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ABSTRACT

This paper compares the two predominant models of data
underlying database management systems. After explaining the
problems each is hoping to solve, each model is discussed as
background. Five points of view with respect to a database
management system are given, and the two models are compared
in terms of the needs of each. A network algebra and network
calculus are introduced to allow for comparison of the two
models on the same level. Finally, a hybrid view is presented
to handle distributed databases.
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Chapter 1 Introduction

The Use of Computers

During the last quarter of a century, the use of computers
has increased dramatically. Few will deny that computers have
had a strong impact in many areas of our society, and antici-
pation of even greater future impact is widespread. Along
with this growth, the nature of computer usage has changed
since its inception, and we can predict further change in the
near future.

The first computer users were scientists ‘and engineers
who needed greater numerical manipulation capabilities than
was available at the time. The computational ability of
these first machines, not their data handling capacity;
attracted these communities, and, for the decade of the
1950's, they remained the primary users. The first widely
used higher level language, FORTRAN, is clearly oriented to
these computational needs; data handling in FORTRAN is
primitive by comparison with currently available techniques.
In fact the name itself, FORTRAN, is short for FORmula
TRANslator, further indicating the emphasis.

With the reduction in cost of memory, and the develop-
ment of secondary storage devices, the data management

capabilities of computers came to be realized. With this,

the business community became interested in the possibility
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of using computers to handle the clerical aspects of their
operations. Many simple, redundant operations could be per-
formed cheaply and accurately on a computer, and the emphasis
shifted from complex computations on little data to simple
arithmetic operations on vast amounts of data. COBOL

(COmmon Business Oriented Language)a the next major higher
level language to be introduced, reflected this shift from
computation to data structure needs.

Up to this point, computers were considered only
computational tools. People began to realize that, in
certain structured problem areas, computers could make
decisions. Any problem having a strict, procedural solution
could be given to a computer, once that solution had been
programmed, and the burden could be removed from the human
decision maker. The area of inventory control is a prime
example of such a structured decision being computerized.

Once computers were given decision making responsibilities,
the natural extension was to expand the scope of decisions
they could make into the area of unstructured problems.
Before this could happen, a subtle but important shift had
to occur in the view of computers. Previously, computers
were thought of as systems unto themselves; man's interaction
with them was of secondary importance. Then it was realized
that the man and machine together could be viewed as a

system which combined the effectiveness of the man
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(intuition and ability to work with insufficient information;

and the efficiency of the computer. Through this man/machine

system or decision making unit,unstructured problems could be
handled. The computer could provide data access and manipu-
lation capabilities to allow the man to explore more alter-
natives in his search for a solution. The central idea was
to extract as much structure as possible from-a problem and
program that, leaving the man to handle the problem of Tlack
of structure. The program lets the man ask "What if ..."
types of questions and provides simulated outcomes. The
area of "decision support systems" is currently beginning to
blossom.

Just as there has been an evolution in what computers
are used for, there nas been a parallel éhange in who is
using them. As mentioned above,.scientists and engineers
were the first users. This was due not only to the computer's
capability to fulfill their needs, but to the ability of these
users to understand and use them. The first computers were
formidable beasts and, thus, to use them required a technical
background. Along the same Tlines, the transition into the
business world was in part due to a "softening”" of the com-
puter interface. As decision support systems antered the
arena, the user became higher level managers. To support this
user, the interface had to shift more toward the human side.

Much effort has been spent on natural language support,
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graphics, and other techniques which would make the computer
interface more palatable to the human user. The use and

user of computers has evolved as a result of technological
advances as well as effort to move the interface from the
computér's side to the human user's side. Codd has predicted
that the major user of the future (1990's) will be the

1

casual user at home. For this shift to occur, the interface

must be pushed even further towards the human side.

Current Problem Areas.

Though the impact of computers‘has been great, many
examples can be found of less than desifab]e results. One has
to be careful not to be biased by the proliferation of
disaster stories, for it is easy to be led to the conclusion
that these dismal results are the norm. If this were true,
the computer industry would not have enjoyed the success it
has. How many businesses would continue to be burned if
failure were the likely outcome? The problem is that disas-
ters are easier to report (and to many more newsworthy) than
successful applications. With this in mind, coupled with an
intent to avoid the dramatic, we shall explore the problems
that are most frequently experienced and seek to find their
causes. An understanding of causes should help in the search

for a solution.
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From an end user's point of view, the quality of a
software product is of primary importance. The problem one
finds is not that software products are universally bad, but
rather that there is great variability in the success of
systems. Given the same task, one implementation may be
much better than another, and some may never work at all. In
many cases, especially in the current area of decision support
systems, the software customer must accept a wide confidence
region for his estimate of likely success. This makes soft-
ware development a risky business, and, just as with a high
risk stock, only a potentially high payoff will warrant the
investment. Those customers who do not view substantial
software development as a portfolio decision are the ones
likely to be hit the hardest. The repﬁtation of a vendor
can go a long way to reduce this variability in expected
success, but an even greater reduction could be hoped for.

The cost of software is usually the second concern of
the customer, but in the current economic environment it is
a close second. The benefit of using a computer can stem
from one of two cases; either the computer can perform a
task cheaper than it could be done other ways, or it can
provide the ability to do things that could not otherwise be
done. In the first case, the cost/benefit analysis has a
basis for comparison, in the second the issues are usually

too nebulous. In either case a cost reduction is desirable.
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There are actually three costs associated with a software
product, development cost, maintenance cost, and cost of use.
Each of these has two sources, people and equipment. As it
turns out, the cost of hardware has dropped two orders of
magnitude over the last two decades, while the software cost
necessary to utilize that hardware has continually been on
the increase.2 According to Madnick only 30% of the develop-
ment and operation cost of new application software is
accounted for by the hardware, and that ratio is still on the
way down.3 Thus the typically high cost of software is more
a result of personnel costs than hardware costs, and therefore
a reduction of personnel requirements could have the greater
impact in terms of cost savings.

Businesses are typically dynamic, growing, évo]ving
entities, and thus their software needs change over time.
This being the case, software should be designed to allow for
easy refinement. In many cases this is not done, and cus-
tomers often find that starting from scratch is easier than
modifying an existing package, even for seemingly simple
changes. The requirement for flexibility iS not only a
function of time varying needs, but also one of initial
specification inadequacies. Frequently a customer will not
fully understand his own needs until he has had a chance to
work with a system. If the system is built without

flexibility for change, then by the time he realizes the
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inadequacy of the initial specifications, it is too late.
One of the primary needs for software today is in the
area of information storage and retrieval. Many businesses
are coming to need database management systems to handle
vast amounts of data, and the sheer size of these databases
makes the problems discussed above even'more pronounced.
Because many consider database management the major bottle-
neck in software development, this will be the subject of

this paper.

The Reason for the Problems

The problems presented above derive from the fact that,
given the.tools (higher level languages) most commonly used
to build software packages, it is a substantial jump to
generate a finished system. Put another way, the difference
between the finished product and the basic materials 1is
quite large.

An analogy to housebuilding may clarify the meaning of
the above assertion. In the early days of computers, a pro-
grammer had available only the primitive instructions of the
machine with which to build programs. This is comparable to
the good old days of the pioneers when a stack of felled trees
represented the basic materiais of a house. In each case
there was a huge gap between the basic materials and the

finished product. The next step for the programmer came
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with the availability of higher level languages (FORTRAN,
COBOL, PL/1, etc.). These lanquages afforded a base comparable
to the use of precut boards in the building of a house. In
each case, the gap from the materials to the finished product
was reduced. While the housebuilding industry has advanced
to the use of prefabricated units; higher level languages
remain the primary tools of the majority of the software
community. The reader desiring further support of this
argument is highly recommended to refer to Simon's article,
"The Architecture of Comp]exity."4
One can think of this gap in terms of driving a car from
one point to another. If the distance is short, the number
of alternate routes is small. If, on the other hand, the
distance froﬁ the point of departﬁre to the destination is
large, there are many alternate routes from which to choose.
A single route will Tikely consist of many Tegs or sub-routes.
A large gap from basic materials to finished system
leads to the problems of the last section in the following

ways.

* Obviously, the personnel costs depend on the time required
to build a system. The more primitive the tools, the
more time required. This can also lead to substantial
lead times necessary to complete a system.
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The resulting design tends to be complex (many pieces
with many interconnections). The complexity frequently
eliminates the possibi]ify of understanding the entire
design at once. One must concentrate on only a portion
of the design at a time, making it easy to overlook
ramifications of decisions concerning that portion.

Thus bugs are likely to creep into the design.

The proliferation of potential paths makes any resulting
design the personal choice of the implementer. How this
choice is made will greatly affect the quality of the

system (the variability of success issue).

The fact that the path chosen is personal in nature
ususally limits understanding of the design to the
implementor. If he leaves, a change to the system can
be all but impossible. This is why starting over is

a frequent phenomenon.

A Logical View of Data

The arguments presented above lead directly to the con-

clusion that the development of higher level tools is the

solution. If the gap from basic materials to finished pro-

duct is made small enough, the implementor could produce

straightforward, easy to modify, working systems much faster
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and at lower cost than ever before possible. To this end, we
require an understanding of the common functions of all
‘systems. Having restricted ourselves here to the area of
database management systems, the framework necessary is a
logical view of data or a theory of information. If we can
develop a model of real world information, then that model
would provide the basis or platform from which we could build
information systems.

Over the years, numerous models of data have appeared.
Some differ only in level of sophistication, one being a
subset of another, while others represent different approaches.
The next section shall highlight a few of the major models of
the past and present. The subject of this paper will be a
comparison of two of these views. It is important to emphasize
here that comparisons of this nature can rarely be definitive,
for the issues involved are highly subjective. One can merely
make arguments for or against a model with respect to assump-
tions of what it is that makes a model good or bad. In this
regard, one should always take care to explicitly state the
assumptions underlying the argument, for it is likely that
the assumptions will be the actual basis for agreement or
disagreement. |
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The approach taken here to motivate the need for a
logical theory of data is not the traditional one. MWe have
discussed the framework in terms of providing tools to the
user. The more typical strategy is to present a model as an
interface which can clearly separate development efforts.
.In most cases the stated desire is to isolate the logical
functions from the physical storage functions. Then, as
new storage techniques are deve]bped which could improve the
efficiency of a system, the changes can be made without
tampering with the logical functions (i.e., user application
programs). This benefit of an interface is extremely impor-
tant, but if it were the sole motivation, then just about
any robust model would suffice. The current active research,
despite the existence of several good canditate interfaces,
tends to indicate that more is at stake. The model chosen
should not only provide this protection from the physical
structuring, but should represent the best platform from

which to develop information systems.

History

The first big step on the road to a logical view of data
came with the concept of a simple sequential file. System
designers recognized that a typical data storage pattern

involved storing many items of the same type. Thus the term

record came into being to represent a single item, and a file

-17-



was a collection of these like records. From the computer's
point of view, the record was simply a string of usually fixed
size with no meaning; the interpretation was the responsibility
of the user. Being able to think about data storage ipn terms
of a file of records was quite an advance over having to format
and use a secondary storage device with only its basic I/0
commands. Commands to read and write logical records from a file
were provided, and the gap from basic materials to finished
product was significantly reduced.

Soon demands became too complex to be handled by a
simple sequential file, and random accessing techniques were
developed. It was recognized that a user would like to
~access records by some meaningful name as opposed to a logical
record number, so indexing and hash-coding techniques arrived
to handle the need efficiently. Even with the added sophis-
tication, the underlying model of data, a single collection
of like records, remained the same. This model, though fairly
simple, has enjoyed great success as attributed by the fact
that it is still the most commonly used model of the software
community.

To this point, the contents of records were meaningless
to the computer system. Soon ideas developed concerning
standard strategies for interpreting the contents of records
and relationships between them. The need for a theory of
information which would support the ability to interpret the
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contents of records was soon felt. QOver the years quite a few
models have appeared in the literature. The undercurrents of
most of these models fall into one of two general catergories,
network or relational. One finds that this dichotomy clearly
delineates two camps, and there is an active debate in the
literature between them.

The CODASYL Data Base Task Group has been the leader in
advocating the network model. In 1962 they began the task of
developing, along with a standard model, a proposal for a
standard Data Definition Language (DDL) and Data Manipulation
Language (DML). They are still actively working toward that
end. Along the way, many successful systems have been built
on the network model.

In 1969, E.F. Codd of IBM Research in San Jose began
advocating the relational mode].5 Its underlying goals are

similar to those of the network model, but the approach is

different.

We have not explicitly mentioned the hierarchical view
of data, despite its importance as a basis for some widely
used data management facilities (such as IBM's IMS). The
hierarchical model can be viewed as a subset of the network
model and has been found to be inadequate in representing
many real worid information structures. For these reasons,
we will not consider the hierarchical model, even though it

does represent substantial current usage.
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The Current Conflict

As mentioned above, the debate between networks and
relational advocates is currently quite active. This paper
will attempt to provide a framework for the comparison of the
two models, hopefully putting many of the current arguments
into perspective.

Because any comparison of this type is highly subjective,
there are many potential pitfalls to be avoided. A description
of several of these follows:

* Because there is no single universally accepted definition
of each model, there is a high degree of latitute in what
one assumes to be the components of each. There is no
clear resolution to this problem, and the assumptions one
begins with are likely to have more impact on the acceptance
of the results than the process of reaching them. This
paper attempts to deal with this problem in two ways.
First, we begin with the author's reading of the accepted
bases of the two models. The determination of the
accuracy of this reading is left to the reader. Second,
we do not penalize either model with this reading. If
either model is found to be deficient, and the author
finds a way to remedy the problem without altering the

underlying structure of the model, then a change is not
-20-



ruled out. Essentially we are giving each model the
benefit of the doubt, and using the lTatitude mentioned

above, hopefully, to make the comparison more meaningful.

Due to the greater age of the network model, more systems
have been built on it. A network advocate could argue
that the greater number of systems built on the network
model is an indication of its greater suitability. If
one model inherently leads to a more efficient implemen-
tation, that might be a valid point of contention, but
enough time has not passed to determine that. From the
other side of the coin, the relational advocate has more
targets for his attacks on the network model. It is

easy to equate problems in a particular implementation
with problems in the model underlying the implementation.
This should be avoided at all cost, and any use of an
implementation as a focal point for comparison must be
accompanied by a clear analysis separating the problems
due to the model from those due to the implementation.

By and large, this paper avoids specific implementations

as bases for comparison of the two models.
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The relational model revolves around an abstract mathe-
matical theory, whereas it is difficult to find precisely
stated mathematical descriptions of the network model.
This leads the network advocate to argue that practical
jssues have not been considered in the relational model,
and the relational advocate to argue that no mathematical
basis for the network model exists. These arguments are
meaningless. The relational argument will be countered,
to some extent, by a proposal for a network theory in
terms of the relational model. The author claims minima]
abstract mathematical background, and hence the presenta-
tion will be non-rigorous. It is hoped that someone with
a stronger mathematical bent will pursue this course fur-
ther. It might be suggested, as an aside, that the reason
for the absence of a mathematical formulation of the net-
work theory may be due to a lack of felt need, the

possible result of successful implementations.

The network model of data leads directly to a simple
implementation strategy. It is quite possible that

the model actually grew out of this strategy. For the
relational model, on the other hand, the most straight-
forward implementation strategy would be horribly
inefficient. This could be offered as an advantage of

the network model, but it is not an important point
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because the implementation is done, hopefully, only once.
It is interesting to note that this same fact has been
used by relational advocates to argue that the network
model is not a logical model of information but rather

is a technique for organizing the storage of physical
records. This paper will present the network model as a
logical model of real world information, and the fact
that it leads to straightforward implementation will not

be counted against it.

Presentation Strategy

The reader may detect a slant in this paper in favor of
the network view. Though the author does not deny a certain
tendency in that direction, the purpose of the paper is to
present a more objective framework for comparison. In each
point of comparison, an attempt was made to present the
arguments as fairly and with as little bias as possible. The
goal has been to find the better of the two models, if possible,
and not to merely defend one model on an emotional basis. The
slant is intended, in part, to overcome any subjective endoc-
trination the reader may have absorbed from the relational

Titerature.

The paper can be divided into four parts.
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Background (Chapter 2 and 3)

The network and relational models will be presented
to the extent necessary for our purposes. Both the
general reading and the author's modifications will
be discussed.

Comparison (Chapter 4)

Five points of view with respect to a database
management system will be presented with a comparison
of the two models in terms of each.

Mathematical development of the Network Theory
(Chapter 5 and 6)

To put the network model into a more theoretical
framework than it has had in the past, a network
algebra and a network calculus will be developed

(a Ta Codd).

" Summary (Chapter 7)

A recap of the major results will be presented. The
supportability of each view by the other model will
be discussed. The potential benefits of a hybrid
view will also be given. Finally, topics for
further research which have been generated here will

be itemized.
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Chapter 2 The Network Model of Data

Introduction

As mentioned before, many database management systems
have been built on the network model of data. Looking,
however, at some of these individual systems, it is not clear
that there is a single model underlying them all. Each
designer seems to have his own interpretation or variation of
the central theme of the network model, and this makes difficult
the task of explaining "the" network model. The model set
forth here represents the author's understanding of the central
concepts of the network model, and thus may be at odds with
other expositions. The bulk of the ideas and terms are those
presented by Bachman and his articles should be referenced

for further c1arif1cations.6’7’8

Data versus Information

Before plunging into a discussion of the terminology and
concepts of the network model, it may be profitable to clarify

the difference between the terms data and information. A

data element is simply a value; for example, the number 27.

By itself it has no meaning. Information is interpreted data,
or an association. If 27 is the number of people in a par-
ticular class, then the data element 27 has taken on meaning,

and hence informational content, by virtue of its interpretation,
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The function of a database management system is not just the
storage of vast amounts of data as the name might imply; it
is rather the storage of information. Database management
systems revolve around the concept of an interpretation of

the data they store.

Entities, Attributes, and Keys

A1l information exists with respect to objects or things
which shall be termed entities. Any concrete or abstract
object can be an entity. For example, a person, a state, a
color, and an idea are all entities. In a database management
system, entities are the things about which we wish to store
jnformation. We shall call the information we wish to store

about an entity its attributes, and the names we give each

attribute will represent the interpretation of the associated
data. For instance, we may wish to remember that the age of
Tom Smith is 32. Then the value 32 is the age attribute of
entity Tom Smith. In fact, "Tom Smith" itself is an attribute,
the name attribute of a particular person entity.

The name attribute, as we have been using it, plays a
special role. We used the name Tom Smith to actually mean
the entity itself. Whenever an attribute or a group of
attributes uniquely identifies an entity, that attribute or
group of attributes is called a key. Every entity represented

in a database management system must have a key, even if it 1is
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composed of all the attributes of the entity. Likewise, any
entity may have many keys. If this is the case, one is

arbitrarily chosen and deemed the primary key for use by

the system.

Entity Classes

As mentioned above, any concrete or abstract object can
be an entity. Two examples are the person Tom Smith and the
color red. Even though these are both entities, it is useful
to distinguish between them because the sets of attributes
describing them are different. Tom Smith, for example, would
not have the attribute wavelength, just as the color red would
not have a social security number. We thus define an entity
class to consist of all entities described by the same set of
attributes. There might be a person entity class with the
attributes name, age, and social security number, and a color
entity class with attributes color name and wavelength. We
thus have a scheme to classify all entities according to the
attributes that describe them. In some cases, the classification
of entities may be a matter of judgement, depending on circum-
stances. For example, men and women are largely described by
the same attributes. In one system it may be more profitable
to have one entity class for both, along with an attribute
sex. In another, it may be preferable to define an entity

class for each. A school database would most likely combine men
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and women into a single class whereas a medical database may
benefit by splitting them. The trade-offs of the application

will determine the appropriate dichotomy.

Associations Between Entities

To this point we have described a database to consist of
a group of unrelated entity classes. Each entity class is
separate and maintains the values of the various attributes
associated with the entities in a class. The one additional
type of information we might want to record is the association
between entities. Some typical examples are the associations

between:

* husband and wife

* teacher and student

* father and son

* company and employee

* assembly part and component part

Thus, instead of associations between an entity and an inter-
preted value, each side of the association is an entity. It
is the handling of this type of association that clearly
differentiates the network from the relational model. Any
other characteristics of one model, if beneficial, could easily

be incorporated into the other. It is, therefore, in this
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area only that valid comparisons can be made.

Before describing the network approach to managing
associations between entities, -let us explore the character-
istics of such associations. As a first step, what is the
number of entities which may participate in an association?

In each of the examples given there were only two entities,
but this may not always be the case. For example, we may
wish to associate a mother, father, and child. Thus an
association may be of any degree, or there may be any number
of entities taking part in it.

In some cases, as in the company/employee association,
the role of an entity in an association will be clearly
understood based on its entity class. In other cases, as in
the father/son association, two or more entities in an
association will come from the same entity class. The role of
an entity is then not clear. If Tom Smith and John Smith are
associated in the father/son association, it is unclear which
is the father and which is the son. Thus, for each association,
we will assign role names to each part played in the
association. We can thus think of a single association as
relating two or more entities, each in a certain role with
respect to the association, with no restriction that the
various entities come from distinct entity classes. Note that
we have not ruled out the possibility of two or more roles
being the same, as in the case of associations between brothers.
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When an association nas two identical roles, they are said t¢
be symmetric; if A is the brother of B, then B is the
brother of A.

We have been treating an association as a single instancse
of an association between specific entities. It now becomes
beneficial to differentiate between an instance of an
association and as association class comprising all instances
of a particular association type. For example, all instances
of associations between fathers and sons comprise the father/
son association class, just as all instances of person entities
made up the person entity class.

Now, considering only binary association classes for the
moment, how many instances of an association class may have the
same entity in one role. In the example of a husband/wife
association, assuming a monogamous society, a single man may
only appear in one instance of the association. Clearly the
same is true of a women. Thus only one 1n§tancé of an
association may have a sing]e man entity in the husband role
or a single woman entity in the wife role. Put another way,

a single man may take part in only one instance of the
association, and the same is true for a single woman. This
association is thus termed one to one (1:1). Now, in the
company/employee association (assuming a person may only

work for one company) one company may occur in many instances

of the association, but each employee may occur in only one
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instance. This is called a one to many (l:n) association.
Moving on to the teacher/student case, one teacher may have
many students and hence be found in many instances of the
association. Likewise, cne student can have many teachers

and hence be found in many instances of the association. This
is a many to many (m:n) association. Thus binary associations
may be one to one, one to many, or many to many.

The network model of data, as expressed in the literature,
provides directly for the storage of one to many binary
associations only. This is actually not as restrictive as it
sounds. Take first the association degree issue. A set of
binary associations can always represent an association of
higher degree. For example, in the father/mother/child case,
two binary associations, father/child and mother/child, serve
the same purpose. By operations on these two associations,
one can derive the associations between mothers and fathers.
As far as many to many associations are concerned, they too
can be handled via the creation of a new entity class. A one
to many association is defined between each of the two entity
classes to be (m:n) associated, and the new entity class via
operations to be defined shortly. This "cross reference"
entity class provides the needed many to many association
capability. Unfortunately, there is no way to restrict a one
to many association to handle the one to one case. In one
sense, a one to one association can be considered a subset of
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the one to many case, where many in each instance is one.

But the object would be to have the system enforce the one to
one restriction, not the user. The author contends that the
omission of one to one associations results in an incomplete
data model and hence its inclusion will be assumed for the
purposes of this paper. In summary, a data model which pro-
vides one to one and one to many binary associations possesses
the basic capabilities necessary to handle all meaningful real
world associations.

Many may consider the omission of a direct facility to
handle many to many relations to result in an incomplete
model, and the use of a cross reference entity class to be an
artificial solution. There is, however, a way to look at
many to many associations which may help to overcome this
concern. Consider the student/teacher example. Any student
is not associated with a "whole" teacher, but rather with a
part of that teacher's day, the class period. Thus the cross
reference entity class, which to this point has been described
as an artificial means tovhand1e many to many associations
given explicitly only a facility to handle one to many
associations, may take onareal, logical meaning unto itself.
Thus the cross reference entity between teacher and student
entities, would represent the pupil/class entity. Each
pupil/class entity is associated with one student and one
teacher. Any student may be associated with many pupil/class
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entities, as may any teacher. Any time there is a many to
many association, there is an underlying implication that one
of the entities on either side cannot be associated with

"all of" any entity on the other side.

The one to many binary association can be thought of as
directed because there is an asymmetry between the two roles
of the association. One role can have any entity only once in
all instances of the association class, whereas the other role
may have the same entity appearing in many instances. To
differentiate the two roles, the role in which an entity may
appear only once is called themember of the association and
the other is called the owner . For example, the company
would play the role of owner with respect to the association
with member employees. These terms can apply equally to the
entity classes related by the associations (if distinct), or
to individual entities which constitute an instance of the
association. The reader should take care that conotations
of these terms do not interfere with the analysis of database
structure. The fact that companies do not "own" individuals
does not mean that their database counterparts should not.
Owner and member are purely technical terms to differentiate
the two roles in a one to many binary association.

The term key has a special meaning in connection with
associations in the network model, and we must revise our
former definition slightly. As used previously, keys served
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to uniquely identify entities in an entity class. As commonly
used in the network model, a key is an attribute which orders
and identifies members of an association. Thus each
association is identified with a key or attribute in its
member entity class, and all database accesses are made by
following associations to the desired entity, using the keys
to direct the search. This access pattern in terms of paths
through associations tends to differentiate between two types
of entity classes, those which are directly accessible and
those which must be accessed as members of other entity
classes. Some systems manage these two types in the same
fashion by creating a special root entity. Each directly
accessible entity class is the member of an association with
the root entity. Thus all accesses in the database begin at
the root entity and follow a path through entity classes via
associations. In this scheme, it is clear that the set of
keys in a path uniquely identifies the entity at the end of
the path. Thus this revised definition of keys as identifiers
within an association class serves the same function ascribed
to them previously, uniquely identifying entities in an
entity class. This combination of functions, however, does
cause problems. If a particular entity can be accessed via
two distinct paths, then there can be redundant unique iden-
tifications of an entity. Sometimes one or more of the kéys

is allowed to be non-unique to handle this problem. This
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also can lead to problems in creating and deleting using the
non-unique path. The author feels that the functions of
ordering members and uniquely identifying entities should be
clearly divided. It is suggested that the term "key of an
association" be used to mean the attribute(s) which orders

the members of the association. Unique identification of an
entity in an entity class should then be expressed in terms

of the set of attributes and associations which guarantee
uniqueness. This set will be called the identification key

or primary key of the entity class. Unfortunately, the word
"key" has developed in the Titerature to handle both issues,
but the appropriate qualification or context should make clear
the function intended. The reader should keep clear in his
own mind the two uses of the term and be careful to understand
which is being used at any point.

What are the basic functions required to manipulate
associations? Given any owner entity with respect to an
association, we should be able to find any or all members. In
-most systems, when requiring all members, there is usually a
"piped" facility to present the members one at a time in order
of the key of the association. Given the owner and a member,
this facility allows us to retrieve the previous member or
the next member. Also, given any member entity of an

association, we should be able to find the owner.
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Standard Terminology

In the network model of a database management system,
there is a file for each entity class. FEach record in the
file corresponds to one entity of the class. The attributes
of entities are stored in fields on each record. The
associations between entity classes are directed relations

between the owner and member files.

Data Structure Diagrams

A data structure diagram is a technique for depicting
graphically the files and relational structure of a database
The technique 1is quiﬁe simple, using only two symbols, a box
and an arrow. A box represents a file or entity class. There
is one box for each file in the database. ‘An arrow represents
a relation between two files, pointing from the owner file to
the member file. With these simple tools we can represent
any complex database structure.

For example, the company/employee relation discussed

above would be depicted:

company

L

employee

Figure 1
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The retation (arrow) is frequently thought of as a chain.
Given any company we can go down the chain to find a partic-
ular employee; we can find the previous or next employee in
the chain for this company or we can find the company.

It is common practice, when possible, to place owner

files vertically above their corresponding member files.

Trees and Networks

| Using data structure diagrams, we can explore the impli-
cations of various database structures.

In the company/employee database, each student had only
one owner entity or only one relation in which it played the
member role. When each file in a database is a member of at
most relation, that database is said to have a simple tree
structure. Simple tree structures are frequently inadequate
to describe a real world information structure. To fit the
teacher/student database into a tree structure, we would have
to make the assumption that each student has only one teacher.
This is not commonly the case.

A database has a network structure when any file is owned
by more than one relation. The teacher/student database will
illustrate a network. During a school day, a student has
several classes, usually each with a different teacher. To
model this information structure, the following diagram is
adequate.
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teacher student

pupil

Figure 2

Each record in the pupil file represents a class period for
a particular student. Thus the fields of the pupil file might
be class name, period number, and class room. Given any
student, we could chain through the pupil file, finding the
associated teacher (owner) record. Likewise, given any
teacher, we could chain through the pupil file, finding the
associated student.

A11 the structure discussed to this point has existed
in the structure of the files. In a special network, it is
possible to store structure iﬁ the data itself. For example,
in a manufacturing environment there might exist a part file.
Each part is either a detail part or is made up of other parts
(it is an assembly). The parts of an assembly might be
assemblies themselves. As the product structure varies, new
files should not have to be created or deleted to maintain
that structure. A1l we really need beside the part file is
a file to record each instance of a use of one part in the
assembly of another. ©Each record in this product strucutre
file is related to two part records, the assembly part and
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the component part. ©Each part record may have many components
or be used in many assemblies. The following file structure

brings this together.

Part

v 1
Product
Structure

Figure 3

Given any assembly part, we can travel down the component
chain. At each component record we find its owner via the
other chain (the component part record) and check it for
components. This double chaining between two files allows
us to store a network structure in the data itself.

To diagram the one to one relation, which we said would
be considered part of the network model for our purposes, we
need use only an arc instead of an arrow (directed arc). The

husband/wife database might appear as below.

N

Men Women

Figure 4
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The use of an arrow to indicate the direction of a one
to many relation has been, on occasion, a source of confusion,
for frequently it will be thought of as a pointer. This
results in the misconception that it is only possible to go
from an owner to its members via the relation. In the dis-
cussion of basic functions we noted that one requirement was
to be able to find the owner of an association given any
member. Thus is a sense we can traverse the arrow in either
direction; the arrow merely distinguishes the two sides of the

relation.

Relation Naming

In most of the diagrams given, we have not explicitly
labelled the relations. This does not 1mp]y, howeyer, that
the naming of relations is irrelevant. In many cases it is
crucial. In fact, as we shall see, a relation may actually
need two names, depending on the direction travelled. In the
case where there is a single relation connecting two entity
classes, the need for explicit naming is reduced, for then
the ambiguity question does not arise. In a strict hierarchy,
relation naming can be ignored.

Consider the part/product structure database depicted in
Figure 3 . Given any part record, we may want to find all
components used to make that part or all the assemblies that

part is used in. Which task we want to accomplish will
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determine the appropriate path to follow. To communicate the
request to the system, each path should be given a name which
denotes its function. In this example, two likely names

would be "component" and "assembly". For any part we would
find all members of the component relation to get the
components used in the part, or all members of the assembly
relation to find the assemblies the part is used in. Now

let us consider that we have a certain product structure
record and we want to find the assembly part number it
corresponds to. Unfortdnate]y, it is the component relation
that connects an assembly part to its component product
structure records. Thus, to get the assembly part number of

a product structure we must find the owner via the component
relation. The thrust of this argument is that a name which is
meaningful for a relation when looked at from one side may not
be meaningful when looked at from the other. The implication
is that a relation should have two names, one to be used when
looking "down" the relation from the owner side, and one to
be used when looking "up" the relation from the member side.

The naming for the part/product structure case might be:
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r——component

down
name { assemb]y——j,//

up {

name T —assembly

component—f

product
structure

Figure 5
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Chapter 3 The Relational Model of Data

Introduction

The relational model of data is based on mathematical set
theory of relations. The application to information theory
has been the effort of many, but E.F. Codd of IBM research
in San Jose, California, is by far the leading (and most
prolific) proponent. The description of the relational model
given here is almost exclusively based on the work of
Codd.g’]o’]]’]z

The term "relation", unfortunately, has an entirely
different meaning in the relational model than in the network
model. This is a continual source of confusion in attempts to
discuss or compare the two theories, but each use of the term
is so firmly and centrally rooted in each theory that one must
simply be careful to interpret it in terms of the theory to

which it applies.

Goals

The relational theory was developed to overcome three
problems noted in many systems. Codd firmly asserts that the
relational model is not a response to the network model, but
the first major paper discussess the problems in terms of the
13

shortcomings of the network model, among others.

Whether these three problems were inherent in the network
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theory or merely outcomes of particular implementations is a
subject for later discussion. The three problems are those of
ordering dependence, indexing dependence, and access path
dependence.

Ordering dependence means that files and relations in
the network model are stored in a particular order of the
keys (usually the alphanumeric collating sequence). For
instance, given a company record and requesting all the
employees of the company, a system would usually be designed
to present them in a predetermined sequence, for instance
in order by employee number. It was argued that application
programs would be written expecting that order (depending on
it) and thus, if the stored order were changed over time as
may well be the case, the application program would no longer
function properly. The reason relations are ordered in almost
all network based systems is one of efficiency. First, the
user will almost always request the same order for a particular
relation. This has been observed in practice. Second, there
are certain system operations which can be performed more
efficiently if ordering exists in a relation. As an aside,
perhaps application programs should specify the order they
require when requesting members of a particular relation.
If the order requested matches the system ordering, the
specification may be ignored; otherwise the system can be
expected to reorder (sort) the members prior to presentation.
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Thus ordering can represent a potential cost savings but its
possible consequences should be understood and planned for.
To return to the mainstream of the discussion, ordering 1is
dispensed with in the relational model so that application
programs may not be designed which exhibit ordering depen-
dencies.

Indexing dependence 1is purely an efficiency issue in
implementation and has no bearing on a ]ogfca] view of data.
Indexing is a technique for rapidly finding a particular
record given its key. The logical function is to find a
record given its key. Whether this is done via indexing or by
a logically equivalent lTinear search should be irrelevant to
the application program. Unfortunately, as Codd points out,
some systems such as IDS require the application program to
reference an index by name rather than have the system check
for its existence and use 1t.]4 Indexing has no place in
the logical network model and any implementation in which
indexing is not transparent to the application program
cannot be said to support the logical network model.

Access path dependence is a truly inherent aspect of the
network model, but its ramifications are not quite those
generally expressed in the literature. There are two ways
to look at the network model, as a logical model of real world
information, and as an implementation strategy. Those that
argue against the network model in terms of access path depen-
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dence usually treat it as an implementation strategy. Thus
they present several possible structurings in which to store
the data and thus demonstrate that an application program will
depend on which structuring is chosen. [If the structure is
changed, the program will no longer function properly.
Treating the network model as a logical view of information,
the problems are always diminished if not altogether removed.
If the logical view is followed, there is one and only one
structure which accurately reflects the real world relation-
ships between entities. Thus if the real world structure is
constant, so is the network model, and the concern over
switching possible strdcturings is banished. If, on the other
hand, the structure of the real world changes, then the
database structure must be altered to reflect the change if it
is to remain an accurate representation of the world. In this
case, the only meaningful one, application programs may, in
fact, require modifications. Thus the relational model is
proposed as a scheme to maintain the invariance of application

programs as the database evolves over time.

The Model

The relational model is based upon abstract set theory.
It assumes a collection of pools of values called domains.
For example the sets of all possible names or colors or ages
or part numbers are all domains. A relation on domains D],
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Dy Dys ... 5 D is defined to be a set of n-tuples, each of
whose first element comes from domain Dy, second element comes

from domain D2, ... and nth

element comes from Dn‘ A
relation, then, is the counterpart of a file in the network
model; each domain corresponds to an attribute, and each
n-tuple corresponds to a record. Each domain is usually
given a name to identify it so that the ordering of domains
is no longer necessary. If the same domain appears more

than once in a relation, each is given a role name to dis-

tinguish it from the others. At any point in time, the term

active domain refers to the subset of a domain which actually
appears in relations in the database. All tuples in a
relation are distinct. A subset of domains in a relation

which uniquely identifies a tuple is called a candidate key.

A candidate key is non-redundant if none of the domains in the

key are superfluous in uniquely identifying a tuple. If there
is more than one non-redundant candidate key, one is chosen and

termed the primary key of the relation. If a domain or set of

domains in a relation acts as the primary key in another

relation, it is called a foreign key.

First Normal Form

Up to this point we have made no restriction on the
domains in a relation. The elements of a domain may in fact

be relations themselves. For example, an employee may have
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as a domain his salary history. This could itself be a
relation on the domains date (of hiring), date (of termination),
and salary. Any domain which is itself a relation is termed

a non-simple domain. A relation is said to be in first normal

form if it is free of non-simple domains.

Codd has defined a normalization process to reduce a
relation containing non-simple domains to a set of relations
in first normal form.]5 If relation R has a non-simple
domain a, then a relation A is created. For each tuple s in
the domain a of eacn tuple r in relation R, a tuple t is put
in A which is made up of the primary key of r and the domains
of s. Once A is created, the non-simple domain a is removed
from R. Iterations of this process until no non-simple
domains remain results in a database in first normal form.
Viewed in terms of the data structure diagrams of the network
model, the attributes of the primary key of any owner file are
merged with the attributes of each of its member files, and
the relations are removed. For example, consider a relation
between a department and the employees who work in the depart-

ment.
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Network

Department

Employee

File Attributes
Department
Department # (key)
Department manager #
Department name
Employee

Employee # (key)
Employee name
Employee age

First Normal

Relation Domains
Department
Department # (key)
Department manager #
Department name
Employee

Department # (key)
Employee # (key)
Employee name
Employee age

Figure 6
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Operations on Relations

Frequently it is necessary to perform operations on a
relation or a set of relations to extract the information
required by a query. These operations can be broken down into
those which operate on a single relation and those which
operate on more than one relation. Some are commonly found
in set theory and others are specifically devised for the
needs of a database system. The description of each below is

primarily taken from Codd.m’]7

I. Single Relation Operations
1. Projection
J This is commonly an extractibn of certain domains
from a relation. It provides also for recrdering
(permutation) of domains in a relation and a repeti-
tion of domains. If A is a list of integers, each
between 1 and the degree of a relation R, and r is

a tuple from R, then r[A] is a tuple whose jth

is the jth domain of r where j is the ith element

domain

of A. Each tuple of R is used, under the 1ist A, to
generate R[A]. Remember that a relation may not have
identical tuples, so projection may require the
removal of redundant tuples from the resulting

relation.
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Restriction

This is a means of selectively removing tuples from

a relation based on a given test function. The
allowable test functions are the standard value
comparison tests <, <, =, #, >, >. A restriction on

R between domains A and B based on the test @

can be expressed:

R[LA 8 B] = {r:reR A (r[A] & r[B])}

Of course, A and B must be comparable types of values,

i.e., both numbers or both character strings.

II. Multi-Relation Operations

1.

Union Intersection Difference

These standard set operations apply only to union
compatible relations, or relations defined on the
same domains. They are defined in the standard way.
RS
RMS
R -S

{r:{(reR v resS)}

1

{r:(reR A reS)}
{r:(reR A r¢sS)}

1

Cartesian Product
This is also a standard set theory definition.
R s = rs:(reR A seS)}

(rns means the concatenation of tuple

r with tuple s)
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Join
If 6 is one of the comparison operators <,<,=,#,>,>,
then the 6-join of two relations R and S on the
domains A (in R) and B (in s) is defined.
R[A 6 BIS = {(r"s):reR A

seS A (r[A] 6 s[B])}
The most common use of a join occurs when 8 is the
equals operation. This equi-join results in two
identical domains in the resulting relation. If one
is removed, the result is termed the natural join.
It is clear from the definition that the join is not
a basic operation because it is expressible in terms
of the cartesian product and restriction.
Division
This is an inverse operation to the cartesian
product since

(R®s) + s =R
Division is an extremely complex operation to under-
stand, and because it will be of important use later,
it is suggested that the reader become thoroughly
familiar with it before proceeding. Before giving a
formal definition, we will describe it in terms as
close as possible to the use it will serve later.
Assume T is a relation which can be partitioned into

two sets of domains such that the second set is union
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compatible with a relation S. R, a relation we are
seeking to derive will have the same domains as the
first set of domains of T. R will consist of all
tuples r such that, for all tuples s of S, rns
appears in T. If R is thus derived, then

T=RQsS\U ¥
~where W can be thought of as the remainder. It is
impossible to express any subset of W as X 69 S.
For the formal definition,
"Suppose T is a binary relation. The image set of
X under T is defined by

g7(x) = {y:(x,y)eT}.
Consider the question of dividing a relation R of
degree m by a relation S of degree n. Let A be a
domain identifying list (without repetitions) for R,
and let A denote the domain-identifying list that
is complementary to A and in ascending order. For
example, if the degree m of R were 5 and A = (2,5),
then A = (1,3,4). MWe treat the dividend R as if it
were a binary relation with the (possibly compound)
domains A,.X in that order. Accordingly, given any
tuple reR, we can speak of the image set gR(r[A]),
and we note that this is a subset of R[A].
"Providing R[A] and S[B] are union-compatible, the

division of R on A by S on B is defined by
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R[A:BIS = (r[Al: reR & S[B] < ap(r[Al)}.

Note that, when R is empty, R divided by S is empty,
even if S is also empty.”]8 |
Division is not a primitive operation in that it is
describable in terms of the projection, cartesian

product, and difference operations.

R[C:D]S = R[T] - ((R[T] ® s[pl) - R) [C1'?

Second and Third Normal Form

A formal description of and motivation for second and
third normal form can be found in Codd's articles, "Further
Normalization of the Relational Database Model," and
"Normalized Data Base Structure: A Brief Tutoria].“20’21
We shall content ourselves here with a description of second
and third normal form in terms of the network model.

As described previously, the process of reducing a net-
work data structure diagram to a set of relations in first
normal form consisted of merging the primary key of any owner
record with all of its member records. If then the (network)
relations are removed, a set of (relational) relations in first
normal form are produced. We have yet to specify whether
these inferred primary keys of the owner file take part in the
primary key of the relation derived from the member file.

The answer is that, if the association or relation between

the two files was a part of the primary key of the member
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file, then the merged primary key from the owner will become
part of the primary key of the relation derived from the

member file. Consider the company/employee network diagram.

Company

Employee

Figure 7

Assume company number is the primary key of the company ff]e.
Now there are two possible cases for the primary key of the
employee file. If an employee number is unique (i.e.,

social security number is used), then the primary key of the
employee file is simply the employee number. If on the other
hand employee number is only unique within a company, the
employee number and the company/employee relation constitute
the primary key of the employee file. If this network
structure were reduced (normalized) to the relational model,
then, in the case of the universally unique employee number,
the primary key of the employee relation would only be the
employee number. If, on the other hand, the company/employee
relation was also part of the employee file primary key,

then the resulting employee relation would need both company

number and employee number to make up its primary key.
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What does this have to do with second and third normal
form? The problems to be overcome by both second and third
normal form can be viewed as the result of an error in
norma]izing an accurate (in terms of the real world) network
structure. The error is to merge into the member file more
than just the primary key of the owner. For example, if
company location as well as company number were normalized
to the employee file, then the resulting relation would not
be in either second or third normal form.

If the cause of a relation's not being in second normal
form is the same as the cause of a relation's not being in
third normal form, what is it that distinguishes the two?

The only distinction between the two depends on whether or not
the normalization error occurred on a (network) relation which
is part of the primary key of the member file. If the relation
of the error takes part in the primary key (or more precisely
any candidate key) of the member file, then the resulting
relation is not in second normal form. If the relation is

not part of a primary key, then the relation will be in

second normal form (assuming no other errors) but it will not
be in third normal form. Viewed with this perspective, the
distinction between second and third normal form is fairly
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Algebra and Calculus

Codd calls the operations on relations described

earlier a relational a]gebra.22

Queries formulated in terms
of this algebra are, in essence, specifying a procedure for
the extraction of desired infdrmation. He has also developed
what he terms a relational calculus which provides a language
in which queries can be formulated in descriptive rather than

23

procedural terms. The relational calculus represents Codd's

proposal of the proper interface between user queries and

the system, a high level, precise, description language. To
illustrate that this relational calculus is "relationally
complete" (can be formulated in terms of the relational algebra),
Codd defines a reduction algorithm to take statements in the
relational calculus and reduce them to statements in the

relational a]gebra.24

Thus he demonstrates that any query
which can be formulated in the relational calculus can also
be formulated in the relational algebra.

We will not pursue the details of the relational
calculus and reduction algorithm here. The interested
reader is referred to Codd's paper, "Relational Completeness
of Data Base Sub1anguages."25 Altered versions of these will
be found in the chapter on the network calculus. Those

interested in the success of the relational calculus as a

target language for interpreting user qgueries are referred to
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Codd's paper, "Seven Steps to Rendezvous with the Casual

User.“26
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Chapter 4 Viewpoints for Comparison

Introduction

When comparing two models, it is important to clarify
at the outset the point of view from which the comparison will
proceed. Aspects which may be useful or benefitial with
respect to one point of view may be disasterous from another.
The goals of the viewpoint will be crucial in sorting out the
various issues. To insure that this procedure is followed,
we will begin with explicitly stated points of view and analyze
how its goals are satisfied or not satisfied by each model.
Another approach would be to itemize characteristics of each
model and analyze them in terms of who or what is aided or |
hurt by each. This approach, however, leads to difficulty in
final evaluation and it is often hard to ascertain which
characteristics will have important or meaningful impacts.
With the former approach, we can come to more conclusive
results in each viewpoint.

The following diagram will establish a framework for
comparison of the two models. A11 relevant entities which
could be effected by the model choice are jllustrated and

they will be dealt with one at a time.
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user

database
designer

application
programs

Figure 8

Database Administrator/Designer

The database designer is the one responsible for deter-
mining what information is to be stored in a database, and how
that information is to be organized. It is extremely important
that the designer insure that the organization is a true
repreéentation of the real world.

In the relational framework a true representation of the

real world is equivalent to having relations in third normal

form.27

As discussed in Chapter 3, this means that all
functional and transitive dependencies have been removed. So,
from the system designer's point of view, what is the process
involved in removing these dependencies?

Codd provides a mathematical formulation to express what
each of these dependencies looks 11ke?8 With this, then, can

the system purge itself automatically of these dependencies?

The answer is no because knowledge of the real world
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counterparts is required. Hence the designer must interact
with the system to remove them. The best a system can do to
lead the designer through the process is to ask, through a
systematic series of questions, whether each potential depen-
dency in the current database formulation is, in fact, a

true dependency. If so the remeoval is rather simple. Grant
Smith has actually devised a strategy for asking the questions.29
In a database of any complexity, the number of potential
dependencies is huge and hence, the question and answer

session is likely to be a tedious one.

How do these functional and transitive dependencies,
errors in the representation of the real world, ever make
their ways into the relational organization of the database
as formulated by the designer? The answer is inherent in
the framework of the relational model. Dependencies are the
result of storing an attribute of an entity in a relation
that does not represent that entity. 1In the relational model,
each relation is considered to be a table distinct of all
other relations in the database, which stores associations
that the userwishes to keep track of. Thus the user is led
to think about only one relation at a time. Since he
probably designs it thinking in terms of some desired appli-
cation or report, it is a natural process to include in it
all the information required by the application or report.

The disjoint nature of a relational database, then is the
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cause of the introduction of functional and transitive
dependencies. The user is encouraged not to think about
associations between relations.

In the network model, the designer is forced from the
outset to consider the relationships between files. Before
he can begin storing attributes he must structure the database
to represent the relationships between entities in the real
world. With the overall picture in mind, he decides which
attributes are needed and where they should be stored. It
is difficult indeed to store an attribute in the wrong file,
the error almost stares you in the face. Although a series
of questions could easily be devised to check the validity of
each attribute, it is unnecessary because mistakes are rare
or nonexistent.

Thus insuring the consistency of a database structure is
a natural outcome of utilizing the network model, whereas it
entails a tedious check-up job in the relational scheme. It
is the inherent psychology underlying each approach that
makes the relational model more prone to this type of error

than the network model.

A Framework for Language Interface Comparison

Codd has classified the languages used to interact with
a database management system into three categories, cursor
oriented, algebra oriented, and calculus oriented?o They
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exhibit a hierarchical ordering as depicted below.

Algebra

Figure 9

A Cursor oriented language is one in which the user
specifies a step by step procedure for extracting the infor-
mation of interest. 1In the network model a procedure
specification to list the components of an assembly might

appear as follows.

Find part xx

Find first component of part xx
loop: If not found, go to done

Print quantity and component number

Find next component of part xx

Go to loop

A similar procedure would exist for the relational mode13]
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Find first tuple of relation component
loop: If no more tuples, go to done

If assembly Part number=xx

Then Print quantity, Component Part number

Get next tuple of relation component

Go to loop.

Thus the system is given a systematic procedure via a series
of primitive steps for extracting the data of interest.

An algebra oriented language is a concise mathematical
abstraction of the procedure to extract information. Functions
are provided to operate on aggregate groups of data such as
entire relations in the relational model. A single formula
(nested perhaps) can express the entire procedure to derive
the data of interest. Examples of relational algebra functions
can be found in Chapter 3.

A calculus oriented language is one which is free of any
procedure specification and merely describes the characteris-
tics of the data desired. The system is required to map the
descriptive request into a procedure for data extraction.
Examples of calculus oriented requests are to be found 1in
Chapter 6.

Each model of data should have a language at each of the
three levels to provide a basis for comparison. Codd has

fully developed a relational algebra and a relational calculus.
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Network designers have developed a myriad of cursor oriented
languages and a handful of network algebras, but a network
calculus has yet to be published {(see Chapters 5 and 6). Thus,
when comparisons are made between the two models in terms of
the user interface, they are invariably comparing the
relational calculus of Codd with a cursor oriented network
lTanguage (usually that proposed by the DBTG). The following

diagram illustrates the current situation.

relational comparison network

-
- - -_——

------------------------ calculus

S —---

- e wm mn mn em em e e em em e e e e e e am wm em = m =

specified

--- unspecified

Figure 10

This comparison between the relational calﬁulus and a
network cursor oriented language is clearly invalid as a
comparison of the two models. To reliably compare the two
models of data requires the development of a network algebra
and network calculus. Then a more valid comparison between

languages on the same level can be made.
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Experienced User

An experienced user is one who will interact with a
database on a frequent basis, usually as a result of his Job.
Someone in this category is willing to undertake additional
initial education if that will significantly improve the
useability of a database management system in the future. A
common argument of the relational model advocates is that the
relational model is easier to teach to first time users. This.
is most likely true, for everyone has been presented with a
simple table at some time in his life. But this view does not
give the user an understanding of the ways individual relations
relate to each other; he must be content with the assurance
that the system can figure everything out for him. It is °*
the author's contention that a frequent user will desire an
understanding of how the database fits together and that the
network model will better provide this than the relational
model. To achieve the same understanding provided by the
network model, the user must be taught the algebraic functions
of the relational model. This requires a fairly mathematical
mind and makes fully understandingthe relational model a
more difficult task.

Due to his frequent encounters with the system, an
experienced user is likely to prefer a good algebra oriented
language because it provides the most concise expression of

his request. His familiarity with the system and under-
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standing of the relationsnips in the database lead him to
think of his requests in a procedural fashion. He naturally
thinks of the steps required to satisfy his requests, which
can in fact be a method whereby be clarifies his request to
himself. Because of its more powerful (and hence admittedly
more complex) basis, the network model is likely to provide

a more powerful algebra oriented language. The user can

think in terms of access paths through the database structure,
extracting data on the way. A language devised by MITROL,
Inc. can provide an example of a good algebra oriented

1anguage.32

Given the following database structure, the
command to provide a 1list of all parts and due—dates on

purchase orders under vendor IGG is expressed below. .

Part Vendor

/

PO

Line-item

ENTER REQUEST: print part-num due-date for vendor

IGG po all line-item all.

Figqure 11
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This request has little superfluous information, and yet it
reads quite well. The "for clause" specifies the access path
{vendor, po, line-item}, and the "field clause" specifies

the requested data. This language, though requiring some
understanding of the network model, has proved very

successful among MITROL customers.

Casual User

The bulk of the arguments in favor of the relational
model have been oriented to the casual user. Codd has
estimated the trend of database usage into the 1990's, and

predicts a rapidly growing use by casual users.33

In his
article, "Seven Steps to Rendezvous with the Casual User,”
Codd defines a casual user as "... one whose interactions
with the system are irregular in time and not motivated by

his job or social role."?

Thus he is unwilling to undertake
any more than a cursory initial education. If this is true,
the simpler the model the better. The argument is then that
the easier a model is to teach to a novice, the better it is
in fulfilling the needs of a casual user. Now where does the
casual user fit into the scheme of the three categories of
language interfaces. Clearly he is at the calculus level
because he wants to describe his request, not give a pro-
cedure for fulfilling it. Codd does an excellent job of
describing a system which, based on the relational calculus,
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carries on a dialog with the user until the system fuliy
understands the user's request-35 The user is able to
converse with the Rendezvous system in unrestrictea English
as long as the system can derive some information from his
responses. Now find where in the dialog the user needed any
concept of a model at alll It seems that the system is the
only one using a model, the user merely requests the infor-
mation he wants. A manager does not need a model of the
filing strategies of his secretary, he merely requests the
information he wants and the secretary maps the request into
the model needed to satisfy it. Thus, indirectly, Codd has
led us to the point of saying, from the point of yiew of

the casual user, if a simple model is better than a complex
one, then maybe no model is best of all. If this holds true
as it would appear to in the sample Rendezvous dialog, then
the casual user cannot be used as a basis of comparison
between the two models of data. The issue is which model
leads to a better interpretation of a user request by the

system.

The System

Without algorithms to decipher a user request in both
models, an accurate comparison of the network and relational
models in terms of which model leads to easier analysis cannot

be made. However, general comments bearing on the issue can be
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raised.

Relationships in the network model are information
bearing entities absent in the relational model. These
relationships have names and it is likely that a user will
phrase his English request in terms of these names of
relationships. Thus is is likely that these named relation-
ships will make request analysis a simpler job. Note also
that a relationship relates a whole entity (all of its
attributes) in one file to a whole entity in another file.

In the relational model, it could be argued that role names
serve the function of relationships, but they do so only
indirectly. A role name applies directly only to the foreign
key in the relation. It is ,another step to apply a role name
to other domains of tuples found in the other relation.

Consider the part/product structure case. In the network

model there are two files with two relations between them.

Part

assembly component

Product
Structure

(only "down" names are given)

Figure 12
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In the relational model there would be two relations, part
and product structure. The part relation is identical to

the part file. The product structure relation has the
assembly part number and component part number as well as the
quantity field. Consider now the user request, "List all the
components of part xx." In the network model this is trivial
because the "down" name of one of the relations matches the
user's request. In the relational model, the key words

given (part and component), do not give the necessary role
name for the system to pick up on, assembly. The relational
request is really, "List the component part number of all
product structures having assembly part number xx. Thus
these (network) relation names can provide added ease in
deciphering user requests.

Another aspect of the system's job is insuring consis-
tency and integrity of the database. One such problem can be
motivated by the following example. Assume there is a vendor
relation and a purchase order relation in the relational
database. One of the domains of the purchase order relation
is likely to be the vendor number. As long as any purchase
orders exist for a particular vendor, we would like to

disallow the deletion of that vendor from the database. In
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the relational model, this enforcement must be external. In

the network model it falis out naturally.

Application Programs

One of the major arguments for the relational model is
that it provides data independent accessing so that applica-
tion programs will remain unaffected by growth in the
database. In his "Further Normalization of the Data Base
Relational Model," Codd gives several examples of cases in
which changes to a relational database would impair applica-
tion programs.36The primary cases have to do with attribute
migration and insertion and detection anomalies. By using
a network model free of ordering and indexing dependencies,
the network model can be shown to be no worse than the
relational model in its ability to handle growth. (Codd
claims the relational model should first be in third normal
form, the author claims the network model should first be in
a state which accurately reflects the real world.) The bulk
of the arguments along these lines deal with particular
systems which possess these ordering or indexing dependencies,
or treat the network model as a model of storing records, not

a model of entities and their relationships.
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Chapter 5 A Network Algebra

Introduction

There are two possible approaches to be taken in develop-
ing a network algebra. The first consists of analyzing usage
patterns in a network cursor language and proceeding from
there. The second is to take the relational algebra as pro-
posed by Codd, and modify it to fit the network framework.

The first approach is preferable if the resulting algebra is

an end in itself. If, however, the algebra is to play a

support level with respect to the development of a network
calculus, then the second scheme is preferable. The issue of tne
power of the resu]ﬁing algebra or calculus is important. As will
be discussed in the next section, the common approach of following
paths through a network datahase is not powerful enough to

handle certain queries. The structure of Codd's relational
algebra, as modified here, will take care of these problems.

Thus the second approach, modifying Codd's relational algebra

to fit the network framework, will be used.

Access Path Navigation

Bachman has described the programmer's job as one of
navigating through the access paths of the network structure.Sf
In most network systems, the user begins at the root of the
database and, following the arrows of the data structure

-73-



diagram, defines a path to the data he requires. In most
cases this works quite well, as experienced by MITROL users.38
There is one kind of questicn known to the author in
which this navigation procedure fails; there may exist others.
Fortunately for network users, this type of question is rare.

It will be denoted the "For all" type. Consider the following

database structure.

Suppliers Projects
Supply
. ) Figure 13

How would one answer the query, "List all the suppliers who
supply all projects," by simply navigating via access paths?

(This is where division comes in handy.)

Extension to the Relational Algebra

Setting aside for the moment the one to one and one to
many relations of the network model, we see that the remaining
files and fields are direct counterparts of the relational
relations and domains. Thus we can start with the operations
of the relational algebra as a base. To handle the relations

we must add a new facility, the MERGE operation.
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Let R and S be two network files related by relation T. If
r and s ar% tuples from R and S respectively, then the MERGE

of R and S over T is denoted and defined

R db S = {r"s:reR A seS A T {r,s)}
where T(r,s) is true if r is related to

s via relation T.

This can be seen to be the counterpart of the natural join in
the relational algebra. The notation given this operation is
intended to clarify the fact that the MERGE can be viewed as
a limited cartesian product. The operation is clearly the

) norma]izatioﬁ of the two files.

To make the MERGE operation complete, we must extend the
notation to include the capability to merge several files at
once. A straightforward extension

T2

T T3
$® 5, ® 530 3y

assumes that the last tuple added is the one taking part in
the association of the next merge. If T3, for example,

related 34 to SZ’ then the notation is inadequate. To handle

this, the index of the basic tuple in the resulting merge
taking part in the merge relation will be placed under the

merge symbol. Also, we must have a way to differentiate
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between the owner and member side of a one to many relation.
To handle this we will place an arrow under the merge symbol.
The arrow will point to the right if the file being currently
merged is in the member role with respect to the merge rela-
tion. For the complementary case it will point left. The

full extended notation is thus

T, T, T,
s]@ S, @_ S5 @ Sy
1 Vi 2

For completeness, and to make the reduction from the
network calculus as easy as possible, we must also extend
the restriction operation of the relational algebra. As
proposéd by Codd, the restriction operator is defined on the

>. We want to add a

3

comparison operators <, <, =, #, >
testing function which determines whether two tuples which
have been concatenated (by a cartesian product, for example)
are related via a relation. One simple way to do this is to
include as part of any tuple a unique identifier, perhaps as
the first domain. In the array representation of a relation
or file, this might be simply the index. The comparison
operator would test these two domains to determine whether
their corresponding tuples were related by a given (network)
relation. Thus if A and B are the domains identifying tuples
r and s in a relation T which has been formed from relations
R and S, then
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W W
T [A#B] (T [A #8B])

results in a relation of only the tuples of T for which
original tuples r and s were (not) related by W. The domain
corresponding to the owner tuple will always appear first.

The MERGE operator and the extension to the restriction
operator are somewhat redundant. The MERGE operator is pre-
ferable in a practical sense because it limits the initial
size of a target re]atfon (compared to the full cartesian
product). This will become more clear in the network calculus
chapter. Due, however, to the lack of mathematical rigor of
this presentation, the author is unsure that it will always
be sufficient. Thus the restriction modification will be

used because it provides mathematical completeness.

Examples
To illustrate the use of the network algebra, consider

the following database.

Supplier Part Project

R4 Worker

Figure 14
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Symbol File Domain 1 Domain 2 Domain 3
supplier TID* Supplier # Supplier HName
part TID Part # Part Name
project TID Project # Location
supply TID
worker TID WOrker.# Worker Name

* Tuple Identifier

Figure 14 (cont'd)

The following queries will be translated into the network

algebraic formulas required to satisfy them.

Find the supplier numbers of those suppliers who
supply part 15.
Wy Wo
(R @ R, @ R,) [6 =11 (153) [2]
1 2

Find the name of suppliers and the parts being supplied
by them (omitting those suppliers who are supplying no

parts at this time).
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W W

1 2
Ry @ r, @ ®,) [3,6]
1 2

Find the workers on all projects supplied by supplier A.

=

1 W3 Wy
((Ry @ R, ® Ry @ Rg) [3 =11 (A}) [9]
1 2 3
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Chapter 6 A Network Calculus

Introduction

Just as with the network algebra, the network calculus
presented here will be a simple extension of the relational

calculus developed by Codd.39

The presentation will closely
follow his, but with the slight modification included.
Because the presentation given here is fairly terse, the
reader is suggested to refer to Codd's presentation for

clarification.40

The Extension

A1l that is necessary to convert Codd's relational
calculus to a network calculus is the addition of dyadic
predicate constants w], w2, N3, ... to the alphabet, one
for each (network) relation in the database. Throughout the
development, they can be handled exactly as the dyadic
predicate constants <, <, =, #, >, > are, except that they
take tuple variables as opposed to indexed tuples on either
side. We shall follow the convention that the owner tuple

shall appear on the left.

The Network Calculus

The alphabet for the network calculus is listed below.

-80-



Individual constants a], a2, a3,
Index constants 1, 2, 3, 4,
Tuple variables Fys Tos T3
Predicate constants

monadic p

1, 2° " 3°
dyadic =y <y >y <y 2, #
w], Wz, W3,
Logical symbols 3 v, AV,
Delimiters 1 O,

There is a monadic predicate constant'for each file
(relation) in the database, and Pjr is intended to mean
that tuple r is a member (row) of file j. Pjr is called a
range term.

An indexed tuple, denoted r[n] where r is a tuple
variable and n is an index constant, is used to identify the
nth domain of tuple r.

If o ié one of the dyadic predicate constants =, <, <,
>, >, #, and X and p are indexed tuples, then X6u and ABa
are called join terms. If 8 is one of the dyadic predicate

constants w], wz, w3, ..., and X and u are tuples, then A6u

is called a merge term. The only terms of the network
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calculus are range terms, join terms, and merge terms.
Codd's definition of a well-formed formulae (WFF) still

applies

"1. Any term is a WFF;

2. If M is a WFF, then so is -l

3. If P], P2 are WFFs, so are (P] A Pz) and (P] v Fz);
4. If I' is a WFF in which r occurs as a free

variable, then 3 r(") and Vr (") are WFFs;

5. No other formulae are wFFs."4]

A range WFF is a quantifier free WFF whose only terms are
range terms. A range WFF over r is a range WFF with r as the

only free variable. A proper range WFF over r is a range

WFF over r such that:
1. ™ occurs only after A, and
2. if r is part of more than one range term, the

relations associated with the predicates are

union compatible.

Thus a proper range WFF over r cannot say only that file S
is not the source of tuple variable r. Likewise the range of
a tuple variable can only be the files of the database or

files which can be generated from them by union, intersection,
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and difference operations on union compatible pairs.
A range-coupled quantifier is either 3ITr or VI
where I is a proper range WFF over r.

A range-separable WFF can be written in conjunctive form
U] A U2 Ao.oo MU AV,
where

"T. n>1;
2. U] through Un are proper range WFFs over n
distinct tuple variables;
3. V is either null, or it is a WFF with the three
properties:
a. every quantifier in V is range-coupled;
b. every free variable in V belongs to the set
whose ranges are specified by U], U2, ceo Un;
c. V is devoid of range terms."

To incorporate the needed projection capability, a

simple alpha expression has the form
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where

1. w is a range-separable WFF of the network calculus;
2. t], t2, ces tk are distinct terms, each consisting
of a tuple variable or an indexed tuple variable;
3. the set of tuple variables occurring in t], t2,
tk is precisely the set of free variables in w.

An alpha expression is either a simple alpha expression, or,

if t:w] and t:w2 are alpha expressions, an expression of the

form
t:(w] v W2)
t:(w] A w2)
t:(w]/\-‘wz).
Examples

Assume the following database structure.

R2 Partj
R] [Supp]ier] w2 w3 R3 lProject
R4 Supply R5 Worker
Figure 15
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Symbol File Attribute 1 Attribute 2 Attribute 3

supplier| supplier # supplier name| location

part part # part name

project| project #

supply

worker worker # worker name

Figure 15 (cont'd)

Find the supplier number of those suppliers who supply
part 15.
r][j]:P]r] A Pory A Parg A (r]w]r4 A

r2w2r4 A rz[l] = 15)

Find the locations of suppliers and the parts being
supplied by them (omitting those suppliers who are
supplying no parts at this time).
(r][3], r2[1]) : P]r] A P2r2 A P4r4 A
(rlw]r4 A r2w2r4)
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* Find the workers on all projects being supplied by
supplier A.
rs[]] PPy A Pyrg A Pars # Perg A

(r][lj = A A rylyr, Aoraligr,

A r3w4r5)

Reduction
The reduction algorithm presenied by Codd is intended to
demonstrate that the relational algebra is "relationally com-
plete” and is not intended as a practical efficient translator
from calculus to relational a]gebra.43 Because the modification
we have presented is of such a minor nature, we will not wade
through a parallel reduction algorithm for the network calculus
and algebra. Instead, we will present arguments considered suf-
ficient to convince the reader that such a parallel reduction ex-
ists, and move on to the more interesting question of efficiency.
The only modification We made to the relational calculus
was the addition of the dyadic predicate constants w], wz,
N3, e These operated on tuples in an identical manner to
the way the other dyadic predicate constants (=,#,<,<,>,>)
operated on indexed tuples. By assuming that we will assign
each tuple in a file a unique identifier (as discussed in the
last chapter) and treating that as the first domain of each

tuple, then the extension we made to the restriction
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operation in the last chapter will handle the extension we made
to the network calculus.

To be specific, if we assume that the tuple identifier
domain is not assumed in the calculus level, but that the
cartesian product automatically prefixes it to the tuple,
then the following modifications need to be added to the

reduction algorithm.

Step 1.3
When a dyadic predicate constant W is preceded by

a 7, eliminate the 7 symbol and replace W by W.

Step 3
j-1
p: =(2 (n, + 1)) + 1 (change)
R ) B
Step 4 (rewriting rules)
W
5. (rj W rk) -> S[uj-] # uk-l] (add)
W
6. (rJ W rk) > S[UJ“] # Uk"]] (add)

Optimization and Efficiency

It would be unfair at this point in the development to
declare that one model or the other is inherently more efficient.
Codd argues that the calculus Tevel is a good starting point
for optimization, and this is likely to be true. The issue of
concern here is whether the network model or relational model

leads to more efficient execution.
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The use of the cartesian product is a prime suspect with
which to begin. The number of tuples generated by an extended
cartesian product can quickly become astronomical. The
cartesian product of three relations with only 100 tuples
each will result in a relation with 1,000,000 tuples. A
majority of these are likely to be pared off in the ensuing
restriction operations.

It is 1ikely that with a little effort, the cartesian
products and restrictions could be replaced by joins. Note
that

R[A 6 8]S = (R @® ) [A s 8].M
So the more 1jke1y efficiency comparison should be between
the join of the relational algebra and the merge of network
algebra. In either case improvement could also result from
performing some restrictions prior to the merge or join. In
a likely implementation of the network model, the merge
operation should require no more accesses than the number of
tuples which would end up in the resulting file. The author
does not know of a relational implementation which would have
this same property, but this is more Tikely a function of the
ignorance of the author than the non-existence of such an

implementation. Thus we cannot pursue this point any further.
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Chapter 7 Summary

Conclusions

Once again, the subjective nature of a comparison of this
type must be stressed. Any conclusions drawn must be phrased
in terms of the issues discussed. The relevancy and importance
of the topics chosen for study here are matters for the reader
to evaluate. The author made an attempt to cover the areas of
concern most frequently found in the literature, and this may be
some basis of argument for the relevancy of the topics. It is
the author's personal opinion that the discussion has hit many
of the important issues and has done so with a viewpoint not
commonly found in current debates.

Based on the five viewpoints chosen for comparision, all
but the casua]}user point of view leaned toward a preference
for the network model; for the casual user it was a draw. This
is perhaps an appropriate point to emphasize that all aspects
of the network model uséd for the comparisons are not, to the
author's knowledge, to be found in any published exposition of
the model. Some may argue that this makes the comparisons in-
valid, but the author contends rather that looking at each model
in terms of its ultimate possibilities makes the comparison
more meaningful, if the goal is in fact to choose the best
approach. Rather than focussing on correctible deficiencies

in a current model, we have tried to look at the underlying
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and inherent characteristics of each model with the hope that
the results will not become outdated as soon as a particular
deficiency is remedied.

To provide an adequate basis of comparison with respect
to the interface language, we have followed Codd's lead and
developed a network algebra and network calculus (which were
simply extensions tq\Codd's). The approach was to a certain
extent non-rigorous, and %t is suspected that this may provide,
for some, a point of contention. The hope is that the ex-
tensions proposed will serve as the basis of a more mathematical
treatment by anyone with an abstract mathematical background.
More importantly, we hope that this will provide an impetus
toward more "equal basis" comparisons in the future.

One question that arises is whetHer one model can be viewed
as a subset of another. An excerpt from Codd has bearing on

this issue.

“"Claims have been made ... that the network approach
permit(s) more natural or faithful modelling of the

real world than the relational model. Such claims are
not easy to support or refute, because our present knowl-
edge of what constitutes a good data structure for solving
a given class of problems is highly intuitive and unsystem-
atic.

"However, we can observe that many different kinds of
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geometry, topology, and graphs (or networks) are in use
todéy for solving "real world" problems. Relations tend

to be neutral towards these problem-solving representations
and yet very adaptable to supporting any of them. This has
been ¢é¢monstrated rather clearly in applications of rela-
tions in various kinds of graphics packages.

"On the other hand, the owner-coupled set gives rise
to a specific kind of network, and is accordingly very
convenient in some contexts and very awkward in others.

It is convenient when the application involves collections
of sets, each of which has both a descriptor and a simple
total ordering of its elements. It is awkward when the
application involves partial orderings (e.g., PERT charts),
loops (e.g., transportation routes), values associated

with network links (e.g., utility networks), many to many
binary relations, relations of degree other than two, and
variable depth, homogeneous trees (e.g., organization

charts)."45

Codd proceeds to argue that the principal schema should be kept

simple, and particular user needs for more complex schemes should

be the responsibility of the user schema. This, he argues, would

provide a clean separation that would keep the principal schema

uncluttered. He is thus saying that the network model is a

structure which can be built on top of the relational model.

This could well be true, but the relational model is trying to
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accomplish the same ends as the network model, and hence skirts
around the network model. The thesis underlying this paper has
been that the network model, as presented here, is sufficient
to model the real world. As Codd points out, this is difficult
to support or refute, but, if it is true, the network model
provides a higher interface to use and hence should provide

greater ease in handling real world problems.

A Hybrid View

Codd points out that the network view can be supported by
the relational model. It is likewise possible to support the
relational view in a system built on the network model. The
basis of this assertion comes from the fact that there exists
a procedure (a la Codd) for transforming a network database
into a relational database (normalization). Without actually
performing this normalization, the network system could make it
appear to the user that this has been done and that the data-
base is built on the relational view. Thus, if it behooves one
to think of a database as relational (e.g., the casual user),
there is no reason to rule out the support of it even if the
system has been built on a network framework. With this possi-
bility we can have the best of both worlds.

A special case in which the hybrid view seems appropriate
is in the context of distributed databases. Consider a user

database which maintains information on his current portfolio.
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An attribute of major concern with respect to a stock is its
current price. This is an extremely expensive value to keep
track of continuously, especially for a single user. It

would more likely be desirable to have a single vendor (user)
maintain current prices on all stocks, and any individual

user could, at any time, access the current price of a partic-
ular stock (for a slight fee, of course). It may be helpful
to view an individual user's database in the network model,
and the interaction between databases in a relational context.
To find the stocks in the user's portfolio we would employ
netwdrk techniques, and to find the stock price in a remote
database we would make use of relational operators.

Further Research

This paper has touched on several ideas which would
themselves make interesting bases for research. The scope of
this paper was much too broad to cover many of them in any

detail. A few of these are suggested below.

* The whole concept of keys in the network model is a
source of problems in several implementations. As men-
tioned in Chapter 2, keys serve two functions in the
network model, ordering and identification of members of
a relation, and identification of records in a file. In

the hierarchical model of data, out of which the network
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model evolved, this duality of function caused no problems.
It is the potential for multiple access paths to a record
that spawns the problem, and the duality of function

should thus be clearly separated. How this can be done,
and its impact on current use of the network model would

be an interesting study.

As mentioned in Chapter 2, one to many binary relations
can be used to represent many to many and n-ary
relations. A mathematical formulation and proof of
this assertion could prove interesting. Also the

need for one to one relations alluded to could be

verified.

A psychological study of the "teachability" of the two

models could help to reinforce or quell many arguments.

Many of the ideas presented in developing the network
algebra and calculus could stand a more formal, mathe-

matical treatment.

Techniques for optimization of both the network and
relational calculus in the reduction process would be of

significant practical value.
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Any comparisons of the two models on terms other than
those presented here would help to round out the picture
and fill in the gaps. These should not have any of the

pitfalls discussed in the introduction.
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