
DEZISION RULES FOR THE AUTOMATED GENERATION

OF SrORAGE STRATEGIES IN

DATA MANAGEMENT SYSTEMS

by

GRANT N SMITH

S.B., MIT
(1974)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF

SCIENCE

at the

MASS&AHUSETTS INSTITUTE OF

TECHNOLOGY

June, 1975

Signature of Author

Alfred P. Sl1oan'- chool otjAnageggp, May 9, 1 5

Certified by..-.. .. - , ,........

/7 . Thesis Supervisor

Accepted by . . .s..* .*.* * .o .0

Chairman, Departmental Committee on Graduate Students

RC-HIVES

JUN 13 1975
16RARIUS

Abstract

DECISION RULES FOR THE AUTOMATED GENERATION
OF STORAGE STRATEGIES IN DATA MANAGEMENT

SYSTEMS.

by

GRANT N SMITH

Submitted to the Alfred P. Sloan School of Management on May
9, 1975 in partial fulfillment of the requirements for the
degree of Master of Science.

Current methods of determining storage strategies (both
logical and physical) rely usually on (1) expert opinion,
and (2) the experience of the designers. There has been
some work in the area of automated design, but the
approaches taken to date generally apply only at generation
time, thus leaving the resulting design in effect for the
rest of the life of the system. Should usage of the system
change over time, as experience shows that it will, large
inefficiencies may result owing to the original choice of
storage strategy.

The work presented here attempts to introduce dynamic
decisions regarding storage strategies that will be invoked
(1) on a regular basis, and (2) when system performance
degrades below an unacceptable level. These decisions
involve both the structure of the data base (such as which
fields are to be in which files), as well as indexing, data
encoding, factoring and virtualizing decisions. Decision
rules are described which achieve this result.

Also described is a procedure whereby any given request will
be most efficiently satisfied, making use of the current
structure of the data base, indexes, etc.

Finally, the set of decision variables required to drive the
above decision subsystems is specified in detail.

Thesis Supervisor: Stuart E. Madnick

Assistant Professor of Management Science

PAGE 2

Title:

Acknowledgements

I wish to thank Professor Stuart E. madnick for his

invaluable advice, comments and criticism throughout not

only the writing of this thesis, but through all the years

in which I have been so fortunate as to be associated with

him.

In everyone's life, there is one eternal optimist. In mine,

that is Professor John Donovan. He has been a powerful

motivating force throighout this work.

Last, but by no means least, thanks are due Chip Ziering for

many hours of fruitfull - often heated - discussion.

PAGE 3

rable of Contents

Introduction...... . . a...**..* * .* ...

The Relational Model of Data............

Shared Data Bases and User Flexibility..

Decision Variables and Truth Functions..

The Structural Decision Subsystem.......

....... Page

....... Page

...... Page

..... *.Page

....... Page

The Request Decision Sub

Scenario for application

Decision Rules...

conclusion..

References.

Bibliography............

system..

of

..

........

............... Page 108

......... Page

........ Page

........ Page

.......... Page

126

145

151

152

Appendix 1..........

Appendix 2..........

Appendix 3......

6

15

37

53

68

... . .Page

.Page

.Page

156

167

177

PAGE 4

.... *

............ 00

* ..eO..e. ..

*S S SS S S

* SS 5555*B*O

* *05S5S~**.

.SSSO

.3.55.5 *55.

* S S.

* S 55

* Se.

* 55

* 55

SeS

550

* S 55

*050

5550

55.5

0555

0S05

* 535

* 055

5.55

555550*05

OS S 505000

055050055

550505555

55 5005505

5.5555555

*05055505

55 *O.S**5

SSSsSS 555

55 5555 35 5

SL

L

6ZL1

8 ti

E ti

ti~

91t

dsajnbT~ go Is-

0

* a * &SS B &S *SS 0 0 5 055 0 0.00 , 0a

L "L

9 *L

C~ L

Z. L

Li *fI

E IE

t OE

L eJ

S Z!)Yd

CHAPTER I

Introduction.

For some years nos- the concept of data-independent

applications programming has been expounded. What was

primarily at stake was the avoidance of rewriting of

applications programs if and whenever the underlying data

base was changed. Involved was a mapping from the logical

data structure (as the data structure available to the

applications program came to be known) into some machine

oriented data structure (or the physical data structure),

the idea being that the system would take care of this

mapping- function. Then, if there were any change in the

physical structure, the mipping function would be changed so

that the same logical structure as existed before this

change would still be presented to any applications

programs, and, in fact, any user (be it in the form of

programs, or a person generating requests against that

logical data structure). Note that throughout we shall use

the term user to mean either a program or a person. It is

not necessary for our purposes to distinguish between these

two classes, since as far as the database is concerned, all

PAGE 6

ZHAPTER I

requests look alike.

Arising from this approach is a division of responsibility,

and thus of expertise. The logical structure of the data is

in the domain of responsibility of the user, while the

physical structure and tha mapping function previously also

in the domain of the aser, have now been removed. This is in

fact a desirable featire as the user may concentrate efforts

on applications-oriented problems rather than becoming

bogged down in the technicalities of establishing a data

base.

However, that is not guite the way things turned out. There

were several attempts to design systems which would perform

the mapping function ini handle the physical structures for

the user, given the logical structure. But the way it

turned out was that the mapping capabilities tended to be

rather simplistic in Zoncept and execution, with the result

that the user had to be quite knowledgable about the

physical structure (and thus the mapping function).

Furthermore, no differentiation of responsibility was

generally delineated and so the user (or user group) now

took on the responsibility of both the logical- and physical

PAGE 7

CHAPTER I

structures. True, for any one logical structure the user now

had a choice of physical structure coming from a wider range

than personal experieice might previously have allowed, but

whether that was a blessing or a disguised horror remains

unclear.

Other promises made - and not kept - about data independence

again revolve around the mapping function. Theoretically, a

given physical structure should be able to be mapped into

several logical structures, and vice-versa. This facility

has not been realized to any notable extent.

Furthermore, the primary purpose of data independence,

namely the isolation of users from changes in the physical

data structure, has not yet realized its full potential.

Rarely, if ever, was the physical data structure altered

once established. It was a Herculean task to implement any

one physical structure, and no one was about to go in and

tamper once it was working.

Any one physical-to-lagical structure mapping would

generally be performel only once, and decisions as to what

PAGE 8

CHAPTER I

it should be were male at one point in time, with a fixed

perception as to the future uses of the data base. These

decisions were, and still are, made by people. Much of the

knowledge on which these decisions were based was knowledge

gained from experience, and so was more akin to an art than

a science. However, some non-trivial subset of such

decisions are indeed logical and rational, and so subject to

some measure of automition.

It would be inaccurate to claim that no attempt has been

made to take advantage of the structured nature of some of

these decisions. On the :ontrary, there have been several

efforts addressed to this task, and these efforts can be

divided (perhaps unfairly) into two major groups:

simulation-oriented decisions used prior to system

generation to aid in structuring decisions. These

are notably static, one-time decisions made at the

discretion of some person, and requiring substantial

human intervention. The results of decisions made at

that point were to be influential throughout the

life of the lata base. However, much credit is due

the effort to formalize some major aspects of the

decision.

dynamic rules used continually throughout the life

PAGE 9

CHAPTER I

of the data base to monitor system usage and

performance. The results of this monitoring effort

would, again, reguire major human intervention in

their interpretation and acting upon. However, the

important aspect of these efforts was in that they

attempted to track the system on an ongoing basis.

Whether any iction was taken on these results was

questionable. 3nce again there arose the dilemma of

whether to tamper with a working (albeit

inefficiently) system.

This work is intended to draw on the invaluable insights

gained over the years in dealing with such systems as

purport to provile data independence, and some

logical-to-physical structure mapping, and to propose a

methodology for achieving some of the promises made earlier.

It is important to emphasize that this is a methodology

since no one work could pretend to be all-encompassing. The

approach here will be to:

1) describe a system in which there is true data

independence 3asel on a physical-to-logical mapping

capability,

2) enhance this system with the ability to perform

some of the better formulated decision tasks,

PAGE 10

CHAPTER I PAGE 11

including the monitoring of system use and the

dynamic reconfiguration of the physical data

structures without alteration of the logical

structures. Attention will also be paid to the

initial structuring decisions made at definition

time.

3) further enhance the system with decision

capabilities that are oriented toward the efficient

satisfying of requests against the data base.

The work here revolves around the relational model of data.

This should not be construed to be a dismissal of all other

models (such as the network model) as inferior. The author's

familiarity with the relational model and the existence of a

well-defined set of theoretical rules that can be applied in

the model were the motivating factors behind this decision.

It should also be pointel out that the relational model as

herein used has embellishments and alterations derived from

various personal experiences and sources of the author. The

responsibilities for any errors and inconsistencies in the

model employed here should not necessarily be attributed to

the well-known names behind the relational model; they may

well be the fault of the author.

ZHAPTER I

Structure of Thesis.

Chapter II will introiuce the relational model as needed for

our purposes, and point out the differences, where

applicable, between this molel and that found in most of the

literature.

Chapter III will address itself to the methodology employed

for achieving data independence.

Chapter IV presents a list of decision variables maintained

by the system. Since there is a long list of statistical

information about system usage and performance required to

support dynamic decisions regarding physical restructuring,

a consistent set of rules has been developed for naming

these decision variables.

Chapter V will address itself to the decision rules

responsible for initial specification, and subsequent

dynamic reconfiguration of the physical data structures -

the Structural Decisign Substga (or SDS), and chapter VI

PAGE 12

CHAPTER I

will concern those decisions made dynamically about

optimally satisfying requests made against the data base -

the Reguest Decision Subsistem (or RDS).

Chapter VII presents i typical scenario, and those decision

rules developed in Chapters V and VI will be applied to the

scenario to demonstrate the effectiveness of the decision

rules.

Chapter VIII concludes the thesis with some remarks as to

further possibilities that can, and perhaps should, be

explored, as well as ways to expand the decision rules

utilizing a similar methololgy to that employed here.

Again, it must be pointel out that the decision rules

developed in Chapters V and VI are situation specific (and

certainly dependent on the implementation of Chapter III)

and are clearly not universally applicable. They are

intended to demonstrate a methodology and there is no

intention of developing a comprehensive and universal set of

rules.

PAGE 13

ZHAPTER I PAGE 14

Finally, some familiirity with BNF (Backus-Normal Form) is

assumed throughtout. Good introductory sources are (1,2).

CHAPTER II

The Relational |odel af Data.

Probably the major stumbling block in introducing the

relational model is the terminology. The concepts

underlying this approiCh are familiar to us all.

consider a regular report, or table that we have all seen at

one time or another. In Figure 2.1 is such a table; a

convenient format for representing such data. The columns

spell out the categories of data; the rows provide a value

for each category. Note that the rows and columns might

well be interchanged without loss or alteration of meaning.

For example, in Figure 2.1 we see the columns labelled

'dept#', 'description', etc. And there are 7 rows. No-one

has difficulty in interpreting the information in Figure

2.1, and this is essentially the relational model.

By convention in the relational model, we always label the

columns, and put the data in the rows (ie: horizontally)

just as is the case in Figure 2.1 . Furthermore, the columns

are called domains, ani the column headings are thus domain

names. This arises from the mathematical concept of a domain

PAGE 15

CHAPTER II

Plant: White Plains, New York.

Period ending: Aug 31.

Summari of -oerations

(in 000's)

Dppt# Descrittion La b3 r

Spray
Coating
Filing
Sanding
Buffing
Assemble
and Pack

2990
5915

998
1637
5915
4788

Expense
Actual
6464

12829
2590
3907

11275
8846

Budet
7103

13981
2190
5243

10750
8998

Difference
(Actual-Budget)
- 639

-1152
+ 400
-1336
+ 525
- 152

22243 45911 48265

Fi-aur_ 2. 1

1
2
3
6
7
10

TOTAL - 2354

PAGE 16

CHAPTER II

as being a collection of objects (or numbers, or any other

information-carrying item). When we choose a value from

that collection we are choosing an item from that domain.

Notice that each row is created by choosing a single item

from each of the six domains. Each row in the table is

called an entry. Notice also that the order of the entries

(rows) in the table is not important. We might just as

easily put the 'total' entry at the top of the table, and

then the departments in decreasing 'dept#' order. In fact,

we lose no information if we shuffle the rows; it may be

inconvenient to have the rows in random order (as it would

be, for example, in a telephone directory) but no

information is lost by a random ordering of the entries.

Now, if we were to interchange domains 1 and 2 of Figure 2.1

(ie: 'Dept#' and 'description') there would be no problem

provided we changed the domain names (column headings) as

well. But notice that the order of the domains within any

one entry must be the same as that in all other entries if

the table is to remain meaningful. Thus, the order of the

PAGE 17

CHAPTER II

domains is important, while that of the rows is not.

PrimaEXr-Ks.

In Figure 2.1 we may observe that there can be only one

entry in the table far any one value of 'Depti', and the

same applies for 'description', while there is no reason for

this to be the case in any of the other columns. In fact, in

the 'labor' domain the value '5915' appears twice. Thus,

given the value '5915' and told that it is in the 'labor'

column of Figure 2.1, we can not determine from that

information alone which department it is that is meant. (If

it is both departments, then there is no problem.) But,

given a value for 'Dept#', there is no ambiguity about any

information relevent to that row. Eg: given Dept# = 2, we

can uniquely determina all other values in the entry. Thus,

we say that 'Dept#' is a candidate £Rigary t§! for the

table; ie: for any value of 'Dept#' there is only one entry

in the table.

In the event that there is no such domain, then some

combination of domains must be found that exhibit this

property; namely, given a set of values for that comination

of domains, the entry zontaining those values in those

PAGE 18

CHAPTER II

domains is uniquely determinel.

A table need not hive a primary key, but it is often

advantageous from the standpoint of efficiency to do so. (In

the relational model propsed by Codd, et. al. no relation

may contain two entries that are identical, and so there

always exists some primiry key, even if it is a combination

of all domains. This is not the case here, as can be seen in

the definition of the 'Join' operator in Appendix 2.)

Normalization.

Looking again at Figure 2.1, we notice that printed above

the table is some idditional information, such as the

'Plant', and the 'Period' covered. We see also that there

are two columns unler the heading of 'Expense'; viz.

'Actual' and 'Budget'.

Since the relational model views the world as a set of

tables, we must find some way to include that information in

the table itself. As it now stands, it is not really part of

the informarion in the table; rather it is a form of table

heading. Considering the fact that the 'Plant' and the

PAGE 19

CHAPTER II

'Period' are printed at the top of the table, we may assume

that it is of some iiportance, and we further assume that

there are other plants and other periods.

one course of action is to set up a distinct table for each

plant/period combination, each having an identical format to

that of Figure 2.1 . This would result in a large number of

identical, yet distinct tables, and so a second course of

actioa suggests itself: set up a single table for all

plant/period combinations, and somehow distinguish entries

as belonging to some specific plant and period. This can be

done by simply adding two domains to Figure 2.1: 'Plant' and

'Period'.

Furthermore, we must find some way of incorporating the

notion of 'Expense' into the two domains 'Actual' and

'Budget'. To do so, we might merely rename the domains

'Actual expense', and 'Buiget Expense'. The table now is as

appears in Figure 2.2 .

Notice, however, that the table contains two domains each

based on the notion 3f 'Expense'; we have just renamed the

PAGE 20

V. -~

Summary of Operations

(In 000's)

Plant Period Dept* DescErig2tion Labor

Spray
Coating
Filing
Sanding
Buffing
Assemble
and Pack

2990
5915

998
1637
5915
4788

Actual
Expense
6464
12829
2590
3907

11275
8846

Budget
Expense

7103
13981

2190
5243
10750
8998

Difference
(Actual-Budget)

- 639
-1152
+ 400
-1136
+ 525
- 152

W Plns 10/31 TOTAL 22243 45911

Figure 2. 2

W Plns
W Plns
W Plns
W Plns
W Plns
V Plns

10/31
10/31
10/31
10/31
10/31
10/31

1
2
3
6
7
10

-2354

CHAPTER II

two domains as in Figure 2.2. In this case, the values

appearing in either column are, in fact, chosen from a

single domain: the 'Expense' domain. The reason for

prefixing 'Actual' and 'Budget' to the domain name was to

specify the role of each of these domains in the table. In

general, if a domain is used more than once in any one

table, it must be qualified by a role name. If there is a

failure to provide suzh role names in that event, then

ambiguity results.

Use of a role name is not limited to cases in which a domain

is used more than on:e in the same table, and any domain

name may be qualified by a role name.

Figure 2.2 is a version of the table which has unique domain

(or rather role) names, and is set up in such a way that it

contains all information in the table itself as opposed to

some of it in the form of table headings. This is called a

normalized table. In general, normalizing a table consists

of taking information that applies to all entries (such as

the plant and perioi of Figure 2.1) and making it an

integral part of the entries themselves (as in Figure 2.2).

More specifically, we take the primary key of tables higher

PAGE 22

CHAPTER II

up in the hierarchy, ini make it part of the primary key of

the lower table. An example will help to clarify this

point.

The example appearing in Figure 2.3(a) shows the logical

view of the data that might exist in a corporate data base.

Figure 2.3(b) is one form of a set of tables that might be

formed to store this logical view. Notice that some domains

(such as 'children' in the 'employee' table) are not really

domains, but the ames of other tables.

Figure 2.3(c) is the normalized set of tables arising from

2.3(a). Notice that Figure 2.3(c) was derived from Figure

2.3(b) by the following steps:

for each domain name in a table (say A) that is in

fact a table name (say B) take the primary key of

table A, and make it part of the primary key of

table B.

remove the table name (B) from table A.

This is the process of normalization, and, in the relational

model, 111 tables must be normalized (ie: must not contain

PAGE 23

CHAPTER II

EMPLOYEE (E MP. NAME, AGE)

JOBHIST (JOB.DATE,TITLE) CHILDREN (CHILD. NAME, AGE)

SALARY (SAL. DATE,SALARY)

1) EMPLOYEE (EMP. NAgAGEJOBHISTCHILDREN)
2) JOBHIST (JOB.DAT,TITLE,SALARY)
3) SALARY(SAL.DAfTSALARY)
4) CHILDREN (CHILD. VAgAGE)

laL

1) EMPLOYEE (EMP. NAMAGE)
2) JOBHIST (EMP. NAME, OB.DATgTIT LE)
3) S ALARY (E MP. NA ME, JB.ATE, _AL.DATE, SALAR Y)
4) CHILDREN(EM_.NAEg,ZHILDNAEi, AGE)

Fiqure 2.3

(Primary keys underlined)

PAGE 24

CHAPTER II

domain names that are in fact table names).

Why 'relational' model? What we have been calling tables are

call 'relations' in the relational model. This is more than

an arbitrary name. Remember that we described above how an

entry is formed by selecting a value from each domain in the

table. In mathematical terminology, these entries are a

subset of all combinations of values, or a cartesian product

of the domains. The name used for such a subset is a

'relation'.

More formally:

The cartesian product of A and B (written A X B) is a set of

ordered pairs, each first element of the pair coming from A,

and each second element from B.

Ie: A X B = J(a,b):a(A, b<Bj

('4' means 'is a member of')

We can easily obtain an ordered n-tuple (where n>2) by this

method:

D1 X D2 X...X Dn = a(dl,d2,...dn): di Di, i=1,...nj

A relation will normally be written as a relation name

PAGE 25

CHAPTER II

followed by an ordered, parenthesized list of domain names.

le: R1(D1,D2,D3). For example: Employee(name,emp#,dept#).

The reader is referred to (3) for further discussion of

relations and normalization.

Second Normal Form ani Functional Dependence.

The process of normalization described above (namely, the

removal of all domain names that are in fact relation names)

is adequate for most situations in which the user is careful

to ensure that the domains asigned to the various relations

are in fact assigned to the 'correct# relations. This is

aided by the process of diagramming the data base as shown

in Figure 2.3(a). However, there are times when what seems

quite logical will, in fact, give rise to problems.

Consider Figure 2.1 , Notice that for any given value of

'Dept#' the value of 'description' is uniquely determined;

or in other words, 'description' is functionally dependent

on 'Dept#'. Clearly, in this case, the reverse is true as

well; namely, 'Dept#' is functionally dependent on

PAGE 26

CHAPTER II

'description', but this need not be the case.

Now, if for any reason we were no longer interested in Dept#

2 and therefor struck the second row from Figure 2.1, we

lose the fact that Dept# 2 is 'coating'; ie: the

relationship (2,coating) loes not exist anywhere else. One

way to avoid this is to establish a new relation containing

only the functionally dependent domains (Dept#,

description). We may now strike either of these domains from

the relation in Figure 2.1 without loss of information.

These relations are said to be in second normal form; Ie:

Domains not functionally lependent on each candidate key are

stored in a separate relation. Figure 2.1 would thus contain

'Dept#' as a domain, but not 'description', and another

relation now contains 'Dept#' and 'description'.

Third Normal Form and transitive dependence.

Third normalized relations are second normalized relations

in which there exist no transitive dependencies.

If B is functionally dependent on A, and C is functionally

PAGE 27

CHAPTER II

dependent on B, then by the algebraic transitivity laws, C

is also dependent on A. But in a somwhat different manner,

since it is also dependent on B which is dependent on A. In

this case, we say that C is transitively dependent on A.

This is true in any cise where the application of algebraic

transitivity yields an additional functional dependency, as

it did in the above case.

Relations in third normal form would not contain any domains

that were dependent on any other domain which is itself

functionally dependent on some domain in the relation.

For the case above, where C is transitively dependent on A,

we would establish a separate relation containing domains B

and C, and remove C from the relation containing A.

It thus appears preferable to retain all relations in third

normal form for the reasons outlined above.

The reader is referred to (4) for a more comprehensive

treatment of second- and third normal forms.

Transferability of Role Names.

PAGE 28

CHAPTER II

Consider the existence of two relations:

person (soc-sec, name, age), and

marriage(husband.soc_sec, wife.socsec)

Notice that 'person' contains the domain 'socsect and so

does 'marriage'. Since 'marriage' contains that domain

twice, a role name is mandatory. Those supplied are:

'husband.socsec' and 'wife.socsecI. Now consider a

request to list the name and age of the wife of a person

with socsec 617-03-2911. This might be phrased (in some

arbitrary retrieval language) as follows:

list wife.name and wife.age for husband.socsec

'617-03-2911' ;

Notice that the 'person' relation contains the domains

referenced (viz: 'name' and 'age') but not the role name

qualifier 'wife'. Intuitively, however, it is clear that the

information needed t3 satisfy the request is present, but

not in any way that the system can utilize.

The way that the system mikes use of implicit information of

the type in the example above is by transferring the role

name qualifier 'wife' to the 'person' relation only for that

entry designated by the relationship between

'husband.socsec 617-03-2911' and the corresponding

PAGE 29

CHAPTER II

'wife.soc-sec'. 'wife' loas not become a permanent role

name qualifier in the 'person' relation.

Set Theoretic Notatil, Definitions and Examples.

In chapter I was mentioned the fact that a well-defined

collection of theoretical rules exists which may be used to

operate on relations (regardless of whether they are in any

particular normalizel form). This section outlines these

rules. This is perhaps where the model used here differs

most from those presented elsewhere(3,4). Differences will

be pointed out at appropriate points in the discussion.

The following operations will be defined:

PAGE 30

CHAPTER II

2peralion syabl

Union U

Intersection N

Difference -

Cartesian Produzt X

Projection P

Join *

Composition

Permutation M

Compaction C

Restriction R

Division /

Diadic/fj adi**

Diadic

Diadic

Diadic

Diadic

Monadic

Diadic

Diadic

Monadic

Monadic

Both

Diadic

These operations are briefly described here, and are

formally defined and examples given in Appendix 2.

** Diadic operators operate on two relations (they may both

be the same relation); monadic operators operate on a single

relation.

PAGE 31

CHAPTER II

Notation.

R<i> is the name of the i th relation

* means 'is a member of'

J....j implies a list, or set of the items between the

'Il's.

c(i) is the cardinality (number of entries) in R<i>

n(i) is the degree (number of domains) in R<i>

d(i,j) is the j th domain of R<i>, j=1,..n(i)

v(m)(ij) is the m th value of d(ij), m=1,..c(i)

t(i) is an n(i)-tuple in R<i>

ie: t(i) (v (a) (i,1) , v(a) (ij2),..v(a) (i . n(i))

a 1,...c(i

L(jaI) is the length of list a

0 is the null set - ie: R<i>=0 implies c(i)=O

asp means a is a subset of b (a=b is legal)

acb means a is a prgaer subset of b (a b)

Va means for all values of a

This notation will be used throughout the remainder of this

PAGE 32

CHAPTER II

thesis.

Explanation of gperatars.

Union

The union of two sets consists of a set that contains all

entries that appear in eitter of the two sets.

Intersection

The intersection of two sets is a set that contains only

entries that appear in both of the two sets.

Difference

The difference of two sets is a set that contains all

entries that appear in one of the sets, but not in the

other. Eg: If the two sets were A and B, then 'A - B' is a

set of all entries that appear in A, but not in B.

Cartesian Product

This is as defined on Page 25

Projection

The projection of a relation is a procedure whereby some of

the domains in the relation are removed.

Join

A join of two relations is the process whereby two relations

may be combined into a single relation containing all the

domains of the two being joined.

PAGE 33

CHAPTER II

Composit ion

This is the same as the join, except that the domain on

which the relations are joined is removed. This means that a

composition is in fact, a projection of a join.

Permutation

A permutation appliel to a relation consists of merely

re-ordering the domains in the relation.

compaction.

The compaction operator is used for deleting all redundent

entries from a relation. It is used most commonly in

conjunction with the projection operator, which may result

in redundent entries.

Restriction

The restriction operator is used for selective retrieval

from a relation.

Division

Division is the inverse of the cartesian product.

Introduction to XRN.

This section is intenled to be a very brief introduction to

the pertinent points about XRM.

XRM is a particular implementation of an n-ary relation data

management model designed and built by IBM Scientific

Center, San Jose (5). It operates basically as follows.

PAGE 34

CHAPTER II

XRM can handle two types of information:

, character string data, and

. fullword (32 bit) numeric data

There are correspondingly two major subcategories of

relations; one that handles character strings, and another

that handles n-tuples of numeric data. Any one relation

type (character or numeri. n-tuple) can only handle data of

that type.

Each entity in the system (character string, or n-tuple) is

automatically assigned an IRM ID when entered into the data

base. Given that ID, the entity can be rapidly and

efficiently retrieved by XRM. And, given the entity, XRM

obtains its ID by applying a hashing function to that

entity, and then performing the retrieval. In the case of

character strings, some number of the first bytes of the

string are hashed; in the case of numeric n-tuples, all

primary key domains are hashed.

All IDs in XRM are fullword integers.

In numeric relations (n-tuples), any domain can be inverted.

PAGE 35

CHAPTER II

This is equivalent to building an index for that domain.

Once such an inversion exists, given a value for that

domain, XRN will rapidly find all ID's of n-tuples in the

relation that contain the given value in the inverted

domain. If no inversion existed, a linear search would be

necessary. More is said about the implementation of

inversions in Chapter V.

For our purposes, this introduction will suffice. Additional

concepts will be explained as needed. For further

information, the reader is referred to (5).

PAGE 36

CHAPTER III

Shared Data Bases and User Flexibinlity.

This chapter presents a methodology based on the relational

model for achieving independence between the logical- and

physical data structures.

One of the intentions of data independence is to allow the

user to view the struCture existing in the data he (it) uses

in a way most convenient for a specific application. This

means that the user should be provided with the facility to

define any relation containing any domains in any order, and

be able to use it as such. Notice, however, some of the

issues raised by permitting this flexibility.

The most glaring problem arises as a result of the

divergence from the concept of shared (or centralized) data

bases. The benefits of shared data banks are many and have

been adequately covered elsewhere, Now we are

proposing the facility for allowing every user a powerful

tool that allows rapid and easy definition of relations for

specific applications. What does this do to the centralized

data base concept? Each user now wants (and is able to

PAGE 37

CHAPTER III

have) different relations for his application(s), which is

basically gaining effiziency and convenience at the expense

of generality. Each user must, furthermore, collect and

maintain his own data needed to support his application,

rather than delegate that function to a central authority.

The traditional methal of centralizing data collection and

maintainence has been the appointment of a data base

administrator whose responsibility it is to maintain the

central shared data base, and ensure that all users conform

to that data base. Zhinge to the data base is expensive and

time consuming, and so generally to be avoided. User

convenience was sacrificed in favor of a centralized data

base.

There is no need for sacrifice on either the user's part, or

the data base administrator's part. This is where the

concept of a 1:n mapping of physical to logical structures

demonstrates its value. There is no reason for denying a

user a specific mapping from the single physical data base

into a specific logical relation for some application. This

presents no problem if the logical relation that the user

wishes to define on the physical data base is some subset of

PAGE 38

CHAPTER III

the domains existing in that physical data base. But what if

the logical relation requires a mapping onto a domain that

does not yet exist in the physical data base, and is yet to

be created?

one possibility is to redefine the existing relevent

relation in the physical data base to include the new

domain. Alternatively one could invoke the principle of a

1:n mapping, now from the logical to the physical relations,

and create a new relation containing the required

information.

We have thus expressed the need for a n:m mapping from

logical to physical relations; ie: a logical relation can

map onto several physical relations, and a physical relation

can be mapped into several logical relations.

Before proposing a methodology for implementing n:m

mappings, let us iddress very briefly the issue of

efficiency. In a very large data base, a user that

constantly uses the same, small subset of data in a logical

relation pays a high price in performing the mapping each

PAGE 39

CHAPTER III

time. Some exception should be made in such a case whereby a

physical relation is established containing that subset of

data, and existing alongside the original physical

relations. This should not however be made to appear any

different to the user; the logical relation defined mast

still appear to be the same and contain fully updated

information.

We turn now to a methodology.

Methodoloay.

There are basically three categories of relations that we

have expressed a desire for in the above discussion:

physical relitions in the physical (centralized)

data base,

logical (user defined) relations, and

special physical efficiency-oriented relations.

The terminology to be used here is as follows (and intended

to be consistent with the current terminology found in the

literature):

PAGE 40

CHAPTER III

. real relations - those relations that exist

physically in the data base

* virtual relations - user-defined (logical) relations

which are mapped by the system onto the real

relations

. derived relations - real (physical) relations that

are subsets 3f the real relations constituting the

data base. They exist primarily for efficiency

reasons.

We thus have a basic system as shown in Figure 3.1 . Notice

that the elements of the system shown in Figure 3.1 interact

in a specific way; more precisely, they form a hierarchy.

Figure 3.1 can be easily reformatted to yield Figure 3.2.

The same is true of all other figures in this chapter: they

can be expressed in an hierarchical relationship.

Notice also that this system has not eliminated either the

data base administrator or the need for some person (perhaps

again the data base administrator) to specify the initial

real relations. The features of the system thus far are:

. the ability to define virtual relations on the

system maintained real relations, and have the

PAGE 41

CHAPTER III

Figure 3.1

PAGE 42

CHAPTER III

FiAure 3.2

PAGE 43

CHAPTER III

system perform mapping functions (note that a

virtual relation may in fact be identical to a real

relation). More than one virtual relation may be

defined on any one real relation.

. the ability to decide (the decision being made by

the data base alzinistrator) to create a (real)

derived relation for reasons of efficiency in a

particular application

. the ability for a virtual relation to contain

domains from more than one real relation.

As can be seen, the enhancements are concerned only with the-

system mapping functions. Thus, users may define virtual

relations consisting of domains in any (combination of) real

relations, but may n2t define additional domains. It is

also important to point out the following:

. primary keys in virtual relations exist in the eye

of the user only; they do not necessarily correspond

to primary keys in real relations.

. the set-theoretiz operators defined in Chapter II

are all that are required by the user for the

creation of virtual relations, as virtual relations

are a function only of existing relations. The data

base adminstritor, however, who needs the capability

PAGE 44

CHAPTER III

to define real relations and/or domains needs

additional facilities; perhaps in the form of a

DEFINE... or .REATE... command, not available to the

user.

Assuming a user wishes to define new real domains, these

additional real domaims will have to exist as real domains

in some real relation somewhere in the data base and there

is a decision required as to where in the data base this new

domain will exist. Thus adding real domains (or real

relations) involves the user interacting with the data base

adminstrator. The actions of the data base administrator in

this situation would Zonsist basically of the following

steps:

1) Determine from the user whether he is merely

utilizing a iifferent name for some existing real

domaia. If sa, simply tell the user to define a

synonym equating the two names.

2) If (1) is not the Case, apply some set of rules to

determine in which real relation the domain(s)

belong(s).

3) Add the domain to that real relation, thus making it

available for use in any user-defined virtual

relation. (Note that this step may require

PAGE 45

CHAPTER III

restructuring some real relation. Alternatively, a

new real relation could be established consisting of

the new domain, and the primary key of the real

relation that should contain that domain. A join is

reguired each time the new domain is used. This

decision must be made by the data base

administrator.)

Step (1) above appears to require some human intervention on

the part of a person such as the data base adminstrator, who

is familiar with the global system and the existing real

relations. But major portions of steps (2) and (3) can

indeed be formalized, and automated.

Provided there are same guidelines for the maintaining of

real relations (eg: they must all be maintained in

third-normal form - see Chapter II), then step (2) above can

be performed by the system.

In a similar way, by supplying some information as to the

expected use to be made of this new domain, the system can

determine precisely haw to include this new real domain in

PAGE 46

CHAPTER III

the data base - ie: parform step (3). Notice also that this

decision is directly analogous to that required in the

creation of a derived relation.

0

Perhaps it would appear that all that is accomplished by the

automation of the major share of steps (2) and (3) above is

the reduction of some administrative overhead. But consider

the capability of applying step (3) dynamically, which the

data base adminstrator does not have (except perhaps at

predetermined, discrete time intervals). This means that the

real relations can be so structured as to reflect the

current system usage and requirements. Furthermore, because

of the n:m mapping capability of the system, these changes

in the real relations - be it mere addition of a real domain

or relation, or a restructuring of existing real relations -

are not visible in any way to the virtual relations of the

user. We may now modify Figure 3.1 to show the fact that

there is some system funation controlling the structure of

the real relations in the data base; namely, the Structural

Decision Subsystem (gQ). The modified version of Figure 3.1

appears in Figure 3.3 . If Figure 3.3 were reformatted into

an hierarchical diagram, the SDS, which must be available to

the real relation hanilers, would become the innermost level

of the hierarchy.

PAGE 47

CHAPTER III PAGE 48

f ilure 3. 3

CHAPTER III

We have discussed thus far in a non-technical manner a

methodology for automating some of the functions revolving

around the maintainence of the real relations of the data

base.

Now, given a structure for the real relations of the data

base (as specified by the SDS), and given also the possible

existence of derived relations (also determined by the SDS)

it becomes clear that there may well be more than one way to

satisfy a request agiinst the data base. All requests from

users are against virtual relations (or some set-theoretic

derivation of virtual relations), which from above, are

mapped onto one or more real, or derived relations. Once

again some decisions are required in the mapping function to

determine:

. whether the request is valid - ie: can logically

(and legally, from an access control point of view)

be satisfied given the virtual relations involved,

. how the request can be satisfied, and

. how best to satisfy the request.

The subsystem that controls these decisions is the Request

Decision Subsystem (RD2). The RDS is responsible also for

PAGE 49

CHAPTER III

determining how well it is doing in terms of efficiency. if

the RDS decides thit system performance is degrading

(perhaps as a result of changing system usage) it will

trigger the SDS in an attempt to restore performance to an

acceptable level. We thus modify Figure 3.3 to include the

RDS, as shown in Figure 3.4 . Its position in the

corresponding hierarchical diagram is self-evident from this

figure.

The discussion in this chapter has purposely been

non-technical in nature in an attampt to demonstrate the

global functions and interactions within the system of the

major decision subsystems - the SDS and RDS. Furthermore,

the techniques employed in implementing both the real- and

virtual relations are of no consequence to the discussion,

and have no impact on the methodology proposed.

Finally, notice that the real- and virtual relations are

ilentical in their conceptual underpinnings, and thus

requests against either are made in a consistent fashion.

The requests used throughout will be in the format of

set-theoretic operations on relations, be they real-,

virtual-, or derived relations. (These operations are as

PAGE 50

CHAPTER III PAGE 51

D PLIONS

m on a" a -m a*N

Fi.qure 3. 4

CHAPTER III

defined in Chapter II.) This does not of necessity imply

that a user will employ set-theoretic requests directly; a

mapping from a higher-level request language to a

set-theoretic algebra is a well-understood, and conceptually

simple operation. (See (6)) Thus our hierarchical view of

Figure 3.4 might involve an additional layer between the

user and the virtual relations; namely, a request language -

to - set theoretic operation mapping facility.

What we have presentel in this chapter is a methodology for

achieving true data independence and providing the user with

powerful facilities for defining application-specific

relations. At the same time, however, we preserve the

centralized data base concept. The methodology is enhanced

by two decision subsystems which assume some of the system

structuring responsibility.

We proceed now to a detailed inspection of the decision

subsystems.

PAGE 52

CHAPTER IV

Decision Variables and Truth Functions.

This chapter describes the naming conventions to be used in

subsequent sections for the naming of decision variables.

Since there is a rather large set of these decision

variables, it was decided to establish a consistent method

for naming them. This method is presented here in BNF

(Backus-Normal Form) format, along with the appropriate

explanations.

Note that all decision variable names begin with a

'$<number>'. This signifies the BNF rule number used to

generate that name. A reference section containing these

numbered rules appears as Appendix 3.

<relation id> is an XRM-assigned internal ID; <domain #> is

the position of a domain within a tuple.

Rule# Rule

PAGE 53

CHAPTER IV

1 <qualifier>: := $1<relation type> <unit> <request>

<category> <qualifier type> <join info>

<options>

These are variables containing statictics about the use of

domains in the capicity of qualifiers in the list of

selection criteria that appear in a request.

<relation type>::= <virtual>I<real>J<derived>

<virtual> ::= v

<real> ::= r

<derived> ::= d

<unit>: : =<doma in> I <relation>

<domain> ::= d(<relation id>,<domain#>)

<relation> ::= r(<relation id>)

<request> ::= <retrieve>l<update>l<insert>l<delete>

<retrieve> ::= r

<update> ::= u

<insert> ::= i

<delete> ::= d

<category>::=<siaple>l<compound> l<non-specific>

<simple> ::= s

<compound> ::= c

<non-specific> : := n

<qualifier type>::=<equality>g<nonequality>

<unspecified>

<equality> ::= e

PAGE 54

CHAPTER IV

<noneguality> ::= n

<unspecified> u

<join info>::=<join>J<nojoin>

<join> ::= j

<nojoin> ::= n

<options>: :=<null>I<index> I<no index>

<null> ::=

<index> ::= i(trss) (trss='total

resloved set size')

<no index> ::= n

ExamPge: $lrd(i,j)rsen is the number of times the j-th

domain of real relation i is used as a simple (ie: the only)

qualifier in a retrieval request, and was used as an

equality constraint. No join was needed to satisfy the

request.

The <relation type>, <unit> and <request> should be

self-evident. For <category>, if there is only one domain in

the list of selection criteria, then the <category> is 's'.

In the event that there are several domains in the qualifier

the <category> is 'c, and if there is a sequential

retrieval from the relation, the <category> will be 'n' (or

non-specific).

PAGE 55

CHAPTER IV PAGE 56

For <qualifier type>, a constraint in a qualifier can be of

essentially two types:

. an equality constraint, such as 'age=26',

. an inequality constraint, such as 'income > 20,000'.

If there is no constriaint (as is the case when <category> is

'n') then the <gualifier type> is 'u' - or unspecified.

<join info> will be a 'j' in the event that there was a join

required in the reslowing of the request, and it will be 'n'

if no join was necessiry.

<options> will be null in the event that <category> is 's'.

If <category> is 'c', however, then <options> will show

whether some other domain in the list of qualifiers had n

inversion in the real relation. If so, then <options> is

'i' - or 'index', and the system will also store the total

size of the resolved set (the set of entries that results

when those domains with indexes are used first in a

restriction). If there was no other domain in the list of

domains in the selection zriteria, then <options> is 'n'.

CHAPTER IV

Rule# Rule

2 <retrieved object>::= <relation type> <unit>

<request> <abject> <join info>

This is a set of variables that will contain statistics as

to the use of domains as the objects of a request.

<relation type>::=<real>j<virtual>l<derived>

<real> ::= r

<virtual> :=v

<derived> ::= d

<unit>::=<domain>J<relation>

<domain>::= d(<relation id>,<domain #>)

<relation> ::= r(<relation id>)

<request>::=<retrieve>i<update>I<insert>I<delete>

<retrieve> ::= r

<update> ::= u

<insert> ::= i

<delete> ::= d

<object>::= <simple> I <compund> I <entry>

(<aggregate>) <object>

<simple> ::= s

<compound> ::= c

<entry> ::= e

<aggregate>::=SUMIAVIMAXIMINICOUNTIUNIQUE

<join info>::=<join>I<nojoin>

-<join> ::= j

PAGE 57

CHAPTER IV

<nojoin> ::= n

Exampie 1) $2rr(i)rej is the number of times a whole entry

is retrieved from real relation i, when a join

was necessary to resolve the request.

2) $2vd(i,j)r(AV)sn is the number of times that the

average of the values in oly (since <object> is

's') domiin j of virtual relation i is

retrieved; no joins were needed to resolve the

request.

<object> in this rule is similar to <category> of rule #1.

The value of <object> will be s if this is the only domain

specified for retrieval (or update) in the request. If there

are several domains specified, then <object> is 'c'.

<object> may also be in <aggregate> if the individual items

were not required, but some aggregation of them was.

Rule# Rule

3 <joins>::= $3 <relation type> <domain> <domain>

This type of variable maintains statistics about the

involvement of relations in joins. It specifies the number

of times a relation was joined to some other relation by a

specific domain.

PAGE 58

CHAPTER IV

<relation type> ::= <virtual>t<real>t<derived>

<virtual> ::= Y

<real> ::= r

<derived> ::= d

<domain>::= d(<relation id>,<domain #>)

Example: $3rd(i,j)d(k,m) is the number of times that

relation i was joined by domain j to domain m of relation

k.

Rule# Rule

4 <system data>::=$4<system variable>

These variables store information about system parameters

and costs.

<system variable>::=<block size> I <index blocking

factor> I <cost-per-I/O> I <relation

blocking factor> I <cost/byte/day>

<overhead per call to XRM> I <time period>

<block size>::= p

<index blocking factor> ::= bfx(<domain>)

<domain>::=<relation id>,<domain #>

<relation blo.king factor> ::= bfe(<relation id>)

<cost-per-I/O>::= io

<cost/byte/day>: := sc

<overhead per call to XRM>::= opc

PAGE 59

CHAPTER IV

<time period>::= t

In XRM, bfx(i,j) is constant Vi,j, and bfe(k) is constant

Vk. So, for our purposes we can refer to them simply as

'bfx' and 'bfe'. The <time period> 't' will be the length

of time since the last restructuring of the data base by the

SDS. All SDS decisions are based on the period since the

last restructuring occurred, and so decisions will be based

on this time period.

Rule# Rule

5 <relation data>::=$5<relation variable>

These variables are used to store information regarding

relations.

<relation variable>::=<degree><type> I

<degree> is th

<cardinality><type>

<degree>::= #d(<relation id>)

<cardinality>::= cy(<relation id>)

<type>: :=<real>I<virtual>I<derived>

<real>::= r

<virtual>::= v

<derived>::= d (<method of derivation>)

e number of domains in the relation;

PAGE 60

CHAPTER IV

<cardinality> is the number of entries in the relation.

Rule# Rule

6 <domain data>::=$6(<domain name>)<domain variable>

These variables are usel for maintaining statistics about

domains.

<domain variable>::= <# unique values>

<# unique values> ::= q

Eramp1e $6(state)q is the number of unique values that will

be found in domain 'state'. Notice that for domains that

are numeric, $6(i)g is the same as the cardinality of the

relation in which domain i appears. For character strings,

it may be anything from 1 to the cardinality of the relation

in which it appears.

Rule# Rule

7 <user information>::=$7<user variable>

<user variable>: :=<response time weight factor>

<response time weight factor>::=r

The <response time weight factor> is a user-supplied

preference for how the response time is to be weighted in

PAGE 61

CHAPTER IV

structuring decisions. it is a value from 0 thru 1

inclusive. For purposes of this thesis, the value of $7r

will be 0.5, which is essentially a null value. However,

the variable may be taken into account by merely appending

'$7r' to all cases where '$4io' and '$4opc' appear in the

decision rules, and by appending '(1-$7r)' to all instances

of '$4sc' in the decision rules.

Truth functions.

In addition to the statistical variables above, these is a

set of truth functions used to test for specific

conditions. The names of these truth functions all begin

with: '$8'. The value of a truth function is '1' if applying

the function to a spezifiz case is true; otherwise the value

is '0'. For example, if T(i) were a truth function that

tests for negativity, then if i<0, T(i)=1, otherwise

T(i)=0.

The truth functions employed here are presented below. (Note

that the <type> of a relation (real, derived or virtual) is

not important in applying truth functions.)

PAGE 62

CHAPTER IV

$8d(ij) domain j appears in relation i

$8i(j,k) domain k in relation j is inverted. (For virtual

relations, $8i(j,k)=0 always.)

$8p(i,j) domain j is one of the primary key domains of

relation i.

$8x(i)r relation i is a real relation.

$8x(i)d(<method>) relation i is a derived relation, and

<method> is the method of derivation. If <method>

did not involve a restriction, then

<method>::=<nill>.

$8n(i,j) domain j of relation i is mandatory. le: a value

must be proviled for this domain before an entry in

relation i will be made.

Note $8n(i,j)=1 *j where $8p(ij)=1. (Primary key

domains are mandatory.)

$8u(j) domain j contains unique values (eg: socsec_#)

$8r(i,j) same as $8n(i,j) except that it refers to a role

name. Also notice that $8r(ij) is a subset of

$8d(i,j) Thus this is a truth function that tests

whether a role name is in relation i.

$8_(j)<data type><starage strategy>

<data type>::=<character> I <fixed> I <float> I <vector> I

<bit>

<character>::= c

PAGE 63

CHAPTER IV

<fixed>::= x

<float>::= f

<vector>::= t(<size>)

<bit>::= b

<storage strategy>::=<virtual> I <real encoded> I <real

unencoded>

<virtual>::= v

<real encoded>::= e

<real unencoded>::= u

This set of truth functions is to test the data type of

domain j. For exmaple, if $8_(name)ce=1 then domain 'name'

is an encoded character string.

$8f(ImI,lnI) is a truth function that tests whether each

of the domiins in list Inl are functionally

dependent on the whole list ii.

Note 1) List Imi is not a list of all domains on

which members of list ini are functionally

dependent. Each n'4lnj may be functionally dependent

on some 1xlx/Im also.

2) If In I=O (ie: is empty) then

$8f(ImlIni) =0.

$8m(lpi,iq) is a function that tests whether lists IpI and

1i are autually dependent. Ie:

PAGE 64

CHAPTER IV

$8f(Ip ,PqP)=$8f(IqjqpI)=1, and also $8m(lpI,IqI)

implies $8m(IgI,Ip1).

Transitivity also holds: $8m(Jpgjgj)=$8m(Iqi,IsJ)=1

implies that S8m(ptIsI)=1.

$8c(IpI,g) (<function>) is a function which tests whether q

(note that q is not a list) is computationally

dependent on domains Ipl. For example, if domain q

is defined as Iq=6.3 * p' then q is computationally

dependent on p. (<function>) is the computation

required to derive q from the list of domains Ipf.

$8od(k) is a truth function set up for a request. It is

'1' if domain k appears as one of the object domains

in the request.

$8eq(k) is a truth function used in requests. It is '1' if

domain k appears as a qualifier with <qualifier

type> 'e'.

$8nq(k) is similar to $8eg(k) except that the <qualifier

type> is not 'e'.

Note that truth functions may be implemented as unary and

binary relations (depending on the particular truth

function) where existence of an entry in the relation

signifies 'true', or '1'.

PAGE 65

CHAPTER IV

The complete list of iecision variables and truth functions

that are used in this collection of decision rules is listed

in Appendix 3.

In addition, the following notation will be employed in

subsequent chapters:

. an '*' appearing in any decision variable name means

the sum of all the possible replacements of the **.

For example:

$lvd(i,j)*sej = $lvd(ij)rsej + $1vd(i,j)dsej +

$lvd(i,j)usej

($lvd(i,j)isej is not used.)

Or:

$lrd(i,*)rsej = SUM($lrd(i,k)rsej) for k=1,...$5#d(i)

. a '' in a name means the product of all possible

replacements for the '%'.

For example:

$lvd(i,j)rseg = $1v(i,j)rsen.$1vd(i,j)rsej

. a list between two * I' (vertical bars) means the sum

of that list.

For example:

$lvd(ij)Id,ulsej = $1vd(i,j)dsej + $lvd(i,j)usej

PAGE 66

CHAPTER IV PAGE 67

The reader is advised to become familiar with the 7 rules

and the various truth functions to avoid continual reference

to Appendix 3 and thus to expedite reading.

PAGE 68

The Structural Decision Subsystem SDS .

This chapter presents a detailed exposition of the SDS.

The SDS is charged with the responsibility for:

. maintaining the database in third normal form,

. structuring the real relations in such a way that

current system usage is most efficiently serviced,

. modifying any system descriptor tables to reflect any

change in the structure of the real relations.

Since we are not concerned specifically with any

implentation here, we will not address the modification of

system descriptor tables. This is, nevertheless, a SDS

function.

As outlined in Chapter III, the creation of real relations

is a privelaged operation. While any user may define an

indefinite number of virtual relations, the disorderly or

random definition of real relations would ultimately destroy

the centralized nature, and cohesiveness of the data base.

ZHAPTER V

CHAPTER V

The SDS is concerned only with real relation restructuring

since virtual relations may, by definition, only be altered

by the user that defined them. However, the SDS must examine

virtual relation use for purposes of making decisions about

derived relations.

There are two separate points at which the SDS can be

invoked:

. at definition time, and

. during the life of the system - or dynamically.

In either case, the function of the SDS is identical;

namely, to 'best' structure the database for its expected

use. The distinction between these two ocasions of SDS use

is simply one of the source of values for the decision

variables. At definition time, values for decision variables

(and the definition of truth functions) are exogenous, and

supplied to the SDS. At any time thereafter however,

continuous monitoring provides accurate records of actual

use, which become the values for the decision variables at

the time the SDS is invoked.

PAGE 69

ZHAPTER V

It is important to note that the operation of the SDS is in

no way dependent an the source of the decision variable

values. Given a set of values, the SDS can operate. Thus,

the stage of system life (definition, or subsequent thereto)

does not predetermine any particular operations to be

performed by the SDS that are not required at other stages.

The SDS presented here is cost centered. Ie: it attempts at

all times to minimize cost as opposed, for example, response

time. However, in light of the fact that response time is

often the most crucial factor for many users, there may be a

<response time weight factor> provided by the user ($7r).

If none is supplied, the lefalut is 0.5 (which is in effect,

null). All decision rules here assume that $7r=0.5

We proceed now to the SDS proper.

5.1 Maintaining thir normal form.

The algorithms within the SDS for maintaining real relations

in third normal form are driven by a set of truth functions

of the variety presented in Chapter IV.

PAGE 70

CHAPTER V

Every domain mast appear either as a functionally dependent

domain in some truth function, or some domain on which

others are functionally. dependent.

It is the responsibility of the user (perhaps in

co-operation with the data base administrator) to define

these truth functions. The system is not (and in fact no

system can be) able to third normalize without substantial

user-provided information. In order to do so, the user must

understand the interrelations, and peculiarities of the

data, and the data base administrator is responsible for

education in this function. It is envisioned that the user

will employ network-like diagrams to aid in this task (See

the scenario of Chapter VII).

Note that the user is not asked to provide third normalized

relation definitibns per se, but rather the information that

will enable the sstem to define third normalized relations.

This distinction is important if one considers the

(possible) dynamic nature of the real relations. If a new

real domain is to be added to the data base, a decision is

required as to which real relation it belongs in. Given the

knowledge that the data base administrator has of the data

PAGE 71

CHAPTER V

base, he is the clear candidate for making the decision, and

he would simply relefine and restructure the affected

relation. Notice that this is the onl.Y course open to the

data, base administrator, whereas the system, provided with

adequate information would be in the position to dinamically

consider alternatives to the full, and expensive,

restructuring of the affected relation.

It is thus deemed preferable to provide the necessary

information, and to allow the SDS to third normalize in

order that dynamic molifications to relations be efficient.

The algorithm for third normalization is detailed in

Appendix 1. Suffice it to say here that, given a set of

functional- and mutual dependencies, the system can generate

a database (real relations) in third normal form. Note that

computational dependencies are not considered when

third-normalizing.

Now, assume that some new real domain is to be added to the

database. By having the functional- and mutual dependencies

for the new domain, the system can determine where in the

set 3f real relatioas, this new domain belongs if third

normal form is to be preserved. Furthermore, it is able to

PAGE 72

CHAPTER V

determine the most efficient method of including it in the

data base.

We proceed now to lecisions made by the SDS under the

assumption that third normalization has occurred, and

resulted in a set of real relations of the following type:

<name>(<list of domains>) (<list of candidate keys>)

The primary key will become the <candidate key> with the

fewest domains. This maximizes the chances of having values

specified for all primary key domains in selection

criteria.

For example: RR1(A,B,C,D,E) ((AB), (C,DE))

The primary key that tould be chosen here is (A,B)

5.2 Structuring Decisions.

These decisions are basically those that determine the

implementation of the relations specified by the third

normalization process. These decisions are:

1) Encoding or virtualizing of domains

2) Indexing decisions (the creation of inversions)

3) Factoring decisions '

4) Decisions to join permanently into a single relation

PAGE 73

CHAPTER V

any two relations that have the same primary key.

One of the structuring decisions considered, and

subsequently dismissei was that of replacing a relation (in

third normal form) by two or more of its projections. The

factors that are involved in any such decision are:

a) the cost of transporting little-used domains of a

relation to primary memory each time any part of the

relation is ased (A case for splitting up the

relation)

b) the overhead involved in maintaining an extra

relation, and duplicate copies of some domains (A

case aginst splitting)

c) The overhead iavolved in performing a join each time

one of the domains split off is required for any

reason (A case against splitting the relation)

d) Pjggible reduced storage (A marginal case for

splitting the relation up)

However, since the co3t of transporting unneeded domains to

primary memory (once the entry has been located, and an I/O

is required anyway) is so minimal that it will be clearly

dominated by costs of (b) and (c). (d) is an uncertain

value. There are occasions in which the cardinality of a

projection may be smaller than that of the original

PAGE 74

CHAPTER V

relation, but this is never certain.

As such, it appears that the decision to replace a relation

by two or more of its projections will never be made, and so

was not included in the SDS.

5.3 Encoding and virtualizing decisions.

5.3.1 Virtualizing De-isions

A virtual domain is one that is not stored physically, but

rather is computed each time it is required from the domains

on which it is computationally dependent. Also, notice that

updating a virtual domain is not a legal operation. The

virtual nature of the domain is, by definition, not visible

to the user.

A domain is a canlidate for virtualization if it is

computationally dependent on a set of other domains; Ie: p

is a candidate for virtualization if $8c(IaI,p)=1. Any of

the domains on which it functionally dependent (ie: j where

j<lpi) may also be virtual, but there must be a restriction

PAGE 75

CHAPTER V

to prevent circular camputational dependencies. Namely:

If $8c(IrI,P)=$8c(iyji)=1 where a(IrI then:

$8c(jxj.b)/1 Vb4*yi, Vii where p4Ixt

The decision rule is:

For a domain that is currently virtual, If:

(cost(making domain real) + cost(use if domain is real) +

cost(maintaining domain if real))

< (cost(using the domain if virtual))

then make it real. Otherwise leave it as virtual.

Note that the cost of maintaining a virtual domain is 0. In

the event that a domain is real, then each time any of the

domains on which it is computationally dependent is

modified, the domiin itself must be modified. This is

clearly not the case if the domain is virtual.

Similarly, if the domain is currently real, if:

(cost(virtualizing) + cost(use if domain virtual)) <

(cost(use if domain real) + cost(maintaining if real))

then virtualize the domain; otherwise leave it as real.

Separating out the various costs mentioned above, we get:

5*3tJ.l1 Cost (making domain real)

PAGE 76

ZHAPTER V

This involves a serial processing of the relation(s) in

which the domains on whibh it is computationally dependent

exist, and computing the value of the virtual domain. It is

then appended to the relation, and written out in the

database in the new form. Thus there are basically two

steps:

locate the domains on whizh it is computationally dependent,

and compute and store the value.

Assuming that the domain in question is domain d, there are

two possibilities when $80(tpI,d)=1 :

a) $8d(i,j)=1 Vj4IpI and $8x(i)=1 for that i, or

b) $8d(i,j)/1 for some j<IpI, and a single i

In case (a), no joins are necessary when retrieving the

domains on which d is computationally dependent; they are

all in relation i. Computing the value of d consists simply

of retrieving a tuple from relation i and computing the

value. In ca'se (b), however, there will be at least one join

necessary to retrieve all members of Ipi, and very possibly

several. Case (a) is really a special form of case (b),

which is, in fact the general case. If there were some

algorithm capable of determining the cost of a serial

retrieval for all domains in list Ipi for the general case

(case(b)) then case (a) would be automatically included. In

fact, such an algorithm is also required by the Request

Decision Subsystem (RDS) in determining the cheapest way of

PAGE 77

CHAPTER V

resloving a request. The concepts involved are identical:

how to optimally retrieve all domains required to perform

the desired function. This algorithm is thus common to both

this situation, and the RDS operations. As such it has been

detailed in Chapter IV. For our purposes, it is enough to

note that the invocation of the algorithm, given the list of

domains Ipi, will result in a cost estimate for the cheapest

way of performing the request. We will call the cheapest

method the 'final' method determined by the algorithm, and

the cost of performing it will be the 'cost (final) '.

And so, the computation of cost(making domain real) becomes:

cost(final) + ($5cy(i)r/4bfe) .$4io + $5cy(i)r.$4opc

assuming that the real domain d is inserted in relation i.

Ie: the cost is the cost of computing the value of the

virtual domain, plus the cost of writing it out in relation

i. The component ($5cy(i)r/$4bfe).$4io will become familiar

throughout all future lecision rules. It takes into account

the fact that relations are blocked, and that not each call

to retrieve (or insert, update or delete) an entry will

necessarily result in a real I/0. The cost

component'$5cy(i)r.$4opc' covers the cost of the overhead in

PAGE 78

CHAPTER V

each call to XRM. In this way, we take account of the fact

that each call involves some expense, but not necessarily an

I/0. This will be found in most subsequent decision rules.

5.3.1.2 Cost(use if domain real)

This is basically comprised of the cost of additional

storage, plus the cost of retrieval (or other operations) if

the domain is real.

cast (additional storage) = 4.$5cy(i) .$4sc.$4t

since each domain in IRM is a fullword domain.

At this point, the system would make a decision regarding

whether this domain should have an index (see 2 below) - ie:

would determine whether $8i(ij)=1.

If $8i(i,j)=1 then:

cost(use if domain reil) = ($lrd(i,j)**e**.($4io + $4opc)

+ ($lrd(i,j)*sn*+$lrd(i,j)*cn*n)

(($5cy (i)r/$4bfe).$4io +

$5cy(i) r.$4opc)

+ (trss/$lrd(i,j)*cn*i(trss))

($4io + $4opc))

PAGE 79

CHAPTER V

If $8i(i,j)=0 then:

cost(use if domain rel) = ((trss/$1rd(i,j)*cn*i(trss))

($4io + $4opc)

($1rd(i,j)*s**+$lrd(ij)*c**n).

(($5cy (i) r/$4bfe) .$4io +

$$cy(i)r.$4opc)

Thus, in the event that there is an index, any case where

domain j is used as a qualifier in a <qualifier type> of 'e'

selection criterion, it is simply a case of using that

index. For <qualifier type> of 'n', the index is of no use,

and some serial search will be needed. If some other domain

in the selection criteria was indexed, then only the

resolved set, after using that index, need be serially

searched.

If there is no index, then all cases, except those where

there is some other lomais in the request with an index, a

serial serach is required.

5.3.1.3 cost (maintaining domain if real)

The cost of maintaining the domain if it is real is an

PAGE 80

CHAPTER V

additional update each time any of the domains on which the

new real domain is z-omputationally dependent and in another

relation, is updated in any way. This is because if a

domain on which j is computationally dependent is in the

same relation, then there is no additional I/0, or call to

XRM.

For domain j of relation i:

cost = ($2rd(ik1)u**.($4io + $4opc))

Vm*IpI where $8c(IpIj)=1 and $8d(i,m)=0.

5.3.1.4 cost(virtualizing)

There is a choice as to whether the domain is physically

deleted from the relition or whether it is just marked as

being virtual, and not physically removed. If the domain is

not physically removed, then:

cost(virtualizing) = 0.

If it is physically removed, then:

cost(virtualizing) = 2.(($5cy(i)r/$4bfe).$4io

+ $5cy(i)r.$4opc)

for i where $8d(i,j)=1.

le: the process of removal involves serially reading and

PAGE 8 1

ZHAPTER V

then writing (with the domain removed) each entry in the

relation.

The decision whether to physically remove the domain or not

is:

If cost(physical deletion) < cost(storage wasted) then

physically delete the domain.

cost (physical deletion) is as above.

cost(storage wasted) = 4.$5cy(i) r.$4sc.$4t

Thus the cost(virtuailizing) decision is a two-tierred

decision rule.

5.3.1.5 cost(use if domain virtual)

(Note: updates of virtual domains are illegal; inserts and

deletes are unnecessary. Thus only retrievals and use of the

domain as a qualifier are permissible for virtual domains.)

The cost(use if doaiin virtual) is broken down into two

types of use:

. use as a qualifier

. the object of a retrieval request.

5.3.1.5.1 cost(use as a qualifier)

PAGE 82

CHAPTER V

This involves a serial processing and computation of the

value of the virtual domain for all entries, and checking

that value against tha criteria specified in the qualifier.

The 'cost(final)' is the same as that described in 1.1.1

above.

For cases where there was some other domain in the selection

criteria that was indexed, the size of the set to be

serially searched is (on average)

(trss/$lrd(i,j)*c**i(trss)).

cost(use as a qualifier) = (cost(final).($1rd(i,j)*s** +

$1rd(i, j)*c**n)

$1rd(i, j)*c**i(trss) .cost (final')

)

where cost(final') is the same as cost(final), except that

all instances of $5cy(i)r in the algorithm are replaced by

'trss'.

5.3.1.5.2 cost (retrieval)

cost(retrieval) = ($2rd(i,j)r**.cost(final))

PAGE 83

CHAPTER V

This ends the discussion of virtualizing decisions. We move

on now to encoding decisions.

5.3.2 Encodinqg Decisions

Encoding decisions are made only for domains which have a

data type of 'character';

le: where $8_(j)cu=1

For purposes of this thesis, we will consider only one

coding scheme. This was done simply to avoid becoming to

voluminous, as the number of possible coding schemes is

potentially infinite. Furthermore, the purpose here is not

to be complete, but rather to present an approach.

The scheme that will be employed here is the encoding of

character strings as bit strings of length

! (log($6(j)g)/log 2). ('1' means here the next highest

integer, unless the expression evaluates to an integer, in

which case that is the value used.) This may only be done

if the number of unique values in the domain is constant

(ie: $6(j)g is constant)

The encoding decision becomes:

PAGE 84

CHAPTER V

If the domain (say d) is not currently encoded, then encode

it if:

(cost(encoding) + cost(use if encoded)) <

(cost(extra storage) + cost(use if unencoded))

Similarly, if it is carrently encoded, then decode if:

(cost(decoding) + cost(extra storage) + cost(use if

decoded))

< (cost (use if encoded))

Breaking down these casts into the individual components:

5.3.2.1 cost(encoding)

The cost of encoding domain d consists of the serial

processing of all relations in which domain d appears, and

replacing the id of the character string with a bit string

of the required length. Additionally, there is the cost of

building, and maintaining the encoding relation.

cost(encoding) = (2.SUM(($5cy(i)r/$4bfe).$4io +

$5cy(i)r.$43pc)

+ (($6(d)q/$4bfe).$4io + $6(d)q.$4opc))

Vi such that $8d(i,I)=1 ie: all relations in which d

PAGE 85

CHAPTER V

appears.

5.3.2.2 cost(decoding)

The cost of decoding a domain and storing the actual values

rather than the encaded values is identical to that of

encoding.

Ie: cost(decoding) = cost(encoding) see 1.2.1

5.3.2.3 cost(use if encoded)

The way an encoded domain is used is to employ the code

value as a primary key for the encoding relation. This means

that each time the domain is the object of a retrieval or an

update, or each time it is used as a qualifier, there will

be an additional 1/3 and an additional call to XRM to

retrieve either the code or the value (depending on whether

it is being used as a qualifier or is the object). Thus:

cost(use if encoded) = 2.(Slrd(i,d)***** + $2rd(i,d)ir,ul**)

PAGE 86

CHAPTER V

* ($4io + $4opc)

5. 3. 2. 4 cost (use if anencoded)

Since use of the domain if encoded involves an additional

I/O and call to XRM each time the domain is used, it follows

that the use of the lomain if unencoded should be 1/2 of

that if encoded; the additional retrieval is avoided. Thus:

cast (use if uneacoded) =

$2rd(i,d)Ir,ul**) . ($4io + $4opc)

($1rd(id)*****

5.3.2.5 cost(extra storage)

The cost of the additional storage required to store the

unencoded values will be the difference between the storage

required if the domain is unencoded, and that required if

the domain is encoded.

The cost of storage if unencoded will be a fullword for each

entry in each relation in which the domain appears. Ie:

Vicost(storage if unenzodel) =4.$4sc.$4t.SUM($5cy(i)r)

where $8d(i,d)=1

PAGE 87

CHAPTER V

The cost of storage if the domain is encoded will be:

. the overhead for the extra relation - about 100 bytes

in XRM

. two fullwords per entry in the encoding relation; the

first being the code, and the second the actual value,

and

. the sum of all the space in each relation in which the

domain appears.

Ie:

cost(storage if encoded) = ((SUM(!(log $6(d)q/log 2) +

8.$6(d)g + 100) . ($4sc.$4t)

Vi such that $8d(i,d)=1.

The additional storage is thus the difference between these

two. Note that the additional storage may be negative in the

event that there is only a small set of values, given the

overhead. This would not alter the decision rule in any way,

as it would way in favor of not encoding, which is what

should happen.

PAGE 88

CHAPTER V

Thus: cost(extra storage) =

(4.SUM($5cy(i)r

- (SUM(! (log $6(diq/log 2) + 8.$6(d)q + 100))

.$4sc.$4t

This concludes the lecision rules regarding encoding of

domains. We proceed now to indexing decisions.

54 Indexing Decisions.

In XRM, as described in Chapter II, any domain in the system

may have an inversion, or index, created for it. When there

is an inversion on some domain, and that domain is used as a

qualifier with <qualifier type> 'e', then retrievals, or

locating of tuples with the specified value in that domain

is extremely rapid. There are some schemes that address

themselves to indexes for gualifiers when the <qualifier

type> is 'n', but we shall not address such schemes here.

For our purposes, we are interested in an approach, and the

approach taken here may be easily extended to include

qualifiers of type 'n'.

PAGE 89

CHAPTER V

In XRM indexes are built in a specific way. Specifically, an

index entry is a 'value/id' pair, where the value is the

primary key. Indexes are implemented as binary relations.

Given a value, it is used as the primary key to locate the

id of a tuple containing that value in that domain. However,

the use of a value as a primary key has severe limitations.

There is no reason why a value should not appear in many

entries, and in fact, that is usually the case (except in

the case of primary keys). There is thus some method needed

which allows for this factor.

The method employed in XRM is to chain together all id's of

entries that have any one value in the specified domain.

Thus, while there would ordinarily be two fullwords (8

bytes) for each index entry, consisting of a 'value/id'

pair, we now have each index entry consisting of a

'id/pointer' pair, with the start of the chain having the

'id' replaced by a 'value'. There is therefor, one

additional word of storage required per chain over the

strict binary relation implementation. Furthermore, while

many schemes have several levels of indexing, such as that

found in ISAM, the XRM index is only one level deep. The

decision rules, however allow for a multi-level index.

PAGE 90

CHAPTER V

The decision rule for indexing is:

If (cost(storage) + Zost(projected use with index) +

cost(building index))

< cost(projezted use without index)

then build an index.

Similarly, if an index already exists for a domain, then

eliminate the 'cost(building index) ' part of the decision

rule.

The projected use of the domain is based on that experienced

in the preceding time period: $4t. There is an implicit

assumption in all these decision rules that use will

continue unchanged, which is, in fact, a reasonable

assumption to make. In the event that use changes, the SDS

will again be invoked, and will proceed under the same

assumption.

We proceed now to breik down the components of the decision

PAGE 91

CHAPTER V

rule.

S.4. 1 , cost (storage)

cost(storage) = SUM(((# entries at level i) . (space per

entry at level i))

+ (overheal for level i)), i=1,...L where L

is the number of levels of index.

As stated above, in XRM, L=1. The following is also true of

XRM:

. overhead per inversion is approximately 50 bytes

. space per entry is 8 bytes, plus 4 bytes per chain (see

above)

Thus, for XRH:

cost(storage) = (50 + 8.$5cy(i)r + 4.$6(d)q).$4sc.$4t

for an index on domain d of relation i.

5.4.2 cost(projected ase with index)

This component of the decision rule can be further broken

down into three sub components. These are:

. cost(retrievals)

PAGE 92

ZHAPTER V

. cost(decoding index)

. cost (maintaining index)

5. 4. 2. 1 cost (retrievals)

If there is an index on domain j of relation i, then any

time that domain j is used as a qualifier of type 'e', the

index can be employed to limit the size of the resolved set

of entries. In the event that the qualifier type is 'n',

then the index is of no value, and a serial search is

required. Since this is the case throughout all of these

decision rules, we -an eliminate those cases where the

qualifier type is not 'e'. The decision rules specified here

will thus include only <qualifier type> 'e' decision

variables.

We assume, furthermore, that entries retrieved are

distributed randomly throughout the relation.

The subcomponent cost(retrieval) thus becomes:

cost(retrieval) =

(($5cy(i)r/$6(j)q).($1rd(i,j)*se* + $lrd(i,j)*ce*n)

+ MIN((($5cy (i)r/$6 (j)q).$1rd(i,j)*ce*i(trss)),

(trss/$lrd(i,j)*ce*i(trss)) . ($4io+$4opc)

PAGE 93

ZHAPTER V

If a tentative index decision has been made for some other

domain in relation i, say domain j', at the time at which

domain j is being eviluated to see whether it warrants an

index, then some reguests that were previously compound

requests in which no other domain had an index will now

become requests in which some other domain in the selection

criteria has and index. It is therefor necessary to

transfer some of the requests from decision variable

$lrd(i,j)*ce*n to $1rd(i,j)*ce*i. If there has been a

tentative decision to drgp an index on some domain in the

relation, then transfer the requests in the oposite

direction.

The number of requests transferred is a function of the

number of compound requests that a given domain was involved

in as a fraction of all compound requests. Ie: Transfer the

following number of requests from $lrd(i,j)*ce*n to

$1rd(i,j)*ce*i:

$1rd (idl)j*ce** . $jrijL&j*c e** . $lrd(i,j)*ce**
$1rd(i,*)**e** $1rd (i, *) **e**

5.4.2.2 cost (decoding index)

This is a function of both the CPU overhead time invoved in

the decoding of an iniex, as well as the necessary number of

I/O's to get the index into primary memory. However, since

PAGE 94

HAPTER V

CPU time is so small in comparison with I/O time, the

decision rules presented here will not take into account CPU

overhead in decoding indexes.

Note that the maximum index blocking factor ($4bfx) is

(($4p/2) - $6(d)g) .

The cost of decoding the index is thus the number of I/O's

necessary to bring the index into primary memory. Ie:

cost(decoding index) =

($1rd(i,j)**e** . ($5cy(i)r/$4bfx) . $4io)

5. 1.2.3 cost (maintaining index)

The cost of maintaining the index is a function of the

number of new entries that are made in the relation, as well

as of the number of times a value in the domain is updated.

What is assumed for the purposes of the decision rules

presented here is that the insertions and updates all

require the index to be brought into primary memory.

However, to be strictly correct, the decision rules should

be concerned with the length of a series of inserts or

updates involving the domain in order to take into account

the fact that the index need not be brought into primary

memory separately for each operation.

PAGE 95

CHAPTER V

cost (maintaining index) =

($2rr(i)ien + $2rd(ij) lu,dI**).($4io + $4opc)

5.4.3 cost(building index)

The cost of building the index will be the cost of a serial

retrieval of each entry in the relation, and a write

operation to the index. Notice that the rule below has only

the overhead of a single call to XRM. This is because

inversion is accomplished by a specific XRM routine.

cost(building index) =

$4opc+$4io. (($5cy(i)r/$4bfe)+($5cy(i)r/$4bfx))

5.4.4 cost(projected use without index)

In the event that there is no index, any time the domain is

used as a qualifier in a simple query, or a compound quiry

in which no other domains in the qualifier had an index, a

serial retrieval is necessary.

PAGE 96

CHAPTER V

cost (projected use without index) =

(($5cy (i)r/$4:fe) .$4io) +

$5cy(i)r.$4opc). ($1rd(i, j)*se*+$1rd(i,j)*ce*n))

+ MIN((($5cy(i)r/$4bfe).$4io + $5cy(i)r.$4opc)

($lrd(i,j)*ze*i(trss)) ,

((trss/$1rd(ij)*ce*i(trss)). ($4io+$4opc))

This concludes the decision rules for indexing decisions. We

proceed with decision rules for factoring.

5.5 Factorinq Decisians.

Factoring decisions are decisions regarding the storing of

aggregations (or factored data) as opposed to computing them

each time they are required. The aggregations which this

system recognizes are:

. MAX

. MIN

. COUNT

UNIQUE the namber of unique values

. AVERAGE

. SUN

PAGE 97

CHAPTER V

This information applies only to numeric domains.

In addition, the folloving should be noted:

. storage for these aggregations are always reserved in

the system tables, and so the cost of storage is not

considered in the decision rules.

. COUNT is always maintained by the system, as the RDS

uses it continuously.

. UNIQUE is no more than the COUNT of the underlying

domain, and so is always maintained

If SUM is stored, there is no need to store AVERAGE. The

reverse is not true, howver because of possible

roundoff errors.

The factoring decision is:

If cost(maintaining aggregation) <

cost(computing aggregation)

then store it. If not, compute it each time.

5.5.1 cost(computing aggregate)

This consists of a linear processing of the relation, and so

the cost is simply:

PAGE 98

CHAPTER V

(($5cy (i) r/$4bfe) . $4 i3 +

$5cy(i)r.$4op:).($2rd (i,j)r(<aggr>)**

where <aggr>::= SUM I AVERAGE I MIN I MAX

5.5.2 cost (maintaining aggregation)

This involves computing the aggregation once, and then

maintaining it, or updating it each time a value in that

domain is updated, deletel or inserted.

cost (maintaining aggregation) =

(($5cy(i)r/$4bfe).$4io + $5cy(i)r.$4opc)

+ ($2rd(i,j) lu,dj** + $2rr(i)ien) . ($4io +

$4opc)

This concludes the liscussion of factoring decisions. We

proceed now with permanent join decisions.

5.6 Permanent Join Dacisions

This decision rule is employed in the event that some new

domain(s) has (have) been added to the system and have been

PAGE 99

CHAPTER V

set up in separate relations to avoid restructuring the

existing relation. The format of the new relation will be

the primary key of the existing relation in which the new

domain(s) belong(s), and the new domain(s). This means that

any time these new domains are used in conjunction with any

of those in the existing relation, a join is required, or

more precisely, another retrieval is required. This is

because both relations have the same primary key, and so a

join is a trivial matter.

If the relations are left separate, then there will be

additional retrievals required in satisfying certain

requests. The reverse is not true. That is, if the relations

were to be permanently joined (restructuring were to occur),

there is no case where the fact that they are joined

permanently would result in additional retrievals over the

case where they were left separate. This being so, we are

able to drop the -oncept of cost(projected use) and

concentrate rather 3n the cost(projected use premium).

sp;The decision then becomes:

If (cost(restructuring) + cost(storage if restructured))

< (cost(projected use premium) + cost(storage if not

restructured))

then restructure the relations into a single (permanently

joined) relation. Breaking lown the cost components, we

PAGE 100

CHAPTER V

have:

5.6.1 cost(projected use premium)

This is a case of several additional retrievals being

necessary whenever any domain (s) in the new un-joined

relation are used in a reguest together with some of those

domains in the existing relation. Ie:

cost(projected use premium) =

$3rd(i,Ipi)d(j,IpI) . ($4io + $4opc) where:

pflpi Vp such that $8p(i,p)=1

This statistic is maintained separately by the RDS - ie: the

number of times each relation is joined to each other

relation.

5.6.2 cost(storage if restructured)

The cost of storage if the relations are restructured will

be 4 bytes for each entry for each domain in the new

relation excluding the primary key domains. Ie:

cost(storage if restr)= 4.$5cy(i)r.$4sc.$4t.SUM($8d(i,j))

PAGE 101

CHAPTER V

Vj such that $8p(ij)=0

5.6.3 cost(storage if not restructured)

This is similar to the computation of 5.6.2, except that the

restriction that the lomain not be in the primary key is

lifted. Ie:

cost(storage if not restr)

4.$5cy(i)r.$4sc.$$4t.SUH($8d(ij))

where i is the new relation

5. 6.4 cost (restructuring)

The restructuring of two relations with the same primary

keys consists of a serial processing of one relation, using

its primary key to retrieve from the other relation, and

writing the new joined entry out again. In other worls,

three operations for each entry. If i is the existing

relation, and j is the new relation, then:

cost (restructuring)= 3. ($5cy (i)r/$4bfe).$4io

+ 3.$5cy(i)r.$4opc

PAGE 102

CHAPTER V

This completes the decision rules for restructuring

decisions. We proceel now with decision rules responsible

for establishing derived relations.

5.7 Derived Relation Decisions.

It is important to point out that derived relations are

created solely for raisons of efficiency, and so decisions

to create derived relations are quite independent of

structuring decisions of the type mentioned above, and the

third normalizing prozess.

The choice exists basically between storing a virtual

relation defined by some user for some specific application

(or set of applications) or simulating that virtual relation

each time it is referenced. If:

cost(simulating virtuil relation) <

(cost(storage for derived relation) + cost(use of derived

relation) + cost(creating derived relation) + cost(update

overhead)

PAGE 103

CHAPTER V

then continue simulating the virtual relation. If not, then

it is cheaper to store it.

Similarly, if a derived relation is stored, the decision to

cease storing it and to return to simulating the virtual

relation would be the same as that above, except that it

would exclude the 'cost(creating derived relation)'.

All references to 'cost(final)' are the same as those made

earlier in the chapter.

5.7.1 cost(simulating virtual relation)

A virtual relation is simulated by performing joins in the

user workspace of various real relations that are required

for a particular request.

cost (simulating virtual relation) =

cost(final).($1vr(m)*nu*

+ 1/$6(j)q.($lvd(m,*)*se* + $lvd(m,*)*ce**)

+ 1/2($1vd(m,*) *sn* + $1vd(m,*)*cn**))

5.7.2 cost(storage for derived relation)

The storage for a lerived relation will consist of the

PAGE 104

CHAPTER V

overhead per relation, and the storage for each of the

domains of the derived relation. The cardinality vill be

approximated by the miximus cardinality.

cost(storage for derived relation) =

(100 + $5cy(m)d.$5#d(m)v.4) . $4sc.$4t

where the derived relation is relation m, and $5cy(m)d =

$5cy(O)r and O=i x il x... Vi such that $8d(ij)=1 and Vj

where $8d(mj)=1.

5.7.3 cost(use of derived relation)

Before determining the use cost of the derived relation, the

SDS would make an inlexing decision for the domains of the

virtual relation (see 2 above except, substitute 'v' for

all Irv in relation types). A derived relation may then be

PAGE 105

CHAPTER V

treated in an analogous manner to a real relation. Ie:

cost(use of derived relation a) =

($5cy(m)d/$4bfe).$1vr(m)*nu*.$4io

+ $5cy(m)d.$lvr(m)*nu*.$4opc

+ SUM(($8i(m,j).($5cy (m)d/$6(j)q). $lvd(m,j)*js,cle**

. ($4io + $4opc)

+ (1-$8i(mj)) ($5zy(m)d/$4bfe). $1vd(n,j)*Is,cle* . $4io

+$5cy(a)d.$lvd(m,j)*Is,cle* . $4opc)

+ (($5cy(m)d/$4bfe).$lvd(m,j)*js,cln** . $4io

+ $5cy(m)d.$lvd(m,j)*Is,cln** . $4opc

)

Vj where $8d(m,j)=1

5.7.4 cost(creating derived relation)

The cost of creating the derived relation is no more than

the cost(final), since that is, in fact the optimal way of

creating it.

5.7.5 cost(update overhead)

The update overhead for a derived relation involves an

additional I/0 and call to XRM for each change to any of the

PAGE 106

CHAPTER V

domains in the real relation that also appear in the derived

relation, m. Ie:

cost (update overhead) =

SUM($2rd(i,j)Iu,s,il** . ($4io + $4opc)

$8d(m,j)=1, and Vi where $8d(i,j)=1.

Vj where

This completes the discussion of the SDS decision rules. It

can be seen that these rules are guite modular in that any

major decision - for example, Derived Relation Decisions -

are composed of several subdecisions. Any or all of these

subdecisions can be replaced without affecting any other

part of the SDS.

These rules will be applied in the scenario of Chapter VII.

PAGE 107

CHAPTER VI

The Request Decision Sgbsystem - (RQS)

The RDS is responsible for overseeing any requests that are

made against the database. More specifically, it is

responsible for the fallowing functions:

. determine whether the request is legal - ie: check

access control information and decide based on that

whether to perform the request.

. determine whether the request is feasible - ie:

determine whether it can logically be satisfied, or

whether the system requires more information to

resolve the request.

. determine the most efficient way of satisfying the

particular request, assuming it is deemed 'feasible'.

. update the relevent decision variables.

For purposes of this thesis, we will omit the question of

the legality if the request. It is envisioned that the

access control mechanisms will be implemented at the real

relation level. The :reation of virtual relations can be

controlled in such a way as to make the data that the user

sees in a virtual relation only that which he (it) is

permitted to see. Any data the user is not authorized to see

PAGE 108

CHAPTER VI

will be removed from the data during the mapping process,

thus making the fact that there is some data not being

supplied invisible to the user. Thus, security can be

implemented as restrictions of real relations.

We proceed now with the collection of algorithms that the

RDS will contain for the resolving of requests. We shall not

detail the points at which decision variable updates are

performed for reasons of making an already difficult section

more unreadable. Instead, it should be fairly clear at which

point specific decisian variables will be updated from the

context of the discussion at that point. Finally, note that

decision variable aplates are not actually made until the

completion of Step 5. All updates until that point are

tentative and only become final at the conclusion of the

step. The reason for this approach will become clear from

the iterative nature of the RDS.

Note that the notation developed thus far will be continued

here. In addition, the decision variable '$5cy(ije' should

be taken to read '$5cy(i)r OR $5cy(i)d'.

PAGE 109

CHAPTER VI

stepR-.

The purpose of Step 1 is to establish a set of truth

functions regarding the domains appearing in the reguest.

The truth functions set up are:

* $8od(k) = 1 for all k that are object domains in the

request. If an entry is specified (ie: all domains in

a relation) then such a truth function is set up for

ever! domain in the relation.

. $8eq(k)=1 for all domains k that appear as qualifiers

with <qualifier type> 'e'.

. $8nq(k)=1 for all domains k that appear in the request

as qualifiers with <qualifier type> not 'e'.

Note that k may be a role name instead of a domain name.

If the list of domains appearing in the request is RIP, then

for each k<IRI find all relations i such that:

$8r(i,k)=1 or $8d(i,k)=1, and

$8x(i)r=1 or $8x(i)d=1.

but if $8x(i)d=1, i should not be a derived relation whose

derivation involved a restriction.

This step finds all relations in which each of the domains

PAGE 110

CHAPTER VI

in JRJ appears. This step produces a list of relations for

each domain k ie: ji(k)j. These lists are all members of a

single list: lIi(k)l1, where L (I ji(k)11 = L(IRI).

If for any Ii(k)I we have L(Ii(k)I)=0 then the request is

'infeasible', because some role- or domain name is used in

the request which has not been defined. It is also possible

that a domain appears more than once in a single relation,

and if that is the case the request must supply role names.

ITe:

$8d(i,k)=0, and $8r(i,k')=1 and $8r(i,k'')=1 where k'

and k'' are role names.

qtep_3.

This step simply establishes a list of relations which will

eventually (at the end of the alogorithm) become the optimum

list of relations to satisfy the request.

Ie: set up list Ifinali, initially 'infeasible', and

cost(Ifinall)=2**30 (or some maximum number).

Step_4.

This step finds all possible combinations of relations that

PAGE 111

CHAPTER VI

can satisfy the request. The results of the step is a list

of relations that cantain all the domains necessary to

satisfy the request, based on the set of truth functions

established in Step 1. The procedure is as follows:

Vii(k) I < I li(k) 1 :

Initialize lxl=Ii(k) I

Vjfk if IxI N Ii(j) I = g then:

1x1=1xI U jij)j

order list lxi in ascending order, and see if that list

already has been 'done'. If yes, go on to the next

Ii(k)I. If not then save a copy of this lxi as 'done'

and do Step 5.

After completing Step 5:

If cost(IxI)<ost(lfinall) and lxi is not 'infeasible'

then set:

Ifinall=s', and cost(IfinalI)=cost(ixi) where s' is

the collection of set theoretic operators generated by

Step 5.

The results of this step (after repeated invocations of Step

5) is the optimal list Ifinall as a collection of set

theoretic operators, s', and an associated cost,

cost(ifinall).

PAGE 112

CHAPTER VI

This step consists of a series of substeps whose function it

is to determine the lowest cost(Jx) - or more precisely,

the lowest cost for resolving the request via relations in

IxI - for a given xir from Step 4.

If any relation iIxi Can not be joined to any other

relation i'4txl then then lxi is 'infeasible', and the

evaluation stops.

We proceed now with a detailed algorithm for determining the

minimum cost(lxi).

Ste_ 5.1

This step finds all relations in lxi with the same primary

key, and the cheapest way of ordering the necessary joins,

and restrictions.

Repeat Vif1xI not already 'done':

Set Ix't to <null>, and cost(Ix'1)=2**30 (or some large

number).

Now find all relations j (say Iji) in lxi with the same

primary key:

Te: Find all j such that $8p(j,k)=1 Yk where $8p(i,k)=1.

This results in a set lj'=i U iji

Vaflj'I do the following:

PAGE 113

CHAPTER VI

Set Ir'I to <null>.

Far each k~a where $8eq(k)=1 and $8i(a,k)=1, set

r=($5cy(a)e/$6(k)g). Insert this r in Irli such that

IreI is in ascending order.

If $8eg(k)=1 Vk where $8p(a,k)=1 then r=1, and insert in

ascending position in Ir'I.

This case is where all domains of the primary key are

qualifier domains with <qualifier type> 'e'.

Also, if any qualifier domain with <qualifier type> 'e'

is unique, then r=1.

Ie: If $8eq(k)=1, $8u(k)=1 and $8i(a,k)=1 then r=1, and

insert r in ascending order in Ir'I.

Choose w = first member of Ir'I; ie: the smallest r<jr'l.

Then cost(lj'l) = w.($4io + $4opc).L(Ij'I)

If cost(jj'I) < cost(Ix'I) then:

cost(Ixe 1)=cost(Ij'), and

x'lI=Ir'

Reset Ire to <null>.

The case now is where r will resolve, but there is no index

on any of the qualifier domains:

If $8eq(k)=1 and $8u(k)=1 then r=1, and insert in ascending

order position in Ir'I.

For each k<a where $8eq(k)=1 and $8d(a,k)=1, but $8i(a,k)=O,

set:

r= ($5cy(a)e/$6(k)q), and insert r in ascending order in

PAGE 114

CHAPTER VI

IrII .

(Note that the reason that r=1 when $8u(k)=1

$6 (k)q=$5cy (a) e.)

After completing all k~a, pick w = first member of

the smallest r.

Then cost(Ij'I) = ($5:y(a)e/$4bfe).$4io

+ $5cy(a)e.$4opc

+ (L(Ij'l)-1).w.($4io + $4opc)

If cost(Ije')<cost(Ix'I) then:

cost(Ix'I) = cost(IjeI), and

Ix'I = Ir'I

Reset Ir'I to <null>.

Now, for each k<a where $8nq(k)=1 and $8d(a,k)=1,

set r=1/2.$5cy(a)e, and insert r in Irel in

order.

After all k<a are completed, choose w=first uemb

ie: fir the smallest r. Then:

cost(I j') =

is that

Ir'lI; ie:

ascending

er of Ir'lI;

($5cy(a) e/$4 bfe) .$4io

+ $5,y(a)e.$4opc

+ (L(jj'j)-1).w.($4io + $4opc)

If cost(Ij'I)<cost(Ix'I) then:

cost(izxI) = cost(ij'i) and

PAGE 115

CHAPTER VI

Irxe = jr'i

If at this stage jx'j is null, then a serial retrieval is

required, since there were no qualifiers in the request.

Proceed as follows:

Find a*j I such that $5cy(a)e is a minimum Va*Ij'I.

Mark a as 'done', and set s=a.

For each k/a, k(Ij , do the following:

Mark k as 'done'.

If Vb where:

($8eq(b)=1, $8nq(b)=1 or $8od(b)=1) and

($8d(s,b)=1 and $8d(kb)=1) then no join is needed,

since all domains needed from k are already in s.

Otherwise, the set theoretic operators become:

s=s(Ipj) * k(I=,pI) Vp4lpi where $8p(a,p)=1, and

cost(Ix') = ($5cy (a) e/$4bfe) .$4io

+ $5cy(a)e.$4opc

+ $5cy (a)e.($4io + $4opc).(L(Ij'1)-1)

If, hvwever, x'I was not <null> at the end of the above

procedure, proceed as follows:

Choose a=first member of Jx' (ie: where r is smallest),

and mark a as 'done'.

PAGE 116

CHAPTER VI

Set s=a.

The set theoretic 3perators then become:

s=s(Ipj) R (Ie,pi) Vp4IpI such that $8eq(p)=1

$8nq(p)=1,

where '0' is the qaalifier on domain p. (see Appendix

Page 175)

Now, for all k/ea, k<Ij'j do the following:

Mark k as 'done'.

If Vb where:

($8eq(b)=1, $8nq(b)=1 or $8od(b)=1) and

($8d(s,b)=1 and $8d(k,b)=1) no join is necessary, si

all domains needed from relation k are already in s.

Otherwise, establish the following set theore

operators:

OR

2,

nce

tic

If $8eg(b)=0 and $8ng(b)=0 Vb~k, then

s=s(jpi) * k(I=,pI) Vp4lpl where $8p(a,p)=1.

Or, if $8eq(b)=1 or $8nq(b)=1 for some b<k, and

($8d(s,b)=O and $81(k,b)=1) then set theoretic operators

become:

s=(s(IpI)

$8eq (t) =1

*

or

k (I=,pi)) R

$8nq(t)=1, and

(Ie,tI) Vt<IkI such that

8 is the qualifier type on

PAGE 117

CHAPTER VI

domain t (see Appendix 2, Page &pno3).

Once all kij'l have been so included in the set theoretic

operators, they can be removed from the list of relations to

be joined (ie: Jxj) and replace them all by the single

relation that would result from s. Also, set up truth

functions as follows:

$8d(s,b)=1 Vb where $8d(k,b)=1 for k<Jj'J, and

$8p(s,b)=1 Vb where $8p(a,b)=1.

Also set $5cy(s)v = r.

Nzte that r in this case is, strictly speaking, an upper

limit on the cardinality of s, since other qualifiers may

well result in reducing the size of r.

At the completion of Step 5.1, there exists a collection of

(virtual) relations Is'I each generated as outlined in this

step. Each s4js'I is a relation consisting of all real (and

derived) relations in Ixi that have the same primary key,

and is restricted as required by the qualifiers in the

request.

If L(Is'I)=1 then steps 5.2 , 5.3 and 5.4 may be omitted.

The algorithm continues in this case with where it left off

PAGE 118

CHAPTER VI

in Step 4.

Step 5.2

This step is responsible for joining in the most efficient

manner, all those relations s*Is'l, in the case where s~is'i

contains the primary key of (but does not have the same

primary key as) tfls'j, t/s.

Ie: $8d(s,k)=1 Vk where $8p(t,k)=1, s,t*Is'I.

If there is no s and t where this is the case, proceed to

Step 5.3. Otherwise continue with the algorithm of Step

5.2.

Assuming s contains the primary key domains of t:

check to see whether s already contains all the needed

domains (for this request) in t, and if so, remove t from

Is'I and continue with some other tis'l.

If $8od(k)=o Vk where $8d(tk)=1 and $5cy(t)v=1 then

establish 2 set theoretic operators:

1) t - ie: leave t as it is in Is' I, and

2) s'=s(jpl) R (I=,pl) p<IpI Vp where $8p(tp)=1, and

values for the domains are obtained from (1).

cost(Is, 1)=cost(t) + cost(s).

This means that if there are no domains that are to be

PAGE 119

CHAPTER VI

retrieved from t, ani t will resolve to a single entry

($5cy(t)v=1), then resolve t and use the values for the

primary key domains as additional qualifiers in s.

If $8od(k)=1 for some k where $8d(t,k)=1 then proceed as

follows:

s'=(s(jgI) * t(J=,gI)) R (Ie,pI)

where g4|gI Vg where $8p(t,g)=1, and

Vp*ItI such that $3eg(p)=1 or $8nq(p)=1, and

e is the qualifier type on domain p (see Appendix 2, Page

&pno3).

cost(s')=cost(s) + 2.$5cy(s)v.($4io + $4opc)

Remove t from the list of relations to be joined (ie: jx'j),

and set up additional truth functions for s' as follows:

$8d(s,b)=1 Vb where $8(t,b)=1.

At the conclusion of this step, there exists a collection of

virtual relations Is" I each generated from some member(s) s

in Is'l. Furthermore, these relations are only joinable in a

particular way - namely, as in Step 5.3.

PAGE 120

CHAPTER VI

Step 5.3

This step is responsible for joining relations s'*Is''I from

step 5.2 (or 5.1) to yield a single relation containing all

object domains in the request. Note that by this stage, all

qualifier domains will have been employed in the necessary

restrictions.

We proceed as follows:

Choose tfls''I such that $5cy(t)v is the minimum of all

relations in Is''J.

Then, Va*is''j, aps do the following:

If $8d(t,k)=1 Yk where :

($8eq(k)=1, $8nq(k)=1 or $8od(k)=1), and $8d(a,k)=1, then t

contains all the domains neccessary for the request that are

in a. So, remove a from Is''I and continue with the next

a<ls'' .

See if $8d(t,k)=1 and $8d(a,k)=1 for some k. Ie: see if any

two relations in Is''I Contain a common domain. If not, try

some other afls''I.

If so:

PAGE 121

CHAPTER VI

t=t(k) * a(k), and

cost(t)=cost(t) + cost(a) + ($4io + $4opc).$5cy(t)v.$5cy(a)v

Remove relation a from Is''1 and add the necessary set of

truth functions. ie: $8d(tk)=1 Yk where $8d(a,k)=1.

At this stage, if L(Is'')=1, then we have found the

cheapest method for joining all relations in lxi, and we

continue where we left off in Step 4.

If this is not the case, and L(Is''I)>1, then the request is

#infeasible' with only the relations in lxi, and some other

relations must be found that will allow the request to be

logically satisfied. This is the function of Step 5.4.

Step 5. 4

This step attempts to find relations which, although not

specified in Ilxi will allow the request to be completed.

Finding such fintermeliary' relations can be accomplished as

follows:

5.4.1) Set up list Ib'l=<null>

5.4.2) Choose some afls''1

PAGE 122

CHAPTER VI

5.4.3) Find some relation b such that bjIxl and:

$8d(a,j)=1 and $8d(b,j)=1.

5.4.4) If found, set Ib'I = Ib'I U b

5.4.5) If not found, then the request is 'infeasible', and

continue where we left off in Step 4.

5.4.6) See if $8d(b,k)=l and

tfls'',, t*a, b<Jb'j

$8d(t,k)=1 for some k,

5.4.7) If yes: then set txI=IxI U gbil, and remove relation

t from Is''f, replacing it with the single relation:

a= (a(j) * b(j)) (k) * t(k).

Continue with Step 5.4.12

5.4.8) If not, try 5.4.6 for some other t<(s''I, t/a

5.4.9) If that fails, fini relation cfix1, c/b such that:

$8d(b,j)=1 and $8d(c,j)=1 for some j.

5.4.10) If found, Ib'I=Ib'I U c, and repeat from 5.4.6

5.4.11) If not, the request is 'infeasible', and continue

from where left off in Step 4.

PAGE 123

CHAPTER VI

5.4.12) If L(Is''I) 1 1, repeat 5.4.1 through 5.4.11 .

5.4.13) If L(Is''J) = 1, then restart step 5 again from 5.1

with the new lxi.

This completes the alogorithm for optimally satisfying

requests. Very briefly, it works as follows:

First find all relations in the list that have the same

primary keys. See 4hich of those will resolve to the

smallest set of data, and do a join of that relation with

others of the same primary key.

After relations with the same primary keys have been joined,

see if any one relation contains the primary key of any

other relation. If he retrieved primary key values to

retrieve from the other relation.

After joining all relations by primary keys that can be

joined in that way, join remaining relations on some common

domain.

If there is no common domain, find some other relation that

has domains common to both.

PAGE 124

CHAPTER VI

This, then, completes the discussion of the RDS. As stated

earlier, the RDS is also responsible for updating decision

variables, and the appropriate points for performing this

function can be surmised from the description of the

algorithm.

We proceed now to a scenario in which the decision rules

developed in Chapters V and VI will be applied.

PAGE 125

CHAPTER VII PAGE 126

Scenario for appligtion of Decision Rules.

This chapter presents a brief scenario that applies some of

the decision rules developed in Chapters V and VI. Not all

of these rules be usel in the scenario, but a representative

number of them will be, and that will serve to illustrate

the use of others.

Consider a company divided into Departments, each with its

awn Manager. Each Department employs Employees, who are

Assigned to work on one Project at a time, and all projects

fall within a single Department. Each project requires

-ertain Parts, which are provided by the company's

SuupligErs.

f we were to attempt to establish a company data base for

this company we would have to:

. specify the entities in which we are interested,

. determine what data we want to maintain about each of

these entities, and

. determine how these entities interact.

The interactions can perhaps best be done diagramatically.

Given the company structure above, we might diagram the

CHAPTER VII

interaction between the entities as it appears in Figure

7.1. The entity at the head of an arrow is, in some sense

'owned' by the entity at the tail. *

But this diagram is not sufficient to express certain

aspects of the structare.

For example, for any one Manager, there is only 2ne

Department while any Manager may have several Projects under

his control. We will introduce an '=' near the head of the

arrow to signify the one-to-one nature of the relationship.

In the terminology of the truth functions of Chapter IV,

this is a Autual .e~endenc.y.

Te: given one entity, the other entity is uniquely

determined, and vice versa. This is shown in Figure 7.2.

One other case is not expressed in Figure 7.2; namely the

difference between asses where one entity is uniquely

determined by another, and cases where it is not.

* The concept of ownership is the same as that found in the
network model. See (7)

PAGE 127

CHAPTER VII

MANAGER

DEPARTMENT J PROJECT
II

SUPPLIER

PARTS

EMPLOYEE

Filure 7 1

PAGE 128

CHAPTER VII

MANAGER

DEPA TMENT PROJECT

SUPPLI ER

PA TS

EMPLOYEE

Figure 7 .2

PAGE 129

CHAPTER VII

The former is a case 3f a functional dependency **

or a one-to-many mapping. The latter is a many-to-many

mapping. An example of the latter is Supplier and Parts,

where several Suppliers may supply the same Part, and one

Supplier might supply many Parts. A possible method for

diagramatically distinguishing between these two cases would

be a double-headed arrow for many-to-many mappings. Figure

7.2 is updated to include this concept in Figure 7.3. Now

that we have a clear concept of the relationships between

the entities, we can begin to consider what information, or

attributes, we wish to keep about each entity. ***

Assume for purposes of the scenario that the attributes to

be maintained for each entity are as specified in Figure

7.4.

Now notice that some attribute (or combination of

** Functional dependency, as explained in Chapter II, means
simply, given one entity, the other is uniquely determined,
but the reverse is not true. For example, given an Employee,
his Department is uniguely determined since an Employee can
only belong to one Department.

*** Note that consideration of attributes and consideration
of interrelationships between entities are orthoganal, and
as such, may be done in any order. The order presented here
is by no means mandatory.

PAGE 130

CHAPTER VII

MANAGER

I
DEPARm ENT PR0 ECT

SUPPLIER

EMPLOYEE

!iagrge 7 . 3

PAGE 131

CHAPTER VII

Manager(Mgr#, m_nime, office#)

Department(Dept#, dname)

Project (Proj#, paame, startdate, enddate)

Supplier(Supp#, s_name, phone)

Part(p#, guant, dite)

Employee (socsec,ename,hiredate,salary, title)

attributes) in each entity of Figure 7.4, identifies the

entity uniquely; such as socsec would an Employee. Notice

that the concept of 'uniquely defined' has been applied to

both relationships between entities, and within entities

themselves.

We are now in a position to define truth functions for the

structure between the entities as depicted in Figure 7.3,

and within the entities as defined in Figure 7.4.

First we define functional dependencies within entities by

PAGE 132

CHAPTER VII

setting up attributes as functionally dependent on an

attribute (or group of attributes) that uniquely define the

entity. The resulting truth functions are as depicted in

Figure 7.5.

We will call the attribute(s) on which the other attributes

in an entity are functionally dependent the key of the

entry.

Notice that Part has been omitted from Figure 7.5. This is

because the many-to-many mapping between Part and Supplier,

and Part and Project, as depicted by the double-headed arrow

in Figure 7.3. To establish functional dependency truth

functions for such entities, we include the key attributes

of the entities at the tail end(s) of the double-headed

arrow, which yields in this case:

$8f(p#,Proj#,Supp#I, Iquantdatel)=1

This same approach would be taken (ie: a double headed

arrow) if there were not attribute(s) within an entity that

uniquely identified the entity.

PAGE 133

CHAPTER VII

$8f (Mgr# ,Im_name,office#)=1

$8f (IDept#I, Id_namel)=1

$8f(IProj#1, I p_namestartdate,enddatel)1

$8f (ISupp# 1, Is_naae,phone I)= 1

$8f(IsocsecI,Ie_name,hiredate,salary,titlel)=1

Fi3gure 7. 5

This takes care of intra-entity dependencies, but neglects

inter-entity dependencies that are portrayed in Figure 7.3.

All we have done thus far is take account of the

double-headed arrow of Figure 7.3, but not any other types

of arrows.

In order to handle the single-headed arrows we proceed as

follows:

Add the key of the entity at the tail to the list of

functionally dependent attributes of the entity at the head

of the arrow.

For the entities of Figure 7.5, and the interrelations of

Figure 7.3, this process generates the entities of Figure

PAGE 134

CHAPTER VII

$8f(jfgr#,Im_name,office#j)=1

$8f (IDept#1 ,1d_namel) =1

$8f (IProj#IIp_name,startdate,enddate,Ngr#,Dept#I)1

$8f(ISupp#I,Is_name,phonej) =1

$8f(Isoc-secIIe_name , hiredate , salary , title,

Dept#, Proj#l)=1

$8f(|p#,Proj#,Supp# I,Iquant ,datel)=1

Figure7.6

7.6

Now all that is left to consider is the arrow head with the

'=#. This type of arrow indicates a one-to-one mapping, or

a mutual dependengl, and so a mutual dependency truth

function is establishe1 for the keys of the entities at the

tail, and head of the arrow. Thus, from Figure 7.3 we have:

$8m (I Mgr#I , IDept#I) =1

PAGE 135

CHAPTER VII

We now have a set of truth functions that reflect the entity

attributes, as well as the interrelations between the

entities. Now the SDS, by applying the algorithm specified

in Appendix 1, generates the third normalized relations of

Figure 7.7.

Implementation of Relations.

The procedure of diagramming the inter-entity relationships

as outlined above proviles a logical method for establishing

the truth functions necessary for the SDS to maintain third

normalization.

The next function of the SDS at this stage is to determine

the implementation of the relations of Figure 7.7. The

decisions to be made are:

. virtualizing and encoding decisions,

. indexing decisions

. factoring decisions

No derived relation, or permanent join decisions can be made

at this point since there are no virtual relations, and no

new domains have been defined to be included in the data

base. Thus all decision variables referring to virtual

PAGE 136

CHAPTER VII

RR1 (5griDept#,aname,d_name,office#)

RR2 (Proji,Mgr#,p_name,startdate,enddate)

RR3(soc sec, Proj#, Dept#, ename, hiredate, salary,

title)

RR4(Supp, sname, phone)

RR5(p#Proj#,Sqgg, guant, date)

(Keys underlined)

relations, and relations with the same key will be 0,

resulting in the effect of the appropriate decision rules

beeing null.

In order to employ the various decision rules, we need to

have values for some of the decision variables. At this

point (ie: in definition phase) these values must be

user-supplied.

For our purposes, we zan leal with some of the aggregations

PAGE 137

CHAPTER VII

of decision variables, and allow the SDS to split these

aggregations into detailed decision variables as needed. All

decision variables which do not have user-supplied values,

will be 0.

Suppose we know the following about the use of the data

base:

a) RR4 is usually accessed on sname,

b) RR2 is usually accessed on pname

c) RR1 is usually accessed either on mname or dname,

equally often on each

d) The enddate of a project (in RR2) is always 3 months

after the stirtdate. (All projects run for 3

months.)

e) title of RR3 has exactly 46 possible values, and is not

expected to change. It is also seldom accessed.

For (a), (b) and (c), the SDS should consider indexing the

relevent attributes.

For (d), virtualizing of enddate is possible, and for (e)

encoding of title is possible.

We will set up the following decision variable values for

use in further explanation:

PAGE 138

CHAPTER VII

$lrd(RR4,s~name)*se* = 10

$1rd(RR2,p_name)*sa* = 10

$lrd(RR1,aname)*se* = 5

$lrd(RR1,a_name)*ce*n = 5

$lrd(RR1,d_name)*se* = 5

$1rd(RR1,d_name)*c*e*n = 5

All other decision variables have initial values of 0.

Other pertinent data is:

$5cy(RR1)r = 60

$5cy(RR2)r = 123

$5cy(RR3)r = 2000

$5cy(RR4)r = 75

$5cy(RR5)r = 25000

$6(title)q = 46

$6(sname)q = 10

$6(pname)q = 89

$6(mname)q = 58

$6(dname)q = 60

$4bfe = 25

$4bfx = 350

PAGE 139

CHAPTER VII

$4io = 0.0012

$4opc = 0.005

$4t = 1

$4sc = 1.6 x 10**(-5)

7.1 VirtualiZing Decisions.

Suppose:

$1rd(RR2,enddate)*s**=1,

$1rd (RR2,enddate)*c**n=1,

$2rd(RR2,enddate)r**=2, and

$2rd(RR2,startdate)u**=5 .

Using decision rule 5.3.1 of Chapter V:

Cost(making domain real), and cost(virtualizing) are both 0,

since there is no dati yet in the system.

cost(use if real)= (1+1).(123/25) x 0.0012

+ 123 x 0.005

= 0.63

cost(maintaining if real) = 5 x (0.0012 + 0.005)

= 0.03

cost(final) = (123/25 x 0.0012) + 123 x 0.005

= 0.62

cost(use if virtual) = (0.62 x 2)+(0.62 x 2)

PAGE 140

CHAPTER VII

= 2.48

Applying the decision rule of 5.3.1, we have:

Make the domain real if:

(0.63 + 0.03) < (2.48).

In this case, the domain would be made real. (Note that the

main reason for this is the fact that the domains is used as

a qualifier, thus reqairing a linear search of the relation

to compute, and then test the value of the domain.

7.2 Encoding Decisioas.

The candidate here for encoding is 'title' in RR3.

Suppose:

$1rd(RR3,title)***** = 1, and

$2rd(RR3,title)jr,ul** = 2.

Then, applying the decision rule 5.3.2 of Chapter V:

cost(encoding) and cost(decoding) are both 0, since there is

as yet no data in the data base.

cost(use if encoded) = 2.(1+2).(0.0012+0.005)

= 0.04

cost(use if unencoded) (1+2).(0.0012+0.005)

= 0.02

PAGE 141

CHAPTER VII

cost(extra storage) = ((4 x 2000)

- (6+(8 x 46)+100))

x (1 x 1.6 x 10**(-5))

=.12

Thus, using the decision rule of 5.3.2, encode the domain

if:

(0.04) < (0.12 + 0.02).

In this case, 'title' of RR3 would be encoded.

7.3 Indexing Decisions.

For each of the domains used as qualifiers with a <qualifier

type> of 'e', the SDS would evaluate the desirability of

creating an index (if one did not already exist) for that

domain. If an index exists, the SDS would determine whether

it is still needed.

We shall only follow one case here; namely, for pname in

RR2.

Applying the decision rule 5.4 of Chapter V:

cost(storage) = (50+(8 x 123)+(4 x 89))

x ((1.6 x 10**(-5)) x 1)

PAGE 142

CHAPTER VII

= 0.02

cost (projected use with index) =

(123/89) x 10 x (0.0012+0.005)

+ 10 x (123/350) x 0.0012

= 0.09

cost(projected use without index) =

10 x (((123/25) x 0.0012)+(123 x 0.005))

= 6.21

cost(building index) =

0.005 + 0.0012 x((123/25)+(123/350))

= 0.01

Thus, the decision becomes:

Build an index for ths domain if:

(0.02 + 0.09 + 0.01) < (6.21)

which would result in a decision to build an index for

p_name of RR2.

No permanent join, or derived relation decisions are made

for reasons outlined above.

Once the system has been 3perational for a while, and values

have been generated for the different decision variables,

PAGE 143

CHAPTER VII

an invocation of the SDS would make similar decisions in a

similar way, to the examples above. It would, in addition,

make permanent join decisions (where applicable) and derived

relation decisions, as specified by decision rules 5.6 and

5.7 of Chapter V respectively.

This scenario has presented a simple application to

demonstrate the manner in which the various decision rules

would be applied. The reader is invited to experiment with

other scenarios and other decision rules in a fashion

similar to that employed here.

PAGE 144

CHAPTER VIII

Conclusion.

What has been presented here is:

. a methodology for pseudo-optimization of a data base

for the type of use currently being made thereof. This

is done by the SDS.

. a procedure for pseudo-optimaztion of request

handling, by the RDS.

The phrase 'pseudo-optimal' is used in preference to the

word 'optimal', since the decision rules presented here are

largely heuristic, and as such may well not be optimal in

the accepted sense of the word.

The SDS is driven by a collection of decision variables

(maintained by the RDS) and a collection of truth functions

which are used in SDS decision rules. The output of the SDS

is the pseudo-optimal, third-normalized data base

structure.

The RDS is driven primarily by a set of truth functions, but

does make some use of decision variables. The output of the

RDS is:

PAGE 145

CHAPTER VIII

. updated decision variables,

. a collection of set-theoretic operators to best

satisfy the request.

The decision rules in both the SDS and the RDS are highly

modularized to permit replacement of particular decision

rules, and parts of decision rules without effects on other

parts of the subsystem. Furthermore, all decision rules are

highly implementation specific, and it is envisioned that

this will generally be the case, as generalized decision

rules may well degenerate into a summation of specific

rules, connected by boolean variables. As such, the

modularity of the decision rules presented here may be a

major feature to allow for easy replacement of those parts

of rules that are appropriate for other implementations.

Perhaps the most outstanding feature of the approach taken

here is the dynamic nature of both the SDS and the RDS. To

date, this has certainly not been true of subsystems used to

aid in the design of the data base, and only rarely in the

PAGE 146

CHAPTER VIII

request-handling function. **

In general, queries have had to be stated in a way that

inherently specified the procedural steps to be taken in its

handling, and structuring decisions have always been made by

someone in the position of a data base administrator. This

person (or group) might well be aided by some type of

decision model, but such structuring, and more importantly

restructuring decisions were never made dynamically by the

system.

Various algorithms were developed for aiding in the process

of optimizing performance, the most major of which is that

in Chapter VI for pseulo-optimizing request handling.

This work can certainly not, nor does it, claim to be

complete in any sense. It is merely to demonstrate a

methodology for approaching the arena of automated decision

subsystems. As such, there are many areas into which forays

must be made before such subsystems become complete.

** IBM's San Jose Research Center has designed a query
language called 'Sequel' which does quite elaborate dynamic
request handling optimization. See (8).

PAGE 147

CHAPTER VIII

Future Research.

Perhaps the first step should be to apply the methodology

presented here to other situations. XRN was the only

implementation considered here.

There is also a problem that arises from the fact that XRM

is physically implemented in a way that is rather analogous

to the interface that the user sees. As such, there was

little attempt (or need) to separate these aspects of the

system. There is, however, a clear need for such a

separation and the SDS should be broken down into two

distinct parts to handle:

. the logical structure, and

. the physical structure.

It might seem that virtual relations are, in fact, the

logical system structure, but further reflection will reveal

the fact that real ralations can be physically implemented

in a variety of ways. XRM treats, and stores each entity as

a row, whereas some systems are more column-oriented, in

that an entity consists of a value from each column. It is

PAGE 148

CHAPTER VIII

even possible to implement a relational system in a system

of the IMS variety.

In this regard, the (third-normalized) real relations used

throughout this thesis may, in fact be physically

implemented in a number of ways. The SDS should be expanded

to reflect this aspect of data management systems.

There were also places in the body of this thesis where the

partial inaccuracy of the decision rule was pointed out.

These modifications, as well as many other refinements could

be made to those rules presented here. It is important,

though, to recognize when fine-tuning will yield major

improvements, and when the benefits are substantially below

the costs of such efforts.

It is felt that the decision rules presented here are of the

type that might affect system performance by many orders of

magnitude, particulariy in cases where usage changes over

time. Fine tuning these rules might affect performance by

only a few percentage points. Perhaps this should indicate

that research conducted in this vein attempt to first

PAGE 149

CHAPTER VIII PAGE 150

accomplish the orders-of-magnitude improvements before any

fine tuning is attempted.

References

1) Donovan, J.J., aystem Programming, Chapter 7, McGraw
Hill, 1972.

2) Gries, David, C2 !giler Construction For Digital
Computrs, John Wiley & Sons, 1971

3) Codd, E.F., 'A Relational Model of Data for Large Shared
Data Banks', Communications of the ACM, Vol. 13, # 6, June
1970.

4) Cadd, E.F., 'Further Normalization of the Data Base
Relational Model', IBM, San Jose, 1971.

5) Larie, R.A., 'XRM - An Extended (N-ary) Relational
Memory', IBM Cambridge Scientific Center, Cambridge, Ma,
Jan. 1974 (IBM Report G320-2096)

6) Cadd, E.F., 'Relational Completeness of Data Base
Sublanguages', IBM, Sin Jose, March 1972 (RJ 987)

7) Bachman, C.W., 'data Structure Diagrams', Data Base
(Quarterly News letter of the ACM-SIGBDP) Vol. 1, #2, 1969.

8) Astrahan, M.M., Chamberlin, D.D., 'Implementation of a
Structured English Query Language', IBM Research, San Jose,
Oct. 10, 1974.

PAGE 151

Bibliography

1) Ackermann, R.C., 'An Examination and Modelling of a
Prototype Information System', Masters Thesis, Sloan School
of Management, MIT, June 1973.

2) Bachman, C.W., 'Data Structure Diagrams', Data Base
(Quarterly News letter of the ACM-SIGBDP) Vol. 1,#2, 1969.

3) Bachman, C.W., 'The Data Base Set Concept; Its Usage and
Relaization', Honeywell Information Systems, Internal
Report, Jan. 31, 1973.

4) Brent, R.P., 'Redacing the Retrieval Time of Scatter
Storage Techniques', Zommunications of the ACM, Vol. 16, #2,
Feb. 1973.

5) Buchholz, W., 'File Organization and Addressing', IBM
Systems Journal 2, (June 1963) pp 86-111.

6) Burkhard, W.A., 'Some Approaches to Best-Match File
Searching', Communications of the ACM, Vol. 16, #4, April
1973.

7) Cardenas, A.F., 'Evaluation and Selection of File
Organization - A Model and System', Communications of the
ACM, Vol. 16, #9, Sept. 1973. 8) Chamberlin, D.D., Gray,
J.N., Traiger, I.L., 'Views, Authorization, and Lacking in a
Relational Data Base System', IBM Thomas J. Watson Research
Center, Dec. 19, 1974 (RJ 1486).

9) Chapin, N., ' Comparison of File Organization
Techniques', Proceedings ACM, 24th National Conference,
1966.

10) CODASYL Systems Committee, Feature Analysis of
Generalized Data Base Manaement Systems, ACM, May 1971.

11) CODASYL Systems Committee, A Survey of Generalized Dita
Base ganageent Systems, ACM, May 1969.

12) Codd, E.F., 'A Relational Model for Large Shared Data
Banks', Communications of the ACM, Vol. 13, #6, June 1970.

13) Codd, E.F., 'Relational Completeness of Data Base
Sublanguages', IBM Research, San Jose, Mar 1972.

14) Codd, E.F., 'Further Normalization of the Data Base
Relational Model', IBM Research, San Jose, 1971.

PAGE 152

Bibliography

15) Codd, E.F., 'Seven Steps to Rendezvous with the Casual
User', IBM Research, San Jose, Jan 17, 1974.

16) Codd, E.F., 'Noraalized Data Base Structure; A Brief
Tutorial', IBM Research, San Jose, Nov. 1971.

17) Codd, E.F., 'A Data Base Sublanguage founded on the
Relational Calculus', Proc. 1971 ACM-SIGFIDET Workshop,
1972.

18) Collmeyer, A.J., Shemer, J.E., 'Analysis of Retrieval
Performance for Selected file Organization Techniques', Fall
Joint Computer Conference, 1970.

19) Dodd, G.D., 'Elements of Data Management Systems', ACM
Computing Surveys 1, June 1969.

20) Donovan, J.J., Sjgsters Prggramming, McGraw-Hill, 1972.

21) Follinus, J., Madnick, S., Schutzman, H., 'Virtual
Information in Data Base Systems', Sloan School Working
Paper, Sloan School of Management, MIT.

22) Frank, R.L., Yamaguchi, K., 'A model for a Generalized
Data Access Method', National Computer Conference 1974.

23) Ghosh, S.P., 'File Organization: The Consecutive
Retrieval Property', Communications of the ACM, Vol. 15, #9,
Sept 1972.

24) Hanson, R.J., 'Stably Updating Mean and Standard
Deviation of Data', Communications of the ACM, Vol. 18, #1,
Jan 1975.

25) Hsiao, D., 'A Formal System for Information Retrieval
from Files', Communications of the ACM, Vol. 13, #2, Feb
1970.

26) Huang, J.C., 'A Note on Information Organization and
Storage', Communications of the ACM, Vol. 16, #7, July
1973.

27) Langefors, B., 'Some Approaches to the Theory of
Information Systems', BIT(3), 1963.

28) Langefors, B., 'Information System Design Computations
using Generalized Matrix Algebra', BIT(5), 1965.

29) Lefkovitz, D., File Structures for On-line Systems,
Spartant Press, Washington, 1969.

PAGE 153

Bibliography

30) Lowe, T.C., 'The Influence of Data Base Characteristics
and Usage on Direct Access File Organization', JACM, Vol.
15, #4, Oct. 1968.

31) Lowenthall, E., ' Functional Approach to the Design of
Storage Structures for Generalized Data Management Systems',
Ph.D. Thesis, U. Texas, Austin, Aug. 1971.

32) Luz, V.Y., 'Multi-attribute Retrieval with Combined
Indices', Communication of the ACM, Vol. 13, #11, Nov.
1970.

33) Lum, V.Y., Yuen, P.S.T., Dodd, N., 'Key-to-Address
Transformation Techniques: A Fundamental Performance Study
on Large Existing Formatted Files', Communications of the
ACM, Vol. 14, #4, Apr 1971.

34) Madnick, S.E., Donovan, J.J., operating Systems,
McGraw-Hill, 1974.

35) McCuskey, W.A., 'Toward the Automatic Design of Data
organization for Large Scale Information Processing
Systems', Ph.D. Thesis, Case Western, Jan. 1969.

36) McCuskey, V.A., 'On Automatic Design of Data
Organization', Fall Joint Computer Conference, 1970.

37) Mullin, J.K., 'Retrieval-Update Speed Tradeoffs Using
Combined Indices', Communications of the ACM, Vol. 14, #12,
Dec. 1971.

38) Rothnie, J.B., Lozano, T., 'Attribute Based File
Organization in a Paged Memory Environment', Communications
of the ACM, Vol. 17, #2, Feb 1974.

39) SagamangJ.P., 'Aitomatic Selection of Storage Structure
in A Generalized Data Management System', Masters Thesis,
UCLA, 1971.

40) Severence, D.G., #Identifier Search Mechanisms: A Survey
and Generalized Model', Computing Surveys, Vol. 6, #3, Sept.
1974.

41) Schachat, I.J., 'A Parameterized Model for Selecting the
Optimum File Organization in Multi-attribute Retrieval
Systems', Masters Thesis, Sloan School of Management, MIT,
June 1974.

41) Shneiderman, B., Scheuermann, P.,

PAGE 154

'Structured Data

Bibliography

Structures', communications of the ACM, Vol. 17, #10, Oct.
1974.

42) Shneiderman, B., 'Optimum Data Base Reorganization
Points', Communications of the ACM, Vol. 16, #6, June 1973.

43) Siler, K.F., 'A Stochastic Model for the Evaluation of
Large Scale Data Retrieval Systems...', Ph.D. Thesis, UCLA,
1971.

44) Stamen, J.P., Wallace, R.M., 'Janus: A Data Management
and Analysis System far the Behavioral Sciences', Cambridge
Project, Cambridge, Mi.

45) Stocker, P.M., Dearnley, P.A., 'Self Organizing Data
Management Systems', The Computer Journal, Vol. 16, #2,
1973.

46) Winkler, A., 'A Methodology for Comparison of File
organization and Processing Procedures for Hierarchical
Storage Structures', Ph.D. Thesis, U. Texas, Austin, Aug.
1970.

47) Ziering, C.A., 'Management Information Systems - A
Comparison of the Network and Relational Models of Data',
Masters Thesis, Sloan School of Management, MIT, June 1975.

PAGE 155

Appendix 1

This appendix deals with the procedure of third

normalization.

The alogorithm presented here is driven by a set of truth

functions that detail the functional- and mutual

dependencies existing in the data. Notice that computational

dependencies are gt zonsidered in any of the alogorithms

presented here. The issue of computational dependency is not

relevent decisions as to which relation a domain belongs

in. We proceed now with the algorithm.

1 Apply transitivity to all mutual dependencies

Ie: VIaI,IbI,IcI if $8m(IaI,b)=1 and $8m(IbI,cI)=1 then

set $8m(IaI,IcI)=1.

Combine all functional dependencies with the same first

list, and remove those with duplicate first lists.

Ie: VIaI,Icl where $8f(IaI,IbI)=1, S8f(IcI,Idj)=1, and

jal=IcI, set set $8f(aI, e)=1 where teI=tbIUjdI, and set

$8f(lal,IbI)=0 and $8f(IIIdI)=O. 2 Expand functionally

dependent domains to include the functionally dependent

domains of all mutually dependent (sets of) domains.

PAGE 156

Appendix 1

andIe: Vialsibi where $8z (I a Isbi)=1, $8f(laisiri)=1

$8f(ibijsis)=1:

modify Irl to jr'I, and is1 to is'I where

ir1I=Is'l= jrl U ist

This yields: $8f(aI,ir I)=1 and $8f(IbIis'1)=1.

3 Remove dependencies on 2artial candidate keys.

(Underlined domains are primary keys; if more than one set

of domains is underlined in any one relation, then each

underlined set of domains is a candidate key.)

VIbisIdi where $8f(jal, IbI)=$8f (Icl,IdI) =1:

If fbi N Idj=ibt and jai N IcI=IaI then :

Idj=idJ - ibi, and lxl=lIxl - 9bi V1xl such that

$8f(jr, IxI)=1 and $8m(IrI,Ic!)=1.

4 Now set up relations in third normal forms in the

following two steps:

4.1 VibIIdI where $8f(IalbI)=1 and $8f(Icl,1

Does some relation already set up contain both

or both Ic! and Idj ?

yes: then mark that functional dependency as

continue with a different one. Ie: Find

dl)=1:

jal and Ibi,

'done', and

some other

PAGE 157

Appendix 1

JalIbIIcl and idi.

(0) No: Is Ibi N d=0 ?

(1) Yes: If $8f(ja,IbI)=1 does not 'have relation', then

set up relation RRi(Jaj,lbI) and mark functional

dependency $8f(lal,b)=1 as 'done' and 'have relation',

and continue

(2) No: V(Ibl N IdI)/g0' do the following:

Is $8m(lal,IcI)=1 ?

(3) Ie: set up relation RRi(IAI, "c1, lxi) where

Ixl=iblUldi

Mark the functional dependency $8f(IcidI)1 as 'done'

and both of $8f(iaIIbI)=1 and $8f(Icl,dI)=1 as 'have

relation'.

(4) No: is Ibi N c=P ?

(5) Yes: set up 3 relations:

RRi(lal, lbi),

RRj(lI, Idi), and

RRk (12i) where leIlbI N idi

If lei is already in some RRm, m/i and m/j, then

delete RRk.

Mark those functional dependencies as 'done' and 'have

relation'.

(6) No: is IcJl=cl N Ibi ?

(7) Yes: there is transitive dependence.

Is $8f(IaI,IbI)=1 'done' ?

PAGE 158

Appendix 1

(8) !2: set

restart step

1b lb' i

4.1 for

where lb'l=b1

this functional

- Idi and

dependency

set

(9) i&.: set lbl=lb'l where lb'l=lbl - Idi ad:

strike all domains Idi from the relation set up

for functional dependency $8f(taJ,lbl)=1. Restart

step 4.1 for that functional dependency.

(10) No: establish relations:

RRi(aji, Ibi) and

RRJ(ICi-Pldi)

Mark those functional dependencies as 'done' and

'have relation'.

4.2 Vlal,IbI where $8m(Ial,Ibl)=1,

(created in step (4.1) containing

(11) N2: set up relation RRk (Jai,

(12) Yes: no action

is there

both jai

some relation

and Ibi, eg:

ibN)

4.3 For all relations RRi created in 4.1 and 4.2, if

$8m(laI,Ib)=1 for any lal,lbl*RRi, then remove Ibi from

RRi. Examples are presented below to clarify the procedure

described above. Decision points in (4.1) and (4.2) above

PAGE 159

Appendix 1

have been numbered for use in the

instances of 'dpn' in the examples

Other notation that will appear in

expressing functional and

diagramatically rather than in the

examples that follow. All

mean 'decision point n'.

the examples is that for

mutual dependencies

form of truth functions.

'->' will imply functional dependency. For

(A,B)->(C) means that C is functionally dependent

example

on A and

'< --- > implies mutual

(AB)<--->(CD) means that

dependent.

dependency. For

(A,B) and (C,D) are

example,

mutually

example 1

(P)

(P)

(Q)

<---> (0, S

->R or

-R or

Step 1: No actio

Step 2: set up

Step 3: Using

thus, no action.

or: $8m(IPI,Q,SI)=l

$8f(IPI,IRI)=1

:$8f(IQIrlR I)=1

n

(d) $3f(IQ,SIIR1)=1

(b) and (c): IRI N IRI=IRI, and IPINIQI=W

PAGE 160

Appendix 1

Using (b) and (d): IRINIRI=IR I andtPjNIQ,Sj=Q thus, no

action.

Using (c) and (d): JR1 N IRI=IRI and IQINIQ,SI=IQI thus:

IRI=IRI-IRI=0 in liL which means that (d) becomes

$8f(IQ,SI,<null>), which must be 0 (See pagexx Chapter IV)

Also: $8m(IPjIQ,SI)=1, so strike IRI from (b) as well.

We now have:

a) $8m(IPIJQ,SI)=1

c) $8f(IQIIRI)=1

Both (b) and (d) are 0.

Step 4.1: Since (c) is the only functional dependence, IRI

N IbI=0 VIbI < (c) take dpi:

RR1(Q, R)

Step 4.1 complete.

Step 4.2: Since $8m(IPIIQ,SI)=1, and RR1 is the only

relation, take dpll and set up:

RR2(P, %2)

Thus have relations:

RR1(Q, R), and

RR2(P, 9Al)

Step 4.3: No action

PAGE 161

Appendix 1

Example 2

i)

ii)

iii)

iv)

(A,B,C)<--->(D,E) or: $8m(IA,B,CIID,EI)=1

(D,E)<--->(GK) or: $8m(ID,EI,IG,KI)=1

(A,BC) -- >(YZ) or: $8f(IA,B,CI,IY,ZI)=1

(G,K) -- >(X) or: $8f(IG,K I,IXI)=1

Step 1: Apply transitivity to

(v) $8m(IBCjl,13,Kj)=1

get:

Step 2: for lai=IA,B,CI and Ibl=ID,EI from (i),

becomes: $8f(IA,B,CIIY,ZI)=1 (ie: no change), and

get (vi) $8f(ID,EIIY,EZ)=1

For |al=ID,EI and Ibj=IG,KI from (ii),

(vi) becomes $8f(ID,8I,IY,Z,XI)=1, and

(iv) becomes $8f(IG,Ki,IX,Y,ZI)=1

Por Iai=IA,B,Cl and JbI=IG,KI from (v),

(iii) becomes $8f(IA,B,ClIY,Z,XI)=1, and (iv)

unaffected.

(iii)

We now have:

i) $8m(IA,B,ClID,E)=1

ii) $8m(ID,EIIG,KI)=1

V) $8m(IA,B,CIGLK)=1

iii) $8f (IA,B,C I, If,3,X1) =1

PAGE 162

Appendix 1

iv) $8f(IG,KIIX,Y,ZI)=1

vi) $8f(IDEIJY,Z,XI)=1

Step 3: Since IA,B,Cl N)G,KI=W,

IA,B,CI N ID,E=W

and IGKI N ID,EI=O

no action in step 3.

Step 4.1 Using (iii) and (iv):

get lal=IA,B,Cl, IcI=IG,Ki, IbI=IY,Z,XI and Idl=IX,Y,ZI

Ibi N jdI/0, so take dp2. $8m(IaI,IcI)=1 from (v) so dp3.

set up RR1(AxBsg, G!K, X,Y,Z), and mark (iv) as 'done' and

'have relation'. Mark (iii) as 'have relation'.

Using (iii) and (iv): jaJ=jA,B,Cj, IcI=ID,EI, IbI=IY,Z,X

and Idi=IY,Z,XI.

Ibi N IdI$0 so take dp2. $8m(Ial,IcI)=1 from (i), so take

dp3.

Note that (iii) 'have relation', so simply add Icj and

id'I=IdI N JbI to RR1

Ie: get RR1(APC, §gK, D, XY,Z)

Mark (vi) as 'done' and 'have relation'. Since there are no

further functional dependencies that are 'not done', proceed

to next step.

Since for each truth function of the form

PAGE 163

Step 4. 2:

Appendix 1

$8f(laJ,ibi)=1

relation (viz:

point (12).

(ie:

RR 1)

(i), (ii) and

zontaining lal

(iv)) there exists some

and Ibi, take decision

Step 4.3: No action

Thus we have relation: RR1(AgeC, G1jA, B X, Y,Z)

Example 3

i) (A,B,C) -- >(D,E,F) or: $8f(IA,B,Ci,,i

ii) (DB) -- > F or: $8f(ID,EIIFI)=1

Step 1: No mutual dependencies, so no acti

Step 2: No mutual dependencies, so no acti

Step 3: for ibI=ID,EI and Idj=FIj, Ibi

action.

Step 4.1: From (i) and (ii) : lal=IA,

lbl=ID,E,FI and idl=IFI.

Ibi N ldl/0 so take dp2.

$8m(Ial,lcj)=O so take dp4.

Ibi N jcl/0 so take dp6.

tcl N lbl=ID,El = Ic so take dp7

(i) is 'not done', so take dp8.

(i) becomes $8f(IA,B,CI,D,E)=1, and

(ii) is unchanged.

D,E,FI)=1

on.

on.

N IdI=9, so no

B,CI, Icl=ID,EI,

PAGE 164

Appendix 1

Restarting Step 4.1:

from (i) and (ii): ja=jA,B,CI, icl=ID,Ei, IbI=ID,E and

Id j=jFj.

Ibi N Id1=0 so dpl.

Set up realtion RR1(Aegj#, DE), and mark (i) as 'done' and

'have relation'.

From (ii): lal=ID,EI, Ibi=IFi, IcI=Idj=<null>.

JbI N IdI=0 so take dpl.

Set up relation RR2(QLa, F) and mark (ii) as 'done' and

'have relation'.

Step 4.2: No action

Step 4.3: No action

So we have relations:

RR1(A,B,, DE), and

RR2(Qgg, F).

Example 4

i) (A,B) -- > C or: $8f(IA,BI,ICI)=1

ii) (D,E) -- >(CF) or: $8f(ID,EI,IF,Cl)=1

Note that (A,B)<--/-->(D,E) ie: not mutually dependent.

Step 1: No mutual dependencies, so no action.

PAGE 165

Appendix 1

Step 2: No mutual dependencies, so no action.

Step 3: No action

Step 4.1: from (i) and (ii): lal=IA,BI, IbI=IC

and IdI=IF,CI.

Ibi N IdIj0, so dp2.

$8m(IA,B,CI,ID,EI)=O, so dp4

Jbi N Icl=0 so dp5.

Set up relations:

RR1(AgB, C),

RR2(ag, F,C) and

RR3(C).

Mark (i) and (ii) as 'done' and 'have relation#.

Step 4.1 complete, since all are 'done'.

Step 4.2:

Step 4.3:

i, IcI=D,EI

No action.

No action

Thus, we have relations:

RR 1 (.A , C),r

RR2(Dja, F,C) and

RR3(C).

This concludes the examples.

PAGE 166

Appendix 2 PAGE 167

In the examples and definitions that follow we will use

relation names of the form : 'R<i>'. This is for convenience

only; any character string may be used for a relation name.

Notation.

R<i> is the name of the i th relation

< means 'is a member of'

J....1 implies a list, or set of the items between the

I ' s.

c(i) is the cardinality (number of entries) in R<i>

n (i) is the degree (number of domains) in R<i>

d(i,j) is the j th domain of R<i>, j=1,..n(i)

v(m) (i,j) is the m th value of d(i,j), m=1,..c(i)

t (i) is an n(i)-tuple in R<i>

ie: t(i) (v (a) (i, 1),v (a) (i,#2),..v(a) (i ,n (i))

a 1,...c(i)

L (jai) is the length of list a

3 is the null set - ie: R<i>=W implies c(i)=O

atb means a is a subset of b (a=b is legal)

aC-b means a is a 2r2p2 subset of b (afb)

Va means for all valaes of a

Examples

Appendix 2

The following examples will be used throughout this section

to explain deifnitions.

(NAME,

R1=((Smith,

(Donovan,

(Granger,

(Smith,

(NAME,

R2=((Madnick,

(Smith,

(Donovan,

SOCS EC,

213-07-1666,

621-49-2990,

413-00-0299,

839-41-6942,

SOC S E C,

217-- 1-7322,

213-07-1666,

621-49-2990,

P HONE,

232-1500,

6 17-1400,

536-5176,

253-1410,

PHONE,

253-6671,

232-1500,

617-1400,

(PERSON,

R3=((Madnick,

(Donovan,

(Smith,

(NAME,

R4=((Smith,

(Donovan,

AGE,

31

34,

23,

CITY)

Peabody),

Ipswitch),

Boston))

PHONE)

232-1500),

617-1400))

DEPT#)

15),

15),

6),

6))

DEPT#)

15),

15),

15))

PAGE 168

(PERSON,

R5=((Madnick,

(Donovan,

AGE,

31,

34,

Appendix 2

CITY,

Peabody,

Ipswitch,

PAGE 169

STREET_#)

18),

43))

Definitions

1) Unjion Symbol: U

Format: R<i>=R<j> U R<k> (j=k is valid)

c(i)=c(j)+c(k)-c(Rj N Rk)

n (i)=mat(n(j) ,n(k))

R<i>= It(i) :t(i) < R<j>, OR t(i) < R<k>l

Example: R5 = R1 U R2 would yield:

R5=((Smith, 213-07-1666,232-1500,15),

(Donovan,621-49-2990,617-1400,15),

(Granger,413-00-0199,536-5176, 6),

(Smith ,839-41-6942,253-0410, 6),

(Madnick,217-61-7232,253-6671,15))

2) flatersection Symbol: N

Format: R<i> = R<j> N R<k> (i=j=k is valid)

(Note that if n (j)/n(k), then B<i>=V)

R<i> = It(i) : t(i)(j ANp t(i)<kI

n(i) = n(j) = n(k)

Appendix 2

Example: R6 = R1 N R2 yields:

R6=((Donovan,621-49-2990,617-1400,15),

(Smith, 213-07-1666,232-1 500, 15))

3) Difference Symbol: -

Format: R<i> = R<j> - R<k>

(Note: If n(j)/n(k) then:

n(i)=n(j)

c(i)=c(j)

R<i>=R<j>)

n(i)=n(j)=n(k)

c(i)=c(j) - c(k) - c(R<j> N R<k>)

R<i> = it(i) : t(i)*R<j> AND t(i)fR<k>I

Example: R6=R1 - R2 yields:

R6=((Granger,413-00-0029,536-5 176, 6),

(Smith, 839-41-6942,253-0410, 6))

4) Cartesian Product Symbol: X

(Sometimes called a 'Cardinal Product')

Format: R<i> = R<j> X R<k> (j=k is valid)

(Note: if n(j) > 1, or n(k) > 1, then each t(j) (or t(k))

must be treated as a single domain, so that effectively

n(j)=n(k)=1.)

n (i)=n(j)+n(k)

PAGE 170

Appendix 2

c (i)=c(j) .c(k)

R<i> = I (v(a) (j,1),v(b) (k,1)) Vb * k, Va j ji

ie: R<i> is a set of ordered pairs with first member from

R<j> and second from R<k>.

Example: R5 = R4 X R4 yields:

R5=(((Smith ,232-1500), (Smith ,232-1500)),

((Smith ,232-1500), (Donovan,617-1400)),

((Donovan,617-1400),(Smith ,232-1500)),

((Donovan,617-1400), (Donovan,617-1400)))

5) Projection Symbol: P

Format: R<i> = R<j> P (d(j,1)), 1 11,2,...n(J)I

n (i)=L(l)

c(i)=c(j) (Note that redundent entries are not

automatically deleted as proposed in some versions. Use the

'compaction' operator to remove redundent entries.)

R<i> = d(j,l) : 1 1,2,...n(j)

Example: R5= R2 P (NAME,PHONE) yields:

R5=((1adnick,253-6671),

(Smith, 232-1500)

(Donovan,6 17-1400))

6) Join Symbol: *

Format: R<i> = R<j>((d(jl))) * R<k>((ed(km)))

0 ::= > I < I = |,@

PAGE 171

Appendix 2

15Ca1 1, 2,. .. n (J)

m 41l 1,2,....n (k)|

and d(j,l) and d(k,m) must be of the same data type (ie:

must be joinable).

n (i)=n(j)+n(k)-1 (g duplication of the join domain when a

is '='. There is duplication when a not '=', but we ignore

that rare case here.)

c(i)=c(j)+c(k)-c(v(a) (j,1))=v(b)(k,m)), a=1,..c 0)

b=1,..c(k))

R<i> = I d(jb),d(ka) Vb * j, Va * k, but afam

v(g) (j,1) a v(d) (k,m); Ig 4 j, Vd * ki

Example 1) R6=R2(NAME) * R3(=,PERSON) yields:

(SOCSEC, PHONE, DEPT#,NAME, AGE,CITY)

R6=((217-61-7232,253-6671, 15, Madnick, 31,Peabody),

(213-07-1666,232-1500, 15, Smith, 23,Boston),

(621-49-2990,617-1400, 15, Donovan, 34,tpswitch))

Example 2) R6=R3(CITY) * R4(>,NAME) yields:

(NAME, AGECITY, PHONE)

R6=((Madnick, 31, Peabody, 617-1400),

(Donovan, 34, Ipswitch,617-1400))

(Note that this example makes no intuituve sense; it was

included simply to illustrate the use of 1* when 8 / '=')

7) Composiio Symbol:

Format: R<i> = R<j>(I(j,l)) . R<k>(d(ka))

PAGE 172

Appendix 2

1 * I 1,...n(j)

S* 1 1,...n(k)

d(j,l) and d(km) must be joinable (ie: of the same data

type)

n(i)=n(j) + n(k) -2

c(i)=c(j)+c(k)-c(v(a) (j,1) = v(b) (km) ; a=1,...c(j);

b=1,...c(k))

R<i> = (R<j>(d(jl)) * R<k>(d(k,m))) P (d(j,b));

Vb<j, except b/l

(ie: remove domain d(j,1) on which R<j> and R<k> were

joined.)

Example: R5=R2(NAME) . R3(PERSON) yields:

(SOCSEC, PHONE, DEPT#,AGE,CITY)

R5= ((217-61-7232,253-6671,15, 31,Peabody),

(213-07-1666,232-1500,15, 23,Boston),

(621-49-2990,617-1400,15, 34,Ipswitch))

8) Permutation Symb3l: M

Format: R<i> = R<j> M (d(j,l)); 1= 1,...n(j)

n (i)=n(j)

c(i)=c(j)

The only effect of this operator is to re-order the domains

in a relation.

Example: R5 = R3 M (PERSONCITY,AGE) yields:

PAGE 173

Appendix 2

R5= ((MadnickPeabody,31),

(Donovan,Ipswit:h,34),

(Smith, Boston, 23)

9) Compaction Symbol: C

Format: R<i> = C (R<j>) (i=j is valid)

n (i)=n (j)

R<i> = I t(b) :t(b)/t(a) ; a/b I (Qg: R<i>=R<j> N R<j>)

This operator simply removes all redundent entries from a

relation.

10) Restriction Symbol:

10.1) Diadic restriction:

Format: R<i>=R<j>(d(j,1)) R R<k>(e,d(k,m)); 1 e1,...n(j)j

a iS1,1,...n(k)

where: L(1)=L(m), and n(k) <= n(j)

then n(i)=n(j)

a ::= > I < I = I ,'

R<i> = It(j) : v(a) (j,f) 8 v(b) (kg) VfIl, Vgfm, Va~j, Vb4k

a=1,...c(j); b=1,...c(k) I

Example 1) R6 = R2(NAME,PHONE) R R4((=,NAHE),(=,PHONE))

yields

R6=((Smith ,213-07-1666,232-1500,15),

(Donovan,621-49-2990,617-1400,15)

PAGE 174

Appendix 2

Example 2) R6=R2(PH3NE) R R4(>,PHONE) yields:

R6=((Madnick,217-61-7232,253-6671,15),

(Donovan,621-49-2990,617-1400,15))

(Note: t(1) of R6 appears because 253-6671 > 232-1500. the

fact that 253-6671 < 617-1400 does not affect this.)

10.2) Monadic restriction:

Format: R<i> = R<j>(1(j,1)) R (9,d(jm))

1 40 I1,...n(j)I

a SIl1,...n (k)I

L (1)=L(m)

0 ::= > I < I = 1 ,'

n(i)=n(j)

R<i> = It(j) : v(a) (j,f) 9 v(b) (j,g), f

Example: R6 = R10(A3E) R (<,STREET#)

R6=((Donovan,34,Ipswitch,43)

41,Yg4m,Vab 4 j I

ields:

11) Division Symbol: /

Format: R<i> = R<j>(d(j,1)) / R<k>(d(km)) ;

1Ea1,...n(j) I

assl1,...n(k) 1

This operator is the inverse of the cartesian product; ie:

PAGE 175

y

Appendix 2 PAGE 176

(R<j> X R<k>) / R<k> = R<j>

Example: Using R5 of (4) above:

R5 / R4 = R4

Appendix 3

Decision Variables.

This appendix lists the decision variables that are used

throughout this thesis. They are listed in order of rule# as

outlined in Chapter IV.

Rule 1

1) $lrd(i,j)rsen domain j of relation i used as the

only egui-gualifier (<qualifier type> 'e') in

retrieval request; no joins.

2) $lrd(i,j)rsej same as (1), except join involved in

resolving request.

3) $lrd(i,j)rcenn domain j of relation i used as one of

several qualifiers, as an equi-qualifier; no

joins, and none of other domains used as

qualifiers had indexes

4) $1rd (i,j)rceni(trss) same as (3), except some other

qualifier had index. 'trss' is size of set

resulting from using domains with indexes

first.

5) $lrd(i,j)rcejn same as (3) except joins involved in

resolving request.

6) $1rd(i,j)rceji(trss) same as (4), except joins involved

PAGE 177

Appendix 3

in resolving request.

7) $lrd(i,j)rcnnn domain j of relation i used as one of

several qualifiers but not as equi-qualifier;

no other domains used as qualifiers had

indexes, and no joins involved in resolving

request.

8) $lrd(i,j)rcnni(trss) same as (4) except domain j not

used as equi-qualifier.

9) $lrd(i,j)rcnjn same as (5) except domain j not used

as equi-qualifier.

10) $lrd(i,j)rcnji(trss) same as (8) except joins involved

11) $lrd(i,j)rnun domain j of relation i used as

unspecifiel qualifier (eg: ...j='all') no

joins involved in satisfying request.

12) $lrd(i,j)rnuj same as (11) except joins involved.

13) $lrr(i)rnun unspecified retrieval from relation i; eg:

serial retrieval of each entry in relation.

No joins involved.

14) $lrd(i,j)rnuj same as (13) except joins involved in

request.

The same set of 14 decision variables is maintained for

<reguests> 'u' and 't, and also for <relation type>s 'v'

and 'd'.

PAGE 178

Appendix 3

For <request> 'i', only one decision variable is maintained:

$lrr(i)inun inserts of entries into relation i; no joins

involved.

Rule 2

1) $2rd(i,j)rsn retrieval of only domain j of relation

i; no joins involved in satisfying request.

2) $2rd(i,j)rsj same as (1) except joins involved in

resolving request.

3) $2rd(i,j)rcn domain j of relation i one of several

retrieved; no joins involved.

4) $2rd(i,j)rcj same as (3) except joins involved in

satisfying request.

5) $2rd(i,j)r(<aggr>)sn retrieval of some single <aggr> of

domain j of relation i; no joins involved in

request.

6) $2rd(i,j)r(<aggr>)sj same as (5) except joins involved.

7) $2rd(i,j)r(<aggr>):-n retrieval of several aggregations,

one 3f them domain j of relation i; no joins

PAGE 179

Appendix 3

involved.

8) $2rd(i,j)r(<aggr>)Cj

involved.

9) $2rr(i)ren

10) $2rr(i)rej

sames as (7) except joins

retrieval of whole entry from relation

i; no joins involved.

same as (9) except joins involved.

The sane set of decision variables is maintained for

<request>s 'u' and '1', and for <relation type>s 'v' and

'd'.

For <request> 'i', only one decision variable is maintained:

$2rr (i) ien

involved.

inserts of entries into relation i; no joins

Rule 3.

Only one decision variable is maintained of this type:

$3rd(i,j)d(k,m) the number of times relation i joined to

relation k via domains j and m respectively.

PAGE 180

Appendix 3

Rule 4

1) $4io cost per I/O operation

2) $4opc cost per cill to XRM

3) $4bfe number of entries per IRM block

4) $4bfx number of index entries per block

5) $4sc cost per byte per day of storage

6) $4t time period since last SDS invocation

7) $4p XRM blocksize

Rule 5

1) $5cy(i)r cardinality of real relation i

2) $5#d(i)r degree of real relation i

3) $5cy(i)v cardinality of virtual relation i

4) $5d(i)v degree 3f virtual relation i

5) $5cy(k)d(<method>) cardinality of derived relation k.

<method> is the method of derivation. If the

derivation did not include restrictions, then

<method>: :=<null>.

6) $5#d(k)d(<method>) degree of derived relation k

PAGE 181

Appendix 3

Rule 6

$6 (j)g number of unijue values in domain j

Rule 7

$7r user-supplied response-time weight factor.

Truth Functions.

$8d (ij) domain j appears in relation i

$8i(j,k) domain k in relation j is inverted. (For virtual

relations, $8i(j,k)=O always.)

$8p(i,j) domain j is one of the primary key domains of

relation i.

$8x(i)r relation i is a real relation.

$8x(i)d(<method>) relation i is a derived relation, and

<method> is the method of derivation. If <method>

did not involve a restriction, then

<method>:: =<nu 11>.

$8n(i,j) domain j of relation i is mandatory. le: a value

must be provided for this domain before an entry in

relation i will be made.

PAGE 182

Appendix 3

Note $8n(i,j)=1 Vj where $8p(i,j)=1. (Primary key

domains are mandatory.)

$8u(j) domain j :ontains unique values (eg: socsec_#)

$8r(i,j) same as $8n (i,j) except that it refers to a role

name. Also notice that $8r(i,j) is a subset of

$8d(i,j) Thus this is a truth function that tests

whether a role name is in relation i.

$8_(j)<data type><starage strategy>

<data type>::=<character> I <fixed> I <float> I <vector> I

<bit>

<character>::= c

<fixed>::= x

<float>::= f

<vector>::= t(<size>)

<bit>::= b

<storage strategy>::=<virtual> < (real encoded> < (real

unencoded>

<virtual>::= v

<real encoded>::= e

<real unencoded>::= u

This set of truth functions is to test the data type of

domain j. For exmaple, if $8_(name)ce=l then domain 'name'

is an encoded character string.

PAGE 183

Appendix 3

$8f(JmJ,Jn) is a truth function that tests whether each

of the domains in list Ini are functionally

dependent on the whole list jal.

Note 1) List Jai is not a list of all domains on

which members of list Ini are functionally

dependent. Each n'4|nl may be functionally dependent

on some jxiimi also.

2) If InI=9 (ie: is empty) then

$8f(Jmi,jnj)=0.

$8m(pj,jIql) is a function that tests whether lists Ipi and

Jgj are mutually dependent. Ie:

$8f(IplPqP)=$8f(IqJIpi)=1, and also $8m(lpI,Iq)

implies $8m(j,jpJ).

Transitivity also holds: $8m(Jpi ,Iq)=$8m(qi,IsI)=1

implies that $8m(JpJjsJ)=1.

$8c(tpJ,q) (<function>) is a function which tests whether q

(note that q is not a list) is computationally

dependent on lomains Ipl. For example, if domain g

is defined as 'q=6.3 * p' then q is computationally

dependent on p. (<function>) is the computation

required to derive q from the list of domains Ipi.

$8od(k) is a truth function set up for a request. It is

'1' if domain k appears as one of the object domains

in the request.

$8eq(k) is a truth function used in requests. It is '1' if

PAGE 184

Appendix 3 PAGE 185

domain k appears as a qualifier with <qualifier

type> 'e'.

$8nq(k) is similar to $8eg(k) except that the <qualifier

type> is not 'e'.

