case, we say that C is transitively dependent on A.
This is true in any cise where the application of algebraic
transitivity yields an adiitional functional dependency, as
it did in the above case.

Relations in third normal form would not contain any domains
that were dependent on any other domain which is itself
functionally dependent on some domain in the relation.

For the case above, wh2re C 1is transitively dependent on A,
we would establish a separate relation containing domains B

and C, and remove C from the relation containing A.

It thus appears preferable to retain all relations in third

normal form for the rzasons outlined above.

The reader is referred to (4) for a more comprehensive

treatment of second- and third normal foras.

CHAPTER II PAGE 29

Consider the existenc2 of two relations:

person (soc_sec, name, age), and

marriage (husband.soc_sec, wife.soc_sec) .
Notice that !'person' contains the doerain 'soc_sec' and so
does ‘'marriage'. Since 'marriage' contains that domain
twice, a role name is mandatory. Those supplied are:
'husband. soc_sec' ani ‘wife.soc_sec!'. Now consider a
request to 1list the name and age of the wife of a person
with soc_sec 617-03-2911. This might be phrased (in some
arbitrary retrieval language) as follows:

list wife.name and vife .age for husband.soc_sec
'617-03-2911"* ;
Notice that the t'person' relation contains the domains
referenced (viz: ‘'name' and ‘age') but not the role name
qualifier 'wife'. Intuitively, however, it is clear that t he
information needed t> satisfy the reguest is present, but

not in any way that the system can utilize.

The way that the systam makes use of implicit information of
the type in the example above 1is by transferring the role
name gualifier 'wife' to the 'person' relation only for that
entry designated by the relationship between

'husbhand.soc_sec 617-03-2911" and the corresponding

CHAPTER 1II PAGE 30

'wife.soc_sec'. '*wif2*' 1o2s not become a permanent role

name qualifier in the *persom' relation.

Set Theoretic Notatioa, D=fipitions and Examples.

In chapter I was mentioned the fact that a well-defined
collection of theoretical rules exists which may be used to
operate on relations (regardless of whether they are in any
particular normalizel form). This section outlines these
rules. This 1is perhaps where the model used here differs
most from those presented elsewhere(3,4). Differences will

\
be pointed out at appropriate points in the discussion.

The following operations will be defined:

Operation
Union
Intersection

Difference

Cartesian Product

Projection
Join
Composition
Permutation
Compaction
Restriction
Division

These operations

formally defined and examples given in Appendix 2.

- ——— - -

** Diadic operators operate on

are

briefly

CHAPTER II

Diadic
Diadic
Diadic
Diadic
Monadic
Diadic
Diadic

Monadic

'uonadic

Both

Diadic

described here,

PAGE 31

and

are

two relations (they may both

be the same relation); monadic operators operate on a single

relation.

CHAPTER 1II PAGE 32

Notation.

R<i> is the name of the i th relation

€ means 'is a member of‘!

]e...| implies a list, or set of the items between the
'1ts.

c(i) is the cardinality (number of entries) in R<i>
n{i) is the degree (number of domains) in R<i>
d{(i,j) is the j th domain of R<i>, j=1,..n (i)

v{a) (i,j) is the m th value of d(i,j), a=1,..c (i)
t{i) is an n(i)-tuple in R<i>

ie: t(i) (v@)(i,VN),v(a)(i,2),...¥(a) (i,n(1)))
a 1,...c(i)

L(la}) is the length of list a

P is the null set - ie: R<id>=g implies c(i)=0

a€b means a is a subset of b (a=b is legal)

acb means a is a proper subset of b (ayb)

¥a means for all values of a

This notation will be used throughout the remainder of this

CHAPTER I1I PAGE 33

thesis.

The union of tvo sets consists of a set that contains all

Intersection

The intersection of two sets is a set that contains only
entries that appear in both of the two sets.

Difference

The difference of two sets is a set that contains all
entries that appear in one of the sets, but not in the
other. Eg: If the tw> sets vwere A and B, then 'A - B' is a
set of all entries that appear in A, but not in B.

Cartesian Product

This is as defined on Page 25

i)

Projection
The projection of a rzlation is a procedure whereby some of

the domains in the relation are removed.

[

Join
A join of two relations is the process whereby two relations
may be combined into 2 single relation containing all the

domains of the two being joined.

CHAPTER II PAGE 34

Composition
This is the same as the join, except that the domain on
which the relations are joined is removed. This means that a

composition is in fact, a projection of a join.

v

Permutation
A permutation appliel to a relation consists of merely
re-ordering the domains in the relation.

Compaction.

The compaction operator is used for deleting all redundent
entries from a relation. It is wused most commonly in
conjunction vwith the projection operator, which may result
in redundent entries.

Restriction

The restriction operator is used for selective retrieval

from a relation.

Division

Division is the inverse of the cartesian product.

Introduction to XRM.

This section is intenied to be a very brief introduction to
the pertinent points about XRM.

XRM is a particular implementation of an n-ary relation data
management model designad and built by IBM Scientific

Center, San Jose (5). It operates basically as follows.

CHAPTER II PAGE 35

XRM can handle two types of information:
. character string data, and
. fullword (32 bit) numeric data
There are correspondingly two major subcategories of
relations; one that handles character strings, énd another
that handles n-tuples of numeric data. Any one relation
type (character or numari- n-tuple) can only handle data of

that type.

Fach entity in the system (character string, or n-tuple) is
automatically assigned an XRM ID when entered into the data
base. Given that 1ID, the entity can be rapidly and
efficiently retrieved by XRM. And, given the entity, XRM
obtains its 1ID by applying a hashing function to that
entity, and then performing the retrieval. In the case of
character strings, some number of the first bytes of the
string are hashed; in the case of numeric mn-tuples, all
primary key domains are hashed.

All IDs in XBM are fullword integers.

In numeric relations (n-tuples), any domain can be ipverted.

CHAPTER II PAGE 36

This is equivalent to building an index for that domain.
Once such an inversion exists, given a value for that
domain, XRM will rapidly find all 1ID's of n-tuples in the
relation that contain the given value in the inverted
domain. If no inversion 2xisted, a linear search would be
necessary. More 1is said about the implementation of

inversions in Chapter V.

For our purposes, this introduction will suffice. Additional
concepts will be explained as needed. For further

information, the reader is referred to (5).

CHAPTER III PAGE 37

This chapter presents 1 methodology based on the relational
model for achieving independence between the 1logical- and

physical data structures.

One of the intentions of data independence is to allow the
user to view the structure existing in the data he (it) uses
in a way most convenient for a specific application. This
means that the user should be provided with the facility to
define any relation containing any domains in any order, and
be able to use it as such. Notice, however, some of the

issues raised by permitting this flexibility.

The most glaring problem arises as a result of the
divergence from the concept of shared (or centralized) data
bases. The benefits »f shared data banks are many and have
been adegquately covered elsewhere, Now we are
proposing the facility for allowing every user a powerful
tool that allows rapii and easy definition of relations for
specific applications. What does this do to the centralized

data base concept? Each user now wants (and is able to

CHAPTER III PAGE 38

have) different relations for his application(s), which is
basically gaining efficiency and convenience at the expense
of generality. Each user must, furthermore, collect and
maintain his own data needed to support his application,

rather than delegate that function to a central authority.

The traditional methol of centralizing data collection and
maintainence has been the appointment of a data base
administrator vhose responsibility it is to maintain the
central shared data base, and ensure that all users conform
to that data base. Chinge to the data base is expensive and
time consuming, and so generally to be avoided. User
convenience was sacrificed in favor of a centralized data

base.

There is no need for sacrifice on either the user's part, or
the data base administrator's part. This 1is where the
concept of a 1:n mapping of physical to logical structures
demonstrates its value. There is no reason for denying a
user a specific mapping from the single physical data base
into a specific logical r2lation for some application. This
presents no problem if the 1logical relation that the user

vishes to define on the physical data base is some subset of

CHAPTER III PAGE 39

the domains existing in that physical data base. But what if
the logical relation requires a mapping onto a domain that
does not yet exist in the physical data base, and is yet to

be created?

One possibility 1is to redefine the existing relevent
relation in the physical data base to include the new
domain. Alternatively one could invoke the principle of a
1: n mapping, now from the logical to the physical relations,
and create a newv relation containing the required

information.

We have thus expressed the need for a n:m mapping from
logical to physical relations; ie: a logical relation can
map onto several physical relations, and a physical relation

can be mapped into several logical relationms.

Before proposing a methodology for implementing n:m
mappings, let us address very briefly the issue of
efficiency. In a very large data base, a user that
constantly uses the same, small subset of data in a logical

relation pays a high price in performing the mapping each

CHAPTER III) PAGE 40

time. Some exception should be made in such a case whereby a
physical relation is established containing that subset of
data, and existing alongside the original physical
relations. This should not however be made to appear any
different to the user; the logical relation defined must
still appear to be the same and contain fully updated

information.

We turn now to a methodology.

Methodology.

There are basically three categories of relations that we
have expressed a desire for in the above discussion:
. physical relations in the physical (centralized)
data base,
. logical (user defined) relations, and

. special\ physizal =2fficiency-oriented relations.

The terminology to be used here 1is as follows (and intended
to be consistent with the current terminology found in the

literature):

CHAPTER IIIX PAGE 41

. real relations - those relations that exist
physically in the data base

. virtual relations - user-defined (logical) relations
which are mapped by the system onto the real
relations

. derived relations - real (physical) relations that
are subsets »>f the real relations constituting the

data Dbase. They 2xist primarily for efficiency

reasons.

We thus have a basic system as shown in Figure 3.1 . VNotice
that the elements of the system shown in Figure 3.1 interact
in a specific way; more precisely, they form a hierarchy.
Figure 3.1 can be easily reformatted to yield Figure 3.2.
The same is true of all other figures in this chapter: they

can be expressed in an hierarchical relationship.

Notice also that this system has not eliminated either the
data base administrator or the need for some person (perhaps
again the data base administrator) to specify the initial
real relations. The f2atures of the systeam thus far are:

. the ability to define virtual relations on the

system maintiined real relations, and have the

CHAPTER III PAGE 42

USER

L

VIRTUAL RELATIONS

I T l

REAL RELLPION‘* q DERIVED RELATIONS

Fiqure 3.1

USER

CHAPTER III

PAGE 43

APPLICATION PACKAGES

‘VIRT . RELNS.
DERIVED
REAL

RELNS.

CHAPTER III PAGE 44

system perform mapping functions {note that a
virtual relation may in fact be identical to a real
relation). More than one virtual relation may be
defined on any one real relation.

. the ability to decide (the decision being made by
the data base alministrator) to create a (real)
derived relation for reasons of efficiency in a
particular application

« the ability for a virtwal relation to contain

domains from more than one real relation.

As caan be seen, the enhancements are concerned only with the-
system mapping functions. Thus, users may define virtual
relations consisting of domaimns in any (combination of) real
relations, but may not define additional domains. It is
also important to point oat the following:

. primary keys 1in virtual relations exist in the eye
of the user only; they do not necessarily correspond
to primary keys in real relations.

. the set-theorz2tic operators defined in Chapter II
are all that are required by the user for the
creation of virtual relations, as virtual relationsl
are a function only of existing relations. The data

base adminstritor, however, who needs the capability

CHAPTER III PAGE 45

to define r2al relations and/or domains needs
additional facilities; perhaps in the form of a
DEFINE... or ZREATE... command, not available to the

user.

Assuming a user wishas to define new real domains, these
additional real domains will have to exist as real domains
in some real relation somewhere in the data base and there
is a decision required as to where in the data base this new
domain will exist. Thus adding real domains (or real
relations) involves the user interacting with the data base
adminstrator. The actions of the data base administrator in
this situation would c-onsist basically of the following
steps:

1) Determine from the user whether he is merely
utilizing a Jiffarent name for some existing real
domain. If s>, simply tell the user to define a
synonym equating the two names.

2) If-(1) is not ths case, apply some set of rules to
determine in which real relation the domain(s)
belong(s) .

3) Add the domain to that real relation, thus making it
available for wuse in any user-defined virtual

relation. (Note that this step may require

CHAPTER III PAGE 46

restructuring som2 real relation. Alternatively, a
new real relation could be established consisting of
the new domain, and the primary key of the real
relation that should contain that domain. A join is
required each time the new domain is used. This
decision rust be made by the data base

administrator.)

Step (1) above appears to require some human intervention on
the part of a person such as the data base adminstrator, who
is familiar with the global system and the existing real
relations. But major portions of steps (2) and (3) can

indeed be formalized, and automated.

Provided there are some guidelines for the maintaining of
real relations (eg: they must all be maintained in
third-normal form - ses Chapter II), then step (2) above can

be performed by the systen.

In a similar vay, by supplying some information as to the
expected use to be made of this new domain, the system can

determine precisely how to include this new real domain in

CHAPTER III PAGE 47

the data base - ie: parform step (3) . Notice also that this
decision 1is directly analogous to that required in the

creation of a derived relation.

Perhaps it would appear that all that is accomplished by the
automation of the major share of steps (2) and (3) above is
the reduction of some administrative overhead. But consider
the capability of applying step (3) dynamically, which the
data base adminstrator 3Joes not have (except perhaps at
predetermined, discrete time intervals). This means that the
real relations can be so structured as to reflect the
current system usage and requirements. Furthermore, because
of the n:m mapping capability of the system, these changes
in the real relations - ba it mere addition of a real domain
or relation, or a restructuring of existing real relations -
are not visible 1in any way to the virtual relations of the
user. We may novw molify Figure 3.1 to show the fact that
there is some system function controlling the structure of
the real relations in the data base; namely, the Structural
Decision Subsystem (SDS). The modified version of Figure 3.1
appears iﬁ Figure 3.3 . If Figure 3.3 were reformatted into
an hierarchical diagram, the SDS, vhich must be available to

the real relation hanilers, would become the innermost level

of the hierarchy.

CHAPTER III

USER

3

VIRTUAL RELATIONS

REAL RELATIONS

1

DERIVED RELATIONS

SDS

PAGE 48

CHAPTER III PAGE 49

We have discussed thus far in a non-technical manner a
methodology for automating some of the functions revolving
around the maintainence of the real relations of the data

base.

Now, given a structure for the real relations of the data
base (as specified by the SDS), and given also the possible
existence of derived r2lations (also determined by the SDS)
it becomes clear that there may well be more than one way to
satisfy a request against the data base. All requests from
users are against virtual relations (or some set-theoretic
derivation of virtual r2lations), which from above, are
mapped onto one or aore real, or derived relations. Once
again some decisions are required in the mapping function to
determine:
. whether the request is yalid - ie: «can logically
(and legally, from an access control point of view)
be satisfied given the virtual relations involved,

. how the request can be satisfied, and

. how best to satisfy the request.

The subsystem that controls these decisions is the Request

Decision Subsystem (RDS). The RDS is responsible also for

CHAPTER III PAGE 50

determining hov well it is doing in terms of efficiency. If
the RDS decides that system performance 1is degrading
(perhaps as a result of changing system usage) it will
trigger the SDS in an attempt to restore performance to an
acceptable level. We thus modify Figure 3.3 to include the
RDS, as shown 1in Pigqgure 3.4 . Its position in the
corresponding hierarchical diagram is self-evident from this

figure.

The discussion in this chapter has purposely been
non-technical in natare in an attampt to demonstrate the
global functions and interactions within the system of the
major decision subsystems - the SDS and RDS. Furthermore,
the techniques employed in implementing both the real- and
virtual relations are of no consequence to the discussion,

and have no impact on the methodology proposed.

Finally, notice that the real- and virtual relations are
identical in their conceptual anderpinnings, and thus
requests against either are made in a consistent fashion.
The requests used throughout will be in the format of
set-theoretic operations on relations, be they real-,

virtual-, or derived relations. (These operations are as

CHAPTER III PAGE 51

USER

1

VIRTUAL RELATIONS

-

3

] ...

REAL RELATIORS DERIVED RELATIONS

|
!
|
|
!

— i e e e e

CHAPTER IIX PAGE 52

defined in Chapter II.) This does not of necessity imply
that a user will employ set-theoretic requests directly; a
ma pping from a higher-level request language to a
set-theoretic algebra is a well-understood, and conceptually
simple operation. (See (6)) Thus our hierarchical view of
Figure 3.4 might involve an additional layer between the
user and the virtual relations; namely, a request language -

to - set theoretic operation mapping facility.

What we have presentel in this chapter is a methodology for
achieving true data independence and providing the user with
povwerful facilities for def ining application-specific
relations. .At the same time, howvwever, we preserve the
centralized data base concept. The methodblogy is enhanced
by two decision subsystems which assume some of the system

structuring responsibility.

We proceed now to a detailed inspection of the decision

subsystens.

CHAPTER 1IV PAGE 53

Decision Yariables and Trut

This chapter describes the naming conventions to be used in

subsequent sections for the naming of decision variables.

Since there 1is a rather 1large set of these decision
variables, it was decided to establish a consistent method
for naming them. This method 1is presented here in BNF
(Backus-Normal Form) format, along with the appropriate

explanations.

Note that all decision variable names begin with a
'$<number>'. This signifies the BNF rule number used to
generate that name. A reference section containing these

numbered rules appears as Appendix 3.

<relation id> is an XRM-assigned internal ID; <domain #> is

the position of a domain within a tuple.

CHAPTER IV PAGE 54

1 <qualifier>::= $1<relation type> <unit> <request>
{category> <qualifier type> <join infod>
<options>

These are variables containing statictics about the use of
domains 'in the capacity of qualifiers in the 1list of
seiection criteria that appear in a request.
<relation type>::= <virtual>|<real>|<derived>
<virtual> ::= v
<real> ::=r
<derived> ::= 4
<unpit>::=<domaind>|<relationd>
<domain> ::= d (<relation id>,<domain#>)
<relation> ::= r (<relation id>)
<request> ::= <retrieve>]<updated>|{<insert>|<delete>
{retrieve> ::=r
<update> ::= u
<insert> ::= 1
<delete> ::= 4
<category>::=<simpl2>|<compound>|<non-specific>
<simpla2> ::= s
<compound> ::= ¢
<non-specific> ::=n
<qualifier type>::=<equality>|<nonequality> |
<unspacified>

<equality> ::= e

CHAPTER IV PAGE 55

<nonejuality> ::=n
<unspacified> ::= u
<join info>::=<join>|<nojoin>
<join> ::= j
<nojoin> ::=n
<options>::=<null>}<index>|<no index>
<null> ::=
<index> ::= i (trss) (trss="'total
resloved set size')
<no index> ::= n
Example: $1rd(i,j)rsen is the number of times the Jj-th
domain of real relation i is used as a simple (ie: the only)
qualifier in a retrieval request, and was used as an
equality constraint. No join wvas needed to satisfy the

request.

The <relation type>, <unit> and <request> should be
self-evident. For <category>, if there is only one domain in
the list of selection criteria, then the <category> is 's'.
In the event that there are several domains in the qualifier
the <category> is 'ct', and if there 1is a sequential
retrieval from the relation, the <category> will be 'n' (or

non-specific).

CHAPTER 1V PAGE 56

For <qualifier type>, a constraint in a qualifier can be of
essentially two types:

. an equality constraint, such as 'age=26"',

. an inequality constraint, such as 'income > 20,000'.
If there is no constraint (as is the case when <category> is

'n') then the <qualifier type> is 'u' - or unspecified.

<join info> will be a *'j' in the event that there was a join
required in the resloving of the request, and it will be 'n?

if no join was necessary.

<options> will be null in the event that <category> is t's?.
If <category> is 'c', howevar, then <options> will show
vhether some other domain in the 1list of qualifiers had n
inversion in the real relation. If so, then <options> is
'i' - or ‘'index', and the system will also store the total
size of the resolved set (the set of entries that results
when those domains with 1indexes are used first in a
restriction). If there was no other domain in the 1list of

domains in the selection criteria, then <options> is 'nt.

CHAPTER IV PAGE 57

|0

ule# Rule

[,V

<retrieved object>::= <relation type> <unit>
<request> <object> <join info>
This is a set of variables that will contain statistics as
to the use of domains as the ogbjects of a request.
<relation type>::=<real>|<virtuald|<derived>
<real> z2:=r
<virtaal> ::= v
<derived> ::=4d
<unit>::=<domain>|<relation>
<domain>::= d(<relation id>,<domain #>)
<relation> ::= r (Krelation id>)
<request>::=<retrieve>|<update>|<insert>|<delete>

{retrisve> z:2:=r

<delete> ::=d
{object>::= <{simple> | <compund> § <entry> i

{<aggregate>) <ob ject>

<compound> ::= C

{entry> z1:= e

<aggragate>::=SUM|JAV|MAX|MIN|COUNT|UNIQUE
<join info>::=<join>|<nojoin>

-<join> ::= j

CHAPTER 1V PAGE 58

<nojoin> :1:= n

Example 1) $2rr(i)rej is the number of times a whole entry
is retrieved from real relation i, when a join

was necessary to resolve the request.
2) $2vd(i,j)c(AV)sn is the number of times that the
average of the values in only (since <object> is
*s') domiin j of virtual relation i 1is
retrieved; no joins were needed to resolve the

request.

<object> in this rul2 is similar to <category> of rule #1.
The value of <object$ will be s if this is the only domain
specified for retrieval (or update) in the request. If there
are several domains specified, then <object> 1is ‘c'.
<object> may also be in <aggregate> if the individual itenms

vwere not required, but some aggregation of them wvas.

3 <joiﬂs>::= $3 <relation type> <domain> <domain>
This type of variable maintains statistics about the
involvement of relations in joins. It specifies the number
of times a relation was joined to some other relation by a

specific domain.

CHAPTER IV PAGE 59

<relation type> ::= <virtual>|<reald>|<derived>
<virtual)> ::= v
<real> ::=r
<derived> ::=4d
<domain>::= d(<relation id>,<domain #>)
Example: $3rd(i,j)d(k,m) is the number of times that

relation i was joined by domain j to domain m of relation

k.
Rule# Rule
4 <{system data>::=$4<system variabled>

These variables store information about system parameters
and costs.
<{system variabled>::=<block size> | <index blocking
factor> i <cost-per-1/0> | <relation
blocking factor> | <cost/byte/day> 1
<overhead per call to XRM> | <time period>
<block size>::= é |
<index blocking factor> ::= bfx(<domaind)
<domaind>::=<relation id>,<domain #>
<relation blocking factor> ::= bfe(<relation id>)
<cost-per-1/0>::= io
<cost/bytes/day>::= sc

<overhead per call to XRM>::= opcC

CHAPTER IV PAGE 60

<time period>::= t

In XRM, bfx(i,j) is constant ¥i,j, and bfe(k) is constant
¥k. So, for our purposes we can refer to them simply as
'bfx!' and 'bfe?. Tha <time period> 't' will be the length
of time since the last restructuring of the data base by the
SDS. All SDS decisioas are based on the period since the
last restructuring occurred, and so decisions will be based

on this time period.

Rule# Rule
5 <relation data)>::=$5<relation variable>
These variables are used to store information regarding
relations.
<relation variable>::=<degree><type> i
<cardinality><type>
<degrz2>::= #d(<relation id>)
<cardinality>::= cy(<relation id>)
<typed>::=<reald>|<virtual>|<derived>
<real>::=r
<virtual>::= v
<derived>::= d (K<method of derivation))

<degree> 1is the number of domains in the relation;

CHAPTER 1V PAGE 61

<cardinality> is the number of entries in the relation.

Rule# Rule

6 <domain data>::=%$6 {<domain name>)<domain variable)
These variables are used for maintaining statistics about
domains.

<domain variabla>::= <# unique values>
<# unique values> ::= ¢

Example $6 (state)g is the number of unique values that will
be found in domain 'state’. Notice that for domains that
are numeric, $6(i)g is the same as the cardinality of the
relation in which domain i appears. For character strings,

it may be anything from 1 to the cardinality of the relation

in which it appears.

|20

ule# Rule

<user information>::=$7<user variable>

-~

<user variable>::=<response time weight factor>

<response time weight factor>::=r

" The <response time weight factor> is a auser-supplied

preference for how the response time is to be weighted in

CHAPTER IV PAGE 62

structuring decisions. It is a value from 0 +thru 1
inclusive. For purposes of this thesis, the value of $7r
. will be 0.5, vhich is essentially a null value. However,
the variable may be taken into account by merely appending
'$7r' to all cases where '$4io' and 'S$Uopc' appear in the
decision rules, and by appending ' (1-$7r)?' to all instances

of '$4sc' in the decision rules.

Truth functionms.

In addition to the statistical variables above, these is a
set of truth functions used to test for specific

P4

conditions. The names of these truth functions all begin
with: '$8'. The value of a truth function is.'1' if applying
the function to a specific case is true; othervise the value
is '0'. Por example, if T(i) were a truth function that

tests for negativity, then if i<0, T(i)=1, otherwise

T(i)=0.

The truth functions eaployed here are presented below. (Note
that the <type> of a relation (real, derived or virtual) is

not important in applying truth functioms.)

CHAPTER IV PAGE 63

$8d(i,j) domain j appears in relation i

$8i (j,k) domain k in relation j is inverted. (For virtual
relations, $8i(j,k)=0 alwvays.)

$8p(i,j) domain Jj is one of the primary key domains of
relation 1i.

$8x(i)r relation i is a real relation.

$8x (i) d (Kmethod>) r2lation i is a derived relation, and
<method> is the method of derivation. If <method>
diad not involve a restriction, then
<method>::=<niall>.

$8n(i,j) domain j of relation i is mandatory. Ie: a value
must be proviled for this domain before an entry in
relation i will be made.
Note $8n(i,j)=1 ¥j where $8p(i,j)=1. (Primary key
domains are mandatory.)

$8u (5) domain j contains unique values (eg: soc_sec_#)

$8r(i,j) same as $8n (i,j) except that it refers to a role
name. Also notice that $ér(i,j) is a subset of
$8d (i,j) Thus this is a truth function that tests
whether a rols name is in relation i.

$8_(j) <data type><storagz strategy>

<data type>::=<character> | <fixed> | <float> | <vector> |

<bit>

{character>::= ¢

CHAPTER IV PAGE 64

<fixed>::= Xx
<float>z::= £
<vector>::= t(<sized)

<bit>:2:= b

<storage strategy>::=<virtual> | <real encoded> | <real
unencoded>

{virtual>::= v

{real encoded>::= e

<real unencoded>::= u

This set of truth fanctions is to test the data type of
domain j. For exmaple, if $8_(name)ce=1 then domain 'name!

is an encoded character string.

$8f(Imj,in]) is a truth function that tests whether each
of the domains in 1list |n}| are functionally
dependent on the whole list |m].
Note 1) List |m] is pnot a 1list of all domains on
which members of list in} are functionally
dependent. Each n'<€|n| may be functionally dependent
on some |x|#|a] also.

2) If jni=¢@ (ie: is empty) then

$8f (imj,In}) =0.

$8n(ipl,1q9]1) is a function that tests whether lists |p| and

131 are mrutually dependent. Ie:

CHAPTER IV PAGE 65

$8f (Ipl,PgP) =$8£ (1ql,Ipl)=1, and also $8m{lpl,ig))
implies $8m({3l,Ipl)-
Transitivity also holds: $8m(ipi,igl)=%$8m(iql,isi)=1
implies that $8m(ipl,.Isl)=1.

$8c(ipl.,q) (<function>) is a function which tests whether g
{(note that ¢ is not a list) is computationally
dependent on domains |p]. For example, if domain g
is defined as 'q=6.3 * p' then g is computationally
dependent on p. (<function>) is the computation
required to dsrive g from the list of domains |p]|.

$80d (k) is 'a truth function set up for a request. It is
1t if domain k appears as one of the object domains
in the request.

$8eq(k) is a truth function used in requests. It is '1' if
domain k appears as a qualifier with <qualifier
type> 'el.

$8ng(k) is similar to $8eg(k) except that the <qualifier

type> is not 'e!'.

Note that truth functions may be implemented as unary and
binary relations {lepending on the particular truth
fanction) where existence of an entry in the relation

signifies 'true', or '1°.

CHAPTER IV PAGE 66

The complete list of decision variables and truth functions
that are used in this collection of decision rules is listed

in Appendix 3.

In addition, the following notation will be employed in
subsequent chapters:
. an '*' appearing in any decision variable name means
the sum of all the possible replacements of the '*?,
For example:
$1vd (i,]j) *sej = $1vd{i,j)rsej + $1vd (1,j)dsej +
$1vd(i,j)use]
($1vd (i, j) isej is not used.)
Or:
$1rd(i,*)rsej = SOM($1rd (i k)rsej) for k=1,...8$5#d (1)
. a '£' in a name means the product of all possible
replacements for the '¢°?,
For example:
$1vd(i,j)rseg = $1vi(i,j)rsen.$1vd (i, j)rse]
. a list Dbetween two '}' (vertical bars) means the sum
of that list.
For example:

$1vd(i,j)ld,ulsej = $1vd(i,j)dse]j + $1vd (i,]) usej

CHAPTER 1V PAGE 67

The reader 1is advised to become familiar with the 7 rules
and the various truth fun-tions to avoid continual reference

to Appendix 3 and thus to expedite reading.

CHAPTER V PAGE 68

The Structural Decision Subsystem (SDS).

This chapter presents a detailed exposition of the SDS.

The SDS is charged with the responsibility for:
. maintaining the database in third normal fornm,
» structuring th2 real relations in such a way that
current system usage is most efficiently serviced,
. modifying any system descriptor tables to reflect any
change in the structure of the real relations.
Since we are not concerned specifically with any
implentation here, we will not address the modification of
system descriptor tables. This is, nevertheless, a SDS

function.

As outlined in Chapter III, the creation of real relations
is a privelaged operation. While any user may define an
indefinite number of virtual relations, the disorderly or
randon definition of real relations would ultimately destroy

the centralized naturs, and cohesiveness of the data base.

CHAPTER V PAGE 69

The SDS is concerned gnly with real relation restructuring
since virtual relations may, by definition, only be altered
by the user that defined them. However, the SDS must examine
virtual relation use for purposes of making decisions about

derived relations.

There are two separate points at which the SDS can be
invoked:
. at definition time, and

. during the life of the system - or dynamically.

In either case, the function of the SDS is identical;
namely, to ‘'best' structure the database for its expected
use. The distinction between these two ocasions of SDS use
is simply one of th2 source of values for the decision
variables. At definition time, values for decision variables
{and the definition of truth functions) are exogenous, and
supplied to the SDS. At any time thereafter hovever,
continuous monitoring provides accurate records of actual
use, which become th2 values for the decision variables at

the time the SDS is invoked.

CHAPTER V ‘ PAGE 70

It is important to note that the operation of the SDS is in
no way dependent on the source of the decision variable
values. Given a set of values, the SDS can operate. Thus,
the stage of system life (definition, or subsequent thereto)
does not predetermine any particular operations to be

performed by the SDS that are not required at other stages.

The SDS presented her2 is cost centered. Ie: it attempts at
all times to minimize cost as opposed, for example, response
time. However, in light of the fact that response time is
often the most crucial factor for many users, there may be a
<{response time weight factor> provided by the user ($7r).
If none is supplied, the lefalut is 0.5 (which is in effect,

null). All decision rules here assume that $7r=0.5 .

We proceed now to the SDS proper.

5.1 Maintaining thirl normal fors.
The algorithms within the SDS for maintaining real relatiomns
in third normal form are driven by a set of truth functions

of the variety presented in Chapter 1IV.

CHAPTER V PAGE 71

Every domain must app2ar 2ither as a functionally dependent
domain in some truth fanction, or some domain on which

others are functionally dependent.

It is the responsibility of the user (perhaps in
co-operation with thes data base administrator) to define
these truth functions. The system is not (and in fact no
system can be) able to third normalize without substantial
user-provided information. In order to do so, the user must
understand the interrslations, and peculiarities of the
data, and the data base administrator is responsible for
education in this function., It 1is envisioned that the user
will employ network-like diagrams to aid in this task (See

the scenario of Chapter VII).

Note that the user is pot asked to provide third normalized
relation definitibns per se, but rather the information that
will enable the system to define third normalized relations.
This distinction is important if one considers the
(possible) dynamic nature of the real relations. If a new
real domain is to be added to the data base, a decision is
required as to which real relation it belongs in. Given the

knovledge that the data base administrator has of the data

CHAPTER V PAGE 72

base, he is the clear candidate for making the decision, and
he would simply relefine and restructure the affected
relation. Notice that this is the only course open to the
data base administrator, whereas the system, provided with
adequate information would be in the position to dynamically
consider alternativas to the full, and expensive,

restructuring of the affected relation.

It is thus deemed preferable to provide the necessary
information, and to allow the SDS to third normalize in
order that dynamic moiifications to relations be efficient.

The algorithm for third normalization is detailed in
Appendix 1. Suffice it to say here that, given a set of
functional- and mutual dependencies, the system can generate
a database (real relations) in third normal form. Note that
computational dependencies are not considered when

third-normalizing.

Now, assume that some new real domain is to be added to the
database. By having the functional- and mutual dependencies
for the new domain, the system can determine where in the
set of real relations, this new domain belongs if third

normal form is to be preserved. Furthermore, it 1is able to

CHAPTER V PAGE 73

determine the most efficient method of including it in the

data base.

We proceed now to 31ecisions made by the SDS under the
assumption that third normalization has occurred, and
resulted in a set of real relations of the following type:
<name> ({list of domains>) {<list of candidate keys>)
The primary key will become the <candidate key> with the
fewest domains. This maximizes the chances of having values
specified for all primary key domains in selection
criteria.
FPor example: RR1(A,B,C,D,E) ({A,B), (C,D,B))

The primary key that #ould be chosen here is (A,B)

5.2 Structuring Decisions.

These decisions are basically thosé that determine the
implementation of the relations specified by the third
normalization process. These decisions are:

1) Encoding or virtualizing of domains

2) Indexing decisions (the creation of inversioas)

3) Factoring decisions

4) Decisions to join permanently into a single relation

CHAPTER V PAGE T4

any two relations that have the same primary key.

One of the structuring decisions considered, and
subsequently dismissel was that of replacing a relation (in
third normal form) by two or more of its projections. The
factors that are involved in any such decision are:

a) the cost of transporting little-used domains of a
relation to primary memory each time any part of the
relation is ased (A case for splitting up the
relation)

b) the oveihead involved in maintaining an extra
relation, and duplicate copies of some domains (A
case against splitting)

c) The overhead involved in performing a join each time
one of the domains split off is required for any
reason (A case against splitting the relation)

d) Possible redauced storage (A marginal case for
splitting the relation up)

However, since the cost of transporting unneeded domains to
primary memory (once the entry has been located, and an I/0
is required anyway) is so minimal that it will be clearly
dominated by costs of (b) and (c). (d) 1is an ancertain
value. There are occasions in which the cardinality of a

projection may be smaller than that of the original

CHAPTER V PAGE 75

relation, but this is never certain.

As such, it appears that the decision to replace a relation

by two or more of its projections will never be made, and so

was not included in the SDS.

5.3 Encoding and virtualizing decisions.

5.3.1 Virtualizing Decisions

A virtual domain is one that is not stored physically, but
rather is coamputed each time it is required from the domains
on which it is computationally dependent. Also, notice that
updating a virtual domain is not a legal operation. The
virtual nature of the domain is, by definition, not visible

to the user.

A domain 1is a canlidate for virtuwalization if it is
computationally dependent on a set of other domains; Ie: p
is a candidate for virtualization if $8c(la},p)=1. Any of
the domains on which it functionally dependent (ie: j where

j€ip]) may also be virtual, but there must be a restriction

CHAPTER V PAGE 76

to prevent circular computational dependencies. Namely:
If $8c(lri,P)=%$8c(|yl1)=1 vhere a<€|r|] then:

$8c(ix|.b)#1 ¥b€lyl, ¥|x]| where p€|x|

The decision rule is:

Por a domain that is currently virtual, If:

{cost {making domain real) + cost{use if domain is real) +

cost (maintaining domain if real))

< (cost (using the domain if virtual))

then make it real. Otherwise leave it as virtual.

Note that the cost of maintaining a virtual domain is 0.
the event that a domain is real, then each time any of
domains on vhich it 1is computationally dependent
modified, the domain itself must be modified. This
clearly not the case if the domain is virtual.

Similarly, if the domain is currently real, if:

{cost{virtualizing) + cost(use if domain virtual)) <

(cost {(use if domain r2al) + cost(maintaining if real))

then virtualize the domain; otherwise leave it as real.

Separating out the various costs mentioned above, we get:

5.3. 1.1 Cost(making domain real)

In
the
is

is

CHAPTER V PAGE 77

This involves a serial processing of the relation(s) in
which the domains on which it is computationally dependent
exist, and computing the value of the virtual domain. It is
then appended to ths relation, and wvwritten out 1in the
database in the new form. Thus there are basically two
steps:
locate the domains on which it is computationally dependent,
and compute and store the value. |
Assuming that the domaimn in guestion is domain d, there are
tvo possibilities when $8c (jpi,d)=1 :

a) $84(i,Jj)=1 ¥j<€ipl and $8x(i)=1 for that i, or

b) $8d(i,j)#1 for some j€}jpl, and a single i
In case (a), no joins are necessary when retrieving the
domains on which d is computationally dependent; they are
all in relation i. Computing the value of d consists simply
of retrieving a tuple from relation i and computing the
value. In case (b), however, there will be at least one join
necessary to retrieve all members of |p|, and very possibly
several. Case (a) is really a special form of case (b),
which is, in fact the general case. If there were sonme
algorithm capable of determining the cost of a serial
retrieval for all domains in list |p| for the general case
(case(b)) then case (1) would be automatically included. In
fact, such an algorithm is also required by the Request

Decision Subsystem (RDS) in determining the cheapest way of

CHAPTER V PAGE 78

resloving a request. The concepts involved are identical:
how to optimally retrievs all domains required to perform
the desired function. This algorithm is thus common to both
this situation, and the RDS operations. As such it has been
detailed in Chapter [V. For our purposes, it is enough to
note that the invocation of the algorithm, given the list of
domains |p|, ¥ill result in a cost estimate for the cheapest
vay of performing th2 request. We will call the cheapest
method the 'final' method determined by the algorithm, and

the cost of performiny it will be the 'cost (final)'.

And so, the computation of cost(making domain real) becomes:

cost (final) + ($5cy(i)r/$4bfe).$4io + $5cy(i)r.S$ldopc

assuming that the real domain 4 is inserted in relation i.
Ie: the cost 1is the cost of computing the value of the
virtual domain, plus the cost of writing it out in relation
i. The component ($5cy(i)r/$u4bfe).$4io will become familiar
throughout all future lecision rules. It takes into account
the fact that relations are blocked, and that not each call
to retrieve (or insart, update or delete) an entry will
necessarily result in a real I/0. The cost

component'$5cy(i)r.$l4opc?! covers the cost of the overhead in

CHAPTER V PAGE 79

each call to XRM. 1In this way, we take account of the fact
that each call involves some expense, but not necessarily an

I/0. This will be found in most subsequent decision rules.

5.3.1.2 Cost(use if domain real)
This is basically comprised of the cost of additional
storage, plus the cost of retrieval (or other operatiomns) if

the domain 1is real.
cost (additional storage) = 4.$5cy(i) .$l4sc.$4t

since each domain in XRM is a fullword domain.

At this point, the system would make a decision regarding
whether this domain should have an index (see 2 below) - ie:
would determine whether $8i(i,J)=1 .

If $8i(i,j)=1 then:

"

cost (use if domain real) ($1rd(i,Jj) **ex*x*, ($4i0 + $4opcC)

-

($1rd (i, j) *sn*+$1rd (i, j) *cn*n) .
(($5cy (i) /$4bfe). $li0 +
$5cy(i) r.$40pc)

+ (trss/$1rd (i, j) *cn*i (trss)) .

($4io + $u4opc))

CHAPTER V PAGE 80

If $8i(i,Jj)=0 then:

cost (use if domain real) {(((trss/$1rd (i, j)*cn*i (trss)) .
($4io + Slopc)
($1rd(i,j)*s**+$1rd(i,j)*c**n).
(($5cy (i) r/$4bfe) . $4io +

$5cy (i) r.$4opc))

Thus, in the event that there is an index, any case where
domain j is used as a jualifier in a <gualifier type> of 'e!
selection criterion, it is simply a case of using that
index. For <qualifier type> of *'n', the index is of no use,
and some serial search will be needed. If some other domain
)

in the selection criteria was indexed, then only the
resolved set, after using that index, need be serially
searched.

If there is no 1index, then all cases, except those where

there is some other lomain in the request with an index, a

serial serach is required.

5.3.1.3 cost(maintaining ﬁomain if real)

The cost of maintaining the domain if it is real is an

CHAPTER V PAGE 81

additional update each time any of the domains on which the
new real domain is computationally dependent and in another
relation, is updated in any vay. This is because if a
domain on which j is computationally dependent is in the
same relation, then ther2 is no additional I/0, or call to
XR M.

Por domain j of relation i:

cost = ($2rd (i, |k])u**, ($4io + $4opc))

¥m€]p| where $8c(lpl,j)=1 and $8d(i,m)=0.

5.3.1.4 cost(virtualizing)

There is a choice as to whether the domain is physically
deleted from the relation or whether it is just marked as
being virtual, and not physically removed. If the domain is
not physically removed, then:

cost (virtualizing) = 0.

If it is physically removad, then:

cost (virtualizing) = 2.(($5cy(i)r/$i4bfe).$lio
+ $5cy(i)r.$4opc)
for i where $84(i, j)=1.

Ie: the process of r2moval involves serially reading and

CHAPTER V PAGE 82

then writing (with the domain removed) each entry in the
relation.

The decision whether to physically remove the domain or not
is:

If cost (physical d=21l=2tion) < cost(storage wasted) then
physically delete the domain.

cost (physical deletion) is as above.

cost (storage wasted) = 4.$5cy(i) r.$4sc.sut
Thus the cost(virtualizing) decision is a two-tierred

decision rule.

5.3.1.5 cost(use if domain virtual)

{(Note: updates of virtual domains are illegal; inserts and
deletes are unnecessary. Thus only retrievals and use of the
domain as a gqualifier are permissible for virtanal domains.)
The cost(use if domiin virtual) is broken down into tvo
types of use:

. use as a qualifier

. the object of 1 retrieval request.

1 cost(use as a qualifier)

CHAPTER V PAGE 83

This involves a seriil processing and computation of the
value of the virtual domain for all entries, and checking
that value against th2 criteria specified in the gualifier.
The 'cost(final)' is the same as that described in 1.1.1
above.

For cases where there was some other domain in the selection
criteria that was indexed, the size of the set to be
serially searched is (on average)

{trss/$1rd (i,]) *c**i (trss)).

~cost{(use as a qualifier) = (cost (final) . ($1rd (i,) *s** +
$1rd (i, j) *c**n)
+
$1rd (i, j) *c**1i (trss).cost(final’)
)
where cost (final') is the same as cost(final), except that
all instances of $5cy(i)r in the algorithm are replaced by

ttrsst.

«3.1.5.. cost {retrieval)

cost (retrieval) = ($2rd(i,j)r**.cost(final))

CHAPTER V PAGE 84

This ends the discussion of virtualizing decisions. We move

on novw to encoding decisions.

5.3.2 Encoding De
Encoding decisions are miade only for domains which have a
data type of 'character!';

Ie: where $8_(J)cu=1

FPor purposes of this thesis, we will consider only one
coding scheme. This was done simply to avoid becoming to
voluminous, as the number of possible coding schemes is
potentially infinite. Furthermore, the purpose here 1is not
to be complete, but rather to present an approach.

The scheme that will be employed here is the encoding of
character strings as bit strings of length
! (log ($6 (j)q)/1log 2). (*!''" means here the next highest
integer, unless the expression evaluates to an integer, in
which case that is the value used.) This may only be done
if the number of unigue values in the domain 1is constant
(ie: $6(j)q is constant)

The encoding decision becomes:

CHAPTER V PAGE 85

If the domain (say d) is pot currently encoded, then encode

it if:

(cost {encoding) + cost(use if encoded)) <
{ cost{extra storage) + cost{(use if unencoded))
Similarly, if it is carrently encoded, then decode if:
(cost (decoding) + cost(extra storage) + cost(use if
decoded))
< { cost (use if encoded))

Breaking down these costs into the individual components:

5.3.2.1 cost(encoding)
The cost of encoding domain d consists of the serial
processing of all relations in which domain 4 appears, and
replacing the id of the character string with a bit string
of the required 1length. Additionally, there is the cost of

building, and maintaining the encoding relation.

cost {(encoding) = { 2.SUM(($5cy(i)r/%u4bfe).$li0 +
$5cy(i)r.$4opc)
+ (($6(d) g/$ubfe) .$8i0 + $6(d)g.S$4opc))

¥i such that $8d(i,31)=1 ie: all relations in which d

CHAPTER V PAGE 86

appears.

5.3.2.2 cost(decoding)
The cost of decoding a3 domain and storing the actual valuaes
rather than the encoded values is identical +to that of
ancoding.

Ie: cost (decoding) = cost (encoding) see 1.2.1

5.3.2.3 cost(use if encoded)
The way an encoded 3omain is wused is to employ the code
value as a primary key for the encoding re%ation. This means
that each time the domain is the object of a retrieval or an
update, or each time it is used as a qualifier, there will
be an additional I/0 and an additional <call to XRM to
retrieve either the code or the value (depending on whether

it is being used as a qualifier or is the object). Thus:

cost (use if encoded) = 2.($1rd (i ,d) ***** + $2rd(i,qd) |r,ul**)

CHAPTER V PAGE 87

. ($4io + 3$4opc)

5. 3.2.4 cost{use if unencoded)

Since use of the domain if encoded involves an additional
I/0 and call to XRM eich time the domain is used, it follows
that the use of the 3domain if unencoded should be 1/2 of

that if encoded; the additional retrieval is avoided. Thus:

cost (use if uneacoded) = { $1rd (i,d) *kkxx +

$2rd(i,d) ir,uj**) . ($4io + S$lUopc)

5.3.2.5 cost(extra storage)
The cost of the additional storage required to store the
unencoded values will be the difference between the storage
required if the domain is unencoded, and that required if
the domain is encoded.

The cost of storage if unencoded will be a fullword for each

entry in each relation in which the domain appears. Te:

cost (storage if unencodei) = 4.$Usc.$Ut.SUM($5cy(i)r) ¥i

wvhere $84(i,d) =1

CHAPTER V PAGE 88

The cost of storage if thz domain is encoded will be:
. the overhead for the extra relation - about 100 bytes
in XRHM
. two fullwords p=r entry in the encoding relation; the
first being the code, and the second the actual value,
and
. the‘sum of all the space in each relation in which the

domain appears.

Ie:
cost (storage if encoded) = ((SUM(!(log $6(d)g/log 2) +
8.$6(d)g + 100) . ($Usc.$ut)

¥i such that $8d(i,d)=1.

The additional storags is thus the difference between these
tu&. Note that the additional storage may be negative in the
event that there is only a small set of values, given the
overhead. This woull not alter the decision rule in any way,
as it would way in favor of not encoding, which is what

should happen.

CHAPTER V PAGE 89

Thus: cost(extra storage) =
(4.s5UM($5cy (i)r
- (SUM(!(log $6(d)g/log 2) + B.%6(d)q + 100))

. $Usc.it

This concludes the 31ecision rules regarding encoding of

domains. We proceed now to indexing decisions.

In XRM, as described in Chapter II, any domain in the systen
may have au4;ggg;§igg, or index, created for it. When there
is an inversion on some domain, and tﬁat domain is used as a
qualifier with <gualifier type> 'e', then retrievals, or
locating of tuples with the specified value in that domain
is extremely rapid. There are some schemes that address
themselves to indexes for qualifiers when the <gualifier
type> is 'n!', but we shall not address such schemes here.
For our purposes, we are interested in an approach, and the

approach taken here may be easily extended to include

qualifiers of type 'n'.

\

CHAPTER V PAGE 90

In XRM indexes are built in a specific way. Specifically, an
index entry is a 'vilue/id?' pair, where the value is the
primary key. Indexes are implemented as binary relations.
Given a value, it 1is used as the primary key to locate the
id of a tuple containing that value in that domain. However,
the use of a value as a primary key has severe limitations.
There is no reason vhy a value should not appear in many
entries, and in fact, that is wusually the case (except in
the case of primary keyé). There 1is thus some method needed

which allows for this factor.

The method employed in XRM is to chain together all id's of
entries that have any one value in the specified domain.
Thus, while there would ordinarily be two fullwords (8
bytes) for each 1index entry, consisting of a ‘'value/id'
pair, +ve now have each index entry consisting of a
tid/pointer!' pair, with ths start of the chain having the
'id* replaced by a ‘'value'. There is therefor, one
additional word of storage rTequired per chain over the
strict binary relation implementation. Furtheramore, while
many schemes have several levels of indexing, such as that
found in ISAM, the XRM index is only one level deep. The

decision rules, however allowv for a multi-level index.

CHAPTER V PAGE 91

The decision rule for indexing is:
Iif ‘(cost (storage) + cost(projected use with index) +
cost {building index))

< cost(projected use without index)

then build an index.

Similarly, if an index already exists for a domain, then
eliminate the ‘'cost(building index) ' part of the decision

rule.

The projected use of the domain is based on that experienced
in the preceding time period: $4t. There is an implicit
assumption in all these decision rules that use will
déntinue unchanged, which is, in fact, a reasonable
assumption to make. In the event that use changes, the SDS
will again be invoked, and will proceed under the sanme

assumption.

We proceed now to break down the components of the decision

CHAPTER V PAGE 92

rule.

5.4.1 . cost (storage)

cost (storage) = SUM(((# 2ntries at level 1i) . (space per
entry at level 1i))
+ (overheal for 1level i)), i=1,...L where L
is the numbar of levels of index.
As stated above, in XBRM, L=1. The following is also true of
XRM:
. overhead per invsarsion is approximately 50 bytes
. space per entry is 8 bytes, plus 4 bytes per chain (see
above)

Thus, for XRM:

cost (storage) = (50 + 8.$5cy(i)r + 4.$6(d)q).$usc.$4t

for an index on domain 4 of relation i.

5.4, 2 cost (projected ase with index)

This component of the decision rule can be further broken
down into three sub components. These are:

. cost (retrievals)

CHAPTER V PAGE 93

. cost (decoding index)

. cost(maintaining index)

5. 4. 2.1 cost(retrievals)

If there is an index on domain j of relation i, then any
time that domain j is us2d as a qualifier of type 'e', the
index can be employed to limit the size of the resolved set
of entries. In the =2vent that the gqualifier type 1is 'n?',
then the index is of no value, and a serial search is
required. Since this is the case throughout all of these
decision rules, we <can eliminate those cases where the
qualifier type is not 'e'. The decision rules specified here
will thus include only <qualifier type> ‘'e' decision
variables.

de assunme, furthermore, that entries retrieved are

distributed randomly throughout the relation.

The subcomponent cost{retrieval) thus beconmes:

cost (retrieval) =
(($5cy(i)c/$6(3)q) . ($1rd(i,]J) *se* + $1rd (i,]) *ce*n)
+ MIN((($5cy (i)r/%$6 (j)q) .$1rd (i,]) *ce*i (trss)),

(trss/$1cd (i, j) *cexi(trss)) . ($4io+$lopc)

CHAPTER V PAGE 94

If a tentative index decision has been made for some other
domain in relation i, say domain 3j', at the time at which
domain j is being evaluated to see whether it warrants an
index, then some rejuests that were previously compound
requests in which no other domain had an index will now
become requests in which some other domain in the selection
criteria has and index. It is thereﬁgr necessary to
transfer some of the requests from decision variable
$1rd (i, j)*ce*n to $1rd(i,j)*ce*i. If there has been a
tentative decision to drop an index on some domain in the
relation, then transfer the requests in the oposite
direction.

The number of Trequests transferred is a function of the
namber of compound reguests that a given domain was involved
in as a fraction of all compound requests. Ie: Transfer the
following number of rsquests from $1rd (i, j)*ce*n to
$1rd (i,) *ce*i:

$1rd (i, ') *ce** . $1rd(i,j) *ce** . $ird(i,j) *cex*
$1rd (i, *) ¥*ex* $1rd (i, *) **e**

5.4,2,2 cost (decoding index)

This is a function of both the CPU overhead time invoﬂved in
the decoding of an iniex, as well as the necessary number of

I/0's to get the index into primary memory. However, since

CHAPTER V PAGE 95

CPU time is so small in comparison with I/0 time, the
decision rules presented here will not take into account CPU
overhead in decoding indexes.

Note that the maximum index blocking factor ($4bfx) is
(($4p/2) - $6(d)q) .

The cost of decoding the index is thus the number of I/0°'s

necessary to bring ths index into primary memory. Ie:

cost (decoding index) =

($1rd (i, j) **exx ., ($5cy (i)r/$ubfx) . $4io)

S. ,.2.3 cost(maintaining index)
The cost of maintaining the index is a function of the
number of new entries that are made in the relation, as well
as of the number of times a value in the domain is updated.
What is assumed for the purposes of the decision rules
presented here is that the insertions and updates all
require the index to be brought into primary memory.
However, to be strictly correct, the decision rules should

-

be concerned with the length of a series of inserts or
updates involving the domain in order to take into account
the fact that the index need not be brought into primary

memory separately for each operation.

CHAPTER V PAGE 96

cost {maintaining index) =

($2rr{i)ien + $2rd(i,j) fu,d|**). ($4io + $l4opc)

5. 4.3 cost(building index)

The cost of building the index will be the cost of a serial
retrieval of each =2ntry in the relation, and a vrite
operation to the index. Notice that the rule below has only
the overhead of a single call to XRM. This is because

inversion is accomplished by a specific XRM routine.

cost (building index) =

$4opct+ $bio. (($5cy(i)r/Subfe) + ($5cy (i)r/BuUbfx))

5.4.4 cost(projected use without index)

In the event that thers is no index, any time the domain is
used as a qualifier in a simple query, or a compound quiry
in which no other domains in the qualifiér had an index, a

serial retrieval is n2cessary.

CHAPTER V PAGE 97

cost (projected use without index) =
({$5cy (1)r/$unfe) .$4i0) +
$5cy (i) r.$bopc). ($1rd (i, j) *se*+$1rd (i, j) *ce*n))
+ MIN(({($5cy(i)rc/$ubfe).$4io + $5cy(i)r.$4opc) .
($1rd (i, j) *cexi(trss)) ,

((trss/$1rd (i, j) *ce*i (trss)). ($4io+$lopc)))

This concludes the decision rules for indexing decisions. We

proceed with decision rules for factoring.

.

5.5 Factoring Decisions.

Factoring decisions are decisions regarding the storing of
aggregations (or factored data) as opposed to computing them
each time they are required. The aggregations which this
system recognizes are:

. MAX

. MIN

. COUNT

. UNIQUE the namber of unique values

. AVERAGE

. StM

CHAPTER V

This information applies only to numeric domains.

In addition, the followiny should be noted:

PAGE 98

. storage for these aggregations are always reserved in

the system tables, and so the cost of storage is not

considered in the decision rules.
. COUNT is always maintained by the systen,

uses it continuously.

as the RDS

. UNIQUE is no aore than the COUNT of the underlying

domain, and so is alwvays maintained

If SUM is stored, ther2 is no need to store AVERAGE. The

reverse is not true, howver because of possible

roundoff errors.

The factoring decision is:
If cost(maintaining aggregation) <
cost (computiny aggregation)

then store it. If not, compute it each time.

5.5.1 cost(computing aggregate)

This consists of a linear processing of the relation, and so

the cost is simply:

CHAPTER V PAGE 99

({$5cy(i)r/$4bfe).$U4io +
$5cy(i)r.$4op:) .($2rd (i,j)r(<aggr>) **

where <aggr>::= SUM | AVERAGE | MIN | MAX

5.5.2 cost{maintaining aggyregation)

This 4involves computing the aggregation once, and then
maintaining it, or updating it each time a value in that
domain is updated, delzated or inserted.
cost (raintaining aggra2gation) =
({$5cy (i)r/$4bfe).$84io + $5cy(i)r.$lopc)
+ ($2rd (i, j) Jlu,d|** + $2rr(i)ien) . ($84io +

$4opc)

This concludes the 131iscussion of factoring decisions. We

proceed now with permanent join decisions.

5.6 Permanent Join D2cisions

This decision rule is employed in the event that some new

domain {s) has (have) been added to the system and have been

CHAPTER V PAGE 100

sat up in separate relations to avoid restructuring the
existing relation. The format of the newv relation will be
the primary key of the existing relation in which the new
domain (s) belong(s), and the new domain(s). This means that
any time these new domains are wused in conjunction with any
of those in the existing relation, a join is required, or
more precisely, another retrieval is required. This is
because both relations have the same primary key, and so a
join is a trivial matter.
If +the relations are left separate, then there will be
additional retrievals required in satisfying certain
requests. The reverse is not true. That is, if the relations
were to be permanently joined (restructuring were to occur),
there is no case where the fact that they are Jjoined
permanently would result in additional retrievals over the
case where they were left separate. This being so, wve are
able to drop the concept of cost(projected use) and
concentrate rather on the cost(projected use premium).
sp ;The decision then becomes:
If (cost(restructuring) + cost (storage if restructured))
< (cost(projected use premium) + cost(storage if not

restructured))

then restructure the relations into a single {(permanently

joined) relation. Breaking down the cost components, vwe

CHAPTER V PAGE 101

have:
5.6.1 cost(projected use premiunm)

This is a case of several additional retrievals being
necessary whenever any domain(s) in the new un-joined
relation are used in a request together with some of those

domains in the existing r2lation. Ie:

cost (projected use pramium) =
$3rd({i,ipl)d(i,lpl) - ($4io + $hopc) where:

p€ip| ¥p such that $8p(i,p)=1

This statistic is maintained separately by the RDS - ie: the
number of times each relation is Jjoined to each other

relation.

5.6.2 cost(storage if restructured)

The cost of storage if the relations are restructured will
be 4 bytes for each entry for each domain in the nevw

relation excluding th2 primary key domains. Ie:

cost (storage if restr)= 4.35cy(i) r. $4sc. $4t.SUN ($8d (i,]))

CHAPTER V PAGE 102

¥j such that $8p(i,j)=0

5.6.3 cost{storage if not restructured)

This is similar to the computation of 5.6.2, except that the
restriction that the iomain not be in the primary key is

1ifted. Ie:

cost (storage if not restr) =
4,.35cy(i)r.$4sc.$4t.SUNM($8d(1i,]))

where 1 is the new relation

5. 6.4 cost (restructuring)

The restructuring of two relations with the same primary
keys consists of a serial processing of one relation, using
its primary key to retrieve from the other relation, and
writing the new joined entry out again. In other words,
three operations for each entry. If 1 is the existing

relation, and j is th2 new relation, then:

cost (restructuring)= 3. ($5cy (i) r/34bfe).$8i0

+ 3.%5cy(i)r.$l4opc

CHAPTER V PAGE 103

This completes the decision rules for restructuring

decisions. We proceel now with decision rules responsible

———— S — —— ————— —

5.7 Derived Relation Decisions.

It is important to point out that derived relations are
created solely for r2asons of efficiency, and so decisions
to create derived relations are quite independent of
structuring decisions of the type mentioned above, and the
third normalizing process.

The choice exists basically between storing a virtual
relation defined by some user for some specific application
(or set of applications) or simulating that virtual relation

each time it is referenced. If: N

cost (simulating virtual relation) <
(cost (storage for derived relation) + cost(use of derived
relation) + cost(creating derived relation) + cost(update

overhead)

CHAPTER V PAGE 104

then continue simulating the virtual relation. If not, then
it is cheaper to stora it.

Similarly, if a derived relation 1is stored, the decision to
cease storing it and to return to simulating the virtual
relation would be th2 same as that above, except that it
would exclude the 'cost(creating derived relation)?'.

All references to 'cost{final) ! are the same as those made

earlier in the chapter.

5.7.1 cost(simulating virtual relation)

A virtual relation is simulated by performing Jjoins in the
user workspace of various real relations that are required
for a particular requast.
cost (simulating virtual ralation) =
cost (final). {($1vr (m)*nu*
+ 1/86(3)q. ($1vd(m, *) *se* + $1vd (m,*) *ce**)

+ 1/2($1vd(m,*) *sn* + $1vd (m, *) *cn**))

5.7.2 cost (storage for derived relation)

The storage for a 3derived relation will consist of the

CHAPTER V PAGE 105

overhead per relation, and the storage for each of the
domains of the derived relation. The cardinality will be

approximated by the maximum cardinmality.

cost (storage for derived relation) =

{ 100 + $5cy (m)d.$5%#d(m)v.4) . $l4sc.$ut

where the derived relation is relation =, and $5cy(m)d =
$5cy(#£)r and #=i x i' x... ¥i such that $8d(i,j)=1 and ¥j

where $8d (m, j)=1.

J

5.7.3 cost (use of derived relation)

Before determining the use cost of the derived relation, the
SDS would make an inlexing decision for the domains of the

virtual relation (se2 2 above except, substitute 'v' for

=

1 'r?' in relation types). A derived relation may then be

CHAPTER V PAGE 106

treated in an analogous manner tc a real relation. Ie:
cost (use of derived relation m) =
($5cy (m) d/$4bfe) .$1vr(m) *nu*,.$4io
+ $5cy(m)d.$1vr (m) *nu*.$4opc
+ SUM(($8i(m,]).($5cy (m)d/$6(j)q). $1vd(m,j)*|s,clex*
. {$4io + S$lopc)
+ (1-$8i(m,3j)) ($5cy(m) d/ $U4bfe). $1vd (m,]j) *iIs,cle*x . $lio
+$5cy(m)d.$1vd (m,j)*|s,cle* . $lopc)
+ (($5cy (m)d/$4bfe).$1vd (m,j)*]s,c|n** . $lio

+ $5cy(m)d.$1vd (m,j) * |s,cin** ., $lopc)

¥j where $8d (m,j)=1 .

5.7.4 cost(creating derived relation)

The cost of creating the derived relation is no wmore than

the cost (final), since that is, in fact the optimal way of

creating it.

5.7.5 cost{(update ovarhead)

The update overhead for a derived relation involves an

additional I/0 and call to XRM for each change to any of the

CHAPTER V PAGE 107

domains in the real relation that also appear in the derived

relation, m. le:

cost (update overhead) =
SUM($2rd (i,j)lu,s,i}** . ($4io + S$lUopc)) ¥Jj where

$8d (m,j) =1, and ¥i where $8d (i,j)=1.

This completes the discussion of the SDS decision rules. It
can be seen that these rules are quite modular in that any
major decision - for example, Derived Relation Decisions -
are composed of several subdecisions. Any or all of these
-subdecisions can be replaced without affecting any other

part of the SDS.

These rules will be applied in the scenario of Chapter VII.

CHAPTER VI PAGE 108

The Request Decision Suabsystem - (RDS)

The RDS is responsibl2 for overseeing any requests that are
made against the database. More specifically, it is
rasponsible for the f>llowing functions:

. determine whether the request is 1legal - ie: check
access control information and decide based on that
whether to perform the request.

. determine whether the request is feasible - ie:
determine whether it can logically be satisfied, or
whether the system requires more information to
resolve the request.

. determine the 30st efficient way of satisfying the
particular request, assuming it is deemed 'feasible'.

. update the relevent decision variables.

For purposes of this thesis, we will omit the question of
the 1legality if the request. It 1is envisioned that the
access control mechanisms will be implemented at the real
relation level. The c-reation of virtual relations can be
controlled in such a way as to make the data that the user
sees in a virtual relation only that which he (it) is

permitted to see. Any data the user is not authorized to see

CHAPTER VI PAGE 109

will be removed from the data during the mapping process,
thus making the fact that there is some data not being
supplied invisible to the user. Thus, security can be

implemented as restrictions of real relationmns.

We proceed nov with the collection of algorithms that the
RDS will contain for the resolving of requests. We shall not
detail the points at which decision variable updates are
performed for reasons of making an already difficult section
more unreadable. Inst2ad, it should be fairly clear at which
point specific decision variables will be updated from the
context of the discussion at that point. Finally; note that
decision variable uplates are not actually made until the
completion of Step 5. All updates until that point are
tentative and only bacome final at the conclusion of the
step. The reason for this approach will become clear from

the iterative nature 2f the RDS.

Note that the notation developed thus far will be continued

here. In addition, the decision variable '$5cy(i)e' should

be taken to read '$5cy (i)r OR $5cy(i)d’.

CHAPTER VI PAGE 110

Step_1.
The purpose of Step 1 is to establish a set of truth
functions regarding the domains appearing in the regquest.
The truth functions set up are:
. $8od(k) = 1 for all k that are object domains in the
request. If an sntry is specified (ie: all domains in
a relation) then such a truth function is set up for
every domain in the relation.
. $8eg(k)=1 for all domains k that appear as qualifiers
with <qualifier type> 'e'.
. $8nq(k)=1 for all domains k that appear in the request
as qualifiers with <qualifier type> not ‘e’.

Note that k may be a role name instead of a domain nanme.

Step 2.
If the list of domains appearing in the request is |R], then
for each k€|R| find all relations i such that:
$8r (i,k)=1 or $84(i,k)=1, and
$8x(i)r=1 or $8x(i)d=1.
but if $8x(i)d=1, i should not be a derived relation whose

derivation involved a restriction.

This step finds all relations in which each of the domains

CHAPTER VI PAGE 111

in |R| appears. This step produces a list of relationmns for
cach domain k ie: Ji{k)]|. These 1lists are all members of a

single list: {|i(k){|, where L(l1i(k)1] = L(IR]).

If for any Ji(k)| we have L{}i(k)|)=0 then the request is
tinfeasible', because some role- or domain name 1is used in
the request which has not been defined. It is also possible
that a domain appears more than once in a single relation,
and if that is the case the reguest must supply role names.
Te:

$8d (i,k)=0, and $8r (i,k')=1 and $8r(i,k'')=1 vhere k'

and k'!' are role names.

Step_ 3.

This step simply establishes a 1list of relations which will
eventually (at the enl of the alogorithm) become the optimunm
list of relations to satisfy the request.

Ie: set up list jfinal), initially ‘infeasible', and

cost (|final})=2*%*30 (or some maximum number).

Step_b.

This step finds all passible combinations of relations that

CEAPTER VI PAGE 112

can satisfy the reguest. The results of the step is a list
of relations that <contain all the domains necessary to
satisfy the request, based on the set of truth functions
established in Step 1. The procedure is as follows:
¥li(k) 1l € (1i(k) {1z
Initialize |x{=}i(k) |
¥j#k 4if ix| N |i(j§)1 = @ then:
1x{=1x{ U Ji(3)1
order list |x] in ascending order, and see if that list
already has been 'done’. If yes, go on to the next
ji(k)|. If not then save a copy of this |x| as 'done?
and do Step 5.
After completing Step 5:
If cost(|xi)<cost{ifinal}) and |x| is not 'infeasible!'
then set:
|final}=s', and cost(]finalf)=cost(|x]) where s' |is
the collection of set theoretic operators generated by

Step 5.

The results of this step (after repeated invocations of Step
5) is the optimal 1list |final] as a collection of set
theoretic operators, s, and an associated cost,

cost {{finall}).

CHAPTER VI PAGE 113

Step_ 5.

This step consists of a series of substeps whose function it
is to determine the lowest cost(]x]) - or more precisely,
the lowest cost for resolving the request via relations in
jx] - for a given |x| from Step 4.

If any relation i€jx]| <can not be joined to any other
relation i'€]x] then then |Jx| is 'infeasible', and the
evaluation stops.

We proceed now with a detailed algorithm for determining the

minimum cost (1x{).

Step 5.1

This step finds all relatioms in |x| with the sanme primary
key, and the cheapest way of ordering the necessary joins,
and restrictions.

Repeat ¥i€|x| not already ‘'done’:

Set {x'] to <null>, and cost(|x'|)=2%%30 (or some large
number).

Now find all relations j (say 13j1) in |x|] with the saame
primary key:

Te: Find all j such that $8p(j,k)=1 ¥k where $8p (i, k)=1.

This results in a set |j'i=1i U {i]

¥a<€|j'| do the following:

CHAPTER VI PAGE 114

Set {r'} to <null>.
For each k<€a where $8eq (k)=1 and $8i(a,k)=1, set
r=($5cy(a)e/$6 (k)3) . Insert this r in |r'] such that
jr'] is in ascending order.
If $8eg(k)=1 ¥k where $8p(a,k)=1 then r=1, and insert in
ascending position in |r'].
This case is where all domains of the primary key are
qualifier domains with <qualifier type> 'e'.
Also, if any qualifier domain with <qualifier type> ‘e’
is unique, then r=1.
Te: If $8eq(k)=1, $8u(k)=1 and $8i(a,k)=1 then r=1, and
insert r in ascending order in |r'].
Choose w = first member of |r'|; ie: the smallest r<€|r'j|.
Then cost(}j'}) = w. ($4io + S$lopc).L(1i'l])
If cost(}]j'l) < cost(1x'|) then:
cost(jx'1)=cost(ij'|), and
Ix*|=1r'|
Reset |rt'|] to <nulld>.
The case now is where r will resolve, but there is no index
on any of the qualifia2r domains:
If $8eq(k)=1 and $8u(k)=1 then r=1, and insert in ascending
order position in |r'|.
For each k€a wvhere $82q(k)=1 and $8d(a,k)=1, but $8i(a,k)=0,
set:

r=($5cy(a)e/$6 (k)q), and insert r in ascending order in

CHAPTER VI PAGE 115

ir'}.

(Note that the reason that r=1 when $8u(k)=1 1is that
$6 (k) g=%$5cy (a) e.)

After completing all k€a, pick v = first member of |r'j; ie:

the smallest r.

Then cost (]j'1) = ($5cy (a)e/$4bfe).$li0
+ $5cy (a) e.$lopcC
+ (L{13'1)-1).w. ($84io + $lopc)

If cost(1j'l1)<cost(|x'}) then:

cost (1x'}) = cost(Jj'l), and
Ix'1 = '}
Reset |r'] to <null)>.
Now, for each k€a where $8nq(k)=1 and $8d4(a,k)=1,
set r=1/2.$5cy(a)e, and imsertr in [Ir'| in ascending
order.
After all k€a are completed, chocose w=first member of |r'|;

ie: for the smallest r. Then:

cost (13§'1) = ($5cy(a)e/ssubfe) .$bio
+ $5cy(a)e.$lopc
+ (L{13*'1)-1).v.($8io + $8opc)

If cost(lj'l)<cost (Ix'|) then:

cost(jx']) = cost(}j'l) and

CHAPTER VI PAGE 116

1x'} = '}

If at this stage |x'] is null, then a serial retrieval is
required, since there were no gqualifiers in the regquest.
Proceed as follows:
Find a€]j'| such that $5cy(a)e is a minimum ¥a€|j'].
Mark a as 'done!, and set s=a.
For each k#a, k€|j'|, do the following:
Mark k as 'done'.
If ¥b where:
($8eq(b)=1, $8ngq(b)=1 or $8od (b)=1) and
($8d (s,b)=1 and $8d(k,b)=1) then no Jjoin is needed,
since all domains nesded from k are already in s.

Otherwise, the set theoretic operators become:

s=s (Ipl) * kx(1=,pl) ¥p<€ipl{ vhere $8p(a,p)=1, and

cost(]x'l) = ($5cy(a)=a/$ubfe).S$lUio
+ $5cy(a)e. $lopc
+ $5cy (a)e. ($4io + Stopc). (L(I13'1)-1)

1f, however, |x'] #as not <null> at the end of the above
procedure, proceed as follows:
Choose a=first member of Jx'| (ie: where r is smallest),

and mark a as 'done’.

CHAPTER VI PAGE 117

Set s=a.

The set theoretic operators then become:

s=s(lpl) R (18,pi) ¥p<€ipl such that $Begq(p)=1 OR
$8nq(p) =1,
where '8' is the qaalifier on domain p. (see Appendix 2,
Page 175)
Now, for all k¥a, k€]j'| do the following:
Mark k as 'done?.
If ¥b where:
($8eq (b)=1, 3$8ng(b)=1 or $8o0d(b)=1) and
($8d(s,b)=1 and $8d(k,b)=1) no join is necessary, since
all domains needed from relation k are already in s.
Otherwvise, establish the following set theoretic

operators:

If $8eq(b)=0 and $8ng (b)=0 ¥b<k, then

s=s{lpl) * k(1=,pl) ¥p€lpl vhere $8p(a,p)=1.

or, if $8eq(b)=1 or $8ng(b)=1 for some b€k, and
($8d (s,b) =0 and $81(k,b)=1) then set theoretic operators

beconme:

s=(s(lpt) * k(i=.,pl)) R (1e,t}) ¥t<€ik{ such that

$8eq(t)=1 or $8nq(t)=1, and 8 is the gqualifier type on

CHAPTER VI PAGE 118

domain t (see Appendix 2, Page &pno3).

Once all k€]j'| have been so included in the set theoretic
operators, they can be removed from the list of relations to
be joined (ie: |x}) and replace them all by the single
relation that would result from s. Also, set up truth
functions as follows:

$8d (s,b)=1 ¥b where $8d (k,b)=1 for k€|j'}, and

$8p(s,b)=1 ¥b where $8p(a,b)=1.

Also set $5cy(s)v = r.
Note that r in this case is, strictly speaking, an upper
limit on the cardinality of s, since other qualifiers may

well result in reducing the size of r.

At the completion of Step 5.1, there exists a collection of
(virtual) relations |s'| each generated as outlined in this
step. Each s<€|s'| is a relation consisting of all real (and
derived) relations in |x| that have the same primary key,
and is restricted as raquired by the qualifiers in the

request.

If L(Is'})=1 then steps 5.2 , 5.3 and 5.4 may be omitted.

The algorithm continuess in this case with where it left off

CHAPTER VI PAGE 119

in Step 4.

Step 5.2

This step is responsible for joining in the most efficient
manner, all those relations s€]s?'|, in the case where s<€|s?']|
contains the primary key of (but does not have the same
primary key as) t€|s'|, t#s.

I=2: $8d(s,k)=1 ¥k where $8p(t,k)=1, s,t€|s'].

If there is no s and t where this is the <case, proceed to
Step 5.3. Otherwise continue with the algorithm of Step

5. 2.

Assuming s contains the primary key domains of t:
check to see whether s already contains all the needed
domains (for this request) in t, and if so, remove t from
is'{ and continue with some other t€{is'}|.
If $8od(k)=o ¥k where $8d(t,k)=1 and $5cy(t)v=1 then
establish 2 set theoretic operators:

1) t - ie: leave t as it is in }s'|, and

'2) s'=s(lpl) R (I=,pl) p€lpl ¥p vhere $8p(t,p)=1, and

values for the domiins are obtained froama (1).

cost(|s'|)=cost (t) + cost(s).

This means that if there are no domains that are to be

CHAPTER VI PAGE 120

retrieved from t, and t will resolve to a single entry
{$5cy(t)v=1), then r2solve t and use tﬁe values for the
primary key domains as additional qualifiers in s.

If $80d(k)=1 for som2 k where $8d(t,k)=1 then proceed as

follows:

s'=(s(igl) * t(I=,31)) R (i9,pl)

vhere g€|{g] ¥g wh2re $8p(t,g)=1, and

¥p€jt] such that $3eq(p)=1 or $8nq(p)=1, and

® is the gualifier type on domain p (see Appendix 2, Page

&pnol) .

cost(s')=cost (s) + 2.%$5cy(s)v.($4io + S$lopc)
Remove t from the list of relatiocns to be joined (ie: {x'}),

and set up additional truth functions for s' as follows:

$8d (s,b)=1 ¥b where $831 (t,b)=1.

At the conclusion of this step, there exists a collection of
virtual relations |s''| each generated from some member(s) s
in |s'|. Furthermore, these relations are only joinable in a

particular way - namely, as in Step 5.3.

'CHAPTER VI PAGE 121

Step 5.3

This step is responsible for joining relations s'€|s''| from
step 5.2 {(or 5.1) to yield a single relation containing all
object domains in the request. Note that by this stage, all
qualifier domains will have been employed in the necessary

restrictions.

We proceed as follows:
Choose t<€]s''| such that $5cy(t)v is the minimum of all
relations in |s''}].

Then, ¥a€|s''|, ay¥s do the following:

If $8d(t,k)=1 ¥k wherz2 :

($8eq(k) =1, $8nq{k)=1 or $8od(k)=1), and $8d(a,k)=1, then t
contains all the domains neccessary for the request that are
in a. So, remove a from {s''} and continue with the next

a€|s't}].

See if $8d(t,k)=1 and $8d(a,k)=1 for some k. Ie: see if any
two relations in |s''| contain a common domain. If not, try
some other a<€j|s'?]|.

If so:

CHAPTER VI PAGE 122

t=t(k) * a(k), and
cost (t)=cost (t) + cost(a) + ($8io + S$lhopc) .$5cy(t)v.$5cy(a)v
Remove relation a from |s''} and add the necessary set of

truth functions. ie: $8d4(t,k)=1 ¥k where $8d(a,k)=1.

At this stage, if L(Is''|)=1, then we have found the
cheapest method for joining all relations in |x|, and ve
continue where we left off in Step 4.

If this is not the case, and L(]s''|)>1, then the reguest is
‘infeasible!' with only tha relations in |x|, and some other
relations must be found that will allow the request to be

logically satisfied. This is the function of Step 5.4.

Step 5.4

This step attempts to find relations which, although not
specified in |x| will allov the request to be completed.
Finding such 'intermeliary' relations can be accomplished as

follows:

S.4.1) Set up list |b*|=<null>

5.4.2) Choose some a€]s''|

CHAPTER VI PAGE 123

5.4.3) Pind some relation b such that b#£{x| and:

$8d (a,j)=1 and $8d (b,) =1.

5.4.4) If found, set |b'| = |b'] U D

5.4.5) If not found, then the request 1is 'infeasible!, and

continue where we left off in Step 4.

5.4.6) See if $8d(b,k)=1 and $8d(t,k)=1 for some Kk,

t€]s''], t#a, b€]b'|

5.8.7) 1If yes: then sat |x|=jx] U {b'|, and remove relation
t from |s''}, replaciang it with the single relation:

a= (a(3j) * b(3)) (k) * t(k).

Continue with Step 5.4.12 .

5.4.8) If not, try 5.%.6 for some other t«€|s''|, t#a

5.4.9) If that fails, finl relation cf€}x|, c#b such that:

$8d(b,3)=1 and $8d(c,j)=1 for some j.

5.4.10) If found, |b*'|=|b'| U c, and repeat from 5.4.6 .

5.4.11) If not, the requ2st is 'infeasible', and continue

from where left off in Step 4.

CHAPTER VI PAGE 124

5.4.12) If L(|s''|) # 1, repeat 5.4.1 through 5.4.11 .

5.4.13) If L(}s'']) = 1, then restart step 5 again from 5.1

with the new |x}|.

This completes the alogorithm for optimally satisfying
requests, Very briefly, it works as follows:

Pirst find all relations in the 1list that have the sanme
primary keys. See +vhich of those will resolve to the
smallest set of data, and do a join of that relation with
others of the same primary key.

After relations with the same primary keys have been joined,
see if any one relation contains the primary key of any
other relation. If he retrieved primary key values to
retrieve from the other relation.

After Jjoining all relations by primary keys that can be
joined in that way, join remaining relations on some common
domain.

If there is no common domain, find some other relation that

has domains common to both.

CHAPTER VI PAGE 125

This, then, conpletés the discussion of the RDS. As stated
earlier, the RDS 1is also responsible for updating decision
variables, and the appropriate points for performing this
function can be surmised from the description of the

algorithnm.

We proceed nov to a scenario in which the decision rules

developed in Chapters V and VI will be applied.

CHAPTER VII PAGE 126

Scenario for application of Decision Rules.

This chapter presents a brief scenario that applies some of
the decision rules developed in Chapters V and VI. Not all
9f these rules be usel in the scenario, but a representative
number of them will be, and that will serve to illustrate

the use of others.

Consider a company divided into Departments, each with its
own Manager. Each Despartment employs Employvees, who are
assigned to work on one Project at a time, and all projects
fall within a single Department. Each project requires

certain Parts, which are provided by the company's

suppliers.

If we were to attempt to establish a company data base for
this company we would have to:

. specify the entities in which we are interested,

. determine what data we want to maintain about each of

these entities, and

. determine how these entities interact.

The interactions can perhaps best be done diagramatically.

Given the company structure above, we might diagram the

CHAPTER VII PAGE 127

interaction between the entities as it appears in Figure
7.1. The entity at the head of an arrow is, in some sense

‘owned! by the entity at the tail. *

But this diagram is not sufficient to express certain

aspects of the structure.

For example, for any one Manager, there is only one
Department while any Manager may have several Projects unier
his control. We will introduce an '=' near the head of the
arrow to signify the one-to-one nature of the relationship.
In the terminology of the truth functions of Chapter IV,
this is a mutual dependency.

Ie: given one entity, the octher entity is uniquely

determined, and vice versa. This is shown in Figure 7.2.

One other case is not expressed in Figure 7.2; namely the
di fference between c>ases where one entity is uniquely

determined by another, and cases where it is not.

. ——— - =

* The concept of ownership is the same as that found in the
netvork model. See (7)

CHAPTER VII

MANAGER

DEPARTMENT » PROJECT

SUPPLIER

PARTS

!

EMPLOYEE

PAGE 128

CHAPTER VII PAGE 129

MANAGER

DEPARTMENT > PROJECT

SUPPLIER

| Pik&s
]

EMPLOYEE

CHAPTER VII PAGE 130

The former is a case 2f a functional dependency **

or a one-to-many mapping. The 1latter is a many-to-many
mapping. An example of the 1latter is Supplier and Parts,
vhere several Suppliesrs may supply the same Part, and one
Supplier might supply many Parts. A possible method for
diagramatically distinguishing between these two cases would
be a double-headed arrow for many-to-many mappings. Figure
7.2 is updated to include this concept in Figure 7.3. Now
that we have a clear concept of the relationships between
the entities, we can begin to consider what information, or

attributes, we wish to keep about each entity. **x

Assume for purposes of the scenario that the attributes to
be maintained for each entity are as specified in Pigure

7.4,

Now notice that some attribute {or combination of

- - W - -

**x PFunctional dependancy, as explained in Chapter II, means
simply, given one entity, the other is uniquely determined,
but the reverse is not true. For example, given an Employee,
his Department is unijuely determined since an Employee can
only belong to one Department.

*%x%x Note that comsideration of attributes and consideration
of interrelationships between entities are orthoganal, and
as such, may be domne in any order. The order presented here
is by no means mandatory.

CHAPTER VII

MANAGER

DEP Aiﬂ ENT PROYECT

SUPPLIER

l

PARTS

EMPLOYEE

PAGE 131

CHAPTER VII PAGE 132

Manager (Mgr#, m_name, office#)

Department {Dept#, d_name)

Project (Proj#, p_name, startdate, enddate)
Supplier (Supp#, s_name, phone)

Part (p#, quant, date)

Employee (soc_sec,2_name, hiredate,salary, title)

attributes) in each a2ntity of Pigure 7.4, identifies the
entity uniguely; such as soc_sec would an Employee. Notice
that the concept of 'uniquely defined' has been applied to
both relationships between entities, and within entities

themselves.

We are novw in a position to define truth functions for the
structure between th2 entities as depicted in Figure 7.3,
and within the entitias as defined in Figure 7.4.

/

First we define functional dependencies within entities by

CHAPTER VII PAGE 133

setting up attribautes as functionally dependent on an
attribute (or group of attributes) that uniquely define the
entity. The resultiny truth functions are as depicted in

Figure 7.5.

We will call the attribute(s) on which the other attributes
in an entity are functionally dependent the key of the

entry.

Notice that Part has been omitted from Pigure 7.5. This is
because the many-to-many mapping between Part and Supplier,
and Part and Project, as depicted by the double-headed arrow
in PFigure 7.3. To establish functional dependency truth
functions for such eatities, we include the key attributes
of the entities at the tail end(s) of the double-headed

arrow, which yields in this case:

$8f (ip#,Proj#,Supp#|,iquant ,date})=1

This same approach w#would be taken (ie: a double headed

arrovw) if there were not attribute(s) within an entity that

uniquely identified the entity.

CHAPTER VII PAGE 134

$8f (| Mgr#] ,| m_name,office#|) =1

$8f (| Dept#{, |d_name])=1

$8f (|Proj#|, |p_name,startdate,enddate]) =1
$8f (1Supp#|,]s_name,phonel)=1

» $8f (]soc_sec_],le_name,hiredate,salary,title})=1

This takes care of intra-entity dependencies, but neglects
inter-entity dependencies that are portrayed in Figure 7.3.
All wvwe have done thus far 1is take account of the
double-headed arrow of Figure 7.3, but not any other types

of arrovs.

In order to handle the single-headed arrows we proceed as
follows:

Add the key of the entity at the tail to the list of
functionally dependent attributes of the entity at the head
of the arrov.

For the entities of Pigure 7.5, and the interrelations of

Pigure 7.3, this process generates the entities of Figure

CHAPTER VII PAGE 135

$8f (|Mgr#|,|Im_name,office#|)=1

$8f (|Dept #] ,1d_name]) =1

$8f (]Proj#}|,1p_name,startdate,enddate,Mgr#,Dept#|) =1
$8f ({Supp#!l,|s_name,phonef) =1

$8f (]soc_sec],le_name , hiredate , salary , title,
Dept#, Proj#|)=1

$8f (Ip#*,Proj#,Supp#|, Jquant ,date|) =1

7.6

Now all that is left to consider is the arrov head with the
'=t_ TPhis type of arrow indicates a one-to-one mapping, or
a mutual dependency, and so a autual dependency trath
function is establish2i for the keys of the entities at the

tail, and head of the arrow. Thus, from Figure 7.3 we have:

$8m (JNgr#|,|Dept#]) =1

CHAPTER VII PAGE 136

We now have a set of truth functions that reflect the entity
attributes, as well as the interrelations between the
entities. Now the SDS5, by applying the algorithm specified
in Appendix 1, generites the third normalized relations of

Figure 7.7.

Imnplementation of Relatioms.

The procedure of diagramming the inter-entity relationships
as outlined above provides a logical method for establishing
the truth functions necessary for the SDS to maintain third

normalization.

The next function of the SDS at this stage is to determine
the implementation of the relations of Figure 7.7. The
decisions to be made are:

. virtualizing and encoding decisions,

. indexing decisions

. factoring decisions
No derived relation, or permanent join decisions can be made
at this point since there are no virtual relations, and no
nev domains have been defined to be included in the data

base. Thus all decision variables referring to virtual

CHAPTER VII PAGE 137

RR1(Mgc#,Dept#,m_name,d_rame,office#)

RR2 (Projt,Mgr#,p_name,startdate,enddate)

RR3 (soc_sec, Proj#, Dept#, e_name, hiredate, salary,
title)

RRY4 (Supp?, s_name, phone)

RRS (p#,Proijt,Supp#, quant, date)

Fiqure_7.7

(Keys underlined)

relations, and relations with the same key will be O,
resulting in the effect of the appropriate decision rules

beeing null.

In order to employ the various decision rules, ve need to
have values for some of the decision variables. At this
point (ie: in definition phase) these values must be

user-supplied.

For our purposes, we can leal with some of the aggregations

CHAPTER VII PAGE 138

of decision variables, and allow the SDS to split these
aggregations into detailed decision variables as needed. 11l
decision variables which do not have user-supplied values,

will be 0.

Suppose we know the following about the use of the data
base:
a) RR4 is usually accessed on s_name,
b) RR2 is usually accessed on p_hame
c) RR1 1is usually accessed either on m_name or d_name,
equally often on each
d) The enddate of 3 project (in RR2) is always 3 months
after the startdate. (A1l projects run for 3
months.)
e) title of RR3 has exactly 46 possible values, and is not

expected to change. It is also seldom accessed.

Por (a),(b) and (c), the SDS should consider indexing the
relevent.attributes.
Por (d), virtualizing of enddate is possible, and for (e)

encoding of title is possible.

We will set up the following decision variable values for

use in further explanation:

CHAPTER VII PAGE 139

$1rd (RR4,s_name) *se* = 10
$1rd (RR2, p_name) *s2* = 10
$1rd (RR1,a_name) *sa2% = 5

$1rd (RR1,m_name) *ce*n = 5
$1rd (RR1,d_name) *se* = 5

$1rd (RR1,d_name) ¥*c2%n = 5

All other decision variables have initial values of 0.

Other pertinent data is:

$5cy (RR1)T = 60
$5cy(RR2) T = 123
$5cy (RR3)r = 2000
$5CcY (RR4)r = 75
$5cy (RR5) r = 25000

$6(title)q = U6

$6 (s_name)q = 10
$6 (p_name)q = 89
$6 (mn_name)gq = 58
$6 (d_name)g = 60

$ubfe 25

$u4bfx 350

"

CHAPTER VII PAGE 140

$4io0 = 0.0012
$4opc = 0.005
sut = 1

$i4sc 1.6 x 10%% (-5)

7.1 Virtualizing Decisions.

Suppose:

$1rd (RR2,enddate) *s**=1,
$1rd (RR2,enddate) *c**n=1,
$2rd (RR2,enddate) r**=2, and

$2rd (RR2,startdate)u**x=5 ,

Using decision rule 5.3.1 of Chapter V:
Cost (making domain real), and cost(virtualizing) are both O,
since there is no data yet in the systenm.
cost (use if real)= (1¢1).(123/25) x 0.0012
+ 123 x 0.005
= 0.63

cost (maintaining if r=2al) = 5 x (0.0012 + 0.005)

= 0.03
cost (final) = (123725 x 0.0012) + 123 x 0.005

= 0.62

cost (use if virtual) = (0.62 x 2)+(0.62 x 2)

CHAPTER VII PAGE 141

= 2.48

Applying the decision ruls of 5.3.1, we have:
Make the domain real if:

(0.63 + 0.03) < (2.48).
In this case, the domain would be made real. (Note that the
main reason for this is the fact that the domains is used as
a qualifier, thus requiring a 1linear search of the relation

to compute, and then test the value of the domain.

7.2 Encoding Decisions.

The candidate here for encoding is *title' im RR3.
Suppose:
$1rd (RR3,title) **xxx = 1, and

$2rd (RR3,title) jr,u}j** = 2,

Then, applying the decision rule 5.3.2 of Chapter Vv:
cost (encoding) and cost (decoding) are both 0, since there is
as yet no data in the data base.
cost (use if encoded) = 2. (1+2). (0.0012+40.005)
= 0.04
cost(use if unencoded) = (1+2).(0.001240.005)
= 0.02

CHAPTER VII PAGE 142

cost (extra storage) = ((4 x 2000)
- (6+(8 x 46)+100))

X (1 x 1.6 x 10%*(~5))

i

.12

Thus, using the decision rule of 5.3.2, encode the domain
if:
(0.04) < (0.12 + 0.02).

In this case, 'title' of RR3 would be encoded.

For each of the domains used as qualifiers with a <qualifier
type> of t'e', the SDS would evaluate the desirability of
créating an 1index (if one did not already exist) for that
domain. If an index 2xists, the SDS would determine whether
it is still needed.

We shall only follow one case here; namely, for p_name in

RR2.
Applying the decision rule 5.4 of Chapter V:

cost (storage) = (50+(8 x 123)+ (4 x 89))

x ((1.6 x 10%*x(-5)) x 1)

CHAPTER VII PAGE 143

= 0.02

cost (projected use with index)
(123/89) x 10 x (0.0012+0.005)
+ 10 x (123/7350) x 0.0012
= 0.09
cost (projected use without index) =
10 x (((123725) x 0.0012)+(123 x 0.005))
= 6.21
cost (building index) =
0.005 + 0.0012 x((123/25)+(123/350))
= 0.01

Thus, the decision becomes:
Build an index for th2 Jdomain if:
(0.02 +# 0.09 + 0.01) < (6.21)
which would result in a decision to build an index for

p_name of RR2.

No permanent join, or derived relation decisions are made

for reasons outlined above.

Once the system has been operational for a while, and values

have been generated for the different decision variables, -

CHAPTER VII PAGE 144

an invocation of the SDS would make similar decisions in a
similar way, to the 2xamples above. It would, in addition,
make permanent join dacisions (where applicable) and derived
relation decisions as specified by decision rules 5.6 and

5.7 of Chapter V respactively.

This scenario has presented a simple application to
demonstrate the manner in which the various decision rules
would be applied. Th2 reader is invited to experiment with
other scenarios and other decision rules in a fashion

similar to that employed here.

CHAPTER VIII PAGE 145

What has been presented here is:

. a methodology for pseudo-optimization of a data base
for the type of use currently being made thereof. This
is done by the SDS.

. a procedures for pseudo-optimaztion of request

handling, by the RDS.

The phrase ‘'pseudo-optimal' is wused in preference to the
word 'optimal', since the decision rules presented here are
largely heuristic, and as such may well not be optimal in

the accepted sense of the word.

The SDS is driven by a collection of decision variables
(naintained by the RDS) and a collection of truth functions
which are used in SDS decision rules. The output of the SDS
is the pseudo-optimal, third-normalized data ba se
structure.

The RDS is driven primarily by a set of truth functions, but
does make some use of decision variables. The output of the

RDS is:

CHAPTER VIII PAGE 146

. updated decision variables,
. a collection of set-theoretic operators to best

satisfy the regquest.

The decision rules in both the SDS and the RDS are highly
modularized to permit r2placement of particular decision
rules, and parts of decision rules without effects on other
parts of the subsystem. Furthermore, all decision rules are
highly implementation specific, and it is envisioned that
this will generally be the case, as generalized decision
rules may well degenerate into a summation of specific
rules, connected by boolean variables. As such, the
modularity of the decision rules presented here may be a
ma jor feature to allow for easy replacement of those parts

of rules that are appropriate for other implementations.

Perhaps the most outstanding feature of the approach taken
here is the dynamic nature of both the SDS and the RDS. To
date, this has certainly not been true of subsystems used to

aid in the design of the data base, and only rarely in the

CHAPTER VIII PAGE 147

request-handling function. **

In general, gqueries have had to be stated in a way that
inherently specified the procedural steps to be taken in its
handling, and structuring decisions have always been made by
someone in the position of a data base administrator. This
person (or group) might well ke aided by some type of
decision model, but such structuring, and more importantly
restructuring decisions were never made dynamically by the

systen.

Various algorithms were developed for aiding in the process
of optimizing performance, the most major of which is that

in Chapter VI for pseulo-optimizing request handling.

This work can certainly not, nor does it, claim to be
complete 1in any sense. It is merely to demonstrate a
methodology for approaching the arena of automated decision
subsystems. As such, there are many areas into which forays

must be made before such subsystems become coamplete.

*x IBM's San Jose Research Center has designed a query
language called 'Sequal' which does quite elaborate dynanmic
request handling optimization. See (8).

CHAPTER VIII PAGE 148

Future Research.
Perhaps the first step should be to aéply the methodology
presented here to other situations. XRM wvas the only

implementation considered here.

There is also a problem that arises from the fact that XRM
is physically implemented in a way that is rather analogous
to the interface that the user sees. As such, there was
little attempt (or need) to separate these aspects of the
system. There 1is, however, a clear need for such a
separation and the SDS should be broken down into two
distinct parts to handle:
. the logical structure, and

. the physical structure.

It might seem that virtual relations are, in fact, the
logical system structure, but further reflection will reveal
the fact that real r2lations can be physically implemented
in a variety of ways. XRM treats, and stores each entity as
a row, whereas some systems are more column-oriented, in

that an entity consists of a value from each column. It is

CHAPTER VIIX PAGE 149

even possible to implement a relational system in a systen

of the IMS variety.

In this regard, the (third-normalized) real relations used
throughout this th2sis may, in fact be physically
implemented in a numb2r of ways. The SDS should be expanded

to reflect this aspect of data management systeams.

There were also places in the body of this thesis where the
partial inaccuracy of the decision rule was pointed out.
These modifications, as well as many other refinements could
be made to those rules presented here. It is important,
though, to recognize when fine-tuning will yield major
improvements, and when the benefits are substantially below

the costs of such efforts.

It is felt that the dscision rules presented here are of the
type that might affect system performance by many orders of
magnitude, particularly in cases where usage changes over
time. Fine tuning these rules wmight affect performance by
only a few percentage points. Perhaps this should indicate

that research conducted in this vein attempt to first

CHAPTER VIIY PAGE 150

accomplish the orders-of-magnitude improvements before any

fine tuning is attempted.

References PAGE 151

1) Donovan, J.J., Systeas Proqramming, Chapter 7, HNcGraw
Hill, 1972.

2) Gries, David, Compiler Construction For Digital
Computers, John Wiley 5 Sons, 1971 '

3) Codd, E.F., 'A Relational Model of Data for Large Shared
Data Banks', Communications of the ACM, Vol. 13, # 6, June
1970.

4) Codd, E.F., 'Further Normalization of the Data Base
Relational Model', IBM, San Jose, 1971.

5) Lorie, R.A., 'XRM - An Extended (N-ary) Relational
Memory', IBM Cambridgs Scientific Center, Cambridge, Ma,
Jan. 1974 (IBM Report 6320-2096)

6) Codd, E.F., ‘'Relational Completeness of Data Base
Sublanguages', IBM, San Jose, March 1972 (RJ 987)

7) Bachman, C.W., 'data Structure Diagrams', Data Base
(Quarterly News letter of the ACM-SIGBDP) Vol. 1, #2, 1969.

8) Astrahan, M.M., Chamberlin, D.D., 'Implementation of a
Structured English Quary Language', IBM Research, San Jose,
oct. 10, 1974,

Bibliograghy PAGE 152

1) Ackermann, R.C., 'An Examination and Modelling of a
Prototype Information System', Masters Thesis, Sloan School
of Management, MIT, June 1973.

2) Bachman, C.W., 'Data Structure Diagrams', Data Base
(Quarterly News letter of the ACM-SIGBDP) Vol. 1,%2, 1969.

3) Bachman, C.W., 'Ths Data Base Set Concept; Its Usage and
Relaization?', Honeywell Information Systens, Internal
Report, Jan. 31, 1973.

) Brent, R.P., 'Reilucing the Retrieval Time of Scatter
Storage Techniques', Communications of the ACM, Vol. 16, #2,
Feb. 1973.

5) Buchholz, W., 'File Organizatiomn and Addressing’, 1IBM
Systems Journal 2, (June 1963) pp 86-111.

6) Burkhard, W.A., ‘'Some Approaches to Best-Match File
Searching?!, Communications of the ACM, Vol. 16, #4, April
1973.

7) Cardenas, A.F., 'Evalunation and Selection of File
organization - A Modsl and System', Communications of the
ACN, Vol. 16, #9, Sept. 1973. 8) Chamberlin, D.D., Gray,
J.N., Traiger, I.L., 'Views, Authorization, and Locking in a
Relational Data Base System', IBM Thomas J. Watson Research
Center, Dec. 19, 1974 (RJ 1486) .

9) Chapin, N., 'A Comparison of File organization
Techniques', Proceedings ACM, 24th ©FNational Conference,
1966.

10) CODASYL Systeams Committee, Feature Analysis of
Generalized Data Base Management Systeas, ACM, May 1971.

11) CODASYL Systems Committee, A Survey of Generalized Data
Base Management Systeams, ACM, May 1969.

12) Ccodd, E.F., 'A Ra2lational Model for Large Shared Data
Banks', Communications of the ACHM, Vol. 13, #6, June 1970.

13) Codd, E.F., 'Relational Completeness of Data Base
Sublanguages', IBM Research, San Jose, Mar 1972.

14) Codd, E.P., 'Further Normalization of the Data Base
Relational Model', IBM Research, San Jose, 1971.

Bibliography PAGE 153

15) Codd, E.F., 'Sevan Steps to Rendezvous with the Casual
User', IBM Research, San Jose, Jan 17, 1974.

16) Codd, E.P., 'Normalized Data Base Structure; A Brief
Tutorial?!, IBM Research, San Jose, Nov. 1971,

17) Codd, E.F., 'A Data Base Sublanguage founded on the
Relational Calculus', Proc. 1971 ACM-SIGFIDET Workshop,
1972.

18) Collmeyer, A.J., Shemer, J.E., 'ARnalysis of Retrieval
Performance for Selected file Organization Technigues', Fall
Joint Computer Conference, 1970.

19) Dodd, G.D., 'Elements of Data Management Systems', ACHM
Computing Surveys 1, June 1969.

20) Donovan, J.J., Systems Programming, McGraw-Hill, 1972.

21) Follinus, J., Madnick, S., Schutzman, H., ‘'Virtual
Information in Data Base Systems'!, Sloan School ¥Working
Paper, Sloan School of Management, MIT.

22) Prank, R.L., Yamaguchi, K., 'A model for a Generalized
Data Access Method!, National Computer Conference 1974,

23) Ghosh, S.P., 'Pils Organization: The Consecutive
Retrieval Property', Communicaticns of the ACM, Vol. 15, #9,
Sept 1972.

24) Hanson, R.J., ‘'Stably Updating Mean and Standard
peviation of Data', Communications of the ACM, Vol. 18, #1,
Jan 1975.

25) Hsiao, D., 'A Formal System for Information Retrieval
from Files!, Coamunications of the ACH, Vol. 13, #2, Feb
19790.

26) Huang, J.C., 'A VNote on Information Organization and
Storage!, Communications of the ACHM, Vol. 16, 7, July
1973.

27) Langefors, B., 'Some Approaches to the Theory of
Information Systems', BIT(3), 1963.

28) Langefors, B., 'Information System Design Computations
using Generalized Matrix Algebra', BIT(5), 1965.

29) Lefkovitz, D., File Structures for Omn-line Systeas,
Spartant Press, Washington, 1969.

Bibliography PAGE 154

30) Lowe, T.C., 'The Influence of Data Base Characteristics
and Usage on Direct Access File Organization', JACHM, Vol.
15, #4, Oct. 1968,

31) Lowenthall, E., 'A Functional Approach to the Design of
Storage Structures for Generalized Data Management Systeams?',
Ph.D. Thesis, U. Texas, Austin, Aug. 1971,

32) Lum, V.Y., '*Multi-attribute Retrieval with Combined
Indices', Communication of the ACHM, Vol. 13, #11, VNov.
1970.

33) Lam, V.Y., Yuen, P.S.T., Dodd, N., ‘'Key-to-Address
Transformation Technijues: A Fundamental Performance Study
on Large Existing Formatted Files'!, Communications of the
ACM, Vol. 14, #4, Apr 1971,

33) Madnick, S.E., Donovan, J.J., Operating Systess,
McGraw-Hill, 1974,

35) McCuskey, W.A., ‘'Toward the Automatic Design of Data
Organization for Large Scale Information Processing
Systeas', Ph.D. Thesis, Case Western, Jan. 1969.

36) McCuskey, W.A., 'On Automatic Design of Data
Oorganization', Fall Joint Computer Conference, 1970.

37) Mullin, J.K., 'Retrieval-Update Speed Tradeoffs Using
Combined Indices®, Communications of the ACHM, Vol. 14, #12,
Dec. 1971.

38) Rothnie, J.B., Lozano, T., 'Attribute Based File
Organization in a Paged Meamory Environment', Communications
of the ACH, Vol. 17, #2, Feb 1974.

39) Sagamang,J.P., 'Aatomatic Selection of Storage Structure
in A Generalized Data Management System', Masters Thesis,
gcLa, 1971.

40) Severence, D.G., 'Identifier Search Mechanisas: A Survey
and Generalized Model', Computing Surveys, Vol. 6, #3, Sept.
1974,

41) Schachat, I.J., 'A Parameterized Model for Selecting the
Optimum Pile Organization in Multi-attribute Retrieval
Systems', Masters Thasis, Sloan School of Management, MIT,
June 1974,

41) Shneiderman, B., Scheuermann, P., ‘Structured Data

Bibliography PAGE 155

Structures', Communications of the ACM, Vol. 17, #10, Oct.
1974,

42) Shneiderman, B., ‘'Optimum Data Base Reorganization
Points'!, Communications of the ACM, Vol. 16, #6, June 1973,

43) Siler, K.F., 'A Stochastic Model for the Evaluation of
Large Scale Data Retrieval Systems...', Ph.D. Thesis, UCLA,
1971.

44) Stamen, J.P., Wallace, R.M., 'Janus: A Data Management
and Analysis System for the Behavioral Sciences', Cambridge
Project, Cambridge, Ma.

45) Stocker, P.M., Dearnley, P.A., 'Self Organizing Data
Management Systems', The Computer Journal, Vol. 16, #2,
1973.

46) Winkler, A., 'A Methodology for Comparison of File
organization and Processing Procedures for Hierarchical
Storage Structures!, Ph.D. Thesis, U. Texas, Aaustin, Aug.
1970.

47) Ziering, C.A., 'Management Information Systems - A
Comparison of the Network and Relational Models of Data',
Masters Thesis, Sloan School of Management, MIT, June 1975.

Appendix 1 PAGE 156

This appendix deals with the procedure of third

normalization.

The alogorithm presented here is driven by a set of truth
functions that detail the functional- and mutual
dependencies existing in the data. Notice that computational
dependencies are not considered in any of the alogorithms
presented here, The issue of computational dependency is not

relevent decisions as to which relation a domain belongs

in. We proceed now with the algorithm.

1 Apply transitivity to all mutual dependencies
Ie: ¥jaj,lbl,lc] if $8m(ja},ibj)=1 and $8m(|bl,ici)=1 then

set $8m(jal,lcl)=1.

Combine all functional dependencies with the same first
list, and remove those with duplicate first lists.

Ie: ¥ja},lcl vwhere $8f(lal,i1bl)=1, $8f(ici,idl)=1, and
jal=lci, set set $8f(lai,lel)=1 where je|l=|blU|d}, and set
$8f(la}l,ibi)=0 and $Bf(|c|,id})=0. 2 Expand functionally
dependent domains to include the functionally dependent

domains of all mutually dependent (sets of) domains.

Appendix 1 PAGE 157

Te: ¥ial,ibi wvhara $8m(jal,Ibl)=1, $8f (jal,Irl])=1 And
$8f(1bl,Isl)=1:

modify |r] to |r*'|, and |s| to |s'| where

ict'j=Is*'|= Il U Is]

This yields: $8f(lal,ir'l)=1 and $8f(|bj,Is'}|)=1.

3 Remove dependencies on partial candidate keys.
(Underlined domains are primary keys; if more than one set
of domains is underlined in any one relation, then each
underlined set of douains‘is a candidate key.)
¥|bl,ld] where $8f(lal,ibl)=$8f (lci,l1d})=1:
If {b] ¥ jdl=]b] and ja} N |Jcl=}|al then :

{dj=}dy - 1ibt, amd |x}=ix| - |b] ¥)x| such that

$8f(irl,1x1)=1 and $8m(iri,lc|)=1.

4 Now set up relations in third normal forms in the

following two steps:

4.1 ¥|bi,1d] vwhere $8f ({al,|b])=1 and $8f(|c],1d])=1:

Does some relation already set up contain both ja} and (b},
or both jc}| and |d} ?

yes: then mark that functional dependency as 'done', and

continue with a different one. Ie: Find some other

Appendix 1 PAGE 158

laj,Ibi,1c) and (d}.

{0) No: Is |b] N |d|=8 ?
{1) Yes: If $8f(jal,ib})=1 does not 'have relation', then
set up relation RRi (Ja]l,1bl) and mark functional

dependency $8f (Ja},Ib})=1 as 'done' and ‘'have relation?,

and continue

(2) No: ¥ (lb] N §d])#@ do the following:

Is $8m(laj,lcl)=1 2
(3) Yes: set up relation RRi(lal, jicl, Ixl) where
Ixi=1bjuld|
Mark the functional dependency $8f(ici,ld})=1 as 'done’
and both of $8f (Jal,lbi)=1 and $8f(ici,1d})=1 as 'have
relation?.
(4) No: is |b| N jci=@ ?

(5) Yes: set up 3 relations:

RRi(lal, 1bl).

RRj(1cl, 1di), and

RRk (le]) where Jel=1b] N |d]
If je| is already in some RRm, m¥i and m#j, then
delete RRk.
Mark those functional dependencies as 'done' and 'have
relation’'.
(6) No: is |cl=]lc| ¥ |b} ?

(7) Yes: there is traamsitive dependence.

Is $8f(lal,ib})=1 *'done' ?

Appendix 1 PAGE 159

(8) HNo: set |{bl=|b'| where |b'{|=|b} - jd} and
restart step 4.1 for this functional dependency
set
(9) Yes: set |bj=|b'| where |b'|={b} - |(d} and:
strike all domains |d} from the relation set up
for functional dependency $8f(jlaj,ibj)=1. Restart
step 4.1 for that functional dependency.

{(10) No: establish relatioas:

RRi (la], Ibl) and

BRj (1cl,l1d})

Mark those functional dependencies as 'done' and

thave relation?t.

4.2 ¥lal,ib} wvhere $8m(jaj,ib})=1, is there some relation
{created in step (4.1) containing both ja} and |b}, eg:
(eeevlalyeeeiblyeee)

(11) No: éet up relation RRk(ja]l, 1bl)

(12) Yes: no action

4,3 For all relations RRi created in 4.1 and 4.2, if
$8m(lal,ibl)=1 for any |lal,lbl€RRi, then remove |b| from
RRi. Examples are presented below to clarify the procedure

described above. Decision points in (4.1) and (4.2) above

Appendix 1 PAGE 1690

have been numbered for use in the examples that follow. 2l1l
instances of 'dpn' in the examples mean 'decision point n'.

Other notation that will appear in the examples is that for
expressing functional and ruotual dependencies

diagramatically rather than in the form of truth functioms.

1-> will iaply fanctional dependency. For example
{A,B)->(C) means that C is functionally dependent on A and

B.

I(===>1 implies mutual dependency. For exanple,
{A,B){~-->(C,D) aeans that (A,B) and (C,D) are mutually

dependent.

example 1

a) (P)<--->(Q,S) or: $8m(IP],i0Q.S1)=1
b) (P) -> R or: $8f(iIPi,IR})=1

c€) (Q) -> R or: $8£(101,IR})=1

Step 1: No action
Step 2: set up (d) $3£(]|0,S1,IR])=1
Step 3: Using (b) and (c): IRl N |R{={R}, and |P|NIQl=p

thus, no action.

Appendix 1 PAGE 161

Using (b) and (d): IRINJR]=}R}| and}PiN}]Q,S}=]Q}] thus, no
action.
Using (c) and (d): |{R} N JR|=|R| and JQ|N|Q,SI={Q] thus:
JRI=JR}-|IR}=8 in (1), which means that (d) Dbecomes
$8f(10,5S1,<null>), which must be 0 (See pagexx Chapter IV)
Also: $8m(|P},}0,S|)=1, so strike |R]| from (b) as well.
We now have:

a) $8m(IPi,10Q,S1)=1

c) $8f£(1Ql, IR])=1

Both (b) and (d) are 0.

Step 4.1: Since (c) is the only functional dependence, |R]
N |bj=g ¥)b] € (c) take dp1l:
RR1(Q, R)

Step 4.1 complete.

Step 4.2: Since $8m(|P],1Q,S1)=1, and RR1 is the only
relation, take dpl1 and sat up:

RR2 (B, Q.5)
Thus have relations:

RR1(Q, R), and

RR2 (B, Q.8)

Step 4.3: No action

Appendix 1 PAGE 162

Example 2

i) (A,B,C)<--->(D,E) or: $8m(}A,B,C|,|D,E])=1
ii) (p,B)<--->(G,K) or: $8m(|D,E|, |G,K|)=1
iii) (a,B,C) -->(¥,Z) or: $8f (|A,B,C|,1Y,21)=1

iv) (G,K) -->(X) or: $8f(|G,K|,1X])=1

Step 1: Apply transitivity to get:

(v) $8m(44,B,Cl,|5,K]|)=1

Step 2: for (aJ=}A,B,C} and |bj=|D,E} from (i), (iii)
becomes: $8f(|A,B,Ci,1Y,2])=1 {ie: no change), and

get (vi) $8f(ID,E},|Y,2])=1

Por {al=|D,E| and }b}=|6,K| from (ii),

(vi) becomes $Bf(|D,E},|Y,2,X|)=1, and

(iv) becomes $8f(|G,Ki,1X,Y,2])=1

For jal=}A,B,C| and |b}j={G,K]| from (V),

(iii) beconmes $8f (1A,B,Cl,1Y,Z2,X1)=1, and (iv) is

unaffected.

We now have:

i) $8m(1A,B,C],ID,E]) =1
ii) $8m(yD,E|,1G,K])=1
v) $8m(IA,B,C|,16,8])=1

iii) $8f (4A,B,Cl,1Y,Z,X]|) =1

Appendix 1 PAGE 163

iv) $8f(iG,K{1,1X,Y,2})=1

vi) $8f(|D,E}|,}Y,2,X|)=1

Step 3: Since |A,B,C}] N |6,K|=f,
|A,B,C|{ N |D,E|=0
and {G,K| N |D,E|=0

no action in step 3.

Step 4.1 Using (iii) and (iv):

get jal={4,B,Cl, Ilci={6,Kl, Ib]=1Y,2,X] and |d}=1X,Y,Z|

{bjy N |di#28, so take 1p2. $8m(lai,lcl)=1 from (v) so dp3.
set up RR1(A,B,C, G,K, X,Y,2), and mark (iv) as 'done' and
'have relation'. Mark (iii) as 'have relation'.

Using (iii) and (iv): {2}=})4A,B,Cl, Ici=ib,E}, I1bI=]1Y,2,X]
and |d|=1Y,%,X|.

{b] N jd|#8 so take dp2. $8m(lal,icl)=1 from (i), so take
dp 3.

Note +that (iii) thave relation!, so simply add |c| and
{d*1=141 N b} to RR1

Te: get RR1(A,B,C, G.K, D.E, X,Y,2)

Mark (vi) as 'done' and 'have relation'. Since there are no
further functional dependencies that are 'not done', proceed

to next step.

Step 4.2: Since for each truth function of the form

Appendix 1 PAGE 164

$8f(jal,I1b1)=1 (ie: (i), (ii) and (iv)) there exists some
relation (viz: RR1) zontaiming Ja] and |b}, take decision
point (12).

Step 4.3: ©No action

Thus we have relationm: RR1(A,B,C, G,X, D,E, X,Y,2)

Example 3

i) (A,B,C) -=->(D,E,F) or: $8f(}|r,B8,C},|ID,E,F})=1

ii) (p,E) --> F or: $8f(ID,E|,IF})=1
Step 1: ©No mutual dependencies, so no action.
Step 2: No mutual dependencies, so no action.
Step 3: for |bj=jD,E{ and jd}=|P}, jb{ ¥ |di=0F, sO no
action.
Step 4.1: From (i) amd (ii): {ai=1A,B,C}, Ilc)=|D,E},
1b|=|D,E,F| and |d]=|F].
ijb] N j|d}#@ so take dp2.
$8m(ja],lc})=0 so take dpi.
b} N jc}#8 so take dpéb6.
jcl N |bi=|D,B| = |c| so take dp7
(i) is 'not done', so take dp8.
(i) becomes $8f(}A,B,Ci,1D,E|)=1, and

(ii) is unchanged.

Appendix 1 PAGE 165

Restarting Step 4.1:

from (i) and (ii): }al=|A,B,C}, jc|=1D,E}, ibiI={D,E] and
14 1=1F].

Ibj N |d|=@# so dp1.

Set up realtion RR1(A.B,C, D,E), and mark (i) as 'done' and
'have relation’'.

From (ii): {ai=|D,E|, 1b}=IF}, lci=1d|{=<nulld.

jbl N jd}=@g so take dpl.

Set up relation RR2(D,E, PF) and mark (ii) as 'done' and

‘have relation'.

Step 4.2: No action

Step 4.3: No action

S0 we have relations:
RR1(A.B,C, D,E), and

RRZ (D.E, F).

Example 4

i) (A,B) --> C or: $8f(|A,B}{,IC})=1
ii) (p,E) -->(C,P) or: $8E£(|D,E},IF,C|)=1
Note that (A,B)<--/-->(D,E) 1ie: not mutually dependent.

Step 1: No mutual depsniencies, so no action.

Appendix 1 PAGE 166

Step 2: No mutual depandencies, so no action.
Step 3: No action
Step 4.1: from (i) and (ii): (ai=}A,B|, Ibi=|C}, lci=|D,E|
and |d}=|F,C}.
Ibl ¥ |d|#8, so dp2.
$8m(iaA,B,C},ID,E|)=0, so dpl
ibl N jci=p so dp5.
Set up relations:
RR1(A.B, C),
RR2(D,E, ¥,C) and
RR3(C) .
Mark (i) and (ii) as *done' and ‘have relationmn®.

Step 4.1 complete, since all are 'done’.

Step 4.2: No action.

Step 4.3: No action

Thus, we have relatioas:

RR1(A,B, C),

RR2(D,E, F,C) and

RR3(C) .

This concludes the exanmples.

Appendix 2 PAGE 167

In the examples and definitions that follow we will use
relation names of the form : 'R<i>!'. This is for convenience

only; any character string may be used for a relatiom name.

Notation.

R<i> is the name of the i th relation
€ means 'is a member of!?
J]+eeo} implies a list, or set of the items between the
'|'s.
c{i) is the cardinality (number of entries) in R<i>
n {i) is the degree (number of domains) in R<i>
d(i,j) is the j th domain of R<i>, j=1,..n(i)
v{m) (i,§) is the a th value of d4(i,j), m=1,..c(i)
t (i) is an n(i)-tupl= in R<i>
je: t(i) (v(a)(i,1),v(@)(i,2),...7v(a) (i,n(i)))
a 1,...c{i)
L (1a}) is the length of list a
is the null set - ie: R<id>=g implies c(i)=0
aCb means a is a subset of b (a=b is legal)
aCb means a is a proper subset of b (a#b)

¥a means for all values of a

Examples

The following examples will be

Appendix 2

to explain deifnitions.

R1

R2

R3

R4

]

(

(NAME,
(Smith,
{(Donovan,
{Granger,

(Smith,

(NANE,
(Madnick,
(Smith,

{Donovan,

(PERSON,
{(Madnick,
{Donovan,

{(Smaith,

{(NAMNE,

(Smaith,

(Donovan,617-1400))

PAGE 168

used throughout this section

SOC_SEC, PHONE,
213-07-1666, 232-1500,
621-49-2990, 617-1400,
413-320-0299, 536-5176,
839-41-6942, 253-1410,
SOC_SEC, PHONE,
217-51-7322, 253-6671,
213-07-1666, 232-1500,
621-49-2990, 617-1400,

AGE, CITY)

31 Peabody) ,

34, Ipswitch),

23, Boston))

PHONE)
232-1500) ,

DEPT#)
15),
15),

6),
6))

DEPT#)
15),
15),
15))

Appendix 2

{PERSON, AGE, CITY, STREET_#)
R5=((Madnick, 31, Peabody, 18),
{Donovan, 34, Ipswitch, 43))
Definitions
1) Union Symbol: U

Format: R<i>=R<3> 0 R<k>
c(i)=c(j)+c(k)-c(Rj N Rk)
n(i)=max (n(j),n(k))

R<id>= Jt(i) : t(i) € R<I>,

Example: R5

(j=k is valid)

R t(i) € R<k>|

-——

R1 U0 R2 would yielad:

RS=((Smith, 213-07-1666,232-1500,15),

(Donovan,621-49-2990,6 17-1400,15) ,

(Granger,413-00-0199,536-5176, 6),

(Smith ,839-41-6942,253-0410, 6),

(Madnick,217-61-7232,253-6671, 15))

2) Intersection Symbol:

Format: B<i> = R<j> N R<k>

N

(i=j=k is valid)

(Note that if n (j)#n(k), then R<id>=p)

R<i>

n (i) n(j) = n(k)

1t{i) : t(i)<€j AND t (i) <k]

PAGE 169

Appendix 2

Example: R6 R1 N R2 yields:
R6=((Donovan,621-49-2990,617-1400,15),

(Smith, 213-07-1666,232-1500,15))

3) Difference Syabol: -
Format: R<i> = R<j> - R<k>
(Note: If n(j)#n(k) then:
n{i)=n(3j)
c(i)=c(j)
R<Cid=R<§>)
n (i) =n(J) =n (k)
c{i)=c(j) - c(k) - c(BR<j> N R<k>)
R<i> = Jt(i) : t(i) €R<3j> AND t (i) gR<KD>|
Example: R6=R1 - R2 yields:
R6=((Granger,413-00-0029,536-5176, 6),

(Smith, 839-41-6942,253-0410, 6))

4) Cartesian Product Symbol: X
(Sometimes called a *Cardinal Product!?)

Format: R<i> = R<jJ> X RBR<k> (j=k is valid)

(Note: if n(j) > 1, or n(k) > 1, then each t(j)

must be treated as 1 single

n(j)=n(k)=1.)

n (i) =n (J) +n (k)

domain, so that

PAGE 170

(or t{k))

effectively

Appendix 2 PAGE 171

c(i)=c(j).ck)
R<i> = {(v(a) (j,1),v(b) (k,1)) ¥b € k, ¥a € 7]
ie: R<i> is a set of ordered pairs with first member froma
R<3j> and second from R<k>.
Example: R5 = R4 X R4 yields:
R5=(((Smith ,232-1500), (Smith ,232-1500)),
((smith ,232-1500), (Donovan,617-1400)),
((Donovan,617-1400) , (Smith ,232-1500)),

({Donovan,617-1400), {(Donovan,617-1400)))

5) Projection Syabol: P
Format: R<i> = R<j> P (d(j,1)), 1 11,2,...n(NI
n{(i)=L(1)

c (1)=c(3) (Note that redundent entries are not
automatically deleted as proposed in some versions. Use the
‘compaction' operator to remove redundent entries.)

R<i> = d4(j3,1) =1 1,2,...n(3)

Example: R5= R2 P (NAME,PHONE) vyields:

RS5=((Madnick,253-6671),

(Smith, 232-1500),

(Donovan,6 17-1400))

6) Join Symbol: *

Format: R<i>

R<j>((d(3,1))) * R<k>((®,d (k,m)))

i

8 ::=> | < | | -8

Appendix 2 PAGE 172

=) 1,2,...0(3) 1

n&l 1,2,...0(k)]

and d(j,1) and d{(k,m) must be of the same data type (ie:

must be joinable).

n(i)=n(j)+n(k)-1 (no duplication of the join domain when ©

is '=', There is duplication when 8 not '=', but we ignore
that rare case here.)

c(i)=c(j)+tc(k)-c(v{(a) (j,1))=v (D) (k,m)), a=1,..c(j);

b=1,..c(k))

R<i> = | d(j,b),d(k,2a) ¥b € j, ¥a € k, but a¥m :

v{g) (j,1) ® v(d) (k,m); ¥g € j, ¥d € k|

Example 1) R6=R2(NAME) * R3(=,PERSON) yields:
(SOC_SEC, PHONE, DEPT#,NANE, AGE,CITY)

R6=((217-61-7232,253-6671, 15, Madnick, 31,Peabody),
(213-07-1666,232-1500, 15, Smith, 23,Boston),
(621-49-2990,617-1400, 15, Donovan, 34,Ipswitch))

Example 2) R6=R3(CITY) * RU4 (>, NAME) vyields:

(NAME, AGE,CITY, PHO NE)
R6=((Madnick, 31, P2abody, 617-1400),
(Donovan, 34, Ipswitch,617-1400))
(Note that this example makes no intuituve sense; it was

included simply to illustrate the use of '*' when 8 72 '=')

7) Composition Symbol: .

Format: R<i> = R<I>(1(F,1)) . R<k>(d(k,m))

Appendix 2 PAGE 173

1 €| 1,...n(91

me€] 1,...0n(k)|

d(j,1) and d(k,m) must be joinable (ie: of the same data
type)

n(i)=n(j) + n(k) -2

c(i)=c(J)+c(k)-c(v(a) (j,1) = v(D) (k,m); a=1,...c(]);

b=1,...c(k))
R<i> = (R<j>(d(j,1)) * R<k>(d(k,m))) P (d(j,b));
¥b€j, except b#1l
(ie: remove domain d(j,1l) on which R<j> and R<k> were

joined.)

Example: RS5=R2(NAME) . R3 (PERSON) yields:
(SOC_SEC, PHONE, DEPT#,AGE,CITY)

RS=((217-61-7232,253-6671,15, 31,Peabody),
(213-07-1666,232-1500,15, 23,Boston),

(621-49-2990,6 17-1400, 15, 34,Ipswitch))

8) Permutation Symbol: M

Format: R<i> = R<j> 8 (d(j,1)); 1= 1,...n(3J)

n (i)=n(3)

c (i)=c(J)

The only effect of this opsrator is to re-order the domains
in a relation.

Example: R5 = R3 M (PERSON,CITY,AGE) yields:

Appendix 2 PAGE 174

RS=((Madnick,Peabody,31),
(Donovan,Ipswitch,34),

{Smith, Boston, 23))

9) Compaction Symbol: C

Format: R<i> = C (R<j>) (i=i is valid)

n {i)=n(J)

R<i> = | t(b) :t(b)#t(a) ; a#b | (OR: R<i>=R<ji> N R<3>)
This operator simply removes all redundent entries from a

relation.
10) Restriction Syabol: R

10.1) Diadic restriction:
Format: R<i>=R<§>(d(j,1l)) R R<k>(8,d(k,m)); 1 €{1,...n(j)]}
R il,...n{k)|
where: L(1)=L(m), anl n(k) <= n(j)
then n (i) =n (7)
8 2:= > | < | =] -8
R<i> = |t(j) : v(a) (j,£f) © v (b) (k,g) ¥f€1l, ¥g<€m, ¥a<€j, ¥b€k
a=1,...c(3); b=1,...c(k) i
Example 1) R6 = R2(NAME,PHONE) R R4 ((=,NAME), (=,PHONE))
yields
R6={((Smith ,213-07-1666,232-1500,15),

(Donovan,621-49-2990,6 17-1400, 15))

Appendix 2 PAGE 175

Example 2) R6=R2(PHONE) R R4(>,PHONE) yields:

R6=((Madnick,217-61-7232,253-6671,15),
{Donovan,621-49-2990,617-1400,15))

(Note: t (1) of R6 appears because 253-6671 > 232-1500. the

fact that 253-6671 < 617-1400 does not affect this.)

10 .2) Monadic restriction:

Format: R<i> = R<j> @A (j,1)) R (8,d(j,m))

leit,...n(d)

R E]l1,...n(k)]

L(1)=L{(m)

8 ::2=> | <] =] ~9

n (i) =n(3J)

R<i> = |t(j) : v(a) (3,f£) ® v(b) (3,9), ¥f€l,¥g<m,¥ab € J |

Example: Rb6 R10(ASE) R (<,STBEET#) yields:

R6=((Donovan,34,Ipswitch,l3))

11) Division Syamabol: /
Format: R<i> = R<3>(d(j,1)) 7/ R<k>(d (k,m)) ;
1€|1,...0 () 1
ne=l|l,...n(k) |

This operator is the inverse of the cartesian product; ie:

Appendix 2 PAGE 176

(R<3j> X R<k>) / R<k> = R<G>

Example: Using R5 of (4) above:

R5 / R4 = R4

Appendix 3 PAGE 177

Decision_Variables.

This appendix 1lists the decision variables that are used

throughout this thesis. They are listed in order of rule# as

outlined in Chapter IV.

Rule 1

1) $1rd (i, j)rsen domain j of relation 1i used as the
only ejui-qualifier (<qualifier type> 'e?) in
retrieval request; no joins.

2) $1rd(i,j)rsej same as (1), except join involved in
resolving request.

3) $1rd (i, j) rcenn domain j of relation 1 used as one of
several gqualifiers, as an equi-qualifier; no
joins, and none of other domains used as
qualifiers had indexes

4y $1rd (i, j)rceni (trss) same as (3), except some other

5)

6)

qualifier had index. 'trss' is size of set
resulting from using domains with indexes
first.

$1rd (i,j) rcejn same as (3) except joins involved in
resolving request.

$1cd (i, j)rceji(trss) same as (4), except joins involved

Appendix 3 PAGE 178

in resolving regquest.

7) $1rd (i, j)rcnnn jomain j of relation i used as one of
several qualifiers but not as equi-gualifier;
no other domains used as qualifiers had
indexes, and no joins involved in resolving
request.

8) $1rd(i,j)rcnni(trss) same as (4) except domain j not
used as equi-qualifier.

9) $1rd (i, j)rcnjn same as (5) except domain j not used
as equi-qualifier.

10) $1rd(i,j)rcniji(trss) same as (B) except joins involved

11) $1rd (i, j)rnun domain j of relation i used as
unspecifiel qualifier (eg: ...j='all?) no
joins involved in satisfying request.

12) $1rd(i,j)rnuj sane as (11) except joins involved.

13) $1rr(i)rnun unspecified retrieval from relation i; eg:
serial retrieval of each entry in relation.
No joins involved.

14) $1rd(i,j)cnuj same as (13) except joins involved in

request.

The same set of 14 decision variables is maintained for
<requests> 'u' and '3i', and also for <relation typeds '¥v!

and '4d°‘,

Appendix 3 PAGE 179

For <request> 'i', only one decision variable is maintained:

$1rr(i)inun inserts of entries into relation i; no joins

involva3.

Rule_2

1) $2rd(i,j)rsn retrieval of only domain j of relation
i; no joins involved in satisfying regquest.

2) $2rd(i,j)rs] same as (1) except joins 1involved in
resolving request.

3) $2rd (i,j)rcn jomain j of relation i one of several
retrieved; no joins involved.

4) $2rd (i,j)rcj same as (3) except joins involved in

5)

6)

7

satisfying request.

$2rd (i,j)r (<aggr>)sn retrieval of some single <aggr> of
domain j of relation i; no joins involved in
request.

$2rd (i, j)r(<aggr>)sj same as (5) except joins involved.

$2rd (i,j)r (Kaggr>)=n retrieval of several aggregations,

one of them domain j of relation i; no joins

Appendix 3 PAGE 180

involva3.

8) $2rd (i, j)r (<aggr>)cj sames as {(7) except joins
involved.
9) $2rr(i)ren retrieval of whole entry from relation

i; no joins involved.

10) $2rr(i)rej same as (9) except joins involved.

The same set of decision variables 4is maintained for
<request>s 'u' and 'i', and for <relation type>s ‘'v' and

14¢,

For <request> 'i', only one decision variable is maintained:

$2rr (i)ien inserts of entries into relation i; no joins

involved,

Rule_ 3.

Only one decision variabla2 is maintained of this type:

$3rd(i,j)d (k,m) the number of times relation i Jjoined to

relation k via domains j and m respectively.

Appendix 3 PAGE 181

1) $4io cost per I/0 operation

~2) $uopc cost per call to XRM

3) $ubfe number of entriss per XRM block

4) $u4bfx number of index entries per block
5) $usc cost per byte per day of storage

6) $u4t time period since last SDS invocation

7) $4p XRM blocksize

Rule 5

1) $5cy(i)r cardinality of real relatiom i

2) $5#d(i)r degree of real relation i

3) $5cy(i)v cardinality of virtual relation i

4y $5d4(i)v degree of virtual relation i

5) $5cy(k)d(<method>) cardinality of derived relation k.
<method> is the method of derivation. If the
derivation did not include restrictions, then
<method>: :=<nulld.

6) $5#d (k)d(<method>) degree of derived relation k

Appendix 3 PAGE 182

$6 (j)q number of unijue values in domain j

$7r user-supplied response-time weight factor.

Truth Functions,

$8d(i,j) domain j appears in relation i

$8i(j,k) domain k in relation j is inverted. (For virtaoal
relations, $8i(j,k)=0 always.)

$8p(i,j) domain 3j is one of the primary key domains of
relation i.

$8x(i)r relation i is a real relation.

$8x(i)d(<methodd) relation i is a derived relation, and
<method> is the method of derivation. If <method>
did not involve a restriction, thén
<method>::=<nall>.

$8n(i,j) domain j of relation i is mandatory. Ie: a value
must be provided for this domain before an entry in

relation i will be made.

Appendix 3 PAGE 183

Note $8n(i,Jj)=1 ¥j where $8p(i,j)=1. (Primary key
domains are mandatory.)
$8u (j) domain j contains unique values (eg: soc_sec_#)
$8r(i,j) same as $8n(i,j) except that it refers to a role
name. Also notice that $8r(i,Jj) is a subset of
$8d (i,j) Thus this is a truth function that tests
whether a role name is in relation i.
$8_(j)<data type><storage strategy>
<data typed::=<character> | <fixed> | <floatd> | <vector> |
<bit>
<character>::= cC

<fixed>::= x

{storage strategy>::=<virtual> | <real encoded> | <real
unencoded>

<virtual>::= v

<real encoded>::= e

<real unencoded>::= u

This set of truth functions is to test the data type of
domain j. For exmaple, if $8_(name)ce=1 then domain 'name’

is an encoded character string.

Appendix 3 PAGE 184

$8f (im},Inj) 1is a truth function that tests whether each
of the domains in 1list |n] are functionally
dependent on the whole list |m].
Note 1) List |m|] is not a 1list of all domains on
which members of list jn} are functionally
dependent. Each n'<€|n] may be functionally dependent
on some |x|#im}| also.

2) If in|=¢ (ie: is enpty) then

$8f(1mj,In})=0.

$8m (i{pl,Jq!) is a function that tests whether lists |p| and

191 are mutually dependent. Ie:

$8f(ipl,PqP)=$8f (1al,Ipl)=1, and also $8m(ipl,Iiql)
implies $8m(lqi,lpi) -
Transitivity also holds: $8a(lpl,iql)=%8a(lqi,Is])=1
implies that $8m (Jpl,iIs])=1.

$8c(ipl,q) (<function>) is a function vhich tests whether g
(note that ¢ is not a list) is computationally
dependent on iomains |p|. For example, if domain g
is defined as 'g=6.3 * p*' then q is computationally
dependent on p. (<function>) is the computation
required to derive q from the list of domains |p].

$80od(k) is a truth function set up for a request. It is
'*1' if domain k appears as one of the object domains
in the request.

$8eq(k) is a trath function used in reguests. It is '1' if

Appendix 3 PAGE 185

domain k appears as a qualifier with <qualifier
type> 'el.
$8nq (k) 1is similar to $B8eg(k) except that the <qualifier

type> is not 'e'.

