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Abstract

The recent rise of multicore processors has forced us to reexamine old computer
science problems in a new light. As multicores turn into manycores, we need to visit
these problems yet again to find solutions that will work on these drastically different
architectures.

This thesis presents the design of a new page allocator algorithm based on a
new distributed buddy allocator algorithm, one which is made with future processor
architectures in mind. The page allocator is a vital and heavily-used part of an
operating system, and making this more scalable is a necessary step to build a scalable
operating system.

This design was implemented in the fos [34] research operating system, and eval-
uated on 8- and 16-core machines. The results show that this design has comparable
performance with Linux for small core counts, and with its better scalability, surpasses
the performance of Linux at higher core counts.
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Title: Professor, CSAIL
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Chapter 1

Introduction

Recent years have seen the proliferation of multicore systems, with mainstream 12-

core processors available [3] now, and research and specialized processors with 64 or

more cores [2, 20, 27, 32]. The growth of multicore processors has kept processor

aggregate performance on the same trend that, until now, has been sustained by

increases in single-stream performance. This performance, however, comes at the cost

of being harder for programmers to use. Software can no longer continue expecting

easy speedups by using processors with higher clock speeds; instead software must be

specifically designed to use the new type of power that multicore processors offer.

The operating system is one piece of software that has no choice but to make use

of this parallelism. If the operating system cannot scale, then none of the applications

running on it can either. There are many components of an operating system that

present parallelization challenges, one of which is the memory management subsys-

tem.

The memory management system is itself composed of smaller pieces; one of

the more important ones is the page allocator. The page allocator is responsible for

managing the set of allocated or free pages in the system, and is used for most memory

management functions.

This thesis presents a new technique for scalable memory management by using a

distributed buddy allocator as the page allocator. Recent research [31] has shown that

the page allocator in Linux does not scale to the number of cores currently available,
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and that replacing this component can increase the scalability of the system. The

contribution of this thesis is the design, implementation, and evaluation of a novel

distributed buddy allocator. Results show that the new allocator is competitive with

Linux for small core counts but achieves better scalability, to the point that it is faster

for the number of cores one may find in a machine today.

This work was done as a part of the larger fos [34] project. fos is a new operating

system that represents a comprehensive redesign of the fundamental operating sys-

tem architecture, and aims to replace all traditional operating system services with

scalable variants. This page allocator is one such service.

The design of fos presents many difficulties and opportunities for doing scalability

research. A second goal of this project was to help evaluate the decisions made as

part of the fos project.

The structure of this thesis is as follows. Chapter 2 describes the problems that the

memory management system solves, along with the current state of the art. Chapter

3 goes into the design motivations and choices behind the parent project, fos. Chapter

4 details the new design presented in this thesis. Chapter 5 presents results obtained

by implementing and running this design. Chapter 6 identifies future areas for study,

and chapter 7 concludes.
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Chapter 2

Background

2.1 Page allocators

Page allocators play a vital role in modern operating systems. RAM is one of the key

resources in computer systems, and the page allocator is responsible for the efficient

management of RAM. Whenever a kernel requires more physical memory – such as

to spawn a new process, load data off a disk, or expand the heap of a current process

– the kernel requests a range of free pages from the page allocator. Page allocation

is the process of managing the physical pages of memory in the machine, keeping

track of which are free or in use, and allocating them to the requesting process. The

allocator needs to distribute only free pages to requests, and it also needs to be able

to reallocate pages that have been freed. Due to other design considerations, the

page allocator returns contiguous set of pages. The page allocator needs to efficiently

respond to these requests, to keep the system running quickly.

There are a range of criteria for allocator algorithms, some of which are less

relevant in a page allocation context:

Performance One of the key metrics of any allocator is how quickly it can return

requested ranges. A key component of good performance is high scalability.

Fragmentation There are many types of fragmentation. Internal fragmentation is

the space that is wasted because a larger region was returned than necessary.
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This is less important for a page allocator, since the requester (the kernel) is

free to use small ranges and stitch them together to form a larger range. Exter-

nal fragmentation is the condition when there is free memory, but it exists in

disjoint ranges which cannot be combined into a single larger range. Distributed

fragmentation is when there is free memory, but no single process knows enough

about the global state to coalesce them. This has a similar solution to the prob-

lem of passively-induced false sharing, which is encountered in dynamic memory

allocators. Blowup [8] is similar to distributed fragmentation, but happens when

the free memory becomes imbalanced between the different processors. In dy-

namic memory allocators, this results in higher memory usage than required;

in a page allocator, it results in lower memory efficiency.

Locality, False Sharing Modern memory allocators optimize for high locality and

low false sharing. These are considerations for shared-memory dynamic memory

allocators, though, which do not apply to a page allocator.

There are a range of allocator algorithms that make different tradeoffs between

these features. Many contemporary operating systems, including Linux, choose to use

buddy allocators for their page allocators due to their high speed. Buddy allocators

can quickly provide ranges of pages where the number of pages is a power of two,

and can quickly split and coalesce ranges. The suffer, though, from relatively high

internal fragmentation; operating system kernels, though, are able to work around

this limitation.

2.1.1 Buddy Allocators

Buddy allocators can be thought of as a binary tree, where the leaves represent indi-

vidual pages of memory, and are marked “free” if the corresponding page is free. Inner

nodes represent the range of pages corresponding to the union of their children, and

are marked free only if both of their children are (and thus all of their descendants).

When servicing a request, the buddy allocator first rounds up the number of pages

to a power of 2. It then locates a range with that many pages that is marked free.
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(This can be found efficiently by maintaining a linked list of all free ranges at each

level.) It then marks that range allocated, and returns the corresponding range. To

service a request to free some pages, the buddy allocator first marks the range free.

Then, if that range’s sibling (the range’s “buddy”, hence the name) is also free, the

allocator coalesces the two ranges by marking the parent free. If the parent’s buddy

is also free, it recursively continues the process.

Due to their simple design and good performance, buddy allocators have been the

algorithm of choice for kernel page allocators. Similar to many parts of the operating

system, however, buddy allocators were chosen for their single-stream performance,

and work is needed to provide high performance as the number of cores increases.

The original method of making the page allocator work in a multi-cpu environment

was to place a big lock around the buddy allocator. While this successfully prevented

incorrect behavior, it also prevented increased page allocation performance from addi-

tional cores. There have been efforts to make the page allocator system more scalable,

including making a concurrent buddy allocator, and using per-cpu caches to avoid

taking out the big lock.

There are many concurrent buddy allocator structures, such as the one presented

in [22]. It uses per-freelist locks, which means that any two requests for different

powers of two can proceed in parallel. While effective, this limits the parallelization

to the number of freelists in the allocator, which is a fixed number as the number of

cores grows.

Linux has addressed this problem by using per-cpu free lists. Each core maintains

a small list of free pages, and when that cpu requests a single page, it services the

request from the cache. In order to reduce memory waste due to pages sitting in the

caches, Linux only caches single-page ranges. Recent research [31] has shown that this

approach works well for small numbers of cores, but does not scale. A more promising

direction is motivated by recent work on a closely-related subject: dynamic memory

allocation.
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2.2 Dynamic memory allocation

Dynamic memory allocation, one of the common tasks in computer programming [35],

shares many things in common with page allocation. In both problems, the algorithm

must allocate contiguous ranges, and be able to free them to be reallocated later, while

obtaining good speed and memory efficiency. In fact, using a buddy allocator is a

possible method of dynamic memory allocation. Dynamic memory allocation, though,

prioritizes memory efficiency, which is the opposite tradeoff that a buddy allocator

makes, and buddy allocators are now rarely used for dynamic memory allocation.

Since the problems are similar, though, ideas from good dynamic memory allocation

can be used to created better page allocators (and vice-versa).

Dynamic memory allocation has similarly had to be approached in new ways as

the number of cores in systems grows. There has been much research into making

parallelizing dynamic memory allocation, and efforts fall into a few main categories:

• Big locks around sequential algorithms. This is the simplest method, though it

does not allow additional performance by adding more cores.

• Concurrent structures, such as [22] and [21]. These work similarly to the con-

current buddy allocator: by using finer locks. Again, though, these suffer from

having scalability limited by the number of concurrently requested sizes.

• Purely-private heaps, such as the ones in CILK [1] and the STL [28]. In these

schemes, processors use the same heap for all allocations and frees. This leads

to very high performance, but can lead to problems in certain use cases where

memory is freed from different processors than it is allocated on.

• Local heaps plus a global heap, such as Hoard [8], Streamflow [26], and others

[16, 17, 23, 25, 30]. These use local heaps to serve as many requests as possible,

but use the global heap when necessary. This is similar to the way that Linux

uses a per-cpu cache of free pages, but uses the global buddy allocator when

necessary.
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Allocators that predominantly use their local heaps, such as Hoard and Stream-

flow, achieve good performance and scalability, while addressing the issues with

purely-private heap allocators such as CILK and the STL. This thesis makes the

following contributions on top of these allocators:

• Application to a buddy allocator, instead of a free-list allocator. This makes a

tradeoff that is more favorable to being a kernel page allocator.

• Extension to settings where there is no global heap. The global heap is what al-

lows the different local heaps to remain balanced; with no global heap, processes

must rely on a different rebalancing mechanism.

• Extension to architectures without shared memory. These allocators generally

use shared memory to coordinate between the different heaps (and manage the

global heap). The allocator presented here uses only message passing, and is

able to work on machines without coherent shared memory.

The global heap must be eliminated for a few reasons. First, it is a source of

contention between the different processes. Contention on the global heap increases

linearly with the number of processes, which eventually becomes a problem. This

can be addressed by increasing the size of allocations from the global heap, but this

leads to linear per-thread memory overhead, instead of constant. Second, without

shared memory, having a global heap becomes more difficult. It is possible to have

a single process manage the global heap, but the design needs to be complicated to

avoid having that process be a single point of failure for the allocator.

The natural next step in this evolution is to use an all-distributed design, taking

ideas from the area of highly-scalable distributed systems. In this kind of design, all of

the memory would be managed in private heaps, but the private heaps would have the

ability to communicate with each other to balance the system. This achieves the same

fast-path performance, because most operations are able to be served from the local

heap. The slow path – when the local heap is unable to service a request – is now more

scalable, since any other local heap would be able to provide more memory, instead of
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the single global heap, which would eventually become a bottleneck. Streamflow [26]

uses this idea to make remote deallocations fast; this design proposed in this thesis

extends it to rebalancing in general.

The problems of page allocation and dynamic memory allocation, though different

in many important ways, have very similar algorithms. Both classes of problems are

now running into the importance of scalability in addition to single-stream perfor-

mance, and the work in both areas is heading towards an all-distributed design.
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Chapter 3

fos

3.1 Motivation

fos [34], a factored operating system, is a current research project exploring a new

operating system design for future computer architectures. The rise of multicore and

cloud computers present difficulties for traditional operating system designs, which

did not take such systems into account. fos aims to redesign the way the operating

system works, taking scalability as a first order design constraint. In fos, all system

services must scale to meet the demand of hundreds or even thousands of cores. It is

within this context that the page allocator presented in this thesis was designed; this

chapter describes the previous work that has gone into fos.

The motivation for fos is driven by recent trends in processor design. Moore’s law

predicts an exponential rise in processor transistor counts, and until recently this ex-

tra processing power has translated into higher single stream performance. Recently,

though, physical constraints have put a stop to this avenue. Instead, processor manu-

facturers have turned to increasing the number of cores on the same die. This change

means that the total computational power of new chips continues to grow at the same

rate, but also that software developers face new challenges, as this power becomes

more and more difficult to utilize. In particular, recent research [10] has shown that

modern operating systems have difficulty using this additional power.

In fact, it is often the case that there is more processing power available than
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the developer can effectively utilize, and this is only becoming more common. This

means that the system is CPU-bound, but there are cores that are idle. This leads to

the abundant cores assumption: that in the future, we will have more cores available

than can be used effectively by the user, and priority shifts to using the idle cores to

run user applications faster.

The problem is that traditional operating systems are not designed to be able to

make this shift. They were designed at a time when multiple processing units were

rare and esoteric, and the resulting fundamental design reflects this. Given the new

architecture landscape of today, it makes sense to create a new operating system from

scratch, that is designed to address these problems directly.

There are two components to building a scalable operating system: the first is

providing a scalable abstraction to user applications, and the other is efficiently im-

plementing that abstraction. The new interfaces that fos provides are described in

3.2; in order to provide efficient implementations, we must rewrite large parts of the

operating system, such as the page allocator.

3.1.1 Multicore

There are additional problems that arise in the process of designing and construction

a scalable operating system. The hardware, itself, is difficult to scale as the number

of cores increase. One particular place this shows up is in the cache-coherent shared

memory system. Cache-coherent shared memory becomes more and more expensive

to implement and use as the number of cores increases, and for this reason many new

unconventional architectures do not support it [19, 20, 32].

Instead, many new architectures offer an efficient message passing mechanism.

This is much easier for the hardware to provide, but it offers new challenges for the

programmer, along with some new opportunities. It means that, for better or for

worse, all applications written on top of fos are more similar to current distributed

applications than parallel programs.

Future operating systems must also deal with additional problems that do not

occur in current systems. In the future, it is likely that individual cores will experience
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the same classes of errors that internet-scale systems do today, such as single-node

failure, lossy communication, and network partitions.

Additionally, the networking topologies of chips will likely become more heteroge-

neous. Already, there is a large difference in communication latencies between cores

[10], depending on the location of the cores. This suggests that spacial locality will

be a primary performance factor for future systems for future systems.

3.1.2 Cloud

At the same time that processors have increasing numbers of cores, developers are

using increasing numbers of machines in their systems. Currently, this distributed

systems work must be done at a level above the operating system. Given the similar

problems presented by multicore and the cloud [34], though, the operating system is

able to use the same mechanisms to help with both.

With no shared memory, messaging as the communication mechanism, indepen-

dent processing, independent fault model, heterogeneous network topologies, and an

increasing amount of networking with other processors, future processors look more

like distributed systems than they do current parallel processors. fos uses this insight,

and borrows many ideas from distributed systems research to inspire the design of an

operating system for these processors.

3.2 Design

While fos is designed for future hardware, it is currently implemented for x86 64

processors. Although shared memory is available, it is not used in any of the operating

system services to preserve compatibility with future hardware. It is implemented

as a hypervirtualized kernel, running on top of a Xen [6] hypervisor. While using

Xen frees us from worrying about device compatibility, it unfortunately changes the

performance characteristics of the “hardware”. Xen is structured as a privileged

“domain 0” (dom0 ) virtual machine (VM), with several guest “domain U” (domU )

VMs. The dom0 is usually a Linux operating system, and fos runs as a domU.
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3.2.1 Fleets

fos is a microkernel based operating system that uses a fundamentally different system

architecture from conventional monolithic kernels. In fos, each process is considered

to be a server, and the terms are used interchangeably. Each server is assigned to a

core, and there is only limited time-multiplexing on each core, since it is assumed that

each server will make maximal use of the core’s resources. The operating services in

fos assume that there is no shared memory in the system, so the base communication

mechanism is message passing. Thus the basic architecture of fos is similar to what one

might find in a distributed system: many independently-running servers that perform

service in response to requests from their clients, which may be other servers.

Corey [10] has shown the benefit of splitting operating system services from

user applications, and fos uses this principle by factoring the operating system into

function-specific services. Furthermore, each service is provided by a distributed, co-

operating fleet of servers. In systems with thousands of cores, a single core is likely

to not be capable of serving requests from all the other cores, and thus needs to be

parallelized.

Figure 3-1 shows what the layout of fos servers may look like on a manycore chip.

Each core runs a single server on top of a microkernel, and the servers are spatially

scheduled onto the different cores. A libfos library layer provides compatibility with

legacy applications by converting POSIX syscalls into fos syscalls, or messages to

appropriate servers.

The fleet-based design of fos has many benefits. It includes the benefits of Corey:

less cache contention between the kernel and the user applications, and better control

of contended resources such as a network interface card. Additionally, the parallel

nature of fos fleets allows for greater performance. In particular, page mapping per-

formance is highest with three cores mapping pages, and fos allows the service to

spawn multiple servers in the fleet to meet this.

One unavoidable difficulty with this model is that it is harder to change the amount

of resources devoted to a specific service. In a traditional multicore environment, this
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Figure 3-1: A diagram of the layout of servers in fos. Reproduced from Figure 1 in
[33].

redistribution be accomplished by assigning more or fewer time quanta to a process.

In fos, however, each process is generally the only thing running on its core. In

this model, changing the amount of resources means changing the number of cores

assigned to a fleet, which, as opposed to changing the amount of time it has, is a

non-transparent procedure. Since we expect demands on operating services to be

highly elastic, services must be designed to adapt to this. This means that services

must be prepared to gain or lose servers from their fleets.

3.2.2 Messaging

Another way that fos aims to improve the scalability of the operating system de-

sign is by redesigning the interfaces provided to the programmer, and inter-process

communication is a good example of this. Since processes are no longer able to com-

municate with shared memory, all communication happens over fos-provided mes-

saging channels. fos uses this to provide the same interface for inter- and intra-chip
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communication, and transparently switching between the two as necessary.

All communication in fos happens via mailboxes. fos allows processes to create

and register mailboxes with the system, and then wait for messages to arrive on

them. Mailboxes are registered via the name server, which provides a name lookup

service similar to DNS. The addresses returned by the name server are opaque to

user applications, which allows fos to transparently choose the message transport

mechanism, based on the destination of the message.

fos currently implements three separate messaging transports: one that uses the

kernel, one based off of URPC [7, 9], and one that uses the network interface. Each

serves a separate purpose: the kernel messaging requires little set up, but is some-

what slow; URPC is much faster, but requires some setup and management overhead;

using the network stack allows messages to be transported between machines. Since

the inter-machine transport uses the same interface as the local messaging, the pro-

grammer simply writes messaging code, and fos determines if the destination is on

the same machine or not, and chooses an appropriate transport. This is important,

given fos’s multi-machine focus.

3.2.3 Scalability Support

Message transport transparency is only one of the ways in which fos helps program-

mers write the distributed systems needed to achieve good scalability. It also provides

a new programming model, with an associated runtime, that makes it easier to write

these services. The programming model is centered on a cooperatively-threaded event

dispatch paradigm, which allows the programmer to write straight-line code and worry

about the functionality of their system rather than the exact mechanics. It also al-

lows the registration of asynchronous handlers, which is made possible by the fact

that servers run on their own dedicated cores.

fos also provides an RPC code generation library that produces code for the dis-

patch library to use. This allows the programmer to write code that looks like a

normal function call on both sides, and the library will take care of serializing the

function call, sending the request, waiting for the response, and deserializing the
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response.

fos provides helpful mechanisms for other hard distributed systems problems, such

as state sharing, elasticity, and load balancing. Unfortunately, they were in active

development at the time of this thesis, and were not available for use.

Additional details of the system architecture and programming model can be

found in [34] or [31].

3.3 Related work

fos is similar to, and draws from, many other works. It extends the microkernel

designs first implemented in Mach [4] and L4 [24]. There have been many other

efforts to produce scalable operating systems: Tornado [15] and its successor K42 [5],

Disco [11] and Cellular Disco [18], and Hive [12] have all focused on scaling operating

systems to larger numbers of cores. Unlike fos, though, they target shared-memory

machines, where the number of cores is in the dozens.

More recent efforts include Corey [10], which investigated the idea of using ded-

icated cores to do specific operating system tasks. They show, for instance, that by

using a dedicated core to handle the network stack, the system is capable of much

greater network performance. fos uses this idea heavily, and takes it farther by using

multiple cores to provide each service. Barrelfish [7] is a similar project to fos, in-

vestigating operating system design for manycore systems that may not have shared

memory, using a client-server model. fos also includes a cloud focus, and research

into parallelizing individual operating services (such as this thesis).

3.4 Implications

Doing this page allocator research in the context of the future-hardware operating

systems research has a number of implications stemming from the fact that the page

allocator must use the interfaces provided by the operating system. The first is that

these interfaces do not make full use of today’s hardware, because they assume that
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today’s hardware abstractions will be too expensive to provide in the future. This puts

an extra constraint on the way the page allocator can be designed; in particular, the

page allocator cannot use shared memory. The second is that since these interfaces are

designed for future hardware but running on today’s hardware, they do not perform

as well as today’s interfaces on today’s hardware. This means, as well, that since the

page allocator is optimized for future hardware, it is likely to not provide as good

performance on today’s hardware as algorithms optimized for today’s hardware; in

particular, it assumes the existence of fast message passing primitives, which do not

exist on today’s commodity processors.

It does mean, however, that the page allocator is able to make the same assump-

tions about future hardware as fos. In particular, the design in this thesis assumes

that there are semi-idle cores that are available to run the page allocator server,

which follows from fos’s abundant cores assumption. This allows the page allocator

to assume that its servers run on their own cores, and thus are able to do extra

computation without delaying application processes.

Being written inside fos also means that the page allocator is able to make use of

the programming model that fos provides. One of the secondary goals of the project

was to evaluate how much help fos provides in writing scalable systems, and I found

that the programming model made it significantly easier to write the page allocator.

These constraints also differentiate a fos page allocator from other existing algo-

rithms, as well as dynamic memory allocation. In a system with no shared memory, it

is impossible to have a global shared heap, as described in [8]. It is harder, in general,

to have a global view of the system; this makes it so that the page allocator is not

able to efficiently keep track of the total number of free pages in the system, and

thus it does not know when the system is actually out of memory or not. The page

allocator must also not be implemented with a design that contains a single point of

failure, because it is possible that in a manycore chip with thousands of cores, single

cores can fail at a time. This leads to a fully-distributed and -decentralized design.
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Chapter 4

Design

There are two main components to the memory management subsystem: a service

for getting ranges of free physical pages, and a service for mapping those returned

pages into a requested page table. The page allocator is discussed in section 4.1, and

the page mapper in 4.2.

4.1 Page Allocator

The main component of the memory management service is an efficient, scalable page

allocator. The page allocator allows its clients to request contiguous ranges of pages,

as long as the number of pages is a power of two and less than a certain value. The

page allocator is responsible for keeping track of which pages are currently allocated

and which are free, and only returning free pages as the result of an allocate request.

To do this performantly, we use a new distributed buddy allocator algorithm.

This algorithm is designed to be used as a page allocator for the types of systems

that fos is aimed at. It could be adapted to create a dynamic memory allocator

instead, though several of the assumptions of fos are at odds with the problem of

scalable dynamic memory allocation. Primarily, since fos assumes there is no shared

memory (and that lack is one of the main motivations of this new design), the design

tradeoffs may not make sense in a system with shared memory, which parallel dynamic

memory allocation implies. The ideas, however, should still be transferable.
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4.1.1 Distributed Buddy Allocator algorithm

The distributed buddy allocator can be thought of as the natural next step in the

evolution of scalable allocators, as described in chapter 2. It is designed as a fleet of

cooperating buddy allocator servers, each of which maintains its on private heap of

free pages. Each free page is known to be free by one and only one server; this means

that that server is free to allocate its pages because it knows no other server will, so

that each server is able to execute independently of the others.

The fleet starts by spawning a single coordinator server. The coordinator is dis-

tinguished only in fleet setup, and afterwords behaves exactly like the other servers.

The coordinator node then spawns as many new servers as needed to get the desired

number of servers, including itself. The coordinator then informs all of the spawned

processes of each other, starts the fleet, and drops its coordinator role.

The coordinator also, in this process, assigns ranges of pages to an owner. The

owner of a range of pages is the server that is in charge of managing that range,

though at any given point in time a page may be managed by any server. The

page space is split into ownership ranges that are multiples of the largest possible

allocation range. This means that any range of pages that could be allocated or freed

will entirely belong to a single order. Each server manages its list of owned pages

using a conventional buddy allocator.

Each server is also able to manage pages that it does not own. This can happen

when a client returns a range of pages to a server that does not own them, or when

a server needs to rebalance pages from another server (see section 4.1.2). The total

number of “foreign” pages that a server is managing is bounded, though (section

4.1.3), and is much smaller than the number of pages that each server owns. To

prevent high memory overhead, each server uses a sparse buddy allocator structure

to manage unowned pages. Although the sparse structure is less memory efficient

per-page, the total memory usage is smaller than using a conventional dense buddy

allocator for all of the pages in the system.

The ownership map is currently assigned statically, for ease of implementation,
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Figure 4-1: Architecture of the page allocator fleet

and for performance. It is possible to add new servers to the fleet, but the only way

for these new servers to gain pages is through the rebalancing mechanism. Addition-

ally, changing ownership of pages is not currently supported, and this represents an

interesting avenue for future research.

The allocator servers accept requests (via messaging) for ranges of pages, and any

allocator is able to handle any request. Each allocator tries to execute all requests

against its local heap. When a server receives a request free’ing a range of pages, it

adds them to its local heap, rather than trying to return them to where they were

originally allocated from, or the owning server in case they are different. This saves

an extra round trip whenever a client free’s a range of pages to a separate server

than they were allocated from, since if needed the pages can be sent back later in the

background.

Figure 4-1 shows the high-level architecture and communication patterns of the

page allocator fleet, for an example fleet of two servers. Each server manages its own
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local heap, which only it is able to access. The servers make use of other local heaps

by sending messages to the servers owning the other heap. These two servers form

the page allocator fleet, and collectively implement the distributed buddy allocator

structure.

Figure 4-1 also shows three example clients. Generally, each client will send all

of its messages to a single page allocator server, but it is possible for a single client

to send messages to multiple servers. Due to the design of the page allocator fleet,

though, the servers can transparently handle this situation, though with slightly less

efficiency.

4.1.2 Rebalancing

In the common case, the server is able to satisfy its requests with pages in its local

heap. In this case, the operation is exactly like a serial buddy allocator, except that

each server is able to proceed in parallel, because each knows that its heap is strictly

private.

When usage becomes imbalanced, though, and some page allocator servers give

out many more pages than others, a server may run out of pages in its heap before

the others. In this case, the depleted server will request a large range of pages from a

nearby server to refill its heap. This is similar to the way that Hoard [8] will refill its

local heap by allocating out of the global heap, but with a few important differences.

The first difference is that there is no global heap to refill from. Instead, a server

must talk to one of its peer servers. Since there is no shared memory in fos, a depleted

server is not able to directly access the local heap of another server, but must instead

send a request to the owner of that heap.

Second, as will be described see in section 4.1.3, moving pages around too much

causes excessive fragmentation. To prevent this, borrowing pages is seen as a tempo-

rary measure to maintain performance, rather than a permanent reassigning of pages

from one server to another.

Third, due to the architecture of fos, the distributed buddy allocator is able to do

this asynchronously, and thus not introduce any latency into user applications. Since
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each server runs on its own core, the server is free to use its idle cycles however it

wants, including getting more pages. When a server notices that it is about to run

out of pages, it will asynchronously start requesting more pages from other servers.

Because buddy allocators efficiently allocate and free large regions at a time, the

rebalancing process only takes a single message, in which a large number of pages are

moved.

The combination of fast and scalable common case performance, along with effi-

cient background rebalancing, means that the distributed buddy allocator tends to

have very good performance. There are, however, some additional aspects to deal

with beyond allocation speed.

4.1.3 Challenges

The distributed buddy allocator is designed to give fast, scalable, performance, but

there are some other problems that arise. Buddy allocators generally have good

external fragmentation, and in a page allocation context, their relatively-poor internal

fragmentation is not an issue. However, in a distributed context, buddy allocators

can suffer from excessive blowup due to distributed fragmentation.

Since the servers do not always return free pages back to the server they were

allocated from, it is possible that all the memory in the system is free, but it is

scattered between the different local heaps in such a way that none of it can be

coalesced, which is a case of distributed fragmentation.

To combat this, each server implements a high-page threshold, in addition to the

low-page threshold under which it will try to acquire more pages from peers. When

the server has more pages than its high threshold, it will try to return pages to their

owners. This makes it so that neighboring pages eventually make it back to the same

server, so that they can be coalesced into a larger range.

When a server receives a free request for a range of pages that it does not own,

and it is currently above the high threshold, it will immediately forward the free

request to the owning server. (It does this in the background, though, so that it can

immediately return to the client.) This means that a server can never have more
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foreign pages than the high threshold number of pages.

The value of the difference between the high threshold and the low threshold is

an important tuning parameter in this system, controlling the balance between rebal-

ancing cost and memory overhead. By making these two thresholds close together,

the system will have to work hard to keep all servers in that range, but it puts a

tight bound on the amount of memory that can be wasted to distributed fragmenta-

tion. Using a larger difference, in comparison, makes it easy for the servers to stay

in that range, but does so by possibly allowing a correspondingly larger amount of

distributed fragmentation.

There are number of strategies for the order in which to return non-owned pages

to their owners, such as returning the smallest range first, the largest range first, or

the oldest/newest range first. These all worked well in practice, but without real-life

traces to test on, it is not clear a priori which ones are better.

Another challenge faced by such a distributed system is not having a global view

of the system. In particular, no server knows the total number of free pages over all

of the servers. This is particularly important in low-memory situations, since servers

no longer know when the system is completely out of memory. It would be possible to

keep track of this quantity, such as through a gossip-based protocol, but this requires

more overhead, especially in an environment where the set of page allocator servers

is allowed to change.

Instead of sending extra messages to determine how many pages the other servers

have, servers return an “out of memory” error code whenever they have had no

memory for a period of time. Since servers are asynchronously trying to acquire more

pages from other servers, if a server has been unable to acquire more pages then its

peers are also low on pages. Inability to acquire more pages, then, is a good indicator

of the system being out of memory.

Using the same signal – the number of pages that a peer server was able to return

– the servers form an estimate of the number of pages free in the system. They

use this to adjust their high- and low-amount thresholds, to be proportional to the

number of pages that they would have if the system was completely balanced. This
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avoids thrashing issues when the average number of pages per server moves too much;

if there were fixed thresholds, any time this average went above the high threshold

or below the low threshold, the system would be saturated with rebalancing traffic.

Using dynamic thresholds, this is avoided.

4.1.4 Alternative designs

There were a few alternative designs that were considered, but subsequently rejected.

Client retry

Rather than have the servers do page rebalancing themselves, it is possible to signal

to the client that there is no memory available on that server. It would be the client’s

responsibility to find another page allocator server, and request pages from it.

There are a few advantages to this method: it gives the client complete control

over the exact retry strategy, allowing for different request types. It is simpler to

implement, especially if there is an automatic load balancing mechanism.

There are more disadvantages though: when a server runs out of pages, it has

reduced the number of pages in the fleet that are able to satisfy requests, lowering

throughput. If there is only one server with pages left, it should give those pages

out to the other servers so that they can help satisfy demand. Also, when the server

rebalances pages, it has the option of requesting more pages than it needs, reducing

the number of needed rebalance operations. The server also has the option of doing

this asynchronously, without introducing any latency into client operations. The

server also can keep track of which other servers still have pages left, and only send

requests to those.

Master server

Rather than using a completely decentralized design where there are no distinguished

servers in the fleet, it is possible to have a distinguished “master” server that plays

the role of the global heap. In this model, each server only maintains a small cache of
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Number of cores Throughput (pages per million cycles)
1 237
2 306
3 207
4 157
5 136
6 116
7 110

Table 4.1: Page-mapping throughput as a function of cores

pages, to satisfy the next few requests. When a server needs more pages, it requests

some more from the master server. When it has too many, it returns some to the

master server.

This has the benefit of simplicity and ease of adding more servers. It makes

it harder to deal with distributed fragmentation, since it is no longer clear who is

currently managing which regions of memory. It also suffers from the same problem

as global heaps in dynamic memory allocation: as the load on the master/global

heap grows, the contention and latency for accessing it will grow as well. Rather than

build a hierarchical system, we chose to go with a fully-distributed design that has

the potential for much farther scalability.

4.2 Page Mapper

The final component of the memory subsystem is the service that actually maps pages

into page tables. Because fos is written as a Xen guest operating system, this involves

doing a hypercall to the Xen hypervisor.

Unfortunately, we are not able to map pages very scalably on our machine. Table

4.1 shows the total throughput of a set of cores constantly trying to map pages, as

quickly as possible. Each testing process sits in a loop mapping a random page.

As one would expect, the total throughput increases when you add a second

core. Afterwords, however, performance actually decreases. This type of bottleneck

is a common occurrence, and fos provides a straightforward solution: factor out the

service. Hence, a page mapping service.

36



This service is possible due to the microkernel nature of fos, and is feasible due to

its capability system. The fact that fos is a microkernel means that it provides the

mechanism for mapping pages, but allows userland programs to control the policy. It

uses capabilities to ensure that only the page mapping service is allowed to execute

the privileged operation of mapping pages into arbitrary page tables.

The job of this service is to limit the number of cores that are simultaneously

trying to tell the Xen hypervisor to change page tables. By limiting this number, the

number of cores mapping pages is decoupled from the number of cores wanting pages

to get mapped. This means that the total page-mapping throughput can be kept at

the peak of table 4.1, rather than falling off as the number of cores is increased.

37



38



Chapter 5

Results

The presented design has been implemented and evaluated inside the fos operating

system. It has been tested with a synthetic workload designed to stress the page

allocator specifically, which directly access the page allocator rather than go through

the microkernel. It has not been fully integrated as the system page allocator.

There were two separate machines used for testing: a machine with dual quad-

core Xeon E5530 2.4 GHz processors, and a machine with four quad-core Xeon E7340

2.4GHz processors; both were running a Xen 3.2 hypervisor with a 64-bit Linux

2.6.26 dom0. For any comparisons made in this chapter, all results in the comparison

were taken on the same machine. The different comparisons were run on different

machines (due to the limited availability of a 16-core machine), and may not be

directly comparable to each other.

5.1 Implementation

The memory management system is implemented as a fleet of cooperating servers,

which communicate via message passing. The servers are written using the fos pro-

gramming model, which allows for straight-line code and RPC-like interfaces.

The memory management system is broken into a page allocator service and a page

mapper service. While logically separate, for performance reasons they are run inside

the process. This allows us to cut down the number of required cores (since we do
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not yet have an abundant-core system to test on), without changing the performance

characteristics.

fos makes the implementation of this design straightforward, though there were a

number of pitfalls. It is important to not saturate the chips communication bandwidth

with rebalance traffic, so it was necessary to add exponential backoff to the rebalance

requests on failure. It is also important to set the thresholds correctly; otherwise

servers can thrash and repeatedly trade the same range of pages back and forth.

The implementation was evaluated using a set of page allocator clients, which

directly talk to the page allocator servers. These clients independently simulate a

workflow of allocating and releasing pages, slowly increasing the overall number of

in-use pages. The throughputs shown here represent the average time per allocation

request, including the amortized time to later free the pages.

These results are compared against results from a Linux test designed to be as

close a match as possible. In the Linux test, multiple processes allocate a large region

of memory, and proceed to touch a single byte in each page. Linux does not actually

allocate or map pages when they are first requested, but rather when they are first

used; this is why the test must touch a byte in every page, to force the page to actually

be allocated and mapped. The throughputs shown for Linux represent the average

time to touch the first byte, including process setup and teardown time. Linux maps

each page on demand (and does not speculatively map the next page), so touching the

page for the first time corresponds to allocating and mapping it. Setup and teardown

time is included to capture the effects of freeing the pages, since Linux may reclaim

them only when needed again. The overhead due to starting and killing a new process

is negligible relative to the length of the test.

In the fos test, none of the allocation requests are batched or pipelined, to match

the way the Linux test works. The frees, however, were both batched and pipelined.

The free requests were batched by placing up to 128 separate page ranges of the same

order into a single request. Since there is a large per-byte cost to messaging, batching

more than 128 pages at a time does not increase performance measurably. The free

requests were also pipelined, where multiple free requests were allowed to be in-flight
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Figure 5-1: Page allocator performance, varying the number of servers

at the same time. This improved performance by allowing the page allocator client

and servers to simultaneously communicate in both directions.

5.2 Performance

Figure 5-1 shows the performance of the implementation of this design. The test is

constructed by having a variable number of clients simulate a synthetic workload,

and requesting the servers to map pages into their address spaces, and was run on

the 16-core machine. After the pages are mapped, the clients zero the page and ask

for a new page.

The different series in this figure represent runs with different numbers of servers,

as the load is increased by adding more clients. This figure shows that increasing

the number of servers helps at first, then has no effect, than decreases the overall

throughput. Adding clients has a similar effect: it takes up to four clients to fully

saturate the fleet, at which point adding more clients does not increase performance,

but rather it drops off slowly.

Figure 5-2 illustrates the overhead due to mapping the pages. The first line is

the speed of the system when no pages are mapped or touched. For reference, the

“ideal” speed is plotted as well, which is assuming linear speedup off of the one-core
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Figure 5-2: Memory management performance, with and without mapping pages

case. The lower line shows the performance when the memory management system

also maps the page. Since the only difference between these two lines is whether or

not the page is mapped (in neither case is it touched after being mapped), this shows

the large overhead of mapping pages.

The allocate-only line gets quite close to the ideal scaling line. This is because

the buddy allocator is sufficiently fast that most of the time is spent in the messaging

layer. Since the messaging layer scales almost linearly, the buddy allocator (without

page mapping) does too.

This figure, along with table 4.1, shows that the page allocator algorithm itself

scales quite well, whereas page mapping quickly becomes bottlenecked by hardware

and the Xen hypervisor. Figure 5-3 shows the difference in page mapping speed in

Linux when running on raw hardware versus running as a Xen guest. This shows

that the Xen hypervisor adds some overhead to page mapping, but the hardware

architecture still limits overall page mapping throughput.

Ultimately, we suspect that future hardware will support parallel page table up-

dates more efficiently, especially if there is no shared memory. Additionally, we sus-

pect that running fos on raw hardware, rather than in a virtual machine, will also

increase the speed. Unfortunately, while running on today’s hardware, the memory

system is largely bottlenecked by the hardware architecture.
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Figure 5-3: Linux page-mapping throughput when run on raw hardware vs. run as a
Xen domU guest.
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Figure 5-4: Page allocator performance of fos vs. Linux
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Number of clients 1 2 3
Bad layout 130 259 386

Good layout 166 334 452
Performance increase 28% 29% 17%

Table 5.1: Page allocator throughput for different process layouts

Figure 5-4 shows a comparison of the fos memory system (using 2 servers) versus

Linux, graphed the same way as figure 5-1.

This figure shows that Linux has somewhat higher throughput for small numbers

of cores. This is to be expected, since this is what Linux is optimized for. Potential

reasons for this include that Linux avoids having to do an inter-core message for

each page map, and that Linux maps the pages on the same core that they are used,

which could lead to cache benefits. The fos numbers are competitive with the Linux

numbers, though, staying within 10-20%.

For higher core counts, however, the fos memory management system is better

able to maintain performance. As was shown in table 4.1, as the number of cores

trying to map pages increases the overall throughput of the system goes down; due

to the design of Linux, as the number of allocating processes increases, the number

of page-mapping cores must also increase. In fos, however, we are able to cap the

number of page-mapping cores to the number that gives maximum throughput, and

keep it there even as the number of allocating processes increases. This is why fos is

able to maintain peak performance as the number of processes increase, as opposed

to Linux.

Also in this figure, one can see the lack of load balancing in the current page

allocator system. In the test, each client picks a single server to communicate with.

When there are two servers and an even number of clients, the load is distributed

evenly between the two servers. When there are an odd number of clients, though,

the load is distributed unevenly, and the total throughput is slightly lower.

Table 5.1 shows the effects of the differences in inter-core communication latencies.

The first line represents the performance (in page allocations per million cycles) with

the worst case assignment of processes to cores, which maximizes average message
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delay. The second line shows the performance for a process layout that has been

optimized to minimize message delays.

This shows that process layout is an important factor in performance. The differ-

ence is as almost 30% for small numbers of cores, and decreases for more cores. The

reason for this decrease is that for small numbers of cores, all cores can be very close

together, but by going above 4 cores, some must be placed on the second processor,

which increases the average message delay.

Since fos does not currently migrate processes between cores to improve locality,

the all other tests mentioned in this section all used the optimized process layout.
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Chapter 6

Future Work

There are many interesting questions that were outside the scope of this research,

many of which are general distributed systems research questions.

Rebalancing and Allocation strategies There are several options for rebalanc-

ing that were not explored. The current design decides to rebalance solely based on

the total number of pages in the local heap; there are other factors, though, that

could lead to better rebalancing decisions. For instance, if there are many requests

for large ranges of pages, it may make sense to consider the sizes of the ranges in the

local heap. Additionally, the balance between owned and unowned pages could be a

helpful factor.

The rebalancing mechanism could also be made more sophisticated. As mentioned

in section 5.1, the rebalancer uses an exponential backoff strategy to reduce rebal-

ancing communication. This works well when rebalancing is a infrequent operation,

which it usually is. If rebalancing is more frequent, the servers should send multiple

rebalance requests out in parallel to improve rebalancing throughput.

The allocation strategy treats owned and unowned pages the same: when a server

has both owned and unowned pages in its heap, it does not allocate one preferentially

to another. It may make sense to always allocate owned pages first, or unowned

pages first, or use some other factor (such as locality information) to make a smarter

decision. The allocator also does not consider fragmentation when allocating pages:
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it would be possible to pick a particular page range based on, for example, how

fragmented its parent ranges are.

The performance of these tradeoffs, though, is heavily influenced by the request

pattern made to the servers. Unfortunately, we do not have realistic usage traces,

so we cannot meaningfully evaluate the decisions. (The fos kernel currently always

allocates a single page at a time.)

Fault tolerance It is suspected that future processors will exhibit more failure

modes than current ones. With hundreds, or thousands, of cores on a single die, it

is possible that an individual core may fail, but leave the rest operational. Many of

the services in fos are being designed to be completely tolerant to these kinds of stop-

faults; this page allocator design did not incorporate that as a first order constraint,

and so does not have true fault tolerance. Because it has no single point of failure,

though, it has a limited amount of fault containment: if a node goes down, only

the pages currently being managed by that node will be lost. Future research could

examine the feasibility of ensuring that no pages become permanently unusable.

Elasticity As mentioned, the distributed buddy allocator has a limited ability to

tolerate elasticity. It is possible to add new servers beyond the original set that

it started with, but it is not that efficient, and it is also currently not possible to

remove servers from the original set. This is because the page allocator fleet statically

partitions the page range to different owners. Having some sort of dynamic update

mechanism for ownership information would solve this issue, at a cost of greater

complexity and greater overhead.

Using a design more similar to DHTs such as Chord [29] and Dynamo [14] could

be one possible way of addressing these issue. These systems are designed to provide

elasticity, and to a more limited extent fault tolerance, but the performance of the

design would necessarily suffer. Elasticity handling is an active area of research for

fos.
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Raw hardware fos currently only runs as a Xen guest on current x86 processors.

This means that it is limited by the performance characteristics of both systems. In

particular, both the Xen hypervisor and consumer x86 processors have poor page

mapping scalability. Doing a bare-metal port of fos, especially on a specialized pro-

cessor, would put more stress on the page allocator rather than the page mapper, and

allow for more investigations in that area.

Locality With the increasing heterogeneity of processor interconnects, cores are

increasingly seeing non-uniform memory access (NUMA) latencies to the different

DRAM banks. This means that, for the page allocator, certain pages are better

to return, because they will be closer to the requesting client. Additionally, when

running across multiple machines, only certain physical pages will be relevant. The

page allocator should be augmented with location information, so that it knows which

pages to return preferentially to which clients.
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Chapter 7

Conclusion

This thesis presents a new distributed buddy allocator structure, and uses it to con-

struct a more scalable memory management system for fos. Despite not being de-

signed for current hardware, the resulting memory management system is able to

stay competitive with Linux under synthetic stress tests, and has better throughput

at higher core counts. While the performance of the memory management system is

still dominated by hardware architectural overheads, results show that the presented

design is well-poised to take advantage of future hardware architectural changes.
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